vfs_bio.c revision 103330
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 103330 2002-09-14 19:34:11Z phk $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/stdint.h>
33#include <sys/bio.h>
34#include <sys/buf.h>
35#include <sys/devicestat.h>
36#include <sys/eventhandler.h>
37#include <sys/lock.h>
38#include <sys/malloc.h>
39#include <sys/mount.h>
40#include <sys/mutex.h>
41#include <sys/kernel.h>
42#include <sys/kthread.h>
43#include <sys/ktr.h>
44#include <sys/proc.h>
45#include <sys/reboot.h>
46#include <sys/resourcevar.h>
47#include <sys/sysctl.h>
48#include <sys/vmmeter.h>
49#include <sys/vnode.h>
50#include <vm/vm.h>
51#include <vm/vm_param.h>
52#include <vm/vm_kern.h>
53#include <vm/vm_pageout.h>
54#include <vm/vm_page.h>
55#include <vm/vm_object.h>
56#include <vm/vm_extern.h>
57#include <vm/vm_map.h>
58
59static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
60
61struct	bio_ops bioops;		/* I/O operation notification */
62
63struct	buf_ops buf_ops_bio = {
64	"buf_ops_bio",
65	bwrite
66};
67
68/*
69 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
70 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
71 */
72struct buf *buf;		/* buffer header pool */
73struct mtx buftimelock;		/* Interlock on setting prio and timo */
74
75static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
78		vm_offset_t to);
79static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
80			       int pageno, vm_page_t m);
81static void vfs_clean_pages(struct buf * bp);
82static void vfs_setdirty(struct buf *bp);
83static void vfs_vmio_release(struct buf *bp);
84static void vfs_backgroundwritedone(struct buf *bp);
85static int flushbufqueues(void);
86static void buf_daemon(void);
87
88int vmiodirenable = TRUE;
89SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
90    "Use the VM system for directory writes");
91int runningbufspace;
92SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
93    "Amount of presently outstanding async buffer io");
94static int bufspace;
95SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
96    "KVA memory used for bufs");
97static int maxbufspace;
98SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
99    "Maximum allowed value of bufspace (including buf_daemon)");
100static int bufmallocspace;
101SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
102    "Amount of malloced memory for buffers");
103static int maxbufmallocspace;
104SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
105    "Maximum amount of malloced memory for buffers");
106static int lobufspace;
107SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
108    "Minimum amount of buffers we want to have");
109static int hibufspace;
110SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
111    "Maximum allowed value of bufspace (excluding buf_daemon)");
112static int bufreusecnt;
113SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
114    "Number of times we have reused a buffer");
115static int buffreekvacnt;
116SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
117    "Number of times we have freed the KVA space from some buffer");
118static int bufdefragcnt;
119SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
120    "Number of times we have had to repeat buffer allocation to defragment");
121static int lorunningspace;
122SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
123    "Minimum preferred space used for in-progress I/O");
124static int hirunningspace;
125SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
126    "Maximum amount of space to use for in-progress I/O");
127static int numdirtybuffers;
128SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
129    "Number of buffers that are dirty (has unwritten changes) at the moment");
130static int lodirtybuffers;
131SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
132    "How many buffers we want to have free before bufdaemon can sleep");
133static int hidirtybuffers;
134SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
135    "When the number of dirty buffers is considered severe");
136static int numfreebuffers;
137SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
138    "Number of free buffers");
139static int lofreebuffers;
140SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
141   "XXX Unused");
142static int hifreebuffers;
143SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
144   "XXX Complicatedly unused");
145static int getnewbufcalls;
146SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
147   "Number of calls to getnewbuf");
148static int getnewbufrestarts;
149SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
150    "Number of times getnewbuf has had to restart a buffer aquisition");
151static int dobkgrdwrite = 1;
152SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
153    "Do background writes (honoring the BX_BKGRDWRITE flag)?");
154
155/*
156 * Wakeup point for bufdaemon, as well as indicator of whether it is already
157 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
158 * is idling.
159 */
160static int bd_request;
161
162/*
163 * bogus page -- for I/O to/from partially complete buffers
164 * this is a temporary solution to the problem, but it is not
165 * really that bad.  it would be better to split the buffer
166 * for input in the case of buffers partially already in memory,
167 * but the code is intricate enough already.
168 */
169vm_page_t bogus_page;
170
171/*
172 * Offset for bogus_page.
173 * XXX bogus_offset should be local to bufinit
174 */
175static vm_offset_t bogus_offset;
176
177/*
178 * Synchronization (sleep/wakeup) variable for active buffer space requests.
179 * Set when wait starts, cleared prior to wakeup().
180 * Used in runningbufwakeup() and waitrunningbufspace().
181 */
182static int runningbufreq;
183
184/*
185 * Synchronization (sleep/wakeup) variable for buffer requests.
186 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
187 * by and/or.
188 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
189 * getnewbuf(), and getblk().
190 */
191static int needsbuffer;
192
193#ifdef USE_BUFHASH
194/*
195 * Mask for index into the buffer hash table, which needs to be power of 2 in
196 * size.  Set in kern_vfs_bio_buffer_alloc.
197 */
198static int bufhashmask;
199
200/*
201 * Hash table for all buffers, with a linked list hanging from each table
202 * entry.  Set in kern_vfs_bio_buffer_alloc, initialized in buf_init.
203 */
204static LIST_HEAD(bufhashhdr, buf) *bufhashtbl;
205
206/*
207 * Somewhere to store buffers when they are not in another list, to always
208 * have them in a list (and thus being able to use the same set of operations
209 * on them.)
210 */
211static struct bufhashhdr invalhash;
212
213#endif
214
215/*
216 * Definitions for the buffer free lists.
217 */
218#define BUFFER_QUEUES	6	/* number of free buffer queues */
219
220#define QUEUE_NONE	0	/* on no queue */
221#define QUEUE_LOCKED	1	/* locked buffers */
222#define QUEUE_CLEAN	2	/* non-B_DELWRI buffers */
223#define QUEUE_DIRTY	3	/* B_DELWRI buffers */
224#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
225#define QUEUE_EMPTY	5	/* empty buffer headers */
226
227/* Queues for free buffers with various properties */
228static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
229/*
230 * Single global constant for BUF_WMESG, to avoid getting multiple references.
231 * buf_wmesg is referred from macros.
232 */
233const char *buf_wmesg = BUF_WMESG;
234
235#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
236#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
237#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
238#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
239
240#ifdef USE_BUFHASH
241/*
242 * Buffer hash table code.  Note that the logical block scans linearly, which
243 * gives us some L1 cache locality.
244 */
245
246static __inline
247struct bufhashhdr *
248bufhash(struct vnode *vnp, daddr_t bn)
249{
250	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
251}
252
253#endif
254
255/*
256 *	numdirtywakeup:
257 *
258 *	If someone is blocked due to there being too many dirty buffers,
259 *	and numdirtybuffers is now reasonable, wake them up.
260 */
261
262static __inline void
263numdirtywakeup(int level)
264{
265	if (numdirtybuffers <= level) {
266		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
267			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
268			wakeup(&needsbuffer);
269		}
270	}
271}
272
273/*
274 *	bufspacewakeup:
275 *
276 *	Called when buffer space is potentially available for recovery.
277 *	getnewbuf() will block on this flag when it is unable to free
278 *	sufficient buffer space.  Buffer space becomes recoverable when
279 *	bp's get placed back in the queues.
280 */
281
282static __inline void
283bufspacewakeup(void)
284{
285	/*
286	 * If someone is waiting for BUF space, wake them up.  Even
287	 * though we haven't freed the kva space yet, the waiting
288	 * process will be able to now.
289	 */
290	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
291		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
292		wakeup(&needsbuffer);
293	}
294}
295
296/*
297 * runningbufwakeup() - in-progress I/O accounting.
298 *
299 */
300static __inline void
301runningbufwakeup(struct buf *bp)
302{
303	if (bp->b_runningbufspace) {
304		runningbufspace -= bp->b_runningbufspace;
305		bp->b_runningbufspace = 0;
306		if (runningbufreq && runningbufspace <= lorunningspace) {
307			runningbufreq = 0;
308			wakeup(&runningbufreq);
309		}
310	}
311}
312
313/*
314 *	bufcountwakeup:
315 *
316 *	Called when a buffer has been added to one of the free queues to
317 *	account for the buffer and to wakeup anyone waiting for free buffers.
318 *	This typically occurs when large amounts of metadata are being handled
319 *	by the buffer cache ( else buffer space runs out first, usually ).
320 */
321
322static __inline void
323bufcountwakeup(void)
324{
325	++numfreebuffers;
326	if (needsbuffer) {
327		needsbuffer &= ~VFS_BIO_NEED_ANY;
328		if (numfreebuffers >= hifreebuffers)
329			needsbuffer &= ~VFS_BIO_NEED_FREE;
330		wakeup(&needsbuffer);
331	}
332}
333
334/*
335 *	waitrunningbufspace()
336 *
337 *	runningbufspace is a measure of the amount of I/O currently
338 *	running.  This routine is used in async-write situations to
339 *	prevent creating huge backups of pending writes to a device.
340 *	Only asynchronous writes are governed by this function.
341 *
342 *	Reads will adjust runningbufspace, but will not block based on it.
343 *	The read load has a side effect of reducing the allowed write load.
344 *
345 *	This does NOT turn an async write into a sync write.  It waits
346 *	for earlier writes to complete and generally returns before the
347 *	caller's write has reached the device.
348 */
349static __inline void
350waitrunningbufspace(void)
351{
352	/*
353	 * XXX race against wakeup interrupt, currently
354	 * protected by Giant.  FIXME!
355	 */
356	while (runningbufspace > hirunningspace) {
357		++runningbufreq;
358		tsleep(&runningbufreq, PVM, "wdrain", 0);
359	}
360}
361
362
363/*
364 *	vfs_buf_test_cache:
365 *
366 *	Called when a buffer is extended.  This function clears the B_CACHE
367 *	bit if the newly extended portion of the buffer does not contain
368 *	valid data.
369 */
370static __inline__
371void
372vfs_buf_test_cache(struct buf *bp,
373		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
374		  vm_page_t m)
375{
376	GIANT_REQUIRED;
377
378	if (bp->b_flags & B_CACHE) {
379		int base = (foff + off) & PAGE_MASK;
380		if (vm_page_is_valid(m, base, size) == 0)
381			bp->b_flags &= ~B_CACHE;
382	}
383}
384
385/* Wake up the buffer deamon if necessary */
386static __inline__
387void
388bd_wakeup(int dirtybuflevel)
389{
390	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
391		bd_request = 1;
392		wakeup(&bd_request);
393	}
394}
395
396/*
397 * bd_speedup - speedup the buffer cache flushing code
398 */
399
400static __inline__
401void
402bd_speedup(void)
403{
404	bd_wakeup(1);
405}
406
407/*
408 * Calculating buffer cache scaling values and reserve space for buffer
409 * headers.  This is called during low level kernel initialization and
410 * may be called more then once.  We CANNOT write to the memory area
411 * being reserved at this time.
412 */
413caddr_t
414kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
415{
416	/*
417	 * physmem_est is in pages.  Convert it to kilobytes (assumes
418	 * PAGE_SIZE is >= 1K)
419	 */
420	physmem_est = physmem_est * (PAGE_SIZE / 1024);
421
422	/*
423	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
424	 * For the first 64MB of ram nominally allocate sufficient buffers to
425	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
426	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
427	 * the buffer cache we limit the eventual kva reservation to
428	 * maxbcache bytes.
429	 *
430	 * factor represents the 1/4 x ram conversion.
431	 */
432	if (nbuf == 0) {
433		int factor = 4 * BKVASIZE / 1024;
434
435		nbuf = 50;
436		if (physmem_est > 4096)
437			nbuf += min((physmem_est - 4096) / factor,
438			    65536 / factor);
439		if (physmem_est > 65536)
440			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
441
442		if (maxbcache && nbuf > maxbcache / BKVASIZE)
443			nbuf = maxbcache / BKVASIZE;
444	}
445
446#if 0
447	/*
448	 * Do not allow the buffer_map to be more then 1/2 the size of the
449	 * kernel_map.
450	 */
451	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
452	    (BKVASIZE * 2)) {
453		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
454		    (BKVASIZE * 2);
455		printf("Warning: nbufs capped at %d\n", nbuf);
456	}
457#endif
458
459	/*
460	 * swbufs are used as temporary holders for I/O, such as paging I/O.
461	 * We have no less then 16 and no more then 256.
462	 */
463	nswbuf = max(min(nbuf/4, 256), 16);
464
465	/*
466	 * Reserve space for the buffer cache buffers
467	 */
468	swbuf = (void *)v;
469	v = (caddr_t)(swbuf + nswbuf);
470	buf = (void *)v;
471	v = (caddr_t)(buf + nbuf);
472
473#ifdef USE_BUFHASH
474	/*
475	 * Calculate the hash table size and reserve space
476	 */
477	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
478		;
479	bufhashtbl = (void *)v;
480	v = (caddr_t)(bufhashtbl + bufhashmask);
481	--bufhashmask;
482#endif
483	return(v);
484}
485
486/* Initialize the buffer subsystem.  Called before use of any buffers. */
487void
488bufinit(void)
489{
490	struct buf *bp;
491	int i;
492
493	GIANT_REQUIRED;
494
495#ifdef USE_BUFHASH
496	LIST_INIT(&invalhash);
497#endif
498	mtx_init(&buftimelock, "buftime lock", NULL, MTX_DEF);
499
500#ifdef USE_BUFHASH
501	for (i = 0; i <= bufhashmask; i++)
502		LIST_INIT(&bufhashtbl[i]);
503#endif
504
505	/* next, make a null set of free lists */
506	for (i = 0; i < BUFFER_QUEUES; i++)
507		TAILQ_INIT(&bufqueues[i]);
508
509	/* finally, initialize each buffer header and stick on empty q */
510	for (i = 0; i < nbuf; i++) {
511		bp = &buf[i];
512		bzero(bp, sizeof *bp);
513		bp->b_flags = B_INVAL;	/* we're just an empty header */
514		bp->b_dev = NODEV;
515		bp->b_rcred = NOCRED;
516		bp->b_wcred = NOCRED;
517		bp->b_qindex = QUEUE_EMPTY;
518		bp->b_xflags = 0;
519		LIST_INIT(&bp->b_dep);
520		BUF_LOCKINIT(bp);
521		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
522#ifdef USE_BUFHASH
523		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
524#endif
525	}
526
527	/*
528	 * maxbufspace is the absolute maximum amount of buffer space we are
529	 * allowed to reserve in KVM and in real terms.  The absolute maximum
530	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
531	 * used by most other processes.  The differential is required to
532	 * ensure that buf_daemon is able to run when other processes might
533	 * be blocked waiting for buffer space.
534	 *
535	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
536	 * this may result in KVM fragmentation which is not handled optimally
537	 * by the system.
538	 */
539	maxbufspace = nbuf * BKVASIZE;
540	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
541	lobufspace = hibufspace - MAXBSIZE;
542
543	lorunningspace = 512 * 1024;
544	hirunningspace = 1024 * 1024;
545
546/*
547 * Limit the amount of malloc memory since it is wired permanently into
548 * the kernel space.  Even though this is accounted for in the buffer
549 * allocation, we don't want the malloced region to grow uncontrolled.
550 * The malloc scheme improves memory utilization significantly on average
551 * (small) directories.
552 */
553	maxbufmallocspace = hibufspace / 20;
554
555/*
556 * Reduce the chance of a deadlock occuring by limiting the number
557 * of delayed-write dirty buffers we allow to stack up.
558 */
559	hidirtybuffers = nbuf / 4 + 20;
560	numdirtybuffers = 0;
561/*
562 * To support extreme low-memory systems, make sure hidirtybuffers cannot
563 * eat up all available buffer space.  This occurs when our minimum cannot
564 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
565 * BKVASIZE'd (8K) buffers.
566 */
567	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
568		hidirtybuffers >>= 1;
569	}
570	lodirtybuffers = hidirtybuffers / 2;
571
572/*
573 * Try to keep the number of free buffers in the specified range,
574 * and give special processes (e.g. like buf_daemon) access to an
575 * emergency reserve.
576 */
577	lofreebuffers = nbuf / 18 + 5;
578	hifreebuffers = 2 * lofreebuffers;
579	numfreebuffers = nbuf;
580
581/*
582 * Maximum number of async ops initiated per buf_daemon loop.  This is
583 * somewhat of a hack at the moment, we really need to limit ourselves
584 * based on the number of bytes of I/O in-transit that were initiated
585 * from buf_daemon.
586 */
587
588	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
589	bogus_page = vm_page_alloc(kernel_object,
590			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
591			VM_ALLOC_NORMAL);
592	cnt.v_wire_count++;
593}
594
595/*
596 * bfreekva() - free the kva allocation for a buffer.
597 *
598 *	Must be called at splbio() or higher as this is the only locking for
599 *	buffer_map.
600 *
601 *	Since this call frees up buffer space, we call bufspacewakeup().
602 */
603static void
604bfreekva(struct buf * bp)
605{
606	GIANT_REQUIRED;
607
608	if (bp->b_kvasize) {
609		++buffreekvacnt;
610		bufspace -= bp->b_kvasize;
611		vm_map_delete(buffer_map,
612		    (vm_offset_t) bp->b_kvabase,
613		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
614		);
615		bp->b_kvasize = 0;
616		bufspacewakeup();
617	}
618}
619
620/*
621 *	bremfree:
622 *
623 *	Remove the buffer from the appropriate free list.
624 */
625void
626bremfree(struct buf * bp)
627{
628	int s = splbio();
629	int old_qindex = bp->b_qindex;
630
631	GIANT_REQUIRED;
632
633	if (bp->b_qindex != QUEUE_NONE) {
634		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
635		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
636		bp->b_qindex = QUEUE_NONE;
637	} else {
638		if (BUF_REFCNT(bp) <= 1)
639			panic("bremfree: removing a buffer not on a queue");
640	}
641
642	/*
643	 * Fixup numfreebuffers count.  If the buffer is invalid or not
644	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
645	 * the buffer was free and we must decrement numfreebuffers.
646	 */
647	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
648		switch(old_qindex) {
649		case QUEUE_DIRTY:
650		case QUEUE_CLEAN:
651		case QUEUE_EMPTY:
652		case QUEUE_EMPTYKVA:
653			--numfreebuffers;
654			break;
655		default:
656			break;
657		}
658	}
659	splx(s);
660}
661
662
663/*
664 * Get a buffer with the specified data.  Look in the cache first.  We
665 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
666 * is set, the buffer is valid and we do not have to do anything ( see
667 * getblk() ).  This is really just a special case of breadn().
668 */
669int
670bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
671    struct buf ** bpp)
672{
673
674	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
675}
676
677/*
678 * Operates like bread, but also starts asynchronous I/O on
679 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
680 * to initiating I/O . If B_CACHE is set, the buffer is valid
681 * and we do not have to do anything.
682 */
683int
684breadn(struct vnode * vp, daddr_t blkno, int size,
685    daddr_t * rablkno, int *rabsize,
686    int cnt, struct ucred * cred, struct buf ** bpp)
687{
688	struct buf *bp, *rabp;
689	int i;
690	int rv = 0, readwait = 0;
691
692	*bpp = bp = getblk(vp, blkno, size, 0, 0);
693
694	/* if not found in cache, do some I/O */
695	if ((bp->b_flags & B_CACHE) == 0) {
696		if (curthread != PCPU_GET(idlethread))
697			curthread->td_proc->p_stats->p_ru.ru_inblock++;
698		bp->b_iocmd = BIO_READ;
699		bp->b_flags &= ~B_INVAL;
700		bp->b_ioflags &= ~BIO_ERROR;
701		if (bp->b_rcred == NOCRED && cred != NOCRED)
702			bp->b_rcred = crhold(cred);
703		vfs_busy_pages(bp, 0);
704		VOP_STRATEGY(vp, bp);
705		++readwait;
706	}
707
708	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
709		if (inmem(vp, *rablkno))
710			continue;
711		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
712
713		if ((rabp->b_flags & B_CACHE) == 0) {
714			if (curthread != PCPU_GET(idlethread))
715				curthread->td_proc->p_stats->p_ru.ru_inblock++;
716			rabp->b_flags |= B_ASYNC;
717			rabp->b_flags &= ~B_INVAL;
718			rabp->b_ioflags &= ~BIO_ERROR;
719			rabp->b_iocmd = BIO_READ;
720			if (rabp->b_rcred == NOCRED && cred != NOCRED)
721				rabp->b_rcred = crhold(cred);
722			vfs_busy_pages(rabp, 0);
723			BUF_KERNPROC(rabp);
724			VOP_STRATEGY(vp, rabp);
725		} else {
726			brelse(rabp);
727		}
728	}
729
730	if (readwait) {
731		rv = bufwait(bp);
732	}
733	return (rv);
734}
735
736/*
737 * Write, release buffer on completion.  (Done by iodone
738 * if async).  Do not bother writing anything if the buffer
739 * is invalid.
740 *
741 * Note that we set B_CACHE here, indicating that buffer is
742 * fully valid and thus cacheable.  This is true even of NFS
743 * now so we set it generally.  This could be set either here
744 * or in biodone() since the I/O is synchronous.  We put it
745 * here.
746 */
747
748int
749bwrite(struct buf * bp)
750{
751	int oldflags, s;
752	struct buf *newbp;
753
754	if (bp->b_flags & B_INVAL) {
755		brelse(bp);
756		return (0);
757	}
758
759	oldflags = bp->b_flags;
760
761	if (BUF_REFCNT(bp) == 0)
762		panic("bwrite: buffer is not busy???");
763	s = splbio();
764	/*
765	 * If a background write is already in progress, delay
766	 * writing this block if it is asynchronous. Otherwise
767	 * wait for the background write to complete.
768	 */
769	if (bp->b_xflags & BX_BKGRDINPROG) {
770		if (bp->b_flags & B_ASYNC) {
771			splx(s);
772			bdwrite(bp);
773			return (0);
774		}
775		bp->b_xflags |= BX_BKGRDWAIT;
776		tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0);
777		if (bp->b_xflags & BX_BKGRDINPROG)
778			panic("bwrite: still writing");
779	}
780
781	/* Mark the buffer clean */
782	bundirty(bp);
783
784	/*
785	 * If this buffer is marked for background writing and we
786	 * do not have to wait for it, make a copy and write the
787	 * copy so as to leave this buffer ready for further use.
788	 *
789	 * This optimization eats a lot of memory.  If we have a page
790	 * or buffer shortfall we can't do it.
791	 */
792	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
793	    (bp->b_flags & B_ASYNC) &&
794	    !vm_page_count_severe() &&
795	    !buf_dirty_count_severe()) {
796		if (bp->b_iodone != NULL) {
797			printf("bp->b_iodone = %p\n", bp->b_iodone);
798			panic("bwrite: need chained iodone");
799		}
800
801		/* get a new block */
802		newbp = geteblk(bp->b_bufsize);
803
804		/*
805		 * set it to be identical to the old block.  We have to
806		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
807		 * to avoid confusing the splay tree and gbincore().
808		 */
809		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
810		newbp->b_lblkno = bp->b_lblkno;
811		newbp->b_xflags |= BX_BKGRDMARKER;
812		bgetvp(bp->b_vp, newbp);
813		newbp->b_blkno = bp->b_blkno;
814		newbp->b_offset = bp->b_offset;
815		newbp->b_iodone = vfs_backgroundwritedone;
816		newbp->b_flags |= B_ASYNC;
817		newbp->b_flags &= ~B_INVAL;
818
819		/* move over the dependencies */
820		if (LIST_FIRST(&bp->b_dep) != NULL)
821			buf_movedeps(bp, newbp);
822
823		/*
824		 * Initiate write on the copy, release the original to
825		 * the B_LOCKED queue so that it cannot go away until
826		 * the background write completes. If not locked it could go
827		 * away and then be reconstituted while it was being written.
828		 * If the reconstituted buffer were written, we could end up
829		 * with two background copies being written at the same time.
830		 */
831		bp->b_xflags |= BX_BKGRDINPROG;
832		bp->b_flags |= B_LOCKED;
833		bqrelse(bp);
834		bp = newbp;
835	}
836
837	bp->b_flags &= ~B_DONE;
838	bp->b_ioflags &= ~BIO_ERROR;
839	bp->b_flags |= B_WRITEINPROG | B_CACHE;
840	bp->b_iocmd = BIO_WRITE;
841
842	bp->b_vp->v_numoutput++;
843	vfs_busy_pages(bp, 1);
844
845	/*
846	 * Normal bwrites pipeline writes
847	 */
848	bp->b_runningbufspace = bp->b_bufsize;
849	runningbufspace += bp->b_runningbufspace;
850
851	if (curthread != PCPU_GET(idlethread))
852		curthread->td_proc->p_stats->p_ru.ru_oublock++;
853	splx(s);
854	if (oldflags & B_ASYNC)
855		BUF_KERNPROC(bp);
856	BUF_STRATEGY(bp);
857
858	if ((oldflags & B_ASYNC) == 0) {
859		int rtval = bufwait(bp);
860		brelse(bp);
861		return (rtval);
862	} else if ((oldflags & B_NOWDRAIN) == 0) {
863		/*
864		 * don't allow the async write to saturate the I/O
865		 * system.  Deadlocks can occur only if a device strategy
866		 * routine (like in MD) turns around and issues another
867		 * high-level write, in which case B_NOWDRAIN is expected
868		 * to be set.  Otherwise we will not deadlock here because
869		 * we are blocking waiting for I/O that is already in-progress
870		 * to complete.
871		 */
872		waitrunningbufspace();
873	}
874
875	return (0);
876}
877
878/*
879 * Complete a background write started from bwrite.
880 */
881static void
882vfs_backgroundwritedone(bp)
883	struct buf *bp;
884{
885	struct buf *origbp;
886
887	/*
888	 * Find the original buffer that we are writing.
889	 */
890	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
891		panic("backgroundwritedone: lost buffer");
892	/*
893	 * Process dependencies then return any unfinished ones.
894	 */
895	if (LIST_FIRST(&bp->b_dep) != NULL)
896		buf_complete(bp);
897	if (LIST_FIRST(&bp->b_dep) != NULL)
898		buf_movedeps(bp, origbp);
899	/*
900	 * Clear the BX_BKGRDINPROG flag in the original buffer
901	 * and awaken it if it is waiting for the write to complete.
902	 * If BX_BKGRDINPROG is not set in the original buffer it must
903	 * have been released and re-instantiated - which is not legal.
904	 */
905	KASSERT((origbp->b_xflags & BX_BKGRDINPROG),
906	    ("backgroundwritedone: lost buffer2"));
907	origbp->b_xflags &= ~BX_BKGRDINPROG;
908	if (origbp->b_xflags & BX_BKGRDWAIT) {
909		origbp->b_xflags &= ~BX_BKGRDWAIT;
910		wakeup(&origbp->b_xflags);
911	}
912	/*
913	 * Clear the B_LOCKED flag and remove it from the locked
914	 * queue if it currently resides there.
915	 */
916	origbp->b_flags &= ~B_LOCKED;
917	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
918		bremfree(origbp);
919		bqrelse(origbp);
920	}
921	/*
922	 * This buffer is marked B_NOCACHE, so when it is released
923	 * by biodone, it will be tossed. We mark it with BIO_READ
924	 * to avoid biodone doing a second vwakeup.
925	 */
926	bp->b_flags |= B_NOCACHE;
927	bp->b_iocmd = BIO_READ;
928	bp->b_flags &= ~(B_CACHE | B_DONE);
929	bp->b_iodone = 0;
930	bufdone(bp);
931}
932
933/*
934 * Delayed write. (Buffer is marked dirty).  Do not bother writing
935 * anything if the buffer is marked invalid.
936 *
937 * Note that since the buffer must be completely valid, we can safely
938 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
939 * biodone() in order to prevent getblk from writing the buffer
940 * out synchronously.
941 */
942void
943bdwrite(struct buf * bp)
944{
945	GIANT_REQUIRED;
946
947	if (BUF_REFCNT(bp) == 0)
948		panic("bdwrite: buffer is not busy");
949
950	if (bp->b_flags & B_INVAL) {
951		brelse(bp);
952		return;
953	}
954	bdirty(bp);
955
956	/*
957	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
958	 * true even of NFS now.
959	 */
960	bp->b_flags |= B_CACHE;
961
962	/*
963	 * This bmap keeps the system from needing to do the bmap later,
964	 * perhaps when the system is attempting to do a sync.  Since it
965	 * is likely that the indirect block -- or whatever other datastructure
966	 * that the filesystem needs is still in memory now, it is a good
967	 * thing to do this.  Note also, that if the pageout daemon is
968	 * requesting a sync -- there might not be enough memory to do
969	 * the bmap then...  So, this is important to do.
970	 */
971	if (bp->b_lblkno == bp->b_blkno) {
972		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
973	}
974
975	/*
976	 * Set the *dirty* buffer range based upon the VM system dirty pages.
977	 */
978	vfs_setdirty(bp);
979
980	/*
981	 * We need to do this here to satisfy the vnode_pager and the
982	 * pageout daemon, so that it thinks that the pages have been
983	 * "cleaned".  Note that since the pages are in a delayed write
984	 * buffer -- the VFS layer "will" see that the pages get written
985	 * out on the next sync, or perhaps the cluster will be completed.
986	 */
987	vfs_clean_pages(bp);
988	bqrelse(bp);
989
990	/*
991	 * Wakeup the buffer flushing daemon if we have a lot of dirty
992	 * buffers (midpoint between our recovery point and our stall
993	 * point).
994	 */
995	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
996
997	/*
998	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
999	 * due to the softdep code.
1000	 */
1001}
1002
1003/*
1004 *	bdirty:
1005 *
1006 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1007 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1008 *	itself to properly update it in the dirty/clean lists.  We mark it
1009 *	B_DONE to ensure that any asynchronization of the buffer properly
1010 *	clears B_DONE ( else a panic will occur later ).
1011 *
1012 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1013 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1014 *	should only be called if the buffer is known-good.
1015 *
1016 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1017 *	count.
1018 *
1019 *	Must be called at splbio().
1020 *	The buffer must be on QUEUE_NONE.
1021 */
1022void
1023bdirty(bp)
1024	struct buf *bp;
1025{
1026	KASSERT(bp->b_qindex == QUEUE_NONE,
1027	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1028	bp->b_flags &= ~(B_RELBUF);
1029	bp->b_iocmd = BIO_WRITE;
1030
1031	if ((bp->b_flags & B_DELWRI) == 0) {
1032		bp->b_flags |= B_DONE | B_DELWRI;
1033		reassignbuf(bp, bp->b_vp);
1034		++numdirtybuffers;
1035		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1036	}
1037}
1038
1039/*
1040 *	bundirty:
1041 *
1042 *	Clear B_DELWRI for buffer.
1043 *
1044 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1045 *	count.
1046 *
1047 *	Must be called at splbio().
1048 *	The buffer must be on QUEUE_NONE.
1049 */
1050
1051void
1052bundirty(bp)
1053	struct buf *bp;
1054{
1055	KASSERT(bp->b_qindex == QUEUE_NONE,
1056	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1057
1058	if (bp->b_flags & B_DELWRI) {
1059		bp->b_flags &= ~B_DELWRI;
1060		reassignbuf(bp, bp->b_vp);
1061		--numdirtybuffers;
1062		numdirtywakeup(lodirtybuffers);
1063	}
1064	/*
1065	 * Since it is now being written, we can clear its deferred write flag.
1066	 */
1067	bp->b_flags &= ~B_DEFERRED;
1068}
1069
1070/*
1071 *	bawrite:
1072 *
1073 *	Asynchronous write.  Start output on a buffer, but do not wait for
1074 *	it to complete.  The buffer is released when the output completes.
1075 *
1076 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1077 *	B_INVAL buffers.  Not us.
1078 */
1079void
1080bawrite(struct buf * bp)
1081{
1082	bp->b_flags |= B_ASYNC;
1083	(void) BUF_WRITE(bp);
1084}
1085
1086/*
1087 *	bwillwrite:
1088 *
1089 *	Called prior to the locking of any vnodes when we are expecting to
1090 *	write.  We do not want to starve the buffer cache with too many
1091 *	dirty buffers so we block here.  By blocking prior to the locking
1092 *	of any vnodes we attempt to avoid the situation where a locked vnode
1093 *	prevents the various system daemons from flushing related buffers.
1094 */
1095
1096void
1097bwillwrite(void)
1098{
1099	if (numdirtybuffers >= hidirtybuffers) {
1100		int s;
1101
1102		mtx_lock(&Giant);
1103		s = splbio();
1104		while (numdirtybuffers >= hidirtybuffers) {
1105			bd_wakeup(1);
1106			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1107			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
1108		}
1109		splx(s);
1110		mtx_unlock(&Giant);
1111	}
1112}
1113
1114/*
1115 * Return true if we have too many dirty buffers.
1116 */
1117int
1118buf_dirty_count_severe(void)
1119{
1120	return(numdirtybuffers >= hidirtybuffers);
1121}
1122
1123/*
1124 *	brelse:
1125 *
1126 *	Release a busy buffer and, if requested, free its resources.  The
1127 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1128 *	to be accessed later as a cache entity or reused for other purposes.
1129 */
1130void
1131brelse(struct buf * bp)
1132{
1133	int s;
1134
1135	GIANT_REQUIRED;
1136
1137	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1138	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1139
1140	s = splbio();
1141
1142	if (bp->b_flags & B_LOCKED)
1143		bp->b_ioflags &= ~BIO_ERROR;
1144
1145	if (bp->b_iocmd == BIO_WRITE &&
1146	    (bp->b_ioflags & BIO_ERROR) &&
1147	    !(bp->b_flags & B_INVAL)) {
1148		/*
1149		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1150		 * pages from being scrapped.  If B_INVAL is set then
1151		 * this case is not run and the next case is run to
1152		 * destroy the buffer.  B_INVAL can occur if the buffer
1153		 * is outside the range supported by the underlying device.
1154		 */
1155		bp->b_ioflags &= ~BIO_ERROR;
1156		bdirty(bp);
1157	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1158	    (bp->b_ioflags & BIO_ERROR) ||
1159	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1160		/*
1161		 * Either a failed I/O or we were asked to free or not
1162		 * cache the buffer.
1163		 */
1164		bp->b_flags |= B_INVAL;
1165		if (LIST_FIRST(&bp->b_dep) != NULL)
1166			buf_deallocate(bp);
1167		if (bp->b_flags & B_DELWRI) {
1168			--numdirtybuffers;
1169			numdirtywakeup(lodirtybuffers);
1170		}
1171		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1172		if ((bp->b_flags & B_VMIO) == 0) {
1173			if (bp->b_bufsize)
1174				allocbuf(bp, 0);
1175			if (bp->b_vp)
1176				brelvp(bp);
1177		}
1178	}
1179
1180	/*
1181	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1182	 * is called with B_DELWRI set, the underlying pages may wind up
1183	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1184	 * because pages associated with a B_DELWRI bp are marked clean.
1185	 *
1186	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1187	 * if B_DELWRI is set.
1188	 *
1189	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1190	 * on pages to return pages to the VM page queues.
1191	 */
1192	if (bp->b_flags & B_DELWRI)
1193		bp->b_flags &= ~B_RELBUF;
1194	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1195		bp->b_flags |= B_RELBUF;
1196
1197	/*
1198	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1199	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1200	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1201	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1202	 *
1203	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1204	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1205	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1206	 *
1207	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1208	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1209	 * the commit state and we cannot afford to lose the buffer. If the
1210	 * buffer has a background write in progress, we need to keep it
1211	 * around to prevent it from being reconstituted and starting a second
1212	 * background write.
1213	 */
1214	if ((bp->b_flags & B_VMIO)
1215	    && !(bp->b_vp->v_mount != NULL &&
1216		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1217		 !vn_isdisk(bp->b_vp, NULL) &&
1218		 (bp->b_flags & B_DELWRI))
1219	    ) {
1220
1221		int i, j, resid;
1222		vm_page_t m;
1223		off_t foff;
1224		vm_pindex_t poff;
1225		vm_object_t obj;
1226		struct vnode *vp;
1227
1228		vp = bp->b_vp;
1229		obj = bp->b_object;
1230
1231		/*
1232		 * Get the base offset and length of the buffer.  Note that
1233		 * in the VMIO case if the buffer block size is not
1234		 * page-aligned then b_data pointer may not be page-aligned.
1235		 * But our b_pages[] array *IS* page aligned.
1236		 *
1237		 * block sizes less then DEV_BSIZE (usually 512) are not
1238		 * supported due to the page granularity bits (m->valid,
1239		 * m->dirty, etc...).
1240		 *
1241		 * See man buf(9) for more information
1242		 */
1243		resid = bp->b_bufsize;
1244		foff = bp->b_offset;
1245
1246		for (i = 0; i < bp->b_npages; i++) {
1247			int had_bogus = 0;
1248
1249			m = bp->b_pages[i];
1250			vm_page_flag_clear(m, PG_ZERO);
1251
1252			/*
1253			 * If we hit a bogus page, fixup *all* the bogus pages
1254			 * now.
1255			 */
1256			if (m == bogus_page) {
1257				poff = OFF_TO_IDX(bp->b_offset);
1258				had_bogus = 1;
1259
1260				for (j = i; j < bp->b_npages; j++) {
1261					vm_page_t mtmp;
1262					mtmp = bp->b_pages[j];
1263					if (mtmp == bogus_page) {
1264						mtmp = vm_page_lookup(obj, poff + j);
1265						if (!mtmp) {
1266							panic("brelse: page missing\n");
1267						}
1268						bp->b_pages[j] = mtmp;
1269					}
1270				}
1271
1272				if ((bp->b_flags & B_INVAL) == 0) {
1273					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1274				}
1275				m = bp->b_pages[i];
1276			}
1277			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1278				int poffset = foff & PAGE_MASK;
1279				int presid = resid > (PAGE_SIZE - poffset) ?
1280					(PAGE_SIZE - poffset) : resid;
1281
1282				KASSERT(presid >= 0, ("brelse: extra page"));
1283				vm_page_set_invalid(m, poffset, presid);
1284				if (had_bogus)
1285					printf("avoided corruption bug in bogus_page/brelse code\n");
1286			}
1287			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1288			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1289		}
1290
1291		if (bp->b_flags & (B_INVAL | B_RELBUF))
1292			vfs_vmio_release(bp);
1293
1294	} else if (bp->b_flags & B_VMIO) {
1295
1296		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1297			vfs_vmio_release(bp);
1298		}
1299
1300	}
1301
1302	if (bp->b_qindex != QUEUE_NONE)
1303		panic("brelse: free buffer onto another queue???");
1304	if (BUF_REFCNT(bp) > 1) {
1305		/* do not release to free list */
1306		BUF_UNLOCK(bp);
1307		splx(s);
1308		return;
1309	}
1310
1311	/* enqueue */
1312
1313	/* buffers with no memory */
1314	if (bp->b_bufsize == 0) {
1315		bp->b_flags |= B_INVAL;
1316		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1317		if (bp->b_xflags & BX_BKGRDINPROG)
1318			panic("losing buffer 1");
1319		if (bp->b_kvasize) {
1320			bp->b_qindex = QUEUE_EMPTYKVA;
1321		} else {
1322			bp->b_qindex = QUEUE_EMPTY;
1323		}
1324		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1325#ifdef USE_BUFHASH
1326		LIST_REMOVE(bp, b_hash);
1327		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1328#endif
1329		bp->b_dev = NODEV;
1330	/* buffers with junk contents */
1331	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1332	    (bp->b_ioflags & BIO_ERROR)) {
1333		bp->b_flags |= B_INVAL;
1334		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1335		if (bp->b_xflags & BX_BKGRDINPROG)
1336			panic("losing buffer 2");
1337		bp->b_qindex = QUEUE_CLEAN;
1338		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1339#ifdef USE_BUFHASH
1340		LIST_REMOVE(bp, b_hash);
1341		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1342#endif
1343		bp->b_dev = NODEV;
1344
1345	/* buffers that are locked */
1346	} else if (bp->b_flags & B_LOCKED) {
1347		bp->b_qindex = QUEUE_LOCKED;
1348		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1349
1350	/* remaining buffers */
1351	} else {
1352		if (bp->b_flags & B_DELWRI)
1353			bp->b_qindex = QUEUE_DIRTY;
1354		else
1355			bp->b_qindex = QUEUE_CLEAN;
1356		if (bp->b_flags & B_AGE)
1357			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1358		else
1359			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1360	}
1361
1362	/*
1363	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1364	 * placed the buffer on the correct queue.  We must also disassociate
1365	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1366	 * find it.
1367	 */
1368	if (bp->b_flags & B_INVAL) {
1369		if (bp->b_flags & B_DELWRI)
1370			bundirty(bp);
1371		if (bp->b_vp)
1372			brelvp(bp);
1373	}
1374
1375	/*
1376	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1377	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1378	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1379	 * if B_INVAL is set ).
1380	 */
1381
1382	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1383		bufcountwakeup();
1384
1385	/*
1386	 * Something we can maybe free or reuse
1387	 */
1388	if (bp->b_bufsize || bp->b_kvasize)
1389		bufspacewakeup();
1390
1391	/* unlock */
1392	BUF_UNLOCK(bp);
1393	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1394			B_DIRECT | B_NOWDRAIN);
1395	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1396		panic("brelse: not dirty");
1397	splx(s);
1398}
1399
1400/*
1401 * Release a buffer back to the appropriate queue but do not try to free
1402 * it.  The buffer is expected to be used again soon.
1403 *
1404 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1405 * biodone() to requeue an async I/O on completion.  It is also used when
1406 * known good buffers need to be requeued but we think we may need the data
1407 * again soon.
1408 *
1409 * XXX we should be able to leave the B_RELBUF hint set on completion.
1410 */
1411void
1412bqrelse(struct buf * bp)
1413{
1414	int s;
1415
1416	s = splbio();
1417
1418	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1419
1420	if (bp->b_qindex != QUEUE_NONE)
1421		panic("bqrelse: free buffer onto another queue???");
1422	if (BUF_REFCNT(bp) > 1) {
1423		/* do not release to free list */
1424		BUF_UNLOCK(bp);
1425		splx(s);
1426		return;
1427	}
1428	if (bp->b_flags & B_LOCKED) {
1429		bp->b_ioflags &= ~BIO_ERROR;
1430		bp->b_qindex = QUEUE_LOCKED;
1431		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1432		/* buffers with stale but valid contents */
1433	} else if (bp->b_flags & B_DELWRI) {
1434		bp->b_qindex = QUEUE_DIRTY;
1435		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1436	} else if (vm_page_count_severe()) {
1437		/*
1438		 * We are too low on memory, we have to try to free the
1439		 * buffer (most importantly: the wired pages making up its
1440		 * backing store) *now*.
1441		 */
1442		splx(s);
1443		brelse(bp);
1444		return;
1445	} else {
1446		bp->b_qindex = QUEUE_CLEAN;
1447		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1448	}
1449
1450	if ((bp->b_flags & B_LOCKED) == 0 &&
1451	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1452		bufcountwakeup();
1453	}
1454
1455	/*
1456	 * Something we can maybe free or reuse.
1457	 */
1458	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1459		bufspacewakeup();
1460
1461	/* unlock */
1462	BUF_UNLOCK(bp);
1463	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1464	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1465		panic("bqrelse: not dirty");
1466	splx(s);
1467}
1468
1469/* Give pages used by the bp back to the VM system (where possible) */
1470static void
1471vfs_vmio_release(bp)
1472	struct buf *bp;
1473{
1474	int i;
1475	vm_page_t m;
1476
1477	GIANT_REQUIRED;
1478	vm_page_lock_queues();
1479	for (i = 0; i < bp->b_npages; i++) {
1480		m = bp->b_pages[i];
1481		bp->b_pages[i] = NULL;
1482		/*
1483		 * In order to keep page LRU ordering consistent, put
1484		 * everything on the inactive queue.
1485		 */
1486		vm_page_unwire(m, 0);
1487		/*
1488		 * We don't mess with busy pages, it is
1489		 * the responsibility of the process that
1490		 * busied the pages to deal with them.
1491		 */
1492		if ((m->flags & PG_BUSY) || (m->busy != 0))
1493			continue;
1494
1495		if (m->wire_count == 0) {
1496			vm_page_flag_clear(m, PG_ZERO);
1497			/*
1498			 * Might as well free the page if we can and it has
1499			 * no valid data.  We also free the page if the
1500			 * buffer was used for direct I/O
1501			 */
1502			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1503			    m->hold_count == 0) {
1504				vm_page_busy(m);
1505				vm_page_protect(m, VM_PROT_NONE);
1506				vm_page_free(m);
1507			} else if (bp->b_flags & B_DIRECT) {
1508				vm_page_try_to_free(m);
1509			} else if (vm_page_count_severe()) {
1510				vm_page_try_to_cache(m);
1511			}
1512		}
1513	}
1514	vm_page_unlock_queues();
1515	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1516
1517	if (bp->b_bufsize) {
1518		bufspacewakeup();
1519		bp->b_bufsize = 0;
1520	}
1521	bp->b_npages = 0;
1522	bp->b_flags &= ~B_VMIO;
1523	if (bp->b_vp)
1524		brelvp(bp);
1525}
1526
1527#ifdef USE_BUFHASH
1528/*
1529 * XXX MOVED TO VFS_SUBR.C
1530 *
1531 * Check to see if a block is currently memory resident.
1532 */
1533struct buf *
1534gbincore(struct vnode * vp, daddr_t blkno)
1535{
1536	struct buf *bp;
1537	struct bufhashhdr *bh;
1538
1539	bh = bufhash(vp, blkno);
1540
1541	/* Search hash chain */
1542	LIST_FOREACH(bp, bh, b_hash) {
1543		/* hit */
1544		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1545		    (bp->b_flags & B_INVAL) == 0) {
1546			break;
1547		}
1548	}
1549	return (bp);
1550}
1551#endif
1552
1553/*
1554 *	vfs_bio_awrite:
1555 *
1556 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1557 *	This is much better then the old way of writing only one buffer at
1558 *	a time.  Note that we may not be presented with the buffers in the
1559 *	correct order, so we search for the cluster in both directions.
1560 */
1561int
1562vfs_bio_awrite(struct buf * bp)
1563{
1564	int i;
1565	int j;
1566	daddr_t lblkno = bp->b_lblkno;
1567	struct vnode *vp = bp->b_vp;
1568	int s;
1569	int ncl;
1570	struct buf *bpa;
1571	int nwritten;
1572	int size;
1573	int maxcl;
1574
1575	s = splbio();
1576	/*
1577	 * right now we support clustered writing only to regular files.  If
1578	 * we find a clusterable block we could be in the middle of a cluster
1579	 * rather then at the beginning.
1580	 */
1581	if ((vp->v_type == VREG) &&
1582	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1583	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1584
1585		size = vp->v_mount->mnt_stat.f_iosize;
1586		maxcl = MAXPHYS / size;
1587
1588		for (i = 1; i < maxcl; i++) {
1589			if ((bpa = gbincore(vp, lblkno + i)) &&
1590			    BUF_REFCNT(bpa) == 0 &&
1591			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1592			    (B_DELWRI | B_CLUSTEROK)) &&
1593			    (bpa->b_bufsize == size)) {
1594				if ((bpa->b_blkno == bpa->b_lblkno) ||
1595				    (bpa->b_blkno !=
1596				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1597					break;
1598			} else {
1599				break;
1600			}
1601		}
1602		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1603			if ((bpa = gbincore(vp, lblkno - j)) &&
1604			    BUF_REFCNT(bpa) == 0 &&
1605			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1606			    (B_DELWRI | B_CLUSTEROK)) &&
1607			    (bpa->b_bufsize == size)) {
1608				if ((bpa->b_blkno == bpa->b_lblkno) ||
1609				    (bpa->b_blkno !=
1610				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1611					break;
1612			} else {
1613				break;
1614			}
1615		}
1616		--j;
1617		ncl = i + j;
1618		/*
1619		 * this is a possible cluster write
1620		 */
1621		if (ncl != 1) {
1622			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1623			splx(s);
1624			return nwritten;
1625		}
1626	}
1627
1628	BUF_LOCK(bp, LK_EXCLUSIVE);
1629	bremfree(bp);
1630	bp->b_flags |= B_ASYNC;
1631
1632	splx(s);
1633	/*
1634	 * default (old) behavior, writing out only one block
1635	 *
1636	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1637	 */
1638	nwritten = bp->b_bufsize;
1639	(void) BUF_WRITE(bp);
1640
1641	return nwritten;
1642}
1643
1644/*
1645 *	getnewbuf:
1646 *
1647 *	Find and initialize a new buffer header, freeing up existing buffers
1648 *	in the bufqueues as necessary.  The new buffer is returned locked.
1649 *
1650 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1651 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1652 *
1653 *	We block if:
1654 *		We have insufficient buffer headers
1655 *		We have insufficient buffer space
1656 *		buffer_map is too fragmented ( space reservation fails )
1657 *		If we have to flush dirty buffers ( but we try to avoid this )
1658 *
1659 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1660 *	Instead we ask the buf daemon to do it for us.  We attempt to
1661 *	avoid piecemeal wakeups of the pageout daemon.
1662 */
1663
1664static struct buf *
1665getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1666{
1667	struct buf *bp;
1668	struct buf *nbp;
1669	int defrag = 0;
1670	int nqindex;
1671	static int flushingbufs;
1672
1673	GIANT_REQUIRED;
1674
1675	/*
1676	 * We can't afford to block since we might be holding a vnode lock,
1677	 * which may prevent system daemons from running.  We deal with
1678	 * low-memory situations by proactively returning memory and running
1679	 * async I/O rather then sync I/O.
1680	 */
1681
1682	++getnewbufcalls;
1683	--getnewbufrestarts;
1684restart:
1685	++getnewbufrestarts;
1686
1687	/*
1688	 * Setup for scan.  If we do not have enough free buffers,
1689	 * we setup a degenerate case that immediately fails.  Note
1690	 * that if we are specially marked process, we are allowed to
1691	 * dip into our reserves.
1692	 *
1693	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1694	 *
1695	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1696	 * However, there are a number of cases (defragging, reusing, ...)
1697	 * where we cannot backup.
1698	 */
1699	nqindex = QUEUE_EMPTYKVA;
1700	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1701
1702	if (nbp == NULL) {
1703		/*
1704		 * If no EMPTYKVA buffers and we are either
1705		 * defragging or reusing, locate a CLEAN buffer
1706		 * to free or reuse.  If bufspace useage is low
1707		 * skip this step so we can allocate a new buffer.
1708		 */
1709		if (defrag || bufspace >= lobufspace) {
1710			nqindex = QUEUE_CLEAN;
1711			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1712		}
1713
1714		/*
1715		 * If we could not find or were not allowed to reuse a
1716		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1717		 * buffer.  We can only use an EMPTY buffer if allocating
1718		 * its KVA would not otherwise run us out of buffer space.
1719		 */
1720		if (nbp == NULL && defrag == 0 &&
1721		    bufspace + maxsize < hibufspace) {
1722			nqindex = QUEUE_EMPTY;
1723			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1724		}
1725	}
1726
1727	/*
1728	 * Run scan, possibly freeing data and/or kva mappings on the fly
1729	 * depending.
1730	 */
1731
1732	while ((bp = nbp) != NULL) {
1733		int qindex = nqindex;
1734
1735		/*
1736		 * Calculate next bp ( we can only use it if we do not block
1737		 * or do other fancy things ).
1738		 */
1739		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1740			switch(qindex) {
1741			case QUEUE_EMPTY:
1742				nqindex = QUEUE_EMPTYKVA;
1743				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1744					break;
1745				/* FALLTHROUGH */
1746			case QUEUE_EMPTYKVA:
1747				nqindex = QUEUE_CLEAN;
1748				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1749					break;
1750				/* FALLTHROUGH */
1751			case QUEUE_CLEAN:
1752				/*
1753				 * nbp is NULL.
1754				 */
1755				break;
1756			}
1757		}
1758
1759		/*
1760		 * Sanity Checks
1761		 */
1762		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1763
1764		/*
1765		 * Note: we no longer distinguish between VMIO and non-VMIO
1766		 * buffers.
1767		 */
1768
1769		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1770
1771		/*
1772		 * If we are defragging then we need a buffer with
1773		 * b_kvasize != 0.  XXX this situation should no longer
1774		 * occur, if defrag is non-zero the buffer's b_kvasize
1775		 * should also be non-zero at this point.  XXX
1776		 */
1777		if (defrag && bp->b_kvasize == 0) {
1778			printf("Warning: defrag empty buffer %p\n", bp);
1779			continue;
1780		}
1781
1782		/*
1783		 * Start freeing the bp.  This is somewhat involved.  nbp
1784		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1785		 */
1786
1787		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1788			panic("getnewbuf: locked buf");
1789		bremfree(bp);
1790
1791		if (qindex == QUEUE_CLEAN) {
1792			if (bp->b_flags & B_VMIO) {
1793				bp->b_flags &= ~B_ASYNC;
1794				vfs_vmio_release(bp);
1795			}
1796			if (bp->b_vp)
1797				brelvp(bp);
1798		}
1799
1800		/*
1801		 * NOTE:  nbp is now entirely invalid.  We can only restart
1802		 * the scan from this point on.
1803		 *
1804		 * Get the rest of the buffer freed up.  b_kva* is still
1805		 * valid after this operation.
1806		 */
1807
1808		if (bp->b_rcred != NOCRED) {
1809			crfree(bp->b_rcred);
1810			bp->b_rcred = NOCRED;
1811		}
1812		if (bp->b_wcred != NOCRED) {
1813			crfree(bp->b_wcred);
1814			bp->b_wcred = NOCRED;
1815		}
1816		if (LIST_FIRST(&bp->b_dep) != NULL)
1817			buf_deallocate(bp);
1818		if (bp->b_xflags & BX_BKGRDINPROG)
1819			panic("losing buffer 3");
1820#ifdef USE_BUFHASH
1821		LIST_REMOVE(bp, b_hash);
1822		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1823#endif
1824
1825		if (bp->b_bufsize)
1826			allocbuf(bp, 0);
1827
1828		bp->b_flags = 0;
1829		bp->b_ioflags = 0;
1830		bp->b_xflags = 0;
1831		bp->b_dev = NODEV;
1832		bp->b_vp = NULL;
1833		bp->b_blkno = bp->b_lblkno = 0;
1834		bp->b_offset = NOOFFSET;
1835		bp->b_iodone = 0;
1836		bp->b_error = 0;
1837		bp->b_resid = 0;
1838		bp->b_bcount = 0;
1839		bp->b_npages = 0;
1840		bp->b_dirtyoff = bp->b_dirtyend = 0;
1841		bp->b_magic = B_MAGIC_BIO;
1842		bp->b_op = &buf_ops_bio;
1843		bp->b_object = NULL;
1844
1845		LIST_INIT(&bp->b_dep);
1846
1847		/*
1848		 * If we are defragging then free the buffer.
1849		 */
1850		if (defrag) {
1851			bp->b_flags |= B_INVAL;
1852			bfreekva(bp);
1853			brelse(bp);
1854			defrag = 0;
1855			goto restart;
1856		}
1857
1858		/*
1859		 * If we are overcomitted then recover the buffer and its
1860		 * KVM space.  This occurs in rare situations when multiple
1861		 * processes are blocked in getnewbuf() or allocbuf().
1862		 */
1863		if (bufspace >= hibufspace)
1864			flushingbufs = 1;
1865		if (flushingbufs && bp->b_kvasize != 0) {
1866			bp->b_flags |= B_INVAL;
1867			bfreekva(bp);
1868			brelse(bp);
1869			goto restart;
1870		}
1871		if (bufspace < lobufspace)
1872			flushingbufs = 0;
1873		break;
1874	}
1875
1876	/*
1877	 * If we exhausted our list, sleep as appropriate.  We may have to
1878	 * wakeup various daemons and write out some dirty buffers.
1879	 *
1880	 * Generally we are sleeping due to insufficient buffer space.
1881	 */
1882
1883	if (bp == NULL) {
1884		int flags;
1885		char *waitmsg;
1886
1887		if (defrag) {
1888			flags = VFS_BIO_NEED_BUFSPACE;
1889			waitmsg = "nbufkv";
1890		} else if (bufspace >= hibufspace) {
1891			waitmsg = "nbufbs";
1892			flags = VFS_BIO_NEED_BUFSPACE;
1893		} else {
1894			waitmsg = "newbuf";
1895			flags = VFS_BIO_NEED_ANY;
1896		}
1897
1898		bd_speedup();	/* heeeelp */
1899
1900		needsbuffer |= flags;
1901		while (needsbuffer & flags) {
1902			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1903			    waitmsg, slptimeo))
1904				return (NULL);
1905		}
1906	} else {
1907		/*
1908		 * We finally have a valid bp.  We aren't quite out of the
1909		 * woods, we still have to reserve kva space.  In order
1910		 * to keep fragmentation sane we only allocate kva in
1911		 * BKVASIZE chunks.
1912		 */
1913		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1914
1915		if (maxsize != bp->b_kvasize) {
1916			vm_offset_t addr = 0;
1917
1918			bfreekva(bp);
1919
1920			if (vm_map_findspace(buffer_map,
1921				vm_map_min(buffer_map), maxsize, &addr)) {
1922				/*
1923				 * Uh oh.  Buffer map is to fragmented.  We
1924				 * must defragment the map.
1925				 */
1926				++bufdefragcnt;
1927				defrag = 1;
1928				bp->b_flags |= B_INVAL;
1929				brelse(bp);
1930				goto restart;
1931			}
1932			if (addr) {
1933				vm_map_insert(buffer_map, NULL, 0,
1934					addr, addr + maxsize,
1935					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1936
1937				bp->b_kvabase = (caddr_t) addr;
1938				bp->b_kvasize = maxsize;
1939				bufspace += bp->b_kvasize;
1940				++bufreusecnt;
1941			}
1942		}
1943		bp->b_data = bp->b_kvabase;
1944	}
1945	return(bp);
1946}
1947
1948/*
1949 *	buf_daemon:
1950 *
1951 *	buffer flushing daemon.  Buffers are normally flushed by the
1952 *	update daemon but if it cannot keep up this process starts to
1953 *	take the load in an attempt to prevent getnewbuf() from blocking.
1954 */
1955
1956static struct proc *bufdaemonproc;
1957
1958static struct kproc_desc buf_kp = {
1959	"bufdaemon",
1960	buf_daemon,
1961	&bufdaemonproc
1962};
1963SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1964
1965static void
1966buf_daemon()
1967{
1968	int s;
1969
1970	mtx_lock(&Giant);
1971
1972	/*
1973	 * This process needs to be suspended prior to shutdown sync.
1974	 */
1975	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1976	    SHUTDOWN_PRI_LAST);
1977
1978	/*
1979	 * This process is allowed to take the buffer cache to the limit
1980	 */
1981	s = splbio();
1982
1983	for (;;) {
1984		kthread_suspend_check(bufdaemonproc);
1985
1986		bd_request = 0;
1987
1988		/*
1989		 * Do the flush.  Limit the amount of in-transit I/O we
1990		 * allow to build up, otherwise we would completely saturate
1991		 * the I/O system.  Wakeup any waiting processes before we
1992		 * normally would so they can run in parallel with our drain.
1993		 */
1994		while (numdirtybuffers > lodirtybuffers) {
1995			if (flushbufqueues() == 0)
1996				break;
1997			waitrunningbufspace();
1998			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1999		}
2000
2001		/*
2002		 * Only clear bd_request if we have reached our low water
2003		 * mark.  The buf_daemon normally waits 1 second and
2004		 * then incrementally flushes any dirty buffers that have
2005		 * built up, within reason.
2006		 *
2007		 * If we were unable to hit our low water mark and couldn't
2008		 * find any flushable buffers, we sleep half a second.
2009		 * Otherwise we loop immediately.
2010		 */
2011		if (numdirtybuffers <= lodirtybuffers) {
2012			/*
2013			 * We reached our low water mark, reset the
2014			 * request and sleep until we are needed again.
2015			 * The sleep is just so the suspend code works.
2016			 */
2017			bd_request = 0;
2018			tsleep(&bd_request, PVM, "psleep", hz);
2019		} else {
2020			/*
2021			 * We couldn't find any flushable dirty buffers but
2022			 * still have too many dirty buffers, we
2023			 * have to sleep and try again.  (rare)
2024			 */
2025			tsleep(&bd_request, PVM, "qsleep", hz / 2);
2026		}
2027	}
2028}
2029
2030/*
2031 *	flushbufqueues:
2032 *
2033 *	Try to flush a buffer in the dirty queue.  We must be careful to
2034 *	free up B_INVAL buffers instead of write them, which NFS is
2035 *	particularly sensitive to.
2036 */
2037
2038static int
2039flushbufqueues(void)
2040{
2041	struct buf *bp;
2042	int r = 0;
2043
2044	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2045
2046	while (bp) {
2047		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
2048		if ((bp->b_flags & B_DELWRI) != 0 &&
2049		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
2050			if (bp->b_flags & B_INVAL) {
2051				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2052					panic("flushbufqueues: locked buf");
2053				bremfree(bp);
2054				brelse(bp);
2055				++r;
2056				break;
2057			}
2058			if (LIST_FIRST(&bp->b_dep) != NULL &&
2059			    (bp->b_flags & B_DEFERRED) == 0 &&
2060			    buf_countdeps(bp, 0)) {
2061				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
2062				    bp, b_freelist);
2063				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
2064				    bp, b_freelist);
2065				bp->b_flags |= B_DEFERRED;
2066				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2067				continue;
2068			}
2069			vfs_bio_awrite(bp);
2070			++r;
2071			break;
2072		}
2073		bp = TAILQ_NEXT(bp, b_freelist);
2074	}
2075	return (r);
2076}
2077
2078/*
2079 * Check to see if a block is currently memory resident.
2080 */
2081struct buf *
2082incore(struct vnode * vp, daddr_t blkno)
2083{
2084	struct buf *bp;
2085
2086	int s = splbio();
2087	bp = gbincore(vp, blkno);
2088	splx(s);
2089	return (bp);
2090}
2091
2092/*
2093 * Returns true if no I/O is needed to access the
2094 * associated VM object.  This is like incore except
2095 * it also hunts around in the VM system for the data.
2096 */
2097
2098int
2099inmem(struct vnode * vp, daddr_t blkno)
2100{
2101	vm_object_t obj;
2102	vm_offset_t toff, tinc, size;
2103	vm_page_t m;
2104	vm_ooffset_t off;
2105
2106	GIANT_REQUIRED;
2107
2108	if (incore(vp, blkno))
2109		return 1;
2110	if (vp->v_mount == NULL)
2111		return 0;
2112	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2113		return 0;
2114
2115	size = PAGE_SIZE;
2116	if (size > vp->v_mount->mnt_stat.f_iosize)
2117		size = vp->v_mount->mnt_stat.f_iosize;
2118	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2119
2120	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2121		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2122		if (!m)
2123			goto notinmem;
2124		tinc = size;
2125		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2126			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2127		if (vm_page_is_valid(m,
2128		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2129			goto notinmem;
2130	}
2131	return 1;
2132
2133notinmem:
2134	return (0);
2135}
2136
2137/*
2138 *	vfs_setdirty:
2139 *
2140 *	Sets the dirty range for a buffer based on the status of the dirty
2141 *	bits in the pages comprising the buffer.
2142 *
2143 *	The range is limited to the size of the buffer.
2144 *
2145 *	This routine is primarily used by NFS, but is generalized for the
2146 *	B_VMIO case.
2147 */
2148static void
2149vfs_setdirty(struct buf *bp)
2150{
2151	int i;
2152	vm_object_t object;
2153
2154	GIANT_REQUIRED;
2155	/*
2156	 * Degenerate case - empty buffer
2157	 */
2158
2159	if (bp->b_bufsize == 0)
2160		return;
2161
2162	/*
2163	 * We qualify the scan for modified pages on whether the
2164	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2165	 * is not cleared simply by protecting pages off.
2166	 */
2167
2168	if ((bp->b_flags & B_VMIO) == 0)
2169		return;
2170
2171	object = bp->b_pages[0]->object;
2172
2173	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2174		printf("Warning: object %p writeable but not mightbedirty\n", object);
2175	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2176		printf("Warning: object %p mightbedirty but not writeable\n", object);
2177
2178	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2179		vm_offset_t boffset;
2180		vm_offset_t eoffset;
2181
2182		/*
2183		 * test the pages to see if they have been modified directly
2184		 * by users through the VM system.
2185		 */
2186		for (i = 0; i < bp->b_npages; i++) {
2187			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2188			vm_page_test_dirty(bp->b_pages[i]);
2189		}
2190
2191		/*
2192		 * Calculate the encompassing dirty range, boffset and eoffset,
2193		 * (eoffset - boffset) bytes.
2194		 */
2195
2196		for (i = 0; i < bp->b_npages; i++) {
2197			if (bp->b_pages[i]->dirty)
2198				break;
2199		}
2200		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2201
2202		for (i = bp->b_npages - 1; i >= 0; --i) {
2203			if (bp->b_pages[i]->dirty) {
2204				break;
2205			}
2206		}
2207		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2208
2209		/*
2210		 * Fit it to the buffer.
2211		 */
2212
2213		if (eoffset > bp->b_bcount)
2214			eoffset = bp->b_bcount;
2215
2216		/*
2217		 * If we have a good dirty range, merge with the existing
2218		 * dirty range.
2219		 */
2220
2221		if (boffset < eoffset) {
2222			if (bp->b_dirtyoff > boffset)
2223				bp->b_dirtyoff = boffset;
2224			if (bp->b_dirtyend < eoffset)
2225				bp->b_dirtyend = eoffset;
2226		}
2227	}
2228}
2229
2230/*
2231 *	getblk:
2232 *
2233 *	Get a block given a specified block and offset into a file/device.
2234 *	The buffers B_DONE bit will be cleared on return, making it almost
2235 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2236 *	return.  The caller should clear B_INVAL prior to initiating a
2237 *	READ.
2238 *
2239 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2240 *	an existing buffer.
2241 *
2242 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2243 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2244 *	and then cleared based on the backing VM.  If the previous buffer is
2245 *	non-0-sized but invalid, B_CACHE will be cleared.
2246 *
2247 *	If getblk() must create a new buffer, the new buffer is returned with
2248 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2249 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2250 *	backing VM.
2251 *
2252 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2253 *	B_CACHE bit is clear.
2254 *
2255 *	What this means, basically, is that the caller should use B_CACHE to
2256 *	determine whether the buffer is fully valid or not and should clear
2257 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2258 *	the buffer by loading its data area with something, the caller needs
2259 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2260 *	the caller should set B_CACHE ( as an optimization ), else the caller
2261 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2262 *	a write attempt or if it was a successfull read.  If the caller
2263 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2264 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2265 */
2266struct buf *
2267getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2268{
2269	struct buf *bp;
2270	int s;
2271#ifdef USE_BUFHASH
2272	struct bufhashhdr *bh;
2273#endif
2274
2275	if (size > MAXBSIZE)
2276		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2277
2278	s = splbio();
2279loop:
2280	/*
2281	 * Block if we are low on buffers.   Certain processes are allowed
2282	 * to completely exhaust the buffer cache.
2283         *
2284         * If this check ever becomes a bottleneck it may be better to
2285         * move it into the else, when gbincore() fails.  At the moment
2286         * it isn't a problem.
2287	 *
2288	 * XXX remove if 0 sections (clean this up after its proven)
2289         */
2290	if (numfreebuffers == 0) {
2291		if (curthread == PCPU_GET(idlethread))
2292			return NULL;
2293		needsbuffer |= VFS_BIO_NEED_ANY;
2294	}
2295
2296	if ((bp = gbincore(vp, blkno))) {
2297		/*
2298		 * Buffer is in-core.  If the buffer is not busy, it must
2299		 * be on a queue.
2300		 */
2301
2302		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2303			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2304			    "getblk", slpflag, slptimeo) == ENOLCK)
2305				goto loop;
2306			splx(s);
2307			return (struct buf *) NULL;
2308		}
2309
2310		/*
2311		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2312		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2313		 * and for a VMIO buffer B_CACHE is adjusted according to the
2314		 * backing VM cache.
2315		 */
2316		if (bp->b_flags & B_INVAL)
2317			bp->b_flags &= ~B_CACHE;
2318		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2319			bp->b_flags |= B_CACHE;
2320		bremfree(bp);
2321
2322		/*
2323		 * check for size inconsistancies for non-VMIO case.
2324		 */
2325
2326		if (bp->b_bcount != size) {
2327			if ((bp->b_flags & B_VMIO) == 0 ||
2328			    (size > bp->b_kvasize)) {
2329				if (bp->b_flags & B_DELWRI) {
2330					bp->b_flags |= B_NOCACHE;
2331					BUF_WRITE(bp);
2332				} else {
2333					if ((bp->b_flags & B_VMIO) &&
2334					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2335						bp->b_flags |= B_RELBUF;
2336						brelse(bp);
2337					} else {
2338						bp->b_flags |= B_NOCACHE;
2339						BUF_WRITE(bp);
2340					}
2341				}
2342				goto loop;
2343			}
2344		}
2345
2346		/*
2347		 * If the size is inconsistant in the VMIO case, we can resize
2348		 * the buffer.  This might lead to B_CACHE getting set or
2349		 * cleared.  If the size has not changed, B_CACHE remains
2350		 * unchanged from its previous state.
2351		 */
2352
2353		if (bp->b_bcount != size)
2354			allocbuf(bp, size);
2355
2356		KASSERT(bp->b_offset != NOOFFSET,
2357		    ("getblk: no buffer offset"));
2358
2359		/*
2360		 * A buffer with B_DELWRI set and B_CACHE clear must
2361		 * be committed before we can return the buffer in
2362		 * order to prevent the caller from issuing a read
2363		 * ( due to B_CACHE not being set ) and overwriting
2364		 * it.
2365		 *
2366		 * Most callers, including NFS and FFS, need this to
2367		 * operate properly either because they assume they
2368		 * can issue a read if B_CACHE is not set, or because
2369		 * ( for example ) an uncached B_DELWRI might loop due
2370		 * to softupdates re-dirtying the buffer.  In the latter
2371		 * case, B_CACHE is set after the first write completes,
2372		 * preventing further loops.
2373		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2374		 * above while extending the buffer, we cannot allow the
2375		 * buffer to remain with B_CACHE set after the write
2376		 * completes or it will represent a corrupt state.  To
2377		 * deal with this we set B_NOCACHE to scrap the buffer
2378		 * after the write.
2379		 *
2380		 * We might be able to do something fancy, like setting
2381		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2382		 * so the below call doesn't set B_CACHE, but that gets real
2383		 * confusing.  This is much easier.
2384		 */
2385
2386		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2387			bp->b_flags |= B_NOCACHE;
2388			BUF_WRITE(bp);
2389			goto loop;
2390		}
2391
2392		splx(s);
2393		bp->b_flags &= ~B_DONE;
2394	} else {
2395		/*
2396		 * Buffer is not in-core, create new buffer.  The buffer
2397		 * returned by getnewbuf() is locked.  Note that the returned
2398		 * buffer is also considered valid (not marked B_INVAL).
2399		 */
2400		int bsize, maxsize, vmio;
2401		off_t offset;
2402
2403		if (vn_isdisk(vp, NULL))
2404			bsize = DEV_BSIZE;
2405		else if (vp->v_mountedhere)
2406			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2407		else if (vp->v_mount)
2408			bsize = vp->v_mount->mnt_stat.f_iosize;
2409		else
2410			bsize = size;
2411
2412		offset = blkno * bsize;
2413		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2414		    (vp->v_vflag & VV_OBJBUF);
2415		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2416		maxsize = imax(maxsize, bsize);
2417
2418		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2419			if (slpflag || slptimeo) {
2420				splx(s);
2421				return NULL;
2422			}
2423			goto loop;
2424		}
2425
2426		/*
2427		 * This code is used to make sure that a buffer is not
2428		 * created while the getnewbuf routine is blocked.
2429		 * This can be a problem whether the vnode is locked or not.
2430		 * If the buffer is created out from under us, we have to
2431		 * throw away the one we just created.  There is now window
2432		 * race because we are safely running at splbio() from the
2433		 * point of the duplicate buffer creation through to here,
2434		 * and we've locked the buffer.
2435		 *
2436		 * Note: this must occur before we associate the buffer
2437		 * with the vp especially considering limitations in
2438		 * the splay tree implementation when dealing with duplicate
2439		 * lblkno's.
2440		 */
2441		if (gbincore(vp, blkno)) {
2442			bp->b_flags |= B_INVAL;
2443			brelse(bp);
2444			goto loop;
2445		}
2446
2447		/*
2448		 * Insert the buffer into the hash, so that it can
2449		 * be found by incore.
2450		 */
2451		bp->b_blkno = bp->b_lblkno = blkno;
2452		bp->b_offset = offset;
2453
2454		bgetvp(vp, bp);
2455#ifdef USE_BUFHASH
2456		LIST_REMOVE(bp, b_hash);
2457		bh = bufhash(vp, blkno);
2458		LIST_INSERT_HEAD(bh, bp, b_hash);
2459#endif
2460
2461		/*
2462		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2463		 * buffer size starts out as 0, B_CACHE will be set by
2464		 * allocbuf() for the VMIO case prior to it testing the
2465		 * backing store for validity.
2466		 */
2467
2468		if (vmio) {
2469			bp->b_flags |= B_VMIO;
2470#if defined(VFS_BIO_DEBUG)
2471			if (vp->v_type != VREG)
2472				printf("getblk: vmioing file type %d???\n", vp->v_type);
2473#endif
2474			VOP_GETVOBJECT(vp, &bp->b_object);
2475		} else {
2476			bp->b_flags &= ~B_VMIO;
2477			bp->b_object = NULL;
2478		}
2479
2480		allocbuf(bp, size);
2481
2482		splx(s);
2483		bp->b_flags &= ~B_DONE;
2484	}
2485	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2486	return (bp);
2487}
2488
2489/*
2490 * Get an empty, disassociated buffer of given size.  The buffer is initially
2491 * set to B_INVAL.
2492 */
2493struct buf *
2494geteblk(int size)
2495{
2496	struct buf *bp;
2497	int s;
2498	int maxsize;
2499
2500	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2501
2502	s = splbio();
2503	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2504	splx(s);
2505	allocbuf(bp, size);
2506	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2507	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2508	return (bp);
2509}
2510
2511
2512/*
2513 * This code constitutes the buffer memory from either anonymous system
2514 * memory (in the case of non-VMIO operations) or from an associated
2515 * VM object (in the case of VMIO operations).  This code is able to
2516 * resize a buffer up or down.
2517 *
2518 * Note that this code is tricky, and has many complications to resolve
2519 * deadlock or inconsistant data situations.  Tread lightly!!!
2520 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2521 * the caller.  Calling this code willy nilly can result in the loss of data.
2522 *
2523 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2524 * B_CACHE for the non-VMIO case.
2525 */
2526
2527int
2528allocbuf(struct buf *bp, int size)
2529{
2530	int newbsize, mbsize;
2531	int i;
2532
2533	GIANT_REQUIRED;
2534
2535	if (BUF_REFCNT(bp) == 0)
2536		panic("allocbuf: buffer not busy");
2537
2538	if (bp->b_kvasize < size)
2539		panic("allocbuf: buffer too small");
2540
2541	if ((bp->b_flags & B_VMIO) == 0) {
2542		caddr_t origbuf;
2543		int origbufsize;
2544		/*
2545		 * Just get anonymous memory from the kernel.  Don't
2546		 * mess with B_CACHE.
2547		 */
2548		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2549		if (bp->b_flags & B_MALLOC)
2550			newbsize = mbsize;
2551		else
2552			newbsize = round_page(size);
2553
2554		if (newbsize < bp->b_bufsize) {
2555			/*
2556			 * malloced buffers are not shrunk
2557			 */
2558			if (bp->b_flags & B_MALLOC) {
2559				if (newbsize) {
2560					bp->b_bcount = size;
2561				} else {
2562					free(bp->b_data, M_BIOBUF);
2563					if (bp->b_bufsize) {
2564						bufmallocspace -= bp->b_bufsize;
2565						bufspacewakeup();
2566						bp->b_bufsize = 0;
2567					}
2568					bp->b_data = bp->b_kvabase;
2569					bp->b_bcount = 0;
2570					bp->b_flags &= ~B_MALLOC;
2571				}
2572				return 1;
2573			}
2574			vm_hold_free_pages(
2575			    bp,
2576			    (vm_offset_t) bp->b_data + newbsize,
2577			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2578		} else if (newbsize > bp->b_bufsize) {
2579			/*
2580			 * We only use malloced memory on the first allocation.
2581			 * and revert to page-allocated memory when the buffer
2582			 * grows.
2583			 */
2584			if ( (bufmallocspace < maxbufmallocspace) &&
2585				(bp->b_bufsize == 0) &&
2586				(mbsize <= PAGE_SIZE/2)) {
2587
2588				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2589				bp->b_bufsize = mbsize;
2590				bp->b_bcount = size;
2591				bp->b_flags |= B_MALLOC;
2592				bufmallocspace += mbsize;
2593				return 1;
2594			}
2595			origbuf = NULL;
2596			origbufsize = 0;
2597			/*
2598			 * If the buffer is growing on its other-than-first allocation,
2599			 * then we revert to the page-allocation scheme.
2600			 */
2601			if (bp->b_flags & B_MALLOC) {
2602				origbuf = bp->b_data;
2603				origbufsize = bp->b_bufsize;
2604				bp->b_data = bp->b_kvabase;
2605				if (bp->b_bufsize) {
2606					bufmallocspace -= bp->b_bufsize;
2607					bufspacewakeup();
2608					bp->b_bufsize = 0;
2609				}
2610				bp->b_flags &= ~B_MALLOC;
2611				newbsize = round_page(newbsize);
2612			}
2613			vm_hold_load_pages(
2614			    bp,
2615			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2616			    (vm_offset_t) bp->b_data + newbsize);
2617			if (origbuf) {
2618				bcopy(origbuf, bp->b_data, origbufsize);
2619				free(origbuf, M_BIOBUF);
2620			}
2621		}
2622	} else {
2623		vm_page_t m;
2624		int desiredpages;
2625
2626		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2627		desiredpages = (size == 0) ? 0 :
2628			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2629
2630		if (bp->b_flags & B_MALLOC)
2631			panic("allocbuf: VMIO buffer can't be malloced");
2632		/*
2633		 * Set B_CACHE initially if buffer is 0 length or will become
2634		 * 0-length.
2635		 */
2636		if (size == 0 || bp->b_bufsize == 0)
2637			bp->b_flags |= B_CACHE;
2638
2639		if (newbsize < bp->b_bufsize) {
2640			/*
2641			 * DEV_BSIZE aligned new buffer size is less then the
2642			 * DEV_BSIZE aligned existing buffer size.  Figure out
2643			 * if we have to remove any pages.
2644			 */
2645			if (desiredpages < bp->b_npages) {
2646				vm_page_lock_queues();
2647				for (i = desiredpages; i < bp->b_npages; i++) {
2648					/*
2649					 * the page is not freed here -- it
2650					 * is the responsibility of
2651					 * vnode_pager_setsize
2652					 */
2653					m = bp->b_pages[i];
2654					KASSERT(m != bogus_page,
2655					    ("allocbuf: bogus page found"));
2656					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2657						vm_page_lock_queues();
2658
2659					bp->b_pages[i] = NULL;
2660					vm_page_unwire(m, 0);
2661				}
2662				vm_page_unlock_queues();
2663				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2664				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2665				bp->b_npages = desiredpages;
2666			}
2667		} else if (size > bp->b_bcount) {
2668			/*
2669			 * We are growing the buffer, possibly in a
2670			 * byte-granular fashion.
2671			 */
2672			struct vnode *vp;
2673			vm_object_t obj;
2674			vm_offset_t toff;
2675			vm_offset_t tinc;
2676
2677			/*
2678			 * Step 1, bring in the VM pages from the object,
2679			 * allocating them if necessary.  We must clear
2680			 * B_CACHE if these pages are not valid for the
2681			 * range covered by the buffer.
2682			 */
2683
2684			vp = bp->b_vp;
2685			obj = bp->b_object;
2686
2687			while (bp->b_npages < desiredpages) {
2688				vm_page_t m;
2689				vm_pindex_t pi;
2690
2691				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2692				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2693					/*
2694					 * note: must allocate system pages
2695					 * since blocking here could intefere
2696					 * with paging I/O, no matter which
2697					 * process we are.
2698					 */
2699					m = vm_page_alloc(obj, pi,
2700					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2701					if (m == NULL) {
2702						VM_WAIT;
2703						vm_pageout_deficit += desiredpages - bp->b_npages;
2704					} else {
2705						vm_page_lock_queues();
2706						vm_page_wakeup(m);
2707						vm_page_unlock_queues();
2708						bp->b_flags &= ~B_CACHE;
2709						bp->b_pages[bp->b_npages] = m;
2710						++bp->b_npages;
2711					}
2712					continue;
2713				}
2714
2715				/*
2716				 * We found a page.  If we have to sleep on it,
2717				 * retry because it might have gotten freed out
2718				 * from under us.
2719				 *
2720				 * We can only test PG_BUSY here.  Blocking on
2721				 * m->busy might lead to a deadlock:
2722				 *
2723				 *  vm_fault->getpages->cluster_read->allocbuf
2724				 *
2725				 */
2726				vm_page_lock_queues();
2727				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2728					continue;
2729
2730				/*
2731				 * We have a good page.  Should we wakeup the
2732				 * page daemon?
2733				 */
2734				if ((curproc != pageproc) &&
2735				    ((m->queue - m->pc) == PQ_CACHE) &&
2736				    ((cnt.v_free_count + cnt.v_cache_count) <
2737					(cnt.v_free_min + cnt.v_cache_min))) {
2738					pagedaemon_wakeup();
2739				}
2740				vm_page_flag_clear(m, PG_ZERO);
2741				vm_page_wire(m);
2742				vm_page_unlock_queues();
2743				bp->b_pages[bp->b_npages] = m;
2744				++bp->b_npages;
2745			}
2746
2747			/*
2748			 * Step 2.  We've loaded the pages into the buffer,
2749			 * we have to figure out if we can still have B_CACHE
2750			 * set.  Note that B_CACHE is set according to the
2751			 * byte-granular range ( bcount and size ), new the
2752			 * aligned range ( newbsize ).
2753			 *
2754			 * The VM test is against m->valid, which is DEV_BSIZE
2755			 * aligned.  Needless to say, the validity of the data
2756			 * needs to also be DEV_BSIZE aligned.  Note that this
2757			 * fails with NFS if the server or some other client
2758			 * extends the file's EOF.  If our buffer is resized,
2759			 * B_CACHE may remain set! XXX
2760			 */
2761
2762			toff = bp->b_bcount;
2763			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2764
2765			while ((bp->b_flags & B_CACHE) && toff < size) {
2766				vm_pindex_t pi;
2767
2768				if (tinc > (size - toff))
2769					tinc = size - toff;
2770
2771				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2772				    PAGE_SHIFT;
2773
2774				vfs_buf_test_cache(
2775				    bp,
2776				    bp->b_offset,
2777				    toff,
2778				    tinc,
2779				    bp->b_pages[pi]
2780				);
2781				toff += tinc;
2782				tinc = PAGE_SIZE;
2783			}
2784
2785			/*
2786			 * Step 3, fixup the KVM pmap.  Remember that
2787			 * bp->b_data is relative to bp->b_offset, but
2788			 * bp->b_offset may be offset into the first page.
2789			 */
2790
2791			bp->b_data = (caddr_t)
2792			    trunc_page((vm_offset_t)bp->b_data);
2793			pmap_qenter(
2794			    (vm_offset_t)bp->b_data,
2795			    bp->b_pages,
2796			    bp->b_npages
2797			);
2798
2799			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2800			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2801		}
2802	}
2803	if (newbsize < bp->b_bufsize)
2804		bufspacewakeup();
2805	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2806	bp->b_bcount = size;		/* requested buffer size	*/
2807	return 1;
2808}
2809
2810void
2811biodone(struct bio *bp)
2812{
2813	bp->bio_flags |= BIO_DONE;
2814	if (bp->bio_done != NULL)
2815		bp->bio_done(bp);
2816	else
2817		wakeup(bp);
2818}
2819
2820/*
2821 * Wait for a BIO to finish.
2822 * XXX: For now resort to a timeout, the optimal locking (if any) for this
2823 * case is not at this point obvious.
2824 */
2825int
2826biowait(struct bio *bp, const char *wchan)
2827{
2828
2829	while ((bp->bio_flags & BIO_DONE) == 0)
2830		msleep(bp, NULL, 0, wchan, hz);
2831	if (!(bp->bio_flags & BIO_ERROR))
2832		return (0);
2833	if (bp->bio_error)
2834		return (bp->bio_error);
2835	return (EIO);
2836}
2837
2838void
2839biofinish(struct bio *bp, struct devstat *stat, int error)
2840{
2841
2842	if (error) {
2843		bp->bio_error = error;
2844		bp->bio_flags |= BIO_ERROR;
2845	}
2846	if (stat != NULL)
2847		devstat_end_transaction_bio(stat, bp);
2848	biodone(bp);
2849}
2850
2851void
2852bioq_init(struct bio_queue_head *head)
2853{
2854	TAILQ_INIT(&head->queue);
2855	head->last_pblkno = 0;
2856	head->insert_point = NULL;
2857	head->switch_point = NULL;
2858}
2859
2860void
2861bioq_remove(struct bio_queue_head *head, struct bio *bp)
2862{
2863	if (bp == head->switch_point)
2864		head->switch_point = TAILQ_NEXT(bp, bio_queue);
2865	if (bp == head->insert_point) {
2866		head->insert_point = TAILQ_PREV(bp, bio_queue, bio_queue);
2867		if (head->insert_point == NULL)
2868			head->last_pblkno = 0;
2869	} else if (bp == TAILQ_FIRST(&head->queue))
2870		head->last_pblkno = bp->bio_pblkno;
2871	TAILQ_REMOVE(&head->queue, bp, bio_queue);
2872	if (TAILQ_FIRST(&head->queue) == head->switch_point)
2873		head->switch_point = NULL;
2874}
2875
2876/*
2877 *	bufwait:
2878 *
2879 *	Wait for buffer I/O completion, returning error status.  The buffer
2880 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2881 *	error and cleared.
2882 */
2883int
2884bufwait(register struct buf * bp)
2885{
2886	int s;
2887
2888	s = splbio();
2889	while ((bp->b_flags & B_DONE) == 0) {
2890		if (bp->b_iocmd == BIO_READ)
2891			tsleep(bp, PRIBIO, "biord", 0);
2892		else
2893			tsleep(bp, PRIBIO, "biowr", 0);
2894	}
2895	splx(s);
2896	if (bp->b_flags & B_EINTR) {
2897		bp->b_flags &= ~B_EINTR;
2898		return (EINTR);
2899	}
2900	if (bp->b_ioflags & BIO_ERROR) {
2901		return (bp->b_error ? bp->b_error : EIO);
2902	} else {
2903		return (0);
2904	}
2905}
2906
2907 /*
2908  * Call back function from struct bio back up to struct buf.
2909  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2910  */
2911void
2912bufdonebio(struct bio *bp)
2913{
2914	bufdone(bp->bio_caller2);
2915}
2916
2917/*
2918 *	bufdone:
2919 *
2920 *	Finish I/O on a buffer, optionally calling a completion function.
2921 *	This is usually called from an interrupt so process blocking is
2922 *	not allowed.
2923 *
2924 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2925 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2926 *	assuming B_INVAL is clear.
2927 *
2928 *	For the VMIO case, we set B_CACHE if the op was a read and no
2929 *	read error occured, or if the op was a write.  B_CACHE is never
2930 *	set if the buffer is invalid or otherwise uncacheable.
2931 *
2932 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2933 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2934 *	in the biodone routine.
2935 */
2936void
2937bufdone(struct buf *bp)
2938{
2939	int s;
2940	void    (*biodone)(struct buf *);
2941
2942	GIANT_REQUIRED;
2943
2944	s = splbio();
2945
2946	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2947	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2948
2949	bp->b_flags |= B_DONE;
2950	runningbufwakeup(bp);
2951
2952	if (bp->b_iocmd == BIO_DELETE) {
2953		brelse(bp);
2954		splx(s);
2955		return;
2956	}
2957
2958	if (bp->b_iocmd == BIO_WRITE) {
2959		vwakeup(bp);
2960	}
2961
2962	/* call optional completion function if requested */
2963	if (bp->b_iodone != NULL) {
2964		biodone = bp->b_iodone;
2965		bp->b_iodone = NULL;
2966		(*biodone) (bp);
2967		splx(s);
2968		return;
2969	}
2970	if (LIST_FIRST(&bp->b_dep) != NULL)
2971		buf_complete(bp);
2972
2973	if (bp->b_flags & B_VMIO) {
2974		int i;
2975		vm_ooffset_t foff;
2976		vm_page_t m;
2977		vm_object_t obj;
2978		int iosize;
2979		struct vnode *vp = bp->b_vp;
2980
2981		obj = bp->b_object;
2982
2983#if defined(VFS_BIO_DEBUG)
2984		mp_fixme("usecount and vflag accessed without locks.");
2985		if (vp->v_usecount == 0) {
2986			panic("biodone: zero vnode ref count");
2987		}
2988
2989		if ((vp->v_vflag & VV_OBJBUF) == 0) {
2990			panic("biodone: vnode is not setup for merged cache");
2991		}
2992#endif
2993
2994		foff = bp->b_offset;
2995		KASSERT(bp->b_offset != NOOFFSET,
2996		    ("biodone: no buffer offset"));
2997
2998#if defined(VFS_BIO_DEBUG)
2999		if (obj->paging_in_progress < bp->b_npages) {
3000			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3001			    obj->paging_in_progress, bp->b_npages);
3002		}
3003#endif
3004
3005		/*
3006		 * Set B_CACHE if the op was a normal read and no error
3007		 * occured.  B_CACHE is set for writes in the b*write()
3008		 * routines.
3009		 */
3010		iosize = bp->b_bcount - bp->b_resid;
3011		if (bp->b_iocmd == BIO_READ &&
3012		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3013		    !(bp->b_ioflags & BIO_ERROR)) {
3014			bp->b_flags |= B_CACHE;
3015		}
3016		vm_page_lock_queues();
3017		for (i = 0; i < bp->b_npages; i++) {
3018			int bogusflag = 0;
3019			int resid;
3020
3021			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3022			if (resid > iosize)
3023				resid = iosize;
3024
3025			/*
3026			 * cleanup bogus pages, restoring the originals
3027			 */
3028			m = bp->b_pages[i];
3029			if (m == bogus_page) {
3030				bogusflag = 1;
3031				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3032				if (m == NULL)
3033					panic("biodone: page disappeared!");
3034				bp->b_pages[i] = m;
3035				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3036			}
3037#if defined(VFS_BIO_DEBUG)
3038			if (OFF_TO_IDX(foff) != m->pindex) {
3039				printf(
3040"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3041				    (intmax_t)foff, (uintmax_t)m->pindex);
3042			}
3043#endif
3044
3045			/*
3046			 * In the write case, the valid and clean bits are
3047			 * already changed correctly ( see bdwrite() ), so we
3048			 * only need to do this here in the read case.
3049			 */
3050			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3051				vfs_page_set_valid(bp, foff, i, m);
3052			}
3053			vm_page_flag_clear(m, PG_ZERO);
3054
3055			/*
3056			 * when debugging new filesystems or buffer I/O methods, this
3057			 * is the most common error that pops up.  if you see this, you
3058			 * have not set the page busy flag correctly!!!
3059			 */
3060			if (m->busy == 0) {
3061				printf("biodone: page busy < 0, "
3062				    "pindex: %d, foff: 0x(%x,%x), "
3063				    "resid: %d, index: %d\n",
3064				    (int) m->pindex, (int)(foff >> 32),
3065						(int) foff & 0xffffffff, resid, i);
3066				if (!vn_isdisk(vp, NULL))
3067					printf(" iosize: %ld, lblkno: %jd, flags: 0x%lx, npages: %d\n",
3068					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3069					    (intmax_t) bp->b_lblkno,
3070					    bp->b_flags, bp->b_npages);
3071				else
3072					printf(" VDEV, lblkno: %jd, flags: 0x%lx, npages: %d\n",
3073					    (intmax_t) bp->b_lblkno,
3074					    bp->b_flags, bp->b_npages);
3075				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3076				    m->valid, m->dirty, m->wire_count);
3077				panic("biodone: page busy < 0\n");
3078			}
3079			vm_page_io_finish(m);
3080			vm_object_pip_subtract(obj, 1);
3081			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3082			iosize -= resid;
3083		}
3084		vm_page_unlock_queues();
3085		if (obj)
3086			vm_object_pip_wakeupn(obj, 0);
3087	}
3088
3089	/*
3090	 * For asynchronous completions, release the buffer now. The brelse
3091	 * will do a wakeup there if necessary - so no need to do a wakeup
3092	 * here in the async case. The sync case always needs to do a wakeup.
3093	 */
3094
3095	if (bp->b_flags & B_ASYNC) {
3096		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3097			brelse(bp);
3098		else
3099			bqrelse(bp);
3100	} else {
3101		wakeup(bp);
3102	}
3103	splx(s);
3104}
3105
3106/*
3107 * This routine is called in lieu of iodone in the case of
3108 * incomplete I/O.  This keeps the busy status for pages
3109 * consistant.
3110 */
3111void
3112vfs_unbusy_pages(struct buf * bp)
3113{
3114	int i;
3115
3116	GIANT_REQUIRED;
3117
3118	runningbufwakeup(bp);
3119	if (bp->b_flags & B_VMIO) {
3120		vm_object_t obj;
3121
3122		obj = bp->b_object;
3123		vm_page_lock_queues();
3124		for (i = 0; i < bp->b_npages; i++) {
3125			vm_page_t m = bp->b_pages[i];
3126
3127			if (m == bogus_page) {
3128				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3129				if (!m) {
3130					panic("vfs_unbusy_pages: page missing\n");
3131				}
3132				bp->b_pages[i] = m;
3133				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3134			}
3135			vm_object_pip_subtract(obj, 1);
3136			vm_page_flag_clear(m, PG_ZERO);
3137			vm_page_io_finish(m);
3138		}
3139		vm_page_unlock_queues();
3140		vm_object_pip_wakeupn(obj, 0);
3141	}
3142}
3143
3144/*
3145 * vfs_page_set_valid:
3146 *
3147 *	Set the valid bits in a page based on the supplied offset.   The
3148 *	range is restricted to the buffer's size.
3149 *
3150 *	This routine is typically called after a read completes.
3151 */
3152static void
3153vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3154{
3155	vm_ooffset_t soff, eoff;
3156
3157	GIANT_REQUIRED;
3158	/*
3159	 * Start and end offsets in buffer.  eoff - soff may not cross a
3160	 * page boundry or cross the end of the buffer.  The end of the
3161	 * buffer, in this case, is our file EOF, not the allocation size
3162	 * of the buffer.
3163	 */
3164	soff = off;
3165	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3166	if (eoff > bp->b_offset + bp->b_bcount)
3167		eoff = bp->b_offset + bp->b_bcount;
3168
3169	/*
3170	 * Set valid range.  This is typically the entire buffer and thus the
3171	 * entire page.
3172	 */
3173	if (eoff > soff) {
3174		vm_page_set_validclean(
3175		    m,
3176		   (vm_offset_t) (soff & PAGE_MASK),
3177		   (vm_offset_t) (eoff - soff)
3178		);
3179	}
3180}
3181
3182/*
3183 * This routine is called before a device strategy routine.
3184 * It is used to tell the VM system that paging I/O is in
3185 * progress, and treat the pages associated with the buffer
3186 * almost as being PG_BUSY.  Also the object paging_in_progress
3187 * flag is handled to make sure that the object doesn't become
3188 * inconsistant.
3189 *
3190 * Since I/O has not been initiated yet, certain buffer flags
3191 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3192 * and should be ignored.
3193 */
3194void
3195vfs_busy_pages(struct buf * bp, int clear_modify)
3196{
3197	int i, bogus;
3198
3199	if (bp->b_flags & B_VMIO) {
3200		vm_object_t obj;
3201		vm_ooffset_t foff;
3202
3203		obj = bp->b_object;
3204		foff = bp->b_offset;
3205		KASSERT(bp->b_offset != NOOFFSET,
3206		    ("vfs_busy_pages: no buffer offset"));
3207		vfs_setdirty(bp);
3208retry:
3209		vm_page_lock_queues();
3210		for (i = 0; i < bp->b_npages; i++) {
3211			vm_page_t m = bp->b_pages[i];
3212
3213			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3214				goto retry;
3215		}
3216		bogus = 0;
3217		for (i = 0; i < bp->b_npages; i++) {
3218			vm_page_t m = bp->b_pages[i];
3219
3220			vm_page_flag_clear(m, PG_ZERO);
3221			if ((bp->b_flags & B_CLUSTER) == 0) {
3222				vm_object_pip_add(obj, 1);
3223				vm_page_io_start(m);
3224			}
3225			/*
3226			 * When readying a buffer for a read ( i.e
3227			 * clear_modify == 0 ), it is important to do
3228			 * bogus_page replacement for valid pages in
3229			 * partially instantiated buffers.  Partially
3230			 * instantiated buffers can, in turn, occur when
3231			 * reconstituting a buffer from its VM backing store
3232			 * base.  We only have to do this if B_CACHE is
3233			 * clear ( which causes the I/O to occur in the
3234			 * first place ).  The replacement prevents the read
3235			 * I/O from overwriting potentially dirty VM-backed
3236			 * pages.  XXX bogus page replacement is, uh, bogus.
3237			 * It may not work properly with small-block devices.
3238			 * We need to find a better way.
3239			 */
3240			vm_page_protect(m, VM_PROT_NONE);
3241			if (clear_modify)
3242				vfs_page_set_valid(bp, foff, i, m);
3243			else if (m->valid == VM_PAGE_BITS_ALL &&
3244				(bp->b_flags & B_CACHE) == 0) {
3245				bp->b_pages[i] = bogus_page;
3246				bogus++;
3247			}
3248			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3249		}
3250		vm_page_unlock_queues();
3251		if (bogus)
3252			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3253	}
3254}
3255
3256/*
3257 * Tell the VM system that the pages associated with this buffer
3258 * are clean.  This is used for delayed writes where the data is
3259 * going to go to disk eventually without additional VM intevention.
3260 *
3261 * Note that while we only really need to clean through to b_bcount, we
3262 * just go ahead and clean through to b_bufsize.
3263 */
3264static void
3265vfs_clean_pages(struct buf * bp)
3266{
3267	int i;
3268
3269	GIANT_REQUIRED;
3270
3271	if (bp->b_flags & B_VMIO) {
3272		vm_ooffset_t foff;
3273
3274		foff = bp->b_offset;
3275		KASSERT(bp->b_offset != NOOFFSET,
3276		    ("vfs_clean_pages: no buffer offset"));
3277		for (i = 0; i < bp->b_npages; i++) {
3278			vm_page_t m = bp->b_pages[i];
3279			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3280			vm_ooffset_t eoff = noff;
3281
3282			if (eoff > bp->b_offset + bp->b_bufsize)
3283				eoff = bp->b_offset + bp->b_bufsize;
3284			vfs_page_set_valid(bp, foff, i, m);
3285			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3286			foff = noff;
3287		}
3288	}
3289}
3290
3291/*
3292 *	vfs_bio_set_validclean:
3293 *
3294 *	Set the range within the buffer to valid and clean.  The range is
3295 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3296 *	itself may be offset from the beginning of the first page.
3297 *
3298 */
3299
3300void
3301vfs_bio_set_validclean(struct buf *bp, int base, int size)
3302{
3303	if (bp->b_flags & B_VMIO) {
3304		int i;
3305		int n;
3306
3307		/*
3308		 * Fixup base to be relative to beginning of first page.
3309		 * Set initial n to be the maximum number of bytes in the
3310		 * first page that can be validated.
3311		 */
3312
3313		base += (bp->b_offset & PAGE_MASK);
3314		n = PAGE_SIZE - (base & PAGE_MASK);
3315
3316		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3317			vm_page_t m = bp->b_pages[i];
3318
3319			if (n > size)
3320				n = size;
3321
3322			vm_page_set_validclean(m, base & PAGE_MASK, n);
3323			base += n;
3324			size -= n;
3325			n = PAGE_SIZE;
3326		}
3327	}
3328}
3329
3330/*
3331 *	vfs_bio_clrbuf:
3332 *
3333 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3334 *	to clear BIO_ERROR and B_INVAL.
3335 *
3336 *	Note that while we only theoretically need to clear through b_bcount,
3337 *	we go ahead and clear through b_bufsize.
3338 */
3339
3340void
3341vfs_bio_clrbuf(struct buf *bp)
3342{
3343	int i, mask = 0;
3344	caddr_t sa, ea;
3345
3346	GIANT_REQUIRED;
3347
3348	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3349		bp->b_flags &= ~B_INVAL;
3350		bp->b_ioflags &= ~BIO_ERROR;
3351		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3352		    (bp->b_offset & PAGE_MASK) == 0) {
3353			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3354			if ((bp->b_pages[0]->valid & mask) == mask) {
3355				bp->b_resid = 0;
3356				return;
3357			}
3358			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3359			    ((bp->b_pages[0]->valid & mask) == 0)) {
3360				bzero(bp->b_data, bp->b_bufsize);
3361				bp->b_pages[0]->valid |= mask;
3362				bp->b_resid = 0;
3363				return;
3364			}
3365		}
3366		ea = sa = bp->b_data;
3367		for(i=0;i<bp->b_npages;i++,sa=ea) {
3368			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3369			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3370			ea = (caddr_t)(vm_offset_t)ulmin(
3371			    (u_long)(vm_offset_t)ea,
3372			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3373			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3374			if ((bp->b_pages[i]->valid & mask) == mask)
3375				continue;
3376			if ((bp->b_pages[i]->valid & mask) == 0) {
3377				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3378					bzero(sa, ea - sa);
3379				}
3380			} else {
3381				for (; sa < ea; sa += DEV_BSIZE, j++) {
3382					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3383						(bp->b_pages[i]->valid & (1<<j)) == 0)
3384						bzero(sa, DEV_BSIZE);
3385				}
3386			}
3387			bp->b_pages[i]->valid |= mask;
3388			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3389		}
3390		bp->b_resid = 0;
3391	} else {
3392		clrbuf(bp);
3393	}
3394}
3395
3396/*
3397 * vm_hold_load_pages and vm_hold_free_pages get pages into
3398 * a buffers address space.  The pages are anonymous and are
3399 * not associated with a file object.
3400 */
3401static void
3402vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3403{
3404	vm_offset_t pg;
3405	vm_page_t p;
3406	int index;
3407
3408	GIANT_REQUIRED;
3409
3410	to = round_page(to);
3411	from = round_page(from);
3412	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3413
3414	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3415tryagain:
3416		/*
3417		 * note: must allocate system pages since blocking here
3418		 * could intefere with paging I/O, no matter which
3419		 * process we are.
3420		 */
3421		p = vm_page_alloc(kernel_object,
3422			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3423		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3424		if (!p) {
3425			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3426			VM_WAIT;
3427			goto tryagain;
3428		}
3429		vm_page_lock_queues();
3430		p->valid = VM_PAGE_BITS_ALL;
3431		vm_page_flag_clear(p, PG_ZERO);
3432		vm_page_unlock_queues();
3433		pmap_qenter(pg, &p, 1);
3434		bp->b_pages[index] = p;
3435		vm_page_wakeup(p);
3436	}
3437	bp->b_npages = index;
3438}
3439
3440/* Return pages associated with this buf to the vm system */
3441void
3442vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3443{
3444	vm_offset_t pg;
3445	vm_page_t p;
3446	int index, newnpages;
3447
3448	GIANT_REQUIRED;
3449
3450	from = round_page(from);
3451	to = round_page(to);
3452	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3453
3454	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3455		p = bp->b_pages[index];
3456		if (p && (index < bp->b_npages)) {
3457			if (p->busy) {
3458				printf(
3459			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3460				    (intmax_t)bp->b_blkno,
3461				    (intmax_t)bp->b_lblkno);
3462			}
3463			bp->b_pages[index] = NULL;
3464			pmap_qremove(pg, 1);
3465			vm_page_lock_queues();
3466			vm_page_busy(p);
3467			vm_page_unwire(p, 0);
3468			vm_page_free(p);
3469			vm_page_unlock_queues();
3470		}
3471	}
3472	bp->b_npages = newnpages;
3473}
3474
3475
3476#include "opt_ddb.h"
3477#ifdef DDB
3478#include <ddb/ddb.h>
3479
3480/* DDB command to show buffer data */
3481DB_SHOW_COMMAND(buffer, db_show_buffer)
3482{
3483	/* get args */
3484	struct buf *bp = (struct buf *)addr;
3485
3486	if (!have_addr) {
3487		db_printf("usage: show buffer <addr>\n");
3488		return;
3489	}
3490
3491	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3492	db_printf(
3493	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3494	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n",
3495	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3496	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3497	    (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno);
3498	if (bp->b_npages) {
3499		int i;
3500		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3501		for (i = 0; i < bp->b_npages; i++) {
3502			vm_page_t m;
3503			m = bp->b_pages[i];
3504			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3505			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3506			if ((i + 1) < bp->b_npages)
3507				db_printf(",");
3508		}
3509		db_printf("\n");
3510	}
3511}
3512#endif /* DDB */
3513