vfs_bio.c revision 114147
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 114147 2003-04-28 05:40:45Z alc $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/bio.h>
33#include <sys/buf.h>
34#include <sys/devicestat.h>
35#include <sys/eventhandler.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mount.h>
39#include <sys/mutex.h>
40#include <sys/kernel.h>
41#include <sys/kthread.h>
42#include <sys/proc.h>
43#include <sys/resourcevar.h>
44#include <sys/sysctl.h>
45#include <sys/vmmeter.h>
46#include <sys/vnode.h>
47#include <vm/vm.h>
48#include <vm/vm_param.h>
49#include <vm/vm_kern.h>
50#include <vm/vm_pageout.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_extern.h>
54#include <vm/vm_map.h>
55#include "opt_directio.h"
56#include "opt_swap.h"
57
58static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
59
60struct	bio_ops bioops;		/* I/O operation notification */
61
62struct	buf_ops buf_ops_bio = {
63	"buf_ops_bio",
64	bwrite
65};
66
67/*
68 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
69 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
70 */
71struct buf *buf;		/* buffer header pool */
72
73static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
74		vm_offset_t to);
75static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
78			       int pageno, vm_page_t m);
79static void vfs_clean_pages(struct buf * bp);
80static void vfs_setdirty(struct buf *bp);
81static void vfs_vmio_release(struct buf *bp);
82static void vfs_backgroundwritedone(struct buf *bp);
83static int vfs_bio_clcheck(struct vnode *vp, int size,
84		daddr_t lblkno, daddr_t blkno);
85static int flushbufqueues(int flushdeps);
86static void buf_daemon(void);
87void bremfreel(struct buf * bp);
88
89int vmiodirenable = TRUE;
90SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
91    "Use the VM system for directory writes");
92int runningbufspace;
93SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
94    "Amount of presently outstanding async buffer io");
95static int bufspace;
96SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
97    "KVA memory used for bufs");
98static int maxbufspace;
99SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
100    "Maximum allowed value of bufspace (including buf_daemon)");
101static int bufmallocspace;
102SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
103    "Amount of malloced memory for buffers");
104static int maxbufmallocspace;
105SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
106    "Maximum amount of malloced memory for buffers");
107static int lobufspace;
108SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
109    "Minimum amount of buffers we want to have");
110static int hibufspace;
111SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
112    "Maximum allowed value of bufspace (excluding buf_daemon)");
113static int bufreusecnt;
114SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
115    "Number of times we have reused a buffer");
116static int buffreekvacnt;
117SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
118    "Number of times we have freed the KVA space from some buffer");
119static int bufdefragcnt;
120SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
121    "Number of times we have had to repeat buffer allocation to defragment");
122static int lorunningspace;
123SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
124    "Minimum preferred space used for in-progress I/O");
125static int hirunningspace;
126SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
127    "Maximum amount of space to use for in-progress I/O");
128static int dirtybufferflushes;
129SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
130    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
131static int altbufferflushes;
132SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
133    0, "Number of fsync flushes to limit dirty buffers");
134static int recursiveflushes;
135SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
136    0, "Number of flushes skipped due to being recursive");
137static int numdirtybuffers;
138SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
139    "Number of buffers that are dirty (has unwritten changes) at the moment");
140static int lodirtybuffers;
141SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
142    "How many buffers we want to have free before bufdaemon can sleep");
143static int hidirtybuffers;
144SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
145    "When the number of dirty buffers is considered severe");
146static int dirtybufthresh;
147SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
148    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
149static int numfreebuffers;
150SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
151    "Number of free buffers");
152static int lofreebuffers;
153SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
154   "XXX Unused");
155static int hifreebuffers;
156SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
157   "XXX Complicatedly unused");
158static int getnewbufcalls;
159SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
160   "Number of calls to getnewbuf");
161static int getnewbufrestarts;
162SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
163    "Number of times getnewbuf has had to restart a buffer aquisition");
164static int dobkgrdwrite = 1;
165SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
166    "Do background writes (honoring the BX_BKGRDWRITE flag)?");
167
168/*
169 * Wakeup point for bufdaemon, as well as indicator of whether it is already
170 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
171 * is idling.
172 */
173static int bd_request;
174
175/*
176 * This lock synchronizes access to bd_request.
177 */
178static struct mtx bdlock;
179
180/*
181 * bogus page -- for I/O to/from partially complete buffers
182 * this is a temporary solution to the problem, but it is not
183 * really that bad.  it would be better to split the buffer
184 * for input in the case of buffers partially already in memory,
185 * but the code is intricate enough already.
186 */
187vm_page_t bogus_page;
188
189/*
190 * Synchronization (sleep/wakeup) variable for active buffer space requests.
191 * Set when wait starts, cleared prior to wakeup().
192 * Used in runningbufwakeup() and waitrunningbufspace().
193 */
194static int runningbufreq;
195
196/*
197 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
198 * waitrunningbufspace().
199 */
200static struct mtx rbreqlock;
201
202/*
203 * Synchronization (sleep/wakeup) variable for buffer requests.
204 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
205 * by and/or.
206 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
207 * getnewbuf(), and getblk().
208 */
209static int needsbuffer;
210
211/*
212 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
213 */
214static struct mtx nblock;
215
216/*
217 * Lock that protects against bwait()/bdone()/B_DONE races.
218 */
219
220static struct mtx bdonelock;
221
222/*
223 * Definitions for the buffer free lists.
224 */
225#define BUFFER_QUEUES	6	/* number of free buffer queues */
226
227#define QUEUE_NONE	0	/* on no queue */
228#define QUEUE_LOCKED	1	/* locked buffers */
229#define QUEUE_CLEAN	2	/* non-B_DELWRI buffers */
230#define QUEUE_DIRTY	3	/* B_DELWRI buffers */
231#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
232#define QUEUE_EMPTY	5	/* empty buffer headers */
233
234/* Queues for free buffers with various properties */
235static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
236
237/* Lock for the bufqueues */
238static struct mtx bqlock;
239
240/*
241 * Single global constant for BUF_WMESG, to avoid getting multiple references.
242 * buf_wmesg is referred from macros.
243 */
244const char *buf_wmesg = BUF_WMESG;
245
246#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
247#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
248#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
249#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
250
251#ifdef DIRECTIO
252extern void ffs_rawread_setup(void);
253#endif /* DIRECTIO */
254/*
255 *	numdirtywakeup:
256 *
257 *	If someone is blocked due to there being too many dirty buffers,
258 *	and numdirtybuffers is now reasonable, wake them up.
259 */
260
261static __inline void
262numdirtywakeup(int level)
263{
264	if (numdirtybuffers <= level) {
265		mtx_lock(&nblock);
266		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
267			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
268			wakeup(&needsbuffer);
269		}
270		mtx_unlock(&nblock);
271	}
272}
273
274/*
275 *	bufspacewakeup:
276 *
277 *	Called when buffer space is potentially available for recovery.
278 *	getnewbuf() will block on this flag when it is unable to free
279 *	sufficient buffer space.  Buffer space becomes recoverable when
280 *	bp's get placed back in the queues.
281 */
282
283static __inline void
284bufspacewakeup(void)
285{
286	/*
287	 * If someone is waiting for BUF space, wake them up.  Even
288	 * though we haven't freed the kva space yet, the waiting
289	 * process will be able to now.
290	 */
291	mtx_lock(&nblock);
292	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
293		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
294		wakeup(&needsbuffer);
295	}
296	mtx_unlock(&nblock);
297}
298
299/*
300 * runningbufwakeup() - in-progress I/O accounting.
301 *
302 */
303static __inline void
304runningbufwakeup(struct buf *bp)
305{
306	if (bp->b_runningbufspace) {
307		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
308		bp->b_runningbufspace = 0;
309		mtx_lock(&rbreqlock);
310		if (runningbufreq && runningbufspace <= lorunningspace) {
311			runningbufreq = 0;
312			wakeup(&runningbufreq);
313		}
314		mtx_unlock(&rbreqlock);
315	}
316}
317
318/*
319 *	bufcountwakeup:
320 *
321 *	Called when a buffer has been added to one of the free queues to
322 *	account for the buffer and to wakeup anyone waiting for free buffers.
323 *	This typically occurs when large amounts of metadata are being handled
324 *	by the buffer cache ( else buffer space runs out first, usually ).
325 */
326
327static __inline void
328bufcountwakeup(void)
329{
330	atomic_add_int(&numfreebuffers, 1);
331	mtx_lock(&nblock);
332	if (needsbuffer) {
333		needsbuffer &= ~VFS_BIO_NEED_ANY;
334		if (numfreebuffers >= hifreebuffers)
335			needsbuffer &= ~VFS_BIO_NEED_FREE;
336		wakeup(&needsbuffer);
337	}
338	mtx_unlock(&nblock);
339}
340
341/*
342 *	waitrunningbufspace()
343 *
344 *	runningbufspace is a measure of the amount of I/O currently
345 *	running.  This routine is used in async-write situations to
346 *	prevent creating huge backups of pending writes to a device.
347 *	Only asynchronous writes are governed by this function.
348 *
349 *	Reads will adjust runningbufspace, but will not block based on it.
350 *	The read load has a side effect of reducing the allowed write load.
351 *
352 *	This does NOT turn an async write into a sync write.  It waits
353 *	for earlier writes to complete and generally returns before the
354 *	caller's write has reached the device.
355 */
356static __inline void
357waitrunningbufspace(void)
358{
359	mtx_lock(&rbreqlock);
360	while (runningbufspace > hirunningspace) {
361		++runningbufreq;
362		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
363	}
364	mtx_unlock(&rbreqlock);
365}
366
367
368/*
369 *	vfs_buf_test_cache:
370 *
371 *	Called when a buffer is extended.  This function clears the B_CACHE
372 *	bit if the newly extended portion of the buffer does not contain
373 *	valid data.
374 */
375static __inline__
376void
377vfs_buf_test_cache(struct buf *bp,
378		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
379		  vm_page_t m)
380{
381	GIANT_REQUIRED;
382
383	if (bp->b_flags & B_CACHE) {
384		int base = (foff + off) & PAGE_MASK;
385		if (vm_page_is_valid(m, base, size) == 0)
386			bp->b_flags &= ~B_CACHE;
387	}
388}
389
390/* Wake up the buffer deamon if necessary */
391static __inline__
392void
393bd_wakeup(int dirtybuflevel)
394{
395	mtx_lock(&bdlock);
396	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
397		bd_request = 1;
398		wakeup(&bd_request);
399	}
400	mtx_unlock(&bdlock);
401}
402
403/*
404 * bd_speedup - speedup the buffer cache flushing code
405 */
406
407static __inline__
408void
409bd_speedup(void)
410{
411	bd_wakeup(1);
412}
413
414/*
415 * Calculating buffer cache scaling values and reserve space for buffer
416 * headers.  This is called during low level kernel initialization and
417 * may be called more then once.  We CANNOT write to the memory area
418 * being reserved at this time.
419 */
420caddr_t
421kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
422{
423	/*
424	 * physmem_est is in pages.  Convert it to kilobytes (assumes
425	 * PAGE_SIZE is >= 1K)
426	 */
427	physmem_est = physmem_est * (PAGE_SIZE / 1024);
428
429	/*
430	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
431	 * For the first 64MB of ram nominally allocate sufficient buffers to
432	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
433	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
434	 * the buffer cache we limit the eventual kva reservation to
435	 * maxbcache bytes.
436	 *
437	 * factor represents the 1/4 x ram conversion.
438	 */
439	if (nbuf == 0) {
440		int factor = 4 * BKVASIZE / 1024;
441
442		nbuf = 50;
443		if (physmem_est > 4096)
444			nbuf += min((physmem_est - 4096) / factor,
445			    65536 / factor);
446		if (physmem_est > 65536)
447			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
448
449		if (maxbcache && nbuf > maxbcache / BKVASIZE)
450			nbuf = maxbcache / BKVASIZE;
451	}
452
453#if 0
454	/*
455	 * Do not allow the buffer_map to be more then 1/2 the size of the
456	 * kernel_map.
457	 */
458	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
459	    (BKVASIZE * 2)) {
460		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
461		    (BKVASIZE * 2);
462		printf("Warning: nbufs capped at %d\n", nbuf);
463	}
464#endif
465
466	/*
467	 * swbufs are used as temporary holders for I/O, such as paging I/O.
468	 * We have no less then 16 and no more then 256.
469	 */
470	nswbuf = max(min(nbuf/4, 256), 16);
471#ifdef NSWBUF_MIN
472	if (nswbuf < NSWBUF_MIN)
473		nswbuf = NSWBUF_MIN;
474#endif
475#ifdef DIRECTIO
476	ffs_rawread_setup();
477#endif
478
479	/*
480	 * Reserve space for the buffer cache buffers
481	 */
482	swbuf = (void *)v;
483	v = (caddr_t)(swbuf + nswbuf);
484	buf = (void *)v;
485	v = (caddr_t)(buf + nbuf);
486
487	return(v);
488}
489
490/* Initialize the buffer subsystem.  Called before use of any buffers. */
491void
492bufinit(void)
493{
494	struct buf *bp;
495	vm_offset_t bogus_offset;
496	int i;
497
498	GIANT_REQUIRED;
499
500	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
501	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
502	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
503	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
504	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
505
506	/* next, make a null set of free lists */
507	for (i = 0; i < BUFFER_QUEUES; i++)
508		TAILQ_INIT(&bufqueues[i]);
509
510	/* finally, initialize each buffer header and stick on empty q */
511	for (i = 0; i < nbuf; i++) {
512		bp = &buf[i];
513		bzero(bp, sizeof *bp);
514		bp->b_flags = B_INVAL;	/* we're just an empty header */
515		bp->b_dev = NODEV;
516		bp->b_rcred = NOCRED;
517		bp->b_wcred = NOCRED;
518		bp->b_qindex = QUEUE_EMPTY;
519		bp->b_vflags = 0;
520		bp->b_xflags = 0;
521		LIST_INIT(&bp->b_dep);
522		BUF_LOCKINIT(bp);
523		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
524	}
525
526	/*
527	 * maxbufspace is the absolute maximum amount of buffer space we are
528	 * allowed to reserve in KVM and in real terms.  The absolute maximum
529	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
530	 * used by most other processes.  The differential is required to
531	 * ensure that buf_daemon is able to run when other processes might
532	 * be blocked waiting for buffer space.
533	 *
534	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
535	 * this may result in KVM fragmentation which is not handled optimally
536	 * by the system.
537	 */
538	maxbufspace = nbuf * BKVASIZE;
539	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
540	lobufspace = hibufspace - MAXBSIZE;
541
542	lorunningspace = 512 * 1024;
543	hirunningspace = 1024 * 1024;
544
545/*
546 * Limit the amount of malloc memory since it is wired permanently into
547 * the kernel space.  Even though this is accounted for in the buffer
548 * allocation, we don't want the malloced region to grow uncontrolled.
549 * The malloc scheme improves memory utilization significantly on average
550 * (small) directories.
551 */
552	maxbufmallocspace = hibufspace / 20;
553
554/*
555 * Reduce the chance of a deadlock occuring by limiting the number
556 * of delayed-write dirty buffers we allow to stack up.
557 */
558	hidirtybuffers = nbuf / 4 + 20;
559	dirtybufthresh = hidirtybuffers * 9 / 10;
560	numdirtybuffers = 0;
561/*
562 * To support extreme low-memory systems, make sure hidirtybuffers cannot
563 * eat up all available buffer space.  This occurs when our minimum cannot
564 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
565 * BKVASIZE'd (8K) buffers.
566 */
567	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
568		hidirtybuffers >>= 1;
569	}
570	lodirtybuffers = hidirtybuffers / 2;
571
572/*
573 * Try to keep the number of free buffers in the specified range,
574 * and give special processes (e.g. like buf_daemon) access to an
575 * emergency reserve.
576 */
577	lofreebuffers = nbuf / 18 + 5;
578	hifreebuffers = 2 * lofreebuffers;
579	numfreebuffers = nbuf;
580
581/*
582 * Maximum number of async ops initiated per buf_daemon loop.  This is
583 * somewhat of a hack at the moment, we really need to limit ourselves
584 * based on the number of bytes of I/O in-transit that were initiated
585 * from buf_daemon.
586 */
587
588	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
589	VM_OBJECT_LOCK(kernel_object);
590	bogus_page = vm_page_alloc(kernel_object,
591			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
592	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
593	VM_OBJECT_UNLOCK(kernel_object);
594}
595
596/*
597 * bfreekva() - free the kva allocation for a buffer.
598 *
599 *	Must be called at splbio() or higher as this is the only locking for
600 *	buffer_map.
601 *
602 *	Since this call frees up buffer space, we call bufspacewakeup().
603 */
604static void
605bfreekva(struct buf * bp)
606{
607	GIANT_REQUIRED;
608
609	if (bp->b_kvasize) {
610		atomic_add_int(&buffreekvacnt, 1);
611		atomic_subtract_int(&bufspace, bp->b_kvasize);
612		vm_map_delete(buffer_map,
613		    (vm_offset_t) bp->b_kvabase,
614		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
615		);
616		bp->b_kvasize = 0;
617		bufspacewakeup();
618	}
619}
620
621/*
622 *	bremfree:
623 *
624 *	Remove the buffer from the appropriate free list.
625 */
626void
627bremfree(struct buf * bp)
628{
629	mtx_lock(&bqlock);
630	bremfreel(bp);
631	mtx_unlock(&bqlock);
632}
633
634void
635bremfreel(struct buf * bp)
636{
637	int s = splbio();
638	int old_qindex = bp->b_qindex;
639
640	GIANT_REQUIRED;
641
642	if (bp->b_qindex != QUEUE_NONE) {
643		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
644		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
645		bp->b_qindex = QUEUE_NONE;
646	} else {
647		if (BUF_REFCNT(bp) <= 1)
648			panic("bremfree: removing a buffer not on a queue");
649	}
650
651	/*
652	 * Fixup numfreebuffers count.  If the buffer is invalid or not
653	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
654	 * the buffer was free and we must decrement numfreebuffers.
655	 */
656	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
657		switch(old_qindex) {
658		case QUEUE_DIRTY:
659		case QUEUE_CLEAN:
660		case QUEUE_EMPTY:
661		case QUEUE_EMPTYKVA:
662			atomic_subtract_int(&numfreebuffers, 1);
663			break;
664		default:
665			break;
666		}
667	}
668	splx(s);
669}
670
671
672/*
673 * Get a buffer with the specified data.  Look in the cache first.  We
674 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
675 * is set, the buffer is valid and we do not have to do anything ( see
676 * getblk() ).  This is really just a special case of breadn().
677 */
678int
679bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
680    struct buf ** bpp)
681{
682
683	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
684}
685
686/*
687 * Operates like bread, but also starts asynchronous I/O on
688 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
689 * to initiating I/O . If B_CACHE is set, the buffer is valid
690 * and we do not have to do anything.
691 */
692int
693breadn(struct vnode * vp, daddr_t blkno, int size,
694    daddr_t * rablkno, int *rabsize,
695    int cnt, struct ucred * cred, struct buf ** bpp)
696{
697	struct buf *bp, *rabp;
698	int i;
699	int rv = 0, readwait = 0;
700
701	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
702
703	/* if not found in cache, do some I/O */
704	if ((bp->b_flags & B_CACHE) == 0) {
705		if (curthread != PCPU_GET(idlethread))
706			curthread->td_proc->p_stats->p_ru.ru_inblock++;
707		bp->b_iocmd = BIO_READ;
708		bp->b_flags &= ~B_INVAL;
709		bp->b_ioflags &= ~BIO_ERROR;
710		if (bp->b_rcred == NOCRED && cred != NOCRED)
711			bp->b_rcred = crhold(cred);
712		vfs_busy_pages(bp, 0);
713		if (vp->v_type == VCHR)
714			VOP_SPECSTRATEGY(vp, bp);
715		else
716			VOP_STRATEGY(vp, bp);
717		++readwait;
718	}
719
720	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
721		if (inmem(vp, *rablkno))
722			continue;
723		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
724
725		if ((rabp->b_flags & B_CACHE) == 0) {
726			if (curthread != PCPU_GET(idlethread))
727				curthread->td_proc->p_stats->p_ru.ru_inblock++;
728			rabp->b_flags |= B_ASYNC;
729			rabp->b_flags &= ~B_INVAL;
730			rabp->b_ioflags &= ~BIO_ERROR;
731			rabp->b_iocmd = BIO_READ;
732			if (rabp->b_rcred == NOCRED && cred != NOCRED)
733				rabp->b_rcred = crhold(cred);
734			vfs_busy_pages(rabp, 0);
735			BUF_KERNPROC(rabp);
736			if (vp->v_type == VCHR)
737				VOP_SPECSTRATEGY(vp, rabp);
738			else
739				VOP_STRATEGY(vp, rabp);
740		} else {
741			brelse(rabp);
742		}
743	}
744
745	if (readwait) {
746		rv = bufwait(bp);
747	}
748	return (rv);
749}
750
751/*
752 * Write, release buffer on completion.  (Done by iodone
753 * if async).  Do not bother writing anything if the buffer
754 * is invalid.
755 *
756 * Note that we set B_CACHE here, indicating that buffer is
757 * fully valid and thus cacheable.  This is true even of NFS
758 * now so we set it generally.  This could be set either here
759 * or in biodone() since the I/O is synchronous.  We put it
760 * here.
761 */
762
763int
764bwrite(struct buf * bp)
765{
766	int oldflags, s;
767	struct buf *newbp;
768
769	if (bp->b_flags & B_INVAL) {
770		brelse(bp);
771		return (0);
772	}
773
774	oldflags = bp->b_flags;
775
776	if (BUF_REFCNT(bp) == 0)
777		panic("bwrite: buffer is not busy???");
778	s = splbio();
779	/*
780	 * If a background write is already in progress, delay
781	 * writing this block if it is asynchronous. Otherwise
782	 * wait for the background write to complete.
783	 */
784	if (bp->b_xflags & BX_BKGRDINPROG) {
785		if (bp->b_flags & B_ASYNC) {
786			splx(s);
787			bdwrite(bp);
788			return (0);
789		}
790		bp->b_xflags |= BX_BKGRDWAIT;
791		tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0);
792		if (bp->b_xflags & BX_BKGRDINPROG)
793			panic("bwrite: still writing");
794	}
795
796	/* Mark the buffer clean */
797	bundirty(bp);
798
799	/*
800	 * If this buffer is marked for background writing and we
801	 * do not have to wait for it, make a copy and write the
802	 * copy so as to leave this buffer ready for further use.
803	 *
804	 * This optimization eats a lot of memory.  If we have a page
805	 * or buffer shortfall we can't do it.
806	 */
807	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
808	    (bp->b_flags & B_ASYNC) &&
809	    !vm_page_count_severe() &&
810	    !buf_dirty_count_severe()) {
811		if (bp->b_iodone != NULL) {
812			printf("bp->b_iodone = %p\n", bp->b_iodone);
813			panic("bwrite: need chained iodone");
814		}
815
816		/* get a new block */
817		newbp = geteblk(bp->b_bufsize);
818
819		/*
820		 * set it to be identical to the old block.  We have to
821		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
822		 * to avoid confusing the splay tree and gbincore().
823		 */
824		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
825		newbp->b_lblkno = bp->b_lblkno;
826		newbp->b_xflags |= BX_BKGRDMARKER;
827		/* XXX The BX_ flags need to be protected as well */
828		VI_LOCK(bp->b_vp);
829		bgetvp(bp->b_vp, newbp);
830		VI_UNLOCK(bp->b_vp);
831		newbp->b_blkno = bp->b_blkno;
832		newbp->b_offset = bp->b_offset;
833		newbp->b_iodone = vfs_backgroundwritedone;
834		newbp->b_flags |= B_ASYNC;
835		newbp->b_flags &= ~B_INVAL;
836
837		/* move over the dependencies */
838		if (LIST_FIRST(&bp->b_dep) != NULL)
839			buf_movedeps(bp, newbp);
840
841		/*
842		 * Initiate write on the copy, release the original to
843		 * the B_LOCKED queue so that it cannot go away until
844		 * the background write completes. If not locked it could go
845		 * away and then be reconstituted while it was being written.
846		 * If the reconstituted buffer were written, we could end up
847		 * with two background copies being written at the same time.
848		 */
849		bp->b_xflags |= BX_BKGRDINPROG;
850		bp->b_flags |= B_LOCKED;
851		bqrelse(bp);
852		bp = newbp;
853	}
854
855	bp->b_flags &= ~B_DONE;
856	bp->b_ioflags &= ~BIO_ERROR;
857	bp->b_flags |= B_WRITEINPROG | B_CACHE;
858	bp->b_iocmd = BIO_WRITE;
859
860	VI_LOCK(bp->b_vp);
861	bp->b_vp->v_numoutput++;
862	VI_UNLOCK(bp->b_vp);
863	vfs_busy_pages(bp, 1);
864
865	/*
866	 * Normal bwrites pipeline writes
867	 */
868	bp->b_runningbufspace = bp->b_bufsize;
869	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
870
871	if (curthread != PCPU_GET(idlethread))
872		curthread->td_proc->p_stats->p_ru.ru_oublock++;
873	splx(s);
874	if (oldflags & B_ASYNC)
875		BUF_KERNPROC(bp);
876	if (bp->b_vp->v_type == VCHR)
877		VOP_SPECSTRATEGY(bp->b_vp, bp);
878	else
879		VOP_STRATEGY(bp->b_vp, bp);
880
881	if ((oldflags & B_ASYNC) == 0) {
882		int rtval = bufwait(bp);
883		brelse(bp);
884		return (rtval);
885	} else if ((oldflags & B_NOWDRAIN) == 0) {
886		/*
887		 * don't allow the async write to saturate the I/O
888		 * system.  Deadlocks can occur only if a device strategy
889		 * routine (like in MD) turns around and issues another
890		 * high-level write, in which case B_NOWDRAIN is expected
891		 * to be set.  Otherwise we will not deadlock here because
892		 * we are blocking waiting for I/O that is already in-progress
893		 * to complete.
894		 */
895		waitrunningbufspace();
896	}
897
898	return (0);
899}
900
901/*
902 * Complete a background write started from bwrite.
903 */
904static void
905vfs_backgroundwritedone(bp)
906	struct buf *bp;
907{
908	struct buf *origbp;
909
910	/*
911	 * Find the original buffer that we are writing.
912	 */
913	VI_LOCK(bp->b_vp);
914	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
915		panic("backgroundwritedone: lost buffer");
916	VI_UNLOCK(bp->b_vp);
917	/*
918	 * Process dependencies then return any unfinished ones.
919	 */
920	if (LIST_FIRST(&bp->b_dep) != NULL)
921		buf_complete(bp);
922	if (LIST_FIRST(&bp->b_dep) != NULL)
923		buf_movedeps(bp, origbp);
924
925	/* XXX Find out if origbp can disappear or get inconsistent */
926	/*
927	 * Clear the BX_BKGRDINPROG flag in the original buffer
928	 * and awaken it if it is waiting for the write to complete.
929	 * If BX_BKGRDINPROG is not set in the original buffer it must
930	 * have been released and re-instantiated - which is not legal.
931	 */
932	KASSERT((origbp->b_xflags & BX_BKGRDINPROG),
933	    ("backgroundwritedone: lost buffer2"));
934	origbp->b_xflags &= ~BX_BKGRDINPROG;
935	if (origbp->b_xflags & BX_BKGRDWAIT) {
936		origbp->b_xflags &= ~BX_BKGRDWAIT;
937		wakeup(&origbp->b_xflags);
938	}
939	/*
940	 * Clear the B_LOCKED flag and remove it from the locked
941	 * queue if it currently resides there.
942	 */
943	origbp->b_flags &= ~B_LOCKED;
944	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
945		bremfree(origbp);
946		bqrelse(origbp);
947	}
948	/*
949	 * This buffer is marked B_NOCACHE, so when it is released
950	 * by biodone, it will be tossed. We mark it with BIO_READ
951	 * to avoid biodone doing a second vwakeup.
952	 */
953	bp->b_flags |= B_NOCACHE;
954	bp->b_iocmd = BIO_READ;
955	bp->b_flags &= ~(B_CACHE | B_DONE);
956	bp->b_iodone = 0;
957	bufdone(bp);
958}
959
960/*
961 * Delayed write. (Buffer is marked dirty).  Do not bother writing
962 * anything if the buffer is marked invalid.
963 *
964 * Note that since the buffer must be completely valid, we can safely
965 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
966 * biodone() in order to prevent getblk from writing the buffer
967 * out synchronously.
968 */
969void
970bdwrite(struct buf * bp)
971{
972	struct thread *td = curthread;
973	struct vnode *vp;
974	struct buf *nbp;
975
976	GIANT_REQUIRED;
977
978	if (BUF_REFCNT(bp) == 0)
979		panic("bdwrite: buffer is not busy");
980
981	if (bp->b_flags & B_INVAL) {
982		brelse(bp);
983		return;
984	}
985
986	/*
987	 * If we have too many dirty buffers, don't create any more.
988	 * If we are wildly over our limit, then force a complete
989	 * cleanup. Otherwise, just keep the situation from getting
990	 * out of control. Note that we have to avoid a recursive
991	 * disaster and not try to clean up after our own cleanup!
992	 */
993	vp = bp->b_vp;
994	VI_LOCK(vp);
995	if (td->td_proc->p_flag & P_COWINPROGRESS) {
996		recursiveflushes++;
997	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) {
998		VI_UNLOCK(vp);
999		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
1000		VI_LOCK(vp);
1001		altbufferflushes++;
1002	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) {
1003		/*
1004		 * Try to find a buffer to flush.
1005		 */
1006		TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) {
1007			if ((nbp->b_xflags & BX_BKGRDINPROG) ||
1008			    buf_countdeps(nbp, 0) ||
1009			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1010				continue;
1011			if (bp == nbp)
1012				panic("bdwrite: found ourselves");
1013			VI_UNLOCK(vp);
1014			if (nbp->b_flags & B_CLUSTEROK) {
1015				vfs_bio_awrite(nbp);
1016			} else {
1017				bremfree(nbp);
1018				bawrite(nbp);
1019			}
1020			VI_LOCK(vp);
1021			dirtybufferflushes++;
1022			break;
1023		}
1024	}
1025	VI_UNLOCK(vp);
1026
1027	bdirty(bp);
1028	/*
1029	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1030	 * true even of NFS now.
1031	 */
1032	bp->b_flags |= B_CACHE;
1033
1034	/*
1035	 * This bmap keeps the system from needing to do the bmap later,
1036	 * perhaps when the system is attempting to do a sync.  Since it
1037	 * is likely that the indirect block -- or whatever other datastructure
1038	 * that the filesystem needs is still in memory now, it is a good
1039	 * thing to do this.  Note also, that if the pageout daemon is
1040	 * requesting a sync -- there might not be enough memory to do
1041	 * the bmap then...  So, this is important to do.
1042	 */
1043	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1044		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1045	}
1046
1047	/*
1048	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1049	 */
1050	vfs_setdirty(bp);
1051
1052	/*
1053	 * We need to do this here to satisfy the vnode_pager and the
1054	 * pageout daemon, so that it thinks that the pages have been
1055	 * "cleaned".  Note that since the pages are in a delayed write
1056	 * buffer -- the VFS layer "will" see that the pages get written
1057	 * out on the next sync, or perhaps the cluster will be completed.
1058	 */
1059	vfs_clean_pages(bp);
1060	bqrelse(bp);
1061
1062	/*
1063	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1064	 * buffers (midpoint between our recovery point and our stall
1065	 * point).
1066	 */
1067	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1068
1069	/*
1070	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1071	 * due to the softdep code.
1072	 */
1073}
1074
1075/*
1076 *	bdirty:
1077 *
1078 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1079 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1080 *	itself to properly update it in the dirty/clean lists.  We mark it
1081 *	B_DONE to ensure that any asynchronization of the buffer properly
1082 *	clears B_DONE ( else a panic will occur later ).
1083 *
1084 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1085 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1086 *	should only be called if the buffer is known-good.
1087 *
1088 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1089 *	count.
1090 *
1091 *	Must be called at splbio().
1092 *	The buffer must be on QUEUE_NONE.
1093 */
1094void
1095bdirty(bp)
1096	struct buf *bp;
1097{
1098	KASSERT(bp->b_qindex == QUEUE_NONE,
1099	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1100	bp->b_flags &= ~(B_RELBUF);
1101	bp->b_iocmd = BIO_WRITE;
1102
1103	if ((bp->b_flags & B_DELWRI) == 0) {
1104		bp->b_flags |= B_DONE | B_DELWRI;
1105		reassignbuf(bp, bp->b_vp);
1106		atomic_add_int(&numdirtybuffers, 1);
1107		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1108	}
1109}
1110
1111/*
1112 *	bundirty:
1113 *
1114 *	Clear B_DELWRI for buffer.
1115 *
1116 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1117 *	count.
1118 *
1119 *	Must be called at splbio().
1120 *	The buffer must be on QUEUE_NONE.
1121 */
1122
1123void
1124bundirty(bp)
1125	struct buf *bp;
1126{
1127	KASSERT(bp->b_qindex == QUEUE_NONE,
1128	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1129
1130	if (bp->b_flags & B_DELWRI) {
1131		bp->b_flags &= ~B_DELWRI;
1132		reassignbuf(bp, bp->b_vp);
1133		atomic_subtract_int(&numdirtybuffers, 1);
1134		numdirtywakeup(lodirtybuffers);
1135	}
1136	/*
1137	 * Since it is now being written, we can clear its deferred write flag.
1138	 */
1139	bp->b_flags &= ~B_DEFERRED;
1140}
1141
1142/*
1143 *	bawrite:
1144 *
1145 *	Asynchronous write.  Start output on a buffer, but do not wait for
1146 *	it to complete.  The buffer is released when the output completes.
1147 *
1148 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1149 *	B_INVAL buffers.  Not us.
1150 */
1151void
1152bawrite(struct buf * bp)
1153{
1154	bp->b_flags |= B_ASYNC;
1155	(void) BUF_WRITE(bp);
1156}
1157
1158/*
1159 *	bwillwrite:
1160 *
1161 *	Called prior to the locking of any vnodes when we are expecting to
1162 *	write.  We do not want to starve the buffer cache with too many
1163 *	dirty buffers so we block here.  By blocking prior to the locking
1164 *	of any vnodes we attempt to avoid the situation where a locked vnode
1165 *	prevents the various system daemons from flushing related buffers.
1166 */
1167
1168void
1169bwillwrite(void)
1170{
1171	if (numdirtybuffers >= hidirtybuffers) {
1172		int s;
1173
1174		mtx_lock(&Giant);
1175		s = splbio();
1176		mtx_lock(&nblock);
1177		while (numdirtybuffers >= hidirtybuffers) {
1178			bd_wakeup(1);
1179			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1180			msleep(&needsbuffer, &nblock,
1181			    (PRIBIO + 4), "flswai", 0);
1182		}
1183		splx(s);
1184		mtx_unlock(&nblock);
1185		mtx_unlock(&Giant);
1186	}
1187}
1188
1189/*
1190 * Return true if we have too many dirty buffers.
1191 */
1192int
1193buf_dirty_count_severe(void)
1194{
1195	return(numdirtybuffers >= hidirtybuffers);
1196}
1197
1198/*
1199 *	brelse:
1200 *
1201 *	Release a busy buffer and, if requested, free its resources.  The
1202 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1203 *	to be accessed later as a cache entity or reused for other purposes.
1204 */
1205void
1206brelse(struct buf * bp)
1207{
1208	int s;
1209
1210	GIANT_REQUIRED;
1211
1212	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1213	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1214
1215	s = splbio();
1216
1217	if (bp->b_flags & B_LOCKED)
1218		bp->b_ioflags &= ~BIO_ERROR;
1219
1220	if (bp->b_iocmd == BIO_WRITE &&
1221	    (bp->b_ioflags & BIO_ERROR) &&
1222	    !(bp->b_flags & B_INVAL)) {
1223		/*
1224		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1225		 * pages from being scrapped.  If B_INVAL is set then
1226		 * this case is not run and the next case is run to
1227		 * destroy the buffer.  B_INVAL can occur if the buffer
1228		 * is outside the range supported by the underlying device.
1229		 */
1230		bp->b_ioflags &= ~BIO_ERROR;
1231		bdirty(bp);
1232	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1233	    (bp->b_ioflags & BIO_ERROR) ||
1234	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1235		/*
1236		 * Either a failed I/O or we were asked to free or not
1237		 * cache the buffer.
1238		 */
1239		bp->b_flags |= B_INVAL;
1240		if (LIST_FIRST(&bp->b_dep) != NULL)
1241			buf_deallocate(bp);
1242		if (bp->b_flags & B_DELWRI) {
1243			atomic_subtract_int(&numdirtybuffers, 1);
1244			numdirtywakeup(lodirtybuffers);
1245		}
1246		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1247		if ((bp->b_flags & B_VMIO) == 0) {
1248			if (bp->b_bufsize)
1249				allocbuf(bp, 0);
1250			if (bp->b_vp)
1251				brelvp(bp);
1252		}
1253	}
1254
1255	/*
1256	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1257	 * is called with B_DELWRI set, the underlying pages may wind up
1258	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1259	 * because pages associated with a B_DELWRI bp are marked clean.
1260	 *
1261	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1262	 * if B_DELWRI is set.
1263	 *
1264	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1265	 * on pages to return pages to the VM page queues.
1266	 */
1267	if (bp->b_flags & B_DELWRI)
1268		bp->b_flags &= ~B_RELBUF;
1269	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1270		bp->b_flags |= B_RELBUF;
1271
1272	/*
1273	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1274	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1275	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1276	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1277	 *
1278	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1279	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1280	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1281	 *
1282	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1283	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1284	 * the commit state and we cannot afford to lose the buffer. If the
1285	 * buffer has a background write in progress, we need to keep it
1286	 * around to prevent it from being reconstituted and starting a second
1287	 * background write.
1288	 */
1289	if ((bp->b_flags & B_VMIO)
1290	    && !(bp->b_vp->v_mount != NULL &&
1291		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1292		 !vn_isdisk(bp->b_vp, NULL) &&
1293		 (bp->b_flags & B_DELWRI))
1294	    ) {
1295
1296		int i, j, resid;
1297		vm_page_t m;
1298		off_t foff;
1299		vm_pindex_t poff;
1300		vm_object_t obj;
1301		struct vnode *vp;
1302
1303		vp = bp->b_vp;
1304		obj = bp->b_object;
1305
1306		/*
1307		 * Get the base offset and length of the buffer.  Note that
1308		 * in the VMIO case if the buffer block size is not
1309		 * page-aligned then b_data pointer may not be page-aligned.
1310		 * But our b_pages[] array *IS* page aligned.
1311		 *
1312		 * block sizes less then DEV_BSIZE (usually 512) are not
1313		 * supported due to the page granularity bits (m->valid,
1314		 * m->dirty, etc...).
1315		 *
1316		 * See man buf(9) for more information
1317		 */
1318		resid = bp->b_bufsize;
1319		foff = bp->b_offset;
1320		if (obj != NULL)
1321			VM_OBJECT_LOCK(obj);
1322		for (i = 0; i < bp->b_npages; i++) {
1323			int had_bogus = 0;
1324
1325			m = bp->b_pages[i];
1326			vm_page_lock_queues();
1327			vm_page_flag_clear(m, PG_ZERO);
1328			vm_page_unlock_queues();
1329
1330			/*
1331			 * If we hit a bogus page, fixup *all* the bogus pages
1332			 * now.
1333			 */
1334			if (m == bogus_page) {
1335				poff = OFF_TO_IDX(bp->b_offset);
1336				had_bogus = 1;
1337
1338				for (j = i; j < bp->b_npages; j++) {
1339					vm_page_t mtmp;
1340					mtmp = bp->b_pages[j];
1341					if (mtmp == bogus_page) {
1342						mtmp = vm_page_lookup(obj, poff + j);
1343						if (!mtmp) {
1344							panic("brelse: page missing\n");
1345						}
1346						bp->b_pages[j] = mtmp;
1347					}
1348				}
1349
1350				if ((bp->b_flags & B_INVAL) == 0) {
1351					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1352				}
1353				m = bp->b_pages[i];
1354			}
1355			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1356				int poffset = foff & PAGE_MASK;
1357				int presid = resid > (PAGE_SIZE - poffset) ?
1358					(PAGE_SIZE - poffset) : resid;
1359
1360				KASSERT(presid >= 0, ("brelse: extra page"));
1361				vm_page_set_invalid(m, poffset, presid);
1362				if (had_bogus)
1363					printf("avoided corruption bug in bogus_page/brelse code\n");
1364			}
1365			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1366			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1367		}
1368		if (obj != NULL)
1369			VM_OBJECT_UNLOCK(obj);
1370		if (bp->b_flags & (B_INVAL | B_RELBUF))
1371			vfs_vmio_release(bp);
1372
1373	} else if (bp->b_flags & B_VMIO) {
1374
1375		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1376			vfs_vmio_release(bp);
1377		}
1378
1379	}
1380
1381	if (bp->b_qindex != QUEUE_NONE)
1382		panic("brelse: free buffer onto another queue???");
1383	if (BUF_REFCNT(bp) > 1) {
1384		/* do not release to free list */
1385		BUF_UNLOCK(bp);
1386		splx(s);
1387		return;
1388	}
1389
1390	/* enqueue */
1391	mtx_lock(&bqlock);
1392
1393	/* buffers with no memory */
1394	if (bp->b_bufsize == 0) {
1395		bp->b_flags |= B_INVAL;
1396		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1397		if (bp->b_xflags & BX_BKGRDINPROG)
1398			panic("losing buffer 1");
1399		if (bp->b_kvasize) {
1400			bp->b_qindex = QUEUE_EMPTYKVA;
1401		} else {
1402			bp->b_qindex = QUEUE_EMPTY;
1403		}
1404		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1405		bp->b_dev = NODEV;
1406	/* buffers with junk contents */
1407	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1408	    (bp->b_ioflags & BIO_ERROR)) {
1409		bp->b_flags |= B_INVAL;
1410		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1411		if (bp->b_xflags & BX_BKGRDINPROG)
1412			panic("losing buffer 2");
1413		bp->b_qindex = QUEUE_CLEAN;
1414		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1415		bp->b_dev = NODEV;
1416
1417	/* buffers that are locked */
1418	} else if (bp->b_flags & B_LOCKED) {
1419		bp->b_qindex = QUEUE_LOCKED;
1420		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1421
1422	/* remaining buffers */
1423	} else {
1424		if (bp->b_flags & B_DELWRI)
1425			bp->b_qindex = QUEUE_DIRTY;
1426		else
1427			bp->b_qindex = QUEUE_CLEAN;
1428		if (bp->b_flags & B_AGE)
1429			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1430		else
1431			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1432	}
1433	mtx_unlock(&bqlock);
1434
1435	/*
1436	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1437	 * placed the buffer on the correct queue.  We must also disassociate
1438	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1439	 * find it.
1440	 */
1441	if (bp->b_flags & B_INVAL) {
1442		if (bp->b_flags & B_DELWRI)
1443			bundirty(bp);
1444		if (bp->b_vp)
1445			brelvp(bp);
1446	}
1447
1448	/*
1449	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1450	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1451	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1452	 * if B_INVAL is set ).
1453	 */
1454
1455	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1456		bufcountwakeup();
1457
1458	/*
1459	 * Something we can maybe free or reuse
1460	 */
1461	if (bp->b_bufsize || bp->b_kvasize)
1462		bufspacewakeup();
1463
1464	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1465			B_DIRECT | B_NOWDRAIN);
1466	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1467		panic("brelse: not dirty");
1468	/* unlock */
1469	BUF_UNLOCK(bp);
1470	splx(s);
1471}
1472
1473/*
1474 * Release a buffer back to the appropriate queue but do not try to free
1475 * it.  The buffer is expected to be used again soon.
1476 *
1477 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1478 * biodone() to requeue an async I/O on completion.  It is also used when
1479 * known good buffers need to be requeued but we think we may need the data
1480 * again soon.
1481 *
1482 * XXX we should be able to leave the B_RELBUF hint set on completion.
1483 */
1484void
1485bqrelse(struct buf * bp)
1486{
1487	int s;
1488
1489	s = splbio();
1490
1491	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1492
1493	if (bp->b_qindex != QUEUE_NONE)
1494		panic("bqrelse: free buffer onto another queue???");
1495	if (BUF_REFCNT(bp) > 1) {
1496		/* do not release to free list */
1497		BUF_UNLOCK(bp);
1498		splx(s);
1499		return;
1500	}
1501	mtx_lock(&bqlock);
1502	if (bp->b_flags & B_LOCKED) {
1503		bp->b_ioflags &= ~BIO_ERROR;
1504		bp->b_qindex = QUEUE_LOCKED;
1505		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1506		/* buffers with stale but valid contents */
1507	} else if (bp->b_flags & B_DELWRI) {
1508		bp->b_qindex = QUEUE_DIRTY;
1509		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1510	} else if (vm_page_count_severe()) {
1511		/*
1512		 * We are too low on memory, we have to try to free the
1513		 * buffer (most importantly: the wired pages making up its
1514		 * backing store) *now*.
1515		 */
1516		mtx_unlock(&bqlock);
1517		splx(s);
1518		brelse(bp);
1519		return;
1520	} else {
1521		bp->b_qindex = QUEUE_CLEAN;
1522		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1523	}
1524	mtx_unlock(&bqlock);
1525
1526	if ((bp->b_flags & B_LOCKED) == 0 &&
1527	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1528		bufcountwakeup();
1529	}
1530
1531	/*
1532	 * Something we can maybe free or reuse.
1533	 */
1534	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1535		bufspacewakeup();
1536
1537	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1538	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1539		panic("bqrelse: not dirty");
1540	/* unlock */
1541	BUF_UNLOCK(bp);
1542	splx(s);
1543}
1544
1545/* Give pages used by the bp back to the VM system (where possible) */
1546static void
1547vfs_vmio_release(bp)
1548	struct buf *bp;
1549{
1550	int i;
1551	vm_page_t m;
1552
1553	GIANT_REQUIRED;
1554	vm_page_lock_queues();
1555	for (i = 0; i < bp->b_npages; i++) {
1556		m = bp->b_pages[i];
1557		bp->b_pages[i] = NULL;
1558		/*
1559		 * In order to keep page LRU ordering consistent, put
1560		 * everything on the inactive queue.
1561		 */
1562		vm_page_unwire(m, 0);
1563		/*
1564		 * We don't mess with busy pages, it is
1565		 * the responsibility of the process that
1566		 * busied the pages to deal with them.
1567		 */
1568		if ((m->flags & PG_BUSY) || (m->busy != 0))
1569			continue;
1570
1571		if (m->wire_count == 0) {
1572			vm_page_flag_clear(m, PG_ZERO);
1573			/*
1574			 * Might as well free the page if we can and it has
1575			 * no valid data.  We also free the page if the
1576			 * buffer was used for direct I/O
1577			 */
1578			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1579			    m->hold_count == 0) {
1580				vm_page_busy(m);
1581				pmap_remove_all(m);
1582				vm_page_free(m);
1583			} else if (bp->b_flags & B_DIRECT) {
1584				vm_page_try_to_free(m);
1585			} else if (vm_page_count_severe()) {
1586				vm_page_try_to_cache(m);
1587			}
1588		}
1589	}
1590	vm_page_unlock_queues();
1591	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1592
1593	if (bp->b_bufsize) {
1594		bufspacewakeup();
1595		bp->b_bufsize = 0;
1596	}
1597	bp->b_npages = 0;
1598	bp->b_flags &= ~B_VMIO;
1599	if (bp->b_vp)
1600		brelvp(bp);
1601}
1602
1603/*
1604 * Check to see if a block at a particular lbn is available for a clustered
1605 * write.
1606 */
1607static int
1608vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1609{
1610	struct buf *bpa;
1611	int match;
1612
1613	match = 0;
1614
1615	/* If the buf isn't in core skip it */
1616	if ((bpa = gbincore(vp, lblkno)) == NULL)
1617		return (0);
1618
1619	/* If the buf is busy we don't want to wait for it */
1620	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1621		return (0);
1622
1623	/* Only cluster with valid clusterable delayed write buffers */
1624	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1625	    (B_DELWRI | B_CLUSTEROK))
1626		goto done;
1627
1628	if (bpa->b_bufsize != size)
1629		goto done;
1630
1631	/*
1632	 * Check to see if it is in the expected place on disk and that the
1633	 * block has been mapped.
1634	 */
1635	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1636		match = 1;
1637done:
1638	BUF_UNLOCK(bpa);
1639	return (match);
1640}
1641
1642/*
1643 *	vfs_bio_awrite:
1644 *
1645 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1646 *	This is much better then the old way of writing only one buffer at
1647 *	a time.  Note that we may not be presented with the buffers in the
1648 *	correct order, so we search for the cluster in both directions.
1649 */
1650int
1651vfs_bio_awrite(struct buf * bp)
1652{
1653	int i;
1654	int j;
1655	daddr_t lblkno = bp->b_lblkno;
1656	struct vnode *vp = bp->b_vp;
1657	int s;
1658	int ncl;
1659	int nwritten;
1660	int size;
1661	int maxcl;
1662
1663	s = splbio();
1664	/*
1665	 * right now we support clustered writing only to regular files.  If
1666	 * we find a clusterable block we could be in the middle of a cluster
1667	 * rather then at the beginning.
1668	 */
1669	if ((vp->v_type == VREG) &&
1670	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1671	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1672
1673		size = vp->v_mount->mnt_stat.f_iosize;
1674		maxcl = MAXPHYS / size;
1675
1676		VI_LOCK(vp);
1677		for (i = 1; i < maxcl; i++)
1678			if (vfs_bio_clcheck(vp, size, lblkno + i,
1679			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1680				break;
1681
1682		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1683			if (vfs_bio_clcheck(vp, size, lblkno - j,
1684			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1685				break;
1686
1687		VI_UNLOCK(vp);
1688		--j;
1689		ncl = i + j;
1690		/*
1691		 * this is a possible cluster write
1692		 */
1693		if (ncl != 1) {
1694			BUF_UNLOCK(bp);
1695			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1696			splx(s);
1697			return nwritten;
1698		}
1699	}
1700
1701	bremfree(bp);
1702	bp->b_flags |= B_ASYNC;
1703
1704	splx(s);
1705	/*
1706	 * default (old) behavior, writing out only one block
1707	 *
1708	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1709	 */
1710	nwritten = bp->b_bufsize;
1711	(void) BUF_WRITE(bp);
1712
1713	return nwritten;
1714}
1715
1716/*
1717 *	getnewbuf:
1718 *
1719 *	Find and initialize a new buffer header, freeing up existing buffers
1720 *	in the bufqueues as necessary.  The new buffer is returned locked.
1721 *
1722 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1723 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1724 *
1725 *	We block if:
1726 *		We have insufficient buffer headers
1727 *		We have insufficient buffer space
1728 *		buffer_map is too fragmented ( space reservation fails )
1729 *		If we have to flush dirty buffers ( but we try to avoid this )
1730 *
1731 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1732 *	Instead we ask the buf daemon to do it for us.  We attempt to
1733 *	avoid piecemeal wakeups of the pageout daemon.
1734 */
1735
1736static struct buf *
1737getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1738{
1739	struct buf *bp;
1740	struct buf *nbp;
1741	int defrag = 0;
1742	int nqindex;
1743	static int flushingbufs;
1744
1745	GIANT_REQUIRED;
1746
1747	/*
1748	 * We can't afford to block since we might be holding a vnode lock,
1749	 * which may prevent system daemons from running.  We deal with
1750	 * low-memory situations by proactively returning memory and running
1751	 * async I/O rather then sync I/O.
1752	 */
1753
1754	atomic_add_int(&getnewbufcalls, 1);
1755	atomic_subtract_int(&getnewbufrestarts, 1);
1756restart:
1757	atomic_add_int(&getnewbufrestarts, 1);
1758
1759	/*
1760	 * Setup for scan.  If we do not have enough free buffers,
1761	 * we setup a degenerate case that immediately fails.  Note
1762	 * that if we are specially marked process, we are allowed to
1763	 * dip into our reserves.
1764	 *
1765	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1766	 *
1767	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1768	 * However, there are a number of cases (defragging, reusing, ...)
1769	 * where we cannot backup.
1770	 */
1771	mtx_lock(&bqlock);
1772	nqindex = QUEUE_EMPTYKVA;
1773	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1774
1775	if (nbp == NULL) {
1776		/*
1777		 * If no EMPTYKVA buffers and we are either
1778		 * defragging or reusing, locate a CLEAN buffer
1779		 * to free or reuse.  If bufspace useage is low
1780		 * skip this step so we can allocate a new buffer.
1781		 */
1782		if (defrag || bufspace >= lobufspace) {
1783			nqindex = QUEUE_CLEAN;
1784			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1785		}
1786
1787		/*
1788		 * If we could not find or were not allowed to reuse a
1789		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1790		 * buffer.  We can only use an EMPTY buffer if allocating
1791		 * its KVA would not otherwise run us out of buffer space.
1792		 */
1793		if (nbp == NULL && defrag == 0 &&
1794		    bufspace + maxsize < hibufspace) {
1795			nqindex = QUEUE_EMPTY;
1796			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1797		}
1798	}
1799
1800	/*
1801	 * Run scan, possibly freeing data and/or kva mappings on the fly
1802	 * depending.
1803	 */
1804
1805	while ((bp = nbp) != NULL) {
1806		int qindex = nqindex;
1807
1808		/*
1809		 * Calculate next bp ( we can only use it if we do not block
1810		 * or do other fancy things ).
1811		 */
1812		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1813			switch(qindex) {
1814			case QUEUE_EMPTY:
1815				nqindex = QUEUE_EMPTYKVA;
1816				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1817					break;
1818				/* FALLTHROUGH */
1819			case QUEUE_EMPTYKVA:
1820				nqindex = QUEUE_CLEAN;
1821				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1822					break;
1823				/* FALLTHROUGH */
1824			case QUEUE_CLEAN:
1825				/*
1826				 * nbp is NULL.
1827				 */
1828				break;
1829			}
1830		}
1831
1832		/*
1833		 * Sanity Checks
1834		 */
1835		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1836
1837		/*
1838		 * Note: we no longer distinguish between VMIO and non-VMIO
1839		 * buffers.
1840		 */
1841
1842		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1843
1844		/*
1845		 * If we are defragging then we need a buffer with
1846		 * b_kvasize != 0.  XXX this situation should no longer
1847		 * occur, if defrag is non-zero the buffer's b_kvasize
1848		 * should also be non-zero at this point.  XXX
1849		 */
1850		if (defrag && bp->b_kvasize == 0) {
1851			printf("Warning: defrag empty buffer %p\n", bp);
1852			continue;
1853		}
1854
1855		/*
1856		 * Start freeing the bp.  This is somewhat involved.  nbp
1857		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1858		 */
1859
1860		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1861			panic("getnewbuf: locked buf");
1862		bremfreel(bp);
1863		mtx_unlock(&bqlock);
1864
1865		if (qindex == QUEUE_CLEAN) {
1866			if (bp->b_flags & B_VMIO) {
1867				bp->b_flags &= ~B_ASYNC;
1868				vfs_vmio_release(bp);
1869			}
1870			if (bp->b_vp)
1871				brelvp(bp);
1872		}
1873
1874		/*
1875		 * NOTE:  nbp is now entirely invalid.  We can only restart
1876		 * the scan from this point on.
1877		 *
1878		 * Get the rest of the buffer freed up.  b_kva* is still
1879		 * valid after this operation.
1880		 */
1881
1882		if (bp->b_rcred != NOCRED) {
1883			crfree(bp->b_rcred);
1884			bp->b_rcred = NOCRED;
1885		}
1886		if (bp->b_wcred != NOCRED) {
1887			crfree(bp->b_wcred);
1888			bp->b_wcred = NOCRED;
1889		}
1890		if (LIST_FIRST(&bp->b_dep) != NULL)
1891			buf_deallocate(bp);
1892		if (bp->b_xflags & BX_BKGRDINPROG)
1893			panic("losing buffer 3");
1894
1895		if (bp->b_bufsize)
1896			allocbuf(bp, 0);
1897
1898		bp->b_flags = 0;
1899		bp->b_ioflags = 0;
1900		bp->b_xflags = 0;
1901		bp->b_vflags = 0;
1902		bp->b_dev = NODEV;
1903		bp->b_vp = NULL;
1904		bp->b_blkno = bp->b_lblkno = 0;
1905		bp->b_offset = NOOFFSET;
1906		bp->b_iodone = 0;
1907		bp->b_error = 0;
1908		bp->b_resid = 0;
1909		bp->b_bcount = 0;
1910		bp->b_npages = 0;
1911		bp->b_dirtyoff = bp->b_dirtyend = 0;
1912		bp->b_magic = B_MAGIC_BIO;
1913		bp->b_op = &buf_ops_bio;
1914		bp->b_object = NULL;
1915
1916		LIST_INIT(&bp->b_dep);
1917
1918		/*
1919		 * If we are defragging then free the buffer.
1920		 */
1921		if (defrag) {
1922			bp->b_flags |= B_INVAL;
1923			bfreekva(bp);
1924			brelse(bp);
1925			defrag = 0;
1926			goto restart;
1927		}
1928
1929		/*
1930		 * If we are overcomitted then recover the buffer and its
1931		 * KVM space.  This occurs in rare situations when multiple
1932		 * processes are blocked in getnewbuf() or allocbuf().
1933		 */
1934		if (bufspace >= hibufspace)
1935			flushingbufs = 1;
1936		if (flushingbufs && bp->b_kvasize != 0) {
1937			bp->b_flags |= B_INVAL;
1938			bfreekva(bp);
1939			brelse(bp);
1940			goto restart;
1941		}
1942		if (bufspace < lobufspace)
1943			flushingbufs = 0;
1944		break;
1945	}
1946
1947	/*
1948	 * If we exhausted our list, sleep as appropriate.  We may have to
1949	 * wakeup various daemons and write out some dirty buffers.
1950	 *
1951	 * Generally we are sleeping due to insufficient buffer space.
1952	 */
1953
1954	if (bp == NULL) {
1955		int flags;
1956		char *waitmsg;
1957
1958		mtx_unlock(&bqlock);
1959		if (defrag) {
1960			flags = VFS_BIO_NEED_BUFSPACE;
1961			waitmsg = "nbufkv";
1962		} else if (bufspace >= hibufspace) {
1963			waitmsg = "nbufbs";
1964			flags = VFS_BIO_NEED_BUFSPACE;
1965		} else {
1966			waitmsg = "newbuf";
1967			flags = VFS_BIO_NEED_ANY;
1968		}
1969
1970		bd_speedup();	/* heeeelp */
1971
1972		mtx_lock(&nblock);
1973		needsbuffer |= flags;
1974		while (needsbuffer & flags) {
1975			if (msleep(&needsbuffer, &nblock,
1976			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1977				mtx_unlock(&nblock);
1978				return (NULL);
1979			}
1980		}
1981		mtx_unlock(&nblock);
1982	} else {
1983		/*
1984		 * We finally have a valid bp.  We aren't quite out of the
1985		 * woods, we still have to reserve kva space.  In order
1986		 * to keep fragmentation sane we only allocate kva in
1987		 * BKVASIZE chunks.
1988		 */
1989		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1990
1991		if (maxsize != bp->b_kvasize) {
1992			vm_offset_t addr = 0;
1993
1994			bfreekva(bp);
1995
1996			if (vm_map_findspace(buffer_map,
1997				vm_map_min(buffer_map), maxsize, &addr)) {
1998				/*
1999				 * Uh oh.  Buffer map is to fragmented.  We
2000				 * must defragment the map.
2001				 */
2002				atomic_add_int(&bufdefragcnt, 1);
2003				defrag = 1;
2004				bp->b_flags |= B_INVAL;
2005				brelse(bp);
2006				goto restart;
2007			}
2008			if (addr) {
2009				vm_map_insert(buffer_map, NULL, 0,
2010					addr, addr + maxsize,
2011					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2012
2013				bp->b_kvabase = (caddr_t) addr;
2014				bp->b_kvasize = maxsize;
2015				atomic_add_int(&bufspace, bp->b_kvasize);
2016				atomic_add_int(&bufreusecnt, 1);
2017			}
2018		}
2019		bp->b_data = bp->b_kvabase;
2020	}
2021	return(bp);
2022}
2023
2024/*
2025 *	buf_daemon:
2026 *
2027 *	buffer flushing daemon.  Buffers are normally flushed by the
2028 *	update daemon but if it cannot keep up this process starts to
2029 *	take the load in an attempt to prevent getnewbuf() from blocking.
2030 */
2031
2032static struct proc *bufdaemonproc;
2033
2034static struct kproc_desc buf_kp = {
2035	"bufdaemon",
2036	buf_daemon,
2037	&bufdaemonproc
2038};
2039SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2040
2041static void
2042buf_daemon()
2043{
2044	int s;
2045
2046	mtx_lock(&Giant);
2047
2048	/*
2049	 * This process needs to be suspended prior to shutdown sync.
2050	 */
2051	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2052	    SHUTDOWN_PRI_LAST);
2053
2054	/*
2055	 * This process is allowed to take the buffer cache to the limit
2056	 */
2057	s = splbio();
2058	mtx_lock(&bdlock);
2059
2060	for (;;) {
2061		bd_request = 0;
2062		mtx_unlock(&bdlock);
2063
2064		kthread_suspend_check(bufdaemonproc);
2065
2066		/*
2067		 * Do the flush.  Limit the amount of in-transit I/O we
2068		 * allow to build up, otherwise we would completely saturate
2069		 * the I/O system.  Wakeup any waiting processes before we
2070		 * normally would so they can run in parallel with our drain.
2071		 */
2072		while (numdirtybuffers > lodirtybuffers) {
2073			if (flushbufqueues(0) == 0) {
2074				/*
2075				 * Could not find any buffers without rollback
2076				 * dependencies, so just write the first one
2077				 * in the hopes of eventually making progress.
2078				 */
2079				flushbufqueues(1);
2080				break;
2081			}
2082			waitrunningbufspace();
2083			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2084		}
2085
2086		/*
2087		 * Only clear bd_request if we have reached our low water
2088		 * mark.  The buf_daemon normally waits 1 second and
2089		 * then incrementally flushes any dirty buffers that have
2090		 * built up, within reason.
2091		 *
2092		 * If we were unable to hit our low water mark and couldn't
2093		 * find any flushable buffers, we sleep half a second.
2094		 * Otherwise we loop immediately.
2095		 */
2096		mtx_lock(&bdlock);
2097		if (numdirtybuffers <= lodirtybuffers) {
2098			/*
2099			 * We reached our low water mark, reset the
2100			 * request and sleep until we are needed again.
2101			 * The sleep is just so the suspend code works.
2102			 */
2103			bd_request = 0;
2104			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2105		} else {
2106			/*
2107			 * We couldn't find any flushable dirty buffers but
2108			 * still have too many dirty buffers, we
2109			 * have to sleep and try again.  (rare)
2110			 */
2111			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2112		}
2113	}
2114}
2115
2116/*
2117 *	flushbufqueues:
2118 *
2119 *	Try to flush a buffer in the dirty queue.  We must be careful to
2120 *	free up B_INVAL buffers instead of write them, which NFS is
2121 *	particularly sensitive to.
2122 */
2123int flushwithdeps = 0;
2124SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2125    0, "Number of buffers flushed with dependecies that require rollbacks");
2126static int
2127flushbufqueues(int flushdeps)
2128{
2129	struct thread *td = curthread;
2130	struct vnode *vp;
2131	struct buf *bp;
2132	int hasdeps;
2133
2134	mtx_lock(&bqlock);
2135	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2136		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2137			continue;
2138		KASSERT((bp->b_flags & B_DELWRI),
2139		    ("unexpected clean buffer %p", bp));
2140		if ((bp->b_xflags & BX_BKGRDINPROG) != 0) {
2141			BUF_UNLOCK(bp);
2142			continue;
2143		}
2144		if (bp->b_flags & B_INVAL) {
2145			bremfreel(bp);
2146			mtx_unlock(&bqlock);
2147			brelse(bp);
2148			return (1);
2149		}
2150
2151		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2152			if (flushdeps == 0) {
2153				BUF_UNLOCK(bp);
2154				continue;
2155			}
2156			hasdeps = 1;
2157		} else
2158			hasdeps = 0;
2159		/*
2160		 * We must hold the lock on a vnode before writing
2161		 * one of its buffers. Otherwise we may confuse, or
2162		 * in the case of a snapshot vnode, deadlock the
2163		 * system.
2164		 *
2165		 * The lock order here is the reverse of the normal
2166		 * of vnode followed by buf lock.  This is ok because
2167		 * the NOWAIT will prevent deadlock.
2168		 */
2169		if ((vp = bp->b_vp) == NULL ||
2170		    vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2171			mtx_unlock(&bqlock);
2172			vfs_bio_awrite(bp);
2173			if (vp != NULL)
2174				VOP_UNLOCK(vp, 0, td);
2175			flushwithdeps += hasdeps;
2176			return (1);
2177		}
2178		BUF_UNLOCK(bp);
2179	}
2180	mtx_unlock(&bqlock);
2181	return (0);
2182}
2183
2184/*
2185 * Check to see if a block is currently memory resident.
2186 */
2187struct buf *
2188incore(struct vnode * vp, daddr_t blkno)
2189{
2190	struct buf *bp;
2191
2192	int s = splbio();
2193	VI_LOCK(vp);
2194	bp = gbincore(vp, blkno);
2195	VI_UNLOCK(vp);
2196	splx(s);
2197	return (bp);
2198}
2199
2200/*
2201 * Returns true if no I/O is needed to access the
2202 * associated VM object.  This is like incore except
2203 * it also hunts around in the VM system for the data.
2204 */
2205
2206int
2207inmem(struct vnode * vp, daddr_t blkno)
2208{
2209	vm_object_t obj;
2210	vm_offset_t toff, tinc, size;
2211	vm_page_t m;
2212	vm_ooffset_t off;
2213
2214	GIANT_REQUIRED;
2215	ASSERT_VOP_LOCKED(vp, "inmem");
2216
2217	if (incore(vp, blkno))
2218		return 1;
2219	if (vp->v_mount == NULL)
2220		return 0;
2221	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2222		return 0;
2223
2224	size = PAGE_SIZE;
2225	if (size > vp->v_mount->mnt_stat.f_iosize)
2226		size = vp->v_mount->mnt_stat.f_iosize;
2227	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2228
2229	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2230		VM_OBJECT_LOCK(obj);
2231		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2232		VM_OBJECT_UNLOCK(obj);
2233		if (!m)
2234			goto notinmem;
2235		tinc = size;
2236		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2237			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2238		if (vm_page_is_valid(m,
2239		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2240			goto notinmem;
2241	}
2242	return 1;
2243
2244notinmem:
2245	return (0);
2246}
2247
2248/*
2249 *	vfs_setdirty:
2250 *
2251 *	Sets the dirty range for a buffer based on the status of the dirty
2252 *	bits in the pages comprising the buffer.
2253 *
2254 *	The range is limited to the size of the buffer.
2255 *
2256 *	This routine is primarily used by NFS, but is generalized for the
2257 *	B_VMIO case.
2258 */
2259static void
2260vfs_setdirty(struct buf *bp)
2261{
2262	int i;
2263	vm_object_t object;
2264
2265	GIANT_REQUIRED;
2266	/*
2267	 * Degenerate case - empty buffer
2268	 */
2269
2270	if (bp->b_bufsize == 0)
2271		return;
2272
2273	/*
2274	 * We qualify the scan for modified pages on whether the
2275	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2276	 * is not cleared simply by protecting pages off.
2277	 */
2278
2279	if ((bp->b_flags & B_VMIO) == 0)
2280		return;
2281
2282	object = bp->b_pages[0]->object;
2283	VM_OBJECT_LOCK(object);
2284	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2285		printf("Warning: object %p writeable but not mightbedirty\n", object);
2286	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2287		printf("Warning: object %p mightbedirty but not writeable\n", object);
2288
2289	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2290		vm_offset_t boffset;
2291		vm_offset_t eoffset;
2292
2293		vm_page_lock_queues();
2294		/*
2295		 * test the pages to see if they have been modified directly
2296		 * by users through the VM system.
2297		 */
2298		for (i = 0; i < bp->b_npages; i++) {
2299			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2300			vm_page_test_dirty(bp->b_pages[i]);
2301		}
2302
2303		/*
2304		 * Calculate the encompassing dirty range, boffset and eoffset,
2305		 * (eoffset - boffset) bytes.
2306		 */
2307
2308		for (i = 0; i < bp->b_npages; i++) {
2309			if (bp->b_pages[i]->dirty)
2310				break;
2311		}
2312		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2313
2314		for (i = bp->b_npages - 1; i >= 0; --i) {
2315			if (bp->b_pages[i]->dirty) {
2316				break;
2317			}
2318		}
2319		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2320
2321		vm_page_unlock_queues();
2322		/*
2323		 * Fit it to the buffer.
2324		 */
2325
2326		if (eoffset > bp->b_bcount)
2327			eoffset = bp->b_bcount;
2328
2329		/*
2330		 * If we have a good dirty range, merge with the existing
2331		 * dirty range.
2332		 */
2333
2334		if (boffset < eoffset) {
2335			if (bp->b_dirtyoff > boffset)
2336				bp->b_dirtyoff = boffset;
2337			if (bp->b_dirtyend < eoffset)
2338				bp->b_dirtyend = eoffset;
2339		}
2340	}
2341	VM_OBJECT_UNLOCK(object);
2342}
2343
2344/*
2345 *	getblk:
2346 *
2347 *	Get a block given a specified block and offset into a file/device.
2348 *	The buffers B_DONE bit will be cleared on return, making it almost
2349 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2350 *	return.  The caller should clear B_INVAL prior to initiating a
2351 *	READ.
2352 *
2353 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2354 *	an existing buffer.
2355 *
2356 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2357 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2358 *	and then cleared based on the backing VM.  If the previous buffer is
2359 *	non-0-sized but invalid, B_CACHE will be cleared.
2360 *
2361 *	If getblk() must create a new buffer, the new buffer is returned with
2362 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2363 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2364 *	backing VM.
2365 *
2366 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2367 *	B_CACHE bit is clear.
2368 *
2369 *	What this means, basically, is that the caller should use B_CACHE to
2370 *	determine whether the buffer is fully valid or not and should clear
2371 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2372 *	the buffer by loading its data area with something, the caller needs
2373 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2374 *	the caller should set B_CACHE ( as an optimization ), else the caller
2375 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2376 *	a write attempt or if it was a successfull read.  If the caller
2377 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2378 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2379 */
2380struct buf *
2381getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2382    int flags)
2383{
2384	struct buf *bp;
2385	int s;
2386	int error;
2387	ASSERT_VOP_LOCKED(vp, "getblk");
2388
2389	if (size > MAXBSIZE)
2390		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2391
2392	s = splbio();
2393loop:
2394	/*
2395	 * Block if we are low on buffers.   Certain processes are allowed
2396	 * to completely exhaust the buffer cache.
2397         *
2398         * If this check ever becomes a bottleneck it may be better to
2399         * move it into the else, when gbincore() fails.  At the moment
2400         * it isn't a problem.
2401	 *
2402	 * XXX remove if 0 sections (clean this up after its proven)
2403         */
2404	if (numfreebuffers == 0) {
2405		if (curthread == PCPU_GET(idlethread))
2406			return NULL;
2407		mtx_lock(&nblock);
2408		needsbuffer |= VFS_BIO_NEED_ANY;
2409		mtx_unlock(&nblock);
2410	}
2411
2412	VI_LOCK(vp);
2413	if ((bp = gbincore(vp, blkno))) {
2414		int lockflags;
2415		/*
2416		 * Buffer is in-core.  If the buffer is not busy, it must
2417		 * be on a queue.
2418		 */
2419		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2420
2421		if (flags & GB_LOCK_NOWAIT)
2422			lockflags |= LK_NOWAIT;
2423
2424		error = BUF_TIMELOCK(bp, lockflags,
2425		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2426
2427		/*
2428		 * If we slept and got the lock we have to restart in case
2429		 * the buffer changed identities.
2430		 */
2431		if (error == ENOLCK)
2432			goto loop;
2433		/* We timed out or were interrupted. */
2434		else if (error)
2435			return (NULL);
2436
2437		/*
2438		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2439		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2440		 * and for a VMIO buffer B_CACHE is adjusted according to the
2441		 * backing VM cache.
2442		 */
2443		if (bp->b_flags & B_INVAL)
2444			bp->b_flags &= ~B_CACHE;
2445		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2446			bp->b_flags |= B_CACHE;
2447		bremfree(bp);
2448
2449		/*
2450		 * check for size inconsistancies for non-VMIO case.
2451		 */
2452
2453		if (bp->b_bcount != size) {
2454			if ((bp->b_flags & B_VMIO) == 0 ||
2455			    (size > bp->b_kvasize)) {
2456				if (bp->b_flags & B_DELWRI) {
2457					bp->b_flags |= B_NOCACHE;
2458					BUF_WRITE(bp);
2459				} else {
2460					if ((bp->b_flags & B_VMIO) &&
2461					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2462						bp->b_flags |= B_RELBUF;
2463						brelse(bp);
2464					} else {
2465						bp->b_flags |= B_NOCACHE;
2466						BUF_WRITE(bp);
2467					}
2468				}
2469				goto loop;
2470			}
2471		}
2472
2473		/*
2474		 * If the size is inconsistant in the VMIO case, we can resize
2475		 * the buffer.  This might lead to B_CACHE getting set or
2476		 * cleared.  If the size has not changed, B_CACHE remains
2477		 * unchanged from its previous state.
2478		 */
2479
2480		if (bp->b_bcount != size)
2481			allocbuf(bp, size);
2482
2483		KASSERT(bp->b_offset != NOOFFSET,
2484		    ("getblk: no buffer offset"));
2485
2486		/*
2487		 * A buffer with B_DELWRI set and B_CACHE clear must
2488		 * be committed before we can return the buffer in
2489		 * order to prevent the caller from issuing a read
2490		 * ( due to B_CACHE not being set ) and overwriting
2491		 * it.
2492		 *
2493		 * Most callers, including NFS and FFS, need this to
2494		 * operate properly either because they assume they
2495		 * can issue a read if B_CACHE is not set, or because
2496		 * ( for example ) an uncached B_DELWRI might loop due
2497		 * to softupdates re-dirtying the buffer.  In the latter
2498		 * case, B_CACHE is set after the first write completes,
2499		 * preventing further loops.
2500		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2501		 * above while extending the buffer, we cannot allow the
2502		 * buffer to remain with B_CACHE set after the write
2503		 * completes or it will represent a corrupt state.  To
2504		 * deal with this we set B_NOCACHE to scrap the buffer
2505		 * after the write.
2506		 *
2507		 * We might be able to do something fancy, like setting
2508		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2509		 * so the below call doesn't set B_CACHE, but that gets real
2510		 * confusing.  This is much easier.
2511		 */
2512
2513		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2514			bp->b_flags |= B_NOCACHE;
2515			BUF_WRITE(bp);
2516			goto loop;
2517		}
2518
2519		splx(s);
2520		bp->b_flags &= ~B_DONE;
2521	} else {
2522		int bsize, maxsize, vmio;
2523		off_t offset;
2524
2525		/*
2526		 * Buffer is not in-core, create new buffer.  The buffer
2527		 * returned by getnewbuf() is locked.  Note that the returned
2528		 * buffer is also considered valid (not marked B_INVAL).
2529		 */
2530		VI_UNLOCK(vp);
2531		if (vn_isdisk(vp, NULL))
2532			bsize = DEV_BSIZE;
2533		else if (vp->v_mountedhere)
2534			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2535		else if (vp->v_mount)
2536			bsize = vp->v_mount->mnt_stat.f_iosize;
2537		else
2538			bsize = size;
2539
2540		offset = blkno * bsize;
2541		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2542		    (vp->v_vflag & VV_OBJBUF);
2543		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2544		maxsize = imax(maxsize, bsize);
2545
2546		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2547			if (slpflag || slptimeo) {
2548				splx(s);
2549				return NULL;
2550			}
2551			goto loop;
2552		}
2553
2554		/*
2555		 * This code is used to make sure that a buffer is not
2556		 * created while the getnewbuf routine is blocked.
2557		 * This can be a problem whether the vnode is locked or not.
2558		 * If the buffer is created out from under us, we have to
2559		 * throw away the one we just created.  There is now window
2560		 * race because we are safely running at splbio() from the
2561		 * point of the duplicate buffer creation through to here,
2562		 * and we've locked the buffer.
2563		 *
2564		 * Note: this must occur before we associate the buffer
2565		 * with the vp especially considering limitations in
2566		 * the splay tree implementation when dealing with duplicate
2567		 * lblkno's.
2568		 */
2569		VI_LOCK(vp);
2570		if (gbincore(vp, blkno)) {
2571			VI_UNLOCK(vp);
2572			bp->b_flags |= B_INVAL;
2573			brelse(bp);
2574			goto loop;
2575		}
2576
2577		/*
2578		 * Insert the buffer into the hash, so that it can
2579		 * be found by incore.
2580		 */
2581		bp->b_blkno = bp->b_lblkno = blkno;
2582		bp->b_offset = offset;
2583
2584		bgetvp(vp, bp);
2585		VI_UNLOCK(vp);
2586
2587		/*
2588		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2589		 * buffer size starts out as 0, B_CACHE will be set by
2590		 * allocbuf() for the VMIO case prior to it testing the
2591		 * backing store for validity.
2592		 */
2593
2594		if (vmio) {
2595			bp->b_flags |= B_VMIO;
2596#if defined(VFS_BIO_DEBUG)
2597			if (vp->v_type != VREG)
2598				printf("getblk: vmioing file type %d???\n", vp->v_type);
2599#endif
2600			VOP_GETVOBJECT(vp, &bp->b_object);
2601		} else {
2602			bp->b_flags &= ~B_VMIO;
2603			bp->b_object = NULL;
2604		}
2605
2606		allocbuf(bp, size);
2607
2608		splx(s);
2609		bp->b_flags &= ~B_DONE;
2610	}
2611	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2612	return (bp);
2613}
2614
2615/*
2616 * Get an empty, disassociated buffer of given size.  The buffer is initially
2617 * set to B_INVAL.
2618 */
2619struct buf *
2620geteblk(int size)
2621{
2622	struct buf *bp;
2623	int s;
2624	int maxsize;
2625
2626	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2627
2628	s = splbio();
2629	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2630		continue;
2631	splx(s);
2632	allocbuf(bp, size);
2633	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2634	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2635	return (bp);
2636}
2637
2638
2639/*
2640 * This code constitutes the buffer memory from either anonymous system
2641 * memory (in the case of non-VMIO operations) or from an associated
2642 * VM object (in the case of VMIO operations).  This code is able to
2643 * resize a buffer up or down.
2644 *
2645 * Note that this code is tricky, and has many complications to resolve
2646 * deadlock or inconsistant data situations.  Tread lightly!!!
2647 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2648 * the caller.  Calling this code willy nilly can result in the loss of data.
2649 *
2650 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2651 * B_CACHE for the non-VMIO case.
2652 */
2653
2654int
2655allocbuf(struct buf *bp, int size)
2656{
2657	int newbsize, mbsize;
2658	int i;
2659
2660	GIANT_REQUIRED;
2661
2662	if (BUF_REFCNT(bp) == 0)
2663		panic("allocbuf: buffer not busy");
2664
2665	if (bp->b_kvasize < size)
2666		panic("allocbuf: buffer too small");
2667
2668	if ((bp->b_flags & B_VMIO) == 0) {
2669		caddr_t origbuf;
2670		int origbufsize;
2671		/*
2672		 * Just get anonymous memory from the kernel.  Don't
2673		 * mess with B_CACHE.
2674		 */
2675		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2676		if (bp->b_flags & B_MALLOC)
2677			newbsize = mbsize;
2678		else
2679			newbsize = round_page(size);
2680
2681		if (newbsize < bp->b_bufsize) {
2682			/*
2683			 * malloced buffers are not shrunk
2684			 */
2685			if (bp->b_flags & B_MALLOC) {
2686				if (newbsize) {
2687					bp->b_bcount = size;
2688				} else {
2689					free(bp->b_data, M_BIOBUF);
2690					if (bp->b_bufsize) {
2691						atomic_subtract_int(
2692						    &bufmallocspace,
2693						    bp->b_bufsize);
2694						bufspacewakeup();
2695						bp->b_bufsize = 0;
2696					}
2697					bp->b_data = bp->b_kvabase;
2698					bp->b_bcount = 0;
2699					bp->b_flags &= ~B_MALLOC;
2700				}
2701				return 1;
2702			}
2703			vm_hold_free_pages(
2704			    bp,
2705			    (vm_offset_t) bp->b_data + newbsize,
2706			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2707		} else if (newbsize > bp->b_bufsize) {
2708			/*
2709			 * We only use malloced memory on the first allocation.
2710			 * and revert to page-allocated memory when the buffer
2711			 * grows.
2712			 */
2713			/*
2714			 * There is a potential smp race here that could lead
2715			 * to bufmallocspace slightly passing the max.  It
2716			 * is probably extremely rare and not worth worrying
2717			 * over.
2718			 */
2719			if ( (bufmallocspace < maxbufmallocspace) &&
2720				(bp->b_bufsize == 0) &&
2721				(mbsize <= PAGE_SIZE/2)) {
2722
2723				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2724				bp->b_bufsize = mbsize;
2725				bp->b_bcount = size;
2726				bp->b_flags |= B_MALLOC;
2727				atomic_add_int(&bufmallocspace, mbsize);
2728				return 1;
2729			}
2730			origbuf = NULL;
2731			origbufsize = 0;
2732			/*
2733			 * If the buffer is growing on its other-than-first allocation,
2734			 * then we revert to the page-allocation scheme.
2735			 */
2736			if (bp->b_flags & B_MALLOC) {
2737				origbuf = bp->b_data;
2738				origbufsize = bp->b_bufsize;
2739				bp->b_data = bp->b_kvabase;
2740				if (bp->b_bufsize) {
2741					atomic_subtract_int(&bufmallocspace,
2742					    bp->b_bufsize);
2743					bufspacewakeup();
2744					bp->b_bufsize = 0;
2745				}
2746				bp->b_flags &= ~B_MALLOC;
2747				newbsize = round_page(newbsize);
2748			}
2749			vm_hold_load_pages(
2750			    bp,
2751			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2752			    (vm_offset_t) bp->b_data + newbsize);
2753			if (origbuf) {
2754				bcopy(origbuf, bp->b_data, origbufsize);
2755				free(origbuf, M_BIOBUF);
2756			}
2757		}
2758	} else {
2759		int desiredpages;
2760
2761		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2762		desiredpages = (size == 0) ? 0 :
2763			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2764
2765		if (bp->b_flags & B_MALLOC)
2766			panic("allocbuf: VMIO buffer can't be malloced");
2767		/*
2768		 * Set B_CACHE initially if buffer is 0 length or will become
2769		 * 0-length.
2770		 */
2771		if (size == 0 || bp->b_bufsize == 0)
2772			bp->b_flags |= B_CACHE;
2773
2774		if (newbsize < bp->b_bufsize) {
2775			/*
2776			 * DEV_BSIZE aligned new buffer size is less then the
2777			 * DEV_BSIZE aligned existing buffer size.  Figure out
2778			 * if we have to remove any pages.
2779			 */
2780			if (desiredpages < bp->b_npages) {
2781				vm_page_t m;
2782
2783				vm_page_lock_queues();
2784				for (i = desiredpages; i < bp->b_npages; i++) {
2785					/*
2786					 * the page is not freed here -- it
2787					 * is the responsibility of
2788					 * vnode_pager_setsize
2789					 */
2790					m = bp->b_pages[i];
2791					KASSERT(m != bogus_page,
2792					    ("allocbuf: bogus page found"));
2793					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2794						vm_page_lock_queues();
2795
2796					bp->b_pages[i] = NULL;
2797					vm_page_unwire(m, 0);
2798				}
2799				vm_page_unlock_queues();
2800				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2801				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2802				bp->b_npages = desiredpages;
2803			}
2804		} else if (size > bp->b_bcount) {
2805			/*
2806			 * We are growing the buffer, possibly in a
2807			 * byte-granular fashion.
2808			 */
2809			struct vnode *vp;
2810			vm_object_t obj;
2811			vm_offset_t toff;
2812			vm_offset_t tinc;
2813
2814			/*
2815			 * Step 1, bring in the VM pages from the object,
2816			 * allocating them if necessary.  We must clear
2817			 * B_CACHE if these pages are not valid for the
2818			 * range covered by the buffer.
2819			 */
2820
2821			vp = bp->b_vp;
2822			obj = bp->b_object;
2823
2824			VM_OBJECT_LOCK(obj);
2825			while (bp->b_npages < desiredpages) {
2826				vm_page_t m;
2827				vm_pindex_t pi;
2828
2829				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2830				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2831					/*
2832					 * note: must allocate system pages
2833					 * since blocking here could intefere
2834					 * with paging I/O, no matter which
2835					 * process we are.
2836					 */
2837					m = vm_page_alloc(obj, pi,
2838					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2839					if (m == NULL) {
2840						atomic_add_int(&vm_pageout_deficit,
2841						    desiredpages - bp->b_npages);
2842						VM_OBJECT_UNLOCK(obj);
2843						VM_WAIT;
2844						VM_OBJECT_LOCK(obj);
2845					} else {
2846						vm_page_lock_queues();
2847						vm_page_wakeup(m);
2848						vm_page_unlock_queues();
2849						bp->b_flags &= ~B_CACHE;
2850						bp->b_pages[bp->b_npages] = m;
2851						++bp->b_npages;
2852					}
2853					continue;
2854				}
2855
2856				/*
2857				 * We found a page.  If we have to sleep on it,
2858				 * retry because it might have gotten freed out
2859				 * from under us.
2860				 *
2861				 * We can only test PG_BUSY here.  Blocking on
2862				 * m->busy might lead to a deadlock:
2863				 *
2864				 *  vm_fault->getpages->cluster_read->allocbuf
2865				 *
2866				 */
2867				vm_page_lock_queues();
2868				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2869					continue;
2870
2871				/*
2872				 * We have a good page.  Should we wakeup the
2873				 * page daemon?
2874				 */
2875				if ((curproc != pageproc) &&
2876				    ((m->queue - m->pc) == PQ_CACHE) &&
2877				    ((cnt.v_free_count + cnt.v_cache_count) <
2878					(cnt.v_free_min + cnt.v_cache_min))) {
2879					pagedaemon_wakeup();
2880				}
2881				vm_page_flag_clear(m, PG_ZERO);
2882				vm_page_wire(m);
2883				vm_page_unlock_queues();
2884				bp->b_pages[bp->b_npages] = m;
2885				++bp->b_npages;
2886			}
2887			VM_OBJECT_UNLOCK(obj);
2888
2889			/*
2890			 * Step 2.  We've loaded the pages into the buffer,
2891			 * we have to figure out if we can still have B_CACHE
2892			 * set.  Note that B_CACHE is set according to the
2893			 * byte-granular range ( bcount and size ), new the
2894			 * aligned range ( newbsize ).
2895			 *
2896			 * The VM test is against m->valid, which is DEV_BSIZE
2897			 * aligned.  Needless to say, the validity of the data
2898			 * needs to also be DEV_BSIZE aligned.  Note that this
2899			 * fails with NFS if the server or some other client
2900			 * extends the file's EOF.  If our buffer is resized,
2901			 * B_CACHE may remain set! XXX
2902			 */
2903
2904			toff = bp->b_bcount;
2905			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2906
2907			while ((bp->b_flags & B_CACHE) && toff < size) {
2908				vm_pindex_t pi;
2909
2910				if (tinc > (size - toff))
2911					tinc = size - toff;
2912
2913				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2914				    PAGE_SHIFT;
2915
2916				vfs_buf_test_cache(
2917				    bp,
2918				    bp->b_offset,
2919				    toff,
2920				    tinc,
2921				    bp->b_pages[pi]
2922				);
2923				toff += tinc;
2924				tinc = PAGE_SIZE;
2925			}
2926
2927			/*
2928			 * Step 3, fixup the KVM pmap.  Remember that
2929			 * bp->b_data is relative to bp->b_offset, but
2930			 * bp->b_offset may be offset into the first page.
2931			 */
2932
2933			bp->b_data = (caddr_t)
2934			    trunc_page((vm_offset_t)bp->b_data);
2935			pmap_qenter(
2936			    (vm_offset_t)bp->b_data,
2937			    bp->b_pages,
2938			    bp->b_npages
2939			);
2940
2941			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2942			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2943		}
2944	}
2945	if (newbsize < bp->b_bufsize)
2946		bufspacewakeup();
2947	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2948	bp->b_bcount = size;		/* requested buffer size	*/
2949	return 1;
2950}
2951
2952void
2953biodone(struct bio *bp)
2954{
2955	mtx_lock(&bdonelock);
2956	bp->bio_flags |= BIO_DONE;
2957	if (bp->bio_done == NULL)
2958		wakeup(bp);
2959	mtx_unlock(&bdonelock);
2960	if (bp->bio_done != NULL)
2961		bp->bio_done(bp);
2962}
2963
2964/*
2965 * Wait for a BIO to finish.
2966 *
2967 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2968 * case is not yet clear.
2969 */
2970int
2971biowait(struct bio *bp, const char *wchan)
2972{
2973
2974	mtx_lock(&bdonelock);
2975	while ((bp->bio_flags & BIO_DONE) == 0)
2976		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
2977	mtx_unlock(&bdonelock);
2978	if (bp->bio_error != 0)
2979		return (bp->bio_error);
2980	if (!(bp->bio_flags & BIO_ERROR))
2981		return (0);
2982	return (EIO);
2983}
2984
2985void
2986biofinish(struct bio *bp, struct devstat *stat, int error)
2987{
2988
2989	if (error) {
2990		bp->bio_error = error;
2991		bp->bio_flags |= BIO_ERROR;
2992	}
2993	if (stat != NULL)
2994		devstat_end_transaction_bio(stat, bp);
2995	biodone(bp);
2996}
2997
2998/*
2999 *	bufwait:
3000 *
3001 *	Wait for buffer I/O completion, returning error status.  The buffer
3002 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3003 *	error and cleared.
3004 */
3005int
3006bufwait(register struct buf * bp)
3007{
3008	int s;
3009
3010	s = splbio();
3011	if (bp->b_iocmd == BIO_READ)
3012		bwait(bp, PRIBIO, "biord");
3013	else
3014		bwait(bp, PRIBIO, "biowr");
3015	splx(s);
3016	if (bp->b_flags & B_EINTR) {
3017		bp->b_flags &= ~B_EINTR;
3018		return (EINTR);
3019	}
3020	if (bp->b_ioflags & BIO_ERROR) {
3021		return (bp->b_error ? bp->b_error : EIO);
3022	} else {
3023		return (0);
3024	}
3025}
3026
3027 /*
3028  * Call back function from struct bio back up to struct buf.
3029  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
3030  */
3031void
3032bufdonebio(struct bio *bp)
3033{
3034	bufdone(bp->bio_caller2);
3035}
3036
3037/*
3038 *	bufdone:
3039 *
3040 *	Finish I/O on a buffer, optionally calling a completion function.
3041 *	This is usually called from an interrupt so process blocking is
3042 *	not allowed.
3043 *
3044 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3045 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3046 *	assuming B_INVAL is clear.
3047 *
3048 *	For the VMIO case, we set B_CACHE if the op was a read and no
3049 *	read error occured, or if the op was a write.  B_CACHE is never
3050 *	set if the buffer is invalid or otherwise uncacheable.
3051 *
3052 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3053 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3054 *	in the biodone routine.
3055 */
3056void
3057bufdone(struct buf *bp)
3058{
3059	int s;
3060	void    (*biodone)(struct buf *);
3061
3062	GIANT_REQUIRED;
3063
3064	s = splbio();
3065
3066	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3067	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3068
3069	bp->b_flags |= B_DONE;
3070	runningbufwakeup(bp);
3071
3072	if (bp->b_iocmd == BIO_DELETE) {
3073		brelse(bp);
3074		splx(s);
3075		return;
3076	}
3077
3078	if (bp->b_iocmd == BIO_WRITE) {
3079		vwakeup(bp);
3080	}
3081
3082	/* call optional completion function if requested */
3083	if (bp->b_iodone != NULL) {
3084		biodone = bp->b_iodone;
3085		bp->b_iodone = NULL;
3086		(*biodone) (bp);
3087		splx(s);
3088		return;
3089	}
3090	if (LIST_FIRST(&bp->b_dep) != NULL)
3091		buf_complete(bp);
3092
3093	if (bp->b_flags & B_VMIO) {
3094		int i;
3095		vm_ooffset_t foff;
3096		vm_page_t m;
3097		vm_object_t obj;
3098		int iosize;
3099		struct vnode *vp = bp->b_vp;
3100
3101		obj = bp->b_object;
3102
3103#if defined(VFS_BIO_DEBUG)
3104		mp_fixme("usecount and vflag accessed without locks.");
3105		if (vp->v_usecount == 0) {
3106			panic("biodone: zero vnode ref count");
3107		}
3108
3109		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3110			panic("biodone: vnode is not setup for merged cache");
3111		}
3112#endif
3113
3114		foff = bp->b_offset;
3115		KASSERT(bp->b_offset != NOOFFSET,
3116		    ("biodone: no buffer offset"));
3117
3118		if (obj != NULL)
3119			VM_OBJECT_LOCK(obj);
3120#if defined(VFS_BIO_DEBUG)
3121		if (obj->paging_in_progress < bp->b_npages) {
3122			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3123			    obj->paging_in_progress, bp->b_npages);
3124		}
3125#endif
3126
3127		/*
3128		 * Set B_CACHE if the op was a normal read and no error
3129		 * occured.  B_CACHE is set for writes in the b*write()
3130		 * routines.
3131		 */
3132		iosize = bp->b_bcount - bp->b_resid;
3133		if (bp->b_iocmd == BIO_READ &&
3134		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3135		    !(bp->b_ioflags & BIO_ERROR)) {
3136			bp->b_flags |= B_CACHE;
3137		}
3138		vm_page_lock_queues();
3139		for (i = 0; i < bp->b_npages; i++) {
3140			int bogusflag = 0;
3141			int resid;
3142
3143			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3144			if (resid > iosize)
3145				resid = iosize;
3146
3147			/*
3148			 * cleanup bogus pages, restoring the originals
3149			 */
3150			m = bp->b_pages[i];
3151			if (m == bogus_page) {
3152				bogusflag = 1;
3153				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3154				if (m == NULL)
3155					panic("biodone: page disappeared!");
3156				bp->b_pages[i] = m;
3157				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3158			}
3159#if defined(VFS_BIO_DEBUG)
3160			if (OFF_TO_IDX(foff) != m->pindex) {
3161				printf(
3162"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3163				    (intmax_t)foff, (uintmax_t)m->pindex);
3164			}
3165#endif
3166
3167			/*
3168			 * In the write case, the valid and clean bits are
3169			 * already changed correctly ( see bdwrite() ), so we
3170			 * only need to do this here in the read case.
3171			 */
3172			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3173				vfs_page_set_valid(bp, foff, i, m);
3174			}
3175			vm_page_flag_clear(m, PG_ZERO);
3176
3177			/*
3178			 * when debugging new filesystems or buffer I/O methods, this
3179			 * is the most common error that pops up.  if you see this, you
3180			 * have not set the page busy flag correctly!!!
3181			 */
3182			if (m->busy == 0) {
3183				printf("biodone: page busy < 0, "
3184				    "pindex: %d, foff: 0x(%x,%x), "
3185				    "resid: %d, index: %d\n",
3186				    (int) m->pindex, (int)(foff >> 32),
3187						(int) foff & 0xffffffff, resid, i);
3188				if (!vn_isdisk(vp, NULL))
3189					printf(" iosize: %ld, lblkno: %jd, flags: 0x%x, npages: %d\n",
3190					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3191					    (intmax_t) bp->b_lblkno,
3192					    bp->b_flags, bp->b_npages);
3193				else
3194					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3195					    (intmax_t) bp->b_lblkno,
3196					    bp->b_flags, bp->b_npages);
3197				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3198				    m->valid, m->dirty, m->wire_count);
3199				panic("biodone: page busy < 0\n");
3200			}
3201			vm_page_io_finish(m);
3202			vm_object_pip_subtract(obj, 1);
3203			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3204			iosize -= resid;
3205		}
3206		vm_page_unlock_queues();
3207		if (obj != NULL) {
3208			vm_object_pip_wakeupn(obj, 0);
3209			VM_OBJECT_UNLOCK(obj);
3210		}
3211	}
3212
3213	/*
3214	 * For asynchronous completions, release the buffer now. The brelse
3215	 * will do a wakeup there if necessary - so no need to do a wakeup
3216	 * here in the async case. The sync case always needs to do a wakeup.
3217	 */
3218
3219	if (bp->b_flags & B_ASYNC) {
3220		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3221			brelse(bp);
3222		else
3223			bqrelse(bp);
3224	} else {
3225		bdone(bp);
3226	}
3227	splx(s);
3228}
3229
3230/*
3231 * This routine is called in lieu of iodone in the case of
3232 * incomplete I/O.  This keeps the busy status for pages
3233 * consistant.
3234 */
3235void
3236vfs_unbusy_pages(struct buf * bp)
3237{
3238	int i;
3239
3240	GIANT_REQUIRED;
3241
3242	runningbufwakeup(bp);
3243	if (bp->b_flags & B_VMIO) {
3244		vm_object_t obj;
3245
3246		obj = bp->b_object;
3247		VM_OBJECT_LOCK(obj);
3248		vm_page_lock_queues();
3249		for (i = 0; i < bp->b_npages; i++) {
3250			vm_page_t m = bp->b_pages[i];
3251
3252			if (m == bogus_page) {
3253				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3254				if (!m) {
3255					panic("vfs_unbusy_pages: page missing\n");
3256				}
3257				bp->b_pages[i] = m;
3258				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3259			}
3260			vm_object_pip_subtract(obj, 1);
3261			vm_page_flag_clear(m, PG_ZERO);
3262			vm_page_io_finish(m);
3263		}
3264		vm_page_unlock_queues();
3265		vm_object_pip_wakeupn(obj, 0);
3266		VM_OBJECT_UNLOCK(obj);
3267	}
3268}
3269
3270/*
3271 * vfs_page_set_valid:
3272 *
3273 *	Set the valid bits in a page based on the supplied offset.   The
3274 *	range is restricted to the buffer's size.
3275 *
3276 *	This routine is typically called after a read completes.
3277 */
3278static void
3279vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3280{
3281	vm_ooffset_t soff, eoff;
3282
3283	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3284	/*
3285	 * Start and end offsets in buffer.  eoff - soff may not cross a
3286	 * page boundry or cross the end of the buffer.  The end of the
3287	 * buffer, in this case, is our file EOF, not the allocation size
3288	 * of the buffer.
3289	 */
3290	soff = off;
3291	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3292	if (eoff > bp->b_offset + bp->b_bcount)
3293		eoff = bp->b_offset + bp->b_bcount;
3294
3295	/*
3296	 * Set valid range.  This is typically the entire buffer and thus the
3297	 * entire page.
3298	 */
3299	if (eoff > soff) {
3300		vm_page_set_validclean(
3301		    m,
3302		   (vm_offset_t) (soff & PAGE_MASK),
3303		   (vm_offset_t) (eoff - soff)
3304		);
3305	}
3306}
3307
3308/*
3309 * This routine is called before a device strategy routine.
3310 * It is used to tell the VM system that paging I/O is in
3311 * progress, and treat the pages associated with the buffer
3312 * almost as being PG_BUSY.  Also the object paging_in_progress
3313 * flag is handled to make sure that the object doesn't become
3314 * inconsistant.
3315 *
3316 * Since I/O has not been initiated yet, certain buffer flags
3317 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3318 * and should be ignored.
3319 */
3320void
3321vfs_busy_pages(struct buf * bp, int clear_modify)
3322{
3323	int i, bogus;
3324
3325	if (bp->b_flags & B_VMIO) {
3326		vm_object_t obj;
3327		vm_ooffset_t foff;
3328
3329		obj = bp->b_object;
3330		foff = bp->b_offset;
3331		KASSERT(bp->b_offset != NOOFFSET,
3332		    ("vfs_busy_pages: no buffer offset"));
3333		vfs_setdirty(bp);
3334		if (obj != NULL)
3335			VM_OBJECT_LOCK(obj);
3336retry:
3337		vm_page_lock_queues();
3338		for (i = 0; i < bp->b_npages; i++) {
3339			vm_page_t m = bp->b_pages[i];
3340
3341			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3342				goto retry;
3343		}
3344		bogus = 0;
3345		for (i = 0; i < bp->b_npages; i++) {
3346			vm_page_t m = bp->b_pages[i];
3347
3348			vm_page_flag_clear(m, PG_ZERO);
3349			if ((bp->b_flags & B_CLUSTER) == 0) {
3350				vm_object_pip_add(obj, 1);
3351				vm_page_io_start(m);
3352			}
3353			/*
3354			 * When readying a buffer for a read ( i.e
3355			 * clear_modify == 0 ), it is important to do
3356			 * bogus_page replacement for valid pages in
3357			 * partially instantiated buffers.  Partially
3358			 * instantiated buffers can, in turn, occur when
3359			 * reconstituting a buffer from its VM backing store
3360			 * base.  We only have to do this if B_CACHE is
3361			 * clear ( which causes the I/O to occur in the
3362			 * first place ).  The replacement prevents the read
3363			 * I/O from overwriting potentially dirty VM-backed
3364			 * pages.  XXX bogus page replacement is, uh, bogus.
3365			 * It may not work properly with small-block devices.
3366			 * We need to find a better way.
3367			 */
3368			pmap_remove_all(m);
3369			if (clear_modify)
3370				vfs_page_set_valid(bp, foff, i, m);
3371			else if (m->valid == VM_PAGE_BITS_ALL &&
3372				(bp->b_flags & B_CACHE) == 0) {
3373				bp->b_pages[i] = bogus_page;
3374				bogus++;
3375			}
3376			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3377		}
3378		vm_page_unlock_queues();
3379		if (obj != NULL)
3380			VM_OBJECT_UNLOCK(obj);
3381		if (bogus)
3382			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3383	}
3384}
3385
3386/*
3387 * Tell the VM system that the pages associated with this buffer
3388 * are clean.  This is used for delayed writes where the data is
3389 * going to go to disk eventually without additional VM intevention.
3390 *
3391 * Note that while we only really need to clean through to b_bcount, we
3392 * just go ahead and clean through to b_bufsize.
3393 */
3394static void
3395vfs_clean_pages(struct buf * bp)
3396{
3397	int i;
3398
3399	GIANT_REQUIRED;
3400
3401	if (bp->b_flags & B_VMIO) {
3402		vm_ooffset_t foff;
3403
3404		foff = bp->b_offset;
3405		KASSERT(bp->b_offset != NOOFFSET,
3406		    ("vfs_clean_pages: no buffer offset"));
3407		vm_page_lock_queues();
3408		for (i = 0; i < bp->b_npages; i++) {
3409			vm_page_t m = bp->b_pages[i];
3410			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3411			vm_ooffset_t eoff = noff;
3412
3413			if (eoff > bp->b_offset + bp->b_bufsize)
3414				eoff = bp->b_offset + bp->b_bufsize;
3415			vfs_page_set_valid(bp, foff, i, m);
3416			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3417			foff = noff;
3418		}
3419		vm_page_unlock_queues();
3420	}
3421}
3422
3423/*
3424 *	vfs_bio_set_validclean:
3425 *
3426 *	Set the range within the buffer to valid and clean.  The range is
3427 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3428 *	itself may be offset from the beginning of the first page.
3429 *
3430 */
3431
3432void
3433vfs_bio_set_validclean(struct buf *bp, int base, int size)
3434{
3435	if (bp->b_flags & B_VMIO) {
3436		int i;
3437		int n;
3438
3439		/*
3440		 * Fixup base to be relative to beginning of first page.
3441		 * Set initial n to be the maximum number of bytes in the
3442		 * first page that can be validated.
3443		 */
3444
3445		base += (bp->b_offset & PAGE_MASK);
3446		n = PAGE_SIZE - (base & PAGE_MASK);
3447
3448		vm_page_lock_queues();
3449		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3450			vm_page_t m = bp->b_pages[i];
3451
3452			if (n > size)
3453				n = size;
3454
3455			vm_page_set_validclean(m, base & PAGE_MASK, n);
3456			base += n;
3457			size -= n;
3458			n = PAGE_SIZE;
3459		}
3460		vm_page_unlock_queues();
3461	}
3462}
3463
3464/*
3465 *	vfs_bio_clrbuf:
3466 *
3467 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3468 *	to clear BIO_ERROR and B_INVAL.
3469 *
3470 *	Note that while we only theoretically need to clear through b_bcount,
3471 *	we go ahead and clear through b_bufsize.
3472 */
3473
3474void
3475vfs_bio_clrbuf(struct buf *bp)
3476{
3477	int i, mask = 0;
3478	caddr_t sa, ea;
3479
3480	GIANT_REQUIRED;
3481
3482	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3483		bp->b_flags &= ~B_INVAL;
3484		bp->b_ioflags &= ~BIO_ERROR;
3485		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3486		    (bp->b_offset & PAGE_MASK) == 0) {
3487			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3488			if ((bp->b_pages[0]->valid & mask) == mask) {
3489				bp->b_resid = 0;
3490				return;
3491			}
3492			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3493			    ((bp->b_pages[0]->valid & mask) == 0)) {
3494				bzero(bp->b_data, bp->b_bufsize);
3495				bp->b_pages[0]->valid |= mask;
3496				bp->b_resid = 0;
3497				return;
3498			}
3499		}
3500		ea = sa = bp->b_data;
3501		for(i=0;i<bp->b_npages;i++,sa=ea) {
3502			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3503			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3504			ea = (caddr_t)(vm_offset_t)ulmin(
3505			    (u_long)(vm_offset_t)ea,
3506			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3507			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3508			if ((bp->b_pages[i]->valid & mask) == mask)
3509				continue;
3510			if ((bp->b_pages[i]->valid & mask) == 0) {
3511				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3512					bzero(sa, ea - sa);
3513				}
3514			} else {
3515				for (; sa < ea; sa += DEV_BSIZE, j++) {
3516					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3517						(bp->b_pages[i]->valid & (1<<j)) == 0)
3518						bzero(sa, DEV_BSIZE);
3519				}
3520			}
3521			bp->b_pages[i]->valid |= mask;
3522			vm_page_lock_queues();
3523			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3524			vm_page_unlock_queues();
3525		}
3526		bp->b_resid = 0;
3527	} else {
3528		clrbuf(bp);
3529	}
3530}
3531
3532/*
3533 * vm_hold_load_pages and vm_hold_free_pages get pages into
3534 * a buffers address space.  The pages are anonymous and are
3535 * not associated with a file object.
3536 */
3537static void
3538vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3539{
3540	vm_offset_t pg;
3541	vm_page_t p;
3542	int index;
3543
3544	GIANT_REQUIRED;
3545
3546	to = round_page(to);
3547	from = round_page(from);
3548	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3549
3550	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3551tryagain:
3552		/*
3553		 * note: must allocate system pages since blocking here
3554		 * could intefere with paging I/O, no matter which
3555		 * process we are.
3556		 */
3557		VM_OBJECT_LOCK(kernel_object);
3558		p = vm_page_alloc(kernel_object,
3559			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3560		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3561		VM_OBJECT_UNLOCK(kernel_object);
3562		if (!p) {
3563			atomic_add_int(&vm_pageout_deficit,
3564			    (to - pg) >> PAGE_SHIFT);
3565			VM_WAIT;
3566			goto tryagain;
3567		}
3568		vm_page_lock_queues();
3569		p->valid = VM_PAGE_BITS_ALL;
3570		vm_page_unlock_queues();
3571		pmap_qenter(pg, &p, 1);
3572		bp->b_pages[index] = p;
3573		vm_page_lock_queues();
3574		vm_page_wakeup(p);
3575		vm_page_unlock_queues();
3576	}
3577	bp->b_npages = index;
3578}
3579
3580/* Return pages associated with this buf to the vm system */
3581static void
3582vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3583{
3584	vm_offset_t pg;
3585	vm_page_t p;
3586	int index, newnpages;
3587
3588	GIANT_REQUIRED;
3589
3590	from = round_page(from);
3591	to = round_page(to);
3592	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3593
3594	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3595		p = bp->b_pages[index];
3596		if (p && (index < bp->b_npages)) {
3597			if (p->busy) {
3598				printf(
3599			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3600				    (intmax_t)bp->b_blkno,
3601				    (intmax_t)bp->b_lblkno);
3602			}
3603			bp->b_pages[index] = NULL;
3604			pmap_qremove(pg, 1);
3605			vm_page_lock_queues();
3606			vm_page_busy(p);
3607			vm_page_unwire(p, 0);
3608			vm_page_free(p);
3609			vm_page_unlock_queues();
3610		}
3611	}
3612	bp->b_npages = newnpages;
3613}
3614
3615/*
3616 * Map an IO request into kernel virtual address space.
3617 *
3618 * All requests are (re)mapped into kernel VA space.
3619 * Notice that we use b_bufsize for the size of the buffer
3620 * to be mapped.  b_bcount might be modified by the driver.
3621 *
3622 * Note that even if the caller determines that the address space should
3623 * be valid, a race or a smaller-file mapped into a larger space may
3624 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3625 * check the return value.
3626 */
3627int
3628vmapbuf(struct buf *bp)
3629{
3630	caddr_t addr, kva;
3631	vm_paddr_t pa;
3632	int pidx, i;
3633	struct vm_page *m;
3634	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3635
3636	GIANT_REQUIRED;
3637
3638	if ((bp->b_flags & B_PHYS) == 0)
3639		panic("vmapbuf");
3640	if (bp->b_bufsize < 0)
3641		return (-1);
3642	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3643	     addr < bp->b_data + bp->b_bufsize;
3644	     addr += PAGE_SIZE, pidx++) {
3645		/*
3646		 * Do the vm_fault if needed; do the copy-on-write thing
3647		 * when reading stuff off device into memory.
3648		 *
3649		 * NOTE! Must use pmap_extract() because addr may be in
3650		 * the userland address space, and kextract is only guarenteed
3651		 * to work for the kernland address space (see: sparc64 port).
3652		 */
3653retry:
3654		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3655			(bp->b_iocmd == BIO_READ) ?
3656			(VM_PROT_READ|VM_PROT_WRITE) : VM_PROT_READ);
3657		if (i < 0) {
3658			vm_page_lock_queues();
3659			for (i = 0; i < pidx; ++i) {
3660				vm_page_unhold(bp->b_pages[i]);
3661				bp->b_pages[i] = NULL;
3662			}
3663			vm_page_unlock_queues();
3664			return(-1);
3665		}
3666		pa = pmap_extract(pmap, (vm_offset_t)addr);
3667		if (pa == 0) {
3668			printf("vmapbuf: warning, race against user address during I/O");
3669			goto retry;
3670		}
3671		m = PHYS_TO_VM_PAGE(pa);
3672		vm_page_lock_queues();
3673		vm_page_hold(m);
3674		vm_page_unlock_queues();
3675		bp->b_pages[pidx] = m;
3676	}
3677	if (pidx > btoc(MAXPHYS))
3678		panic("vmapbuf: mapped more than MAXPHYS");
3679	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3680
3681	kva = bp->b_saveaddr;
3682	bp->b_npages = pidx;
3683	bp->b_saveaddr = bp->b_data;
3684	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3685	return(0);
3686}
3687
3688/*
3689 * Free the io map PTEs associated with this IO operation.
3690 * We also invalidate the TLB entries and restore the original b_addr.
3691 */
3692void
3693vunmapbuf(struct buf *bp)
3694{
3695	int pidx;
3696	int npages;
3697
3698	GIANT_REQUIRED;
3699
3700	if ((bp->b_flags & B_PHYS) == 0)
3701		panic("vunmapbuf");
3702
3703	npages = bp->b_npages;
3704	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3705		     npages);
3706	vm_page_lock_queues();
3707	for (pidx = 0; pidx < npages; pidx++)
3708		vm_page_unhold(bp->b_pages[pidx]);
3709	vm_page_unlock_queues();
3710
3711	bp->b_data = bp->b_saveaddr;
3712}
3713
3714void
3715bdone(struct buf *bp)
3716{
3717	mtx_lock(&bdonelock);
3718	bp->b_flags |= B_DONE;
3719	wakeup(bp);
3720	mtx_unlock(&bdonelock);
3721}
3722
3723void
3724bwait(struct buf *bp, u_char pri, const char *wchan)
3725{
3726	mtx_lock(&bdonelock);
3727	while ((bp->b_flags & B_DONE) == 0)
3728		msleep(bp, &bdonelock, pri, wchan, 0);
3729	mtx_unlock(&bdonelock);
3730}
3731
3732#include "opt_ddb.h"
3733#ifdef DDB
3734#include <ddb/ddb.h>
3735
3736/* DDB command to show buffer data */
3737DB_SHOW_COMMAND(buffer, db_show_buffer)
3738{
3739	/* get args */
3740	struct buf *bp = (struct buf *)addr;
3741
3742	if (!have_addr) {
3743		db_printf("usage: show buffer <addr>\n");
3744		return;
3745	}
3746
3747	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3748	db_printf(
3749	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3750	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n",
3751	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3752	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3753	    (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno);
3754	if (bp->b_npages) {
3755		int i;
3756		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3757		for (i = 0; i < bp->b_npages; i++) {
3758			vm_page_t m;
3759			m = bp->b_pages[i];
3760			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3761			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3762			if ((i + 1) < bp->b_npages)
3763				db_printf(",");
3764		}
3765		db_printf("\n");
3766	}
3767}
3768#endif /* DDB */
3769