vfs_bio.c revision 106720
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 106720 2002-11-10 07:12:04Z alc $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/stdint.h>
33#include <sys/bio.h>
34#include <sys/buf.h>
35#include <sys/devicestat.h>
36#include <sys/eventhandler.h>
37#include <sys/lock.h>
38#include <sys/malloc.h>
39#include <sys/mount.h>
40#include <sys/mutex.h>
41#include <sys/kernel.h>
42#include <sys/kthread.h>
43#include <sys/proc.h>
44#include <sys/resourcevar.h>
45#include <sys/sysctl.h>
46#include <sys/vmmeter.h>
47#include <sys/vnode.h>
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_pageout.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56
57static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58
59struct	bio_ops bioops;		/* I/O operation notification */
60
61struct	buf_ops buf_ops_bio = {
62	"buf_ops_bio",
63	bwrite
64};
65
66/*
67 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
68 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
69 */
70struct buf *buf;		/* buffer header pool */
71struct mtx buftimelock;		/* Interlock on setting prio and timo */
72
73static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
74		vm_offset_t to);
75static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
78			       int pageno, vm_page_t m);
79static void vfs_clean_pages(struct buf * bp);
80static void vfs_setdirty(struct buf *bp);
81static void vfs_vmio_release(struct buf *bp);
82static void vfs_backgroundwritedone(struct buf *bp);
83static int flushbufqueues(void);
84static void buf_daemon(void);
85
86int vmiodirenable = TRUE;
87SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
88    "Use the VM system for directory writes");
89int runningbufspace;
90SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
91    "Amount of presently outstanding async buffer io");
92static int bufspace;
93SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
94    "KVA memory used for bufs");
95static int maxbufspace;
96SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
97    "Maximum allowed value of bufspace (including buf_daemon)");
98static int bufmallocspace;
99SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
100    "Amount of malloced memory for buffers");
101static int maxbufmallocspace;
102SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
103    "Maximum amount of malloced memory for buffers");
104static int lobufspace;
105SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
106    "Minimum amount of buffers we want to have");
107static int hibufspace;
108SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
109    "Maximum allowed value of bufspace (excluding buf_daemon)");
110static int bufreusecnt;
111SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
112    "Number of times we have reused a buffer");
113static int buffreekvacnt;
114SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
115    "Number of times we have freed the KVA space from some buffer");
116static int bufdefragcnt;
117SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
118    "Number of times we have had to repeat buffer allocation to defragment");
119static int lorunningspace;
120SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
121    "Minimum preferred space used for in-progress I/O");
122static int hirunningspace;
123SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
124    "Maximum amount of space to use for in-progress I/O");
125static int numdirtybuffers;
126SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
127    "Number of buffers that are dirty (has unwritten changes) at the moment");
128static int lodirtybuffers;
129SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
130    "How many buffers we want to have free before bufdaemon can sleep");
131static int hidirtybuffers;
132SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
133    "When the number of dirty buffers is considered severe");
134static int numfreebuffers;
135SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
136    "Number of free buffers");
137static int lofreebuffers;
138SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
139   "XXX Unused");
140static int hifreebuffers;
141SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
142   "XXX Complicatedly unused");
143static int getnewbufcalls;
144SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
145   "Number of calls to getnewbuf");
146static int getnewbufrestarts;
147SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
148    "Number of times getnewbuf has had to restart a buffer aquisition");
149static int dobkgrdwrite = 1;
150SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
151    "Do background writes (honoring the BX_BKGRDWRITE flag)?");
152
153/*
154 * Wakeup point for bufdaemon, as well as indicator of whether it is already
155 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
156 * is idling.
157 */
158static int bd_request;
159
160/*
161 * bogus page -- for I/O to/from partially complete buffers
162 * this is a temporary solution to the problem, but it is not
163 * really that bad.  it would be better to split the buffer
164 * for input in the case of buffers partially already in memory,
165 * but the code is intricate enough already.
166 */
167vm_page_t bogus_page;
168
169/*
170 * Offset for bogus_page.
171 * XXX bogus_offset should be local to bufinit
172 */
173static vm_offset_t bogus_offset;
174
175/*
176 * Synchronization (sleep/wakeup) variable for active buffer space requests.
177 * Set when wait starts, cleared prior to wakeup().
178 * Used in runningbufwakeup() and waitrunningbufspace().
179 */
180static int runningbufreq;
181
182/*
183 * Synchronization (sleep/wakeup) variable for buffer requests.
184 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
185 * by and/or.
186 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
187 * getnewbuf(), and getblk().
188 */
189static int needsbuffer;
190
191#ifdef USE_BUFHASH
192/*
193 * Mask for index into the buffer hash table, which needs to be power of 2 in
194 * size.  Set in kern_vfs_bio_buffer_alloc.
195 */
196static int bufhashmask;
197
198/*
199 * Hash table for all buffers, with a linked list hanging from each table
200 * entry.  Set in kern_vfs_bio_buffer_alloc, initialized in buf_init.
201 */
202static LIST_HEAD(bufhashhdr, buf) *bufhashtbl;
203
204/*
205 * Somewhere to store buffers when they are not in another list, to always
206 * have them in a list (and thus being able to use the same set of operations
207 * on them.)
208 */
209static struct bufhashhdr invalhash;
210
211#endif
212
213/*
214 * Definitions for the buffer free lists.
215 */
216#define BUFFER_QUEUES	6	/* number of free buffer queues */
217
218#define QUEUE_NONE	0	/* on no queue */
219#define QUEUE_LOCKED	1	/* locked buffers */
220#define QUEUE_CLEAN	2	/* non-B_DELWRI buffers */
221#define QUEUE_DIRTY	3	/* B_DELWRI buffers */
222#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
223#define QUEUE_EMPTY	5	/* empty buffer headers */
224
225/* Queues for free buffers with various properties */
226static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
227/*
228 * Single global constant for BUF_WMESG, to avoid getting multiple references.
229 * buf_wmesg is referred from macros.
230 */
231const char *buf_wmesg = BUF_WMESG;
232
233#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
234#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
235#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
236#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
237
238#ifdef USE_BUFHASH
239/*
240 * Buffer hash table code.  Note that the logical block scans linearly, which
241 * gives us some L1 cache locality.
242 */
243
244static __inline
245struct bufhashhdr *
246bufhash(struct vnode *vnp, daddr_t bn)
247{
248	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
249}
250
251#endif
252
253/*
254 *	numdirtywakeup:
255 *
256 *	If someone is blocked due to there being too many dirty buffers,
257 *	and numdirtybuffers is now reasonable, wake them up.
258 */
259
260static __inline void
261numdirtywakeup(int level)
262{
263	if (numdirtybuffers <= level) {
264		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
265			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
266			wakeup(&needsbuffer);
267		}
268	}
269}
270
271/*
272 *	bufspacewakeup:
273 *
274 *	Called when buffer space is potentially available for recovery.
275 *	getnewbuf() will block on this flag when it is unable to free
276 *	sufficient buffer space.  Buffer space becomes recoverable when
277 *	bp's get placed back in the queues.
278 */
279
280static __inline void
281bufspacewakeup(void)
282{
283	/*
284	 * If someone is waiting for BUF space, wake them up.  Even
285	 * though we haven't freed the kva space yet, the waiting
286	 * process will be able to now.
287	 */
288	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
289		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
290		wakeup(&needsbuffer);
291	}
292}
293
294/*
295 * runningbufwakeup() - in-progress I/O accounting.
296 *
297 */
298static __inline void
299runningbufwakeup(struct buf *bp)
300{
301	if (bp->b_runningbufspace) {
302		runningbufspace -= bp->b_runningbufspace;
303		bp->b_runningbufspace = 0;
304		if (runningbufreq && runningbufspace <= lorunningspace) {
305			runningbufreq = 0;
306			wakeup(&runningbufreq);
307		}
308	}
309}
310
311/*
312 *	bufcountwakeup:
313 *
314 *	Called when a buffer has been added to one of the free queues to
315 *	account for the buffer and to wakeup anyone waiting for free buffers.
316 *	This typically occurs when large amounts of metadata are being handled
317 *	by the buffer cache ( else buffer space runs out first, usually ).
318 */
319
320static __inline void
321bufcountwakeup(void)
322{
323	++numfreebuffers;
324	if (needsbuffer) {
325		needsbuffer &= ~VFS_BIO_NEED_ANY;
326		if (numfreebuffers >= hifreebuffers)
327			needsbuffer &= ~VFS_BIO_NEED_FREE;
328		wakeup(&needsbuffer);
329	}
330}
331
332/*
333 *	waitrunningbufspace()
334 *
335 *	runningbufspace is a measure of the amount of I/O currently
336 *	running.  This routine is used in async-write situations to
337 *	prevent creating huge backups of pending writes to a device.
338 *	Only asynchronous writes are governed by this function.
339 *
340 *	Reads will adjust runningbufspace, but will not block based on it.
341 *	The read load has a side effect of reducing the allowed write load.
342 *
343 *	This does NOT turn an async write into a sync write.  It waits
344 *	for earlier writes to complete and generally returns before the
345 *	caller's write has reached the device.
346 */
347static __inline void
348waitrunningbufspace(void)
349{
350	/*
351	 * XXX race against wakeup interrupt, currently
352	 * protected by Giant.  FIXME!
353	 */
354	while (runningbufspace > hirunningspace) {
355		++runningbufreq;
356		tsleep(&runningbufreq, PVM, "wdrain", 0);
357	}
358}
359
360
361/*
362 *	vfs_buf_test_cache:
363 *
364 *	Called when a buffer is extended.  This function clears the B_CACHE
365 *	bit if the newly extended portion of the buffer does not contain
366 *	valid data.
367 */
368static __inline__
369void
370vfs_buf_test_cache(struct buf *bp,
371		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
372		  vm_page_t m)
373{
374	GIANT_REQUIRED;
375
376	if (bp->b_flags & B_CACHE) {
377		int base = (foff + off) & PAGE_MASK;
378		if (vm_page_is_valid(m, base, size) == 0)
379			bp->b_flags &= ~B_CACHE;
380	}
381}
382
383/* Wake up the buffer deamon if necessary */
384static __inline__
385void
386bd_wakeup(int dirtybuflevel)
387{
388	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
389		bd_request = 1;
390		wakeup(&bd_request);
391	}
392}
393
394/*
395 * bd_speedup - speedup the buffer cache flushing code
396 */
397
398static __inline__
399void
400bd_speedup(void)
401{
402	bd_wakeup(1);
403}
404
405/*
406 * Calculating buffer cache scaling values and reserve space for buffer
407 * headers.  This is called during low level kernel initialization and
408 * may be called more then once.  We CANNOT write to the memory area
409 * being reserved at this time.
410 */
411caddr_t
412kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
413{
414	/*
415	 * physmem_est is in pages.  Convert it to kilobytes (assumes
416	 * PAGE_SIZE is >= 1K)
417	 */
418	physmem_est = physmem_est * (PAGE_SIZE / 1024);
419
420	/*
421	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
422	 * For the first 64MB of ram nominally allocate sufficient buffers to
423	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
424	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
425	 * the buffer cache we limit the eventual kva reservation to
426	 * maxbcache bytes.
427	 *
428	 * factor represents the 1/4 x ram conversion.
429	 */
430	if (nbuf == 0) {
431		int factor = 4 * BKVASIZE / 1024;
432
433		nbuf = 50;
434		if (physmem_est > 4096)
435			nbuf += min((physmem_est - 4096) / factor,
436			    65536 / factor);
437		if (physmem_est > 65536)
438			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
439
440		if (maxbcache && nbuf > maxbcache / BKVASIZE)
441			nbuf = maxbcache / BKVASIZE;
442	}
443
444#if 0
445	/*
446	 * Do not allow the buffer_map to be more then 1/2 the size of the
447	 * kernel_map.
448	 */
449	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
450	    (BKVASIZE * 2)) {
451		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
452		    (BKVASIZE * 2);
453		printf("Warning: nbufs capped at %d\n", nbuf);
454	}
455#endif
456
457	/*
458	 * swbufs are used as temporary holders for I/O, such as paging I/O.
459	 * We have no less then 16 and no more then 256.
460	 */
461	nswbuf = max(min(nbuf/4, 256), 16);
462
463	/*
464	 * Reserve space for the buffer cache buffers
465	 */
466	swbuf = (void *)v;
467	v = (caddr_t)(swbuf + nswbuf);
468	buf = (void *)v;
469	v = (caddr_t)(buf + nbuf);
470
471#ifdef USE_BUFHASH
472	/*
473	 * Calculate the hash table size and reserve space
474	 */
475	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
476		;
477	bufhashtbl = (void *)v;
478	v = (caddr_t)(bufhashtbl + bufhashmask);
479	--bufhashmask;
480#endif
481	return(v);
482}
483
484/* Initialize the buffer subsystem.  Called before use of any buffers. */
485void
486bufinit(void)
487{
488	struct buf *bp;
489	int i;
490
491	GIANT_REQUIRED;
492
493#ifdef USE_BUFHASH
494	LIST_INIT(&invalhash);
495#endif
496	mtx_init(&buftimelock, "buftime lock", NULL, MTX_DEF);
497
498#ifdef USE_BUFHASH
499	for (i = 0; i <= bufhashmask; i++)
500		LIST_INIT(&bufhashtbl[i]);
501#endif
502
503	/* next, make a null set of free lists */
504	for (i = 0; i < BUFFER_QUEUES; i++)
505		TAILQ_INIT(&bufqueues[i]);
506
507	/* finally, initialize each buffer header and stick on empty q */
508	for (i = 0; i < nbuf; i++) {
509		bp = &buf[i];
510		bzero(bp, sizeof *bp);
511		bp->b_flags = B_INVAL;	/* we're just an empty header */
512		bp->b_dev = NODEV;
513		bp->b_rcred = NOCRED;
514		bp->b_wcred = NOCRED;
515		bp->b_qindex = QUEUE_EMPTY;
516		bp->b_xflags = 0;
517		LIST_INIT(&bp->b_dep);
518		BUF_LOCKINIT(bp);
519		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
520#ifdef USE_BUFHASH
521		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
522#endif
523	}
524
525	/*
526	 * maxbufspace is the absolute maximum amount of buffer space we are
527	 * allowed to reserve in KVM and in real terms.  The absolute maximum
528	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
529	 * used by most other processes.  The differential is required to
530	 * ensure that buf_daemon is able to run when other processes might
531	 * be blocked waiting for buffer space.
532	 *
533	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
534	 * this may result in KVM fragmentation which is not handled optimally
535	 * by the system.
536	 */
537	maxbufspace = nbuf * BKVASIZE;
538	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
539	lobufspace = hibufspace - MAXBSIZE;
540
541	lorunningspace = 512 * 1024;
542	hirunningspace = 1024 * 1024;
543
544/*
545 * Limit the amount of malloc memory since it is wired permanently into
546 * the kernel space.  Even though this is accounted for in the buffer
547 * allocation, we don't want the malloced region to grow uncontrolled.
548 * The malloc scheme improves memory utilization significantly on average
549 * (small) directories.
550 */
551	maxbufmallocspace = hibufspace / 20;
552
553/*
554 * Reduce the chance of a deadlock occuring by limiting the number
555 * of delayed-write dirty buffers we allow to stack up.
556 */
557	hidirtybuffers = nbuf / 4 + 20;
558	numdirtybuffers = 0;
559/*
560 * To support extreme low-memory systems, make sure hidirtybuffers cannot
561 * eat up all available buffer space.  This occurs when our minimum cannot
562 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
563 * BKVASIZE'd (8K) buffers.
564 */
565	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
566		hidirtybuffers >>= 1;
567	}
568	lodirtybuffers = hidirtybuffers / 2;
569
570/*
571 * Try to keep the number of free buffers in the specified range,
572 * and give special processes (e.g. like buf_daemon) access to an
573 * emergency reserve.
574 */
575	lofreebuffers = nbuf / 18 + 5;
576	hifreebuffers = 2 * lofreebuffers;
577	numfreebuffers = nbuf;
578
579/*
580 * Maximum number of async ops initiated per buf_daemon loop.  This is
581 * somewhat of a hack at the moment, we really need to limit ourselves
582 * based on the number of bytes of I/O in-transit that were initiated
583 * from buf_daemon.
584 */
585
586	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
587	bogus_page = vm_page_alloc(kernel_object,
588			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
589			VM_ALLOC_NORMAL);
590	cnt.v_wire_count++;
591}
592
593/*
594 * bfreekva() - free the kva allocation for a buffer.
595 *
596 *	Must be called at splbio() or higher as this is the only locking for
597 *	buffer_map.
598 *
599 *	Since this call frees up buffer space, we call bufspacewakeup().
600 */
601static void
602bfreekva(struct buf * bp)
603{
604	GIANT_REQUIRED;
605
606	if (bp->b_kvasize) {
607		++buffreekvacnt;
608		bufspace -= bp->b_kvasize;
609		vm_map_delete(buffer_map,
610		    (vm_offset_t) bp->b_kvabase,
611		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
612		);
613		bp->b_kvasize = 0;
614		bufspacewakeup();
615	}
616}
617
618/*
619 *	bremfree:
620 *
621 *	Remove the buffer from the appropriate free list.
622 */
623void
624bremfree(struct buf * bp)
625{
626	int s = splbio();
627	int old_qindex = bp->b_qindex;
628
629	GIANT_REQUIRED;
630
631	if (bp->b_qindex != QUEUE_NONE) {
632		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
633		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
634		bp->b_qindex = QUEUE_NONE;
635	} else {
636		if (BUF_REFCNT(bp) <= 1)
637			panic("bremfree: removing a buffer not on a queue");
638	}
639
640	/*
641	 * Fixup numfreebuffers count.  If the buffer is invalid or not
642	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
643	 * the buffer was free and we must decrement numfreebuffers.
644	 */
645	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
646		switch(old_qindex) {
647		case QUEUE_DIRTY:
648		case QUEUE_CLEAN:
649		case QUEUE_EMPTY:
650		case QUEUE_EMPTYKVA:
651			--numfreebuffers;
652			break;
653		default:
654			break;
655		}
656	}
657	splx(s);
658}
659
660
661/*
662 * Get a buffer with the specified data.  Look in the cache first.  We
663 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
664 * is set, the buffer is valid and we do not have to do anything ( see
665 * getblk() ).  This is really just a special case of breadn().
666 */
667int
668bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
669    struct buf ** bpp)
670{
671
672	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
673}
674
675/*
676 * Operates like bread, but also starts asynchronous I/O on
677 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
678 * to initiating I/O . If B_CACHE is set, the buffer is valid
679 * and we do not have to do anything.
680 */
681int
682breadn(struct vnode * vp, daddr_t blkno, int size,
683    daddr_t * rablkno, int *rabsize,
684    int cnt, struct ucred * cred, struct buf ** bpp)
685{
686	struct buf *bp, *rabp;
687	int i;
688	int rv = 0, readwait = 0;
689
690	*bpp = bp = getblk(vp, blkno, size, 0, 0);
691
692	/* if not found in cache, do some I/O */
693	if ((bp->b_flags & B_CACHE) == 0) {
694		if (curthread != PCPU_GET(idlethread))
695			curthread->td_proc->p_stats->p_ru.ru_inblock++;
696		bp->b_iocmd = BIO_READ;
697		bp->b_flags &= ~B_INVAL;
698		bp->b_ioflags &= ~BIO_ERROR;
699		if (bp->b_rcred == NOCRED && cred != NOCRED)
700			bp->b_rcred = crhold(cred);
701		vfs_busy_pages(bp, 0);
702		VOP_STRATEGY(vp, bp);
703		++readwait;
704	}
705
706	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
707		if (inmem(vp, *rablkno))
708			continue;
709		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
710
711		if ((rabp->b_flags & B_CACHE) == 0) {
712			if (curthread != PCPU_GET(idlethread))
713				curthread->td_proc->p_stats->p_ru.ru_inblock++;
714			rabp->b_flags |= B_ASYNC;
715			rabp->b_flags &= ~B_INVAL;
716			rabp->b_ioflags &= ~BIO_ERROR;
717			rabp->b_iocmd = BIO_READ;
718			if (rabp->b_rcred == NOCRED && cred != NOCRED)
719				rabp->b_rcred = crhold(cred);
720			vfs_busy_pages(rabp, 0);
721			BUF_KERNPROC(rabp);
722			VOP_STRATEGY(vp, rabp);
723		} else {
724			brelse(rabp);
725		}
726	}
727
728	if (readwait) {
729		rv = bufwait(bp);
730	}
731	return (rv);
732}
733
734/*
735 * Write, release buffer on completion.  (Done by iodone
736 * if async).  Do not bother writing anything if the buffer
737 * is invalid.
738 *
739 * Note that we set B_CACHE here, indicating that buffer is
740 * fully valid and thus cacheable.  This is true even of NFS
741 * now so we set it generally.  This could be set either here
742 * or in biodone() since the I/O is synchronous.  We put it
743 * here.
744 */
745
746int
747bwrite(struct buf * bp)
748{
749	int oldflags, s;
750	struct buf *newbp;
751
752	if (bp->b_flags & B_INVAL) {
753		brelse(bp);
754		return (0);
755	}
756
757	oldflags = bp->b_flags;
758
759	if (BUF_REFCNT(bp) == 0)
760		panic("bwrite: buffer is not busy???");
761	s = splbio();
762	/*
763	 * If a background write is already in progress, delay
764	 * writing this block if it is asynchronous. Otherwise
765	 * wait for the background write to complete.
766	 */
767	if (bp->b_xflags & BX_BKGRDINPROG) {
768		if (bp->b_flags & B_ASYNC) {
769			splx(s);
770			bdwrite(bp);
771			return (0);
772		}
773		bp->b_xflags |= BX_BKGRDWAIT;
774		tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0);
775		if (bp->b_xflags & BX_BKGRDINPROG)
776			panic("bwrite: still writing");
777	}
778
779	/* Mark the buffer clean */
780	bundirty(bp);
781
782	/*
783	 * If this buffer is marked for background writing and we
784	 * do not have to wait for it, make a copy and write the
785	 * copy so as to leave this buffer ready for further use.
786	 *
787	 * This optimization eats a lot of memory.  If we have a page
788	 * or buffer shortfall we can't do it.
789	 */
790	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
791	    (bp->b_flags & B_ASYNC) &&
792	    !vm_page_count_severe() &&
793	    !buf_dirty_count_severe()) {
794		if (bp->b_iodone != NULL) {
795			printf("bp->b_iodone = %p\n", bp->b_iodone);
796			panic("bwrite: need chained iodone");
797		}
798
799		/* get a new block */
800		newbp = geteblk(bp->b_bufsize);
801
802		/*
803		 * set it to be identical to the old block.  We have to
804		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
805		 * to avoid confusing the splay tree and gbincore().
806		 */
807		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
808		newbp->b_lblkno = bp->b_lblkno;
809		newbp->b_xflags |= BX_BKGRDMARKER;
810		bgetvp(bp->b_vp, newbp);
811		newbp->b_blkno = bp->b_blkno;
812		newbp->b_offset = bp->b_offset;
813		newbp->b_iodone = vfs_backgroundwritedone;
814		newbp->b_flags |= B_ASYNC;
815		newbp->b_flags &= ~B_INVAL;
816
817		/* move over the dependencies */
818		if (LIST_FIRST(&bp->b_dep) != NULL)
819			buf_movedeps(bp, newbp);
820
821		/*
822		 * Initiate write on the copy, release the original to
823		 * the B_LOCKED queue so that it cannot go away until
824		 * the background write completes. If not locked it could go
825		 * away and then be reconstituted while it was being written.
826		 * If the reconstituted buffer were written, we could end up
827		 * with two background copies being written at the same time.
828		 */
829		bp->b_xflags |= BX_BKGRDINPROG;
830		bp->b_flags |= B_LOCKED;
831		bqrelse(bp);
832		bp = newbp;
833	}
834
835	bp->b_flags &= ~B_DONE;
836	bp->b_ioflags &= ~BIO_ERROR;
837	bp->b_flags |= B_WRITEINPROG | B_CACHE;
838	bp->b_iocmd = BIO_WRITE;
839
840	VI_LOCK(bp->b_vp);
841	bp->b_vp->v_numoutput++;
842	VI_UNLOCK(bp->b_vp);
843	vfs_busy_pages(bp, 1);
844
845	/*
846	 * Normal bwrites pipeline writes
847	 */
848	bp->b_runningbufspace = bp->b_bufsize;
849	runningbufspace += bp->b_runningbufspace;
850
851	if (curthread != PCPU_GET(idlethread))
852		curthread->td_proc->p_stats->p_ru.ru_oublock++;
853	splx(s);
854	if (oldflags & B_ASYNC)
855		BUF_KERNPROC(bp);
856	BUF_STRATEGY(bp);
857
858	if ((oldflags & B_ASYNC) == 0) {
859		int rtval = bufwait(bp);
860		brelse(bp);
861		return (rtval);
862	} else if ((oldflags & B_NOWDRAIN) == 0) {
863		/*
864		 * don't allow the async write to saturate the I/O
865		 * system.  Deadlocks can occur only if a device strategy
866		 * routine (like in MD) turns around and issues another
867		 * high-level write, in which case B_NOWDRAIN is expected
868		 * to be set.  Otherwise we will not deadlock here because
869		 * we are blocking waiting for I/O that is already in-progress
870		 * to complete.
871		 */
872		waitrunningbufspace();
873	}
874
875	return (0);
876}
877
878/*
879 * Complete a background write started from bwrite.
880 */
881static void
882vfs_backgroundwritedone(bp)
883	struct buf *bp;
884{
885	struct buf *origbp;
886
887	/*
888	 * Find the original buffer that we are writing.
889	 */
890	VI_LOCK(bp->b_vp);
891	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
892		panic("backgroundwritedone: lost buffer");
893	VI_UNLOCK(bp->b_vp);
894	/*
895	 * Process dependencies then return any unfinished ones.
896	 */
897	if (LIST_FIRST(&bp->b_dep) != NULL)
898		buf_complete(bp);
899	if (LIST_FIRST(&bp->b_dep) != NULL)
900		buf_movedeps(bp, origbp);
901	/*
902	 * Clear the BX_BKGRDINPROG flag in the original buffer
903	 * and awaken it if it is waiting for the write to complete.
904	 * If BX_BKGRDINPROG is not set in the original buffer it must
905	 * have been released and re-instantiated - which is not legal.
906	 */
907	KASSERT((origbp->b_xflags & BX_BKGRDINPROG),
908	    ("backgroundwritedone: lost buffer2"));
909	origbp->b_xflags &= ~BX_BKGRDINPROG;
910	if (origbp->b_xflags & BX_BKGRDWAIT) {
911		origbp->b_xflags &= ~BX_BKGRDWAIT;
912		wakeup(&origbp->b_xflags);
913	}
914	/*
915	 * Clear the B_LOCKED flag and remove it from the locked
916	 * queue if it currently resides there.
917	 */
918	origbp->b_flags &= ~B_LOCKED;
919	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
920		bremfree(origbp);
921		bqrelse(origbp);
922	}
923	/*
924	 * This buffer is marked B_NOCACHE, so when it is released
925	 * by biodone, it will be tossed. We mark it with BIO_READ
926	 * to avoid biodone doing a second vwakeup.
927	 */
928	bp->b_flags |= B_NOCACHE;
929	bp->b_iocmd = BIO_READ;
930	bp->b_flags &= ~(B_CACHE | B_DONE);
931	bp->b_iodone = 0;
932	bufdone(bp);
933}
934
935/*
936 * Delayed write. (Buffer is marked dirty).  Do not bother writing
937 * anything if the buffer is marked invalid.
938 *
939 * Note that since the buffer must be completely valid, we can safely
940 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
941 * biodone() in order to prevent getblk from writing the buffer
942 * out synchronously.
943 */
944void
945bdwrite(struct buf * bp)
946{
947	GIANT_REQUIRED;
948
949	if (BUF_REFCNT(bp) == 0)
950		panic("bdwrite: buffer is not busy");
951
952	if (bp->b_flags & B_INVAL) {
953		brelse(bp);
954		return;
955	}
956	bdirty(bp);
957
958	/*
959	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
960	 * true even of NFS now.
961	 */
962	bp->b_flags |= B_CACHE;
963
964	/*
965	 * This bmap keeps the system from needing to do the bmap later,
966	 * perhaps when the system is attempting to do a sync.  Since it
967	 * is likely that the indirect block -- or whatever other datastructure
968	 * that the filesystem needs is still in memory now, it is a good
969	 * thing to do this.  Note also, that if the pageout daemon is
970	 * requesting a sync -- there might not be enough memory to do
971	 * the bmap then...  So, this is important to do.
972	 */
973	if (bp->b_lblkno == bp->b_blkno) {
974		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
975	}
976
977	/*
978	 * Set the *dirty* buffer range based upon the VM system dirty pages.
979	 */
980	vfs_setdirty(bp);
981
982	/*
983	 * We need to do this here to satisfy the vnode_pager and the
984	 * pageout daemon, so that it thinks that the pages have been
985	 * "cleaned".  Note that since the pages are in a delayed write
986	 * buffer -- the VFS layer "will" see that the pages get written
987	 * out on the next sync, or perhaps the cluster will be completed.
988	 */
989	vfs_clean_pages(bp);
990	bqrelse(bp);
991
992	/*
993	 * Wakeup the buffer flushing daemon if we have a lot of dirty
994	 * buffers (midpoint between our recovery point and our stall
995	 * point).
996	 */
997	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
998
999	/*
1000	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1001	 * due to the softdep code.
1002	 */
1003}
1004
1005/*
1006 *	bdirty:
1007 *
1008 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1009 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1010 *	itself to properly update it in the dirty/clean lists.  We mark it
1011 *	B_DONE to ensure that any asynchronization of the buffer properly
1012 *	clears B_DONE ( else a panic will occur later ).
1013 *
1014 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1015 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1016 *	should only be called if the buffer is known-good.
1017 *
1018 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1019 *	count.
1020 *
1021 *	Must be called at splbio().
1022 *	The buffer must be on QUEUE_NONE.
1023 */
1024void
1025bdirty(bp)
1026	struct buf *bp;
1027{
1028	KASSERT(bp->b_qindex == QUEUE_NONE,
1029	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1030	bp->b_flags &= ~(B_RELBUF);
1031	bp->b_iocmd = BIO_WRITE;
1032
1033	if ((bp->b_flags & B_DELWRI) == 0) {
1034		bp->b_flags |= B_DONE | B_DELWRI;
1035		reassignbuf(bp, bp->b_vp);
1036		++numdirtybuffers;
1037		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1038	}
1039}
1040
1041/*
1042 *	bundirty:
1043 *
1044 *	Clear B_DELWRI for buffer.
1045 *
1046 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1047 *	count.
1048 *
1049 *	Must be called at splbio().
1050 *	The buffer must be on QUEUE_NONE.
1051 */
1052
1053void
1054bundirty(bp)
1055	struct buf *bp;
1056{
1057	KASSERT(bp->b_qindex == QUEUE_NONE,
1058	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1059
1060	if (bp->b_flags & B_DELWRI) {
1061		bp->b_flags &= ~B_DELWRI;
1062		reassignbuf(bp, bp->b_vp);
1063		--numdirtybuffers;
1064		numdirtywakeup(lodirtybuffers);
1065	}
1066	/*
1067	 * Since it is now being written, we can clear its deferred write flag.
1068	 */
1069	bp->b_flags &= ~B_DEFERRED;
1070}
1071
1072/*
1073 *	bawrite:
1074 *
1075 *	Asynchronous write.  Start output on a buffer, but do not wait for
1076 *	it to complete.  The buffer is released when the output completes.
1077 *
1078 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1079 *	B_INVAL buffers.  Not us.
1080 */
1081void
1082bawrite(struct buf * bp)
1083{
1084	bp->b_flags |= B_ASYNC;
1085	(void) BUF_WRITE(bp);
1086}
1087
1088/*
1089 *	bwillwrite:
1090 *
1091 *	Called prior to the locking of any vnodes when we are expecting to
1092 *	write.  We do not want to starve the buffer cache with too many
1093 *	dirty buffers so we block here.  By blocking prior to the locking
1094 *	of any vnodes we attempt to avoid the situation where a locked vnode
1095 *	prevents the various system daemons from flushing related buffers.
1096 */
1097
1098void
1099bwillwrite(void)
1100{
1101	if (numdirtybuffers >= hidirtybuffers) {
1102		int s;
1103
1104		mtx_lock(&Giant);
1105		s = splbio();
1106		while (numdirtybuffers >= hidirtybuffers) {
1107			bd_wakeup(1);
1108			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1109			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
1110		}
1111		splx(s);
1112		mtx_unlock(&Giant);
1113	}
1114}
1115
1116/*
1117 * Return true if we have too many dirty buffers.
1118 */
1119int
1120buf_dirty_count_severe(void)
1121{
1122	return(numdirtybuffers >= hidirtybuffers);
1123}
1124
1125/*
1126 *	brelse:
1127 *
1128 *	Release a busy buffer and, if requested, free its resources.  The
1129 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1130 *	to be accessed later as a cache entity or reused for other purposes.
1131 */
1132void
1133brelse(struct buf * bp)
1134{
1135	int s;
1136
1137	GIANT_REQUIRED;
1138
1139	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1140	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1141
1142	s = splbio();
1143
1144	if (bp->b_flags & B_LOCKED)
1145		bp->b_ioflags &= ~BIO_ERROR;
1146
1147	if (bp->b_iocmd == BIO_WRITE &&
1148	    (bp->b_ioflags & BIO_ERROR) &&
1149	    !(bp->b_flags & B_INVAL)) {
1150		/*
1151		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1152		 * pages from being scrapped.  If B_INVAL is set then
1153		 * this case is not run and the next case is run to
1154		 * destroy the buffer.  B_INVAL can occur if the buffer
1155		 * is outside the range supported by the underlying device.
1156		 */
1157		bp->b_ioflags &= ~BIO_ERROR;
1158		bdirty(bp);
1159	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1160	    (bp->b_ioflags & BIO_ERROR) ||
1161	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1162		/*
1163		 * Either a failed I/O or we were asked to free or not
1164		 * cache the buffer.
1165		 */
1166		bp->b_flags |= B_INVAL;
1167		if (LIST_FIRST(&bp->b_dep) != NULL)
1168			buf_deallocate(bp);
1169		if (bp->b_flags & B_DELWRI) {
1170			--numdirtybuffers;
1171			numdirtywakeup(lodirtybuffers);
1172		}
1173		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1174		if ((bp->b_flags & B_VMIO) == 0) {
1175			if (bp->b_bufsize)
1176				allocbuf(bp, 0);
1177			if (bp->b_vp)
1178				brelvp(bp);
1179		}
1180	}
1181
1182	/*
1183	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1184	 * is called with B_DELWRI set, the underlying pages may wind up
1185	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1186	 * because pages associated with a B_DELWRI bp are marked clean.
1187	 *
1188	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1189	 * if B_DELWRI is set.
1190	 *
1191	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1192	 * on pages to return pages to the VM page queues.
1193	 */
1194	if (bp->b_flags & B_DELWRI)
1195		bp->b_flags &= ~B_RELBUF;
1196	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1197		bp->b_flags |= B_RELBUF;
1198
1199	/*
1200	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1201	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1202	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1203	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1204	 *
1205	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1206	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1207	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1208	 *
1209	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1210	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1211	 * the commit state and we cannot afford to lose the buffer. If the
1212	 * buffer has a background write in progress, we need to keep it
1213	 * around to prevent it from being reconstituted and starting a second
1214	 * background write.
1215	 */
1216	if ((bp->b_flags & B_VMIO)
1217	    && !(bp->b_vp->v_mount != NULL &&
1218		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1219		 !vn_isdisk(bp->b_vp, NULL) &&
1220		 (bp->b_flags & B_DELWRI))
1221	    ) {
1222
1223		int i, j, resid;
1224		vm_page_t m;
1225		off_t foff;
1226		vm_pindex_t poff;
1227		vm_object_t obj;
1228		struct vnode *vp;
1229
1230		vp = bp->b_vp;
1231		obj = bp->b_object;
1232
1233		/*
1234		 * Get the base offset and length of the buffer.  Note that
1235		 * in the VMIO case if the buffer block size is not
1236		 * page-aligned then b_data pointer may not be page-aligned.
1237		 * But our b_pages[] array *IS* page aligned.
1238		 *
1239		 * block sizes less then DEV_BSIZE (usually 512) are not
1240		 * supported due to the page granularity bits (m->valid,
1241		 * m->dirty, etc...).
1242		 *
1243		 * See man buf(9) for more information
1244		 */
1245		resid = bp->b_bufsize;
1246		foff = bp->b_offset;
1247
1248		for (i = 0; i < bp->b_npages; i++) {
1249			int had_bogus = 0;
1250
1251			m = bp->b_pages[i];
1252			vm_page_flag_clear(m, PG_ZERO);
1253
1254			/*
1255			 * If we hit a bogus page, fixup *all* the bogus pages
1256			 * now.
1257			 */
1258			if (m == bogus_page) {
1259				poff = OFF_TO_IDX(bp->b_offset);
1260				had_bogus = 1;
1261
1262				for (j = i; j < bp->b_npages; j++) {
1263					vm_page_t mtmp;
1264					mtmp = bp->b_pages[j];
1265					if (mtmp == bogus_page) {
1266						mtmp = vm_page_lookup(obj, poff + j);
1267						if (!mtmp) {
1268							panic("brelse: page missing\n");
1269						}
1270						bp->b_pages[j] = mtmp;
1271					}
1272				}
1273
1274				if ((bp->b_flags & B_INVAL) == 0) {
1275					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1276				}
1277				m = bp->b_pages[i];
1278			}
1279			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1280				int poffset = foff & PAGE_MASK;
1281				int presid = resid > (PAGE_SIZE - poffset) ?
1282					(PAGE_SIZE - poffset) : resid;
1283
1284				KASSERT(presid >= 0, ("brelse: extra page"));
1285				vm_page_set_invalid(m, poffset, presid);
1286				if (had_bogus)
1287					printf("avoided corruption bug in bogus_page/brelse code\n");
1288			}
1289			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1290			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1291		}
1292
1293		if (bp->b_flags & (B_INVAL | B_RELBUF))
1294			vfs_vmio_release(bp);
1295
1296	} else if (bp->b_flags & B_VMIO) {
1297
1298		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1299			vfs_vmio_release(bp);
1300		}
1301
1302	}
1303
1304	if (bp->b_qindex != QUEUE_NONE)
1305		panic("brelse: free buffer onto another queue???");
1306	if (BUF_REFCNT(bp) > 1) {
1307		/* do not release to free list */
1308		BUF_UNLOCK(bp);
1309		splx(s);
1310		return;
1311	}
1312
1313	/* enqueue */
1314
1315	/* buffers with no memory */
1316	if (bp->b_bufsize == 0) {
1317		bp->b_flags |= B_INVAL;
1318		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1319		if (bp->b_xflags & BX_BKGRDINPROG)
1320			panic("losing buffer 1");
1321		if (bp->b_kvasize) {
1322			bp->b_qindex = QUEUE_EMPTYKVA;
1323		} else {
1324			bp->b_qindex = QUEUE_EMPTY;
1325		}
1326		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1327#ifdef USE_BUFHASH
1328		LIST_REMOVE(bp, b_hash);
1329		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1330#endif
1331		bp->b_dev = NODEV;
1332	/* buffers with junk contents */
1333	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1334	    (bp->b_ioflags & BIO_ERROR)) {
1335		bp->b_flags |= B_INVAL;
1336		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1337		if (bp->b_xflags & BX_BKGRDINPROG)
1338			panic("losing buffer 2");
1339		bp->b_qindex = QUEUE_CLEAN;
1340		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1341#ifdef USE_BUFHASH
1342		LIST_REMOVE(bp, b_hash);
1343		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1344#endif
1345		bp->b_dev = NODEV;
1346
1347	/* buffers that are locked */
1348	} else if (bp->b_flags & B_LOCKED) {
1349		bp->b_qindex = QUEUE_LOCKED;
1350		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1351
1352	/* remaining buffers */
1353	} else {
1354		if (bp->b_flags & B_DELWRI)
1355			bp->b_qindex = QUEUE_DIRTY;
1356		else
1357			bp->b_qindex = QUEUE_CLEAN;
1358		if (bp->b_flags & B_AGE)
1359			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1360		else
1361			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1362	}
1363
1364	/*
1365	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1366	 * placed the buffer on the correct queue.  We must also disassociate
1367	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1368	 * find it.
1369	 */
1370	if (bp->b_flags & B_INVAL) {
1371		if (bp->b_flags & B_DELWRI)
1372			bundirty(bp);
1373		if (bp->b_vp)
1374			brelvp(bp);
1375	}
1376
1377	/*
1378	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1379	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1380	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1381	 * if B_INVAL is set ).
1382	 */
1383
1384	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1385		bufcountwakeup();
1386
1387	/*
1388	 * Something we can maybe free or reuse
1389	 */
1390	if (bp->b_bufsize || bp->b_kvasize)
1391		bufspacewakeup();
1392
1393	/* unlock */
1394	BUF_UNLOCK(bp);
1395	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1396			B_DIRECT | B_NOWDRAIN);
1397	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1398		panic("brelse: not dirty");
1399	splx(s);
1400}
1401
1402/*
1403 * Release a buffer back to the appropriate queue but do not try to free
1404 * it.  The buffer is expected to be used again soon.
1405 *
1406 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1407 * biodone() to requeue an async I/O on completion.  It is also used when
1408 * known good buffers need to be requeued but we think we may need the data
1409 * again soon.
1410 *
1411 * XXX we should be able to leave the B_RELBUF hint set on completion.
1412 */
1413void
1414bqrelse(struct buf * bp)
1415{
1416	int s;
1417
1418	s = splbio();
1419
1420	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1421
1422	if (bp->b_qindex != QUEUE_NONE)
1423		panic("bqrelse: free buffer onto another queue???");
1424	if (BUF_REFCNT(bp) > 1) {
1425		/* do not release to free list */
1426		BUF_UNLOCK(bp);
1427		splx(s);
1428		return;
1429	}
1430	if (bp->b_flags & B_LOCKED) {
1431		bp->b_ioflags &= ~BIO_ERROR;
1432		bp->b_qindex = QUEUE_LOCKED;
1433		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1434		/* buffers with stale but valid contents */
1435	} else if (bp->b_flags & B_DELWRI) {
1436		bp->b_qindex = QUEUE_DIRTY;
1437		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1438	} else if (vm_page_count_severe()) {
1439		/*
1440		 * We are too low on memory, we have to try to free the
1441		 * buffer (most importantly: the wired pages making up its
1442		 * backing store) *now*.
1443		 */
1444		splx(s);
1445		brelse(bp);
1446		return;
1447	} else {
1448		bp->b_qindex = QUEUE_CLEAN;
1449		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1450	}
1451
1452	if ((bp->b_flags & B_LOCKED) == 0 &&
1453	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1454		bufcountwakeup();
1455	}
1456
1457	/*
1458	 * Something we can maybe free or reuse.
1459	 */
1460	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1461		bufspacewakeup();
1462
1463	/* unlock */
1464	BUF_UNLOCK(bp);
1465	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1466	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1467		panic("bqrelse: not dirty");
1468	splx(s);
1469}
1470
1471/* Give pages used by the bp back to the VM system (where possible) */
1472static void
1473vfs_vmio_release(bp)
1474	struct buf *bp;
1475{
1476	int i;
1477	vm_page_t m;
1478
1479	GIANT_REQUIRED;
1480	vm_page_lock_queues();
1481	for (i = 0; i < bp->b_npages; i++) {
1482		m = bp->b_pages[i];
1483		bp->b_pages[i] = NULL;
1484		/*
1485		 * In order to keep page LRU ordering consistent, put
1486		 * everything on the inactive queue.
1487		 */
1488		vm_page_unwire(m, 0);
1489		/*
1490		 * We don't mess with busy pages, it is
1491		 * the responsibility of the process that
1492		 * busied the pages to deal with them.
1493		 */
1494		if ((m->flags & PG_BUSY) || (m->busy != 0))
1495			continue;
1496
1497		if (m->wire_count == 0) {
1498			vm_page_flag_clear(m, PG_ZERO);
1499			/*
1500			 * Might as well free the page if we can and it has
1501			 * no valid data.  We also free the page if the
1502			 * buffer was used for direct I/O
1503			 */
1504			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1505			    m->hold_count == 0) {
1506				vm_page_busy(m);
1507				pmap_page_protect(m, VM_PROT_NONE);
1508				vm_page_free(m);
1509			} else if (bp->b_flags & B_DIRECT) {
1510				vm_page_try_to_free(m);
1511			} else if (vm_page_count_severe()) {
1512				vm_page_try_to_cache(m);
1513			}
1514		}
1515	}
1516	vm_page_unlock_queues();
1517	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1518
1519	if (bp->b_bufsize) {
1520		bufspacewakeup();
1521		bp->b_bufsize = 0;
1522	}
1523	bp->b_npages = 0;
1524	bp->b_flags &= ~B_VMIO;
1525	if (bp->b_vp)
1526		brelvp(bp);
1527}
1528
1529#ifdef USE_BUFHASH
1530/*
1531 * XXX MOVED TO VFS_SUBR.C
1532 *
1533 * Check to see if a block is currently memory resident.
1534 */
1535struct buf *
1536gbincore(struct vnode * vp, daddr_t blkno)
1537{
1538	struct buf *bp;
1539	struct bufhashhdr *bh;
1540
1541	bh = bufhash(vp, blkno);
1542
1543	/* Search hash chain */
1544	LIST_FOREACH(bp, bh, b_hash) {
1545		/* hit */
1546		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1547		    (bp->b_flags & B_INVAL) == 0) {
1548			break;
1549		}
1550	}
1551	return (bp);
1552}
1553#endif
1554
1555/*
1556 *	vfs_bio_awrite:
1557 *
1558 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1559 *	This is much better then the old way of writing only one buffer at
1560 *	a time.  Note that we may not be presented with the buffers in the
1561 *	correct order, so we search for the cluster in both directions.
1562 */
1563int
1564vfs_bio_awrite(struct buf * bp)
1565{
1566	int i;
1567	int j;
1568	daddr_t lblkno = bp->b_lblkno;
1569	struct vnode *vp = bp->b_vp;
1570	int s;
1571	int ncl;
1572	struct buf *bpa;
1573	int nwritten;
1574	int size;
1575	int maxcl;
1576
1577	s = splbio();
1578	/*
1579	 * right now we support clustered writing only to regular files.  If
1580	 * we find a clusterable block we could be in the middle of a cluster
1581	 * rather then at the beginning.
1582	 */
1583	if ((vp->v_type == VREG) &&
1584	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1585	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1586
1587		size = vp->v_mount->mnt_stat.f_iosize;
1588		maxcl = MAXPHYS / size;
1589
1590		VI_LOCK(vp);
1591		for (i = 1; i < maxcl; i++) {
1592			if ((bpa = gbincore(vp, lblkno + i)) &&
1593			    BUF_REFCNT(bpa) == 0 &&
1594			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1595			    (B_DELWRI | B_CLUSTEROK)) &&
1596			    (bpa->b_bufsize == size)) {
1597				if ((bpa->b_blkno == bpa->b_lblkno) ||
1598				    (bpa->b_blkno !=
1599				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1600					break;
1601			} else {
1602				break;
1603			}
1604		}
1605		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1606			if ((bpa = gbincore(vp, lblkno - j)) &&
1607			    BUF_REFCNT(bpa) == 0 &&
1608			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1609			    (B_DELWRI | B_CLUSTEROK)) &&
1610			    (bpa->b_bufsize == size)) {
1611				if ((bpa->b_blkno == bpa->b_lblkno) ||
1612				    (bpa->b_blkno !=
1613				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1614					break;
1615			} else {
1616				break;
1617			}
1618		}
1619		VI_UNLOCK(vp);
1620		--j;
1621		ncl = i + j;
1622		/*
1623		 * this is a possible cluster write
1624		 */
1625		if (ncl != 1) {
1626			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1627			splx(s);
1628			return nwritten;
1629		}
1630	}
1631
1632	BUF_LOCK(bp, LK_EXCLUSIVE);
1633	bremfree(bp);
1634	bp->b_flags |= B_ASYNC;
1635
1636	splx(s);
1637	/*
1638	 * default (old) behavior, writing out only one block
1639	 *
1640	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1641	 */
1642	nwritten = bp->b_bufsize;
1643	(void) BUF_WRITE(bp);
1644
1645	return nwritten;
1646}
1647
1648/*
1649 *	getnewbuf:
1650 *
1651 *	Find and initialize a new buffer header, freeing up existing buffers
1652 *	in the bufqueues as necessary.  The new buffer is returned locked.
1653 *
1654 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1655 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1656 *
1657 *	We block if:
1658 *		We have insufficient buffer headers
1659 *		We have insufficient buffer space
1660 *		buffer_map is too fragmented ( space reservation fails )
1661 *		If we have to flush dirty buffers ( but we try to avoid this )
1662 *
1663 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1664 *	Instead we ask the buf daemon to do it for us.  We attempt to
1665 *	avoid piecemeal wakeups of the pageout daemon.
1666 */
1667
1668static struct buf *
1669getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1670{
1671	struct buf *bp;
1672	struct buf *nbp;
1673	int defrag = 0;
1674	int nqindex;
1675	static int flushingbufs;
1676
1677	GIANT_REQUIRED;
1678
1679	/*
1680	 * We can't afford to block since we might be holding a vnode lock,
1681	 * which may prevent system daemons from running.  We deal with
1682	 * low-memory situations by proactively returning memory and running
1683	 * async I/O rather then sync I/O.
1684	 */
1685
1686	++getnewbufcalls;
1687	--getnewbufrestarts;
1688restart:
1689	++getnewbufrestarts;
1690
1691	/*
1692	 * Setup for scan.  If we do not have enough free buffers,
1693	 * we setup a degenerate case that immediately fails.  Note
1694	 * that if we are specially marked process, we are allowed to
1695	 * dip into our reserves.
1696	 *
1697	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1698	 *
1699	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1700	 * However, there are a number of cases (defragging, reusing, ...)
1701	 * where we cannot backup.
1702	 */
1703	nqindex = QUEUE_EMPTYKVA;
1704	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1705
1706	if (nbp == NULL) {
1707		/*
1708		 * If no EMPTYKVA buffers and we are either
1709		 * defragging or reusing, locate a CLEAN buffer
1710		 * to free or reuse.  If bufspace useage is low
1711		 * skip this step so we can allocate a new buffer.
1712		 */
1713		if (defrag || bufspace >= lobufspace) {
1714			nqindex = QUEUE_CLEAN;
1715			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1716		}
1717
1718		/*
1719		 * If we could not find or were not allowed to reuse a
1720		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1721		 * buffer.  We can only use an EMPTY buffer if allocating
1722		 * its KVA would not otherwise run us out of buffer space.
1723		 */
1724		if (nbp == NULL && defrag == 0 &&
1725		    bufspace + maxsize < hibufspace) {
1726			nqindex = QUEUE_EMPTY;
1727			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1728		}
1729	}
1730
1731	/*
1732	 * Run scan, possibly freeing data and/or kva mappings on the fly
1733	 * depending.
1734	 */
1735
1736	while ((bp = nbp) != NULL) {
1737		int qindex = nqindex;
1738
1739		/*
1740		 * Calculate next bp ( we can only use it if we do not block
1741		 * or do other fancy things ).
1742		 */
1743		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1744			switch(qindex) {
1745			case QUEUE_EMPTY:
1746				nqindex = QUEUE_EMPTYKVA;
1747				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1748					break;
1749				/* FALLTHROUGH */
1750			case QUEUE_EMPTYKVA:
1751				nqindex = QUEUE_CLEAN;
1752				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1753					break;
1754				/* FALLTHROUGH */
1755			case QUEUE_CLEAN:
1756				/*
1757				 * nbp is NULL.
1758				 */
1759				break;
1760			}
1761		}
1762
1763		/*
1764		 * Sanity Checks
1765		 */
1766		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1767
1768		/*
1769		 * Note: we no longer distinguish between VMIO and non-VMIO
1770		 * buffers.
1771		 */
1772
1773		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1774
1775		/*
1776		 * If we are defragging then we need a buffer with
1777		 * b_kvasize != 0.  XXX this situation should no longer
1778		 * occur, if defrag is non-zero the buffer's b_kvasize
1779		 * should also be non-zero at this point.  XXX
1780		 */
1781		if (defrag && bp->b_kvasize == 0) {
1782			printf("Warning: defrag empty buffer %p\n", bp);
1783			continue;
1784		}
1785
1786		/*
1787		 * Start freeing the bp.  This is somewhat involved.  nbp
1788		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1789		 */
1790
1791		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1792			panic("getnewbuf: locked buf");
1793		bremfree(bp);
1794
1795		if (qindex == QUEUE_CLEAN) {
1796			if (bp->b_flags & B_VMIO) {
1797				bp->b_flags &= ~B_ASYNC;
1798				vfs_vmio_release(bp);
1799			}
1800			if (bp->b_vp)
1801				brelvp(bp);
1802		}
1803
1804		/*
1805		 * NOTE:  nbp is now entirely invalid.  We can only restart
1806		 * the scan from this point on.
1807		 *
1808		 * Get the rest of the buffer freed up.  b_kva* is still
1809		 * valid after this operation.
1810		 */
1811
1812		if (bp->b_rcred != NOCRED) {
1813			crfree(bp->b_rcred);
1814			bp->b_rcred = NOCRED;
1815		}
1816		if (bp->b_wcred != NOCRED) {
1817			crfree(bp->b_wcred);
1818			bp->b_wcred = NOCRED;
1819		}
1820		if (LIST_FIRST(&bp->b_dep) != NULL)
1821			buf_deallocate(bp);
1822		if (bp->b_xflags & BX_BKGRDINPROG)
1823			panic("losing buffer 3");
1824#ifdef USE_BUFHASH
1825		LIST_REMOVE(bp, b_hash);
1826		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1827#endif
1828
1829		if (bp->b_bufsize)
1830			allocbuf(bp, 0);
1831
1832		bp->b_flags = 0;
1833		bp->b_ioflags = 0;
1834		bp->b_xflags = 0;
1835		bp->b_dev = NODEV;
1836		bp->b_vp = NULL;
1837		bp->b_blkno = bp->b_lblkno = 0;
1838		bp->b_offset = NOOFFSET;
1839		bp->b_iodone = 0;
1840		bp->b_error = 0;
1841		bp->b_resid = 0;
1842		bp->b_bcount = 0;
1843		bp->b_npages = 0;
1844		bp->b_dirtyoff = bp->b_dirtyend = 0;
1845		bp->b_magic = B_MAGIC_BIO;
1846		bp->b_op = &buf_ops_bio;
1847		bp->b_object = NULL;
1848
1849		LIST_INIT(&bp->b_dep);
1850
1851		/*
1852		 * If we are defragging then free the buffer.
1853		 */
1854		if (defrag) {
1855			bp->b_flags |= B_INVAL;
1856			bfreekva(bp);
1857			brelse(bp);
1858			defrag = 0;
1859			goto restart;
1860		}
1861
1862		/*
1863		 * If we are overcomitted then recover the buffer and its
1864		 * KVM space.  This occurs in rare situations when multiple
1865		 * processes are blocked in getnewbuf() or allocbuf().
1866		 */
1867		if (bufspace >= hibufspace)
1868			flushingbufs = 1;
1869		if (flushingbufs && bp->b_kvasize != 0) {
1870			bp->b_flags |= B_INVAL;
1871			bfreekva(bp);
1872			brelse(bp);
1873			goto restart;
1874		}
1875		if (bufspace < lobufspace)
1876			flushingbufs = 0;
1877		break;
1878	}
1879
1880	/*
1881	 * If we exhausted our list, sleep as appropriate.  We may have to
1882	 * wakeup various daemons and write out some dirty buffers.
1883	 *
1884	 * Generally we are sleeping due to insufficient buffer space.
1885	 */
1886
1887	if (bp == NULL) {
1888		int flags;
1889		char *waitmsg;
1890
1891		if (defrag) {
1892			flags = VFS_BIO_NEED_BUFSPACE;
1893			waitmsg = "nbufkv";
1894		} else if (bufspace >= hibufspace) {
1895			waitmsg = "nbufbs";
1896			flags = VFS_BIO_NEED_BUFSPACE;
1897		} else {
1898			waitmsg = "newbuf";
1899			flags = VFS_BIO_NEED_ANY;
1900		}
1901
1902		bd_speedup();	/* heeeelp */
1903
1904		needsbuffer |= flags;
1905		while (needsbuffer & flags) {
1906			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1907			    waitmsg, slptimeo))
1908				return (NULL);
1909		}
1910	} else {
1911		/*
1912		 * We finally have a valid bp.  We aren't quite out of the
1913		 * woods, we still have to reserve kva space.  In order
1914		 * to keep fragmentation sane we only allocate kva in
1915		 * BKVASIZE chunks.
1916		 */
1917		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1918
1919		if (maxsize != bp->b_kvasize) {
1920			vm_offset_t addr = 0;
1921
1922			bfreekva(bp);
1923
1924			if (vm_map_findspace(buffer_map,
1925				vm_map_min(buffer_map), maxsize, &addr)) {
1926				/*
1927				 * Uh oh.  Buffer map is to fragmented.  We
1928				 * must defragment the map.
1929				 */
1930				++bufdefragcnt;
1931				defrag = 1;
1932				bp->b_flags |= B_INVAL;
1933				brelse(bp);
1934				goto restart;
1935			}
1936			if (addr) {
1937				vm_map_insert(buffer_map, NULL, 0,
1938					addr, addr + maxsize,
1939					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1940
1941				bp->b_kvabase = (caddr_t) addr;
1942				bp->b_kvasize = maxsize;
1943				bufspace += bp->b_kvasize;
1944				++bufreusecnt;
1945			}
1946		}
1947		bp->b_data = bp->b_kvabase;
1948	}
1949	return(bp);
1950}
1951
1952/*
1953 *	buf_daemon:
1954 *
1955 *	buffer flushing daemon.  Buffers are normally flushed by the
1956 *	update daemon but if it cannot keep up this process starts to
1957 *	take the load in an attempt to prevent getnewbuf() from blocking.
1958 */
1959
1960static struct proc *bufdaemonproc;
1961
1962static struct kproc_desc buf_kp = {
1963	"bufdaemon",
1964	buf_daemon,
1965	&bufdaemonproc
1966};
1967SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1968
1969static void
1970buf_daemon()
1971{
1972	int s;
1973
1974	mtx_lock(&Giant);
1975
1976	/*
1977	 * This process needs to be suspended prior to shutdown sync.
1978	 */
1979	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1980	    SHUTDOWN_PRI_LAST);
1981
1982	/*
1983	 * This process is allowed to take the buffer cache to the limit
1984	 */
1985	s = splbio();
1986
1987	for (;;) {
1988		kthread_suspend_check(bufdaemonproc);
1989
1990		bd_request = 0;
1991
1992		/*
1993		 * Do the flush.  Limit the amount of in-transit I/O we
1994		 * allow to build up, otherwise we would completely saturate
1995		 * the I/O system.  Wakeup any waiting processes before we
1996		 * normally would so they can run in parallel with our drain.
1997		 */
1998		while (numdirtybuffers > lodirtybuffers) {
1999			if (flushbufqueues() == 0)
2000				break;
2001			waitrunningbufspace();
2002			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2003		}
2004
2005		/*
2006		 * Only clear bd_request if we have reached our low water
2007		 * mark.  The buf_daemon normally waits 1 second and
2008		 * then incrementally flushes any dirty buffers that have
2009		 * built up, within reason.
2010		 *
2011		 * If we were unable to hit our low water mark and couldn't
2012		 * find any flushable buffers, we sleep half a second.
2013		 * Otherwise we loop immediately.
2014		 */
2015		if (numdirtybuffers <= lodirtybuffers) {
2016			/*
2017			 * We reached our low water mark, reset the
2018			 * request and sleep until we are needed again.
2019			 * The sleep is just so the suspend code works.
2020			 */
2021			bd_request = 0;
2022			tsleep(&bd_request, PVM, "psleep", hz);
2023		} else {
2024			/*
2025			 * We couldn't find any flushable dirty buffers but
2026			 * still have too many dirty buffers, we
2027			 * have to sleep and try again.  (rare)
2028			 */
2029			tsleep(&bd_request, PVM, "qsleep", hz / 2);
2030		}
2031	}
2032}
2033
2034/*
2035 *	flushbufqueues:
2036 *
2037 *	Try to flush a buffer in the dirty queue.  We must be careful to
2038 *	free up B_INVAL buffers instead of write them, which NFS is
2039 *	particularly sensitive to.
2040 */
2041
2042static int
2043flushbufqueues(void)
2044{
2045	struct thread *td = curthread;
2046	struct vnode *vp;
2047	struct buf *bp;
2048	int r = 0;
2049
2050	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2051
2052	while (bp) {
2053		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
2054		if ((bp->b_flags & B_DELWRI) != 0 &&
2055		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
2056			if (bp->b_flags & B_INVAL) {
2057				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2058					panic("flushbufqueues: locked buf");
2059				bremfree(bp);
2060				brelse(bp);
2061				++r;
2062				break;
2063			}
2064			if (LIST_FIRST(&bp->b_dep) != NULL &&
2065			    (bp->b_flags & B_DEFERRED) == 0 &&
2066			    buf_countdeps(bp, 0)) {
2067				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
2068				    bp, b_freelist);
2069				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
2070				    bp, b_freelist);
2071				bp->b_flags |= B_DEFERRED;
2072				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2073				continue;
2074			}
2075			/*
2076			 * We must hold the lock on a vnode before writing
2077			 * one of its buffers. Otherwise we may confuse, or
2078			 * in the case of a snapshot vnode, deadlock the
2079			 * system. Rather than blocking waiting for the
2080			 * vnode, we just push on to the next buffer.
2081			 */
2082			if ((vp = bp->b_vp) == NULL ||
2083			    vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2084				vfs_bio_awrite(bp);
2085				++r;
2086				if (vp != NULL)
2087					VOP_UNLOCK(vp, 0, td);
2088				break;
2089			}
2090		}
2091		bp = TAILQ_NEXT(bp, b_freelist);
2092	}
2093	return (r);
2094}
2095
2096/*
2097 * Check to see if a block is currently memory resident.
2098 */
2099struct buf *
2100incore(struct vnode * vp, daddr_t blkno)
2101{
2102	struct buf *bp;
2103
2104	int s = splbio();
2105	VI_LOCK(vp);
2106	bp = gbincore(vp, blkno);
2107	VI_UNLOCK(vp);
2108	splx(s);
2109	return (bp);
2110}
2111
2112/*
2113 * Returns true if no I/O is needed to access the
2114 * associated VM object.  This is like incore except
2115 * it also hunts around in the VM system for the data.
2116 */
2117
2118int
2119inmem(struct vnode * vp, daddr_t blkno)
2120{
2121	vm_object_t obj;
2122	vm_offset_t toff, tinc, size;
2123	vm_page_t m;
2124	vm_ooffset_t off;
2125
2126	GIANT_REQUIRED;
2127	ASSERT_VOP_LOCKED(vp, "inmem");
2128
2129	if (incore(vp, blkno))
2130		return 1;
2131	if (vp->v_mount == NULL)
2132		return 0;
2133	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2134		return 0;
2135
2136	size = PAGE_SIZE;
2137	if (size > vp->v_mount->mnt_stat.f_iosize)
2138		size = vp->v_mount->mnt_stat.f_iosize;
2139	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2140
2141	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2142		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2143		if (!m)
2144			goto notinmem;
2145		tinc = size;
2146		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2147			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2148		if (vm_page_is_valid(m,
2149		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2150			goto notinmem;
2151	}
2152	return 1;
2153
2154notinmem:
2155	return (0);
2156}
2157
2158/*
2159 *	vfs_setdirty:
2160 *
2161 *	Sets the dirty range for a buffer based on the status of the dirty
2162 *	bits in the pages comprising the buffer.
2163 *
2164 *	The range is limited to the size of the buffer.
2165 *
2166 *	This routine is primarily used by NFS, but is generalized for the
2167 *	B_VMIO case.
2168 */
2169static void
2170vfs_setdirty(struct buf *bp)
2171{
2172	int i;
2173	vm_object_t object;
2174
2175	GIANT_REQUIRED;
2176	/*
2177	 * Degenerate case - empty buffer
2178	 */
2179
2180	if (bp->b_bufsize == 0)
2181		return;
2182
2183	/*
2184	 * We qualify the scan for modified pages on whether the
2185	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2186	 * is not cleared simply by protecting pages off.
2187	 */
2188
2189	if ((bp->b_flags & B_VMIO) == 0)
2190		return;
2191
2192	object = bp->b_pages[0]->object;
2193
2194	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2195		printf("Warning: object %p writeable but not mightbedirty\n", object);
2196	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2197		printf("Warning: object %p mightbedirty but not writeable\n", object);
2198
2199	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2200		vm_offset_t boffset;
2201		vm_offset_t eoffset;
2202
2203		/*
2204		 * test the pages to see if they have been modified directly
2205		 * by users through the VM system.
2206		 */
2207		for (i = 0; i < bp->b_npages; i++) {
2208			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2209			vm_page_test_dirty(bp->b_pages[i]);
2210		}
2211
2212		/*
2213		 * Calculate the encompassing dirty range, boffset and eoffset,
2214		 * (eoffset - boffset) bytes.
2215		 */
2216
2217		for (i = 0; i < bp->b_npages; i++) {
2218			if (bp->b_pages[i]->dirty)
2219				break;
2220		}
2221		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2222
2223		for (i = bp->b_npages - 1; i >= 0; --i) {
2224			if (bp->b_pages[i]->dirty) {
2225				break;
2226			}
2227		}
2228		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2229
2230		/*
2231		 * Fit it to the buffer.
2232		 */
2233
2234		if (eoffset > bp->b_bcount)
2235			eoffset = bp->b_bcount;
2236
2237		/*
2238		 * If we have a good dirty range, merge with the existing
2239		 * dirty range.
2240		 */
2241
2242		if (boffset < eoffset) {
2243			if (bp->b_dirtyoff > boffset)
2244				bp->b_dirtyoff = boffset;
2245			if (bp->b_dirtyend < eoffset)
2246				bp->b_dirtyend = eoffset;
2247		}
2248	}
2249}
2250
2251/*
2252 *	getblk:
2253 *
2254 *	Get a block given a specified block and offset into a file/device.
2255 *	The buffers B_DONE bit will be cleared on return, making it almost
2256 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2257 *	return.  The caller should clear B_INVAL prior to initiating a
2258 *	READ.
2259 *
2260 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2261 *	an existing buffer.
2262 *
2263 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2264 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2265 *	and then cleared based on the backing VM.  If the previous buffer is
2266 *	non-0-sized but invalid, B_CACHE will be cleared.
2267 *
2268 *	If getblk() must create a new buffer, the new buffer is returned with
2269 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2270 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2271 *	backing VM.
2272 *
2273 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2274 *	B_CACHE bit is clear.
2275 *
2276 *	What this means, basically, is that the caller should use B_CACHE to
2277 *	determine whether the buffer is fully valid or not and should clear
2278 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2279 *	the buffer by loading its data area with something, the caller needs
2280 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2281 *	the caller should set B_CACHE ( as an optimization ), else the caller
2282 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2283 *	a write attempt or if it was a successfull read.  If the caller
2284 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2285 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2286 */
2287struct buf *
2288getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2289{
2290	struct buf *bp;
2291	int s;
2292#ifdef USE_BUFHASH
2293	struct bufhashhdr *bh;
2294#endif
2295	ASSERT_VOP_LOCKED(vp, "getblk");
2296
2297	if (size > MAXBSIZE)
2298		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2299
2300	s = splbio();
2301loop:
2302	/*
2303	 * Block if we are low on buffers.   Certain processes are allowed
2304	 * to completely exhaust the buffer cache.
2305         *
2306         * If this check ever becomes a bottleneck it may be better to
2307         * move it into the else, when gbincore() fails.  At the moment
2308         * it isn't a problem.
2309	 *
2310	 * XXX remove if 0 sections (clean this up after its proven)
2311         */
2312	if (numfreebuffers == 0) {
2313		if (curthread == PCPU_GET(idlethread))
2314			return NULL;
2315		needsbuffer |= VFS_BIO_NEED_ANY;
2316	}
2317
2318	VI_LOCK(vp);
2319	if ((bp = gbincore(vp, blkno))) {
2320		VI_UNLOCK(vp);
2321		/*
2322		 * Buffer is in-core.  If the buffer is not busy, it must
2323		 * be on a queue.
2324		 */
2325
2326		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2327			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2328			    "getblk", slpflag, slptimeo) == ENOLCK)
2329				goto loop;
2330			splx(s);
2331			return (struct buf *) NULL;
2332		}
2333
2334		/*
2335		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2336		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2337		 * and for a VMIO buffer B_CACHE is adjusted according to the
2338		 * backing VM cache.
2339		 */
2340		if (bp->b_flags & B_INVAL)
2341			bp->b_flags &= ~B_CACHE;
2342		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2343			bp->b_flags |= B_CACHE;
2344		bremfree(bp);
2345
2346		/*
2347		 * check for size inconsistancies for non-VMIO case.
2348		 */
2349
2350		if (bp->b_bcount != size) {
2351			if ((bp->b_flags & B_VMIO) == 0 ||
2352			    (size > bp->b_kvasize)) {
2353				if (bp->b_flags & B_DELWRI) {
2354					bp->b_flags |= B_NOCACHE;
2355					BUF_WRITE(bp);
2356				} else {
2357					if ((bp->b_flags & B_VMIO) &&
2358					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2359						bp->b_flags |= B_RELBUF;
2360						brelse(bp);
2361					} else {
2362						bp->b_flags |= B_NOCACHE;
2363						BUF_WRITE(bp);
2364					}
2365				}
2366				goto loop;
2367			}
2368		}
2369
2370		/*
2371		 * If the size is inconsistant in the VMIO case, we can resize
2372		 * the buffer.  This might lead to B_CACHE getting set or
2373		 * cleared.  If the size has not changed, B_CACHE remains
2374		 * unchanged from its previous state.
2375		 */
2376
2377		if (bp->b_bcount != size)
2378			allocbuf(bp, size);
2379
2380		KASSERT(bp->b_offset != NOOFFSET,
2381		    ("getblk: no buffer offset"));
2382
2383		/*
2384		 * A buffer with B_DELWRI set and B_CACHE clear must
2385		 * be committed before we can return the buffer in
2386		 * order to prevent the caller from issuing a read
2387		 * ( due to B_CACHE not being set ) and overwriting
2388		 * it.
2389		 *
2390		 * Most callers, including NFS and FFS, need this to
2391		 * operate properly either because they assume they
2392		 * can issue a read if B_CACHE is not set, or because
2393		 * ( for example ) an uncached B_DELWRI might loop due
2394		 * to softupdates re-dirtying the buffer.  In the latter
2395		 * case, B_CACHE is set after the first write completes,
2396		 * preventing further loops.
2397		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2398		 * above while extending the buffer, we cannot allow the
2399		 * buffer to remain with B_CACHE set after the write
2400		 * completes or it will represent a corrupt state.  To
2401		 * deal with this we set B_NOCACHE to scrap the buffer
2402		 * after the write.
2403		 *
2404		 * We might be able to do something fancy, like setting
2405		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2406		 * so the below call doesn't set B_CACHE, but that gets real
2407		 * confusing.  This is much easier.
2408		 */
2409
2410		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2411			bp->b_flags |= B_NOCACHE;
2412			BUF_WRITE(bp);
2413			goto loop;
2414		}
2415
2416		splx(s);
2417		bp->b_flags &= ~B_DONE;
2418	} else {
2419		int bsize, maxsize, vmio;
2420		off_t offset;
2421
2422		/*
2423		 * Buffer is not in-core, create new buffer.  The buffer
2424		 * returned by getnewbuf() is locked.  Note that the returned
2425		 * buffer is also considered valid (not marked B_INVAL).
2426		 */
2427		VI_UNLOCK(vp);
2428		if (vn_isdisk(vp, NULL))
2429			bsize = DEV_BSIZE;
2430		else if (vp->v_mountedhere)
2431			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2432		else if (vp->v_mount)
2433			bsize = vp->v_mount->mnt_stat.f_iosize;
2434		else
2435			bsize = size;
2436
2437		offset = blkno * bsize;
2438		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2439		    (vp->v_vflag & VV_OBJBUF);
2440		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2441		maxsize = imax(maxsize, bsize);
2442
2443		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2444			if (slpflag || slptimeo) {
2445				splx(s);
2446				return NULL;
2447			}
2448			goto loop;
2449		}
2450
2451		/*
2452		 * This code is used to make sure that a buffer is not
2453		 * created while the getnewbuf routine is blocked.
2454		 * This can be a problem whether the vnode is locked or not.
2455		 * If the buffer is created out from under us, we have to
2456		 * throw away the one we just created.  There is now window
2457		 * race because we are safely running at splbio() from the
2458		 * point of the duplicate buffer creation through to here,
2459		 * and we've locked the buffer.
2460		 *
2461		 * Note: this must occur before we associate the buffer
2462		 * with the vp especially considering limitations in
2463		 * the splay tree implementation when dealing with duplicate
2464		 * lblkno's.
2465		 */
2466		VI_LOCK(vp);
2467		if (gbincore(vp, blkno)) {
2468			VI_UNLOCK(vp);
2469			bp->b_flags |= B_INVAL;
2470			brelse(bp);
2471			goto loop;
2472		}
2473		VI_UNLOCK(vp);
2474
2475		/*
2476		 * Insert the buffer into the hash, so that it can
2477		 * be found by incore.
2478		 */
2479		bp->b_blkno = bp->b_lblkno = blkno;
2480		bp->b_offset = offset;
2481
2482		bgetvp(vp, bp);
2483#ifdef USE_BUFHASH
2484		LIST_REMOVE(bp, b_hash);
2485		bh = bufhash(vp, blkno);
2486		LIST_INSERT_HEAD(bh, bp, b_hash);
2487#endif
2488
2489		/*
2490		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2491		 * buffer size starts out as 0, B_CACHE will be set by
2492		 * allocbuf() for the VMIO case prior to it testing the
2493		 * backing store for validity.
2494		 */
2495
2496		if (vmio) {
2497			bp->b_flags |= B_VMIO;
2498#if defined(VFS_BIO_DEBUG)
2499			if (vp->v_type != VREG)
2500				printf("getblk: vmioing file type %d???\n", vp->v_type);
2501#endif
2502			VOP_GETVOBJECT(vp, &bp->b_object);
2503		} else {
2504			bp->b_flags &= ~B_VMIO;
2505			bp->b_object = NULL;
2506		}
2507
2508		allocbuf(bp, size);
2509
2510		splx(s);
2511		bp->b_flags &= ~B_DONE;
2512	}
2513	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2514	return (bp);
2515}
2516
2517/*
2518 * Get an empty, disassociated buffer of given size.  The buffer is initially
2519 * set to B_INVAL.
2520 */
2521struct buf *
2522geteblk(int size)
2523{
2524	struct buf *bp;
2525	int s;
2526	int maxsize;
2527
2528	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2529
2530	s = splbio();
2531	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2532		continue;
2533	splx(s);
2534	allocbuf(bp, size);
2535	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2536	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2537	return (bp);
2538}
2539
2540
2541/*
2542 * This code constitutes the buffer memory from either anonymous system
2543 * memory (in the case of non-VMIO operations) or from an associated
2544 * VM object (in the case of VMIO operations).  This code is able to
2545 * resize a buffer up or down.
2546 *
2547 * Note that this code is tricky, and has many complications to resolve
2548 * deadlock or inconsistant data situations.  Tread lightly!!!
2549 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2550 * the caller.  Calling this code willy nilly can result in the loss of data.
2551 *
2552 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2553 * B_CACHE for the non-VMIO case.
2554 */
2555
2556int
2557allocbuf(struct buf *bp, int size)
2558{
2559	int newbsize, mbsize;
2560	int i;
2561
2562	GIANT_REQUIRED;
2563
2564	if (BUF_REFCNT(bp) == 0)
2565		panic("allocbuf: buffer not busy");
2566
2567	if (bp->b_kvasize < size)
2568		panic("allocbuf: buffer too small");
2569
2570	if ((bp->b_flags & B_VMIO) == 0) {
2571		caddr_t origbuf;
2572		int origbufsize;
2573		/*
2574		 * Just get anonymous memory from the kernel.  Don't
2575		 * mess with B_CACHE.
2576		 */
2577		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2578		if (bp->b_flags & B_MALLOC)
2579			newbsize = mbsize;
2580		else
2581			newbsize = round_page(size);
2582
2583		if (newbsize < bp->b_bufsize) {
2584			/*
2585			 * malloced buffers are not shrunk
2586			 */
2587			if (bp->b_flags & B_MALLOC) {
2588				if (newbsize) {
2589					bp->b_bcount = size;
2590				} else {
2591					free(bp->b_data, M_BIOBUF);
2592					if (bp->b_bufsize) {
2593						bufmallocspace -= bp->b_bufsize;
2594						bufspacewakeup();
2595						bp->b_bufsize = 0;
2596					}
2597					bp->b_data = bp->b_kvabase;
2598					bp->b_bcount = 0;
2599					bp->b_flags &= ~B_MALLOC;
2600				}
2601				return 1;
2602			}
2603			vm_hold_free_pages(
2604			    bp,
2605			    (vm_offset_t) bp->b_data + newbsize,
2606			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2607		} else if (newbsize > bp->b_bufsize) {
2608			/*
2609			 * We only use malloced memory on the first allocation.
2610			 * and revert to page-allocated memory when the buffer
2611			 * grows.
2612			 */
2613			if ( (bufmallocspace < maxbufmallocspace) &&
2614				(bp->b_bufsize == 0) &&
2615				(mbsize <= PAGE_SIZE/2)) {
2616
2617				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2618				bp->b_bufsize = mbsize;
2619				bp->b_bcount = size;
2620				bp->b_flags |= B_MALLOC;
2621				bufmallocspace += mbsize;
2622				return 1;
2623			}
2624			origbuf = NULL;
2625			origbufsize = 0;
2626			/*
2627			 * If the buffer is growing on its other-than-first allocation,
2628			 * then we revert to the page-allocation scheme.
2629			 */
2630			if (bp->b_flags & B_MALLOC) {
2631				origbuf = bp->b_data;
2632				origbufsize = bp->b_bufsize;
2633				bp->b_data = bp->b_kvabase;
2634				if (bp->b_bufsize) {
2635					bufmallocspace -= bp->b_bufsize;
2636					bufspacewakeup();
2637					bp->b_bufsize = 0;
2638				}
2639				bp->b_flags &= ~B_MALLOC;
2640				newbsize = round_page(newbsize);
2641			}
2642			vm_hold_load_pages(
2643			    bp,
2644			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2645			    (vm_offset_t) bp->b_data + newbsize);
2646			if (origbuf) {
2647				bcopy(origbuf, bp->b_data, origbufsize);
2648				free(origbuf, M_BIOBUF);
2649			}
2650		}
2651	} else {
2652		int desiredpages;
2653
2654		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2655		desiredpages = (size == 0) ? 0 :
2656			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2657
2658		if (bp->b_flags & B_MALLOC)
2659			panic("allocbuf: VMIO buffer can't be malloced");
2660		/*
2661		 * Set B_CACHE initially if buffer is 0 length or will become
2662		 * 0-length.
2663		 */
2664		if (size == 0 || bp->b_bufsize == 0)
2665			bp->b_flags |= B_CACHE;
2666
2667		if (newbsize < bp->b_bufsize) {
2668			/*
2669			 * DEV_BSIZE aligned new buffer size is less then the
2670			 * DEV_BSIZE aligned existing buffer size.  Figure out
2671			 * if we have to remove any pages.
2672			 */
2673			if (desiredpages < bp->b_npages) {
2674				vm_page_t m;
2675
2676				vm_page_lock_queues();
2677				for (i = desiredpages; i < bp->b_npages; i++) {
2678					/*
2679					 * the page is not freed here -- it
2680					 * is the responsibility of
2681					 * vnode_pager_setsize
2682					 */
2683					m = bp->b_pages[i];
2684					KASSERT(m != bogus_page,
2685					    ("allocbuf: bogus page found"));
2686					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2687						vm_page_lock_queues();
2688
2689					bp->b_pages[i] = NULL;
2690					vm_page_unwire(m, 0);
2691				}
2692				vm_page_unlock_queues();
2693				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2694				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2695				bp->b_npages = desiredpages;
2696			}
2697		} else if (size > bp->b_bcount) {
2698			/*
2699			 * We are growing the buffer, possibly in a
2700			 * byte-granular fashion.
2701			 */
2702			struct vnode *vp;
2703			vm_object_t obj;
2704			vm_offset_t toff;
2705			vm_offset_t tinc;
2706
2707			/*
2708			 * Step 1, bring in the VM pages from the object,
2709			 * allocating them if necessary.  We must clear
2710			 * B_CACHE if these pages are not valid for the
2711			 * range covered by the buffer.
2712			 */
2713
2714			vp = bp->b_vp;
2715			obj = bp->b_object;
2716
2717			while (bp->b_npages < desiredpages) {
2718				vm_page_t m;
2719				vm_pindex_t pi;
2720
2721				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2722				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2723					/*
2724					 * note: must allocate system pages
2725					 * since blocking here could intefere
2726					 * with paging I/O, no matter which
2727					 * process we are.
2728					 */
2729					m = vm_page_alloc(obj, pi,
2730					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2731					if (m == NULL) {
2732						VM_WAIT;
2733						vm_pageout_deficit += desiredpages - bp->b_npages;
2734					} else {
2735						vm_page_lock_queues();
2736						vm_page_wakeup(m);
2737						vm_page_unlock_queues();
2738						bp->b_flags &= ~B_CACHE;
2739						bp->b_pages[bp->b_npages] = m;
2740						++bp->b_npages;
2741					}
2742					continue;
2743				}
2744
2745				/*
2746				 * We found a page.  If we have to sleep on it,
2747				 * retry because it might have gotten freed out
2748				 * from under us.
2749				 *
2750				 * We can only test PG_BUSY here.  Blocking on
2751				 * m->busy might lead to a deadlock:
2752				 *
2753				 *  vm_fault->getpages->cluster_read->allocbuf
2754				 *
2755				 */
2756				vm_page_lock_queues();
2757				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2758					continue;
2759
2760				/*
2761				 * We have a good page.  Should we wakeup the
2762				 * page daemon?
2763				 */
2764				if ((curproc != pageproc) &&
2765				    ((m->queue - m->pc) == PQ_CACHE) &&
2766				    ((cnt.v_free_count + cnt.v_cache_count) <
2767					(cnt.v_free_min + cnt.v_cache_min))) {
2768					pagedaemon_wakeup();
2769				}
2770				vm_page_flag_clear(m, PG_ZERO);
2771				vm_page_wire(m);
2772				vm_page_unlock_queues();
2773				bp->b_pages[bp->b_npages] = m;
2774				++bp->b_npages;
2775			}
2776
2777			/*
2778			 * Step 2.  We've loaded the pages into the buffer,
2779			 * we have to figure out if we can still have B_CACHE
2780			 * set.  Note that B_CACHE is set according to the
2781			 * byte-granular range ( bcount and size ), new the
2782			 * aligned range ( newbsize ).
2783			 *
2784			 * The VM test is against m->valid, which is DEV_BSIZE
2785			 * aligned.  Needless to say, the validity of the data
2786			 * needs to also be DEV_BSIZE aligned.  Note that this
2787			 * fails with NFS if the server or some other client
2788			 * extends the file's EOF.  If our buffer is resized,
2789			 * B_CACHE may remain set! XXX
2790			 */
2791
2792			toff = bp->b_bcount;
2793			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2794
2795			while ((bp->b_flags & B_CACHE) && toff < size) {
2796				vm_pindex_t pi;
2797
2798				if (tinc > (size - toff))
2799					tinc = size - toff;
2800
2801				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2802				    PAGE_SHIFT;
2803
2804				vfs_buf_test_cache(
2805				    bp,
2806				    bp->b_offset,
2807				    toff,
2808				    tinc,
2809				    bp->b_pages[pi]
2810				);
2811				toff += tinc;
2812				tinc = PAGE_SIZE;
2813			}
2814
2815			/*
2816			 * Step 3, fixup the KVM pmap.  Remember that
2817			 * bp->b_data is relative to bp->b_offset, but
2818			 * bp->b_offset may be offset into the first page.
2819			 */
2820
2821			bp->b_data = (caddr_t)
2822			    trunc_page((vm_offset_t)bp->b_data);
2823			pmap_qenter(
2824			    (vm_offset_t)bp->b_data,
2825			    bp->b_pages,
2826			    bp->b_npages
2827			);
2828
2829			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2830			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2831		}
2832	}
2833	if (newbsize < bp->b_bufsize)
2834		bufspacewakeup();
2835	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2836	bp->b_bcount = size;		/* requested buffer size	*/
2837	return 1;
2838}
2839
2840void
2841biodone(struct bio *bp)
2842{
2843	bp->bio_flags |= BIO_DONE;
2844	if (bp->bio_done != NULL)
2845		bp->bio_done(bp);
2846	else
2847		wakeup(bp);
2848}
2849
2850/*
2851 * Wait for a BIO to finish.
2852 *
2853 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2854 * case is not yet clear.
2855 */
2856int
2857biowait(struct bio *bp, const char *wchan)
2858{
2859
2860	while ((bp->bio_flags & BIO_DONE) == 0)
2861		msleep(bp, NULL, PRIBIO, wchan, hz / 10);
2862	if (bp->bio_error != 0)
2863		return (bp->bio_error);
2864	if (!(bp->bio_flags & BIO_ERROR))
2865		return (0);
2866	return (EIO);
2867}
2868
2869void
2870biofinish(struct bio *bp, struct devstat *stat, int error)
2871{
2872
2873	if (error) {
2874		bp->bio_error = error;
2875		bp->bio_flags |= BIO_ERROR;
2876	}
2877	if (stat != NULL)
2878		devstat_end_transaction_bio(stat, bp);
2879	biodone(bp);
2880}
2881
2882void
2883bioq_init(struct bio_queue_head *head)
2884{
2885	TAILQ_INIT(&head->queue);
2886	head->last_pblkno = 0;
2887	head->insert_point = NULL;
2888	head->switch_point = NULL;
2889}
2890
2891void
2892bioq_remove(struct bio_queue_head *head, struct bio *bp)
2893{
2894	if (bp == head->switch_point)
2895		head->switch_point = TAILQ_NEXT(bp, bio_queue);
2896	if (bp == head->insert_point) {
2897		head->insert_point = TAILQ_PREV(bp, bio_queue, bio_queue);
2898		if (head->insert_point == NULL)
2899			head->last_pblkno = 0;
2900	} else if (bp == TAILQ_FIRST(&head->queue))
2901		head->last_pblkno = bp->bio_pblkno;
2902	TAILQ_REMOVE(&head->queue, bp, bio_queue);
2903	if (TAILQ_FIRST(&head->queue) == head->switch_point)
2904		head->switch_point = NULL;
2905}
2906
2907/*
2908 *	bufwait:
2909 *
2910 *	Wait for buffer I/O completion, returning error status.  The buffer
2911 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2912 *	error and cleared.
2913 */
2914int
2915bufwait(register struct buf * bp)
2916{
2917	int s;
2918
2919	s = splbio();
2920	while ((bp->b_flags & B_DONE) == 0) {
2921		if (bp->b_iocmd == BIO_READ)
2922			tsleep(bp, PRIBIO, "biord", 0);
2923		else
2924			tsleep(bp, PRIBIO, "biowr", 0);
2925	}
2926	splx(s);
2927	if (bp->b_flags & B_EINTR) {
2928		bp->b_flags &= ~B_EINTR;
2929		return (EINTR);
2930	}
2931	if (bp->b_ioflags & BIO_ERROR) {
2932		return (bp->b_error ? bp->b_error : EIO);
2933	} else {
2934		return (0);
2935	}
2936}
2937
2938 /*
2939  * Call back function from struct bio back up to struct buf.
2940  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2941  */
2942void
2943bufdonebio(struct bio *bp)
2944{
2945	bufdone(bp->bio_caller2);
2946}
2947
2948/*
2949 *	bufdone:
2950 *
2951 *	Finish I/O on a buffer, optionally calling a completion function.
2952 *	This is usually called from an interrupt so process blocking is
2953 *	not allowed.
2954 *
2955 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2956 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2957 *	assuming B_INVAL is clear.
2958 *
2959 *	For the VMIO case, we set B_CACHE if the op was a read and no
2960 *	read error occured, or if the op was a write.  B_CACHE is never
2961 *	set if the buffer is invalid or otherwise uncacheable.
2962 *
2963 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2964 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2965 *	in the biodone routine.
2966 */
2967void
2968bufdone(struct buf *bp)
2969{
2970	int s;
2971	void    (*biodone)(struct buf *);
2972
2973	GIANT_REQUIRED;
2974
2975	s = splbio();
2976
2977	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2978	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2979
2980	bp->b_flags |= B_DONE;
2981	runningbufwakeup(bp);
2982
2983	if (bp->b_iocmd == BIO_DELETE) {
2984		brelse(bp);
2985		splx(s);
2986		return;
2987	}
2988
2989	if (bp->b_iocmd == BIO_WRITE) {
2990		vwakeup(bp);
2991	}
2992
2993	/* call optional completion function if requested */
2994	if (bp->b_iodone != NULL) {
2995		biodone = bp->b_iodone;
2996		bp->b_iodone = NULL;
2997		(*biodone) (bp);
2998		splx(s);
2999		return;
3000	}
3001	if (LIST_FIRST(&bp->b_dep) != NULL)
3002		buf_complete(bp);
3003
3004	if (bp->b_flags & B_VMIO) {
3005		int i;
3006		vm_ooffset_t foff;
3007		vm_page_t m;
3008		vm_object_t obj;
3009		int iosize;
3010		struct vnode *vp = bp->b_vp;
3011
3012		obj = bp->b_object;
3013
3014#if defined(VFS_BIO_DEBUG)
3015		mp_fixme("usecount and vflag accessed without locks.");
3016		if (vp->v_usecount == 0) {
3017			panic("biodone: zero vnode ref count");
3018		}
3019
3020		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3021			panic("biodone: vnode is not setup for merged cache");
3022		}
3023#endif
3024
3025		foff = bp->b_offset;
3026		KASSERT(bp->b_offset != NOOFFSET,
3027		    ("biodone: no buffer offset"));
3028
3029#if defined(VFS_BIO_DEBUG)
3030		if (obj->paging_in_progress < bp->b_npages) {
3031			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3032			    obj->paging_in_progress, bp->b_npages);
3033		}
3034#endif
3035
3036		/*
3037		 * Set B_CACHE if the op was a normal read and no error
3038		 * occured.  B_CACHE is set for writes in the b*write()
3039		 * routines.
3040		 */
3041		iosize = bp->b_bcount - bp->b_resid;
3042		if (bp->b_iocmd == BIO_READ &&
3043		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3044		    !(bp->b_ioflags & BIO_ERROR)) {
3045			bp->b_flags |= B_CACHE;
3046		}
3047		vm_page_lock_queues();
3048		for (i = 0; i < bp->b_npages; i++) {
3049			int bogusflag = 0;
3050			int resid;
3051
3052			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3053			if (resid > iosize)
3054				resid = iosize;
3055
3056			/*
3057			 * cleanup bogus pages, restoring the originals
3058			 */
3059			m = bp->b_pages[i];
3060			if (m == bogus_page) {
3061				bogusflag = 1;
3062				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3063				if (m == NULL)
3064					panic("biodone: page disappeared!");
3065				bp->b_pages[i] = m;
3066				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3067			}
3068#if defined(VFS_BIO_DEBUG)
3069			if (OFF_TO_IDX(foff) != m->pindex) {
3070				printf(
3071"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3072				    (intmax_t)foff, (uintmax_t)m->pindex);
3073			}
3074#endif
3075
3076			/*
3077			 * In the write case, the valid and clean bits are
3078			 * already changed correctly ( see bdwrite() ), so we
3079			 * only need to do this here in the read case.
3080			 */
3081			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3082				vfs_page_set_valid(bp, foff, i, m);
3083			}
3084			vm_page_flag_clear(m, PG_ZERO);
3085
3086			/*
3087			 * when debugging new filesystems or buffer I/O methods, this
3088			 * is the most common error that pops up.  if you see this, you
3089			 * have not set the page busy flag correctly!!!
3090			 */
3091			if (m->busy == 0) {
3092				printf("biodone: page busy < 0, "
3093				    "pindex: %d, foff: 0x(%x,%x), "
3094				    "resid: %d, index: %d\n",
3095				    (int) m->pindex, (int)(foff >> 32),
3096						(int) foff & 0xffffffff, resid, i);
3097				if (!vn_isdisk(vp, NULL))
3098					printf(" iosize: %ld, lblkno: %jd, flags: 0x%lx, npages: %d\n",
3099					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3100					    (intmax_t) bp->b_lblkno,
3101					    bp->b_flags, bp->b_npages);
3102				else
3103					printf(" VDEV, lblkno: %jd, flags: 0x%lx, npages: %d\n",
3104					    (intmax_t) bp->b_lblkno,
3105					    bp->b_flags, bp->b_npages);
3106				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3107				    m->valid, m->dirty, m->wire_count);
3108				panic("biodone: page busy < 0\n");
3109			}
3110			vm_page_io_finish(m);
3111			vm_object_pip_subtract(obj, 1);
3112			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3113			iosize -= resid;
3114		}
3115		vm_page_unlock_queues();
3116		if (obj)
3117			vm_object_pip_wakeupn(obj, 0);
3118	}
3119
3120	/*
3121	 * For asynchronous completions, release the buffer now. The brelse
3122	 * will do a wakeup there if necessary - so no need to do a wakeup
3123	 * here in the async case. The sync case always needs to do a wakeup.
3124	 */
3125
3126	if (bp->b_flags & B_ASYNC) {
3127		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3128			brelse(bp);
3129		else
3130			bqrelse(bp);
3131	} else {
3132		wakeup(bp);
3133	}
3134	splx(s);
3135}
3136
3137/*
3138 * This routine is called in lieu of iodone in the case of
3139 * incomplete I/O.  This keeps the busy status for pages
3140 * consistant.
3141 */
3142void
3143vfs_unbusy_pages(struct buf * bp)
3144{
3145	int i;
3146
3147	GIANT_REQUIRED;
3148
3149	runningbufwakeup(bp);
3150	if (bp->b_flags & B_VMIO) {
3151		vm_object_t obj;
3152
3153		obj = bp->b_object;
3154		vm_page_lock_queues();
3155		for (i = 0; i < bp->b_npages; i++) {
3156			vm_page_t m = bp->b_pages[i];
3157
3158			if (m == bogus_page) {
3159				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3160				if (!m) {
3161					panic("vfs_unbusy_pages: page missing\n");
3162				}
3163				bp->b_pages[i] = m;
3164				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3165			}
3166			vm_object_pip_subtract(obj, 1);
3167			vm_page_flag_clear(m, PG_ZERO);
3168			vm_page_io_finish(m);
3169		}
3170		vm_page_unlock_queues();
3171		vm_object_pip_wakeupn(obj, 0);
3172	}
3173}
3174
3175/*
3176 * vfs_page_set_valid:
3177 *
3178 *	Set the valid bits in a page based on the supplied offset.   The
3179 *	range is restricted to the buffer's size.
3180 *
3181 *	This routine is typically called after a read completes.
3182 */
3183static void
3184vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3185{
3186	vm_ooffset_t soff, eoff;
3187
3188	GIANT_REQUIRED;
3189	/*
3190	 * Start and end offsets in buffer.  eoff - soff may not cross a
3191	 * page boundry or cross the end of the buffer.  The end of the
3192	 * buffer, in this case, is our file EOF, not the allocation size
3193	 * of the buffer.
3194	 */
3195	soff = off;
3196	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3197	if (eoff > bp->b_offset + bp->b_bcount)
3198		eoff = bp->b_offset + bp->b_bcount;
3199
3200	/*
3201	 * Set valid range.  This is typically the entire buffer and thus the
3202	 * entire page.
3203	 */
3204	if (eoff > soff) {
3205		vm_page_set_validclean(
3206		    m,
3207		   (vm_offset_t) (soff & PAGE_MASK),
3208		   (vm_offset_t) (eoff - soff)
3209		);
3210	}
3211}
3212
3213/*
3214 * This routine is called before a device strategy routine.
3215 * It is used to tell the VM system that paging I/O is in
3216 * progress, and treat the pages associated with the buffer
3217 * almost as being PG_BUSY.  Also the object paging_in_progress
3218 * flag is handled to make sure that the object doesn't become
3219 * inconsistant.
3220 *
3221 * Since I/O has not been initiated yet, certain buffer flags
3222 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3223 * and should be ignored.
3224 */
3225void
3226vfs_busy_pages(struct buf * bp, int clear_modify)
3227{
3228	int i, bogus;
3229
3230	if (bp->b_flags & B_VMIO) {
3231		vm_object_t obj;
3232		vm_ooffset_t foff;
3233
3234		obj = bp->b_object;
3235		foff = bp->b_offset;
3236		KASSERT(bp->b_offset != NOOFFSET,
3237		    ("vfs_busy_pages: no buffer offset"));
3238		vfs_setdirty(bp);
3239retry:
3240		vm_page_lock_queues();
3241		for (i = 0; i < bp->b_npages; i++) {
3242			vm_page_t m = bp->b_pages[i];
3243
3244			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3245				goto retry;
3246		}
3247		bogus = 0;
3248		for (i = 0; i < bp->b_npages; i++) {
3249			vm_page_t m = bp->b_pages[i];
3250
3251			vm_page_flag_clear(m, PG_ZERO);
3252			if ((bp->b_flags & B_CLUSTER) == 0) {
3253				vm_object_pip_add(obj, 1);
3254				vm_page_io_start(m);
3255			}
3256			/*
3257			 * When readying a buffer for a read ( i.e
3258			 * clear_modify == 0 ), it is important to do
3259			 * bogus_page replacement for valid pages in
3260			 * partially instantiated buffers.  Partially
3261			 * instantiated buffers can, in turn, occur when
3262			 * reconstituting a buffer from its VM backing store
3263			 * base.  We only have to do this if B_CACHE is
3264			 * clear ( which causes the I/O to occur in the
3265			 * first place ).  The replacement prevents the read
3266			 * I/O from overwriting potentially dirty VM-backed
3267			 * pages.  XXX bogus page replacement is, uh, bogus.
3268			 * It may not work properly with small-block devices.
3269			 * We need to find a better way.
3270			 */
3271			pmap_page_protect(m, VM_PROT_NONE);
3272			if (clear_modify)
3273				vfs_page_set_valid(bp, foff, i, m);
3274			else if (m->valid == VM_PAGE_BITS_ALL &&
3275				(bp->b_flags & B_CACHE) == 0) {
3276				bp->b_pages[i] = bogus_page;
3277				bogus++;
3278			}
3279			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3280		}
3281		vm_page_unlock_queues();
3282		if (bogus)
3283			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3284	}
3285}
3286
3287/*
3288 * Tell the VM system that the pages associated with this buffer
3289 * are clean.  This is used for delayed writes where the data is
3290 * going to go to disk eventually without additional VM intevention.
3291 *
3292 * Note that while we only really need to clean through to b_bcount, we
3293 * just go ahead and clean through to b_bufsize.
3294 */
3295static void
3296vfs_clean_pages(struct buf * bp)
3297{
3298	int i;
3299
3300	GIANT_REQUIRED;
3301
3302	if (bp->b_flags & B_VMIO) {
3303		vm_ooffset_t foff;
3304
3305		foff = bp->b_offset;
3306		KASSERT(bp->b_offset != NOOFFSET,
3307		    ("vfs_clean_pages: no buffer offset"));
3308		for (i = 0; i < bp->b_npages; i++) {
3309			vm_page_t m = bp->b_pages[i];
3310			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3311			vm_ooffset_t eoff = noff;
3312
3313			if (eoff > bp->b_offset + bp->b_bufsize)
3314				eoff = bp->b_offset + bp->b_bufsize;
3315			vfs_page_set_valid(bp, foff, i, m);
3316			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3317			foff = noff;
3318		}
3319	}
3320}
3321
3322/*
3323 *	vfs_bio_set_validclean:
3324 *
3325 *	Set the range within the buffer to valid and clean.  The range is
3326 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3327 *	itself may be offset from the beginning of the first page.
3328 *
3329 */
3330
3331void
3332vfs_bio_set_validclean(struct buf *bp, int base, int size)
3333{
3334	if (bp->b_flags & B_VMIO) {
3335		int i;
3336		int n;
3337
3338		/*
3339		 * Fixup base to be relative to beginning of first page.
3340		 * Set initial n to be the maximum number of bytes in the
3341		 * first page that can be validated.
3342		 */
3343
3344		base += (bp->b_offset & PAGE_MASK);
3345		n = PAGE_SIZE - (base & PAGE_MASK);
3346
3347		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3348			vm_page_t m = bp->b_pages[i];
3349
3350			if (n > size)
3351				n = size;
3352
3353			vm_page_set_validclean(m, base & PAGE_MASK, n);
3354			base += n;
3355			size -= n;
3356			n = PAGE_SIZE;
3357		}
3358	}
3359}
3360
3361/*
3362 *	vfs_bio_clrbuf:
3363 *
3364 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3365 *	to clear BIO_ERROR and B_INVAL.
3366 *
3367 *	Note that while we only theoretically need to clear through b_bcount,
3368 *	we go ahead and clear through b_bufsize.
3369 */
3370
3371void
3372vfs_bio_clrbuf(struct buf *bp)
3373{
3374	int i, mask = 0;
3375	caddr_t sa, ea;
3376
3377	GIANT_REQUIRED;
3378
3379	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3380		bp->b_flags &= ~B_INVAL;
3381		bp->b_ioflags &= ~BIO_ERROR;
3382		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3383		    (bp->b_offset & PAGE_MASK) == 0) {
3384			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3385			if ((bp->b_pages[0]->valid & mask) == mask) {
3386				bp->b_resid = 0;
3387				return;
3388			}
3389			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3390			    ((bp->b_pages[0]->valid & mask) == 0)) {
3391				bzero(bp->b_data, bp->b_bufsize);
3392				bp->b_pages[0]->valid |= mask;
3393				bp->b_resid = 0;
3394				return;
3395			}
3396		}
3397		ea = sa = bp->b_data;
3398		for(i=0;i<bp->b_npages;i++,sa=ea) {
3399			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3400			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3401			ea = (caddr_t)(vm_offset_t)ulmin(
3402			    (u_long)(vm_offset_t)ea,
3403			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3404			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3405			if ((bp->b_pages[i]->valid & mask) == mask)
3406				continue;
3407			if ((bp->b_pages[i]->valid & mask) == 0) {
3408				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3409					bzero(sa, ea - sa);
3410				}
3411			} else {
3412				for (; sa < ea; sa += DEV_BSIZE, j++) {
3413					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3414						(bp->b_pages[i]->valid & (1<<j)) == 0)
3415						bzero(sa, DEV_BSIZE);
3416				}
3417			}
3418			bp->b_pages[i]->valid |= mask;
3419			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3420		}
3421		bp->b_resid = 0;
3422	} else {
3423		clrbuf(bp);
3424	}
3425}
3426
3427/*
3428 * vm_hold_load_pages and vm_hold_free_pages get pages into
3429 * a buffers address space.  The pages are anonymous and are
3430 * not associated with a file object.
3431 */
3432static void
3433vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3434{
3435	vm_offset_t pg;
3436	vm_page_t p;
3437	int index;
3438
3439	GIANT_REQUIRED;
3440
3441	to = round_page(to);
3442	from = round_page(from);
3443	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3444
3445	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3446tryagain:
3447		/*
3448		 * note: must allocate system pages since blocking here
3449		 * could intefere with paging I/O, no matter which
3450		 * process we are.
3451		 */
3452		p = vm_page_alloc(kernel_object,
3453			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3454		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3455		if (!p) {
3456			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3457			VM_WAIT;
3458			goto tryagain;
3459		}
3460		vm_page_lock_queues();
3461		p->valid = VM_PAGE_BITS_ALL;
3462		vm_page_flag_clear(p, PG_ZERO);
3463		vm_page_unlock_queues();
3464		pmap_qenter(pg, &p, 1);
3465		bp->b_pages[index] = p;
3466		vm_page_wakeup(p);
3467	}
3468	bp->b_npages = index;
3469}
3470
3471/* Return pages associated with this buf to the vm system */
3472static void
3473vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3474{
3475	vm_offset_t pg;
3476	vm_page_t p;
3477	int index, newnpages;
3478
3479	GIANT_REQUIRED;
3480
3481	from = round_page(from);
3482	to = round_page(to);
3483	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3484
3485	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3486		p = bp->b_pages[index];
3487		if (p && (index < bp->b_npages)) {
3488			if (p->busy) {
3489				printf(
3490			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3491				    (intmax_t)bp->b_blkno,
3492				    (intmax_t)bp->b_lblkno);
3493			}
3494			bp->b_pages[index] = NULL;
3495			pmap_qremove(pg, 1);
3496			vm_page_lock_queues();
3497			vm_page_busy(p);
3498			vm_page_unwire(p, 0);
3499			vm_page_free(p);
3500			vm_page_unlock_queues();
3501		}
3502	}
3503	bp->b_npages = newnpages;
3504}
3505
3506
3507#include "opt_ddb.h"
3508#ifdef DDB
3509#include <ddb/ddb.h>
3510
3511/* DDB command to show buffer data */
3512DB_SHOW_COMMAND(buffer, db_show_buffer)
3513{
3514	/* get args */
3515	struct buf *bp = (struct buf *)addr;
3516
3517	if (!have_addr) {
3518		db_printf("usage: show buffer <addr>\n");
3519		return;
3520	}
3521
3522	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3523	db_printf(
3524	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3525	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n",
3526	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3527	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3528	    (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno);
3529	if (bp->b_npages) {
3530		int i;
3531		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3532		for (i = 0; i < bp->b_npages; i++) {
3533			vm_page_t m;
3534			m = bp->b_pages[i];
3535			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3536			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3537			if ((i + 1) < bp->b_npages)
3538				db_printf(",");
3539		}
3540		db_printf("\n");
3541	}
3542}
3543#endif /* DDB */
3544