vfs_bio.c revision 126704
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 */
14
15/*
16 * this file contains a new buffer I/O scheme implementing a coherent
17 * VM object and buffer cache scheme.  Pains have been taken to make
18 * sure that the performance degradation associated with schemes such
19 * as this is not realized.
20 *
21 * Author:  John S. Dyson
22 * Significant help during the development and debugging phases
23 * had been provided by David Greenman, also of the FreeBSD core team.
24 *
25 * see man buf(9) for more info.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 126704 2004-03-07 00:37:18Z alc $");
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/bio.h>
34#include <sys/conf.h>
35#include <sys/buf.h>
36#include <sys/devicestat.h>
37#include <sys/eventhandler.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mount.h>
41#include <sys/mutex.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/proc.h>
45#include <sys/resourcevar.h>
46#include <sys/sysctl.h>
47#include <sys/vmmeter.h>
48#include <sys/vnode.h>
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/vm_kern.h>
52#include <vm/vm_pageout.h>
53#include <vm/vm_page.h>
54#include <vm/vm_object.h>
55#include <vm/vm_extern.h>
56#include <vm/vm_map.h>
57#include "opt_directio.h"
58#include "opt_swap.h"
59
60static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
61
62struct	bio_ops bioops;		/* I/O operation notification */
63
64struct	buf_ops buf_ops_bio = {
65	"buf_ops_bio",
66	bwrite
67};
68
69/*
70 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
71 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
72 */
73struct buf *buf;		/* buffer header pool */
74
75static struct proc *bufdaemonproc;
76
77static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
78		vm_offset_t to);
79static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
80		vm_offset_t to);
81static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
82			       int pageno, vm_page_t m);
83static void vfs_clean_pages(struct buf * bp);
84static void vfs_setdirty(struct buf *bp);
85static void vfs_vmio_release(struct buf *bp);
86static void vfs_backgroundwritedone(struct buf *bp);
87static int vfs_bio_clcheck(struct vnode *vp, int size,
88		daddr_t lblkno, daddr_t blkno);
89static int flushbufqueues(int flushdeps);
90static void buf_daemon(void);
91void bremfreel(struct buf * bp);
92
93int vmiodirenable = TRUE;
94SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
95    "Use the VM system for directory writes");
96int runningbufspace;
97SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
98    "Amount of presently outstanding async buffer io");
99static int bufspace;
100SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
101    "KVA memory used for bufs");
102static int maxbufspace;
103SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
104    "Maximum allowed value of bufspace (including buf_daemon)");
105static int bufmallocspace;
106SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
107    "Amount of malloced memory for buffers");
108static int maxbufmallocspace;
109SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
110    "Maximum amount of malloced memory for buffers");
111static int lobufspace;
112SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
113    "Minimum amount of buffers we want to have");
114static int hibufspace;
115SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
116    "Maximum allowed value of bufspace (excluding buf_daemon)");
117static int bufreusecnt;
118SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
119    "Number of times we have reused a buffer");
120static int buffreekvacnt;
121SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
122    "Number of times we have freed the KVA space from some buffer");
123static int bufdefragcnt;
124SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
125    "Number of times we have had to repeat buffer allocation to defragment");
126static int lorunningspace;
127SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
128    "Minimum preferred space used for in-progress I/O");
129static int hirunningspace;
130SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
131    "Maximum amount of space to use for in-progress I/O");
132static int dirtybufferflushes;
133SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
134    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
135static int altbufferflushes;
136SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
137    0, "Number of fsync flushes to limit dirty buffers");
138static int recursiveflushes;
139SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
140    0, "Number of flushes skipped due to being recursive");
141static int numdirtybuffers;
142SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
143    "Number of buffers that are dirty (has unwritten changes) at the moment");
144static int lodirtybuffers;
145SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
146    "How many buffers we want to have free before bufdaemon can sleep");
147static int hidirtybuffers;
148SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
149    "When the number of dirty buffers is considered severe");
150static int dirtybufthresh;
151SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
152    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
153static int numfreebuffers;
154SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
155    "Number of free buffers");
156static int lofreebuffers;
157SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
158   "XXX Unused");
159static int hifreebuffers;
160SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
161   "XXX Complicatedly unused");
162static int getnewbufcalls;
163SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
164   "Number of calls to getnewbuf");
165static int getnewbufrestarts;
166SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
167    "Number of times getnewbuf has had to restart a buffer aquisition");
168static int dobkgrdwrite = 1;
169SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
170    "Do background writes (honoring the BV_BKGRDWRITE flag)?");
171
172/*
173 * Wakeup point for bufdaemon, as well as indicator of whether it is already
174 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
175 * is idling.
176 */
177static int bd_request;
178
179/*
180 * This lock synchronizes access to bd_request.
181 */
182static struct mtx bdlock;
183
184/*
185 * bogus page -- for I/O to/from partially complete buffers
186 * this is a temporary solution to the problem, but it is not
187 * really that bad.  it would be better to split the buffer
188 * for input in the case of buffers partially already in memory,
189 * but the code is intricate enough already.
190 */
191vm_page_t bogus_page;
192
193/*
194 * Synchronization (sleep/wakeup) variable for active buffer space requests.
195 * Set when wait starts, cleared prior to wakeup().
196 * Used in runningbufwakeup() and waitrunningbufspace().
197 */
198static int runningbufreq;
199
200/*
201 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
202 * waitrunningbufspace().
203 */
204static struct mtx rbreqlock;
205
206/*
207 * Synchronization (sleep/wakeup) variable for buffer requests.
208 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
209 * by and/or.
210 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
211 * getnewbuf(), and getblk().
212 */
213static int needsbuffer;
214
215/*
216 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
217 */
218static struct mtx nblock;
219
220/*
221 * Lock that protects against bwait()/bdone()/B_DONE races.
222 */
223
224static struct mtx bdonelock;
225
226/*
227 * Definitions for the buffer free lists.
228 */
229#define BUFFER_QUEUES	5	/* number of free buffer queues */
230
231#define QUEUE_NONE	0	/* on no queue */
232#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
233#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
234#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
235#define QUEUE_EMPTY	4	/* empty buffer headers */
236
237/* Queues for free buffers with various properties */
238static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
239
240/* Lock for the bufqueues */
241static struct mtx bqlock;
242
243/*
244 * Single global constant for BUF_WMESG, to avoid getting multiple references.
245 * buf_wmesg is referred from macros.
246 */
247const char *buf_wmesg = BUF_WMESG;
248
249#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
250#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
251#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
252#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
253
254#ifdef DIRECTIO
255extern void ffs_rawread_setup(void);
256#endif /* DIRECTIO */
257/*
258 *	numdirtywakeup:
259 *
260 *	If someone is blocked due to there being too many dirty buffers,
261 *	and numdirtybuffers is now reasonable, wake them up.
262 */
263
264static __inline void
265numdirtywakeup(int level)
266{
267	if (numdirtybuffers <= level) {
268		mtx_lock(&nblock);
269		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
270			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
271			wakeup(&needsbuffer);
272		}
273		mtx_unlock(&nblock);
274	}
275}
276
277/*
278 *	bufspacewakeup:
279 *
280 *	Called when buffer space is potentially available for recovery.
281 *	getnewbuf() will block on this flag when it is unable to free
282 *	sufficient buffer space.  Buffer space becomes recoverable when
283 *	bp's get placed back in the queues.
284 */
285
286static __inline void
287bufspacewakeup(void)
288{
289	/*
290	 * If someone is waiting for BUF space, wake them up.  Even
291	 * though we haven't freed the kva space yet, the waiting
292	 * process will be able to now.
293	 */
294	mtx_lock(&nblock);
295	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
296		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
297		wakeup(&needsbuffer);
298	}
299	mtx_unlock(&nblock);
300}
301
302/*
303 * runningbufwakeup() - in-progress I/O accounting.
304 *
305 */
306static __inline void
307runningbufwakeup(struct buf *bp)
308{
309	if (bp->b_runningbufspace) {
310		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
311		bp->b_runningbufspace = 0;
312		mtx_lock(&rbreqlock);
313		if (runningbufreq && runningbufspace <= lorunningspace) {
314			runningbufreq = 0;
315			wakeup(&runningbufreq);
316		}
317		mtx_unlock(&rbreqlock);
318	}
319}
320
321/*
322 *	bufcountwakeup:
323 *
324 *	Called when a buffer has been added to one of the free queues to
325 *	account for the buffer and to wakeup anyone waiting for free buffers.
326 *	This typically occurs when large amounts of metadata are being handled
327 *	by the buffer cache ( else buffer space runs out first, usually ).
328 */
329
330static __inline void
331bufcountwakeup(void)
332{
333	atomic_add_int(&numfreebuffers, 1);
334	mtx_lock(&nblock);
335	if (needsbuffer) {
336		needsbuffer &= ~VFS_BIO_NEED_ANY;
337		if (numfreebuffers >= hifreebuffers)
338			needsbuffer &= ~VFS_BIO_NEED_FREE;
339		wakeup(&needsbuffer);
340	}
341	mtx_unlock(&nblock);
342}
343
344/*
345 *	waitrunningbufspace()
346 *
347 *	runningbufspace is a measure of the amount of I/O currently
348 *	running.  This routine is used in async-write situations to
349 *	prevent creating huge backups of pending writes to a device.
350 *	Only asynchronous writes are governed by this function.
351 *
352 *	Reads will adjust runningbufspace, but will not block based on it.
353 *	The read load has a side effect of reducing the allowed write load.
354 *
355 *	This does NOT turn an async write into a sync write.  It waits
356 *	for earlier writes to complete and generally returns before the
357 *	caller's write has reached the device.
358 */
359static __inline void
360waitrunningbufspace(void)
361{
362	mtx_lock(&rbreqlock);
363	while (runningbufspace > hirunningspace) {
364		++runningbufreq;
365		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
366	}
367	mtx_unlock(&rbreqlock);
368}
369
370
371/*
372 *	vfs_buf_test_cache:
373 *
374 *	Called when a buffer is extended.  This function clears the B_CACHE
375 *	bit if the newly extended portion of the buffer does not contain
376 *	valid data.
377 */
378static __inline__
379void
380vfs_buf_test_cache(struct buf *bp,
381		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
382		  vm_page_t m)
383{
384	GIANT_REQUIRED;
385
386	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
387	if (bp->b_flags & B_CACHE) {
388		int base = (foff + off) & PAGE_MASK;
389		if (vm_page_is_valid(m, base, size) == 0)
390			bp->b_flags &= ~B_CACHE;
391	}
392}
393
394/* Wake up the buffer deamon if necessary */
395static __inline__
396void
397bd_wakeup(int dirtybuflevel)
398{
399	mtx_lock(&bdlock);
400	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
401		bd_request = 1;
402		wakeup(&bd_request);
403	}
404	mtx_unlock(&bdlock);
405}
406
407/*
408 * bd_speedup - speedup the buffer cache flushing code
409 */
410
411static __inline__
412void
413bd_speedup(void)
414{
415	bd_wakeup(1);
416}
417
418/*
419 * Calculating buffer cache scaling values and reserve space for buffer
420 * headers.  This is called during low level kernel initialization and
421 * may be called more then once.  We CANNOT write to the memory area
422 * being reserved at this time.
423 */
424caddr_t
425kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
426{
427	/*
428	 * physmem_est is in pages.  Convert it to kilobytes (assumes
429	 * PAGE_SIZE is >= 1K)
430	 */
431	physmem_est = physmem_est * (PAGE_SIZE / 1024);
432
433	/*
434	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
435	 * For the first 64MB of ram nominally allocate sufficient buffers to
436	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
437	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
438	 * the buffer cache we limit the eventual kva reservation to
439	 * maxbcache bytes.
440	 *
441	 * factor represents the 1/4 x ram conversion.
442	 */
443	if (nbuf == 0) {
444		int factor = 4 * BKVASIZE / 1024;
445
446		nbuf = 50;
447		if (physmem_est > 4096)
448			nbuf += min((physmem_est - 4096) / factor,
449			    65536 / factor);
450		if (physmem_est > 65536)
451			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
452
453		if (maxbcache && nbuf > maxbcache / BKVASIZE)
454			nbuf = maxbcache / BKVASIZE;
455	}
456
457#if 0
458	/*
459	 * Do not allow the buffer_map to be more then 1/2 the size of the
460	 * kernel_map.
461	 */
462	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
463	    (BKVASIZE * 2)) {
464		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
465		    (BKVASIZE * 2);
466		printf("Warning: nbufs capped at %d\n", nbuf);
467	}
468#endif
469
470	/*
471	 * swbufs are used as temporary holders for I/O, such as paging I/O.
472	 * We have no less then 16 and no more then 256.
473	 */
474	nswbuf = max(min(nbuf/4, 256), 16);
475#ifdef NSWBUF_MIN
476	if (nswbuf < NSWBUF_MIN)
477		nswbuf = NSWBUF_MIN;
478#endif
479#ifdef DIRECTIO
480	ffs_rawread_setup();
481#endif
482
483	/*
484	 * Reserve space for the buffer cache buffers
485	 */
486	swbuf = (void *)v;
487	v = (caddr_t)(swbuf + nswbuf);
488	buf = (void *)v;
489	v = (caddr_t)(buf + nbuf);
490
491	return(v);
492}
493
494/* Initialize the buffer subsystem.  Called before use of any buffers. */
495void
496bufinit(void)
497{
498	struct buf *bp;
499	int i;
500
501	GIANT_REQUIRED;
502
503	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
504	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
505	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
506	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
507	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
508
509	/* next, make a null set of free lists */
510	for (i = 0; i < BUFFER_QUEUES; i++)
511		TAILQ_INIT(&bufqueues[i]);
512
513	/* finally, initialize each buffer header and stick on empty q */
514	for (i = 0; i < nbuf; i++) {
515		bp = &buf[i];
516		bzero(bp, sizeof *bp);
517		bp->b_flags = B_INVAL;	/* we're just an empty header */
518		bp->b_dev = NODEV;
519		bp->b_rcred = NOCRED;
520		bp->b_wcred = NOCRED;
521		bp->b_qindex = QUEUE_EMPTY;
522		bp->b_vflags = 0;
523		bp->b_xflags = 0;
524		LIST_INIT(&bp->b_dep);
525		BUF_LOCKINIT(bp);
526		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
527	}
528
529	/*
530	 * maxbufspace is the absolute maximum amount of buffer space we are
531	 * allowed to reserve in KVM and in real terms.  The absolute maximum
532	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
533	 * used by most other processes.  The differential is required to
534	 * ensure that buf_daemon is able to run when other processes might
535	 * be blocked waiting for buffer space.
536	 *
537	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
538	 * this may result in KVM fragmentation which is not handled optimally
539	 * by the system.
540	 */
541	maxbufspace = nbuf * BKVASIZE;
542	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
543	lobufspace = hibufspace - MAXBSIZE;
544
545	lorunningspace = 512 * 1024;
546	hirunningspace = 1024 * 1024;
547
548/*
549 * Limit the amount of malloc memory since it is wired permanently into
550 * the kernel space.  Even though this is accounted for in the buffer
551 * allocation, we don't want the malloced region to grow uncontrolled.
552 * The malloc scheme improves memory utilization significantly on average
553 * (small) directories.
554 */
555	maxbufmallocspace = hibufspace / 20;
556
557/*
558 * Reduce the chance of a deadlock occuring by limiting the number
559 * of delayed-write dirty buffers we allow to stack up.
560 */
561	hidirtybuffers = nbuf / 4 + 20;
562	dirtybufthresh = hidirtybuffers * 9 / 10;
563	numdirtybuffers = 0;
564/*
565 * To support extreme low-memory systems, make sure hidirtybuffers cannot
566 * eat up all available buffer space.  This occurs when our minimum cannot
567 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
568 * BKVASIZE'd (8K) buffers.
569 */
570	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
571		hidirtybuffers >>= 1;
572	}
573	lodirtybuffers = hidirtybuffers / 2;
574
575/*
576 * Try to keep the number of free buffers in the specified range,
577 * and give special processes (e.g. like buf_daemon) access to an
578 * emergency reserve.
579 */
580	lofreebuffers = nbuf / 18 + 5;
581	hifreebuffers = 2 * lofreebuffers;
582	numfreebuffers = nbuf;
583
584/*
585 * Maximum number of async ops initiated per buf_daemon loop.  This is
586 * somewhat of a hack at the moment, we really need to limit ourselves
587 * based on the number of bytes of I/O in-transit that were initiated
588 * from buf_daemon.
589 */
590
591	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
592	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
593}
594
595/*
596 * bfreekva() - free the kva allocation for a buffer.
597 *
598 *	Must be called at splbio() or higher as this is the only locking for
599 *	buffer_map.
600 *
601 *	Since this call frees up buffer space, we call bufspacewakeup().
602 */
603static void
604bfreekva(struct buf * bp)
605{
606	GIANT_REQUIRED;
607
608	if (bp->b_kvasize) {
609		atomic_add_int(&buffreekvacnt, 1);
610		atomic_subtract_int(&bufspace, bp->b_kvasize);
611		vm_map_delete(buffer_map,
612		    (vm_offset_t) bp->b_kvabase,
613		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
614		);
615		bp->b_kvasize = 0;
616		bufspacewakeup();
617	}
618}
619
620/*
621 *	bremfree:
622 *
623 *	Remove the buffer from the appropriate free list.
624 */
625void
626bremfree(struct buf * bp)
627{
628	mtx_lock(&bqlock);
629	bremfreel(bp);
630	mtx_unlock(&bqlock);
631}
632
633void
634bremfreel(struct buf * bp)
635{
636	int s = splbio();
637	int old_qindex = bp->b_qindex;
638
639	GIANT_REQUIRED;
640
641	if (bp->b_qindex != QUEUE_NONE) {
642		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
643		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
644		bp->b_qindex = QUEUE_NONE;
645	} else {
646		if (BUF_REFCNT(bp) <= 1)
647			panic("bremfree: removing a buffer not on a queue");
648	}
649
650	/*
651	 * Fixup numfreebuffers count.  If the buffer is invalid or not
652	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
653	 * the buffer was free and we must decrement numfreebuffers.
654	 */
655	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
656		switch(old_qindex) {
657		case QUEUE_DIRTY:
658		case QUEUE_CLEAN:
659		case QUEUE_EMPTY:
660		case QUEUE_EMPTYKVA:
661			atomic_subtract_int(&numfreebuffers, 1);
662			break;
663		default:
664			break;
665		}
666	}
667	splx(s);
668}
669
670
671/*
672 * Get a buffer with the specified data.  Look in the cache first.  We
673 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
674 * is set, the buffer is valid and we do not have to do anything ( see
675 * getblk() ).  This is really just a special case of breadn().
676 */
677int
678bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
679    struct buf ** bpp)
680{
681
682	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
683}
684
685/*
686 * Operates like bread, but also starts asynchronous I/O on
687 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
688 * to initiating I/O . If B_CACHE is set, the buffer is valid
689 * and we do not have to do anything.
690 */
691int
692breadn(struct vnode * vp, daddr_t blkno, int size,
693    daddr_t * rablkno, int *rabsize,
694    int cnt, struct ucred * cred, struct buf ** bpp)
695{
696	struct buf *bp, *rabp;
697	int i;
698	int rv = 0, readwait = 0;
699
700	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
701
702	/* if not found in cache, do some I/O */
703	if ((bp->b_flags & B_CACHE) == 0) {
704		if (curthread != PCPU_GET(idlethread))
705			curthread->td_proc->p_stats->p_ru.ru_inblock++;
706		bp->b_iocmd = BIO_READ;
707		bp->b_flags &= ~B_INVAL;
708		bp->b_ioflags &= ~BIO_ERROR;
709		if (bp->b_rcred == NOCRED && cred != NOCRED)
710			bp->b_rcred = crhold(cred);
711		vfs_busy_pages(bp, 0);
712		bp->b_iooffset = dbtob(bp->b_blkno);
713		if (vp->v_type == VCHR)
714			VOP_SPECSTRATEGY(vp, bp);
715		else
716			VOP_STRATEGY(vp, bp);
717		++readwait;
718	}
719
720	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
721		if (inmem(vp, *rablkno))
722			continue;
723		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
724
725		if ((rabp->b_flags & B_CACHE) == 0) {
726			if (curthread != PCPU_GET(idlethread))
727				curthread->td_proc->p_stats->p_ru.ru_inblock++;
728			rabp->b_flags |= B_ASYNC;
729			rabp->b_flags &= ~B_INVAL;
730			rabp->b_ioflags &= ~BIO_ERROR;
731			rabp->b_iocmd = BIO_READ;
732			if (rabp->b_rcred == NOCRED && cred != NOCRED)
733				rabp->b_rcred = crhold(cred);
734			vfs_busy_pages(rabp, 0);
735			BUF_KERNPROC(rabp);
736			rabp->b_iooffset = dbtob(rabp->b_blkno);
737			if (vp->v_type == VCHR)
738				VOP_SPECSTRATEGY(vp, rabp);
739			else
740				VOP_STRATEGY(vp, rabp);
741		} else {
742			brelse(rabp);
743		}
744	}
745
746	if (readwait) {
747		rv = bufwait(bp);
748	}
749	return (rv);
750}
751
752/*
753 * Write, release buffer on completion.  (Done by iodone
754 * if async).  Do not bother writing anything if the buffer
755 * is invalid.
756 *
757 * Note that we set B_CACHE here, indicating that buffer is
758 * fully valid and thus cacheable.  This is true even of NFS
759 * now so we set it generally.  This could be set either here
760 * or in biodone() since the I/O is synchronous.  We put it
761 * here.
762 */
763
764int
765bwrite(struct buf * bp)
766{
767	int oldflags, s;
768	struct buf *newbp;
769
770	if (bp->b_flags & B_INVAL) {
771		brelse(bp);
772		return (0);
773	}
774
775	oldflags = bp->b_flags;
776
777	if (BUF_REFCNT(bp) == 0)
778		panic("bwrite: buffer is not busy???");
779	s = splbio();
780	/*
781	 * If a background write is already in progress, delay
782	 * writing this block if it is asynchronous. Otherwise
783	 * wait for the background write to complete.
784	 */
785	VI_LOCK(bp->b_vp);
786	if (bp->b_vflags & BV_BKGRDINPROG) {
787		if (bp->b_flags & B_ASYNC) {
788			VI_UNLOCK(bp->b_vp);
789			splx(s);
790			bdwrite(bp);
791			return (0);
792		}
793		bp->b_vflags |= BV_BKGRDWAIT;
794		msleep(&bp->b_xflags, VI_MTX(bp->b_vp), PRIBIO, "bwrbg", 0);
795		if (bp->b_vflags & BV_BKGRDINPROG)
796			panic("bwrite: still writing");
797	}
798	VI_UNLOCK(bp->b_vp);
799
800	/* Mark the buffer clean */
801	bundirty(bp);
802
803	/*
804	 * If this buffer is marked for background writing and we
805	 * do not have to wait for it, make a copy and write the
806	 * copy so as to leave this buffer ready for further use.
807	 *
808	 * This optimization eats a lot of memory.  If we have a page
809	 * or buffer shortfall we can't do it.
810	 */
811	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
812	    (bp->b_flags & B_ASYNC) &&
813	    !vm_page_count_severe() &&
814	    !buf_dirty_count_severe()) {
815		if (bp->b_iodone != NULL) {
816			printf("bp->b_iodone = %p\n", bp->b_iodone);
817			panic("bwrite: need chained iodone");
818		}
819
820		/* get a new block */
821		newbp = geteblk(bp->b_bufsize);
822
823		/*
824		 * set it to be identical to the old block.  We have to
825		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
826		 * to avoid confusing the splay tree and gbincore().
827		 */
828		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
829		newbp->b_lblkno = bp->b_lblkno;
830		newbp->b_xflags |= BX_BKGRDMARKER;
831		VI_LOCK(bp->b_vp);
832		bp->b_vflags |= BV_BKGRDINPROG;
833		bgetvp(bp->b_vp, newbp);
834		VI_UNLOCK(bp->b_vp);
835		newbp->b_blkno = bp->b_blkno;
836		newbp->b_offset = bp->b_offset;
837		newbp->b_iodone = vfs_backgroundwritedone;
838		newbp->b_flags |= B_ASYNC;
839		newbp->b_flags &= ~B_INVAL;
840
841		/* move over the dependencies */
842		if (LIST_FIRST(&bp->b_dep) != NULL)
843			buf_movedeps(bp, newbp);
844
845		/*
846		 * Initiate write on the copy, release the original to
847		 * the B_LOCKED queue so that it cannot go away until
848		 * the background write completes. If not locked it could go
849		 * away and then be reconstituted while it was being written.
850		 * If the reconstituted buffer were written, we could end up
851		 * with two background copies being written at the same time.
852		 */
853		bqrelse(bp);
854		bp = newbp;
855	}
856
857	bp->b_flags &= ~B_DONE;
858	bp->b_ioflags &= ~BIO_ERROR;
859	bp->b_flags |= B_WRITEINPROG | B_CACHE;
860	bp->b_iocmd = BIO_WRITE;
861
862	VI_LOCK(bp->b_vp);
863	bp->b_vp->v_numoutput++;
864	VI_UNLOCK(bp->b_vp);
865	vfs_busy_pages(bp, 1);
866
867	/*
868	 * Normal bwrites pipeline writes
869	 */
870	bp->b_runningbufspace = bp->b_bufsize;
871	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
872
873	if (curthread != PCPU_GET(idlethread))
874		curthread->td_proc->p_stats->p_ru.ru_oublock++;
875	splx(s);
876	if (oldflags & B_ASYNC)
877		BUF_KERNPROC(bp);
878	bp->b_iooffset = dbtob(bp->b_blkno);
879	if (bp->b_vp->v_type == VCHR)
880		VOP_SPECSTRATEGY(bp->b_vp, bp);
881	else
882		VOP_STRATEGY(bp->b_vp, bp);
883
884	if ((oldflags & B_ASYNC) == 0) {
885		int rtval = bufwait(bp);
886		brelse(bp);
887		return (rtval);
888	} else {
889		/*
890		 * don't allow the async write to saturate the I/O
891		 * system.  We will not deadlock here because
892		 * we are blocking waiting for I/O that is already in-progress
893		 * to complete. We do not block here if it is the update
894		 * or syncer daemon trying to clean up as that can lead
895		 * to deadlock.
896		 */
897		if (curthread->td_proc != bufdaemonproc &&
898		    curthread->td_proc != updateproc)
899			waitrunningbufspace();
900	}
901
902	return (0);
903}
904
905/*
906 * Complete a background write started from bwrite.
907 */
908static void
909vfs_backgroundwritedone(bp)
910	struct buf *bp;
911{
912	struct buf *origbp;
913
914	/*
915	 * Find the original buffer that we are writing.
916	 */
917	VI_LOCK(bp->b_vp);
918	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
919		panic("backgroundwritedone: lost buffer");
920
921	/*
922	 * Clear the BV_BKGRDINPROG flag in the original buffer
923	 * and awaken it if it is waiting for the write to complete.
924	 * If BV_BKGRDINPROG is not set in the original buffer it must
925	 * have been released and re-instantiated - which is not legal.
926	 */
927	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
928	    ("backgroundwritedone: lost buffer2"));
929	origbp->b_vflags &= ~BV_BKGRDINPROG;
930	if (origbp->b_vflags & BV_BKGRDWAIT) {
931		origbp->b_vflags &= ~BV_BKGRDWAIT;
932		wakeup(&origbp->b_xflags);
933	}
934	VI_UNLOCK(bp->b_vp);
935	/*
936	 * Process dependencies then return any unfinished ones.
937	 */
938	if (LIST_FIRST(&bp->b_dep) != NULL)
939		buf_complete(bp);
940	if (LIST_FIRST(&bp->b_dep) != NULL)
941		buf_movedeps(bp, origbp);
942
943	/*
944	 * This buffer is marked B_NOCACHE, so when it is released
945	 * by biodone, it will be tossed. We mark it with BIO_READ
946	 * to avoid biodone doing a second vwakeup.
947	 */
948	bp->b_flags |= B_NOCACHE;
949	bp->b_iocmd = BIO_READ;
950	bp->b_flags &= ~(B_CACHE | B_DONE);
951	bp->b_iodone = 0;
952	bufdone(bp);
953}
954
955/*
956 * Delayed write. (Buffer is marked dirty).  Do not bother writing
957 * anything if the buffer is marked invalid.
958 *
959 * Note that since the buffer must be completely valid, we can safely
960 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
961 * biodone() in order to prevent getblk from writing the buffer
962 * out synchronously.
963 */
964void
965bdwrite(struct buf * bp)
966{
967	struct thread *td = curthread;
968	struct vnode *vp;
969	struct buf *nbp;
970
971	GIANT_REQUIRED;
972
973	if (BUF_REFCNT(bp) == 0)
974		panic("bdwrite: buffer is not busy");
975
976	if (bp->b_flags & B_INVAL) {
977		brelse(bp);
978		return;
979	}
980
981	/*
982	 * If we have too many dirty buffers, don't create any more.
983	 * If we are wildly over our limit, then force a complete
984	 * cleanup. Otherwise, just keep the situation from getting
985	 * out of control. Note that we have to avoid a recursive
986	 * disaster and not try to clean up after our own cleanup!
987	 */
988	vp = bp->b_vp;
989	VI_LOCK(vp);
990	if (td->td_pflags & TDP_COWINPROGRESS) {
991		recursiveflushes++;
992	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) {
993		VI_UNLOCK(vp);
994		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
995		VI_LOCK(vp);
996		altbufferflushes++;
997	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) {
998		/*
999		 * Try to find a buffer to flush.
1000		 */
1001		TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) {
1002			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1003			    buf_countdeps(nbp, 0) ||
1004			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1005				continue;
1006			if (bp == nbp)
1007				panic("bdwrite: found ourselves");
1008			VI_UNLOCK(vp);
1009			if (nbp->b_flags & B_CLUSTEROK) {
1010				vfs_bio_awrite(nbp);
1011			} else {
1012				bremfree(nbp);
1013				bawrite(nbp);
1014			}
1015			VI_LOCK(vp);
1016			dirtybufferflushes++;
1017			break;
1018		}
1019	}
1020	VI_UNLOCK(vp);
1021
1022	bdirty(bp);
1023	/*
1024	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1025	 * true even of NFS now.
1026	 */
1027	bp->b_flags |= B_CACHE;
1028
1029	/*
1030	 * This bmap keeps the system from needing to do the bmap later,
1031	 * perhaps when the system is attempting to do a sync.  Since it
1032	 * is likely that the indirect block -- or whatever other datastructure
1033	 * that the filesystem needs is still in memory now, it is a good
1034	 * thing to do this.  Note also, that if the pageout daemon is
1035	 * requesting a sync -- there might not be enough memory to do
1036	 * the bmap then...  So, this is important to do.
1037	 */
1038	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1039		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1040	}
1041
1042	/*
1043	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1044	 */
1045	vfs_setdirty(bp);
1046
1047	/*
1048	 * We need to do this here to satisfy the vnode_pager and the
1049	 * pageout daemon, so that it thinks that the pages have been
1050	 * "cleaned".  Note that since the pages are in a delayed write
1051	 * buffer -- the VFS layer "will" see that the pages get written
1052	 * out on the next sync, or perhaps the cluster will be completed.
1053	 */
1054	vfs_clean_pages(bp);
1055	bqrelse(bp);
1056
1057	/*
1058	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1059	 * buffers (midpoint between our recovery point and our stall
1060	 * point).
1061	 */
1062	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1063
1064	/*
1065	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1066	 * due to the softdep code.
1067	 */
1068}
1069
1070/*
1071 *	bdirty:
1072 *
1073 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1074 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1075 *	itself to properly update it in the dirty/clean lists.  We mark it
1076 *	B_DONE to ensure that any asynchronization of the buffer properly
1077 *	clears B_DONE ( else a panic will occur later ).
1078 *
1079 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1080 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1081 *	should only be called if the buffer is known-good.
1082 *
1083 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1084 *	count.
1085 *
1086 *	Must be called at splbio().
1087 *	The buffer must be on QUEUE_NONE.
1088 */
1089void
1090bdirty(bp)
1091	struct buf *bp;
1092{
1093	KASSERT(bp->b_qindex == QUEUE_NONE,
1094	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1095	bp->b_flags &= ~(B_RELBUF);
1096	bp->b_iocmd = BIO_WRITE;
1097
1098	if ((bp->b_flags & B_DELWRI) == 0) {
1099		bp->b_flags |= B_DONE | B_DELWRI;
1100		reassignbuf(bp, bp->b_vp);
1101		atomic_add_int(&numdirtybuffers, 1);
1102		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1103	}
1104}
1105
1106/*
1107 *	bundirty:
1108 *
1109 *	Clear B_DELWRI for buffer.
1110 *
1111 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1112 *	count.
1113 *
1114 *	Must be called at splbio().
1115 *	The buffer must be on QUEUE_NONE.
1116 */
1117
1118void
1119bundirty(bp)
1120	struct buf *bp;
1121{
1122	KASSERT(bp->b_qindex == QUEUE_NONE,
1123	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1124
1125	if (bp->b_flags & B_DELWRI) {
1126		bp->b_flags &= ~B_DELWRI;
1127		reassignbuf(bp, bp->b_vp);
1128		atomic_subtract_int(&numdirtybuffers, 1);
1129		numdirtywakeup(lodirtybuffers);
1130	}
1131	/*
1132	 * Since it is now being written, we can clear its deferred write flag.
1133	 */
1134	bp->b_flags &= ~B_DEFERRED;
1135}
1136
1137/*
1138 *	bawrite:
1139 *
1140 *	Asynchronous write.  Start output on a buffer, but do not wait for
1141 *	it to complete.  The buffer is released when the output completes.
1142 *
1143 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1144 *	B_INVAL buffers.  Not us.
1145 */
1146void
1147bawrite(struct buf * bp)
1148{
1149	bp->b_flags |= B_ASYNC;
1150	(void) BUF_WRITE(bp);
1151}
1152
1153/*
1154 *	bwillwrite:
1155 *
1156 *	Called prior to the locking of any vnodes when we are expecting to
1157 *	write.  We do not want to starve the buffer cache with too many
1158 *	dirty buffers so we block here.  By blocking prior to the locking
1159 *	of any vnodes we attempt to avoid the situation where a locked vnode
1160 *	prevents the various system daemons from flushing related buffers.
1161 */
1162
1163void
1164bwillwrite(void)
1165{
1166	if (numdirtybuffers >= hidirtybuffers) {
1167		int s;
1168
1169		mtx_lock(&Giant);
1170		s = splbio();
1171		mtx_lock(&nblock);
1172		while (numdirtybuffers >= hidirtybuffers) {
1173			bd_wakeup(1);
1174			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1175			msleep(&needsbuffer, &nblock,
1176			    (PRIBIO + 4), "flswai", 0);
1177		}
1178		splx(s);
1179		mtx_unlock(&nblock);
1180		mtx_unlock(&Giant);
1181	}
1182}
1183
1184/*
1185 * Return true if we have too many dirty buffers.
1186 */
1187int
1188buf_dirty_count_severe(void)
1189{
1190	return(numdirtybuffers >= hidirtybuffers);
1191}
1192
1193/*
1194 *	brelse:
1195 *
1196 *	Release a busy buffer and, if requested, free its resources.  The
1197 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1198 *	to be accessed later as a cache entity or reused for other purposes.
1199 */
1200void
1201brelse(struct buf * bp)
1202{
1203	int s;
1204
1205	GIANT_REQUIRED;
1206
1207	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1208	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1209
1210	s = splbio();
1211
1212	if (bp->b_iocmd == BIO_WRITE &&
1213	    (bp->b_ioflags & BIO_ERROR) &&
1214	    !(bp->b_flags & B_INVAL)) {
1215		/*
1216		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1217		 * pages from being scrapped.  If B_INVAL is set then
1218		 * this case is not run and the next case is run to
1219		 * destroy the buffer.  B_INVAL can occur if the buffer
1220		 * is outside the range supported by the underlying device.
1221		 */
1222		bp->b_ioflags &= ~BIO_ERROR;
1223		bdirty(bp);
1224	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1225	    (bp->b_ioflags & BIO_ERROR) ||
1226	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1227		/*
1228		 * Either a failed I/O or we were asked to free or not
1229		 * cache the buffer.
1230		 */
1231		bp->b_flags |= B_INVAL;
1232		if (LIST_FIRST(&bp->b_dep) != NULL)
1233			buf_deallocate(bp);
1234		if (bp->b_flags & B_DELWRI) {
1235			atomic_subtract_int(&numdirtybuffers, 1);
1236			numdirtywakeup(lodirtybuffers);
1237		}
1238		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1239		if ((bp->b_flags & B_VMIO) == 0) {
1240			if (bp->b_bufsize)
1241				allocbuf(bp, 0);
1242			if (bp->b_vp)
1243				brelvp(bp);
1244		}
1245	}
1246
1247	/*
1248	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1249	 * is called with B_DELWRI set, the underlying pages may wind up
1250	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1251	 * because pages associated with a B_DELWRI bp are marked clean.
1252	 *
1253	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1254	 * if B_DELWRI is set.
1255	 *
1256	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1257	 * on pages to return pages to the VM page queues.
1258	 */
1259	if (bp->b_flags & B_DELWRI)
1260		bp->b_flags &= ~B_RELBUF;
1261	else if (vm_page_count_severe()) {
1262		/*
1263		 * XXX This lock may not be necessary since BKGRDINPROG
1264		 * cannot be set while we hold the buf lock, it can only be
1265		 * cleared if it is already pending.
1266		 */
1267		if (bp->b_vp) {
1268			VI_LOCK(bp->b_vp);
1269			if (!(bp->b_vflags & BV_BKGRDINPROG))
1270				bp->b_flags |= B_RELBUF;
1271			VI_UNLOCK(bp->b_vp);
1272		} else
1273			bp->b_flags |= B_RELBUF;
1274	}
1275
1276	/*
1277	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1278	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1279	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1280	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1281	 *
1282	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1283	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1284	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1285	 *
1286	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1287	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1288	 * the commit state and we cannot afford to lose the buffer. If the
1289	 * buffer has a background write in progress, we need to keep it
1290	 * around to prevent it from being reconstituted and starting a second
1291	 * background write.
1292	 */
1293	if ((bp->b_flags & B_VMIO)
1294	    && !(bp->b_vp->v_mount != NULL &&
1295		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1296		 !vn_isdisk(bp->b_vp, NULL) &&
1297		 (bp->b_flags & B_DELWRI))
1298	    ) {
1299
1300		int i, j, resid;
1301		vm_page_t m;
1302		off_t foff;
1303		vm_pindex_t poff;
1304		vm_object_t obj;
1305
1306		obj = bp->b_object;
1307
1308		/*
1309		 * Get the base offset and length of the buffer.  Note that
1310		 * in the VMIO case if the buffer block size is not
1311		 * page-aligned then b_data pointer may not be page-aligned.
1312		 * But our b_pages[] array *IS* page aligned.
1313		 *
1314		 * block sizes less then DEV_BSIZE (usually 512) are not
1315		 * supported due to the page granularity bits (m->valid,
1316		 * m->dirty, etc...).
1317		 *
1318		 * See man buf(9) for more information
1319		 */
1320		resid = bp->b_bufsize;
1321		foff = bp->b_offset;
1322		VM_OBJECT_LOCK(obj);
1323		for (i = 0; i < bp->b_npages; i++) {
1324			int had_bogus = 0;
1325
1326			m = bp->b_pages[i];
1327			vm_page_lock_queues();
1328			vm_page_flag_clear(m, PG_ZERO);
1329			vm_page_unlock_queues();
1330
1331			/*
1332			 * If we hit a bogus page, fixup *all* the bogus pages
1333			 * now.
1334			 */
1335			if (m == bogus_page) {
1336				poff = OFF_TO_IDX(bp->b_offset);
1337				had_bogus = 1;
1338
1339				for (j = i; j < bp->b_npages; j++) {
1340					vm_page_t mtmp;
1341					mtmp = bp->b_pages[j];
1342					if (mtmp == bogus_page) {
1343						mtmp = vm_page_lookup(obj, poff + j);
1344						if (!mtmp) {
1345							panic("brelse: page missing\n");
1346						}
1347						bp->b_pages[j] = mtmp;
1348					}
1349				}
1350
1351				if ((bp->b_flags & B_INVAL) == 0) {
1352					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1353				}
1354				m = bp->b_pages[i];
1355			}
1356			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1357				int poffset = foff & PAGE_MASK;
1358				int presid = resid > (PAGE_SIZE - poffset) ?
1359					(PAGE_SIZE - poffset) : resid;
1360
1361				KASSERT(presid >= 0, ("brelse: extra page"));
1362				vm_page_lock_queues();
1363				vm_page_set_invalid(m, poffset, presid);
1364				vm_page_unlock_queues();
1365				if (had_bogus)
1366					printf("avoided corruption bug in bogus_page/brelse code\n");
1367			}
1368			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1369			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1370		}
1371		VM_OBJECT_UNLOCK(obj);
1372		if (bp->b_flags & (B_INVAL | B_RELBUF))
1373			vfs_vmio_release(bp);
1374
1375	} else if (bp->b_flags & B_VMIO) {
1376
1377		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1378			vfs_vmio_release(bp);
1379		}
1380
1381	}
1382
1383	if (bp->b_qindex != QUEUE_NONE)
1384		panic("brelse: free buffer onto another queue???");
1385	if (BUF_REFCNT(bp) > 1) {
1386		/* do not release to free list */
1387		BUF_UNLOCK(bp);
1388		splx(s);
1389		return;
1390	}
1391
1392	/* enqueue */
1393	mtx_lock(&bqlock);
1394
1395	/* buffers with no memory */
1396	if (bp->b_bufsize == 0) {
1397		bp->b_flags |= B_INVAL;
1398		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1399		if (bp->b_vflags & BV_BKGRDINPROG)
1400			panic("losing buffer 1");
1401		if (bp->b_kvasize) {
1402			bp->b_qindex = QUEUE_EMPTYKVA;
1403		} else {
1404			bp->b_qindex = QUEUE_EMPTY;
1405		}
1406		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1407		bp->b_dev = NODEV;
1408	/* buffers with junk contents */
1409	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1410	    (bp->b_ioflags & BIO_ERROR)) {
1411		bp->b_flags |= B_INVAL;
1412		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1413		if (bp->b_vflags & BV_BKGRDINPROG)
1414			panic("losing buffer 2");
1415		bp->b_qindex = QUEUE_CLEAN;
1416		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1417		bp->b_dev = NODEV;
1418	/* remaining buffers */
1419	} else {
1420		if (bp->b_flags & B_DELWRI)
1421			bp->b_qindex = QUEUE_DIRTY;
1422		else
1423			bp->b_qindex = QUEUE_CLEAN;
1424		if (bp->b_flags & B_AGE)
1425			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1426		else
1427			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1428	}
1429	mtx_unlock(&bqlock);
1430
1431	/*
1432	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1433	 * placed the buffer on the correct queue.  We must also disassociate
1434	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1435	 * find it.
1436	 */
1437	if (bp->b_flags & B_INVAL) {
1438		if (bp->b_flags & B_DELWRI)
1439			bundirty(bp);
1440		if (bp->b_vp)
1441			brelvp(bp);
1442	}
1443
1444	/*
1445	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1446	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1447	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1448	 * if B_INVAL is set ).
1449	 */
1450
1451	if (!(bp->b_flags & B_DELWRI))
1452		bufcountwakeup();
1453
1454	/*
1455	 * Something we can maybe free or reuse
1456	 */
1457	if (bp->b_bufsize || bp->b_kvasize)
1458		bufspacewakeup();
1459
1460	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1461	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1462		panic("brelse: not dirty");
1463	/* unlock */
1464	BUF_UNLOCK(bp);
1465	splx(s);
1466}
1467
1468/*
1469 * Release a buffer back to the appropriate queue but do not try to free
1470 * it.  The buffer is expected to be used again soon.
1471 *
1472 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1473 * biodone() to requeue an async I/O on completion.  It is also used when
1474 * known good buffers need to be requeued but we think we may need the data
1475 * again soon.
1476 *
1477 * XXX we should be able to leave the B_RELBUF hint set on completion.
1478 */
1479void
1480bqrelse(struct buf * bp)
1481{
1482	int s;
1483
1484	s = splbio();
1485
1486	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1487
1488	if (bp->b_qindex != QUEUE_NONE)
1489		panic("bqrelse: free buffer onto another queue???");
1490	if (BUF_REFCNT(bp) > 1) {
1491		/* do not release to free list */
1492		BUF_UNLOCK(bp);
1493		splx(s);
1494		return;
1495	}
1496	mtx_lock(&bqlock);
1497	/* buffers with stale but valid contents */
1498	if (bp->b_flags & B_DELWRI) {
1499		bp->b_qindex = QUEUE_DIRTY;
1500		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1501	} else {
1502		/*
1503		 * XXX This lock may not be necessary since BKGRDINPROG
1504		 * cannot be set while we hold the buf lock, it can only be
1505		 * cleared if it is already pending.
1506		 */
1507		VI_LOCK(bp->b_vp);
1508		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1509			VI_UNLOCK(bp->b_vp);
1510			bp->b_qindex = QUEUE_CLEAN;
1511			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1512			    b_freelist);
1513		} else {
1514			/*
1515			 * We are too low on memory, we have to try to free
1516			 * the buffer (most importantly: the wired pages
1517			 * making up its backing store) *now*.
1518			 */
1519			VI_UNLOCK(bp->b_vp);
1520			mtx_unlock(&bqlock);
1521			splx(s);
1522			brelse(bp);
1523			return;
1524		}
1525	}
1526	mtx_unlock(&bqlock);
1527
1528	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1529		bufcountwakeup();
1530
1531	/*
1532	 * Something we can maybe free or reuse.
1533	 */
1534	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1535		bufspacewakeup();
1536
1537	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1538	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1539		panic("bqrelse: not dirty");
1540	/* unlock */
1541	BUF_UNLOCK(bp);
1542	splx(s);
1543}
1544
1545/* Give pages used by the bp back to the VM system (where possible) */
1546static void
1547vfs_vmio_release(bp)
1548	struct buf *bp;
1549{
1550	int i;
1551	vm_page_t m;
1552
1553	GIANT_REQUIRED;
1554	VM_OBJECT_LOCK(bp->b_object);
1555	vm_page_lock_queues();
1556	for (i = 0; i < bp->b_npages; i++) {
1557		m = bp->b_pages[i];
1558		bp->b_pages[i] = NULL;
1559		/*
1560		 * In order to keep page LRU ordering consistent, put
1561		 * everything on the inactive queue.
1562		 */
1563		vm_page_unwire(m, 0);
1564		/*
1565		 * We don't mess with busy pages, it is
1566		 * the responsibility of the process that
1567		 * busied the pages to deal with them.
1568		 */
1569		if ((m->flags & PG_BUSY) || (m->busy != 0))
1570			continue;
1571
1572		if (m->wire_count == 0) {
1573			vm_page_flag_clear(m, PG_ZERO);
1574			/*
1575			 * Might as well free the page if we can and it has
1576			 * no valid data.  We also free the page if the
1577			 * buffer was used for direct I/O
1578			 */
1579			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1580			    m->hold_count == 0) {
1581				vm_page_busy(m);
1582				pmap_remove_all(m);
1583				vm_page_free(m);
1584			} else if (bp->b_flags & B_DIRECT) {
1585				vm_page_try_to_free(m);
1586			} else if (vm_page_count_severe()) {
1587				vm_page_try_to_cache(m);
1588			}
1589		}
1590	}
1591	vm_page_unlock_queues();
1592	VM_OBJECT_UNLOCK(bp->b_object);
1593	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1594
1595	if (bp->b_bufsize) {
1596		bufspacewakeup();
1597		bp->b_bufsize = 0;
1598	}
1599	bp->b_npages = 0;
1600	bp->b_flags &= ~B_VMIO;
1601	if (bp->b_vp)
1602		brelvp(bp);
1603}
1604
1605/*
1606 * Check to see if a block at a particular lbn is available for a clustered
1607 * write.
1608 */
1609static int
1610vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1611{
1612	struct buf *bpa;
1613	int match;
1614
1615	match = 0;
1616
1617	/* If the buf isn't in core skip it */
1618	if ((bpa = gbincore(vp, lblkno)) == NULL)
1619		return (0);
1620
1621	/* If the buf is busy we don't want to wait for it */
1622	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1623		return (0);
1624
1625	/* Only cluster with valid clusterable delayed write buffers */
1626	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1627	    (B_DELWRI | B_CLUSTEROK))
1628		goto done;
1629
1630	if (bpa->b_bufsize != size)
1631		goto done;
1632
1633	/*
1634	 * Check to see if it is in the expected place on disk and that the
1635	 * block has been mapped.
1636	 */
1637	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1638		match = 1;
1639done:
1640	BUF_UNLOCK(bpa);
1641	return (match);
1642}
1643
1644/*
1645 *	vfs_bio_awrite:
1646 *
1647 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1648 *	This is much better then the old way of writing only one buffer at
1649 *	a time.  Note that we may not be presented with the buffers in the
1650 *	correct order, so we search for the cluster in both directions.
1651 */
1652int
1653vfs_bio_awrite(struct buf * bp)
1654{
1655	int i;
1656	int j;
1657	daddr_t lblkno = bp->b_lblkno;
1658	struct vnode *vp = bp->b_vp;
1659	int s;
1660	int ncl;
1661	int nwritten;
1662	int size;
1663	int maxcl;
1664
1665	s = splbio();
1666	/*
1667	 * right now we support clustered writing only to regular files.  If
1668	 * we find a clusterable block we could be in the middle of a cluster
1669	 * rather then at the beginning.
1670	 */
1671	if ((vp->v_type == VREG) &&
1672	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1673	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1674
1675		size = vp->v_mount->mnt_stat.f_iosize;
1676		maxcl = MAXPHYS / size;
1677
1678		VI_LOCK(vp);
1679		for (i = 1; i < maxcl; i++)
1680			if (vfs_bio_clcheck(vp, size, lblkno + i,
1681			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1682				break;
1683
1684		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1685			if (vfs_bio_clcheck(vp, size, lblkno - j,
1686			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1687				break;
1688
1689		VI_UNLOCK(vp);
1690		--j;
1691		ncl = i + j;
1692		/*
1693		 * this is a possible cluster write
1694		 */
1695		if (ncl != 1) {
1696			BUF_UNLOCK(bp);
1697			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1698			splx(s);
1699			return nwritten;
1700		}
1701	}
1702
1703	bremfree(bp);
1704	bp->b_flags |= B_ASYNC;
1705
1706	splx(s);
1707	/*
1708	 * default (old) behavior, writing out only one block
1709	 *
1710	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1711	 */
1712	nwritten = bp->b_bufsize;
1713	(void) BUF_WRITE(bp);
1714
1715	return nwritten;
1716}
1717
1718/*
1719 *	getnewbuf:
1720 *
1721 *	Find and initialize a new buffer header, freeing up existing buffers
1722 *	in the bufqueues as necessary.  The new buffer is returned locked.
1723 *
1724 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1725 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1726 *
1727 *	We block if:
1728 *		We have insufficient buffer headers
1729 *		We have insufficient buffer space
1730 *		buffer_map is too fragmented ( space reservation fails )
1731 *		If we have to flush dirty buffers ( but we try to avoid this )
1732 *
1733 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1734 *	Instead we ask the buf daemon to do it for us.  We attempt to
1735 *	avoid piecemeal wakeups of the pageout daemon.
1736 */
1737
1738static struct buf *
1739getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1740{
1741	struct buf *bp;
1742	struct buf *nbp;
1743	int defrag = 0;
1744	int nqindex;
1745	static int flushingbufs;
1746
1747	GIANT_REQUIRED;
1748
1749	/*
1750	 * We can't afford to block since we might be holding a vnode lock,
1751	 * which may prevent system daemons from running.  We deal with
1752	 * low-memory situations by proactively returning memory and running
1753	 * async I/O rather then sync I/O.
1754	 */
1755
1756	atomic_add_int(&getnewbufcalls, 1);
1757	atomic_subtract_int(&getnewbufrestarts, 1);
1758restart:
1759	atomic_add_int(&getnewbufrestarts, 1);
1760
1761	/*
1762	 * Setup for scan.  If we do not have enough free buffers,
1763	 * we setup a degenerate case that immediately fails.  Note
1764	 * that if we are specially marked process, we are allowed to
1765	 * dip into our reserves.
1766	 *
1767	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1768	 *
1769	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1770	 * However, there are a number of cases (defragging, reusing, ...)
1771	 * where we cannot backup.
1772	 */
1773	mtx_lock(&bqlock);
1774	nqindex = QUEUE_EMPTYKVA;
1775	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1776
1777	if (nbp == NULL) {
1778		/*
1779		 * If no EMPTYKVA buffers and we are either
1780		 * defragging or reusing, locate a CLEAN buffer
1781		 * to free or reuse.  If bufspace useage is low
1782		 * skip this step so we can allocate a new buffer.
1783		 */
1784		if (defrag || bufspace >= lobufspace) {
1785			nqindex = QUEUE_CLEAN;
1786			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1787		}
1788
1789		/*
1790		 * If we could not find or were not allowed to reuse a
1791		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1792		 * buffer.  We can only use an EMPTY buffer if allocating
1793		 * its KVA would not otherwise run us out of buffer space.
1794		 */
1795		if (nbp == NULL && defrag == 0 &&
1796		    bufspace + maxsize < hibufspace) {
1797			nqindex = QUEUE_EMPTY;
1798			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1799		}
1800	}
1801
1802	/*
1803	 * Run scan, possibly freeing data and/or kva mappings on the fly
1804	 * depending.
1805	 */
1806
1807	while ((bp = nbp) != NULL) {
1808		int qindex = nqindex;
1809
1810		/*
1811		 * Calculate next bp ( we can only use it if we do not block
1812		 * or do other fancy things ).
1813		 */
1814		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1815			switch(qindex) {
1816			case QUEUE_EMPTY:
1817				nqindex = QUEUE_EMPTYKVA;
1818				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1819					break;
1820				/* FALLTHROUGH */
1821			case QUEUE_EMPTYKVA:
1822				nqindex = QUEUE_CLEAN;
1823				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1824					break;
1825				/* FALLTHROUGH */
1826			case QUEUE_CLEAN:
1827				/*
1828				 * nbp is NULL.
1829				 */
1830				break;
1831			}
1832		}
1833		if (bp->b_vp) {
1834			VI_LOCK(bp->b_vp);
1835			if (bp->b_vflags & BV_BKGRDINPROG) {
1836				VI_UNLOCK(bp->b_vp);
1837				continue;
1838			}
1839			VI_UNLOCK(bp->b_vp);
1840		}
1841
1842		/*
1843		 * Sanity Checks
1844		 */
1845		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1846
1847		/*
1848		 * Note: we no longer distinguish between VMIO and non-VMIO
1849		 * buffers.
1850		 */
1851
1852		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1853
1854		/*
1855		 * If we are defragging then we need a buffer with
1856		 * b_kvasize != 0.  XXX this situation should no longer
1857		 * occur, if defrag is non-zero the buffer's b_kvasize
1858		 * should also be non-zero at this point.  XXX
1859		 */
1860		if (defrag && bp->b_kvasize == 0) {
1861			printf("Warning: defrag empty buffer %p\n", bp);
1862			continue;
1863		}
1864
1865		/*
1866		 * Start freeing the bp.  This is somewhat involved.  nbp
1867		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1868		 */
1869
1870		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1871			panic("getnewbuf: locked buf");
1872		bremfreel(bp);
1873		mtx_unlock(&bqlock);
1874
1875		if (qindex == QUEUE_CLEAN) {
1876			if (bp->b_flags & B_VMIO) {
1877				bp->b_flags &= ~B_ASYNC;
1878				vfs_vmio_release(bp);
1879			}
1880			if (bp->b_vp)
1881				brelvp(bp);
1882		}
1883
1884		/*
1885		 * NOTE:  nbp is now entirely invalid.  We can only restart
1886		 * the scan from this point on.
1887		 *
1888		 * Get the rest of the buffer freed up.  b_kva* is still
1889		 * valid after this operation.
1890		 */
1891
1892		if (bp->b_rcred != NOCRED) {
1893			crfree(bp->b_rcred);
1894			bp->b_rcred = NOCRED;
1895		}
1896		if (bp->b_wcred != NOCRED) {
1897			crfree(bp->b_wcred);
1898			bp->b_wcred = NOCRED;
1899		}
1900		if (LIST_FIRST(&bp->b_dep) != NULL)
1901			buf_deallocate(bp);
1902		if (bp->b_vflags & BV_BKGRDINPROG)
1903			panic("losing buffer 3");
1904
1905		if (bp->b_bufsize)
1906			allocbuf(bp, 0);
1907
1908		bp->b_flags = 0;
1909		bp->b_ioflags = 0;
1910		bp->b_xflags = 0;
1911		bp->b_vflags = 0;
1912		bp->b_dev = NODEV;
1913		bp->b_vp = NULL;
1914		bp->b_blkno = bp->b_lblkno = 0;
1915		bp->b_offset = NOOFFSET;
1916		bp->b_iodone = 0;
1917		bp->b_error = 0;
1918		bp->b_resid = 0;
1919		bp->b_bcount = 0;
1920		bp->b_npages = 0;
1921		bp->b_dirtyoff = bp->b_dirtyend = 0;
1922		bp->b_magic = B_MAGIC_BIO;
1923		bp->b_op = &buf_ops_bio;
1924		bp->b_object = NULL;
1925
1926		LIST_INIT(&bp->b_dep);
1927
1928		/*
1929		 * If we are defragging then free the buffer.
1930		 */
1931		if (defrag) {
1932			bp->b_flags |= B_INVAL;
1933			bfreekva(bp);
1934			brelse(bp);
1935			defrag = 0;
1936			goto restart;
1937		}
1938
1939		/*
1940		 * If we are overcomitted then recover the buffer and its
1941		 * KVM space.  This occurs in rare situations when multiple
1942		 * processes are blocked in getnewbuf() or allocbuf().
1943		 */
1944		if (bufspace >= hibufspace)
1945			flushingbufs = 1;
1946		if (flushingbufs && bp->b_kvasize != 0) {
1947			bp->b_flags |= B_INVAL;
1948			bfreekva(bp);
1949			brelse(bp);
1950			goto restart;
1951		}
1952		if (bufspace < lobufspace)
1953			flushingbufs = 0;
1954		break;
1955	}
1956
1957	/*
1958	 * If we exhausted our list, sleep as appropriate.  We may have to
1959	 * wakeup various daemons and write out some dirty buffers.
1960	 *
1961	 * Generally we are sleeping due to insufficient buffer space.
1962	 */
1963
1964	if (bp == NULL) {
1965		int flags;
1966		char *waitmsg;
1967
1968		mtx_unlock(&bqlock);
1969		if (defrag) {
1970			flags = VFS_BIO_NEED_BUFSPACE;
1971			waitmsg = "nbufkv";
1972		} else if (bufspace >= hibufspace) {
1973			waitmsg = "nbufbs";
1974			flags = VFS_BIO_NEED_BUFSPACE;
1975		} else {
1976			waitmsg = "newbuf";
1977			flags = VFS_BIO_NEED_ANY;
1978		}
1979
1980		bd_speedup();	/* heeeelp */
1981
1982		mtx_lock(&nblock);
1983		needsbuffer |= flags;
1984		while (needsbuffer & flags) {
1985			if (msleep(&needsbuffer, &nblock,
1986			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1987				mtx_unlock(&nblock);
1988				return (NULL);
1989			}
1990		}
1991		mtx_unlock(&nblock);
1992	} else {
1993		/*
1994		 * We finally have a valid bp.  We aren't quite out of the
1995		 * woods, we still have to reserve kva space.  In order
1996		 * to keep fragmentation sane we only allocate kva in
1997		 * BKVASIZE chunks.
1998		 */
1999		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2000
2001		if (maxsize != bp->b_kvasize) {
2002			vm_offset_t addr = 0;
2003
2004			bfreekva(bp);
2005
2006			if (vm_map_findspace(buffer_map,
2007				vm_map_min(buffer_map), maxsize, &addr)) {
2008				/*
2009				 * Uh oh.  Buffer map is to fragmented.  We
2010				 * must defragment the map.
2011				 */
2012				atomic_add_int(&bufdefragcnt, 1);
2013				defrag = 1;
2014				bp->b_flags |= B_INVAL;
2015				brelse(bp);
2016				goto restart;
2017			}
2018			if (addr) {
2019				vm_map_insert(buffer_map, NULL, 0,
2020					addr, addr + maxsize,
2021					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2022
2023				bp->b_kvabase = (caddr_t) addr;
2024				bp->b_kvasize = maxsize;
2025				atomic_add_int(&bufspace, bp->b_kvasize);
2026				atomic_add_int(&bufreusecnt, 1);
2027			}
2028		}
2029		bp->b_saveaddr = bp->b_kvabase;
2030		bp->b_data = bp->b_saveaddr;
2031	}
2032	return(bp);
2033}
2034
2035/*
2036 *	buf_daemon:
2037 *
2038 *	buffer flushing daemon.  Buffers are normally flushed by the
2039 *	update daemon but if it cannot keep up this process starts to
2040 *	take the load in an attempt to prevent getnewbuf() from blocking.
2041 */
2042
2043static struct kproc_desc buf_kp = {
2044	"bufdaemon",
2045	buf_daemon,
2046	&bufdaemonproc
2047};
2048SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2049
2050static void
2051buf_daemon()
2052{
2053	int s;
2054
2055	mtx_lock(&Giant);
2056
2057	/*
2058	 * This process needs to be suspended prior to shutdown sync.
2059	 */
2060	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2061	    SHUTDOWN_PRI_LAST);
2062
2063	/*
2064	 * This process is allowed to take the buffer cache to the limit
2065	 */
2066	s = splbio();
2067	mtx_lock(&bdlock);
2068
2069	for (;;) {
2070		bd_request = 0;
2071		mtx_unlock(&bdlock);
2072
2073		kthread_suspend_check(bufdaemonproc);
2074
2075		/*
2076		 * Do the flush.  Limit the amount of in-transit I/O we
2077		 * allow to build up, otherwise we would completely saturate
2078		 * the I/O system.  Wakeup any waiting processes before we
2079		 * normally would so they can run in parallel with our drain.
2080		 */
2081		while (numdirtybuffers > lodirtybuffers) {
2082			if (flushbufqueues(0) == 0) {
2083				/*
2084				 * Could not find any buffers without rollback
2085				 * dependencies, so just write the first one
2086				 * in the hopes of eventually making progress.
2087				 */
2088				flushbufqueues(1);
2089				break;
2090			}
2091			waitrunningbufspace();
2092			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2093		}
2094
2095		/*
2096		 * Only clear bd_request if we have reached our low water
2097		 * mark.  The buf_daemon normally waits 1 second and
2098		 * then incrementally flushes any dirty buffers that have
2099		 * built up, within reason.
2100		 *
2101		 * If we were unable to hit our low water mark and couldn't
2102		 * find any flushable buffers, we sleep half a second.
2103		 * Otherwise we loop immediately.
2104		 */
2105		mtx_lock(&bdlock);
2106		if (numdirtybuffers <= lodirtybuffers) {
2107			/*
2108			 * We reached our low water mark, reset the
2109			 * request and sleep until we are needed again.
2110			 * The sleep is just so the suspend code works.
2111			 */
2112			bd_request = 0;
2113			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2114		} else {
2115			/*
2116			 * We couldn't find any flushable dirty buffers but
2117			 * still have too many dirty buffers, we
2118			 * have to sleep and try again.  (rare)
2119			 */
2120			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2121		}
2122	}
2123}
2124
2125/*
2126 *	flushbufqueues:
2127 *
2128 *	Try to flush a buffer in the dirty queue.  We must be careful to
2129 *	free up B_INVAL buffers instead of write them, which NFS is
2130 *	particularly sensitive to.
2131 */
2132int flushwithdeps = 0;
2133SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2134    0, "Number of buffers flushed with dependecies that require rollbacks");
2135static int
2136flushbufqueues(int flushdeps)
2137{
2138	struct thread *td = curthread;
2139	struct vnode *vp;
2140	struct mount *mp;
2141	struct buf *bp;
2142	int hasdeps;
2143
2144	mtx_lock(&bqlock);
2145	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2146		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2147			continue;
2148		KASSERT((bp->b_flags & B_DELWRI),
2149		    ("unexpected clean buffer %p", bp));
2150		VI_LOCK(bp->b_vp);
2151		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
2152			VI_UNLOCK(bp->b_vp);
2153			BUF_UNLOCK(bp);
2154			continue;
2155		}
2156		VI_UNLOCK(bp->b_vp);
2157		if (bp->b_flags & B_INVAL) {
2158			bremfreel(bp);
2159			mtx_unlock(&bqlock);
2160			brelse(bp);
2161			return (1);
2162		}
2163
2164		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2165			if (flushdeps == 0) {
2166				BUF_UNLOCK(bp);
2167				continue;
2168			}
2169			hasdeps = 1;
2170		} else
2171			hasdeps = 0;
2172		/*
2173		 * We must hold the lock on a vnode before writing
2174		 * one of its buffers. Otherwise we may confuse, or
2175		 * in the case of a snapshot vnode, deadlock the
2176		 * system.
2177		 *
2178		 * The lock order here is the reverse of the normal
2179		 * of vnode followed by buf lock.  This is ok because
2180		 * the NOWAIT will prevent deadlock.
2181		 */
2182		vp = bp->b_vp;
2183		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2184			BUF_UNLOCK(bp);
2185			continue;
2186		}
2187		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2188			mtx_unlock(&bqlock);
2189			vfs_bio_awrite(bp);
2190			vn_finished_write(mp);
2191			VOP_UNLOCK(vp, 0, td);
2192			flushwithdeps += hasdeps;
2193			return (1);
2194		}
2195		vn_finished_write(mp);
2196		BUF_UNLOCK(bp);
2197	}
2198	mtx_unlock(&bqlock);
2199	return (0);
2200}
2201
2202/*
2203 * Check to see if a block is currently memory resident.
2204 */
2205struct buf *
2206incore(struct vnode * vp, daddr_t blkno)
2207{
2208	struct buf *bp;
2209
2210	int s = splbio();
2211	VI_LOCK(vp);
2212	bp = gbincore(vp, blkno);
2213	VI_UNLOCK(vp);
2214	splx(s);
2215	return (bp);
2216}
2217
2218/*
2219 * Returns true if no I/O is needed to access the
2220 * associated VM object.  This is like incore except
2221 * it also hunts around in the VM system for the data.
2222 */
2223
2224int
2225inmem(struct vnode * vp, daddr_t blkno)
2226{
2227	vm_object_t obj;
2228	vm_offset_t toff, tinc, size;
2229	vm_page_t m;
2230	vm_ooffset_t off;
2231
2232	GIANT_REQUIRED;
2233	ASSERT_VOP_LOCKED(vp, "inmem");
2234
2235	if (incore(vp, blkno))
2236		return 1;
2237	if (vp->v_mount == NULL)
2238		return 0;
2239	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2240		return 0;
2241
2242	size = PAGE_SIZE;
2243	if (size > vp->v_mount->mnt_stat.f_iosize)
2244		size = vp->v_mount->mnt_stat.f_iosize;
2245	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2246
2247	VM_OBJECT_LOCK(obj);
2248	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2249		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2250		if (!m)
2251			goto notinmem;
2252		tinc = size;
2253		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2254			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2255		if (vm_page_is_valid(m,
2256		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2257			goto notinmem;
2258	}
2259	VM_OBJECT_UNLOCK(obj);
2260	return 1;
2261
2262notinmem:
2263	VM_OBJECT_UNLOCK(obj);
2264	return (0);
2265}
2266
2267/*
2268 *	vfs_setdirty:
2269 *
2270 *	Sets the dirty range for a buffer based on the status of the dirty
2271 *	bits in the pages comprising the buffer.
2272 *
2273 *	The range is limited to the size of the buffer.
2274 *
2275 *	This routine is primarily used by NFS, but is generalized for the
2276 *	B_VMIO case.
2277 */
2278static void
2279vfs_setdirty(struct buf *bp)
2280{
2281	int i;
2282	vm_object_t object;
2283
2284	GIANT_REQUIRED;
2285	/*
2286	 * Degenerate case - empty buffer
2287	 */
2288
2289	if (bp->b_bufsize == 0)
2290		return;
2291
2292	/*
2293	 * We qualify the scan for modified pages on whether the
2294	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2295	 * is not cleared simply by protecting pages off.
2296	 */
2297
2298	if ((bp->b_flags & B_VMIO) == 0)
2299		return;
2300
2301	object = bp->b_pages[0]->object;
2302	VM_OBJECT_LOCK(object);
2303	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2304		printf("Warning: object %p writeable but not mightbedirty\n", object);
2305	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2306		printf("Warning: object %p mightbedirty but not writeable\n", object);
2307
2308	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2309		vm_offset_t boffset;
2310		vm_offset_t eoffset;
2311
2312		vm_page_lock_queues();
2313		/*
2314		 * test the pages to see if they have been modified directly
2315		 * by users through the VM system.
2316		 */
2317		for (i = 0; i < bp->b_npages; i++) {
2318			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2319			vm_page_test_dirty(bp->b_pages[i]);
2320		}
2321
2322		/*
2323		 * Calculate the encompassing dirty range, boffset and eoffset,
2324		 * (eoffset - boffset) bytes.
2325		 */
2326
2327		for (i = 0; i < bp->b_npages; i++) {
2328			if (bp->b_pages[i]->dirty)
2329				break;
2330		}
2331		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2332
2333		for (i = bp->b_npages - 1; i >= 0; --i) {
2334			if (bp->b_pages[i]->dirty) {
2335				break;
2336			}
2337		}
2338		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2339
2340		vm_page_unlock_queues();
2341		/*
2342		 * Fit it to the buffer.
2343		 */
2344
2345		if (eoffset > bp->b_bcount)
2346			eoffset = bp->b_bcount;
2347
2348		/*
2349		 * If we have a good dirty range, merge with the existing
2350		 * dirty range.
2351		 */
2352
2353		if (boffset < eoffset) {
2354			if (bp->b_dirtyoff > boffset)
2355				bp->b_dirtyoff = boffset;
2356			if (bp->b_dirtyend < eoffset)
2357				bp->b_dirtyend = eoffset;
2358		}
2359	}
2360	VM_OBJECT_UNLOCK(object);
2361}
2362
2363/*
2364 *	getblk:
2365 *
2366 *	Get a block given a specified block and offset into a file/device.
2367 *	The buffers B_DONE bit will be cleared on return, making it almost
2368 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2369 *	return.  The caller should clear B_INVAL prior to initiating a
2370 *	READ.
2371 *
2372 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2373 *	an existing buffer.
2374 *
2375 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2376 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2377 *	and then cleared based on the backing VM.  If the previous buffer is
2378 *	non-0-sized but invalid, B_CACHE will be cleared.
2379 *
2380 *	If getblk() must create a new buffer, the new buffer is returned with
2381 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2382 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2383 *	backing VM.
2384 *
2385 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2386 *	B_CACHE bit is clear.
2387 *
2388 *	What this means, basically, is that the caller should use B_CACHE to
2389 *	determine whether the buffer is fully valid or not and should clear
2390 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2391 *	the buffer by loading its data area with something, the caller needs
2392 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2393 *	the caller should set B_CACHE ( as an optimization ), else the caller
2394 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2395 *	a write attempt or if it was a successfull read.  If the caller
2396 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2397 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2398 */
2399struct buf *
2400getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2401    int flags)
2402{
2403	struct buf *bp;
2404	int s;
2405	int error;
2406	ASSERT_VOP_LOCKED(vp, "getblk");
2407
2408	if (size > MAXBSIZE)
2409		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2410
2411	s = splbio();
2412loop:
2413	/*
2414	 * Block if we are low on buffers.   Certain processes are allowed
2415	 * to completely exhaust the buffer cache.
2416         *
2417         * If this check ever becomes a bottleneck it may be better to
2418         * move it into the else, when gbincore() fails.  At the moment
2419         * it isn't a problem.
2420	 *
2421	 * XXX remove if 0 sections (clean this up after its proven)
2422         */
2423	if (numfreebuffers == 0) {
2424		if (curthread == PCPU_GET(idlethread))
2425			return NULL;
2426		mtx_lock(&nblock);
2427		needsbuffer |= VFS_BIO_NEED_ANY;
2428		mtx_unlock(&nblock);
2429	}
2430
2431	VI_LOCK(vp);
2432	if ((bp = gbincore(vp, blkno))) {
2433		int lockflags;
2434		/*
2435		 * Buffer is in-core.  If the buffer is not busy, it must
2436		 * be on a queue.
2437		 */
2438		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2439
2440		if (flags & GB_LOCK_NOWAIT)
2441			lockflags |= LK_NOWAIT;
2442
2443		error = BUF_TIMELOCK(bp, lockflags,
2444		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2445
2446		/*
2447		 * If we slept and got the lock we have to restart in case
2448		 * the buffer changed identities.
2449		 */
2450		if (error == ENOLCK)
2451			goto loop;
2452		/* We timed out or were interrupted. */
2453		else if (error)
2454			return (NULL);
2455
2456		/*
2457		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2458		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2459		 * and for a VMIO buffer B_CACHE is adjusted according to the
2460		 * backing VM cache.
2461		 */
2462		if (bp->b_flags & B_INVAL)
2463			bp->b_flags &= ~B_CACHE;
2464		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2465			bp->b_flags |= B_CACHE;
2466		bremfree(bp);
2467
2468		/*
2469		 * check for size inconsistancies for non-VMIO case.
2470		 */
2471
2472		if (bp->b_bcount != size) {
2473			if ((bp->b_flags & B_VMIO) == 0 ||
2474			    (size > bp->b_kvasize)) {
2475				if (bp->b_flags & B_DELWRI) {
2476					bp->b_flags |= B_NOCACHE;
2477					BUF_WRITE(bp);
2478				} else {
2479					if ((bp->b_flags & B_VMIO) &&
2480					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2481						bp->b_flags |= B_RELBUF;
2482						brelse(bp);
2483					} else {
2484						bp->b_flags |= B_NOCACHE;
2485						BUF_WRITE(bp);
2486					}
2487				}
2488				goto loop;
2489			}
2490		}
2491
2492		/*
2493		 * If the size is inconsistant in the VMIO case, we can resize
2494		 * the buffer.  This might lead to B_CACHE getting set or
2495		 * cleared.  If the size has not changed, B_CACHE remains
2496		 * unchanged from its previous state.
2497		 */
2498
2499		if (bp->b_bcount != size)
2500			allocbuf(bp, size);
2501
2502		KASSERT(bp->b_offset != NOOFFSET,
2503		    ("getblk: no buffer offset"));
2504
2505		/*
2506		 * A buffer with B_DELWRI set and B_CACHE clear must
2507		 * be committed before we can return the buffer in
2508		 * order to prevent the caller from issuing a read
2509		 * ( due to B_CACHE not being set ) and overwriting
2510		 * it.
2511		 *
2512		 * Most callers, including NFS and FFS, need this to
2513		 * operate properly either because they assume they
2514		 * can issue a read if B_CACHE is not set, or because
2515		 * ( for example ) an uncached B_DELWRI might loop due
2516		 * to softupdates re-dirtying the buffer.  In the latter
2517		 * case, B_CACHE is set after the first write completes,
2518		 * preventing further loops.
2519		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2520		 * above while extending the buffer, we cannot allow the
2521		 * buffer to remain with B_CACHE set after the write
2522		 * completes or it will represent a corrupt state.  To
2523		 * deal with this we set B_NOCACHE to scrap the buffer
2524		 * after the write.
2525		 *
2526		 * We might be able to do something fancy, like setting
2527		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2528		 * so the below call doesn't set B_CACHE, but that gets real
2529		 * confusing.  This is much easier.
2530		 */
2531
2532		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2533			bp->b_flags |= B_NOCACHE;
2534			BUF_WRITE(bp);
2535			goto loop;
2536		}
2537
2538		splx(s);
2539		bp->b_flags &= ~B_DONE;
2540	} else {
2541		int bsize, maxsize, vmio;
2542		off_t offset;
2543
2544		/*
2545		 * Buffer is not in-core, create new buffer.  The buffer
2546		 * returned by getnewbuf() is locked.  Note that the returned
2547		 * buffer is also considered valid (not marked B_INVAL).
2548		 */
2549		VI_UNLOCK(vp);
2550		/*
2551		 * If the user does not want us to create the buffer, bail out
2552		 * here.
2553		 */
2554		if (flags & GB_NOCREAT) {
2555			splx(s);
2556			return NULL;
2557		}
2558		if (vn_isdisk(vp, NULL))
2559			bsize = DEV_BSIZE;
2560		else if (vp->v_mountedhere)
2561			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2562		else if (vp->v_mount)
2563			bsize = vp->v_mount->mnt_stat.f_iosize;
2564		else
2565			bsize = size;
2566
2567		offset = blkno * bsize;
2568		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2569		    (vp->v_vflag & VV_OBJBUF);
2570		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2571		maxsize = imax(maxsize, bsize);
2572
2573		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2574			if (slpflag || slptimeo) {
2575				splx(s);
2576				return NULL;
2577			}
2578			goto loop;
2579		}
2580
2581		/*
2582		 * This code is used to make sure that a buffer is not
2583		 * created while the getnewbuf routine is blocked.
2584		 * This can be a problem whether the vnode is locked or not.
2585		 * If the buffer is created out from under us, we have to
2586		 * throw away the one we just created.  There is now window
2587		 * race because we are safely running at splbio() from the
2588		 * point of the duplicate buffer creation through to here,
2589		 * and we've locked the buffer.
2590		 *
2591		 * Note: this must occur before we associate the buffer
2592		 * with the vp especially considering limitations in
2593		 * the splay tree implementation when dealing with duplicate
2594		 * lblkno's.
2595		 */
2596		VI_LOCK(vp);
2597		if (gbincore(vp, blkno)) {
2598			VI_UNLOCK(vp);
2599			bp->b_flags |= B_INVAL;
2600			brelse(bp);
2601			goto loop;
2602		}
2603
2604		/*
2605		 * Insert the buffer into the hash, so that it can
2606		 * be found by incore.
2607		 */
2608		bp->b_blkno = bp->b_lblkno = blkno;
2609		bp->b_offset = offset;
2610
2611		bgetvp(vp, bp);
2612		VI_UNLOCK(vp);
2613
2614		/*
2615		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2616		 * buffer size starts out as 0, B_CACHE will be set by
2617		 * allocbuf() for the VMIO case prior to it testing the
2618		 * backing store for validity.
2619		 */
2620
2621		if (vmio) {
2622			bp->b_flags |= B_VMIO;
2623#if defined(VFS_BIO_DEBUG)
2624			if (vp->v_type != VREG)
2625				printf("getblk: vmioing file type %d???\n", vp->v_type);
2626#endif
2627			VOP_GETVOBJECT(vp, &bp->b_object);
2628		} else {
2629			bp->b_flags &= ~B_VMIO;
2630			bp->b_object = NULL;
2631		}
2632
2633		allocbuf(bp, size);
2634
2635		splx(s);
2636		bp->b_flags &= ~B_DONE;
2637	}
2638	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2639	return (bp);
2640}
2641
2642/*
2643 * Get an empty, disassociated buffer of given size.  The buffer is initially
2644 * set to B_INVAL.
2645 */
2646struct buf *
2647geteblk(int size)
2648{
2649	struct buf *bp;
2650	int s;
2651	int maxsize;
2652
2653	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2654
2655	s = splbio();
2656	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2657		continue;
2658	splx(s);
2659	allocbuf(bp, size);
2660	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2661	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2662	return (bp);
2663}
2664
2665
2666/*
2667 * This code constitutes the buffer memory from either anonymous system
2668 * memory (in the case of non-VMIO operations) or from an associated
2669 * VM object (in the case of VMIO operations).  This code is able to
2670 * resize a buffer up or down.
2671 *
2672 * Note that this code is tricky, and has many complications to resolve
2673 * deadlock or inconsistant data situations.  Tread lightly!!!
2674 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2675 * the caller.  Calling this code willy nilly can result in the loss of data.
2676 *
2677 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2678 * B_CACHE for the non-VMIO case.
2679 */
2680
2681int
2682allocbuf(struct buf *bp, int size)
2683{
2684	int newbsize, mbsize;
2685	int i;
2686
2687	GIANT_REQUIRED;
2688
2689	if (BUF_REFCNT(bp) == 0)
2690		panic("allocbuf: buffer not busy");
2691
2692	if (bp->b_kvasize < size)
2693		panic("allocbuf: buffer too small");
2694
2695	if ((bp->b_flags & B_VMIO) == 0) {
2696		caddr_t origbuf;
2697		int origbufsize;
2698		/*
2699		 * Just get anonymous memory from the kernel.  Don't
2700		 * mess with B_CACHE.
2701		 */
2702		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2703		if (bp->b_flags & B_MALLOC)
2704			newbsize = mbsize;
2705		else
2706			newbsize = round_page(size);
2707
2708		if (newbsize < bp->b_bufsize) {
2709			/*
2710			 * malloced buffers are not shrunk
2711			 */
2712			if (bp->b_flags & B_MALLOC) {
2713				if (newbsize) {
2714					bp->b_bcount = size;
2715				} else {
2716					free(bp->b_data, M_BIOBUF);
2717					if (bp->b_bufsize) {
2718						atomic_subtract_int(
2719						    &bufmallocspace,
2720						    bp->b_bufsize);
2721						bufspacewakeup();
2722						bp->b_bufsize = 0;
2723					}
2724					bp->b_saveaddr = bp->b_kvabase;
2725					bp->b_data = bp->b_saveaddr;
2726					bp->b_bcount = 0;
2727					bp->b_flags &= ~B_MALLOC;
2728				}
2729				return 1;
2730			}
2731			vm_hold_free_pages(
2732			    bp,
2733			    (vm_offset_t) bp->b_data + newbsize,
2734			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2735		} else if (newbsize > bp->b_bufsize) {
2736			/*
2737			 * We only use malloced memory on the first allocation.
2738			 * and revert to page-allocated memory when the buffer
2739			 * grows.
2740			 */
2741			/*
2742			 * There is a potential smp race here that could lead
2743			 * to bufmallocspace slightly passing the max.  It
2744			 * is probably extremely rare and not worth worrying
2745			 * over.
2746			 */
2747			if ( (bufmallocspace < maxbufmallocspace) &&
2748				(bp->b_bufsize == 0) &&
2749				(mbsize <= PAGE_SIZE/2)) {
2750
2751				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2752				bp->b_bufsize = mbsize;
2753				bp->b_bcount = size;
2754				bp->b_flags |= B_MALLOC;
2755				atomic_add_int(&bufmallocspace, mbsize);
2756				return 1;
2757			}
2758			origbuf = NULL;
2759			origbufsize = 0;
2760			/*
2761			 * If the buffer is growing on its other-than-first allocation,
2762			 * then we revert to the page-allocation scheme.
2763			 */
2764			if (bp->b_flags & B_MALLOC) {
2765				origbuf = bp->b_data;
2766				origbufsize = bp->b_bufsize;
2767				bp->b_data = bp->b_kvabase;
2768				if (bp->b_bufsize) {
2769					atomic_subtract_int(&bufmallocspace,
2770					    bp->b_bufsize);
2771					bufspacewakeup();
2772					bp->b_bufsize = 0;
2773				}
2774				bp->b_flags &= ~B_MALLOC;
2775				newbsize = round_page(newbsize);
2776			}
2777			vm_hold_load_pages(
2778			    bp,
2779			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2780			    (vm_offset_t) bp->b_data + newbsize);
2781			if (origbuf) {
2782				bcopy(origbuf, bp->b_data, origbufsize);
2783				free(origbuf, M_BIOBUF);
2784			}
2785		}
2786	} else {
2787		int desiredpages;
2788
2789		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2790		desiredpages = (size == 0) ? 0 :
2791			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2792
2793		if (bp->b_flags & B_MALLOC)
2794			panic("allocbuf: VMIO buffer can't be malloced");
2795		/*
2796		 * Set B_CACHE initially if buffer is 0 length or will become
2797		 * 0-length.
2798		 */
2799		if (size == 0 || bp->b_bufsize == 0)
2800			bp->b_flags |= B_CACHE;
2801
2802		if (newbsize < bp->b_bufsize) {
2803			/*
2804			 * DEV_BSIZE aligned new buffer size is less then the
2805			 * DEV_BSIZE aligned existing buffer size.  Figure out
2806			 * if we have to remove any pages.
2807			 */
2808			if (desiredpages < bp->b_npages) {
2809				vm_page_t m;
2810
2811				vm_page_lock_queues();
2812				for (i = desiredpages; i < bp->b_npages; i++) {
2813					/*
2814					 * the page is not freed here -- it
2815					 * is the responsibility of
2816					 * vnode_pager_setsize
2817					 */
2818					m = bp->b_pages[i];
2819					KASSERT(m != bogus_page,
2820					    ("allocbuf: bogus page found"));
2821					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2822						vm_page_lock_queues();
2823
2824					bp->b_pages[i] = NULL;
2825					vm_page_unwire(m, 0);
2826				}
2827				vm_page_unlock_queues();
2828				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2829				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2830				bp->b_npages = desiredpages;
2831			}
2832		} else if (size > bp->b_bcount) {
2833			/*
2834			 * We are growing the buffer, possibly in a
2835			 * byte-granular fashion.
2836			 */
2837			struct vnode *vp;
2838			vm_object_t obj;
2839			vm_offset_t toff;
2840			vm_offset_t tinc;
2841
2842			/*
2843			 * Step 1, bring in the VM pages from the object,
2844			 * allocating them if necessary.  We must clear
2845			 * B_CACHE if these pages are not valid for the
2846			 * range covered by the buffer.
2847			 */
2848
2849			vp = bp->b_vp;
2850			obj = bp->b_object;
2851
2852			VM_OBJECT_LOCK(obj);
2853			while (bp->b_npages < desiredpages) {
2854				vm_page_t m;
2855				vm_pindex_t pi;
2856
2857				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2858				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2859					/*
2860					 * note: must allocate system pages
2861					 * since blocking here could intefere
2862					 * with paging I/O, no matter which
2863					 * process we are.
2864					 */
2865					m = vm_page_alloc(obj, pi,
2866					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2867					if (m == NULL) {
2868						atomic_add_int(&vm_pageout_deficit,
2869						    desiredpages - bp->b_npages);
2870						VM_OBJECT_UNLOCK(obj);
2871						VM_WAIT;
2872						VM_OBJECT_LOCK(obj);
2873					} else {
2874						vm_page_lock_queues();
2875						vm_page_wakeup(m);
2876						vm_page_unlock_queues();
2877						bp->b_flags &= ~B_CACHE;
2878						bp->b_pages[bp->b_npages] = m;
2879						++bp->b_npages;
2880					}
2881					continue;
2882				}
2883
2884				/*
2885				 * We found a page.  If we have to sleep on it,
2886				 * retry because it might have gotten freed out
2887				 * from under us.
2888				 *
2889				 * We can only test PG_BUSY here.  Blocking on
2890				 * m->busy might lead to a deadlock:
2891				 *
2892				 *  vm_fault->getpages->cluster_read->allocbuf
2893				 *
2894				 */
2895				vm_page_lock_queues();
2896				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2897					continue;
2898
2899				/*
2900				 * We have a good page.  Should we wakeup the
2901				 * page daemon?
2902				 */
2903				if ((curproc != pageproc) &&
2904				    ((m->queue - m->pc) == PQ_CACHE) &&
2905				    ((cnt.v_free_count + cnt.v_cache_count) <
2906					(cnt.v_free_min + cnt.v_cache_min))) {
2907					pagedaemon_wakeup();
2908				}
2909				vm_page_flag_clear(m, PG_ZERO);
2910				vm_page_wire(m);
2911				vm_page_unlock_queues();
2912				bp->b_pages[bp->b_npages] = m;
2913				++bp->b_npages;
2914			}
2915
2916			/*
2917			 * Step 2.  We've loaded the pages into the buffer,
2918			 * we have to figure out if we can still have B_CACHE
2919			 * set.  Note that B_CACHE is set according to the
2920			 * byte-granular range ( bcount and size ), new the
2921			 * aligned range ( newbsize ).
2922			 *
2923			 * The VM test is against m->valid, which is DEV_BSIZE
2924			 * aligned.  Needless to say, the validity of the data
2925			 * needs to also be DEV_BSIZE aligned.  Note that this
2926			 * fails with NFS if the server or some other client
2927			 * extends the file's EOF.  If our buffer is resized,
2928			 * B_CACHE may remain set! XXX
2929			 */
2930
2931			toff = bp->b_bcount;
2932			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2933
2934			while ((bp->b_flags & B_CACHE) && toff < size) {
2935				vm_pindex_t pi;
2936
2937				if (tinc > (size - toff))
2938					tinc = size - toff;
2939
2940				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2941				    PAGE_SHIFT;
2942
2943				vfs_buf_test_cache(
2944				    bp,
2945				    bp->b_offset,
2946				    toff,
2947				    tinc,
2948				    bp->b_pages[pi]
2949				);
2950				toff += tinc;
2951				tinc = PAGE_SIZE;
2952			}
2953			VM_OBJECT_UNLOCK(obj);
2954
2955			/*
2956			 * Step 3, fixup the KVM pmap.  Remember that
2957			 * bp->b_data is relative to bp->b_offset, but
2958			 * bp->b_offset may be offset into the first page.
2959			 */
2960
2961			bp->b_data = (caddr_t)
2962			    trunc_page((vm_offset_t)bp->b_data);
2963			pmap_qenter(
2964			    (vm_offset_t)bp->b_data,
2965			    bp->b_pages,
2966			    bp->b_npages
2967			);
2968
2969			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2970			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2971		}
2972	}
2973	if (newbsize < bp->b_bufsize)
2974		bufspacewakeup();
2975	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2976	bp->b_bcount = size;		/* requested buffer size	*/
2977	return 1;
2978}
2979
2980void
2981biodone(struct bio *bp)
2982{
2983	mtx_lock(&bdonelock);
2984	bp->bio_flags |= BIO_DONE;
2985	if (bp->bio_done == NULL)
2986		wakeup(bp);
2987	mtx_unlock(&bdonelock);
2988	if (bp->bio_done != NULL)
2989		bp->bio_done(bp);
2990}
2991
2992/*
2993 * Wait for a BIO to finish.
2994 *
2995 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2996 * case is not yet clear.
2997 */
2998int
2999biowait(struct bio *bp, const char *wchan)
3000{
3001
3002	mtx_lock(&bdonelock);
3003	while ((bp->bio_flags & BIO_DONE) == 0)
3004		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3005	mtx_unlock(&bdonelock);
3006	if (bp->bio_error != 0)
3007		return (bp->bio_error);
3008	if (!(bp->bio_flags & BIO_ERROR))
3009		return (0);
3010	return (EIO);
3011}
3012
3013void
3014biofinish(struct bio *bp, struct devstat *stat, int error)
3015{
3016
3017	if (error) {
3018		bp->bio_error = error;
3019		bp->bio_flags |= BIO_ERROR;
3020	}
3021	if (stat != NULL)
3022		devstat_end_transaction_bio(stat, bp);
3023	biodone(bp);
3024}
3025
3026/*
3027 *	bufwait:
3028 *
3029 *	Wait for buffer I/O completion, returning error status.  The buffer
3030 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3031 *	error and cleared.
3032 */
3033int
3034bufwait(register struct buf * bp)
3035{
3036	int s;
3037
3038	s = splbio();
3039	if (bp->b_iocmd == BIO_READ)
3040		bwait(bp, PRIBIO, "biord");
3041	else
3042		bwait(bp, PRIBIO, "biowr");
3043	splx(s);
3044	if (bp->b_flags & B_EINTR) {
3045		bp->b_flags &= ~B_EINTR;
3046		return (EINTR);
3047	}
3048	if (bp->b_ioflags & BIO_ERROR) {
3049		return (bp->b_error ? bp->b_error : EIO);
3050	} else {
3051		return (0);
3052	}
3053}
3054
3055 /*
3056  * Call back function from struct bio back up to struct buf.
3057  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
3058  */
3059static void
3060bufdonebio(struct bio *bp)
3061{
3062
3063	/* Device drivers may or may not hold giant, hold it here. */
3064	mtx_lock(&Giant);
3065	bufdone(bp->bio_caller2);
3066	mtx_unlock(&Giant);
3067}
3068
3069void
3070dev_strategy(struct buf *bp)
3071{
3072	struct cdevsw *csw;
3073
3074	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3075		panic("b_iocmd botch");
3076	bp->b_io.bio_done = bufdonebio;
3077	bp->b_io.bio_caller2 = bp;
3078	csw = devsw(bp->b_io.bio_dev);
3079	KASSERT(bp->b_io.bio_dev->si_refcount > 0,
3080	    ("dev_strategy on un-referenced dev_t (%s)",
3081	    devtoname(bp->b_io.bio_dev)));
3082	cdevsw_ref(csw);
3083	(*devsw(bp->b_io.bio_dev)->d_strategy)(&bp->b_io);
3084	cdevsw_rel(csw);
3085}
3086
3087/*
3088 *	bufdone:
3089 *
3090 *	Finish I/O on a buffer, optionally calling a completion function.
3091 *	This is usually called from an interrupt so process blocking is
3092 *	not allowed.
3093 *
3094 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3095 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3096 *	assuming B_INVAL is clear.
3097 *
3098 *	For the VMIO case, we set B_CACHE if the op was a read and no
3099 *	read error occured, or if the op was a write.  B_CACHE is never
3100 *	set if the buffer is invalid or otherwise uncacheable.
3101 *
3102 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3103 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3104 *	in the biodone routine.
3105 */
3106void
3107bufdone(struct buf *bp)
3108{
3109	int s;
3110	void    (*biodone)(struct buf *);
3111
3112
3113	s = splbio();
3114
3115	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3116	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3117
3118	bp->b_flags |= B_DONE;
3119	runningbufwakeup(bp);
3120
3121	if (bp->b_iocmd == BIO_DELETE) {
3122		brelse(bp);
3123		splx(s);
3124		return;
3125	}
3126
3127	if (bp->b_iocmd == BIO_WRITE) {
3128		vwakeup(bp);
3129	}
3130
3131	/* call optional completion function if requested */
3132	if (bp->b_iodone != NULL) {
3133		biodone = bp->b_iodone;
3134		bp->b_iodone = NULL;
3135		(*biodone) (bp);
3136		splx(s);
3137		return;
3138	}
3139	if (LIST_FIRST(&bp->b_dep) != NULL)
3140		buf_complete(bp);
3141
3142	if (bp->b_flags & B_VMIO) {
3143		int i;
3144		vm_ooffset_t foff;
3145		vm_page_t m;
3146		vm_object_t obj;
3147		int iosize;
3148		struct vnode *vp = bp->b_vp;
3149
3150		obj = bp->b_object;
3151
3152#if defined(VFS_BIO_DEBUG)
3153		mp_fixme("usecount and vflag accessed without locks.");
3154		if (vp->v_usecount == 0) {
3155			panic("biodone: zero vnode ref count");
3156		}
3157
3158		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3159			panic("biodone: vnode is not setup for merged cache");
3160		}
3161#endif
3162
3163		foff = bp->b_offset;
3164		KASSERT(bp->b_offset != NOOFFSET,
3165		    ("biodone: no buffer offset"));
3166
3167		VM_OBJECT_LOCK(obj);
3168#if defined(VFS_BIO_DEBUG)
3169		if (obj->paging_in_progress < bp->b_npages) {
3170			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3171			    obj->paging_in_progress, bp->b_npages);
3172		}
3173#endif
3174
3175		/*
3176		 * Set B_CACHE if the op was a normal read and no error
3177		 * occured.  B_CACHE is set for writes in the b*write()
3178		 * routines.
3179		 */
3180		iosize = bp->b_bcount - bp->b_resid;
3181		if (bp->b_iocmd == BIO_READ &&
3182		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3183		    !(bp->b_ioflags & BIO_ERROR)) {
3184			bp->b_flags |= B_CACHE;
3185		}
3186		vm_page_lock_queues();
3187		for (i = 0; i < bp->b_npages; i++) {
3188			int bogusflag = 0;
3189			int resid;
3190
3191			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3192			if (resid > iosize)
3193				resid = iosize;
3194
3195			/*
3196			 * cleanup bogus pages, restoring the originals
3197			 */
3198			m = bp->b_pages[i];
3199			if (m == bogus_page) {
3200				bogusflag = 1;
3201				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3202				if (m == NULL)
3203					panic("biodone: page disappeared!");
3204				bp->b_pages[i] = m;
3205				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3206			}
3207#if defined(VFS_BIO_DEBUG)
3208			if (OFF_TO_IDX(foff) != m->pindex) {
3209				printf(
3210"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3211				    (intmax_t)foff, (uintmax_t)m->pindex);
3212			}
3213#endif
3214
3215			/*
3216			 * In the write case, the valid and clean bits are
3217			 * already changed correctly ( see bdwrite() ), so we
3218			 * only need to do this here in the read case.
3219			 */
3220			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3221				vfs_page_set_valid(bp, foff, i, m);
3222			}
3223			vm_page_flag_clear(m, PG_ZERO);
3224
3225			/*
3226			 * when debugging new filesystems or buffer I/O methods, this
3227			 * is the most common error that pops up.  if you see this, you
3228			 * have not set the page busy flag correctly!!!
3229			 */
3230			if (m->busy == 0) {
3231				printf("biodone: page busy < 0, "
3232				    "pindex: %d, foff: 0x(%x,%x), "
3233				    "resid: %d, index: %d\n",
3234				    (int) m->pindex, (int)(foff >> 32),
3235						(int) foff & 0xffffffff, resid, i);
3236				if (!vn_isdisk(vp, NULL))
3237					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3238					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3239					    (intmax_t) bp->b_lblkno,
3240					    bp->b_flags, bp->b_npages);
3241				else
3242					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3243					    (intmax_t) bp->b_lblkno,
3244					    bp->b_flags, bp->b_npages);
3245				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3246				    (u_long)m->valid, (u_long)m->dirty,
3247				    m->wire_count);
3248				panic("biodone: page busy < 0\n");
3249			}
3250			vm_page_io_finish(m);
3251			vm_object_pip_subtract(obj, 1);
3252			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3253			iosize -= resid;
3254		}
3255		vm_page_unlock_queues();
3256		vm_object_pip_wakeupn(obj, 0);
3257		VM_OBJECT_UNLOCK(obj);
3258	}
3259
3260	/*
3261	 * For asynchronous completions, release the buffer now. The brelse
3262	 * will do a wakeup there if necessary - so no need to do a wakeup
3263	 * here in the async case. The sync case always needs to do a wakeup.
3264	 */
3265
3266	if (bp->b_flags & B_ASYNC) {
3267		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3268			brelse(bp);
3269		else
3270			bqrelse(bp);
3271	} else {
3272		bdone(bp);
3273	}
3274	splx(s);
3275}
3276
3277/*
3278 * This routine is called in lieu of iodone in the case of
3279 * incomplete I/O.  This keeps the busy status for pages
3280 * consistant.
3281 */
3282void
3283vfs_unbusy_pages(struct buf * bp)
3284{
3285	int i;
3286
3287	runningbufwakeup(bp);
3288	if (bp->b_flags & B_VMIO) {
3289		vm_object_t obj;
3290
3291		obj = bp->b_object;
3292		VM_OBJECT_LOCK(obj);
3293		vm_page_lock_queues();
3294		for (i = 0; i < bp->b_npages; i++) {
3295			vm_page_t m = bp->b_pages[i];
3296
3297			if (m == bogus_page) {
3298				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3299				if (!m) {
3300					panic("vfs_unbusy_pages: page missing\n");
3301				}
3302				bp->b_pages[i] = m;
3303				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3304			}
3305			vm_object_pip_subtract(obj, 1);
3306			vm_page_flag_clear(m, PG_ZERO);
3307			vm_page_io_finish(m);
3308		}
3309		vm_page_unlock_queues();
3310		vm_object_pip_wakeupn(obj, 0);
3311		VM_OBJECT_UNLOCK(obj);
3312	}
3313}
3314
3315/*
3316 * vfs_page_set_valid:
3317 *
3318 *	Set the valid bits in a page based on the supplied offset.   The
3319 *	range is restricted to the buffer's size.
3320 *
3321 *	This routine is typically called after a read completes.
3322 */
3323static void
3324vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3325{
3326	vm_ooffset_t soff, eoff;
3327
3328	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3329	/*
3330	 * Start and end offsets in buffer.  eoff - soff may not cross a
3331	 * page boundry or cross the end of the buffer.  The end of the
3332	 * buffer, in this case, is our file EOF, not the allocation size
3333	 * of the buffer.
3334	 */
3335	soff = off;
3336	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3337	if (eoff > bp->b_offset + bp->b_bcount)
3338		eoff = bp->b_offset + bp->b_bcount;
3339
3340	/*
3341	 * Set valid range.  This is typically the entire buffer and thus the
3342	 * entire page.
3343	 */
3344	if (eoff > soff) {
3345		vm_page_set_validclean(
3346		    m,
3347		   (vm_offset_t) (soff & PAGE_MASK),
3348		   (vm_offset_t) (eoff - soff)
3349		);
3350	}
3351}
3352
3353/*
3354 * This routine is called before a device strategy routine.
3355 * It is used to tell the VM system that paging I/O is in
3356 * progress, and treat the pages associated with the buffer
3357 * almost as being PG_BUSY.  Also the object paging_in_progress
3358 * flag is handled to make sure that the object doesn't become
3359 * inconsistant.
3360 *
3361 * Since I/O has not been initiated yet, certain buffer flags
3362 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3363 * and should be ignored.
3364 */
3365void
3366vfs_busy_pages(struct buf * bp, int clear_modify)
3367{
3368	int i, bogus;
3369
3370	if (bp->b_flags & B_VMIO) {
3371		vm_object_t obj;
3372		vm_ooffset_t foff;
3373
3374		obj = bp->b_object;
3375		foff = bp->b_offset;
3376		KASSERT(bp->b_offset != NOOFFSET,
3377		    ("vfs_busy_pages: no buffer offset"));
3378		vfs_setdirty(bp);
3379		VM_OBJECT_LOCK(obj);
3380retry:
3381		vm_page_lock_queues();
3382		for (i = 0; i < bp->b_npages; i++) {
3383			vm_page_t m = bp->b_pages[i];
3384
3385			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3386				goto retry;
3387		}
3388		bogus = 0;
3389		for (i = 0; i < bp->b_npages; i++) {
3390			vm_page_t m = bp->b_pages[i];
3391
3392			vm_page_flag_clear(m, PG_ZERO);
3393			if ((bp->b_flags & B_CLUSTER) == 0) {
3394				vm_object_pip_add(obj, 1);
3395				vm_page_io_start(m);
3396			}
3397			/*
3398			 * When readying a buffer for a read ( i.e
3399			 * clear_modify == 0 ), it is important to do
3400			 * bogus_page replacement for valid pages in
3401			 * partially instantiated buffers.  Partially
3402			 * instantiated buffers can, in turn, occur when
3403			 * reconstituting a buffer from its VM backing store
3404			 * base.  We only have to do this if B_CACHE is
3405			 * clear ( which causes the I/O to occur in the
3406			 * first place ).  The replacement prevents the read
3407			 * I/O from overwriting potentially dirty VM-backed
3408			 * pages.  XXX bogus page replacement is, uh, bogus.
3409			 * It may not work properly with small-block devices.
3410			 * We need to find a better way.
3411			 */
3412			pmap_remove_all(m);
3413			if (clear_modify)
3414				vfs_page_set_valid(bp, foff, i, m);
3415			else if (m->valid == VM_PAGE_BITS_ALL &&
3416				(bp->b_flags & B_CACHE) == 0) {
3417				bp->b_pages[i] = bogus_page;
3418				bogus++;
3419			}
3420			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3421		}
3422		vm_page_unlock_queues();
3423		VM_OBJECT_UNLOCK(obj);
3424		if (bogus)
3425			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3426	}
3427}
3428
3429/*
3430 * Tell the VM system that the pages associated with this buffer
3431 * are clean.  This is used for delayed writes where the data is
3432 * going to go to disk eventually without additional VM intevention.
3433 *
3434 * Note that while we only really need to clean through to b_bcount, we
3435 * just go ahead and clean through to b_bufsize.
3436 */
3437static void
3438vfs_clean_pages(struct buf * bp)
3439{
3440	int i;
3441
3442	if (bp->b_flags & B_VMIO) {
3443		vm_ooffset_t foff;
3444
3445		foff = bp->b_offset;
3446		KASSERT(bp->b_offset != NOOFFSET,
3447		    ("vfs_clean_pages: no buffer offset"));
3448		VM_OBJECT_LOCK(bp->b_object);
3449		vm_page_lock_queues();
3450		for (i = 0; i < bp->b_npages; i++) {
3451			vm_page_t m = bp->b_pages[i];
3452			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3453			vm_ooffset_t eoff = noff;
3454
3455			if (eoff > bp->b_offset + bp->b_bufsize)
3456				eoff = bp->b_offset + bp->b_bufsize;
3457			vfs_page_set_valid(bp, foff, i, m);
3458			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3459			foff = noff;
3460		}
3461		vm_page_unlock_queues();
3462		VM_OBJECT_UNLOCK(bp->b_object);
3463	}
3464}
3465
3466/*
3467 *	vfs_bio_set_validclean:
3468 *
3469 *	Set the range within the buffer to valid and clean.  The range is
3470 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3471 *	itself may be offset from the beginning of the first page.
3472 *
3473 */
3474
3475void
3476vfs_bio_set_validclean(struct buf *bp, int base, int size)
3477{
3478	if (bp->b_flags & B_VMIO) {
3479		int i;
3480		int n;
3481
3482		/*
3483		 * Fixup base to be relative to beginning of first page.
3484		 * Set initial n to be the maximum number of bytes in the
3485		 * first page that can be validated.
3486		 */
3487
3488		base += (bp->b_offset & PAGE_MASK);
3489		n = PAGE_SIZE - (base & PAGE_MASK);
3490
3491		VM_OBJECT_LOCK(bp->b_object);
3492		vm_page_lock_queues();
3493		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3494			vm_page_t m = bp->b_pages[i];
3495
3496			if (n > size)
3497				n = size;
3498
3499			vm_page_set_validclean(m, base & PAGE_MASK, n);
3500			base += n;
3501			size -= n;
3502			n = PAGE_SIZE;
3503		}
3504		vm_page_unlock_queues();
3505		VM_OBJECT_UNLOCK(bp->b_object);
3506	}
3507}
3508
3509/*
3510 *	vfs_bio_clrbuf:
3511 *
3512 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3513 *	to clear BIO_ERROR and B_INVAL.
3514 *
3515 *	Note that while we only theoretically need to clear through b_bcount,
3516 *	we go ahead and clear through b_bufsize.
3517 */
3518
3519void
3520vfs_bio_clrbuf(struct buf *bp)
3521{
3522	int i, mask = 0;
3523	caddr_t sa, ea;
3524
3525	GIANT_REQUIRED;
3526
3527	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3528		bp->b_flags &= ~B_INVAL;
3529		bp->b_ioflags &= ~BIO_ERROR;
3530		VM_OBJECT_LOCK(bp->b_object);
3531		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3532		    (bp->b_offset & PAGE_MASK) == 0) {
3533			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3534			if (bp->b_pages[0] != bogus_page)
3535				VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3536			if ((bp->b_pages[0]->valid & mask) == mask)
3537				goto unlock;
3538			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3539			    ((bp->b_pages[0]->valid & mask) == 0)) {
3540				bzero(bp->b_data, bp->b_bufsize);
3541				bp->b_pages[0]->valid |= mask;
3542				goto unlock;
3543			}
3544		}
3545		ea = sa = bp->b_data;
3546		for(i=0;i<bp->b_npages;i++,sa=ea) {
3547			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3548			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3549			ea = (caddr_t)(vm_offset_t)ulmin(
3550			    (u_long)(vm_offset_t)ea,
3551			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3552			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3553			if (bp->b_pages[i] != bogus_page)
3554				VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3555			if ((bp->b_pages[i]->valid & mask) == mask)
3556				continue;
3557			if ((bp->b_pages[i]->valid & mask) == 0) {
3558				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3559					bzero(sa, ea - sa);
3560				}
3561			} else {
3562				for (; sa < ea; sa += DEV_BSIZE, j++) {
3563					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3564						(bp->b_pages[i]->valid & (1<<j)) == 0)
3565						bzero(sa, DEV_BSIZE);
3566				}
3567			}
3568			bp->b_pages[i]->valid |= mask;
3569			vm_page_lock_queues();
3570			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3571			vm_page_unlock_queues();
3572		}
3573unlock:
3574		VM_OBJECT_UNLOCK(bp->b_object);
3575		bp->b_resid = 0;
3576	} else {
3577		clrbuf(bp);
3578	}
3579}
3580
3581/*
3582 * vm_hold_load_pages and vm_hold_free_pages get pages into
3583 * a buffers address space.  The pages are anonymous and are
3584 * not associated with a file object.
3585 */
3586static void
3587vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3588{
3589	vm_offset_t pg;
3590	vm_page_t p;
3591	int index;
3592
3593	to = round_page(to);
3594	from = round_page(from);
3595	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3596
3597	VM_OBJECT_LOCK(kernel_object);
3598	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3599tryagain:
3600		/*
3601		 * note: must allocate system pages since blocking here
3602		 * could intefere with paging I/O, no matter which
3603		 * process we are.
3604		 */
3605		p = vm_page_alloc(kernel_object,
3606			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3607		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3608		if (!p) {
3609			atomic_add_int(&vm_pageout_deficit,
3610			    (to - pg) >> PAGE_SHIFT);
3611			VM_OBJECT_UNLOCK(kernel_object);
3612			VM_WAIT;
3613			VM_OBJECT_LOCK(kernel_object);
3614			goto tryagain;
3615		}
3616		p->valid = VM_PAGE_BITS_ALL;
3617		pmap_qenter(pg, &p, 1);
3618		bp->b_pages[index] = p;
3619		vm_page_lock_queues();
3620		vm_page_wakeup(p);
3621		vm_page_unlock_queues();
3622	}
3623	VM_OBJECT_UNLOCK(kernel_object);
3624	bp->b_npages = index;
3625}
3626
3627/* Return pages associated with this buf to the vm system */
3628static void
3629vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3630{
3631	vm_offset_t pg;
3632	vm_page_t p;
3633	int index, newnpages;
3634
3635	GIANT_REQUIRED;
3636
3637	from = round_page(from);
3638	to = round_page(to);
3639	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3640
3641	VM_OBJECT_LOCK(kernel_object);
3642	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3643		p = bp->b_pages[index];
3644		if (p && (index < bp->b_npages)) {
3645			if (p->busy) {
3646				printf(
3647			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3648				    (intmax_t)bp->b_blkno,
3649				    (intmax_t)bp->b_lblkno);
3650			}
3651			bp->b_pages[index] = NULL;
3652			pmap_qremove(pg, 1);
3653			vm_page_lock_queues();
3654			vm_page_busy(p);
3655			vm_page_unwire(p, 0);
3656			vm_page_free(p);
3657			vm_page_unlock_queues();
3658		}
3659	}
3660	VM_OBJECT_UNLOCK(kernel_object);
3661	bp->b_npages = newnpages;
3662}
3663
3664/*
3665 * Map an IO request into kernel virtual address space.
3666 *
3667 * All requests are (re)mapped into kernel VA space.
3668 * Notice that we use b_bufsize for the size of the buffer
3669 * to be mapped.  b_bcount might be modified by the driver.
3670 *
3671 * Note that even if the caller determines that the address space should
3672 * be valid, a race or a smaller-file mapped into a larger space may
3673 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3674 * check the return value.
3675 */
3676int
3677vmapbuf(struct buf *bp)
3678{
3679	caddr_t addr, kva;
3680	vm_prot_t prot;
3681	int pidx, i;
3682	struct vm_page *m;
3683	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3684
3685	GIANT_REQUIRED;
3686
3687	if (bp->b_bufsize < 0)
3688		return (-1);
3689	prot = (bp->b_iocmd == BIO_READ) ? VM_PROT_READ | VM_PROT_WRITE :
3690	    VM_PROT_READ;
3691	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3692	     addr < bp->b_data + bp->b_bufsize;
3693	     addr += PAGE_SIZE, pidx++) {
3694		/*
3695		 * Do the vm_fault if needed; do the copy-on-write thing
3696		 * when reading stuff off device into memory.
3697		 *
3698		 * NOTE! Must use pmap_extract() because addr may be in
3699		 * the userland address space, and kextract is only guarenteed
3700		 * to work for the kernland address space (see: sparc64 port).
3701		 */
3702retry:
3703		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3704		    prot) < 0) {
3705			vm_page_lock_queues();
3706			for (i = 0; i < pidx; ++i) {
3707				vm_page_unhold(bp->b_pages[i]);
3708				bp->b_pages[i] = NULL;
3709			}
3710			vm_page_unlock_queues();
3711			return(-1);
3712		}
3713		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3714		if (m == NULL)
3715			goto retry;
3716		bp->b_pages[pidx] = m;
3717	}
3718	if (pidx > btoc(MAXPHYS))
3719		panic("vmapbuf: mapped more than MAXPHYS");
3720	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3721
3722	kva = bp->b_saveaddr;
3723	bp->b_npages = pidx;
3724	bp->b_saveaddr = bp->b_data;
3725	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3726	return(0);
3727}
3728
3729/*
3730 * Free the io map PTEs associated with this IO operation.
3731 * We also invalidate the TLB entries and restore the original b_addr.
3732 */
3733void
3734vunmapbuf(struct buf *bp)
3735{
3736	int pidx;
3737	int npages;
3738
3739	npages = bp->b_npages;
3740	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3741		     npages);
3742	vm_page_lock_queues();
3743	for (pidx = 0; pidx < npages; pidx++)
3744		vm_page_unhold(bp->b_pages[pidx]);
3745	vm_page_unlock_queues();
3746
3747	bp->b_data = bp->b_saveaddr;
3748}
3749
3750void
3751bdone(struct buf *bp)
3752{
3753	mtx_lock(&bdonelock);
3754	bp->b_flags |= B_DONE;
3755	wakeup(bp);
3756	mtx_unlock(&bdonelock);
3757}
3758
3759void
3760bwait(struct buf *bp, u_char pri, const char *wchan)
3761{
3762	mtx_lock(&bdonelock);
3763	while ((bp->b_flags & B_DONE) == 0)
3764		msleep(bp, &bdonelock, pri, wchan, 0);
3765	mtx_unlock(&bdonelock);
3766}
3767
3768#include "opt_ddb.h"
3769#ifdef DDB
3770#include <ddb/ddb.h>
3771
3772/* DDB command to show buffer data */
3773DB_SHOW_COMMAND(buffer, db_show_buffer)
3774{
3775	/* get args */
3776	struct buf *bp = (struct buf *)addr;
3777
3778	if (!have_addr) {
3779		db_printf("usage: show buffer <addr>\n");
3780		return;
3781	}
3782
3783	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3784	db_printf(
3785	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3786	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd\n",
3787	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3788	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3789	    (intmax_t)bp->b_blkno);
3790	if (bp->b_npages) {
3791		int i;
3792		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3793		for (i = 0; i < bp->b_npages; i++) {
3794			vm_page_t m;
3795			m = bp->b_pages[i];
3796			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3797			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3798			if ((i + 1) < bp->b_npages)
3799				db_printf(",");
3800		}
3801		db_printf("\n");
3802	}
3803}
3804#endif /* DDB */
3805