vfs_bio.c revision 10358
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.59 1995/08/24 13:59:14 davidg Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#define VMIO
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/proc.h>
40#include <sys/vnode.h>
41#include <vm/vm.h>
42#include <vm/vm_kern.h>
43#include <vm/vm_pageout.h>
44#include <vm/vm_page.h>
45#include <vm/vm_object.h>
46#include <sys/buf.h>
47#include <sys/mount.h>
48#include <sys/malloc.h>
49#include <sys/resourcevar.h>
50#include <sys/proc.h>
51
52#include <miscfs/specfs/specdev.h>
53
54/*
55 * System initialization
56 */
57
58static void vfs_update __P((void));
59struct	proc *updateproc;
60
61static struct kproc_desc up_kp = {
62	"update",
63	vfs_update,
64	&updateproc
65};
66SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, (caddr_t)&up_kp)
67
68
69struct buf *buf;		/* buffer header pool */
70struct swqueue bswlist;
71
72void vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to);
73void vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to);
74void vfs_clean_pages(struct buf * bp);
75static void vfs_setdirty(struct buf *bp);
76
77int needsbuffer;
78
79/*
80 * Internal update daemon, process 3
81 *	The variable vfs_update_wakeup allows for internal syncs.
82 */
83int vfs_update_wakeup;
84
85
86/*
87 * buffers base kva
88 */
89caddr_t buffers_kva;
90
91/*
92 * bogus page -- for I/O to/from partially complete buffers
93 * this is a temporary solution to the problem, but it is not
94 * really that bad.  it would be better to split the buffer
95 * for input in the case of buffers partially already in memory,
96 * but the code is intricate enough already.
97 */
98vm_page_t bogus_page;
99vm_offset_t bogus_offset;
100
101int bufspace, maxbufspace;
102
103/*
104 * advisory minimum for size of LRU queue or VMIO queue
105 */
106int minbuf;
107
108struct bufhashhdr bufhashtbl[BUFHSZ], invalhash;
109struct bqueues bufqueues[BUFFER_QUEUES];
110
111/*
112 * Initialize buffer headers and related structures.
113 */
114void
115bufinit()
116{
117	struct buf *bp;
118	int i;
119
120	TAILQ_INIT(&bswlist);
121	LIST_INIT(&invalhash);
122
123	/* first, make a null hash table */
124	for (i = 0; i < BUFHSZ; i++)
125		LIST_INIT(&bufhashtbl[i]);
126
127	/* next, make a null set of free lists */
128	for (i = 0; i < BUFFER_QUEUES; i++)
129		TAILQ_INIT(&bufqueues[i]);
130
131	buffers_kva = (caddr_t) kmem_alloc_pageable(buffer_map, MAXBSIZE * nbuf);
132	/* finally, initialize each buffer header and stick on empty q */
133	for (i = 0; i < nbuf; i++) {
134		bp = &buf[i];
135		bzero(bp, sizeof *bp);
136		bp->b_flags = B_INVAL;	/* we're just an empty header */
137		bp->b_dev = NODEV;
138		bp->b_rcred = NOCRED;
139		bp->b_wcred = NOCRED;
140		bp->b_qindex = QUEUE_EMPTY;
141		bp->b_vnbufs.le_next = NOLIST;
142		bp->b_data = buffers_kva + i * MAXBSIZE;
143		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
144		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
145	}
146/*
147 * maxbufspace is currently calculated to support all filesystem blocks
148 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
149 * cache is still the same as it would be for 8K filesystems.  This
150 * keeps the size of the buffer cache "in check" for big block filesystems.
151 */
152	minbuf = nbuf / 3;
153	maxbufspace = 2 * (nbuf + 8) * PAGE_SIZE;
154
155	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
156	bogus_page = vm_page_alloc(kernel_object,
157			bogus_offset - VM_MIN_KERNEL_ADDRESS, VM_ALLOC_NORMAL);
158
159}
160
161/*
162 * remove the buffer from the appropriate free list
163 */
164void
165bremfree(struct buf * bp)
166{
167	int s = splbio();
168
169	if (bp->b_qindex != QUEUE_NONE) {
170		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
171		bp->b_qindex = QUEUE_NONE;
172	} else {
173		panic("bremfree: removing a buffer when not on a queue");
174	}
175	splx(s);
176}
177
178/*
179 * Get a buffer with the specified data.  Look in the cache first.
180 */
181int
182bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
183    struct buf ** bpp)
184{
185	struct buf *bp;
186
187	bp = getblk(vp, blkno, size, 0, 0);
188	*bpp = bp;
189
190	/* if not found in cache, do some I/O */
191	if ((bp->b_flags & B_CACHE) == 0) {
192		if (curproc != NULL)
193			curproc->p_stats->p_ru.ru_inblock++;
194		bp->b_flags |= B_READ;
195		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
196		if (bp->b_rcred == NOCRED) {
197			if (cred != NOCRED)
198				crhold(cred);
199			bp->b_rcred = cred;
200		}
201		vfs_busy_pages(bp, 0);
202		VOP_STRATEGY(bp);
203		return (biowait(bp));
204	}
205	return (0);
206}
207
208/*
209 * Operates like bread, but also starts asynchronous I/O on
210 * read-ahead blocks.
211 */
212int
213breadn(struct vnode * vp, daddr_t blkno, int size,
214    daddr_t * rablkno, int *rabsize,
215    int cnt, struct ucred * cred, struct buf ** bpp)
216{
217	struct buf *bp, *rabp;
218	int i;
219	int rv = 0, readwait = 0;
220
221	*bpp = bp = getblk(vp, blkno, size, 0, 0);
222
223	/* if not found in cache, do some I/O */
224	if ((bp->b_flags & B_CACHE) == 0) {
225		if (curproc != NULL)
226			curproc->p_stats->p_ru.ru_inblock++;
227		bp->b_flags |= B_READ;
228		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
229		if (bp->b_rcred == NOCRED) {
230			if (cred != NOCRED)
231				crhold(cred);
232			bp->b_rcred = cred;
233		}
234		vfs_busy_pages(bp, 0);
235		VOP_STRATEGY(bp);
236		++readwait;
237	}
238	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
239		if (inmem(vp, *rablkno))
240			continue;
241		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
242
243		if ((rabp->b_flags & B_CACHE) == 0) {
244			if (curproc != NULL)
245				curproc->p_stats->p_ru.ru_inblock++;
246			rabp->b_flags |= B_READ | B_ASYNC;
247			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
248			if (rabp->b_rcred == NOCRED) {
249				if (cred != NOCRED)
250					crhold(cred);
251				rabp->b_rcred = cred;
252			}
253			vfs_busy_pages(rabp, 0);
254			VOP_STRATEGY(rabp);
255		} else {
256			brelse(rabp);
257		}
258	}
259
260	if (readwait) {
261		rv = biowait(bp);
262	}
263	return (rv);
264}
265
266/*
267 * Write, release buffer on completion.  (Done by iodone
268 * if async.)
269 */
270int
271bwrite(struct buf * bp)
272{
273	int oldflags = bp->b_flags;
274
275	if (bp->b_flags & B_INVAL) {
276		brelse(bp);
277		return (0);
278	}
279	if (!(bp->b_flags & B_BUSY))
280		panic("bwrite: buffer is not busy???");
281
282	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
283	bp->b_flags |= B_WRITEINPROG;
284
285	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
286		reassignbuf(bp, bp->b_vp);
287	}
288
289	bp->b_vp->v_numoutput++;
290	vfs_busy_pages(bp, 1);
291	if (curproc != NULL)
292		curproc->p_stats->p_ru.ru_oublock++;
293	VOP_STRATEGY(bp);
294
295	if ((oldflags & B_ASYNC) == 0) {
296		int rtval = biowait(bp);
297
298		if (oldflags & B_DELWRI) {
299			reassignbuf(bp, bp->b_vp);
300		}
301		brelse(bp);
302		return (rtval);
303	}
304	return (0);
305}
306
307int
308vn_bwrite(ap)
309	struct vop_bwrite_args *ap;
310{
311	return (bwrite(ap->a_bp));
312}
313
314/*
315 * Delayed write. (Buffer is marked dirty).
316 */
317void
318bdwrite(struct buf * bp)
319{
320
321	if ((bp->b_flags & B_BUSY) == 0) {
322		panic("bdwrite: buffer is not busy");
323	}
324	if (bp->b_flags & B_INVAL) {
325		brelse(bp);
326		return;
327	}
328	if (bp->b_flags & B_TAPE) {
329		bawrite(bp);
330		return;
331	}
332	bp->b_flags &= ~(B_READ|B_RELBUF);
333	if ((bp->b_flags & B_DELWRI) == 0) {
334		bp->b_flags |= B_DONE | B_DELWRI;
335		reassignbuf(bp, bp->b_vp);
336	}
337
338	/*
339	 * This bmap keeps the system from needing to do the bmap later,
340	 * perhaps when the system is attempting to do a sync.  Since it
341	 * is likely that the indirect block -- or whatever other datastructure
342	 * that the filesystem needs is still in memory now, it is a good
343	 * thing to do this.  Note also, that if the pageout daemon is
344	 * requesting a sync -- there might not be enough memory to do
345	 * the bmap then...  So, this is important to do.
346	 */
347	if( bp->b_lblkno == bp->b_blkno) {
348		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL);
349	}
350
351	/*
352	 * Set the *dirty* buffer range based upon the VM system dirty pages.
353	 */
354	vfs_setdirty(bp);
355
356	/*
357	 * We need to do this here to satisfy the vnode_pager and the
358	 * pageout daemon, so that it thinks that the pages have been
359	 * "cleaned".  Note that since the pages are in a delayed write
360	 * buffer -- the VFS layer "will" see that the pages get written
361	 * out on the next sync, or perhaps the cluster will be completed.
362	 */
363	vfs_clean_pages(bp);
364	brelse(bp);
365	return;
366}
367
368/*
369 * Asynchronous write.
370 * Start output on a buffer, but do not wait for it to complete.
371 * The buffer is released when the output completes.
372 */
373void
374bawrite(struct buf * bp)
375{
376	bp->b_flags |= B_ASYNC;
377	(void) VOP_BWRITE(bp);
378}
379
380/*
381 * Release a buffer.
382 */
383void
384brelse(struct buf * bp)
385{
386	int s;
387
388	if (bp->b_flags & B_CLUSTER) {
389		relpbuf(bp);
390		return;
391	}
392	/* anyone need a "free" block? */
393	s = splbio();
394
395	if (needsbuffer) {
396		needsbuffer = 0;
397		wakeup(&needsbuffer);
398	}
399
400	/* anyone need this block? */
401	if (bp->b_flags & B_WANTED) {
402		bp->b_flags &= ~(B_WANTED | B_AGE);
403		wakeup(bp);
404	} else if (bp->b_flags & B_VMIO) {
405		bp->b_flags &= ~B_WANTED;
406		wakeup(bp);
407	}
408	if (bp->b_flags & B_LOCKED)
409		bp->b_flags &= ~B_ERROR;
410
411	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
412	    (bp->b_bufsize <= 0)) {
413		bp->b_flags |= B_INVAL;
414		bp->b_flags &= ~(B_DELWRI | B_CACHE);
415		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp)
416			brelvp(bp);
417	}
418
419	/*
420	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
421	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
422	 * but the VM object is kept around.  The B_NOCACHE flag is used to
423	 * invalidate the pages in the VM object.
424	 */
425	if (bp->b_flags & B_VMIO) {
426		vm_offset_t foff;
427		vm_object_t obj;
428		int i, resid;
429		vm_page_t m;
430		int iototal = bp->b_bufsize;
431
432		foff = 0;
433		obj = 0;
434		if (bp->b_npages) {
435			if (bp->b_vp && bp->b_vp->v_mount) {
436				foff = bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
437			} else {
438				/*
439				 * vnode pointer has been ripped away --
440				 * probably file gone...
441				 */
442				foff = bp->b_pages[0]->offset;
443			}
444		}
445		for (i = 0; i < bp->b_npages; i++) {
446			m = bp->b_pages[i];
447			if (m == bogus_page) {
448				m = vm_page_lookup(obj, foff);
449				if (!m) {
450					panic("brelse: page missing\n");
451				}
452				bp->b_pages[i] = m;
453				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
454			}
455			resid = (m->offset + PAGE_SIZE) - foff;
456			if (resid > iototal)
457				resid = iototal;
458			if (resid > 0) {
459				/*
460				 * Don't invalidate the page if the local machine has already
461				 * modified it.  This is the lesser of two evils, and should
462				 * be fixed.
463				 */
464				if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
465					vm_page_test_dirty(m);
466					if (m->dirty == 0) {
467						vm_page_set_invalid(m, foff, resid);
468						if (m->valid == 0)
469							vm_page_protect(m, VM_PROT_NONE);
470					}
471				}
472			}
473			foff += resid;
474			iototal -= resid;
475		}
476
477		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
478			for(i=0;i<bp->b_npages;i++) {
479				m = bp->b_pages[i];
480				--m->bmapped;
481				if (m->bmapped == 0) {
482					if (m->flags & PG_WANTED) {
483						wakeup(m);
484						m->flags &= ~PG_WANTED;
485					}
486					vm_page_test_dirty(m);
487					if ((m->dirty & m->valid) == 0 &&
488						(m->flags & PG_REFERENCED) == 0 &&
489							!pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
490						vm_page_cache(m);
491					} else if ((m->flags & PG_ACTIVE) == 0) {
492						vm_page_activate(m);
493						m->act_count = 0;
494					}
495				}
496			}
497			bufspace -= bp->b_bufsize;
498			pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
499			bp->b_npages = 0;
500			bp->b_bufsize = 0;
501			bp->b_flags &= ~B_VMIO;
502			if (bp->b_vp)
503				brelvp(bp);
504		}
505	}
506	if (bp->b_qindex != QUEUE_NONE)
507		panic("brelse: free buffer onto another queue???");
508
509	/* enqueue */
510	/* buffers with no memory */
511	if (bp->b_bufsize == 0) {
512		bp->b_qindex = QUEUE_EMPTY;
513		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
514		LIST_REMOVE(bp, b_hash);
515		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
516		bp->b_dev = NODEV;
517		/* buffers with junk contents */
518	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
519		bp->b_qindex = QUEUE_AGE;
520		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
521		LIST_REMOVE(bp, b_hash);
522		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
523		bp->b_dev = NODEV;
524		/* buffers that are locked */
525	} else if (bp->b_flags & B_LOCKED) {
526		bp->b_qindex = QUEUE_LOCKED;
527		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
528		/* buffers with stale but valid contents */
529	} else if (bp->b_flags & B_AGE) {
530		bp->b_qindex = QUEUE_AGE;
531		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
532		/* buffers with valid and quite potentially reuseable contents */
533	} else {
534		bp->b_qindex = QUEUE_LRU;
535		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
536	}
537
538	/* unlock */
539	bp->b_flags &= ~(B_WANTED | B_BUSY | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
540	splx(s);
541}
542
543/*
544 * this routine implements clustered async writes for
545 * clearing out B_DELWRI buffers...  This is much better
546 * than the old way of writing only one buffer at a time.
547 */
548void
549vfs_bio_awrite(struct buf * bp)
550{
551	int i;
552	daddr_t lblkno = bp->b_lblkno;
553	struct vnode *vp = bp->b_vp;
554	int s;
555	int ncl;
556	struct buf *bpa;
557
558	s = splbio();
559	if (vp->v_mount && (vp->v_flag & VVMIO) &&
560	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
561		int size = vp->v_mount->mnt_stat.f_iosize;
562		int maxcl = MAXPHYS / size;
563
564		for (i = 1; i < maxcl; i++) {
565			if ((bpa = incore(vp, lblkno + i)) &&
566			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
567			    (B_DELWRI | B_CLUSTEROK)) &&
568			    (bpa->b_bufsize == size)) {
569				if ((bpa->b_blkno == bpa->b_lblkno) ||
570				    (bpa->b_blkno != bp->b_blkno + (i * size) / DEV_BSIZE))
571					break;
572			} else {
573				break;
574			}
575		}
576		ncl = i;
577		/*
578		 * this is a possible cluster write
579		 */
580		if (ncl != 1) {
581			bremfree(bp);
582			cluster_wbuild(vp, bp, size, lblkno, ncl, -1);
583			splx(s);
584			return;
585		}
586	}
587	/*
588	 * default (old) behavior, writing out only one block
589	 */
590	bremfree(bp);
591	bp->b_flags |= B_BUSY | B_ASYNC;
592	(void) VOP_BWRITE(bp);
593	splx(s);
594}
595
596
597/*
598 * Find a buffer header which is available for use.
599 */
600static struct buf *
601getnewbuf(int slpflag, int slptimeo, int doingvmio)
602{
603	struct buf *bp;
604	int s;
605	int firstbp = 1;
606
607	s = splbio();
608start:
609	if (bufspace >= maxbufspace)
610		goto trytofreespace;
611
612	/* can we constitute a new buffer? */
613	if ((bp = bufqueues[QUEUE_EMPTY].tqh_first)) {
614		if (bp->b_qindex != QUEUE_EMPTY)
615			panic("getnewbuf: inconsistent EMPTY queue");
616		bremfree(bp);
617		goto fillbuf;
618	}
619trytofreespace:
620	/*
621	 * We keep the file I/O from hogging metadata I/O
622	 * This is desirable because file data is cached in the
623	 * VM/Buffer cache even if a buffer is freed.
624	 */
625	if ((bp = bufqueues[QUEUE_AGE].tqh_first)) {
626		if (bp->b_qindex != QUEUE_AGE)
627			panic("getnewbuf: inconsistent AGE queue");
628	} else if ((bp = bufqueues[QUEUE_LRU].tqh_first)) {
629		if (bp->b_qindex != QUEUE_LRU)
630			panic("getnewbuf: inconsistent LRU queue");
631	}
632	if (!bp) {
633		/* wait for a free buffer of any kind */
634		needsbuffer = 1;
635		tsleep(&needsbuffer, PRIBIO | slpflag, "newbuf", slptimeo);
636		splx(s);
637		return (0);
638	}
639
640	/* if we are a delayed write, convert to an async write */
641	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
642		vfs_bio_awrite(bp);
643		if (!slpflag && !slptimeo) {
644			splx(s);
645			return (0);
646		}
647		goto start;
648	}
649
650	if (bp->b_flags & B_WANTED) {
651		bp->b_flags &= ~B_WANTED;
652		wakeup(bp);
653	}
654	bremfree(bp);
655
656	if (bp->b_flags & B_VMIO) {
657		bp->b_flags |= B_RELBUF | B_BUSY | B_DONE;
658		brelse(bp);
659		bremfree(bp);
660	}
661
662	if (bp->b_vp)
663		brelvp(bp);
664
665	/* we are not free, nor do we contain interesting data */
666	if (bp->b_rcred != NOCRED)
667		crfree(bp->b_rcred);
668	if (bp->b_wcred != NOCRED)
669		crfree(bp->b_wcred);
670fillbuf:
671	bp->b_flags |= B_BUSY;
672	LIST_REMOVE(bp, b_hash);
673	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
674	splx(s);
675	if (bp->b_bufsize) {
676		allocbuf(bp, 0);
677	}
678	bp->b_flags = B_BUSY;
679	bp->b_dev = NODEV;
680	bp->b_vp = NULL;
681	bp->b_blkno = bp->b_lblkno = 0;
682	bp->b_iodone = 0;
683	bp->b_error = 0;
684	bp->b_resid = 0;
685	bp->b_bcount = 0;
686	bp->b_npages = 0;
687	bp->b_wcred = bp->b_rcred = NOCRED;
688	bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
689	bp->b_dirtyoff = bp->b_dirtyend = 0;
690	bp->b_validoff = bp->b_validend = 0;
691	if (bufspace >= maxbufspace) {
692		s = splbio();
693		bp->b_flags |= B_INVAL;
694		brelse(bp);
695		goto trytofreespace;
696	}
697	return (bp);
698}
699
700/*
701 * Check to see if a block is currently memory resident.
702 */
703struct buf *
704incore(struct vnode * vp, daddr_t blkno)
705{
706	struct buf *bp;
707	struct bufhashhdr *bh;
708
709	int s = splbio();
710
711	bh = BUFHASH(vp, blkno);
712	bp = bh->lh_first;
713
714	/* Search hash chain */
715	while (bp != NULL) {
716		/* hit */
717		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
718		    (bp->b_flags & B_INVAL) == 0) {
719			splx(s);
720			return (bp);
721		}
722		bp = bp->b_hash.le_next;
723	}
724	splx(s);
725
726	return (NULL);
727}
728
729/*
730 * Returns true if no I/O is needed to access the
731 * associated VM object.  This is like incore except
732 * it also hunts around in the VM system for the data.
733 */
734
735int
736inmem(struct vnode * vp, daddr_t blkno)
737{
738	vm_object_t obj;
739	vm_offset_t off, toff, tinc;
740	vm_page_t m;
741
742	if (incore(vp, blkno))
743		return 1;
744	if (vp->v_mount == NULL)
745		return 0;
746	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
747		return 0;
748
749	obj = vp->v_object;
750	tinc = PAGE_SIZE;
751	if (tinc > vp->v_mount->mnt_stat.f_iosize)
752		tinc = vp->v_mount->mnt_stat.f_iosize;
753	off = blkno * vp->v_mount->mnt_stat.f_iosize;
754
755	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
756		int mask;
757
758		m = vm_page_lookup(obj, trunc_page(toff + off));
759		if (!m)
760			return 0;
761		if (vm_page_is_valid(m, toff + off, tinc) == 0)
762			return 0;
763	}
764	return 1;
765}
766
767/*
768 * now we set the dirty range for the buffer --
769 * for NFS -- if the file is mapped and pages have
770 * been written to, let it know.  We want the
771 * entire range of the buffer to be marked dirty if
772 * any of the pages have been written to for consistancy
773 * with the b_validoff, b_validend set in the nfs write
774 * code, and used by the nfs read code.
775 */
776static void
777vfs_setdirty(struct buf *bp) {
778	int i;
779	vm_object_t object;
780	vm_offset_t boffset, offset;
781	/*
782	 * We qualify the scan for modified pages on whether the
783	 * object has been flushed yet.  The OBJ_WRITEABLE flag
784	 * is not cleared simply by protecting pages off.
785	 */
786	if ((bp->b_flags & B_VMIO) &&
787		((object = bp->b_pages[0]->object)->flags & OBJ_WRITEABLE)) {
788		/*
789		 * test the pages to see if they have been modified directly
790		 * by users through the VM system.
791		 */
792		for (i = 0; i < bp->b_npages; i++)
793			vm_page_test_dirty(bp->b_pages[i]);
794
795		/*
796		 * scan forwards for the first page modified
797		 */
798		for (i = 0; i < bp->b_npages; i++) {
799			if (bp->b_pages[i]->dirty) {
800				break;
801			}
802		}
803		boffset = i * PAGE_SIZE;
804		if (boffset < bp->b_dirtyoff) {
805			bp->b_dirtyoff = boffset;
806		}
807
808		/*
809		 * scan backwards for the last page modified
810		 */
811		for (i = bp->b_npages - 1; i >= 0; --i) {
812			if (bp->b_pages[i]->dirty) {
813				break;
814			}
815		}
816		boffset = (i + 1) * PAGE_SIZE;
817		offset = boffset + bp->b_pages[0]->offset;
818		if (offset >= object->size) {
819			boffset = object->size - bp->b_pages[0]->offset;
820		}
821		if (bp->b_dirtyend < boffset) {
822			bp->b_dirtyend = boffset;
823		}
824	}
825}
826
827/*
828 * Get a block given a specified block and offset into a file/device.
829 */
830struct buf *
831getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
832{
833	struct buf *bp;
834	int s;
835	struct bufhashhdr *bh;
836	vm_offset_t off;
837	int nleft;
838
839	s = splbio();
840loop:
841	if (bp = incore(vp, blkno)) {
842		if (bp->b_flags & B_BUSY) {
843			bp->b_flags |= B_WANTED;
844			if (!tsleep(bp, PRIBIO | slpflag, "getblk", slptimeo))
845				goto loop;
846
847			splx(s);
848			return (struct buf *) NULL;
849		}
850		bp->b_flags |= B_BUSY | B_CACHE;
851		bremfree(bp);
852		/*
853		 * check for size inconsistancies
854		 */
855		if (bp->b_bcount != size) {
856			allocbuf(bp, size);
857		}
858		splx(s);
859		return (bp);
860	} else {
861		vm_object_t obj;
862		int doingvmio;
863
864		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
865			doingvmio = 1;
866		} else {
867			doingvmio = 0;
868		}
869		if ((bp = getnewbuf(slpflag, slptimeo, doingvmio)) == 0) {
870			if (slpflag || slptimeo)
871				return NULL;
872			goto loop;
873		}
874
875		/*
876		 * This code is used to make sure that a buffer is not
877		 * created while the getnewbuf routine is blocked.
878		 * Normally the vnode is locked so this isn't a problem.
879		 * VBLK type I/O requests, however, don't lock the vnode.
880		 */
881		if (!VOP_ISLOCKED(vp) && incore(vp, blkno)) {
882			bp->b_flags |= B_INVAL;
883			brelse(bp);
884			goto loop;
885		}
886
887		/*
888		 * Insert the buffer into the hash, so that it can
889		 * be found by incore.
890		 */
891		bp->b_blkno = bp->b_lblkno = blkno;
892		bgetvp(vp, bp);
893		LIST_REMOVE(bp, b_hash);
894		bh = BUFHASH(vp, blkno);
895		LIST_INSERT_HEAD(bh, bp, b_hash);
896
897		if (doingvmio) {
898			bp->b_flags |= (B_VMIO | B_CACHE);
899#if defined(VFS_BIO_DEBUG)
900			if (vp->v_type != VREG)
901				printf("getblk: vmioing file type %d???\n", vp->v_type);
902#endif
903		} else {
904			bp->b_flags &= ~B_VMIO;
905		}
906		splx(s);
907
908		allocbuf(bp, size);
909		return (bp);
910	}
911}
912
913/*
914 * Get an empty, disassociated buffer of given size.
915 */
916struct buf *
917geteblk(int size)
918{
919	struct buf *bp;
920
921	while ((bp = getnewbuf(0, 0, 0)) == 0);
922	allocbuf(bp, size);
923	bp->b_flags |= B_INVAL;
924	return (bp);
925}
926
927/*
928 * This code constitutes the buffer memory from either anonymous system
929 * memory (in the case of non-VMIO operations) or from an associated
930 * VM object (in the case of VMIO operations).
931 *
932 * Note that this code is tricky, and has many complications to resolve
933 * deadlock or inconsistant data situations.  Tread lightly!!!
934 *
935 * Modify the length of a buffer's underlying buffer storage without
936 * destroying information (unless, of course the buffer is shrinking).
937 */
938int
939allocbuf(struct buf * bp, int size)
940{
941
942	int s;
943	int newbsize;
944	int i;
945
946	if (!(bp->b_flags & B_BUSY))
947		panic("allocbuf: buffer not busy");
948
949	if ((bp->b_flags & B_VMIO) == 0) {
950		/*
951		 * Just get anonymous memory from the kernel
952		 */
953		newbsize = round_page(size);
954
955		if (newbsize < bp->b_bufsize) {
956			vm_hold_free_pages(
957			    bp,
958			    (vm_offset_t) bp->b_data + newbsize,
959			    (vm_offset_t) bp->b_data + bp->b_bufsize);
960		} else if (newbsize > bp->b_bufsize) {
961			vm_hold_load_pages(
962			    bp,
963			    (vm_offset_t) bp->b_data + bp->b_bufsize,
964			    (vm_offset_t) bp->b_data + newbsize);
965		}
966	} else {
967		vm_page_t m;
968		int desiredpages;
969
970		newbsize = ((size + DEV_BSIZE - 1) / DEV_BSIZE) * DEV_BSIZE;
971		desiredpages = round_page(newbsize) / PAGE_SIZE;
972
973		if (newbsize < bp->b_bufsize) {
974			if (desiredpages < bp->b_npages) {
975				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
976				    desiredpages * PAGE_SIZE, (bp->b_npages - desiredpages));
977				for (i = desiredpages; i < bp->b_npages; i++) {
978					m = bp->b_pages[i];
979					s = splhigh();
980					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
981						m->flags |= PG_WANTED;
982						tsleep(m, PVM, "biodep", 0);
983					}
984					splx(s);
985
986					if (m->bmapped == 0) {
987						printf("allocbuf: bmapped is zero for page %d\n", i);
988						panic("allocbuf: error");
989					}
990					--m->bmapped;
991					if (m->bmapped == 0) {
992						vm_page_protect(m, VM_PROT_NONE);
993						vm_page_free(m);
994					}
995					bp->b_pages[i] = NULL;
996				}
997				bp->b_npages = desiredpages;
998			}
999		} else if (newbsize > bp->b_bufsize) {
1000			vm_object_t obj;
1001			vm_offset_t tinc, off, toff, objoff;
1002			int pageindex, curbpnpages;
1003			struct vnode *vp;
1004			int bsize;
1005
1006			vp = bp->b_vp;
1007			bsize = vp->v_mount->mnt_stat.f_iosize;
1008
1009			if (bp->b_npages < desiredpages) {
1010				obj = vp->v_object;
1011				tinc = PAGE_SIZE;
1012				if (tinc > bsize)
1013					tinc = bsize;
1014				off = bp->b_lblkno * bsize;
1015		doretry:
1016				curbpnpages = bp->b_npages;
1017				bp->b_flags |= B_CACHE;
1018				for (toff = 0; toff < newbsize; toff += tinc) {
1019					int mask;
1020					int bytesinpage;
1021
1022					pageindex = toff / PAGE_SIZE;
1023					objoff = trunc_page(toff + off);
1024					if (pageindex < curbpnpages) {
1025						int pb;
1026
1027						m = bp->b_pages[pageindex];
1028						if (m->offset != objoff)
1029							panic("allocbuf: page changed offset??!!!?");
1030						bytesinpage = tinc;
1031						if (tinc > (newbsize - toff))
1032							bytesinpage = newbsize - toff;
1033						if (!vm_page_is_valid(m, toff + off, bytesinpage)) {
1034							bp->b_flags &= ~B_CACHE;
1035						}
1036						if ((m->flags & PG_ACTIVE) == 0) {
1037							vm_page_activate(m);
1038							m->act_count = 0;
1039						}
1040						continue;
1041					}
1042					m = vm_page_lookup(obj, objoff);
1043					if (!m) {
1044						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1045						if (!m) {
1046							int j;
1047
1048							for (j = bp->b_npages; j < pageindex; j++) {
1049								PAGE_WAKEUP(bp->b_pages[j]);
1050							}
1051							VM_WAIT;
1052							goto doretry;
1053						}
1054						vm_page_activate(m);
1055						m->act_count = 0;
1056						m->valid = 0;
1057						bp->b_flags &= ~B_CACHE;
1058					} else if (m->flags & PG_BUSY) {
1059						int j;
1060
1061						for (j = bp->b_npages; j < pageindex; j++) {
1062							PAGE_WAKEUP(bp->b_pages[j]);
1063						}
1064
1065						s = splbio();
1066						m->flags |= PG_WANTED;
1067						tsleep(m, PRIBIO, "pgtblk", 0);
1068						splx(s);
1069
1070						goto doretry;
1071					} else {
1072						int pb;
1073						if ((curproc != pageproc) &&
1074							(m->flags & PG_CACHE) &&
1075						    (cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
1076							pagedaemon_wakeup();
1077						}
1078						bytesinpage = tinc;
1079						if (tinc > (newbsize - toff))
1080							bytesinpage = newbsize - toff;
1081						if (!vm_page_is_valid(m, toff + off, bytesinpage)) {
1082							bp->b_flags &= ~B_CACHE;
1083						}
1084						if ((m->flags & PG_ACTIVE) == 0) {
1085							vm_page_activate(m);
1086							m->act_count = 0;
1087						}
1088						m->flags |= PG_BUSY;
1089					}
1090					bp->b_pages[pageindex] = m;
1091					curbpnpages = pageindex + 1;
1092				}
1093				for (i = bp->b_npages; i < curbpnpages; i++) {
1094					m = bp->b_pages[i];
1095					m->bmapped++;
1096					PAGE_WAKEUP(m);
1097				}
1098				bp->b_npages = curbpnpages;
1099				bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
1100				pmap_qenter((vm_offset_t) bp->b_data, bp->b_pages, bp->b_npages);
1101				bp->b_data += off % PAGE_SIZE;
1102			}
1103		}
1104	}
1105	bufspace += (newbsize - bp->b_bufsize);
1106	bp->b_bufsize = newbsize;
1107	bp->b_bcount = size;
1108	return 1;
1109}
1110
1111/*
1112 * Wait for buffer I/O completion, returning error status.
1113 */
1114int
1115biowait(register struct buf * bp)
1116{
1117	int s;
1118
1119	s = splbio();
1120	while ((bp->b_flags & B_DONE) == 0)
1121		tsleep(bp, PRIBIO, "biowait", 0);
1122	splx(s);
1123	if (bp->b_flags & B_EINTR) {
1124		bp->b_flags &= ~B_EINTR;
1125		return (EINTR);
1126	}
1127	if (bp->b_flags & B_ERROR) {
1128		return (bp->b_error ? bp->b_error : EIO);
1129	} else {
1130		return (0);
1131	}
1132}
1133
1134/*
1135 * Finish I/O on a buffer, calling an optional function.
1136 * This is usually called from interrupt level, so process blocking
1137 * is not *a good idea*.
1138 */
1139void
1140biodone(register struct buf * bp)
1141{
1142	int s;
1143
1144	s = splbio();
1145	if (!(bp->b_flags & B_BUSY))
1146		panic("biodone: buffer not busy");
1147
1148	if (bp->b_flags & B_DONE) {
1149		splx(s);
1150		printf("biodone: buffer already done\n");
1151		return;
1152	}
1153	bp->b_flags |= B_DONE;
1154
1155	if ((bp->b_flags & B_READ) == 0) {
1156		struct vnode *vp = bp->b_vp;
1157		vwakeup(bp);
1158	}
1159#ifdef BOUNCE_BUFFERS
1160	if (bp->b_flags & B_BOUNCE)
1161		vm_bounce_free(bp);
1162#endif
1163
1164	/* call optional completion function if requested */
1165	if (bp->b_flags & B_CALL) {
1166		bp->b_flags &= ~B_CALL;
1167		(*bp->b_iodone) (bp);
1168		splx(s);
1169		return;
1170	}
1171	if (bp->b_flags & B_VMIO) {
1172		int i, resid;
1173		vm_offset_t foff;
1174		vm_page_t m;
1175		vm_object_t obj;
1176		int iosize;
1177		struct vnode *vp = bp->b_vp;
1178
1179		foff = vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1180		obj = vp->v_object;
1181		if (!obj) {
1182			panic("biodone: no object");
1183		}
1184#if defined(VFS_BIO_DEBUG)
1185		if (obj->paging_in_progress < bp->b_npages) {
1186			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1187			    obj->paging_in_progress, bp->b_npages);
1188		}
1189#endif
1190		iosize = bp->b_bufsize;
1191		for (i = 0; i < bp->b_npages; i++) {
1192			int bogusflag = 0;
1193			m = bp->b_pages[i];
1194			if (m == bogus_page) {
1195				bogusflag = 1;
1196				m = vm_page_lookup(obj, foff);
1197				if (!m) {
1198#if defined(VFS_BIO_DEBUG)
1199					printf("biodone: page disappeared\n");
1200#endif
1201					--obj->paging_in_progress;
1202					continue;
1203				}
1204				bp->b_pages[i] = m;
1205				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1206			}
1207#if defined(VFS_BIO_DEBUG)
1208			if (trunc_page(foff) != m->offset) {
1209				printf("biodone: foff(%d)/m->offset(%d) mismatch\n", foff, m->offset);
1210			}
1211#endif
1212			resid = (m->offset + PAGE_SIZE) - foff;
1213			if (resid > iosize)
1214				resid = iosize;
1215			/*
1216			 * In the write case, the valid and clean bits are
1217			 * already changed correctly, so we only need to do this
1218			 * here in the read case.
1219			 */
1220			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1221				vm_page_set_valid(m, foff & (PAGE_SIZE-1), resid);
1222				vm_page_set_clean(m, foff & (PAGE_SIZE-1), resid);
1223			}
1224
1225			/*
1226			 * when debugging new filesystems or buffer I/O methods, this
1227			 * is the most common error that pops up.  if you see this, you
1228			 * have not set the page busy flag correctly!!!
1229			 */
1230			if (m->busy == 0) {
1231				printf("biodone: page busy < 0, "
1232				    "off: %ld, foff: %ld, "
1233				    "resid: %d, index: %d\n",
1234				    m->offset, foff, resid, i);
1235				printf(" iosize: %ld, lblkno: %ld, flags: 0x%x, npages: %d\n",
1236				    bp->b_vp->v_mount->mnt_stat.f_iosize,
1237				    bp->b_lblkno, bp->b_flags, bp->b_npages);
1238				printf(" valid: 0x%x, dirty: 0x%x, mapped: %d\n",
1239				    m->valid, m->dirty, m->bmapped);
1240				panic("biodone: page busy < 0\n");
1241			}
1242			--m->busy;
1243			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1244				m->flags &= ~PG_WANTED;
1245				wakeup(m);
1246			}
1247			--obj->paging_in_progress;
1248			foff += resid;
1249			iosize -= resid;
1250		}
1251		if (obj && obj->paging_in_progress == 0 &&
1252		    (obj->flags & OBJ_PIPWNT)) {
1253			obj->flags &= ~OBJ_PIPWNT;
1254			wakeup(obj);
1255		}
1256	}
1257	/*
1258	 * For asynchronous completions, release the buffer now. The brelse
1259	 * checks for B_WANTED and will do the wakeup there if necessary - so
1260	 * no need to do a wakeup here in the async case.
1261	 */
1262
1263	if (bp->b_flags & B_ASYNC) {
1264		brelse(bp);
1265	} else {
1266		bp->b_flags &= ~B_WANTED;
1267		wakeup(bp);
1268	}
1269	splx(s);
1270}
1271
1272int
1273count_lock_queue()
1274{
1275	int count;
1276	struct buf *bp;
1277
1278	count = 0;
1279	for (bp = bufqueues[QUEUE_LOCKED].tqh_first;
1280	    bp != NULL;
1281	    bp = bp->b_freelist.tqe_next)
1282		count++;
1283	return (count);
1284}
1285
1286int vfs_update_interval = 30;
1287
1288static void
1289vfs_update()
1290{
1291	(void) spl0();		/* XXX redundant?  wrong place?*/
1292	while (1) {
1293		tsleep(&vfs_update_wakeup, PRIBIO, "update",
1294		    hz * vfs_update_interval);
1295		vfs_update_wakeup = 0;
1296		sync(curproc, NULL, NULL);
1297	}
1298}
1299
1300/*
1301 * This routine is called in lieu of iodone in the case of
1302 * incomplete I/O.  This keeps the busy status for pages
1303 * consistant.
1304 */
1305void
1306vfs_unbusy_pages(struct buf * bp)
1307{
1308	int i;
1309
1310	if (bp->b_flags & B_VMIO) {
1311		struct vnode *vp = bp->b_vp;
1312		vm_object_t obj = vp->v_object;
1313		vm_offset_t foff;
1314
1315		foff = trunc_page(vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno);
1316
1317		for (i = 0; i < bp->b_npages; i++) {
1318			vm_page_t m = bp->b_pages[i];
1319
1320			if (m == bogus_page) {
1321				m = vm_page_lookup(obj, foff + i * PAGE_SIZE);
1322				if (!m) {
1323					panic("vfs_unbusy_pages: page missing\n");
1324				}
1325				bp->b_pages[i] = m;
1326				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1327			}
1328			--obj->paging_in_progress;
1329			--m->busy;
1330			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1331				m->flags &= ~PG_WANTED;
1332				wakeup(m);
1333			}
1334		}
1335		if (obj->paging_in_progress == 0 &&
1336		    (obj->flags & OBJ_PIPWNT)) {
1337			obj->flags &= ~OBJ_PIPWNT;
1338			wakeup(obj);
1339		}
1340	}
1341}
1342
1343/*
1344 * This routine is called before a device strategy routine.
1345 * It is used to tell the VM system that paging I/O is in
1346 * progress, and treat the pages associated with the buffer
1347 * almost as being PG_BUSY.  Also the object paging_in_progress
1348 * flag is handled to make sure that the object doesn't become
1349 * inconsistant.
1350 */
1351void
1352vfs_busy_pages(struct buf * bp, int clear_modify)
1353{
1354	int i;
1355
1356	if (bp->b_flags & B_VMIO) {
1357		vm_object_t obj = bp->b_vp->v_object;
1358		vm_offset_t foff = bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1359		int iocount = bp->b_bufsize;
1360
1361		vfs_setdirty(bp);
1362		for (i = 0; i < bp->b_npages; i++) {
1363			vm_page_t m = bp->b_pages[i];
1364			int resid = (m->offset + PAGE_SIZE) - foff;
1365
1366			if (resid > iocount)
1367				resid = iocount;
1368			obj->paging_in_progress++;
1369			m->busy++;
1370			if (clear_modify) {
1371				vm_page_protect(m, VM_PROT_READ);
1372				vm_page_set_valid(m,
1373					foff & (PAGE_SIZE-1), resid);
1374				vm_page_set_clean(m,
1375					foff & (PAGE_SIZE-1), resid);
1376			} else if (bp->b_bcount >= PAGE_SIZE) {
1377				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1378					bp->b_pages[i] = bogus_page;
1379					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1380				}
1381			}
1382			foff += resid;
1383			iocount -= resid;
1384		}
1385	}
1386}
1387
1388/*
1389 * Tell the VM system that the pages associated with this buffer
1390 * are clean.  This is used for delayed writes where the data is
1391 * going to go to disk eventually without additional VM intevention.
1392 */
1393void
1394vfs_clean_pages(struct buf * bp)
1395{
1396	int i;
1397
1398	if (bp->b_flags & B_VMIO) {
1399		vm_offset_t foff =
1400			bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1401		int iocount = bp->b_bufsize;
1402
1403		for (i = 0; i < bp->b_npages; i++) {
1404			vm_page_t m = bp->b_pages[i];
1405			int resid = (m->offset + PAGE_SIZE) - foff;
1406
1407			if (resid > iocount)
1408				resid = iocount;
1409			if (resid > 0) {
1410				vm_page_set_valid(m,
1411					foff & (PAGE_SIZE-1), resid);
1412				vm_page_set_clean(m,
1413					foff & (PAGE_SIZE-1), resid);
1414			}
1415			foff += resid;
1416			iocount -= resid;
1417		}
1418	}
1419}
1420
1421void
1422vfs_bio_clrbuf(struct buf *bp) {
1423	int i;
1424	if( bp->b_flags & B_VMIO) {
1425		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1426			int j;
1427			if( bp->b_pages[0]->valid != VM_PAGE_BITS_ALL) {
1428				for(j=0; j < bp->b_bufsize / DEV_BSIZE;j++) {
1429					bzero(bp->b_data + j * DEV_BSIZE, DEV_BSIZE);
1430				}
1431			}
1432			bp->b_resid = 0;
1433			return;
1434		}
1435		for(i=0;i<bp->b_npages;i++) {
1436			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1437				continue;
1438			if( bp->b_pages[i]->valid == 0) {
1439				bzero(bp->b_data + i * PAGE_SIZE, PAGE_SIZE);
1440			} else {
1441				int j;
1442				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1443					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1444						bzero(bp->b_data + i * PAGE_SIZE + j * DEV_BSIZE, DEV_BSIZE);
1445				}
1446			}
1447			bp->b_pages[i]->valid = VM_PAGE_BITS_ALL;
1448		}
1449		bp->b_resid = 0;
1450	} else {
1451		clrbuf(bp);
1452	}
1453}
1454
1455/*
1456 * vm_hold_load_pages and vm_hold_unload pages get pages into
1457 * a buffers address space.  The pages are anonymous and are
1458 * not associated with a file object.
1459 */
1460void
1461vm_hold_load_pages(struct buf * bp, vm_offset_t froma, vm_offset_t toa)
1462{
1463	vm_offset_t pg;
1464	vm_page_t p;
1465	vm_offset_t from = round_page(froma);
1466	vm_offset_t to = round_page(toa);
1467
1468	for (pg = from; pg < to; pg += PAGE_SIZE) {
1469
1470tryagain:
1471
1472		p = vm_page_alloc(kernel_object, pg - VM_MIN_KERNEL_ADDRESS,
1473		    VM_ALLOC_NORMAL);
1474		if (!p) {
1475			VM_WAIT;
1476			goto tryagain;
1477		}
1478		vm_page_wire(p);
1479		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1480		bp->b_pages[((caddr_t) pg - bp->b_data) / PAGE_SIZE] = p;
1481		PAGE_WAKEUP(p);
1482		bp->b_npages++;
1483	}
1484}
1485
1486void
1487vm_hold_free_pages(struct buf * bp, vm_offset_t froma, vm_offset_t toa)
1488{
1489	vm_offset_t pg;
1490	vm_page_t p;
1491	vm_offset_t from = round_page(froma);
1492	vm_offset_t to = round_page(toa);
1493
1494	for (pg = from; pg < to; pg += PAGE_SIZE) {
1495		p = bp->b_pages[((caddr_t) pg - bp->b_data) / PAGE_SIZE];
1496		bp->b_pages[((caddr_t) pg - bp->b_data) / PAGE_SIZE] = 0;
1497		pmap_kremove(pg);
1498		vm_page_free(p);
1499		--bp->b_npages;
1500	}
1501}
1502