vfs_bio.c revision 104008
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 104008 2002-09-26 16:32:14Z phk $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/stdint.h>
33#include <sys/bio.h>
34#include <sys/buf.h>
35#include <sys/devicestat.h>
36#include <sys/eventhandler.h>
37#include <sys/lock.h>
38#include <sys/malloc.h>
39#include <sys/mount.h>
40#include <sys/mutex.h>
41#include <sys/kernel.h>
42#include <sys/kthread.h>
43#include <sys/ktr.h>
44#include <sys/proc.h>
45#include <sys/reboot.h>
46#include <sys/resourcevar.h>
47#include <sys/sysctl.h>
48#include <sys/vmmeter.h>
49#include <sys/vnode.h>
50#include <vm/vm.h>
51#include <vm/vm_param.h>
52#include <vm/vm_kern.h>
53#include <vm/vm_pageout.h>
54#include <vm/vm_page.h>
55#include <vm/vm_object.h>
56#include <vm/vm_extern.h>
57#include <vm/vm_map.h>
58
59static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
60
61struct	bio_ops bioops;		/* I/O operation notification */
62
63struct	buf_ops buf_ops_bio = {
64	"buf_ops_bio",
65	bwrite
66};
67
68/*
69 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
70 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
71 */
72struct buf *buf;		/* buffer header pool */
73struct mtx buftimelock;		/* Interlock on setting prio and timo */
74
75static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
78		vm_offset_t to);
79static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
80			       int pageno, vm_page_t m);
81static void vfs_clean_pages(struct buf * bp);
82static void vfs_setdirty(struct buf *bp);
83static void vfs_vmio_release(struct buf *bp);
84static void vfs_backgroundwritedone(struct buf *bp);
85static int flushbufqueues(void);
86static void buf_daemon(void);
87
88int vmiodirenable = TRUE;
89SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
90    "Use the VM system for directory writes");
91int runningbufspace;
92SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
93    "Amount of presently outstanding async buffer io");
94static int bufspace;
95SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
96    "KVA memory used for bufs");
97static int maxbufspace;
98SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
99    "Maximum allowed value of bufspace (including buf_daemon)");
100static int bufmallocspace;
101SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
102    "Amount of malloced memory for buffers");
103static int maxbufmallocspace;
104SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
105    "Maximum amount of malloced memory for buffers");
106static int lobufspace;
107SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
108    "Minimum amount of buffers we want to have");
109static int hibufspace;
110SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
111    "Maximum allowed value of bufspace (excluding buf_daemon)");
112static int bufreusecnt;
113SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
114    "Number of times we have reused a buffer");
115static int buffreekvacnt;
116SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
117    "Number of times we have freed the KVA space from some buffer");
118static int bufdefragcnt;
119SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
120    "Number of times we have had to repeat buffer allocation to defragment");
121static int lorunningspace;
122SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
123    "Minimum preferred space used for in-progress I/O");
124static int hirunningspace;
125SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
126    "Maximum amount of space to use for in-progress I/O");
127static int numdirtybuffers;
128SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
129    "Number of buffers that are dirty (has unwritten changes) at the moment");
130static int lodirtybuffers;
131SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
132    "How many buffers we want to have free before bufdaemon can sleep");
133static int hidirtybuffers;
134SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
135    "When the number of dirty buffers is considered severe");
136static int numfreebuffers;
137SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
138    "Number of free buffers");
139static int lofreebuffers;
140SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
141   "XXX Unused");
142static int hifreebuffers;
143SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
144   "XXX Complicatedly unused");
145static int getnewbufcalls;
146SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
147   "Number of calls to getnewbuf");
148static int getnewbufrestarts;
149SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
150    "Number of times getnewbuf has had to restart a buffer aquisition");
151static int dobkgrdwrite = 1;
152SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
153    "Do background writes (honoring the BX_BKGRDWRITE flag)?");
154
155/*
156 * Wakeup point for bufdaemon, as well as indicator of whether it is already
157 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
158 * is idling.
159 */
160static int bd_request;
161
162/*
163 * bogus page -- for I/O to/from partially complete buffers
164 * this is a temporary solution to the problem, but it is not
165 * really that bad.  it would be better to split the buffer
166 * for input in the case of buffers partially already in memory,
167 * but the code is intricate enough already.
168 */
169vm_page_t bogus_page;
170
171/*
172 * Offset for bogus_page.
173 * XXX bogus_offset should be local to bufinit
174 */
175static vm_offset_t bogus_offset;
176
177/*
178 * Synchronization (sleep/wakeup) variable for active buffer space requests.
179 * Set when wait starts, cleared prior to wakeup().
180 * Used in runningbufwakeup() and waitrunningbufspace().
181 */
182static int runningbufreq;
183
184/*
185 * Synchronization (sleep/wakeup) variable for buffer requests.
186 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
187 * by and/or.
188 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
189 * getnewbuf(), and getblk().
190 */
191static int needsbuffer;
192
193#ifdef USE_BUFHASH
194/*
195 * Mask for index into the buffer hash table, which needs to be power of 2 in
196 * size.  Set in kern_vfs_bio_buffer_alloc.
197 */
198static int bufhashmask;
199
200/*
201 * Hash table for all buffers, with a linked list hanging from each table
202 * entry.  Set in kern_vfs_bio_buffer_alloc, initialized in buf_init.
203 */
204static LIST_HEAD(bufhashhdr, buf) *bufhashtbl;
205
206/*
207 * Somewhere to store buffers when they are not in another list, to always
208 * have them in a list (and thus being able to use the same set of operations
209 * on them.)
210 */
211static struct bufhashhdr invalhash;
212
213#endif
214
215/*
216 * Definitions for the buffer free lists.
217 */
218#define BUFFER_QUEUES	6	/* number of free buffer queues */
219
220#define QUEUE_NONE	0	/* on no queue */
221#define QUEUE_LOCKED	1	/* locked buffers */
222#define QUEUE_CLEAN	2	/* non-B_DELWRI buffers */
223#define QUEUE_DIRTY	3	/* B_DELWRI buffers */
224#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
225#define QUEUE_EMPTY	5	/* empty buffer headers */
226
227/* Queues for free buffers with various properties */
228static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
229/*
230 * Single global constant for BUF_WMESG, to avoid getting multiple references.
231 * buf_wmesg is referred from macros.
232 */
233const char *buf_wmesg = BUF_WMESG;
234
235#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
236#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
237#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
238#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
239
240#ifdef USE_BUFHASH
241/*
242 * Buffer hash table code.  Note that the logical block scans linearly, which
243 * gives us some L1 cache locality.
244 */
245
246static __inline
247struct bufhashhdr *
248bufhash(struct vnode *vnp, daddr_t bn)
249{
250	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
251}
252
253#endif
254
255/*
256 *	numdirtywakeup:
257 *
258 *	If someone is blocked due to there being too many dirty buffers,
259 *	and numdirtybuffers is now reasonable, wake them up.
260 */
261
262static __inline void
263numdirtywakeup(int level)
264{
265	if (numdirtybuffers <= level) {
266		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
267			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
268			wakeup(&needsbuffer);
269		}
270	}
271}
272
273/*
274 *	bufspacewakeup:
275 *
276 *	Called when buffer space is potentially available for recovery.
277 *	getnewbuf() will block on this flag when it is unable to free
278 *	sufficient buffer space.  Buffer space becomes recoverable when
279 *	bp's get placed back in the queues.
280 */
281
282static __inline void
283bufspacewakeup(void)
284{
285	/*
286	 * If someone is waiting for BUF space, wake them up.  Even
287	 * though we haven't freed the kva space yet, the waiting
288	 * process will be able to now.
289	 */
290	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
291		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
292		wakeup(&needsbuffer);
293	}
294}
295
296/*
297 * runningbufwakeup() - in-progress I/O accounting.
298 *
299 */
300static __inline void
301runningbufwakeup(struct buf *bp)
302{
303	if (bp->b_runningbufspace) {
304		runningbufspace -= bp->b_runningbufspace;
305		bp->b_runningbufspace = 0;
306		if (runningbufreq && runningbufspace <= lorunningspace) {
307			runningbufreq = 0;
308			wakeup(&runningbufreq);
309		}
310	}
311}
312
313/*
314 *	bufcountwakeup:
315 *
316 *	Called when a buffer has been added to one of the free queues to
317 *	account for the buffer and to wakeup anyone waiting for free buffers.
318 *	This typically occurs when large amounts of metadata are being handled
319 *	by the buffer cache ( else buffer space runs out first, usually ).
320 */
321
322static __inline void
323bufcountwakeup(void)
324{
325	++numfreebuffers;
326	if (needsbuffer) {
327		needsbuffer &= ~VFS_BIO_NEED_ANY;
328		if (numfreebuffers >= hifreebuffers)
329			needsbuffer &= ~VFS_BIO_NEED_FREE;
330		wakeup(&needsbuffer);
331	}
332}
333
334/*
335 *	waitrunningbufspace()
336 *
337 *	runningbufspace is a measure of the amount of I/O currently
338 *	running.  This routine is used in async-write situations to
339 *	prevent creating huge backups of pending writes to a device.
340 *	Only asynchronous writes are governed by this function.
341 *
342 *	Reads will adjust runningbufspace, but will not block based on it.
343 *	The read load has a side effect of reducing the allowed write load.
344 *
345 *	This does NOT turn an async write into a sync write.  It waits
346 *	for earlier writes to complete and generally returns before the
347 *	caller's write has reached the device.
348 */
349static __inline void
350waitrunningbufspace(void)
351{
352	/*
353	 * XXX race against wakeup interrupt, currently
354	 * protected by Giant.  FIXME!
355	 */
356	while (runningbufspace > hirunningspace) {
357		++runningbufreq;
358		tsleep(&runningbufreq, PVM, "wdrain", 0);
359	}
360}
361
362
363/*
364 *	vfs_buf_test_cache:
365 *
366 *	Called when a buffer is extended.  This function clears the B_CACHE
367 *	bit if the newly extended portion of the buffer does not contain
368 *	valid data.
369 */
370static __inline__
371void
372vfs_buf_test_cache(struct buf *bp,
373		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
374		  vm_page_t m)
375{
376	GIANT_REQUIRED;
377
378	if (bp->b_flags & B_CACHE) {
379		int base = (foff + off) & PAGE_MASK;
380		if (vm_page_is_valid(m, base, size) == 0)
381			bp->b_flags &= ~B_CACHE;
382	}
383}
384
385/* Wake up the buffer deamon if necessary */
386static __inline__
387void
388bd_wakeup(int dirtybuflevel)
389{
390	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
391		bd_request = 1;
392		wakeup(&bd_request);
393	}
394}
395
396/*
397 * bd_speedup - speedup the buffer cache flushing code
398 */
399
400static __inline__
401void
402bd_speedup(void)
403{
404	bd_wakeup(1);
405}
406
407/*
408 * Calculating buffer cache scaling values and reserve space for buffer
409 * headers.  This is called during low level kernel initialization and
410 * may be called more then once.  We CANNOT write to the memory area
411 * being reserved at this time.
412 */
413caddr_t
414kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
415{
416	/*
417	 * physmem_est is in pages.  Convert it to kilobytes (assumes
418	 * PAGE_SIZE is >= 1K)
419	 */
420	physmem_est = physmem_est * (PAGE_SIZE / 1024);
421
422	/*
423	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
424	 * For the first 64MB of ram nominally allocate sufficient buffers to
425	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
426	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
427	 * the buffer cache we limit the eventual kva reservation to
428	 * maxbcache bytes.
429	 *
430	 * factor represents the 1/4 x ram conversion.
431	 */
432	if (nbuf == 0) {
433		int factor = 4 * BKVASIZE / 1024;
434
435		nbuf = 50;
436		if (physmem_est > 4096)
437			nbuf += min((physmem_est - 4096) / factor,
438			    65536 / factor);
439		if (physmem_est > 65536)
440			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
441
442		if (maxbcache && nbuf > maxbcache / BKVASIZE)
443			nbuf = maxbcache / BKVASIZE;
444	}
445
446#if 0
447	/*
448	 * Do not allow the buffer_map to be more then 1/2 the size of the
449	 * kernel_map.
450	 */
451	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
452	    (BKVASIZE * 2)) {
453		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
454		    (BKVASIZE * 2);
455		printf("Warning: nbufs capped at %d\n", nbuf);
456	}
457#endif
458
459	/*
460	 * swbufs are used as temporary holders for I/O, such as paging I/O.
461	 * We have no less then 16 and no more then 256.
462	 */
463	nswbuf = max(min(nbuf/4, 256), 16);
464
465	/*
466	 * Reserve space for the buffer cache buffers
467	 */
468	swbuf = (void *)v;
469	v = (caddr_t)(swbuf + nswbuf);
470	buf = (void *)v;
471	v = (caddr_t)(buf + nbuf);
472
473#ifdef USE_BUFHASH
474	/*
475	 * Calculate the hash table size and reserve space
476	 */
477	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
478		;
479	bufhashtbl = (void *)v;
480	v = (caddr_t)(bufhashtbl + bufhashmask);
481	--bufhashmask;
482#endif
483	return(v);
484}
485
486/* Initialize the buffer subsystem.  Called before use of any buffers. */
487void
488bufinit(void)
489{
490	struct buf *bp;
491	int i;
492
493	GIANT_REQUIRED;
494
495#ifdef USE_BUFHASH
496	LIST_INIT(&invalhash);
497#endif
498	mtx_init(&buftimelock, "buftime lock", NULL, MTX_DEF);
499
500#ifdef USE_BUFHASH
501	for (i = 0; i <= bufhashmask; i++)
502		LIST_INIT(&bufhashtbl[i]);
503#endif
504
505	/* next, make a null set of free lists */
506	for (i = 0; i < BUFFER_QUEUES; i++)
507		TAILQ_INIT(&bufqueues[i]);
508
509	/* finally, initialize each buffer header and stick on empty q */
510	for (i = 0; i < nbuf; i++) {
511		bp = &buf[i];
512		bzero(bp, sizeof *bp);
513		bp->b_flags = B_INVAL;	/* we're just an empty header */
514		bp->b_dev = NODEV;
515		bp->b_rcred = NOCRED;
516		bp->b_wcred = NOCRED;
517		bp->b_qindex = QUEUE_EMPTY;
518		bp->b_xflags = 0;
519		LIST_INIT(&bp->b_dep);
520		BUF_LOCKINIT(bp);
521		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
522#ifdef USE_BUFHASH
523		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
524#endif
525	}
526
527	/*
528	 * maxbufspace is the absolute maximum amount of buffer space we are
529	 * allowed to reserve in KVM and in real terms.  The absolute maximum
530	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
531	 * used by most other processes.  The differential is required to
532	 * ensure that buf_daemon is able to run when other processes might
533	 * be blocked waiting for buffer space.
534	 *
535	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
536	 * this may result in KVM fragmentation which is not handled optimally
537	 * by the system.
538	 */
539	maxbufspace = nbuf * BKVASIZE;
540	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
541	lobufspace = hibufspace - MAXBSIZE;
542
543	lorunningspace = 512 * 1024;
544	hirunningspace = 1024 * 1024;
545
546/*
547 * Limit the amount of malloc memory since it is wired permanently into
548 * the kernel space.  Even though this is accounted for in the buffer
549 * allocation, we don't want the malloced region to grow uncontrolled.
550 * The malloc scheme improves memory utilization significantly on average
551 * (small) directories.
552 */
553	maxbufmallocspace = hibufspace / 20;
554
555/*
556 * Reduce the chance of a deadlock occuring by limiting the number
557 * of delayed-write dirty buffers we allow to stack up.
558 */
559	hidirtybuffers = nbuf / 4 + 20;
560	numdirtybuffers = 0;
561/*
562 * To support extreme low-memory systems, make sure hidirtybuffers cannot
563 * eat up all available buffer space.  This occurs when our minimum cannot
564 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
565 * BKVASIZE'd (8K) buffers.
566 */
567	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
568		hidirtybuffers >>= 1;
569	}
570	lodirtybuffers = hidirtybuffers / 2;
571
572/*
573 * Try to keep the number of free buffers in the specified range,
574 * and give special processes (e.g. like buf_daemon) access to an
575 * emergency reserve.
576 */
577	lofreebuffers = nbuf / 18 + 5;
578	hifreebuffers = 2 * lofreebuffers;
579	numfreebuffers = nbuf;
580
581/*
582 * Maximum number of async ops initiated per buf_daemon loop.  This is
583 * somewhat of a hack at the moment, we really need to limit ourselves
584 * based on the number of bytes of I/O in-transit that were initiated
585 * from buf_daemon.
586 */
587
588	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
589	bogus_page = vm_page_alloc(kernel_object,
590			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
591			VM_ALLOC_NORMAL);
592	cnt.v_wire_count++;
593}
594
595/*
596 * bfreekva() - free the kva allocation for a buffer.
597 *
598 *	Must be called at splbio() or higher as this is the only locking for
599 *	buffer_map.
600 *
601 *	Since this call frees up buffer space, we call bufspacewakeup().
602 */
603static void
604bfreekva(struct buf * bp)
605{
606	GIANT_REQUIRED;
607
608	if (bp->b_kvasize) {
609		++buffreekvacnt;
610		bufspace -= bp->b_kvasize;
611		vm_map_delete(buffer_map,
612		    (vm_offset_t) bp->b_kvabase,
613		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
614		);
615		bp->b_kvasize = 0;
616		bufspacewakeup();
617	}
618}
619
620/*
621 *	bremfree:
622 *
623 *	Remove the buffer from the appropriate free list.
624 */
625void
626bremfree(struct buf * bp)
627{
628	int s = splbio();
629	int old_qindex = bp->b_qindex;
630
631	GIANT_REQUIRED;
632
633	if (bp->b_qindex != QUEUE_NONE) {
634		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
635		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
636		bp->b_qindex = QUEUE_NONE;
637	} else {
638		if (BUF_REFCNT(bp) <= 1)
639			panic("bremfree: removing a buffer not on a queue");
640	}
641
642	/*
643	 * Fixup numfreebuffers count.  If the buffer is invalid or not
644	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
645	 * the buffer was free and we must decrement numfreebuffers.
646	 */
647	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
648		switch(old_qindex) {
649		case QUEUE_DIRTY:
650		case QUEUE_CLEAN:
651		case QUEUE_EMPTY:
652		case QUEUE_EMPTYKVA:
653			--numfreebuffers;
654			break;
655		default:
656			break;
657		}
658	}
659	splx(s);
660}
661
662
663/*
664 * Get a buffer with the specified data.  Look in the cache first.  We
665 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
666 * is set, the buffer is valid and we do not have to do anything ( see
667 * getblk() ).  This is really just a special case of breadn().
668 */
669int
670bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
671    struct buf ** bpp)
672{
673
674	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
675}
676
677/*
678 * Operates like bread, but also starts asynchronous I/O on
679 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
680 * to initiating I/O . If B_CACHE is set, the buffer is valid
681 * and we do not have to do anything.
682 */
683int
684breadn(struct vnode * vp, daddr_t blkno, int size,
685    daddr_t * rablkno, int *rabsize,
686    int cnt, struct ucred * cred, struct buf ** bpp)
687{
688	struct buf *bp, *rabp;
689	int i;
690	int rv = 0, readwait = 0;
691
692	*bpp = bp = getblk(vp, blkno, size, 0, 0);
693
694	/* if not found in cache, do some I/O */
695	if ((bp->b_flags & B_CACHE) == 0) {
696		if (curthread != PCPU_GET(idlethread))
697			curthread->td_proc->p_stats->p_ru.ru_inblock++;
698		bp->b_iocmd = BIO_READ;
699		bp->b_flags &= ~B_INVAL;
700		bp->b_ioflags &= ~BIO_ERROR;
701		if (bp->b_rcred == NOCRED && cred != NOCRED)
702			bp->b_rcred = crhold(cred);
703		vfs_busy_pages(bp, 0);
704		VOP_STRATEGY(vp, bp);
705		++readwait;
706	}
707
708	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
709		if (inmem(vp, *rablkno))
710			continue;
711		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
712
713		if ((rabp->b_flags & B_CACHE) == 0) {
714			if (curthread != PCPU_GET(idlethread))
715				curthread->td_proc->p_stats->p_ru.ru_inblock++;
716			rabp->b_flags |= B_ASYNC;
717			rabp->b_flags &= ~B_INVAL;
718			rabp->b_ioflags &= ~BIO_ERROR;
719			rabp->b_iocmd = BIO_READ;
720			if (rabp->b_rcred == NOCRED && cred != NOCRED)
721				rabp->b_rcred = crhold(cred);
722			vfs_busy_pages(rabp, 0);
723			BUF_KERNPROC(rabp);
724			VOP_STRATEGY(vp, rabp);
725		} else {
726			brelse(rabp);
727		}
728	}
729
730	if (readwait) {
731		rv = bufwait(bp);
732	}
733	return (rv);
734}
735
736/*
737 * Write, release buffer on completion.  (Done by iodone
738 * if async).  Do not bother writing anything if the buffer
739 * is invalid.
740 *
741 * Note that we set B_CACHE here, indicating that buffer is
742 * fully valid and thus cacheable.  This is true even of NFS
743 * now so we set it generally.  This could be set either here
744 * or in biodone() since the I/O is synchronous.  We put it
745 * here.
746 */
747
748int
749bwrite(struct buf * bp)
750{
751	int oldflags, s;
752	struct buf *newbp;
753
754	if (bp->b_flags & B_INVAL) {
755		brelse(bp);
756		return (0);
757	}
758
759	oldflags = bp->b_flags;
760
761	if (BUF_REFCNT(bp) == 0)
762		panic("bwrite: buffer is not busy???");
763	s = splbio();
764	/*
765	 * If a background write is already in progress, delay
766	 * writing this block if it is asynchronous. Otherwise
767	 * wait for the background write to complete.
768	 */
769	if (bp->b_xflags & BX_BKGRDINPROG) {
770		if (bp->b_flags & B_ASYNC) {
771			splx(s);
772			bdwrite(bp);
773			return (0);
774		}
775		bp->b_xflags |= BX_BKGRDWAIT;
776		tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0);
777		if (bp->b_xflags & BX_BKGRDINPROG)
778			panic("bwrite: still writing");
779	}
780
781	/* Mark the buffer clean */
782	bundirty(bp);
783
784	/*
785	 * If this buffer is marked for background writing and we
786	 * do not have to wait for it, make a copy and write the
787	 * copy so as to leave this buffer ready for further use.
788	 *
789	 * This optimization eats a lot of memory.  If we have a page
790	 * or buffer shortfall we can't do it.
791	 */
792	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
793	    (bp->b_flags & B_ASYNC) &&
794	    !vm_page_count_severe() &&
795	    !buf_dirty_count_severe()) {
796		if (bp->b_iodone != NULL) {
797			printf("bp->b_iodone = %p\n", bp->b_iodone);
798			panic("bwrite: need chained iodone");
799		}
800
801		/* get a new block */
802		newbp = geteblk(bp->b_bufsize);
803
804		/*
805		 * set it to be identical to the old block.  We have to
806		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
807		 * to avoid confusing the splay tree and gbincore().
808		 */
809		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
810		newbp->b_lblkno = bp->b_lblkno;
811		newbp->b_xflags |= BX_BKGRDMARKER;
812		bgetvp(bp->b_vp, newbp);
813		newbp->b_blkno = bp->b_blkno;
814		newbp->b_offset = bp->b_offset;
815		newbp->b_iodone = vfs_backgroundwritedone;
816		newbp->b_flags |= B_ASYNC;
817		newbp->b_flags &= ~B_INVAL;
818
819		/* move over the dependencies */
820		if (LIST_FIRST(&bp->b_dep) != NULL)
821			buf_movedeps(bp, newbp);
822
823		/*
824		 * Initiate write on the copy, release the original to
825		 * the B_LOCKED queue so that it cannot go away until
826		 * the background write completes. If not locked it could go
827		 * away and then be reconstituted while it was being written.
828		 * If the reconstituted buffer were written, we could end up
829		 * with two background copies being written at the same time.
830		 */
831		bp->b_xflags |= BX_BKGRDINPROG;
832		bp->b_flags |= B_LOCKED;
833		bqrelse(bp);
834		bp = newbp;
835	}
836
837	bp->b_flags &= ~B_DONE;
838	bp->b_ioflags &= ~BIO_ERROR;
839	bp->b_flags |= B_WRITEINPROG | B_CACHE;
840	bp->b_iocmd = BIO_WRITE;
841
842	VI_LOCK(bp->b_vp);
843	bp->b_vp->v_numoutput++;
844	VI_UNLOCK(bp->b_vp);
845	vfs_busy_pages(bp, 1);
846
847	/*
848	 * Normal bwrites pipeline writes
849	 */
850	bp->b_runningbufspace = bp->b_bufsize;
851	runningbufspace += bp->b_runningbufspace;
852
853	if (curthread != PCPU_GET(idlethread))
854		curthread->td_proc->p_stats->p_ru.ru_oublock++;
855	splx(s);
856	if (oldflags & B_ASYNC)
857		BUF_KERNPROC(bp);
858	BUF_STRATEGY(bp);
859
860	if ((oldflags & B_ASYNC) == 0) {
861		int rtval = bufwait(bp);
862		brelse(bp);
863		return (rtval);
864	} else if ((oldflags & B_NOWDRAIN) == 0) {
865		/*
866		 * don't allow the async write to saturate the I/O
867		 * system.  Deadlocks can occur only if a device strategy
868		 * routine (like in MD) turns around and issues another
869		 * high-level write, in which case B_NOWDRAIN is expected
870		 * to be set.  Otherwise we will not deadlock here because
871		 * we are blocking waiting for I/O that is already in-progress
872		 * to complete.
873		 */
874		waitrunningbufspace();
875	}
876
877	return (0);
878}
879
880/*
881 * Complete a background write started from bwrite.
882 */
883static void
884vfs_backgroundwritedone(bp)
885	struct buf *bp;
886{
887	struct buf *origbp;
888
889	/*
890	 * Find the original buffer that we are writing.
891	 */
892	VI_LOCK(bp->b_vp);
893	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
894		panic("backgroundwritedone: lost buffer");
895	VI_UNLOCK(bp->b_vp);
896	/*
897	 * Process dependencies then return any unfinished ones.
898	 */
899	if (LIST_FIRST(&bp->b_dep) != NULL)
900		buf_complete(bp);
901	if (LIST_FIRST(&bp->b_dep) != NULL)
902		buf_movedeps(bp, origbp);
903	/*
904	 * Clear the BX_BKGRDINPROG flag in the original buffer
905	 * and awaken it if it is waiting for the write to complete.
906	 * If BX_BKGRDINPROG is not set in the original buffer it must
907	 * have been released and re-instantiated - which is not legal.
908	 */
909	KASSERT((origbp->b_xflags & BX_BKGRDINPROG),
910	    ("backgroundwritedone: lost buffer2"));
911	origbp->b_xflags &= ~BX_BKGRDINPROG;
912	if (origbp->b_xflags & BX_BKGRDWAIT) {
913		origbp->b_xflags &= ~BX_BKGRDWAIT;
914		wakeup(&origbp->b_xflags);
915	}
916	/*
917	 * Clear the B_LOCKED flag and remove it from the locked
918	 * queue if it currently resides there.
919	 */
920	origbp->b_flags &= ~B_LOCKED;
921	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
922		bremfree(origbp);
923		bqrelse(origbp);
924	}
925	/*
926	 * This buffer is marked B_NOCACHE, so when it is released
927	 * by biodone, it will be tossed. We mark it with BIO_READ
928	 * to avoid biodone doing a second vwakeup.
929	 */
930	bp->b_flags |= B_NOCACHE;
931	bp->b_iocmd = BIO_READ;
932	bp->b_flags &= ~(B_CACHE | B_DONE);
933	bp->b_iodone = 0;
934	bufdone(bp);
935}
936
937/*
938 * Delayed write. (Buffer is marked dirty).  Do not bother writing
939 * anything if the buffer is marked invalid.
940 *
941 * Note that since the buffer must be completely valid, we can safely
942 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
943 * biodone() in order to prevent getblk from writing the buffer
944 * out synchronously.
945 */
946void
947bdwrite(struct buf * bp)
948{
949	GIANT_REQUIRED;
950
951	if (BUF_REFCNT(bp) == 0)
952		panic("bdwrite: buffer is not busy");
953
954	if (bp->b_flags & B_INVAL) {
955		brelse(bp);
956		return;
957	}
958	bdirty(bp);
959
960	/*
961	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
962	 * true even of NFS now.
963	 */
964	bp->b_flags |= B_CACHE;
965
966	/*
967	 * This bmap keeps the system from needing to do the bmap later,
968	 * perhaps when the system is attempting to do a sync.  Since it
969	 * is likely that the indirect block -- or whatever other datastructure
970	 * that the filesystem needs is still in memory now, it is a good
971	 * thing to do this.  Note also, that if the pageout daemon is
972	 * requesting a sync -- there might not be enough memory to do
973	 * the bmap then...  So, this is important to do.
974	 */
975	if (bp->b_lblkno == bp->b_blkno) {
976		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
977	}
978
979	/*
980	 * Set the *dirty* buffer range based upon the VM system dirty pages.
981	 */
982	vfs_setdirty(bp);
983
984	/*
985	 * We need to do this here to satisfy the vnode_pager and the
986	 * pageout daemon, so that it thinks that the pages have been
987	 * "cleaned".  Note that since the pages are in a delayed write
988	 * buffer -- the VFS layer "will" see that the pages get written
989	 * out on the next sync, or perhaps the cluster will be completed.
990	 */
991	vfs_clean_pages(bp);
992	bqrelse(bp);
993
994	/*
995	 * Wakeup the buffer flushing daemon if we have a lot of dirty
996	 * buffers (midpoint between our recovery point and our stall
997	 * point).
998	 */
999	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1000
1001	/*
1002	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1003	 * due to the softdep code.
1004	 */
1005}
1006
1007/*
1008 *	bdirty:
1009 *
1010 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1011 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1012 *	itself to properly update it in the dirty/clean lists.  We mark it
1013 *	B_DONE to ensure that any asynchronization of the buffer properly
1014 *	clears B_DONE ( else a panic will occur later ).
1015 *
1016 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1017 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1018 *	should only be called if the buffer is known-good.
1019 *
1020 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1021 *	count.
1022 *
1023 *	Must be called at splbio().
1024 *	The buffer must be on QUEUE_NONE.
1025 */
1026void
1027bdirty(bp)
1028	struct buf *bp;
1029{
1030	KASSERT(bp->b_qindex == QUEUE_NONE,
1031	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1032	bp->b_flags &= ~(B_RELBUF);
1033	bp->b_iocmd = BIO_WRITE;
1034
1035	if ((bp->b_flags & B_DELWRI) == 0) {
1036		bp->b_flags |= B_DONE | B_DELWRI;
1037		reassignbuf(bp, bp->b_vp);
1038		++numdirtybuffers;
1039		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1040	}
1041}
1042
1043/*
1044 *	bundirty:
1045 *
1046 *	Clear B_DELWRI for buffer.
1047 *
1048 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1049 *	count.
1050 *
1051 *	Must be called at splbio().
1052 *	The buffer must be on QUEUE_NONE.
1053 */
1054
1055void
1056bundirty(bp)
1057	struct buf *bp;
1058{
1059	KASSERT(bp->b_qindex == QUEUE_NONE,
1060	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1061
1062	if (bp->b_flags & B_DELWRI) {
1063		bp->b_flags &= ~B_DELWRI;
1064		reassignbuf(bp, bp->b_vp);
1065		--numdirtybuffers;
1066		numdirtywakeup(lodirtybuffers);
1067	}
1068	/*
1069	 * Since it is now being written, we can clear its deferred write flag.
1070	 */
1071	bp->b_flags &= ~B_DEFERRED;
1072}
1073
1074/*
1075 *	bawrite:
1076 *
1077 *	Asynchronous write.  Start output on a buffer, but do not wait for
1078 *	it to complete.  The buffer is released when the output completes.
1079 *
1080 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1081 *	B_INVAL buffers.  Not us.
1082 */
1083void
1084bawrite(struct buf * bp)
1085{
1086	bp->b_flags |= B_ASYNC;
1087	(void) BUF_WRITE(bp);
1088}
1089
1090/*
1091 *	bwillwrite:
1092 *
1093 *	Called prior to the locking of any vnodes when we are expecting to
1094 *	write.  We do not want to starve the buffer cache with too many
1095 *	dirty buffers so we block here.  By blocking prior to the locking
1096 *	of any vnodes we attempt to avoid the situation where a locked vnode
1097 *	prevents the various system daemons from flushing related buffers.
1098 */
1099
1100void
1101bwillwrite(void)
1102{
1103	if (numdirtybuffers >= hidirtybuffers) {
1104		int s;
1105
1106		mtx_lock(&Giant);
1107		s = splbio();
1108		while (numdirtybuffers >= hidirtybuffers) {
1109			bd_wakeup(1);
1110			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1111			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
1112		}
1113		splx(s);
1114		mtx_unlock(&Giant);
1115	}
1116}
1117
1118/*
1119 * Return true if we have too many dirty buffers.
1120 */
1121int
1122buf_dirty_count_severe(void)
1123{
1124	return(numdirtybuffers >= hidirtybuffers);
1125}
1126
1127/*
1128 *	brelse:
1129 *
1130 *	Release a busy buffer and, if requested, free its resources.  The
1131 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1132 *	to be accessed later as a cache entity or reused for other purposes.
1133 */
1134void
1135brelse(struct buf * bp)
1136{
1137	int s;
1138
1139	GIANT_REQUIRED;
1140
1141	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1142	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1143
1144	s = splbio();
1145
1146	if (bp->b_flags & B_LOCKED)
1147		bp->b_ioflags &= ~BIO_ERROR;
1148
1149	if (bp->b_iocmd == BIO_WRITE &&
1150	    (bp->b_ioflags & BIO_ERROR) &&
1151	    !(bp->b_flags & B_INVAL)) {
1152		/*
1153		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1154		 * pages from being scrapped.  If B_INVAL is set then
1155		 * this case is not run and the next case is run to
1156		 * destroy the buffer.  B_INVAL can occur if the buffer
1157		 * is outside the range supported by the underlying device.
1158		 */
1159		bp->b_ioflags &= ~BIO_ERROR;
1160		bdirty(bp);
1161	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1162	    (bp->b_ioflags & BIO_ERROR) ||
1163	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1164		/*
1165		 * Either a failed I/O or we were asked to free or not
1166		 * cache the buffer.
1167		 */
1168		bp->b_flags |= B_INVAL;
1169		if (LIST_FIRST(&bp->b_dep) != NULL)
1170			buf_deallocate(bp);
1171		if (bp->b_flags & B_DELWRI) {
1172			--numdirtybuffers;
1173			numdirtywakeup(lodirtybuffers);
1174		}
1175		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1176		if ((bp->b_flags & B_VMIO) == 0) {
1177			if (bp->b_bufsize)
1178				allocbuf(bp, 0);
1179			if (bp->b_vp)
1180				brelvp(bp);
1181		}
1182	}
1183
1184	/*
1185	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1186	 * is called with B_DELWRI set, the underlying pages may wind up
1187	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1188	 * because pages associated with a B_DELWRI bp are marked clean.
1189	 *
1190	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1191	 * if B_DELWRI is set.
1192	 *
1193	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1194	 * on pages to return pages to the VM page queues.
1195	 */
1196	if (bp->b_flags & B_DELWRI)
1197		bp->b_flags &= ~B_RELBUF;
1198	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1199		bp->b_flags |= B_RELBUF;
1200
1201	/*
1202	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1203	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1204	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1205	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1206	 *
1207	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1208	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1209	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1210	 *
1211	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1212	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1213	 * the commit state and we cannot afford to lose the buffer. If the
1214	 * buffer has a background write in progress, we need to keep it
1215	 * around to prevent it from being reconstituted and starting a second
1216	 * background write.
1217	 */
1218	if ((bp->b_flags & B_VMIO)
1219	    && !(bp->b_vp->v_mount != NULL &&
1220		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1221		 !vn_isdisk(bp->b_vp, NULL) &&
1222		 (bp->b_flags & B_DELWRI))
1223	    ) {
1224
1225		int i, j, resid;
1226		vm_page_t m;
1227		off_t foff;
1228		vm_pindex_t poff;
1229		vm_object_t obj;
1230		struct vnode *vp;
1231
1232		vp = bp->b_vp;
1233		obj = bp->b_object;
1234
1235		/*
1236		 * Get the base offset and length of the buffer.  Note that
1237		 * in the VMIO case if the buffer block size is not
1238		 * page-aligned then b_data pointer may not be page-aligned.
1239		 * But our b_pages[] array *IS* page aligned.
1240		 *
1241		 * block sizes less then DEV_BSIZE (usually 512) are not
1242		 * supported due to the page granularity bits (m->valid,
1243		 * m->dirty, etc...).
1244		 *
1245		 * See man buf(9) for more information
1246		 */
1247		resid = bp->b_bufsize;
1248		foff = bp->b_offset;
1249
1250		for (i = 0; i < bp->b_npages; i++) {
1251			int had_bogus = 0;
1252
1253			m = bp->b_pages[i];
1254			vm_page_flag_clear(m, PG_ZERO);
1255
1256			/*
1257			 * If we hit a bogus page, fixup *all* the bogus pages
1258			 * now.
1259			 */
1260			if (m == bogus_page) {
1261				poff = OFF_TO_IDX(bp->b_offset);
1262				had_bogus = 1;
1263
1264				for (j = i; j < bp->b_npages; j++) {
1265					vm_page_t mtmp;
1266					mtmp = bp->b_pages[j];
1267					if (mtmp == bogus_page) {
1268						mtmp = vm_page_lookup(obj, poff + j);
1269						if (!mtmp) {
1270							panic("brelse: page missing\n");
1271						}
1272						bp->b_pages[j] = mtmp;
1273					}
1274				}
1275
1276				if ((bp->b_flags & B_INVAL) == 0) {
1277					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1278				}
1279				m = bp->b_pages[i];
1280			}
1281			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1282				int poffset = foff & PAGE_MASK;
1283				int presid = resid > (PAGE_SIZE - poffset) ?
1284					(PAGE_SIZE - poffset) : resid;
1285
1286				KASSERT(presid >= 0, ("brelse: extra page"));
1287				vm_page_set_invalid(m, poffset, presid);
1288				if (had_bogus)
1289					printf("avoided corruption bug in bogus_page/brelse code\n");
1290			}
1291			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1292			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1293		}
1294
1295		if (bp->b_flags & (B_INVAL | B_RELBUF))
1296			vfs_vmio_release(bp);
1297
1298	} else if (bp->b_flags & B_VMIO) {
1299
1300		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1301			vfs_vmio_release(bp);
1302		}
1303
1304	}
1305
1306	if (bp->b_qindex != QUEUE_NONE)
1307		panic("brelse: free buffer onto another queue???");
1308	if (BUF_REFCNT(bp) > 1) {
1309		/* do not release to free list */
1310		BUF_UNLOCK(bp);
1311		splx(s);
1312		return;
1313	}
1314
1315	/* enqueue */
1316
1317	/* buffers with no memory */
1318	if (bp->b_bufsize == 0) {
1319		bp->b_flags |= B_INVAL;
1320		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1321		if (bp->b_xflags & BX_BKGRDINPROG)
1322			panic("losing buffer 1");
1323		if (bp->b_kvasize) {
1324			bp->b_qindex = QUEUE_EMPTYKVA;
1325		} else {
1326			bp->b_qindex = QUEUE_EMPTY;
1327		}
1328		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1329#ifdef USE_BUFHASH
1330		LIST_REMOVE(bp, b_hash);
1331		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1332#endif
1333		bp->b_dev = NODEV;
1334	/* buffers with junk contents */
1335	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1336	    (bp->b_ioflags & BIO_ERROR)) {
1337		bp->b_flags |= B_INVAL;
1338		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1339		if (bp->b_xflags & BX_BKGRDINPROG)
1340			panic("losing buffer 2");
1341		bp->b_qindex = QUEUE_CLEAN;
1342		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1343#ifdef USE_BUFHASH
1344		LIST_REMOVE(bp, b_hash);
1345		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1346#endif
1347		bp->b_dev = NODEV;
1348
1349	/* buffers that are locked */
1350	} else if (bp->b_flags & B_LOCKED) {
1351		bp->b_qindex = QUEUE_LOCKED;
1352		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1353
1354	/* remaining buffers */
1355	} else {
1356		if (bp->b_flags & B_DELWRI)
1357			bp->b_qindex = QUEUE_DIRTY;
1358		else
1359			bp->b_qindex = QUEUE_CLEAN;
1360		if (bp->b_flags & B_AGE)
1361			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1362		else
1363			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1364	}
1365
1366	/*
1367	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1368	 * placed the buffer on the correct queue.  We must also disassociate
1369	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1370	 * find it.
1371	 */
1372	if (bp->b_flags & B_INVAL) {
1373		if (bp->b_flags & B_DELWRI)
1374			bundirty(bp);
1375		if (bp->b_vp)
1376			brelvp(bp);
1377	}
1378
1379	/*
1380	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1381	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1382	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1383	 * if B_INVAL is set ).
1384	 */
1385
1386	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1387		bufcountwakeup();
1388
1389	/*
1390	 * Something we can maybe free or reuse
1391	 */
1392	if (bp->b_bufsize || bp->b_kvasize)
1393		bufspacewakeup();
1394
1395	/* unlock */
1396	BUF_UNLOCK(bp);
1397	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1398			B_DIRECT | B_NOWDRAIN);
1399	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1400		panic("brelse: not dirty");
1401	splx(s);
1402}
1403
1404/*
1405 * Release a buffer back to the appropriate queue but do not try to free
1406 * it.  The buffer is expected to be used again soon.
1407 *
1408 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1409 * biodone() to requeue an async I/O on completion.  It is also used when
1410 * known good buffers need to be requeued but we think we may need the data
1411 * again soon.
1412 *
1413 * XXX we should be able to leave the B_RELBUF hint set on completion.
1414 */
1415void
1416bqrelse(struct buf * bp)
1417{
1418	int s;
1419
1420	s = splbio();
1421
1422	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1423
1424	if (bp->b_qindex != QUEUE_NONE)
1425		panic("bqrelse: free buffer onto another queue???");
1426	if (BUF_REFCNT(bp) > 1) {
1427		/* do not release to free list */
1428		BUF_UNLOCK(bp);
1429		splx(s);
1430		return;
1431	}
1432	if (bp->b_flags & B_LOCKED) {
1433		bp->b_ioflags &= ~BIO_ERROR;
1434		bp->b_qindex = QUEUE_LOCKED;
1435		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1436		/* buffers with stale but valid contents */
1437	} else if (bp->b_flags & B_DELWRI) {
1438		bp->b_qindex = QUEUE_DIRTY;
1439		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1440	} else if (vm_page_count_severe()) {
1441		/*
1442		 * We are too low on memory, we have to try to free the
1443		 * buffer (most importantly: the wired pages making up its
1444		 * backing store) *now*.
1445		 */
1446		splx(s);
1447		brelse(bp);
1448		return;
1449	} else {
1450		bp->b_qindex = QUEUE_CLEAN;
1451		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1452	}
1453
1454	if ((bp->b_flags & B_LOCKED) == 0 &&
1455	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1456		bufcountwakeup();
1457	}
1458
1459	/*
1460	 * Something we can maybe free or reuse.
1461	 */
1462	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1463		bufspacewakeup();
1464
1465	/* unlock */
1466	BUF_UNLOCK(bp);
1467	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1468	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1469		panic("bqrelse: not dirty");
1470	splx(s);
1471}
1472
1473/* Give pages used by the bp back to the VM system (where possible) */
1474static void
1475vfs_vmio_release(bp)
1476	struct buf *bp;
1477{
1478	int i;
1479	vm_page_t m;
1480
1481	GIANT_REQUIRED;
1482	vm_page_lock_queues();
1483	for (i = 0; i < bp->b_npages; i++) {
1484		m = bp->b_pages[i];
1485		bp->b_pages[i] = NULL;
1486		/*
1487		 * In order to keep page LRU ordering consistent, put
1488		 * everything on the inactive queue.
1489		 */
1490		vm_page_unwire(m, 0);
1491		/*
1492		 * We don't mess with busy pages, it is
1493		 * the responsibility of the process that
1494		 * busied the pages to deal with them.
1495		 */
1496		if ((m->flags & PG_BUSY) || (m->busy != 0))
1497			continue;
1498
1499		if (m->wire_count == 0) {
1500			vm_page_flag_clear(m, PG_ZERO);
1501			/*
1502			 * Might as well free the page if we can and it has
1503			 * no valid data.  We also free the page if the
1504			 * buffer was used for direct I/O
1505			 */
1506			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1507			    m->hold_count == 0) {
1508				vm_page_busy(m);
1509				vm_page_protect(m, VM_PROT_NONE);
1510				vm_page_free(m);
1511			} else if (bp->b_flags & B_DIRECT) {
1512				vm_page_try_to_free(m);
1513			} else if (vm_page_count_severe()) {
1514				vm_page_try_to_cache(m);
1515			}
1516		}
1517	}
1518	vm_page_unlock_queues();
1519	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1520
1521	if (bp->b_bufsize) {
1522		bufspacewakeup();
1523		bp->b_bufsize = 0;
1524	}
1525	bp->b_npages = 0;
1526	bp->b_flags &= ~B_VMIO;
1527	if (bp->b_vp)
1528		brelvp(bp);
1529}
1530
1531#ifdef USE_BUFHASH
1532/*
1533 * XXX MOVED TO VFS_SUBR.C
1534 *
1535 * Check to see if a block is currently memory resident.
1536 */
1537struct buf *
1538gbincore(struct vnode * vp, daddr_t blkno)
1539{
1540	struct buf *bp;
1541	struct bufhashhdr *bh;
1542
1543	bh = bufhash(vp, blkno);
1544
1545	/* Search hash chain */
1546	LIST_FOREACH(bp, bh, b_hash) {
1547		/* hit */
1548		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1549		    (bp->b_flags & B_INVAL) == 0) {
1550			break;
1551		}
1552	}
1553	return (bp);
1554}
1555#endif
1556
1557/*
1558 *	vfs_bio_awrite:
1559 *
1560 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1561 *	This is much better then the old way of writing only one buffer at
1562 *	a time.  Note that we may not be presented with the buffers in the
1563 *	correct order, so we search for the cluster in both directions.
1564 */
1565int
1566vfs_bio_awrite(struct buf * bp)
1567{
1568	int i;
1569	int j;
1570	daddr_t lblkno = bp->b_lblkno;
1571	struct vnode *vp = bp->b_vp;
1572	int s;
1573	int ncl;
1574	struct buf *bpa;
1575	int nwritten;
1576	int size;
1577	int maxcl;
1578
1579	s = splbio();
1580	/*
1581	 * right now we support clustered writing only to regular files.  If
1582	 * we find a clusterable block we could be in the middle of a cluster
1583	 * rather then at the beginning.
1584	 */
1585	if ((vp->v_type == VREG) &&
1586	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1587	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1588
1589		size = vp->v_mount->mnt_stat.f_iosize;
1590		maxcl = MAXPHYS / size;
1591
1592		VI_LOCK(vp);
1593		for (i = 1; i < maxcl; i++) {
1594			if ((bpa = gbincore(vp, lblkno + i)) &&
1595			    BUF_REFCNT(bpa) == 0 &&
1596			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1597			    (B_DELWRI | B_CLUSTEROK)) &&
1598			    (bpa->b_bufsize == size)) {
1599				if ((bpa->b_blkno == bpa->b_lblkno) ||
1600				    (bpa->b_blkno !=
1601				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1602					break;
1603			} else {
1604				break;
1605			}
1606		}
1607		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1608			if ((bpa = gbincore(vp, lblkno - j)) &&
1609			    BUF_REFCNT(bpa) == 0 &&
1610			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1611			    (B_DELWRI | B_CLUSTEROK)) &&
1612			    (bpa->b_bufsize == size)) {
1613				if ((bpa->b_blkno == bpa->b_lblkno) ||
1614				    (bpa->b_blkno !=
1615				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1616					break;
1617			} else {
1618				break;
1619			}
1620		}
1621		VI_UNLOCK(vp);
1622		--j;
1623		ncl = i + j;
1624		/*
1625		 * this is a possible cluster write
1626		 */
1627		if (ncl != 1) {
1628			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1629			splx(s);
1630			return nwritten;
1631		}
1632	}
1633
1634	BUF_LOCK(bp, LK_EXCLUSIVE);
1635	bremfree(bp);
1636	bp->b_flags |= B_ASYNC;
1637
1638	splx(s);
1639	/*
1640	 * default (old) behavior, writing out only one block
1641	 *
1642	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1643	 */
1644	nwritten = bp->b_bufsize;
1645	(void) BUF_WRITE(bp);
1646
1647	return nwritten;
1648}
1649
1650/*
1651 *	getnewbuf:
1652 *
1653 *	Find and initialize a new buffer header, freeing up existing buffers
1654 *	in the bufqueues as necessary.  The new buffer is returned locked.
1655 *
1656 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1657 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1658 *
1659 *	We block if:
1660 *		We have insufficient buffer headers
1661 *		We have insufficient buffer space
1662 *		buffer_map is too fragmented ( space reservation fails )
1663 *		If we have to flush dirty buffers ( but we try to avoid this )
1664 *
1665 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1666 *	Instead we ask the buf daemon to do it for us.  We attempt to
1667 *	avoid piecemeal wakeups of the pageout daemon.
1668 */
1669
1670static struct buf *
1671getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1672{
1673	struct buf *bp;
1674	struct buf *nbp;
1675	int defrag = 0;
1676	int nqindex;
1677	static int flushingbufs;
1678
1679	GIANT_REQUIRED;
1680
1681	/*
1682	 * We can't afford to block since we might be holding a vnode lock,
1683	 * which may prevent system daemons from running.  We deal with
1684	 * low-memory situations by proactively returning memory and running
1685	 * async I/O rather then sync I/O.
1686	 */
1687
1688	++getnewbufcalls;
1689	--getnewbufrestarts;
1690restart:
1691	++getnewbufrestarts;
1692
1693	/*
1694	 * Setup for scan.  If we do not have enough free buffers,
1695	 * we setup a degenerate case that immediately fails.  Note
1696	 * that if we are specially marked process, we are allowed to
1697	 * dip into our reserves.
1698	 *
1699	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1700	 *
1701	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1702	 * However, there are a number of cases (defragging, reusing, ...)
1703	 * where we cannot backup.
1704	 */
1705	nqindex = QUEUE_EMPTYKVA;
1706	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1707
1708	if (nbp == NULL) {
1709		/*
1710		 * If no EMPTYKVA buffers and we are either
1711		 * defragging or reusing, locate a CLEAN buffer
1712		 * to free or reuse.  If bufspace useage is low
1713		 * skip this step so we can allocate a new buffer.
1714		 */
1715		if (defrag || bufspace >= lobufspace) {
1716			nqindex = QUEUE_CLEAN;
1717			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1718		}
1719
1720		/*
1721		 * If we could not find or were not allowed to reuse a
1722		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1723		 * buffer.  We can only use an EMPTY buffer if allocating
1724		 * its KVA would not otherwise run us out of buffer space.
1725		 */
1726		if (nbp == NULL && defrag == 0 &&
1727		    bufspace + maxsize < hibufspace) {
1728			nqindex = QUEUE_EMPTY;
1729			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1730		}
1731	}
1732
1733	/*
1734	 * Run scan, possibly freeing data and/or kva mappings on the fly
1735	 * depending.
1736	 */
1737
1738	while ((bp = nbp) != NULL) {
1739		int qindex = nqindex;
1740
1741		/*
1742		 * Calculate next bp ( we can only use it if we do not block
1743		 * or do other fancy things ).
1744		 */
1745		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1746			switch(qindex) {
1747			case QUEUE_EMPTY:
1748				nqindex = QUEUE_EMPTYKVA;
1749				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1750					break;
1751				/* FALLTHROUGH */
1752			case QUEUE_EMPTYKVA:
1753				nqindex = QUEUE_CLEAN;
1754				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1755					break;
1756				/* FALLTHROUGH */
1757			case QUEUE_CLEAN:
1758				/*
1759				 * nbp is NULL.
1760				 */
1761				break;
1762			}
1763		}
1764
1765		/*
1766		 * Sanity Checks
1767		 */
1768		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1769
1770		/*
1771		 * Note: we no longer distinguish between VMIO and non-VMIO
1772		 * buffers.
1773		 */
1774
1775		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1776
1777		/*
1778		 * If we are defragging then we need a buffer with
1779		 * b_kvasize != 0.  XXX this situation should no longer
1780		 * occur, if defrag is non-zero the buffer's b_kvasize
1781		 * should also be non-zero at this point.  XXX
1782		 */
1783		if (defrag && bp->b_kvasize == 0) {
1784			printf("Warning: defrag empty buffer %p\n", bp);
1785			continue;
1786		}
1787
1788		/*
1789		 * Start freeing the bp.  This is somewhat involved.  nbp
1790		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1791		 */
1792
1793		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1794			panic("getnewbuf: locked buf");
1795		bremfree(bp);
1796
1797		if (qindex == QUEUE_CLEAN) {
1798			if (bp->b_flags & B_VMIO) {
1799				bp->b_flags &= ~B_ASYNC;
1800				vfs_vmio_release(bp);
1801			}
1802			if (bp->b_vp)
1803				brelvp(bp);
1804		}
1805
1806		/*
1807		 * NOTE:  nbp is now entirely invalid.  We can only restart
1808		 * the scan from this point on.
1809		 *
1810		 * Get the rest of the buffer freed up.  b_kva* is still
1811		 * valid after this operation.
1812		 */
1813
1814		if (bp->b_rcred != NOCRED) {
1815			crfree(bp->b_rcred);
1816			bp->b_rcred = NOCRED;
1817		}
1818		if (bp->b_wcred != NOCRED) {
1819			crfree(bp->b_wcred);
1820			bp->b_wcred = NOCRED;
1821		}
1822		if (LIST_FIRST(&bp->b_dep) != NULL)
1823			buf_deallocate(bp);
1824		if (bp->b_xflags & BX_BKGRDINPROG)
1825			panic("losing buffer 3");
1826#ifdef USE_BUFHASH
1827		LIST_REMOVE(bp, b_hash);
1828		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1829#endif
1830
1831		if (bp->b_bufsize)
1832			allocbuf(bp, 0);
1833
1834		bp->b_flags = 0;
1835		bp->b_ioflags = 0;
1836		bp->b_xflags = 0;
1837		bp->b_dev = NODEV;
1838		bp->b_vp = NULL;
1839		bp->b_blkno = bp->b_lblkno = 0;
1840		bp->b_offset = NOOFFSET;
1841		bp->b_iodone = 0;
1842		bp->b_error = 0;
1843		bp->b_resid = 0;
1844		bp->b_bcount = 0;
1845		bp->b_npages = 0;
1846		bp->b_dirtyoff = bp->b_dirtyend = 0;
1847		bp->b_magic = B_MAGIC_BIO;
1848		bp->b_op = &buf_ops_bio;
1849		bp->b_object = NULL;
1850
1851		LIST_INIT(&bp->b_dep);
1852
1853		/*
1854		 * If we are defragging then free the buffer.
1855		 */
1856		if (defrag) {
1857			bp->b_flags |= B_INVAL;
1858			bfreekva(bp);
1859			brelse(bp);
1860			defrag = 0;
1861			goto restart;
1862		}
1863
1864		/*
1865		 * If we are overcomitted then recover the buffer and its
1866		 * KVM space.  This occurs in rare situations when multiple
1867		 * processes are blocked in getnewbuf() or allocbuf().
1868		 */
1869		if (bufspace >= hibufspace)
1870			flushingbufs = 1;
1871		if (flushingbufs && bp->b_kvasize != 0) {
1872			bp->b_flags |= B_INVAL;
1873			bfreekva(bp);
1874			brelse(bp);
1875			goto restart;
1876		}
1877		if (bufspace < lobufspace)
1878			flushingbufs = 0;
1879		break;
1880	}
1881
1882	/*
1883	 * If we exhausted our list, sleep as appropriate.  We may have to
1884	 * wakeup various daemons and write out some dirty buffers.
1885	 *
1886	 * Generally we are sleeping due to insufficient buffer space.
1887	 */
1888
1889	if (bp == NULL) {
1890		int flags;
1891		char *waitmsg;
1892
1893		if (defrag) {
1894			flags = VFS_BIO_NEED_BUFSPACE;
1895			waitmsg = "nbufkv";
1896		} else if (bufspace >= hibufspace) {
1897			waitmsg = "nbufbs";
1898			flags = VFS_BIO_NEED_BUFSPACE;
1899		} else {
1900			waitmsg = "newbuf";
1901			flags = VFS_BIO_NEED_ANY;
1902		}
1903
1904		bd_speedup();	/* heeeelp */
1905
1906		needsbuffer |= flags;
1907		while (needsbuffer & flags) {
1908			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1909			    waitmsg, slptimeo))
1910				return (NULL);
1911		}
1912	} else {
1913		/*
1914		 * We finally have a valid bp.  We aren't quite out of the
1915		 * woods, we still have to reserve kva space.  In order
1916		 * to keep fragmentation sane we only allocate kva in
1917		 * BKVASIZE chunks.
1918		 */
1919		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1920
1921		if (maxsize != bp->b_kvasize) {
1922			vm_offset_t addr = 0;
1923
1924			bfreekva(bp);
1925
1926			if (vm_map_findspace(buffer_map,
1927				vm_map_min(buffer_map), maxsize, &addr)) {
1928				/*
1929				 * Uh oh.  Buffer map is to fragmented.  We
1930				 * must defragment the map.
1931				 */
1932				++bufdefragcnt;
1933				defrag = 1;
1934				bp->b_flags |= B_INVAL;
1935				brelse(bp);
1936				goto restart;
1937			}
1938			if (addr) {
1939				vm_map_insert(buffer_map, NULL, 0,
1940					addr, addr + maxsize,
1941					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1942
1943				bp->b_kvabase = (caddr_t) addr;
1944				bp->b_kvasize = maxsize;
1945				bufspace += bp->b_kvasize;
1946				++bufreusecnt;
1947			}
1948		}
1949		bp->b_data = bp->b_kvabase;
1950	}
1951	return(bp);
1952}
1953
1954/*
1955 *	buf_daemon:
1956 *
1957 *	buffer flushing daemon.  Buffers are normally flushed by the
1958 *	update daemon but if it cannot keep up this process starts to
1959 *	take the load in an attempt to prevent getnewbuf() from blocking.
1960 */
1961
1962static struct proc *bufdaemonproc;
1963
1964static struct kproc_desc buf_kp = {
1965	"bufdaemon",
1966	buf_daemon,
1967	&bufdaemonproc
1968};
1969SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1970
1971static void
1972buf_daemon()
1973{
1974	int s;
1975
1976	mtx_lock(&Giant);
1977
1978	/*
1979	 * This process needs to be suspended prior to shutdown sync.
1980	 */
1981	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1982	    SHUTDOWN_PRI_LAST);
1983
1984	/*
1985	 * This process is allowed to take the buffer cache to the limit
1986	 */
1987	s = splbio();
1988
1989	for (;;) {
1990		kthread_suspend_check(bufdaemonproc);
1991
1992		bd_request = 0;
1993
1994		/*
1995		 * Do the flush.  Limit the amount of in-transit I/O we
1996		 * allow to build up, otherwise we would completely saturate
1997		 * the I/O system.  Wakeup any waiting processes before we
1998		 * normally would so they can run in parallel with our drain.
1999		 */
2000		while (numdirtybuffers > lodirtybuffers) {
2001			if (flushbufqueues() == 0)
2002				break;
2003			waitrunningbufspace();
2004			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2005		}
2006
2007		/*
2008		 * Only clear bd_request if we have reached our low water
2009		 * mark.  The buf_daemon normally waits 1 second and
2010		 * then incrementally flushes any dirty buffers that have
2011		 * built up, within reason.
2012		 *
2013		 * If we were unable to hit our low water mark and couldn't
2014		 * find any flushable buffers, we sleep half a second.
2015		 * Otherwise we loop immediately.
2016		 */
2017		if (numdirtybuffers <= lodirtybuffers) {
2018			/*
2019			 * We reached our low water mark, reset the
2020			 * request and sleep until we are needed again.
2021			 * The sleep is just so the suspend code works.
2022			 */
2023			bd_request = 0;
2024			tsleep(&bd_request, PVM, "psleep", hz);
2025		} else {
2026			/*
2027			 * We couldn't find any flushable dirty buffers but
2028			 * still have too many dirty buffers, we
2029			 * have to sleep and try again.  (rare)
2030			 */
2031			tsleep(&bd_request, PVM, "qsleep", hz / 2);
2032		}
2033	}
2034}
2035
2036/*
2037 *	flushbufqueues:
2038 *
2039 *	Try to flush a buffer in the dirty queue.  We must be careful to
2040 *	free up B_INVAL buffers instead of write them, which NFS is
2041 *	particularly sensitive to.
2042 */
2043
2044static int
2045flushbufqueues(void)
2046{
2047	struct buf *bp;
2048	int r = 0;
2049
2050	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2051
2052	while (bp) {
2053		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
2054		if ((bp->b_flags & B_DELWRI) != 0 &&
2055		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
2056			if (bp->b_flags & B_INVAL) {
2057				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2058					panic("flushbufqueues: locked buf");
2059				bremfree(bp);
2060				brelse(bp);
2061				++r;
2062				break;
2063			}
2064			if (LIST_FIRST(&bp->b_dep) != NULL &&
2065			    (bp->b_flags & B_DEFERRED) == 0 &&
2066			    buf_countdeps(bp, 0)) {
2067				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
2068				    bp, b_freelist);
2069				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
2070				    bp, b_freelist);
2071				bp->b_flags |= B_DEFERRED;
2072				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2073				continue;
2074			}
2075			vfs_bio_awrite(bp);
2076			++r;
2077			break;
2078		}
2079		bp = TAILQ_NEXT(bp, b_freelist);
2080	}
2081	return (r);
2082}
2083
2084/*
2085 * Check to see if a block is currently memory resident.
2086 */
2087struct buf *
2088incore(struct vnode * vp, daddr_t blkno)
2089{
2090	struct buf *bp;
2091
2092	int s = splbio();
2093	VI_LOCK(vp);
2094	bp = gbincore(vp, blkno);
2095	VI_UNLOCK(vp);
2096	splx(s);
2097	return (bp);
2098}
2099
2100/*
2101 * Returns true if no I/O is needed to access the
2102 * associated VM object.  This is like incore except
2103 * it also hunts around in the VM system for the data.
2104 */
2105
2106int
2107inmem(struct vnode * vp, daddr_t blkno)
2108{
2109	vm_object_t obj;
2110	vm_offset_t toff, tinc, size;
2111	vm_page_t m;
2112	vm_ooffset_t off;
2113
2114	GIANT_REQUIRED;
2115	ASSERT_VOP_LOCKED(vp, "inmem");
2116
2117	if (incore(vp, blkno))
2118		return 1;
2119	if (vp->v_mount == NULL)
2120		return 0;
2121	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2122		return 0;
2123
2124	size = PAGE_SIZE;
2125	if (size > vp->v_mount->mnt_stat.f_iosize)
2126		size = vp->v_mount->mnt_stat.f_iosize;
2127	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2128
2129	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2130		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2131		if (!m)
2132			goto notinmem;
2133		tinc = size;
2134		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2135			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2136		if (vm_page_is_valid(m,
2137		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2138			goto notinmem;
2139	}
2140	return 1;
2141
2142notinmem:
2143	return (0);
2144}
2145
2146/*
2147 *	vfs_setdirty:
2148 *
2149 *	Sets the dirty range for a buffer based on the status of the dirty
2150 *	bits in the pages comprising the buffer.
2151 *
2152 *	The range is limited to the size of the buffer.
2153 *
2154 *	This routine is primarily used by NFS, but is generalized for the
2155 *	B_VMIO case.
2156 */
2157static void
2158vfs_setdirty(struct buf *bp)
2159{
2160	int i;
2161	vm_object_t object;
2162
2163	GIANT_REQUIRED;
2164	/*
2165	 * Degenerate case - empty buffer
2166	 */
2167
2168	if (bp->b_bufsize == 0)
2169		return;
2170
2171	/*
2172	 * We qualify the scan for modified pages on whether the
2173	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2174	 * is not cleared simply by protecting pages off.
2175	 */
2176
2177	if ((bp->b_flags & B_VMIO) == 0)
2178		return;
2179
2180	object = bp->b_pages[0]->object;
2181
2182	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2183		printf("Warning: object %p writeable but not mightbedirty\n", object);
2184	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2185		printf("Warning: object %p mightbedirty but not writeable\n", object);
2186
2187	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2188		vm_offset_t boffset;
2189		vm_offset_t eoffset;
2190
2191		/*
2192		 * test the pages to see if they have been modified directly
2193		 * by users through the VM system.
2194		 */
2195		for (i = 0; i < bp->b_npages; i++) {
2196			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2197			vm_page_test_dirty(bp->b_pages[i]);
2198		}
2199
2200		/*
2201		 * Calculate the encompassing dirty range, boffset and eoffset,
2202		 * (eoffset - boffset) bytes.
2203		 */
2204
2205		for (i = 0; i < bp->b_npages; i++) {
2206			if (bp->b_pages[i]->dirty)
2207				break;
2208		}
2209		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2210
2211		for (i = bp->b_npages - 1; i >= 0; --i) {
2212			if (bp->b_pages[i]->dirty) {
2213				break;
2214			}
2215		}
2216		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2217
2218		/*
2219		 * Fit it to the buffer.
2220		 */
2221
2222		if (eoffset > bp->b_bcount)
2223			eoffset = bp->b_bcount;
2224
2225		/*
2226		 * If we have a good dirty range, merge with the existing
2227		 * dirty range.
2228		 */
2229
2230		if (boffset < eoffset) {
2231			if (bp->b_dirtyoff > boffset)
2232				bp->b_dirtyoff = boffset;
2233			if (bp->b_dirtyend < eoffset)
2234				bp->b_dirtyend = eoffset;
2235		}
2236	}
2237}
2238
2239/*
2240 *	getblk:
2241 *
2242 *	Get a block given a specified block and offset into a file/device.
2243 *	The buffers B_DONE bit will be cleared on return, making it almost
2244 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2245 *	return.  The caller should clear B_INVAL prior to initiating a
2246 *	READ.
2247 *
2248 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2249 *	an existing buffer.
2250 *
2251 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2252 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2253 *	and then cleared based on the backing VM.  If the previous buffer is
2254 *	non-0-sized but invalid, B_CACHE will be cleared.
2255 *
2256 *	If getblk() must create a new buffer, the new buffer is returned with
2257 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2258 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2259 *	backing VM.
2260 *
2261 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2262 *	B_CACHE bit is clear.
2263 *
2264 *	What this means, basically, is that the caller should use B_CACHE to
2265 *	determine whether the buffer is fully valid or not and should clear
2266 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2267 *	the buffer by loading its data area with something, the caller needs
2268 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2269 *	the caller should set B_CACHE ( as an optimization ), else the caller
2270 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2271 *	a write attempt or if it was a successfull read.  If the caller
2272 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2273 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2274 */
2275struct buf *
2276getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2277{
2278	struct buf *bp;
2279	int s;
2280#ifdef USE_BUFHASH
2281	struct bufhashhdr *bh;
2282#endif
2283	ASSERT_VOP_LOCKED(vp, "getblk");
2284
2285	if (size > MAXBSIZE)
2286		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2287
2288	s = splbio();
2289loop:
2290	/*
2291	 * Block if we are low on buffers.   Certain processes are allowed
2292	 * to completely exhaust the buffer cache.
2293         *
2294         * If this check ever becomes a bottleneck it may be better to
2295         * move it into the else, when gbincore() fails.  At the moment
2296         * it isn't a problem.
2297	 *
2298	 * XXX remove if 0 sections (clean this up after its proven)
2299         */
2300	if (numfreebuffers == 0) {
2301		if (curthread == PCPU_GET(idlethread))
2302			return NULL;
2303		needsbuffer |= VFS_BIO_NEED_ANY;
2304	}
2305
2306	VI_LOCK(vp);
2307	if ((bp = gbincore(vp, blkno))) {
2308		VI_UNLOCK(vp);
2309		/*
2310		 * Buffer is in-core.  If the buffer is not busy, it must
2311		 * be on a queue.
2312		 */
2313
2314		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2315			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2316			    "getblk", slpflag, slptimeo) == ENOLCK)
2317				goto loop;
2318			splx(s);
2319			return (struct buf *) NULL;
2320		}
2321
2322		/*
2323		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2324		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2325		 * and for a VMIO buffer B_CACHE is adjusted according to the
2326		 * backing VM cache.
2327		 */
2328		if (bp->b_flags & B_INVAL)
2329			bp->b_flags &= ~B_CACHE;
2330		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2331			bp->b_flags |= B_CACHE;
2332		bremfree(bp);
2333
2334		/*
2335		 * check for size inconsistancies for non-VMIO case.
2336		 */
2337
2338		if (bp->b_bcount != size) {
2339			if ((bp->b_flags & B_VMIO) == 0 ||
2340			    (size > bp->b_kvasize)) {
2341				if (bp->b_flags & B_DELWRI) {
2342					bp->b_flags |= B_NOCACHE;
2343					BUF_WRITE(bp);
2344				} else {
2345					if ((bp->b_flags & B_VMIO) &&
2346					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2347						bp->b_flags |= B_RELBUF;
2348						brelse(bp);
2349					} else {
2350						bp->b_flags |= B_NOCACHE;
2351						BUF_WRITE(bp);
2352					}
2353				}
2354				goto loop;
2355			}
2356		}
2357
2358		/*
2359		 * If the size is inconsistant in the VMIO case, we can resize
2360		 * the buffer.  This might lead to B_CACHE getting set or
2361		 * cleared.  If the size has not changed, B_CACHE remains
2362		 * unchanged from its previous state.
2363		 */
2364
2365		if (bp->b_bcount != size)
2366			allocbuf(bp, size);
2367
2368		KASSERT(bp->b_offset != NOOFFSET,
2369		    ("getblk: no buffer offset"));
2370
2371		/*
2372		 * A buffer with B_DELWRI set and B_CACHE clear must
2373		 * be committed before we can return the buffer in
2374		 * order to prevent the caller from issuing a read
2375		 * ( due to B_CACHE not being set ) and overwriting
2376		 * it.
2377		 *
2378		 * Most callers, including NFS and FFS, need this to
2379		 * operate properly either because they assume they
2380		 * can issue a read if B_CACHE is not set, or because
2381		 * ( for example ) an uncached B_DELWRI might loop due
2382		 * to softupdates re-dirtying the buffer.  In the latter
2383		 * case, B_CACHE is set after the first write completes,
2384		 * preventing further loops.
2385		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2386		 * above while extending the buffer, we cannot allow the
2387		 * buffer to remain with B_CACHE set after the write
2388		 * completes or it will represent a corrupt state.  To
2389		 * deal with this we set B_NOCACHE to scrap the buffer
2390		 * after the write.
2391		 *
2392		 * We might be able to do something fancy, like setting
2393		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2394		 * so the below call doesn't set B_CACHE, but that gets real
2395		 * confusing.  This is much easier.
2396		 */
2397
2398		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2399			bp->b_flags |= B_NOCACHE;
2400			BUF_WRITE(bp);
2401			goto loop;
2402		}
2403
2404		splx(s);
2405		bp->b_flags &= ~B_DONE;
2406	} else {
2407		VI_UNLOCK(vp);
2408		/*
2409		 * Buffer is not in-core, create new buffer.  The buffer
2410		 * returned by getnewbuf() is locked.  Note that the returned
2411		 * buffer is also considered valid (not marked B_INVAL).
2412		 */
2413		int bsize, maxsize, vmio;
2414		off_t offset;
2415
2416		if (vn_isdisk(vp, NULL))
2417			bsize = DEV_BSIZE;
2418		else if (vp->v_mountedhere)
2419			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2420		else if (vp->v_mount)
2421			bsize = vp->v_mount->mnt_stat.f_iosize;
2422		else
2423			bsize = size;
2424
2425		offset = blkno * bsize;
2426		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2427		    (vp->v_vflag & VV_OBJBUF);
2428		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2429		maxsize = imax(maxsize, bsize);
2430
2431		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2432			if (slpflag || slptimeo) {
2433				splx(s);
2434				return NULL;
2435			}
2436			goto loop;
2437		}
2438
2439		/*
2440		 * This code is used to make sure that a buffer is not
2441		 * created while the getnewbuf routine is blocked.
2442		 * This can be a problem whether the vnode is locked or not.
2443		 * If the buffer is created out from under us, we have to
2444		 * throw away the one we just created.  There is now window
2445		 * race because we are safely running at splbio() from the
2446		 * point of the duplicate buffer creation through to here,
2447		 * and we've locked the buffer.
2448		 *
2449		 * Note: this must occur before we associate the buffer
2450		 * with the vp especially considering limitations in
2451		 * the splay tree implementation when dealing with duplicate
2452		 * lblkno's.
2453		 */
2454		VI_LOCK(vp);
2455		if (gbincore(vp, blkno)) {
2456			VI_UNLOCK(vp);
2457			bp->b_flags |= B_INVAL;
2458			brelse(bp);
2459			goto loop;
2460		}
2461		VI_UNLOCK(vp);
2462
2463		/*
2464		 * Insert the buffer into the hash, so that it can
2465		 * be found by incore.
2466		 */
2467		bp->b_blkno = bp->b_lblkno = blkno;
2468		bp->b_offset = offset;
2469
2470		bgetvp(vp, bp);
2471#ifdef USE_BUFHASH
2472		LIST_REMOVE(bp, b_hash);
2473		bh = bufhash(vp, blkno);
2474		LIST_INSERT_HEAD(bh, bp, b_hash);
2475#endif
2476
2477		/*
2478		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2479		 * buffer size starts out as 0, B_CACHE will be set by
2480		 * allocbuf() for the VMIO case prior to it testing the
2481		 * backing store for validity.
2482		 */
2483
2484		if (vmio) {
2485			bp->b_flags |= B_VMIO;
2486#if defined(VFS_BIO_DEBUG)
2487			if (vp->v_type != VREG)
2488				printf("getblk: vmioing file type %d???\n", vp->v_type);
2489#endif
2490			VOP_GETVOBJECT(vp, &bp->b_object);
2491		} else {
2492			bp->b_flags &= ~B_VMIO;
2493			bp->b_object = NULL;
2494		}
2495
2496		allocbuf(bp, size);
2497
2498		splx(s);
2499		bp->b_flags &= ~B_DONE;
2500	}
2501	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2502	return (bp);
2503}
2504
2505/*
2506 * Get an empty, disassociated buffer of given size.  The buffer is initially
2507 * set to B_INVAL.
2508 */
2509struct buf *
2510geteblk(int size)
2511{
2512	struct buf *bp;
2513	int s;
2514	int maxsize;
2515
2516	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2517
2518	s = splbio();
2519	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2520	splx(s);
2521	allocbuf(bp, size);
2522	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2523	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2524	return (bp);
2525}
2526
2527
2528/*
2529 * This code constitutes the buffer memory from either anonymous system
2530 * memory (in the case of non-VMIO operations) or from an associated
2531 * VM object (in the case of VMIO operations).  This code is able to
2532 * resize a buffer up or down.
2533 *
2534 * Note that this code is tricky, and has many complications to resolve
2535 * deadlock or inconsistant data situations.  Tread lightly!!!
2536 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2537 * the caller.  Calling this code willy nilly can result in the loss of data.
2538 *
2539 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2540 * B_CACHE for the non-VMIO case.
2541 */
2542
2543int
2544allocbuf(struct buf *bp, int size)
2545{
2546	int newbsize, mbsize;
2547	int i;
2548
2549	GIANT_REQUIRED;
2550
2551	if (BUF_REFCNT(bp) == 0)
2552		panic("allocbuf: buffer not busy");
2553
2554	if (bp->b_kvasize < size)
2555		panic("allocbuf: buffer too small");
2556
2557	if ((bp->b_flags & B_VMIO) == 0) {
2558		caddr_t origbuf;
2559		int origbufsize;
2560		/*
2561		 * Just get anonymous memory from the kernel.  Don't
2562		 * mess with B_CACHE.
2563		 */
2564		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2565		if (bp->b_flags & B_MALLOC)
2566			newbsize = mbsize;
2567		else
2568			newbsize = round_page(size);
2569
2570		if (newbsize < bp->b_bufsize) {
2571			/*
2572			 * malloced buffers are not shrunk
2573			 */
2574			if (bp->b_flags & B_MALLOC) {
2575				if (newbsize) {
2576					bp->b_bcount = size;
2577				} else {
2578					free(bp->b_data, M_BIOBUF);
2579					if (bp->b_bufsize) {
2580						bufmallocspace -= bp->b_bufsize;
2581						bufspacewakeup();
2582						bp->b_bufsize = 0;
2583					}
2584					bp->b_data = bp->b_kvabase;
2585					bp->b_bcount = 0;
2586					bp->b_flags &= ~B_MALLOC;
2587				}
2588				return 1;
2589			}
2590			vm_hold_free_pages(
2591			    bp,
2592			    (vm_offset_t) bp->b_data + newbsize,
2593			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2594		} else if (newbsize > bp->b_bufsize) {
2595			/*
2596			 * We only use malloced memory on the first allocation.
2597			 * and revert to page-allocated memory when the buffer
2598			 * grows.
2599			 */
2600			if ( (bufmallocspace < maxbufmallocspace) &&
2601				(bp->b_bufsize == 0) &&
2602				(mbsize <= PAGE_SIZE/2)) {
2603
2604				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2605				bp->b_bufsize = mbsize;
2606				bp->b_bcount = size;
2607				bp->b_flags |= B_MALLOC;
2608				bufmallocspace += mbsize;
2609				return 1;
2610			}
2611			origbuf = NULL;
2612			origbufsize = 0;
2613			/*
2614			 * If the buffer is growing on its other-than-first allocation,
2615			 * then we revert to the page-allocation scheme.
2616			 */
2617			if (bp->b_flags & B_MALLOC) {
2618				origbuf = bp->b_data;
2619				origbufsize = bp->b_bufsize;
2620				bp->b_data = bp->b_kvabase;
2621				if (bp->b_bufsize) {
2622					bufmallocspace -= bp->b_bufsize;
2623					bufspacewakeup();
2624					bp->b_bufsize = 0;
2625				}
2626				bp->b_flags &= ~B_MALLOC;
2627				newbsize = round_page(newbsize);
2628			}
2629			vm_hold_load_pages(
2630			    bp,
2631			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2632			    (vm_offset_t) bp->b_data + newbsize);
2633			if (origbuf) {
2634				bcopy(origbuf, bp->b_data, origbufsize);
2635				free(origbuf, M_BIOBUF);
2636			}
2637		}
2638	} else {
2639		vm_page_t m;
2640		int desiredpages;
2641
2642		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2643		desiredpages = (size == 0) ? 0 :
2644			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2645
2646		if (bp->b_flags & B_MALLOC)
2647			panic("allocbuf: VMIO buffer can't be malloced");
2648		/*
2649		 * Set B_CACHE initially if buffer is 0 length or will become
2650		 * 0-length.
2651		 */
2652		if (size == 0 || bp->b_bufsize == 0)
2653			bp->b_flags |= B_CACHE;
2654
2655		if (newbsize < bp->b_bufsize) {
2656			/*
2657			 * DEV_BSIZE aligned new buffer size is less then the
2658			 * DEV_BSIZE aligned existing buffer size.  Figure out
2659			 * if we have to remove any pages.
2660			 */
2661			if (desiredpages < bp->b_npages) {
2662				vm_page_lock_queues();
2663				for (i = desiredpages; i < bp->b_npages; i++) {
2664					/*
2665					 * the page is not freed here -- it
2666					 * is the responsibility of
2667					 * vnode_pager_setsize
2668					 */
2669					m = bp->b_pages[i];
2670					KASSERT(m != bogus_page,
2671					    ("allocbuf: bogus page found"));
2672					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2673						vm_page_lock_queues();
2674
2675					bp->b_pages[i] = NULL;
2676					vm_page_unwire(m, 0);
2677				}
2678				vm_page_unlock_queues();
2679				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2680				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2681				bp->b_npages = desiredpages;
2682			}
2683		} else if (size > bp->b_bcount) {
2684			/*
2685			 * We are growing the buffer, possibly in a
2686			 * byte-granular fashion.
2687			 */
2688			struct vnode *vp;
2689			vm_object_t obj;
2690			vm_offset_t toff;
2691			vm_offset_t tinc;
2692
2693			/*
2694			 * Step 1, bring in the VM pages from the object,
2695			 * allocating them if necessary.  We must clear
2696			 * B_CACHE if these pages are not valid for the
2697			 * range covered by the buffer.
2698			 */
2699
2700			vp = bp->b_vp;
2701			obj = bp->b_object;
2702
2703			while (bp->b_npages < desiredpages) {
2704				vm_page_t m;
2705				vm_pindex_t pi;
2706
2707				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2708				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2709					/*
2710					 * note: must allocate system pages
2711					 * since blocking here could intefere
2712					 * with paging I/O, no matter which
2713					 * process we are.
2714					 */
2715					m = vm_page_alloc(obj, pi,
2716					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2717					if (m == NULL) {
2718						VM_WAIT;
2719						vm_pageout_deficit += desiredpages - bp->b_npages;
2720					} else {
2721						vm_page_lock_queues();
2722						vm_page_wakeup(m);
2723						vm_page_unlock_queues();
2724						bp->b_flags &= ~B_CACHE;
2725						bp->b_pages[bp->b_npages] = m;
2726						++bp->b_npages;
2727					}
2728					continue;
2729				}
2730
2731				/*
2732				 * We found a page.  If we have to sleep on it,
2733				 * retry because it might have gotten freed out
2734				 * from under us.
2735				 *
2736				 * We can only test PG_BUSY here.  Blocking on
2737				 * m->busy might lead to a deadlock:
2738				 *
2739				 *  vm_fault->getpages->cluster_read->allocbuf
2740				 *
2741				 */
2742				vm_page_lock_queues();
2743				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2744					continue;
2745
2746				/*
2747				 * We have a good page.  Should we wakeup the
2748				 * page daemon?
2749				 */
2750				if ((curproc != pageproc) &&
2751				    ((m->queue - m->pc) == PQ_CACHE) &&
2752				    ((cnt.v_free_count + cnt.v_cache_count) <
2753					(cnt.v_free_min + cnt.v_cache_min))) {
2754					pagedaemon_wakeup();
2755				}
2756				vm_page_flag_clear(m, PG_ZERO);
2757				vm_page_wire(m);
2758				vm_page_unlock_queues();
2759				bp->b_pages[bp->b_npages] = m;
2760				++bp->b_npages;
2761			}
2762
2763			/*
2764			 * Step 2.  We've loaded the pages into the buffer,
2765			 * we have to figure out if we can still have B_CACHE
2766			 * set.  Note that B_CACHE is set according to the
2767			 * byte-granular range ( bcount and size ), new the
2768			 * aligned range ( newbsize ).
2769			 *
2770			 * The VM test is against m->valid, which is DEV_BSIZE
2771			 * aligned.  Needless to say, the validity of the data
2772			 * needs to also be DEV_BSIZE aligned.  Note that this
2773			 * fails with NFS if the server or some other client
2774			 * extends the file's EOF.  If our buffer is resized,
2775			 * B_CACHE may remain set! XXX
2776			 */
2777
2778			toff = bp->b_bcount;
2779			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2780
2781			while ((bp->b_flags & B_CACHE) && toff < size) {
2782				vm_pindex_t pi;
2783
2784				if (tinc > (size - toff))
2785					tinc = size - toff;
2786
2787				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2788				    PAGE_SHIFT;
2789
2790				vfs_buf_test_cache(
2791				    bp,
2792				    bp->b_offset,
2793				    toff,
2794				    tinc,
2795				    bp->b_pages[pi]
2796				);
2797				toff += tinc;
2798				tinc = PAGE_SIZE;
2799			}
2800
2801			/*
2802			 * Step 3, fixup the KVM pmap.  Remember that
2803			 * bp->b_data is relative to bp->b_offset, but
2804			 * bp->b_offset may be offset into the first page.
2805			 */
2806
2807			bp->b_data = (caddr_t)
2808			    trunc_page((vm_offset_t)bp->b_data);
2809			pmap_qenter(
2810			    (vm_offset_t)bp->b_data,
2811			    bp->b_pages,
2812			    bp->b_npages
2813			);
2814
2815			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2816			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2817		}
2818	}
2819	if (newbsize < bp->b_bufsize)
2820		bufspacewakeup();
2821	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2822	bp->b_bcount = size;		/* requested buffer size	*/
2823	return 1;
2824}
2825
2826void
2827biodone(struct bio *bp)
2828{
2829	bp->bio_flags |= BIO_DONE;
2830	if (bp->bio_done != NULL)
2831		bp->bio_done(bp);
2832	else
2833		wakeup(bp);
2834}
2835
2836/*
2837 * Wait for a BIO to finish.
2838 *
2839 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2840 * case is not yet clear.
2841 */
2842int
2843biowait(struct bio *bp, const char *wchan)
2844{
2845
2846	while ((bp->bio_flags & BIO_DONE) == 0)
2847		msleep(bp, NULL, PRIBIO, wchan, hz / 10);
2848	if (bp->bio_error != 0)
2849		return (bp->bio_error);
2850	if (!(bp->bio_flags & BIO_ERROR))
2851		return (0);
2852	return (EIO);
2853}
2854
2855void
2856biofinish(struct bio *bp, struct devstat *stat, int error)
2857{
2858
2859	if (error) {
2860		bp->bio_error = error;
2861		bp->bio_flags |= BIO_ERROR;
2862	}
2863	if (stat != NULL)
2864		devstat_end_transaction_bio(stat, bp);
2865	biodone(bp);
2866}
2867
2868void
2869bioq_init(struct bio_queue_head *head)
2870{
2871	TAILQ_INIT(&head->queue);
2872	head->last_pblkno = 0;
2873	head->insert_point = NULL;
2874	head->switch_point = NULL;
2875}
2876
2877void
2878bioq_remove(struct bio_queue_head *head, struct bio *bp)
2879{
2880	if (bp == head->switch_point)
2881		head->switch_point = TAILQ_NEXT(bp, bio_queue);
2882	if (bp == head->insert_point) {
2883		head->insert_point = TAILQ_PREV(bp, bio_queue, bio_queue);
2884		if (head->insert_point == NULL)
2885			head->last_pblkno = 0;
2886	} else if (bp == TAILQ_FIRST(&head->queue))
2887		head->last_pblkno = bp->bio_pblkno;
2888	TAILQ_REMOVE(&head->queue, bp, bio_queue);
2889	if (TAILQ_FIRST(&head->queue) == head->switch_point)
2890		head->switch_point = NULL;
2891}
2892
2893/*
2894 *	bufwait:
2895 *
2896 *	Wait for buffer I/O completion, returning error status.  The buffer
2897 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2898 *	error and cleared.
2899 */
2900int
2901bufwait(register struct buf * bp)
2902{
2903	int s;
2904
2905	s = splbio();
2906	while ((bp->b_flags & B_DONE) == 0) {
2907		if (bp->b_iocmd == BIO_READ)
2908			tsleep(bp, PRIBIO, "biord", 0);
2909		else
2910			tsleep(bp, PRIBIO, "biowr", 0);
2911	}
2912	splx(s);
2913	if (bp->b_flags & B_EINTR) {
2914		bp->b_flags &= ~B_EINTR;
2915		return (EINTR);
2916	}
2917	if (bp->b_ioflags & BIO_ERROR) {
2918		return (bp->b_error ? bp->b_error : EIO);
2919	} else {
2920		return (0);
2921	}
2922}
2923
2924 /*
2925  * Call back function from struct bio back up to struct buf.
2926  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2927  */
2928void
2929bufdonebio(struct bio *bp)
2930{
2931	bufdone(bp->bio_caller2);
2932}
2933
2934/*
2935 *	bufdone:
2936 *
2937 *	Finish I/O on a buffer, optionally calling a completion function.
2938 *	This is usually called from an interrupt so process blocking is
2939 *	not allowed.
2940 *
2941 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2942 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2943 *	assuming B_INVAL is clear.
2944 *
2945 *	For the VMIO case, we set B_CACHE if the op was a read and no
2946 *	read error occured, or if the op was a write.  B_CACHE is never
2947 *	set if the buffer is invalid or otherwise uncacheable.
2948 *
2949 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2950 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2951 *	in the biodone routine.
2952 */
2953void
2954bufdone(struct buf *bp)
2955{
2956	int s;
2957	void    (*biodone)(struct buf *);
2958
2959	GIANT_REQUIRED;
2960
2961	s = splbio();
2962
2963	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2964	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2965
2966	bp->b_flags |= B_DONE;
2967	runningbufwakeup(bp);
2968
2969	if (bp->b_iocmd == BIO_DELETE) {
2970		brelse(bp);
2971		splx(s);
2972		return;
2973	}
2974
2975	if (bp->b_iocmd == BIO_WRITE) {
2976		vwakeup(bp);
2977	}
2978
2979	/* call optional completion function if requested */
2980	if (bp->b_iodone != NULL) {
2981		biodone = bp->b_iodone;
2982		bp->b_iodone = NULL;
2983		(*biodone) (bp);
2984		splx(s);
2985		return;
2986	}
2987	if (LIST_FIRST(&bp->b_dep) != NULL)
2988		buf_complete(bp);
2989
2990	if (bp->b_flags & B_VMIO) {
2991		int i;
2992		vm_ooffset_t foff;
2993		vm_page_t m;
2994		vm_object_t obj;
2995		int iosize;
2996		struct vnode *vp = bp->b_vp;
2997
2998		obj = bp->b_object;
2999
3000#if defined(VFS_BIO_DEBUG)
3001		mp_fixme("usecount and vflag accessed without locks.");
3002		if (vp->v_usecount == 0) {
3003			panic("biodone: zero vnode ref count");
3004		}
3005
3006		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3007			panic("biodone: vnode is not setup for merged cache");
3008		}
3009#endif
3010
3011		foff = bp->b_offset;
3012		KASSERT(bp->b_offset != NOOFFSET,
3013		    ("biodone: no buffer offset"));
3014
3015#if defined(VFS_BIO_DEBUG)
3016		if (obj->paging_in_progress < bp->b_npages) {
3017			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3018			    obj->paging_in_progress, bp->b_npages);
3019		}
3020#endif
3021
3022		/*
3023		 * Set B_CACHE if the op was a normal read and no error
3024		 * occured.  B_CACHE is set for writes in the b*write()
3025		 * routines.
3026		 */
3027		iosize = bp->b_bcount - bp->b_resid;
3028		if (bp->b_iocmd == BIO_READ &&
3029		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3030		    !(bp->b_ioflags & BIO_ERROR)) {
3031			bp->b_flags |= B_CACHE;
3032		}
3033		vm_page_lock_queues();
3034		for (i = 0; i < bp->b_npages; i++) {
3035			int bogusflag = 0;
3036			int resid;
3037
3038			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3039			if (resid > iosize)
3040				resid = iosize;
3041
3042			/*
3043			 * cleanup bogus pages, restoring the originals
3044			 */
3045			m = bp->b_pages[i];
3046			if (m == bogus_page) {
3047				bogusflag = 1;
3048				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3049				if (m == NULL)
3050					panic("biodone: page disappeared!");
3051				bp->b_pages[i] = m;
3052				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3053			}
3054#if defined(VFS_BIO_DEBUG)
3055			if (OFF_TO_IDX(foff) != m->pindex) {
3056				printf(
3057"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3058				    (intmax_t)foff, (uintmax_t)m->pindex);
3059			}
3060#endif
3061
3062			/*
3063			 * In the write case, the valid and clean bits are
3064			 * already changed correctly ( see bdwrite() ), so we
3065			 * only need to do this here in the read case.
3066			 */
3067			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3068				vfs_page_set_valid(bp, foff, i, m);
3069			}
3070			vm_page_flag_clear(m, PG_ZERO);
3071
3072			/*
3073			 * when debugging new filesystems or buffer I/O methods, this
3074			 * is the most common error that pops up.  if you see this, you
3075			 * have not set the page busy flag correctly!!!
3076			 */
3077			if (m->busy == 0) {
3078				printf("biodone: page busy < 0, "
3079				    "pindex: %d, foff: 0x(%x,%x), "
3080				    "resid: %d, index: %d\n",
3081				    (int) m->pindex, (int)(foff >> 32),
3082						(int) foff & 0xffffffff, resid, i);
3083				if (!vn_isdisk(vp, NULL))
3084					printf(" iosize: %ld, lblkno: %jd, flags: 0x%lx, npages: %d\n",
3085					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3086					    (intmax_t) bp->b_lblkno,
3087					    bp->b_flags, bp->b_npages);
3088				else
3089					printf(" VDEV, lblkno: %jd, flags: 0x%lx, npages: %d\n",
3090					    (intmax_t) bp->b_lblkno,
3091					    bp->b_flags, bp->b_npages);
3092				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3093				    m->valid, m->dirty, m->wire_count);
3094				panic("biodone: page busy < 0\n");
3095			}
3096			vm_page_io_finish(m);
3097			vm_object_pip_subtract(obj, 1);
3098			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3099			iosize -= resid;
3100		}
3101		vm_page_unlock_queues();
3102		if (obj)
3103			vm_object_pip_wakeupn(obj, 0);
3104	}
3105
3106	/*
3107	 * For asynchronous completions, release the buffer now. The brelse
3108	 * will do a wakeup there if necessary - so no need to do a wakeup
3109	 * here in the async case. The sync case always needs to do a wakeup.
3110	 */
3111
3112	if (bp->b_flags & B_ASYNC) {
3113		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3114			brelse(bp);
3115		else
3116			bqrelse(bp);
3117	} else {
3118		wakeup(bp);
3119	}
3120	splx(s);
3121}
3122
3123/*
3124 * This routine is called in lieu of iodone in the case of
3125 * incomplete I/O.  This keeps the busy status for pages
3126 * consistant.
3127 */
3128void
3129vfs_unbusy_pages(struct buf * bp)
3130{
3131	int i;
3132
3133	GIANT_REQUIRED;
3134
3135	runningbufwakeup(bp);
3136	if (bp->b_flags & B_VMIO) {
3137		vm_object_t obj;
3138
3139		obj = bp->b_object;
3140		vm_page_lock_queues();
3141		for (i = 0; i < bp->b_npages; i++) {
3142			vm_page_t m = bp->b_pages[i];
3143
3144			if (m == bogus_page) {
3145				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3146				if (!m) {
3147					panic("vfs_unbusy_pages: page missing\n");
3148				}
3149				bp->b_pages[i] = m;
3150				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3151			}
3152			vm_object_pip_subtract(obj, 1);
3153			vm_page_flag_clear(m, PG_ZERO);
3154			vm_page_io_finish(m);
3155		}
3156		vm_page_unlock_queues();
3157		vm_object_pip_wakeupn(obj, 0);
3158	}
3159}
3160
3161/*
3162 * vfs_page_set_valid:
3163 *
3164 *	Set the valid bits in a page based on the supplied offset.   The
3165 *	range is restricted to the buffer's size.
3166 *
3167 *	This routine is typically called after a read completes.
3168 */
3169static void
3170vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3171{
3172	vm_ooffset_t soff, eoff;
3173
3174	GIANT_REQUIRED;
3175	/*
3176	 * Start and end offsets in buffer.  eoff - soff may not cross a
3177	 * page boundry or cross the end of the buffer.  The end of the
3178	 * buffer, in this case, is our file EOF, not the allocation size
3179	 * of the buffer.
3180	 */
3181	soff = off;
3182	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3183	if (eoff > bp->b_offset + bp->b_bcount)
3184		eoff = bp->b_offset + bp->b_bcount;
3185
3186	/*
3187	 * Set valid range.  This is typically the entire buffer and thus the
3188	 * entire page.
3189	 */
3190	if (eoff > soff) {
3191		vm_page_set_validclean(
3192		    m,
3193		   (vm_offset_t) (soff & PAGE_MASK),
3194		   (vm_offset_t) (eoff - soff)
3195		);
3196	}
3197}
3198
3199/*
3200 * This routine is called before a device strategy routine.
3201 * It is used to tell the VM system that paging I/O is in
3202 * progress, and treat the pages associated with the buffer
3203 * almost as being PG_BUSY.  Also the object paging_in_progress
3204 * flag is handled to make sure that the object doesn't become
3205 * inconsistant.
3206 *
3207 * Since I/O has not been initiated yet, certain buffer flags
3208 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3209 * and should be ignored.
3210 */
3211void
3212vfs_busy_pages(struct buf * bp, int clear_modify)
3213{
3214	int i, bogus;
3215
3216	if (bp->b_flags & B_VMIO) {
3217		vm_object_t obj;
3218		vm_ooffset_t foff;
3219
3220		obj = bp->b_object;
3221		foff = bp->b_offset;
3222		KASSERT(bp->b_offset != NOOFFSET,
3223		    ("vfs_busy_pages: no buffer offset"));
3224		vfs_setdirty(bp);
3225retry:
3226		vm_page_lock_queues();
3227		for (i = 0; i < bp->b_npages; i++) {
3228			vm_page_t m = bp->b_pages[i];
3229
3230			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3231				goto retry;
3232		}
3233		bogus = 0;
3234		for (i = 0; i < bp->b_npages; i++) {
3235			vm_page_t m = bp->b_pages[i];
3236
3237			vm_page_flag_clear(m, PG_ZERO);
3238			if ((bp->b_flags & B_CLUSTER) == 0) {
3239				vm_object_pip_add(obj, 1);
3240				vm_page_io_start(m);
3241			}
3242			/*
3243			 * When readying a buffer for a read ( i.e
3244			 * clear_modify == 0 ), it is important to do
3245			 * bogus_page replacement for valid pages in
3246			 * partially instantiated buffers.  Partially
3247			 * instantiated buffers can, in turn, occur when
3248			 * reconstituting a buffer from its VM backing store
3249			 * base.  We only have to do this if B_CACHE is
3250			 * clear ( which causes the I/O to occur in the
3251			 * first place ).  The replacement prevents the read
3252			 * I/O from overwriting potentially dirty VM-backed
3253			 * pages.  XXX bogus page replacement is, uh, bogus.
3254			 * It may not work properly with small-block devices.
3255			 * We need to find a better way.
3256			 */
3257			vm_page_protect(m, VM_PROT_NONE);
3258			if (clear_modify)
3259				vfs_page_set_valid(bp, foff, i, m);
3260			else if (m->valid == VM_PAGE_BITS_ALL &&
3261				(bp->b_flags & B_CACHE) == 0) {
3262				bp->b_pages[i] = bogus_page;
3263				bogus++;
3264			}
3265			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3266		}
3267		vm_page_unlock_queues();
3268		if (bogus)
3269			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3270	}
3271}
3272
3273/*
3274 * Tell the VM system that the pages associated with this buffer
3275 * are clean.  This is used for delayed writes where the data is
3276 * going to go to disk eventually without additional VM intevention.
3277 *
3278 * Note that while we only really need to clean through to b_bcount, we
3279 * just go ahead and clean through to b_bufsize.
3280 */
3281static void
3282vfs_clean_pages(struct buf * bp)
3283{
3284	int i;
3285
3286	GIANT_REQUIRED;
3287
3288	if (bp->b_flags & B_VMIO) {
3289		vm_ooffset_t foff;
3290
3291		foff = bp->b_offset;
3292		KASSERT(bp->b_offset != NOOFFSET,
3293		    ("vfs_clean_pages: no buffer offset"));
3294		for (i = 0; i < bp->b_npages; i++) {
3295			vm_page_t m = bp->b_pages[i];
3296			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3297			vm_ooffset_t eoff = noff;
3298
3299			if (eoff > bp->b_offset + bp->b_bufsize)
3300				eoff = bp->b_offset + bp->b_bufsize;
3301			vfs_page_set_valid(bp, foff, i, m);
3302			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3303			foff = noff;
3304		}
3305	}
3306}
3307
3308/*
3309 *	vfs_bio_set_validclean:
3310 *
3311 *	Set the range within the buffer to valid and clean.  The range is
3312 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3313 *	itself may be offset from the beginning of the first page.
3314 *
3315 */
3316
3317void
3318vfs_bio_set_validclean(struct buf *bp, int base, int size)
3319{
3320	if (bp->b_flags & B_VMIO) {
3321		int i;
3322		int n;
3323
3324		/*
3325		 * Fixup base to be relative to beginning of first page.
3326		 * Set initial n to be the maximum number of bytes in the
3327		 * first page that can be validated.
3328		 */
3329
3330		base += (bp->b_offset & PAGE_MASK);
3331		n = PAGE_SIZE - (base & PAGE_MASK);
3332
3333		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3334			vm_page_t m = bp->b_pages[i];
3335
3336			if (n > size)
3337				n = size;
3338
3339			vm_page_set_validclean(m, base & PAGE_MASK, n);
3340			base += n;
3341			size -= n;
3342			n = PAGE_SIZE;
3343		}
3344	}
3345}
3346
3347/*
3348 *	vfs_bio_clrbuf:
3349 *
3350 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3351 *	to clear BIO_ERROR and B_INVAL.
3352 *
3353 *	Note that while we only theoretically need to clear through b_bcount,
3354 *	we go ahead and clear through b_bufsize.
3355 */
3356
3357void
3358vfs_bio_clrbuf(struct buf *bp)
3359{
3360	int i, mask = 0;
3361	caddr_t sa, ea;
3362
3363	GIANT_REQUIRED;
3364
3365	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3366		bp->b_flags &= ~B_INVAL;
3367		bp->b_ioflags &= ~BIO_ERROR;
3368		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3369		    (bp->b_offset & PAGE_MASK) == 0) {
3370			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3371			if ((bp->b_pages[0]->valid & mask) == mask) {
3372				bp->b_resid = 0;
3373				return;
3374			}
3375			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3376			    ((bp->b_pages[0]->valid & mask) == 0)) {
3377				bzero(bp->b_data, bp->b_bufsize);
3378				bp->b_pages[0]->valid |= mask;
3379				bp->b_resid = 0;
3380				return;
3381			}
3382		}
3383		ea = sa = bp->b_data;
3384		for(i=0;i<bp->b_npages;i++,sa=ea) {
3385			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3386			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3387			ea = (caddr_t)(vm_offset_t)ulmin(
3388			    (u_long)(vm_offset_t)ea,
3389			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3390			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3391			if ((bp->b_pages[i]->valid & mask) == mask)
3392				continue;
3393			if ((bp->b_pages[i]->valid & mask) == 0) {
3394				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3395					bzero(sa, ea - sa);
3396				}
3397			} else {
3398				for (; sa < ea; sa += DEV_BSIZE, j++) {
3399					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3400						(bp->b_pages[i]->valid & (1<<j)) == 0)
3401						bzero(sa, DEV_BSIZE);
3402				}
3403			}
3404			bp->b_pages[i]->valid |= mask;
3405			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3406		}
3407		bp->b_resid = 0;
3408	} else {
3409		clrbuf(bp);
3410	}
3411}
3412
3413/*
3414 * vm_hold_load_pages and vm_hold_free_pages get pages into
3415 * a buffers address space.  The pages are anonymous and are
3416 * not associated with a file object.
3417 */
3418static void
3419vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3420{
3421	vm_offset_t pg;
3422	vm_page_t p;
3423	int index;
3424
3425	GIANT_REQUIRED;
3426
3427	to = round_page(to);
3428	from = round_page(from);
3429	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3430
3431	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3432tryagain:
3433		/*
3434		 * note: must allocate system pages since blocking here
3435		 * could intefere with paging I/O, no matter which
3436		 * process we are.
3437		 */
3438		p = vm_page_alloc(kernel_object,
3439			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3440		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3441		if (!p) {
3442			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3443			VM_WAIT;
3444			goto tryagain;
3445		}
3446		vm_page_lock_queues();
3447		p->valid = VM_PAGE_BITS_ALL;
3448		vm_page_flag_clear(p, PG_ZERO);
3449		vm_page_unlock_queues();
3450		pmap_qenter(pg, &p, 1);
3451		bp->b_pages[index] = p;
3452		vm_page_wakeup(p);
3453	}
3454	bp->b_npages = index;
3455}
3456
3457/* Return pages associated with this buf to the vm system */
3458void
3459vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3460{
3461	vm_offset_t pg;
3462	vm_page_t p;
3463	int index, newnpages;
3464
3465	GIANT_REQUIRED;
3466
3467	from = round_page(from);
3468	to = round_page(to);
3469	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3470
3471	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3472		p = bp->b_pages[index];
3473		if (p && (index < bp->b_npages)) {
3474			if (p->busy) {
3475				printf(
3476			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3477				    (intmax_t)bp->b_blkno,
3478				    (intmax_t)bp->b_lblkno);
3479			}
3480			bp->b_pages[index] = NULL;
3481			pmap_qremove(pg, 1);
3482			vm_page_lock_queues();
3483			vm_page_busy(p);
3484			vm_page_unwire(p, 0);
3485			vm_page_free(p);
3486			vm_page_unlock_queues();
3487		}
3488	}
3489	bp->b_npages = newnpages;
3490}
3491
3492
3493#include "opt_ddb.h"
3494#ifdef DDB
3495#include <ddb/ddb.h>
3496
3497/* DDB command to show buffer data */
3498DB_SHOW_COMMAND(buffer, db_show_buffer)
3499{
3500	/* get args */
3501	struct buf *bp = (struct buf *)addr;
3502
3503	if (!have_addr) {
3504		db_printf("usage: show buffer <addr>\n");
3505		return;
3506	}
3507
3508	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3509	db_printf(
3510	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3511	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n",
3512	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3513	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3514	    (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno);
3515	if (bp->b_npages) {
3516		int i;
3517		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3518		for (i = 0; i < bp->b_npages; i++) {
3519			vm_page_t m;
3520			m = bp->b_pages[i];
3521			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3522			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3523			if ((i + 1) < bp->b_npages)
3524				db_printf(",");
3525		}
3526		db_printf("\n");
3527	}
3528}
3529#endif /* DDB */
3530