vfs_bio.c revision 10228
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.58 1995/08/24 13:28:16 davidg Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#define VMIO
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/proc.h>
40#include <sys/vnode.h>
41#include <vm/vm.h>
42#include <vm/vm_kern.h>
43#include <vm/vm_pageout.h>
44#include <vm/vm_page.h>
45#include <vm/vm_object.h>
46#include <sys/buf.h>
47#include <sys/mount.h>
48#include <sys/malloc.h>
49#include <sys/resourcevar.h>
50#include <sys/proc.h>
51
52#include <miscfs/specfs/specdev.h>
53
54struct buf *buf;		/* buffer header pool */
55struct swqueue bswlist;
56
57void vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to);
58void vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to);
59void vfs_clean_pages(struct buf * bp);
60static void vfs_setdirty(struct buf *bp);
61
62int needsbuffer;
63
64/*
65 * Internal update daemon, process 3
66 *	The variable vfs_update_wakeup allows for internal syncs.
67 */
68int vfs_update_wakeup;
69
70
71/*
72 * buffers base kva
73 */
74caddr_t buffers_kva;
75
76/*
77 * bogus page -- for I/O to/from partially complete buffers
78 * this is a temporary solution to the problem, but it is not
79 * really that bad.  it would be better to split the buffer
80 * for input in the case of buffers partially already in memory,
81 * but the code is intricate enough already.
82 */
83vm_page_t bogus_page;
84vm_offset_t bogus_offset;
85
86int bufspace, maxbufspace;
87
88/*
89 * advisory minimum for size of LRU queue or VMIO queue
90 */
91int minbuf;
92
93struct bufhashhdr bufhashtbl[BUFHSZ], invalhash;
94struct bqueues bufqueues[BUFFER_QUEUES];
95
96/*
97 * Initialize buffer headers and related structures.
98 */
99void
100bufinit()
101{
102	struct buf *bp;
103	int i;
104
105	TAILQ_INIT(&bswlist);
106	LIST_INIT(&invalhash);
107
108	/* first, make a null hash table */
109	for (i = 0; i < BUFHSZ; i++)
110		LIST_INIT(&bufhashtbl[i]);
111
112	/* next, make a null set of free lists */
113	for (i = 0; i < BUFFER_QUEUES; i++)
114		TAILQ_INIT(&bufqueues[i]);
115
116	buffers_kva = (caddr_t) kmem_alloc_pageable(buffer_map, MAXBSIZE * nbuf);
117	/* finally, initialize each buffer header and stick on empty q */
118	for (i = 0; i < nbuf; i++) {
119		bp = &buf[i];
120		bzero(bp, sizeof *bp);
121		bp->b_flags = B_INVAL;	/* we're just an empty header */
122		bp->b_dev = NODEV;
123		bp->b_rcred = NOCRED;
124		bp->b_wcred = NOCRED;
125		bp->b_qindex = QUEUE_EMPTY;
126		bp->b_vnbufs.le_next = NOLIST;
127		bp->b_data = buffers_kva + i * MAXBSIZE;
128		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
129		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
130	}
131/*
132 * maxbufspace is currently calculated to support all filesystem blocks
133 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
134 * cache is still the same as it would be for 8K filesystems.  This
135 * keeps the size of the buffer cache "in check" for big block filesystems.
136 */
137	minbuf = nbuf / 3;
138	maxbufspace = 2 * (nbuf + 8) * PAGE_SIZE;
139
140	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
141	bogus_page = vm_page_alloc(kernel_object,
142			bogus_offset - VM_MIN_KERNEL_ADDRESS, VM_ALLOC_NORMAL);
143
144}
145
146/*
147 * remove the buffer from the appropriate free list
148 */
149void
150bremfree(struct buf * bp)
151{
152	int s = splbio();
153
154	if (bp->b_qindex != QUEUE_NONE) {
155		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
156		bp->b_qindex = QUEUE_NONE;
157	} else {
158		panic("bremfree: removing a buffer when not on a queue");
159	}
160	splx(s);
161}
162
163/*
164 * Get a buffer with the specified data.  Look in the cache first.
165 */
166int
167bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
168    struct buf ** bpp)
169{
170	struct buf *bp;
171
172	bp = getblk(vp, blkno, size, 0, 0);
173	*bpp = bp;
174
175	/* if not found in cache, do some I/O */
176	if ((bp->b_flags & B_CACHE) == 0) {
177		if (curproc != NULL)
178			curproc->p_stats->p_ru.ru_inblock++;
179		bp->b_flags |= B_READ;
180		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
181		if (bp->b_rcred == NOCRED) {
182			if (cred != NOCRED)
183				crhold(cred);
184			bp->b_rcred = cred;
185		}
186		vfs_busy_pages(bp, 0);
187		VOP_STRATEGY(bp);
188		return (biowait(bp));
189	}
190	return (0);
191}
192
193/*
194 * Operates like bread, but also starts asynchronous I/O on
195 * read-ahead blocks.
196 */
197int
198breadn(struct vnode * vp, daddr_t blkno, int size,
199    daddr_t * rablkno, int *rabsize,
200    int cnt, struct ucred * cred, struct buf ** bpp)
201{
202	struct buf *bp, *rabp;
203	int i;
204	int rv = 0, readwait = 0;
205
206	*bpp = bp = getblk(vp, blkno, size, 0, 0);
207
208	/* if not found in cache, do some I/O */
209	if ((bp->b_flags & B_CACHE) == 0) {
210		if (curproc != NULL)
211			curproc->p_stats->p_ru.ru_inblock++;
212		bp->b_flags |= B_READ;
213		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
214		if (bp->b_rcred == NOCRED) {
215			if (cred != NOCRED)
216				crhold(cred);
217			bp->b_rcred = cred;
218		}
219		vfs_busy_pages(bp, 0);
220		VOP_STRATEGY(bp);
221		++readwait;
222	}
223	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
224		if (inmem(vp, *rablkno))
225			continue;
226		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
227
228		if ((rabp->b_flags & B_CACHE) == 0) {
229			if (curproc != NULL)
230				curproc->p_stats->p_ru.ru_inblock++;
231			rabp->b_flags |= B_READ | B_ASYNC;
232			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
233			if (rabp->b_rcred == NOCRED) {
234				if (cred != NOCRED)
235					crhold(cred);
236				rabp->b_rcred = cred;
237			}
238			vfs_busy_pages(rabp, 0);
239			VOP_STRATEGY(rabp);
240		} else {
241			brelse(rabp);
242		}
243	}
244
245	if (readwait) {
246		rv = biowait(bp);
247	}
248	return (rv);
249}
250
251/*
252 * Write, release buffer on completion.  (Done by iodone
253 * if async.)
254 */
255int
256bwrite(struct buf * bp)
257{
258	int oldflags = bp->b_flags;
259
260	if (bp->b_flags & B_INVAL) {
261		brelse(bp);
262		return (0);
263	}
264	if (!(bp->b_flags & B_BUSY))
265		panic("bwrite: buffer is not busy???");
266
267	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
268	bp->b_flags |= B_WRITEINPROG;
269
270	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
271		reassignbuf(bp, bp->b_vp);
272	}
273
274	bp->b_vp->v_numoutput++;
275	vfs_busy_pages(bp, 1);
276	if (curproc != NULL)
277		curproc->p_stats->p_ru.ru_oublock++;
278	VOP_STRATEGY(bp);
279
280	if ((oldflags & B_ASYNC) == 0) {
281		int rtval = biowait(bp);
282
283		if (oldflags & B_DELWRI) {
284			reassignbuf(bp, bp->b_vp);
285		}
286		brelse(bp);
287		return (rtval);
288	}
289	return (0);
290}
291
292int
293vn_bwrite(ap)
294	struct vop_bwrite_args *ap;
295{
296	return (bwrite(ap->a_bp));
297}
298
299/*
300 * Delayed write. (Buffer is marked dirty).
301 */
302void
303bdwrite(struct buf * bp)
304{
305
306	if ((bp->b_flags & B_BUSY) == 0) {
307		panic("bdwrite: buffer is not busy");
308	}
309	if (bp->b_flags & B_INVAL) {
310		brelse(bp);
311		return;
312	}
313	if (bp->b_flags & B_TAPE) {
314		bawrite(bp);
315		return;
316	}
317	bp->b_flags &= ~(B_READ|B_RELBUF);
318	if ((bp->b_flags & B_DELWRI) == 0) {
319		bp->b_flags |= B_DONE | B_DELWRI;
320		reassignbuf(bp, bp->b_vp);
321	}
322
323	/*
324	 * This bmap keeps the system from needing to do the bmap later,
325	 * perhaps when the system is attempting to do a sync.  Since it
326	 * is likely that the indirect block -- or whatever other datastructure
327	 * that the filesystem needs is still in memory now, it is a good
328	 * thing to do this.  Note also, that if the pageout daemon is
329	 * requesting a sync -- there might not be enough memory to do
330	 * the bmap then...  So, this is important to do.
331	 */
332	if( bp->b_lblkno == bp->b_blkno) {
333		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL);
334	}
335
336	/*
337	 * Set the *dirty* buffer range based upon the VM system dirty pages.
338	 */
339	vfs_setdirty(bp);
340
341	/*
342	 * We need to do this here to satisfy the vnode_pager and the
343	 * pageout daemon, so that it thinks that the pages have been
344	 * "cleaned".  Note that since the pages are in a delayed write
345	 * buffer -- the VFS layer "will" see that the pages get written
346	 * out on the next sync, or perhaps the cluster will be completed.
347	 */
348	vfs_clean_pages(bp);
349	brelse(bp);
350	return;
351}
352
353/*
354 * Asynchronous write.
355 * Start output on a buffer, but do not wait for it to complete.
356 * The buffer is released when the output completes.
357 */
358void
359bawrite(struct buf * bp)
360{
361	bp->b_flags |= B_ASYNC;
362	(void) VOP_BWRITE(bp);
363}
364
365/*
366 * Release a buffer.
367 */
368void
369brelse(struct buf * bp)
370{
371	int s;
372
373	if (bp->b_flags & B_CLUSTER) {
374		relpbuf(bp);
375		return;
376	}
377	/* anyone need a "free" block? */
378	s = splbio();
379
380	if (needsbuffer) {
381		needsbuffer = 0;
382		wakeup(&needsbuffer);
383	}
384
385	/* anyone need this block? */
386	if (bp->b_flags & B_WANTED) {
387		bp->b_flags &= ~(B_WANTED | B_AGE);
388		wakeup(bp);
389	} else if (bp->b_flags & B_VMIO) {
390		bp->b_flags &= ~B_WANTED;
391		wakeup(bp);
392	}
393	if (bp->b_flags & B_LOCKED)
394		bp->b_flags &= ~B_ERROR;
395
396	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
397	    (bp->b_bufsize <= 0)) {
398		bp->b_flags |= B_INVAL;
399		bp->b_flags &= ~(B_DELWRI | B_CACHE);
400		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp)
401			brelvp(bp);
402	}
403
404	/*
405	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
406	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
407	 * but the VM object is kept around.  The B_NOCACHE flag is used to
408	 * invalidate the pages in the VM object.
409	 */
410	if (bp->b_flags & B_VMIO) {
411		vm_offset_t foff;
412		vm_object_t obj;
413		int i, resid;
414		vm_page_t m;
415		int iototal = bp->b_bufsize;
416
417		foff = 0;
418		obj = 0;
419		if (bp->b_npages) {
420			if (bp->b_vp && bp->b_vp->v_mount) {
421				foff = bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
422			} else {
423				/*
424				 * vnode pointer has been ripped away --
425				 * probably file gone...
426				 */
427				foff = bp->b_pages[0]->offset;
428			}
429		}
430		for (i = 0; i < bp->b_npages; i++) {
431			m = bp->b_pages[i];
432			if (m == bogus_page) {
433				m = vm_page_lookup(obj, foff);
434				if (!m) {
435					panic("brelse: page missing\n");
436				}
437				bp->b_pages[i] = m;
438				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
439			}
440			resid = (m->offset + PAGE_SIZE) - foff;
441			if (resid > iototal)
442				resid = iototal;
443			if (resid > 0) {
444				/*
445				 * Don't invalidate the page if the local machine has already
446				 * modified it.  This is the lesser of two evils, and should
447				 * be fixed.
448				 */
449				if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
450					vm_page_test_dirty(m);
451					if (m->dirty == 0) {
452						vm_page_set_invalid(m, foff, resid);
453						if (m->valid == 0)
454							vm_page_protect(m, VM_PROT_NONE);
455					}
456				}
457			}
458			foff += resid;
459			iototal -= resid;
460		}
461
462		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
463			for(i=0;i<bp->b_npages;i++) {
464				m = bp->b_pages[i];
465				--m->bmapped;
466				if (m->bmapped == 0) {
467					if (m->flags & PG_WANTED) {
468						wakeup(m);
469						m->flags &= ~PG_WANTED;
470					}
471					vm_page_test_dirty(m);
472					if ((m->dirty & m->valid) == 0 &&
473						(m->flags & PG_REFERENCED) == 0 &&
474							!pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
475						vm_page_cache(m);
476					} else if ((m->flags & PG_ACTIVE) == 0) {
477						vm_page_activate(m);
478						m->act_count = 0;
479					}
480				}
481			}
482			bufspace -= bp->b_bufsize;
483			pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
484			bp->b_npages = 0;
485			bp->b_bufsize = 0;
486			bp->b_flags &= ~B_VMIO;
487			if (bp->b_vp)
488				brelvp(bp);
489		}
490	}
491	if (bp->b_qindex != QUEUE_NONE)
492		panic("brelse: free buffer onto another queue???");
493
494	/* enqueue */
495	/* buffers with no memory */
496	if (bp->b_bufsize == 0) {
497		bp->b_qindex = QUEUE_EMPTY;
498		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
499		LIST_REMOVE(bp, b_hash);
500		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
501		bp->b_dev = NODEV;
502		/* buffers with junk contents */
503	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
504		bp->b_qindex = QUEUE_AGE;
505		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
506		LIST_REMOVE(bp, b_hash);
507		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
508		bp->b_dev = NODEV;
509		/* buffers that are locked */
510	} else if (bp->b_flags & B_LOCKED) {
511		bp->b_qindex = QUEUE_LOCKED;
512		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
513		/* buffers with stale but valid contents */
514	} else if (bp->b_flags & B_AGE) {
515		bp->b_qindex = QUEUE_AGE;
516		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
517		/* buffers with valid and quite potentially reuseable contents */
518	} else {
519		bp->b_qindex = QUEUE_LRU;
520		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
521	}
522
523	/* unlock */
524	bp->b_flags &= ~(B_WANTED | B_BUSY | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
525	splx(s);
526}
527
528/*
529 * this routine implements clustered async writes for
530 * clearing out B_DELWRI buffers...  This is much better
531 * than the old way of writing only one buffer at a time.
532 */
533void
534vfs_bio_awrite(struct buf * bp)
535{
536	int i;
537	daddr_t lblkno = bp->b_lblkno;
538	struct vnode *vp = bp->b_vp;
539	int s;
540	int ncl;
541	struct buf *bpa;
542
543	s = splbio();
544	if (vp->v_mount && (vp->v_flag & VVMIO) &&
545	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
546		int size = vp->v_mount->mnt_stat.f_iosize;
547		int maxcl = MAXPHYS / size;
548
549		for (i = 1; i < maxcl; i++) {
550			if ((bpa = incore(vp, lblkno + i)) &&
551			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
552			    (B_DELWRI | B_CLUSTEROK)) &&
553			    (bpa->b_bufsize == size)) {
554				if ((bpa->b_blkno == bpa->b_lblkno) ||
555				    (bpa->b_blkno != bp->b_blkno + (i * size) / DEV_BSIZE))
556					break;
557			} else {
558				break;
559			}
560		}
561		ncl = i;
562		/*
563		 * this is a possible cluster write
564		 */
565		if (ncl != 1) {
566			bremfree(bp);
567			cluster_wbuild(vp, bp, size, lblkno, ncl, -1);
568			splx(s);
569			return;
570		}
571	}
572	/*
573	 * default (old) behavior, writing out only one block
574	 */
575	bremfree(bp);
576	bp->b_flags |= B_BUSY | B_ASYNC;
577	(void) VOP_BWRITE(bp);
578	splx(s);
579}
580
581
582/*
583 * Find a buffer header which is available for use.
584 */
585static struct buf *
586getnewbuf(int slpflag, int slptimeo, int doingvmio)
587{
588	struct buf *bp;
589	int s;
590	int firstbp = 1;
591
592	s = splbio();
593start:
594	if (bufspace >= maxbufspace)
595		goto trytofreespace;
596
597	/* can we constitute a new buffer? */
598	if ((bp = bufqueues[QUEUE_EMPTY].tqh_first)) {
599		if (bp->b_qindex != QUEUE_EMPTY)
600			panic("getnewbuf: inconsistent EMPTY queue");
601		bremfree(bp);
602		goto fillbuf;
603	}
604trytofreespace:
605	/*
606	 * We keep the file I/O from hogging metadata I/O
607	 * This is desirable because file data is cached in the
608	 * VM/Buffer cache even if a buffer is freed.
609	 */
610	if ((bp = bufqueues[QUEUE_AGE].tqh_first)) {
611		if (bp->b_qindex != QUEUE_AGE)
612			panic("getnewbuf: inconsistent AGE queue");
613	} else if ((bp = bufqueues[QUEUE_LRU].tqh_first)) {
614		if (bp->b_qindex != QUEUE_LRU)
615			panic("getnewbuf: inconsistent LRU queue");
616	}
617	if (!bp) {
618		/* wait for a free buffer of any kind */
619		needsbuffer = 1;
620		tsleep(&needsbuffer, PRIBIO | slpflag, "newbuf", slptimeo);
621		splx(s);
622		return (0);
623	}
624
625	/* if we are a delayed write, convert to an async write */
626	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
627		vfs_bio_awrite(bp);
628		if (!slpflag && !slptimeo) {
629			splx(s);
630			return (0);
631		}
632		goto start;
633	}
634
635	if (bp->b_flags & B_WANTED) {
636		bp->b_flags &= ~B_WANTED;
637		wakeup(bp);
638	}
639	bremfree(bp);
640
641	if (bp->b_flags & B_VMIO) {
642		bp->b_flags |= B_RELBUF | B_BUSY | B_DONE;
643		brelse(bp);
644		bremfree(bp);
645	}
646
647	if (bp->b_vp)
648		brelvp(bp);
649
650	/* we are not free, nor do we contain interesting data */
651	if (bp->b_rcred != NOCRED)
652		crfree(bp->b_rcred);
653	if (bp->b_wcred != NOCRED)
654		crfree(bp->b_wcred);
655fillbuf:
656	bp->b_flags |= B_BUSY;
657	LIST_REMOVE(bp, b_hash);
658	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
659	splx(s);
660	if (bp->b_bufsize) {
661		allocbuf(bp, 0);
662	}
663	bp->b_flags = B_BUSY;
664	bp->b_dev = NODEV;
665	bp->b_vp = NULL;
666	bp->b_blkno = bp->b_lblkno = 0;
667	bp->b_iodone = 0;
668	bp->b_error = 0;
669	bp->b_resid = 0;
670	bp->b_bcount = 0;
671	bp->b_npages = 0;
672	bp->b_wcred = bp->b_rcred = NOCRED;
673	bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
674	bp->b_dirtyoff = bp->b_dirtyend = 0;
675	bp->b_validoff = bp->b_validend = 0;
676	if (bufspace >= maxbufspace) {
677		s = splbio();
678		bp->b_flags |= B_INVAL;
679		brelse(bp);
680		goto trytofreespace;
681	}
682	return (bp);
683}
684
685/*
686 * Check to see if a block is currently memory resident.
687 */
688struct buf *
689incore(struct vnode * vp, daddr_t blkno)
690{
691	struct buf *bp;
692	struct bufhashhdr *bh;
693
694	int s = splbio();
695
696	bh = BUFHASH(vp, blkno);
697	bp = bh->lh_first;
698
699	/* Search hash chain */
700	while (bp != NULL) {
701		/* hit */
702		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
703		    (bp->b_flags & B_INVAL) == 0) {
704			splx(s);
705			return (bp);
706		}
707		bp = bp->b_hash.le_next;
708	}
709	splx(s);
710
711	return (NULL);
712}
713
714/*
715 * Returns true if no I/O is needed to access the
716 * associated VM object.  This is like incore except
717 * it also hunts around in the VM system for the data.
718 */
719
720int
721inmem(struct vnode * vp, daddr_t blkno)
722{
723	vm_object_t obj;
724	vm_offset_t off, toff, tinc;
725	vm_page_t m;
726
727	if (incore(vp, blkno))
728		return 1;
729	if (vp->v_mount == NULL)
730		return 0;
731	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
732		return 0;
733
734	obj = vp->v_object;
735	tinc = PAGE_SIZE;
736	if (tinc > vp->v_mount->mnt_stat.f_iosize)
737		tinc = vp->v_mount->mnt_stat.f_iosize;
738	off = blkno * vp->v_mount->mnt_stat.f_iosize;
739
740	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
741		int mask;
742
743		m = vm_page_lookup(obj, trunc_page(toff + off));
744		if (!m)
745			return 0;
746		if (vm_page_is_valid(m, toff + off, tinc) == 0)
747			return 0;
748	}
749	return 1;
750}
751
752/*
753 * now we set the dirty range for the buffer --
754 * for NFS -- if the file is mapped and pages have
755 * been written to, let it know.  We want the
756 * entire range of the buffer to be marked dirty if
757 * any of the pages have been written to for consistancy
758 * with the b_validoff, b_validend set in the nfs write
759 * code, and used by the nfs read code.
760 */
761static void
762vfs_setdirty(struct buf *bp) {
763	int i;
764	vm_object_t object;
765	vm_offset_t boffset, offset;
766	/*
767	 * We qualify the scan for modified pages on whether the
768	 * object has been flushed yet.  The OBJ_WRITEABLE flag
769	 * is not cleared simply by protecting pages off.
770	 */
771	if ((bp->b_flags & B_VMIO) &&
772		((object = bp->b_pages[0]->object)->flags & OBJ_WRITEABLE)) {
773		/*
774		 * test the pages to see if they have been modified directly
775		 * by users through the VM system.
776		 */
777		for (i = 0; i < bp->b_npages; i++)
778			vm_page_test_dirty(bp->b_pages[i]);
779
780		/*
781		 * scan forwards for the first page modified
782		 */
783		for (i = 0; i < bp->b_npages; i++) {
784			if (bp->b_pages[i]->dirty) {
785				break;
786			}
787		}
788		boffset = i * PAGE_SIZE;
789		if (boffset < bp->b_dirtyoff) {
790			bp->b_dirtyoff = boffset;
791		}
792
793		/*
794		 * scan backwards for the last page modified
795		 */
796		for (i = bp->b_npages - 1; i >= 0; --i) {
797			if (bp->b_pages[i]->dirty) {
798				break;
799			}
800		}
801		boffset = (i + 1) * PAGE_SIZE;
802		offset = boffset + bp->b_pages[0]->offset;
803		if (offset >= object->size) {
804			boffset = object->size - bp->b_pages[0]->offset;
805		}
806		if (bp->b_dirtyend < boffset) {
807			bp->b_dirtyend = boffset;
808		}
809	}
810}
811
812/*
813 * Get a block given a specified block and offset into a file/device.
814 */
815struct buf *
816getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
817{
818	struct buf *bp;
819	int s;
820	struct bufhashhdr *bh;
821	vm_offset_t off;
822	int nleft;
823
824	s = splbio();
825loop:
826	if (bp = incore(vp, blkno)) {
827		if (bp->b_flags & B_BUSY) {
828			bp->b_flags |= B_WANTED;
829			if (!tsleep(bp, PRIBIO | slpflag, "getblk", slptimeo))
830				goto loop;
831
832			splx(s);
833			return (struct buf *) NULL;
834		}
835		bp->b_flags |= B_BUSY | B_CACHE;
836		bremfree(bp);
837		/*
838		 * check for size inconsistancies
839		 */
840		if (bp->b_bcount != size) {
841			allocbuf(bp, size);
842		}
843		splx(s);
844		return (bp);
845	} else {
846		vm_object_t obj;
847		int doingvmio;
848
849		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
850			doingvmio = 1;
851		} else {
852			doingvmio = 0;
853		}
854		if ((bp = getnewbuf(slpflag, slptimeo, doingvmio)) == 0) {
855			if (slpflag || slptimeo)
856				return NULL;
857			goto loop;
858		}
859
860		/*
861		 * This code is used to make sure that a buffer is not
862		 * created while the getnewbuf routine is blocked.
863		 * Normally the vnode is locked so this isn't a problem.
864		 * VBLK type I/O requests, however, don't lock the vnode.
865		 */
866		if (!VOP_ISLOCKED(vp) && incore(vp, blkno)) {
867			bp->b_flags |= B_INVAL;
868			brelse(bp);
869			goto loop;
870		}
871
872		/*
873		 * Insert the buffer into the hash, so that it can
874		 * be found by incore.
875		 */
876		bp->b_blkno = bp->b_lblkno = blkno;
877		bgetvp(vp, bp);
878		LIST_REMOVE(bp, b_hash);
879		bh = BUFHASH(vp, blkno);
880		LIST_INSERT_HEAD(bh, bp, b_hash);
881
882		if (doingvmio) {
883			bp->b_flags |= (B_VMIO | B_CACHE);
884#if defined(VFS_BIO_DEBUG)
885			if (vp->v_type != VREG)
886				printf("getblk: vmioing file type %d???\n", vp->v_type);
887#endif
888		} else {
889			bp->b_flags &= ~B_VMIO;
890		}
891		splx(s);
892
893		allocbuf(bp, size);
894		return (bp);
895	}
896}
897
898/*
899 * Get an empty, disassociated buffer of given size.
900 */
901struct buf *
902geteblk(int size)
903{
904	struct buf *bp;
905
906	while ((bp = getnewbuf(0, 0, 0)) == 0);
907	allocbuf(bp, size);
908	bp->b_flags |= B_INVAL;
909	return (bp);
910}
911
912/*
913 * This code constitutes the buffer memory from either anonymous system
914 * memory (in the case of non-VMIO operations) or from an associated
915 * VM object (in the case of VMIO operations).
916 *
917 * Note that this code is tricky, and has many complications to resolve
918 * deadlock or inconsistant data situations.  Tread lightly!!!
919 *
920 * Modify the length of a buffer's underlying buffer storage without
921 * destroying information (unless, of course the buffer is shrinking).
922 */
923int
924allocbuf(struct buf * bp, int size)
925{
926
927	int s;
928	int newbsize;
929	int i;
930
931	if (!(bp->b_flags & B_BUSY))
932		panic("allocbuf: buffer not busy");
933
934	if ((bp->b_flags & B_VMIO) == 0) {
935		/*
936		 * Just get anonymous memory from the kernel
937		 */
938		newbsize = round_page(size);
939
940		if (newbsize < bp->b_bufsize) {
941			vm_hold_free_pages(
942			    bp,
943			    (vm_offset_t) bp->b_data + newbsize,
944			    (vm_offset_t) bp->b_data + bp->b_bufsize);
945		} else if (newbsize > bp->b_bufsize) {
946			vm_hold_load_pages(
947			    bp,
948			    (vm_offset_t) bp->b_data + bp->b_bufsize,
949			    (vm_offset_t) bp->b_data + newbsize);
950		}
951	} else {
952		vm_page_t m;
953		int desiredpages;
954
955		newbsize = ((size + DEV_BSIZE - 1) / DEV_BSIZE) * DEV_BSIZE;
956		desiredpages = round_page(newbsize) / PAGE_SIZE;
957
958		if (newbsize < bp->b_bufsize) {
959			if (desiredpages < bp->b_npages) {
960				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
961				    desiredpages * PAGE_SIZE, (bp->b_npages - desiredpages));
962				for (i = desiredpages; i < bp->b_npages; i++) {
963					m = bp->b_pages[i];
964					s = splhigh();
965					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
966						m->flags |= PG_WANTED;
967						tsleep(m, PVM, "biodep", 0);
968					}
969					splx(s);
970
971					if (m->bmapped == 0) {
972						printf("allocbuf: bmapped is zero for page %d\n", i);
973						panic("allocbuf: error");
974					}
975					--m->bmapped;
976					if (m->bmapped == 0) {
977						vm_page_protect(m, VM_PROT_NONE);
978						vm_page_free(m);
979					}
980					bp->b_pages[i] = NULL;
981				}
982				bp->b_npages = desiredpages;
983			}
984		} else if (newbsize > bp->b_bufsize) {
985			vm_object_t obj;
986			vm_offset_t tinc, off, toff, objoff;
987			int pageindex, curbpnpages;
988			struct vnode *vp;
989			int bsize;
990
991			vp = bp->b_vp;
992			bsize = vp->v_mount->mnt_stat.f_iosize;
993
994			if (bp->b_npages < desiredpages) {
995				obj = vp->v_object;
996				tinc = PAGE_SIZE;
997				if (tinc > bsize)
998					tinc = bsize;
999				off = bp->b_lblkno * bsize;
1000		doretry:
1001				curbpnpages = bp->b_npages;
1002				bp->b_flags |= B_CACHE;
1003				for (toff = 0; toff < newbsize; toff += tinc) {
1004					int mask;
1005					int bytesinpage;
1006
1007					pageindex = toff / PAGE_SIZE;
1008					objoff = trunc_page(toff + off);
1009					if (pageindex < curbpnpages) {
1010						int pb;
1011
1012						m = bp->b_pages[pageindex];
1013						if (m->offset != objoff)
1014							panic("allocbuf: page changed offset??!!!?");
1015						bytesinpage = tinc;
1016						if (tinc > (newbsize - toff))
1017							bytesinpage = newbsize - toff;
1018						if (!vm_page_is_valid(m, toff + off, bytesinpage)) {
1019							bp->b_flags &= ~B_CACHE;
1020						}
1021						if ((m->flags & PG_ACTIVE) == 0) {
1022							vm_page_activate(m);
1023							m->act_count = 0;
1024						}
1025						continue;
1026					}
1027					m = vm_page_lookup(obj, objoff);
1028					if (!m) {
1029						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1030						if (!m) {
1031							int j;
1032
1033							for (j = bp->b_npages; j < pageindex; j++) {
1034								PAGE_WAKEUP(bp->b_pages[j]);
1035							}
1036							VM_WAIT;
1037							goto doretry;
1038						}
1039						vm_page_activate(m);
1040						m->act_count = 0;
1041						m->valid = 0;
1042						bp->b_flags &= ~B_CACHE;
1043					} else if (m->flags & PG_BUSY) {
1044						int j;
1045
1046						for (j = bp->b_npages; j < pageindex; j++) {
1047							PAGE_WAKEUP(bp->b_pages[j]);
1048						}
1049
1050						s = splbio();
1051						m->flags |= PG_WANTED;
1052						tsleep(m, PRIBIO, "pgtblk", 0);
1053						splx(s);
1054
1055						goto doretry;
1056					} else {
1057						int pb;
1058						if ((curproc != pageproc) &&
1059							(m->flags & PG_CACHE) &&
1060						    (cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
1061							pagedaemon_wakeup();
1062						}
1063						bytesinpage = tinc;
1064						if (tinc > (newbsize - toff))
1065							bytesinpage = newbsize - toff;
1066						if (!vm_page_is_valid(m, toff + off, bytesinpage)) {
1067							bp->b_flags &= ~B_CACHE;
1068						}
1069						if ((m->flags & PG_ACTIVE) == 0) {
1070							vm_page_activate(m);
1071							m->act_count = 0;
1072						}
1073						m->flags |= PG_BUSY;
1074					}
1075					bp->b_pages[pageindex] = m;
1076					curbpnpages = pageindex + 1;
1077				}
1078				for (i = bp->b_npages; i < curbpnpages; i++) {
1079					m = bp->b_pages[i];
1080					m->bmapped++;
1081					PAGE_WAKEUP(m);
1082				}
1083				bp->b_npages = curbpnpages;
1084				bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
1085				pmap_qenter((vm_offset_t) bp->b_data, bp->b_pages, bp->b_npages);
1086				bp->b_data += off % PAGE_SIZE;
1087			}
1088		}
1089	}
1090	bufspace += (newbsize - bp->b_bufsize);
1091	bp->b_bufsize = newbsize;
1092	bp->b_bcount = size;
1093	return 1;
1094}
1095
1096/*
1097 * Wait for buffer I/O completion, returning error status.
1098 */
1099int
1100biowait(register struct buf * bp)
1101{
1102	int s;
1103
1104	s = splbio();
1105	while ((bp->b_flags & B_DONE) == 0)
1106		tsleep(bp, PRIBIO, "biowait", 0);
1107	splx(s);
1108	if (bp->b_flags & B_EINTR) {
1109		bp->b_flags &= ~B_EINTR;
1110		return (EINTR);
1111	}
1112	if (bp->b_flags & B_ERROR) {
1113		return (bp->b_error ? bp->b_error : EIO);
1114	} else {
1115		return (0);
1116	}
1117}
1118
1119/*
1120 * Finish I/O on a buffer, calling an optional function.
1121 * This is usually called from interrupt level, so process blocking
1122 * is not *a good idea*.
1123 */
1124void
1125biodone(register struct buf * bp)
1126{
1127	int s;
1128
1129	s = splbio();
1130	if (!(bp->b_flags & B_BUSY))
1131		panic("biodone: buffer not busy");
1132
1133	if (bp->b_flags & B_DONE) {
1134		splx(s);
1135		printf("biodone: buffer already done\n");
1136		return;
1137	}
1138	bp->b_flags |= B_DONE;
1139
1140	if ((bp->b_flags & B_READ) == 0) {
1141		struct vnode *vp = bp->b_vp;
1142		vwakeup(bp);
1143	}
1144#ifdef BOUNCE_BUFFERS
1145	if (bp->b_flags & B_BOUNCE)
1146		vm_bounce_free(bp);
1147#endif
1148
1149	/* call optional completion function if requested */
1150	if (bp->b_flags & B_CALL) {
1151		bp->b_flags &= ~B_CALL;
1152		(*bp->b_iodone) (bp);
1153		splx(s);
1154		return;
1155	}
1156	if (bp->b_flags & B_VMIO) {
1157		int i, resid;
1158		vm_offset_t foff;
1159		vm_page_t m;
1160		vm_object_t obj;
1161		int iosize;
1162		struct vnode *vp = bp->b_vp;
1163
1164		foff = vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1165		obj = vp->v_object;
1166		if (!obj) {
1167			panic("biodone: no object");
1168		}
1169#if defined(VFS_BIO_DEBUG)
1170		if (obj->paging_in_progress < bp->b_npages) {
1171			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1172			    obj->paging_in_progress, bp->b_npages);
1173		}
1174#endif
1175		iosize = bp->b_bufsize;
1176		for (i = 0; i < bp->b_npages; i++) {
1177			int bogusflag = 0;
1178			m = bp->b_pages[i];
1179			if (m == bogus_page) {
1180				bogusflag = 1;
1181				m = vm_page_lookup(obj, foff);
1182				if (!m) {
1183#if defined(VFS_BIO_DEBUG)
1184					printf("biodone: page disappeared\n");
1185#endif
1186					--obj->paging_in_progress;
1187					continue;
1188				}
1189				bp->b_pages[i] = m;
1190				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1191			}
1192#if defined(VFS_BIO_DEBUG)
1193			if (trunc_page(foff) != m->offset) {
1194				printf("biodone: foff(%d)/m->offset(%d) mismatch\n", foff, m->offset);
1195			}
1196#endif
1197			resid = (m->offset + PAGE_SIZE) - foff;
1198			if (resid > iosize)
1199				resid = iosize;
1200			/*
1201			 * In the write case, the valid and clean bits are
1202			 * already changed correctly, so we only need to do this
1203			 * here in the read case.
1204			 */
1205			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1206				vm_page_set_valid(m, foff & (PAGE_SIZE-1), resid);
1207				vm_page_set_clean(m, foff & (PAGE_SIZE-1), resid);
1208			}
1209
1210			/*
1211			 * when debugging new filesystems or buffer I/O methods, this
1212			 * is the most common error that pops up.  if you see this, you
1213			 * have not set the page busy flag correctly!!!
1214			 */
1215			if (m->busy == 0) {
1216				printf("biodone: page busy < 0, "
1217				    "off: %ld, foff: %ld, "
1218				    "resid: %d, index: %d\n",
1219				    m->offset, foff, resid, i);
1220				printf(" iosize: %ld, lblkno: %ld, flags: 0x%x, npages: %d\n",
1221				    bp->b_vp->v_mount->mnt_stat.f_iosize,
1222				    bp->b_lblkno, bp->b_flags, bp->b_npages);
1223				printf(" valid: 0x%x, dirty: 0x%x, mapped: %d\n",
1224				    m->valid, m->dirty, m->bmapped);
1225				panic("biodone: page busy < 0\n");
1226			}
1227			--m->busy;
1228			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1229				m->flags &= ~PG_WANTED;
1230				wakeup(m);
1231			}
1232			--obj->paging_in_progress;
1233			foff += resid;
1234			iosize -= resid;
1235		}
1236		if (obj && obj->paging_in_progress == 0 &&
1237		    (obj->flags & OBJ_PIPWNT)) {
1238			obj->flags &= ~OBJ_PIPWNT;
1239			wakeup(obj);
1240		}
1241	}
1242	/*
1243	 * For asynchronous completions, release the buffer now. The brelse
1244	 * checks for B_WANTED and will do the wakeup there if necessary - so
1245	 * no need to do a wakeup here in the async case.
1246	 */
1247
1248	if (bp->b_flags & B_ASYNC) {
1249		brelse(bp);
1250	} else {
1251		bp->b_flags &= ~B_WANTED;
1252		wakeup(bp);
1253	}
1254	splx(s);
1255}
1256
1257int
1258count_lock_queue()
1259{
1260	int count;
1261	struct buf *bp;
1262
1263	count = 0;
1264	for (bp = bufqueues[QUEUE_LOCKED].tqh_first;
1265	    bp != NULL;
1266	    bp = bp->b_freelist.tqe_next)
1267		count++;
1268	return (count);
1269}
1270
1271int vfs_update_interval = 30;
1272
1273void
1274vfs_update()
1275{
1276	(void) spl0();
1277	while (1) {
1278		tsleep(&vfs_update_wakeup, PRIBIO, "update",
1279		    hz * vfs_update_interval);
1280		vfs_update_wakeup = 0;
1281		sync(curproc, NULL, NULL);
1282	}
1283}
1284
1285/*
1286 * This routine is called in lieu of iodone in the case of
1287 * incomplete I/O.  This keeps the busy status for pages
1288 * consistant.
1289 */
1290void
1291vfs_unbusy_pages(struct buf * bp)
1292{
1293	int i;
1294
1295	if (bp->b_flags & B_VMIO) {
1296		struct vnode *vp = bp->b_vp;
1297		vm_object_t obj = vp->v_object;
1298		vm_offset_t foff;
1299
1300		foff = trunc_page(vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno);
1301
1302		for (i = 0; i < bp->b_npages; i++) {
1303			vm_page_t m = bp->b_pages[i];
1304
1305			if (m == bogus_page) {
1306				m = vm_page_lookup(obj, foff + i * PAGE_SIZE);
1307				if (!m) {
1308					panic("vfs_unbusy_pages: page missing\n");
1309				}
1310				bp->b_pages[i] = m;
1311				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1312			}
1313			--obj->paging_in_progress;
1314			--m->busy;
1315			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1316				m->flags &= ~PG_WANTED;
1317				wakeup(m);
1318			}
1319		}
1320		if (obj->paging_in_progress == 0 &&
1321		    (obj->flags & OBJ_PIPWNT)) {
1322			obj->flags &= ~OBJ_PIPWNT;
1323			wakeup(obj);
1324		}
1325	}
1326}
1327
1328/*
1329 * This routine is called before a device strategy routine.
1330 * It is used to tell the VM system that paging I/O is in
1331 * progress, and treat the pages associated with the buffer
1332 * almost as being PG_BUSY.  Also the object paging_in_progress
1333 * flag is handled to make sure that the object doesn't become
1334 * inconsistant.
1335 */
1336void
1337vfs_busy_pages(struct buf * bp, int clear_modify)
1338{
1339	int i;
1340
1341	if (bp->b_flags & B_VMIO) {
1342		vm_object_t obj = bp->b_vp->v_object;
1343		vm_offset_t foff = bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1344		int iocount = bp->b_bufsize;
1345
1346		vfs_setdirty(bp);
1347		for (i = 0; i < bp->b_npages; i++) {
1348			vm_page_t m = bp->b_pages[i];
1349			int resid = (m->offset + PAGE_SIZE) - foff;
1350
1351			if (resid > iocount)
1352				resid = iocount;
1353			obj->paging_in_progress++;
1354			m->busy++;
1355			if (clear_modify) {
1356				vm_page_protect(m, VM_PROT_READ);
1357				vm_page_set_valid(m,
1358					foff & (PAGE_SIZE-1), resid);
1359				vm_page_set_clean(m,
1360					foff & (PAGE_SIZE-1), resid);
1361			} else if (bp->b_bcount >= PAGE_SIZE) {
1362				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1363					bp->b_pages[i] = bogus_page;
1364					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1365				}
1366			}
1367			foff += resid;
1368			iocount -= resid;
1369		}
1370	}
1371}
1372
1373/*
1374 * Tell the VM system that the pages associated with this buffer
1375 * are clean.  This is used for delayed writes where the data is
1376 * going to go to disk eventually without additional VM intevention.
1377 */
1378void
1379vfs_clean_pages(struct buf * bp)
1380{
1381	int i;
1382
1383	if (bp->b_flags & B_VMIO) {
1384		vm_offset_t foff =
1385			bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1386		int iocount = bp->b_bufsize;
1387
1388		for (i = 0; i < bp->b_npages; i++) {
1389			vm_page_t m = bp->b_pages[i];
1390			int resid = (m->offset + PAGE_SIZE) - foff;
1391
1392			if (resid > iocount)
1393				resid = iocount;
1394			if (resid > 0) {
1395				vm_page_set_valid(m,
1396					foff & (PAGE_SIZE-1), resid);
1397				vm_page_set_clean(m,
1398					foff & (PAGE_SIZE-1), resid);
1399			}
1400			foff += resid;
1401			iocount -= resid;
1402		}
1403	}
1404}
1405
1406void
1407vfs_bio_clrbuf(struct buf *bp) {
1408	int i;
1409	if( bp->b_flags & B_VMIO) {
1410		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1411			int j;
1412			if( bp->b_pages[0]->valid != VM_PAGE_BITS_ALL) {
1413				for(j=0; j < bp->b_bufsize / DEV_BSIZE;j++) {
1414					bzero(bp->b_data + j * DEV_BSIZE, DEV_BSIZE);
1415				}
1416			}
1417			bp->b_resid = 0;
1418			return;
1419		}
1420		for(i=0;i<bp->b_npages;i++) {
1421			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1422				continue;
1423			if( bp->b_pages[i]->valid == 0) {
1424				bzero(bp->b_data + i * PAGE_SIZE, PAGE_SIZE);
1425			} else {
1426				int j;
1427				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1428					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1429						bzero(bp->b_data + i * PAGE_SIZE + j * DEV_BSIZE, DEV_BSIZE);
1430				}
1431			}
1432			bp->b_pages[i]->valid = VM_PAGE_BITS_ALL;
1433		}
1434		bp->b_resid = 0;
1435	} else {
1436		clrbuf(bp);
1437	}
1438}
1439
1440/*
1441 * vm_hold_load_pages and vm_hold_unload pages get pages into
1442 * a buffers address space.  The pages are anonymous and are
1443 * not associated with a file object.
1444 */
1445void
1446vm_hold_load_pages(struct buf * bp, vm_offset_t froma, vm_offset_t toa)
1447{
1448	vm_offset_t pg;
1449	vm_page_t p;
1450	vm_offset_t from = round_page(froma);
1451	vm_offset_t to = round_page(toa);
1452
1453	for (pg = from; pg < to; pg += PAGE_SIZE) {
1454
1455tryagain:
1456
1457		p = vm_page_alloc(kernel_object, pg - VM_MIN_KERNEL_ADDRESS,
1458		    VM_ALLOC_NORMAL);
1459		if (!p) {
1460			VM_WAIT;
1461			goto tryagain;
1462		}
1463		vm_page_wire(p);
1464		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1465		bp->b_pages[((caddr_t) pg - bp->b_data) / PAGE_SIZE] = p;
1466		PAGE_WAKEUP(p);
1467		bp->b_npages++;
1468	}
1469}
1470
1471void
1472vm_hold_free_pages(struct buf * bp, vm_offset_t froma, vm_offset_t toa)
1473{
1474	vm_offset_t pg;
1475	vm_page_t p;
1476	vm_offset_t from = round_page(froma);
1477	vm_offset_t to = round_page(toa);
1478
1479	for (pg = from; pg < to; pg += PAGE_SIZE) {
1480		p = bp->b_pages[((caddr_t) pg - bp->b_data) / PAGE_SIZE];
1481		bp->b_pages[((caddr_t) pg - bp->b_data) / PAGE_SIZE] = 0;
1482		pmap_kremove(pg);
1483		vm_page_free(p);
1484		--bp->b_npages;
1485	}
1486}
1487