kern_time.c revision 225617
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_time.c 225617 2011-09-16 13:58:51Z kmacy $");
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/limits.h>
38#include <sys/clock.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/sysproto.h>
42#include <sys/eventhandler.h>
43#include <sys/resourcevar.h>
44#include <sys/signalvar.h>
45#include <sys/kernel.h>
46#include <sys/syscallsubr.h>
47#include <sys/sysctl.h>
48#include <sys/sysent.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/posix4.h>
52#include <sys/time.h>
53#include <sys/timers.h>
54#include <sys/timetc.h>
55#include <sys/vnode.h>
56
57#include <vm/vm.h>
58#include <vm/vm_extern.h>
59
60#define MAX_CLOCKS 	(CLOCK_MONOTONIC+1)
61
62static struct kclock	posix_clocks[MAX_CLOCKS];
63static uma_zone_t	itimer_zone = NULL;
64
65/*
66 * Time of day and interval timer support.
67 *
68 * These routines provide the kernel entry points to get and set
69 * the time-of-day and per-process interval timers.  Subroutines
70 * here provide support for adding and subtracting timeval structures
71 * and decrementing interval timers, optionally reloading the interval
72 * timers when they expire.
73 */
74
75static int	settime(struct thread *, struct timeval *);
76static void	timevalfix(struct timeval *);
77
78static void	itimer_start(void);
79static int	itimer_init(void *, int, int);
80static void	itimer_fini(void *, int);
81static void	itimer_enter(struct itimer *);
82static void	itimer_leave(struct itimer *);
83static struct itimer *itimer_find(struct proc *, int);
84static void	itimers_alloc(struct proc *);
85static void	itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
86static void	itimers_event_hook_exit(void *arg, struct proc *p);
87static int	realtimer_create(struct itimer *);
88static int	realtimer_gettime(struct itimer *, struct itimerspec *);
89static int	realtimer_settime(struct itimer *, int,
90			struct itimerspec *, struct itimerspec *);
91static int	realtimer_delete(struct itimer *);
92static void	realtimer_clocktime(clockid_t, struct timespec *);
93static void	realtimer_expire(void *);
94static int	kern_timer_create(struct thread *, clockid_t,
95			struct sigevent *, int *, int);
96static int	kern_timer_delete(struct thread *, int);
97
98int		register_posix_clock(int, struct kclock *);
99void		itimer_fire(struct itimer *it);
100int		itimespecfix(struct timespec *ts);
101
102#define CLOCK_CALL(clock, call, arglist)		\
103	((*posix_clocks[clock].call) arglist)
104
105SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
106
107
108static int
109settime(struct thread *td, struct timeval *tv)
110{
111	struct timeval delta, tv1, tv2;
112	static struct timeval maxtime, laststep;
113	struct timespec ts;
114	int s;
115
116	s = splclock();
117	microtime(&tv1);
118	delta = *tv;
119	timevalsub(&delta, &tv1);
120
121	/*
122	 * If the system is secure, we do not allow the time to be
123	 * set to a value earlier than 1 second less than the highest
124	 * time we have yet seen. The worst a miscreant can do in
125	 * this circumstance is "freeze" time. He couldn't go
126	 * back to the past.
127	 *
128	 * We similarly do not allow the clock to be stepped more
129	 * than one second, nor more than once per second. This allows
130	 * a miscreant to make the clock march double-time, but no worse.
131	 */
132	if (securelevel_gt(td->td_ucred, 1) != 0) {
133		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
134			/*
135			 * Update maxtime to latest time we've seen.
136			 */
137			if (tv1.tv_sec > maxtime.tv_sec)
138				maxtime = tv1;
139			tv2 = *tv;
140			timevalsub(&tv2, &maxtime);
141			if (tv2.tv_sec < -1) {
142				tv->tv_sec = maxtime.tv_sec - 1;
143				printf("Time adjustment clamped to -1 second\n");
144			}
145		} else {
146			if (tv1.tv_sec == laststep.tv_sec) {
147				splx(s);
148				return (EPERM);
149			}
150			if (delta.tv_sec > 1) {
151				tv->tv_sec = tv1.tv_sec + 1;
152				printf("Time adjustment clamped to +1 second\n");
153			}
154			laststep = *tv;
155		}
156	}
157
158	ts.tv_sec = tv->tv_sec;
159	ts.tv_nsec = tv->tv_usec * 1000;
160	mtx_lock(&Giant);
161	tc_setclock(&ts);
162	resettodr();
163	mtx_unlock(&Giant);
164	return (0);
165}
166
167#ifndef _SYS_SYSPROTO_H_
168struct clock_gettime_args {
169	clockid_t clock_id;
170	struct	timespec *tp;
171};
172#endif
173/* ARGSUSED */
174int
175sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
176{
177	struct timespec ats;
178	int error;
179
180	error = kern_clock_gettime(td, uap->clock_id, &ats);
181	if (error == 0)
182		error = copyout(&ats, uap->tp, sizeof(ats));
183
184	return (error);
185}
186
187int
188kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
189{
190	struct timeval sys, user;
191	struct proc *p;
192	uint64_t runtime, curtime, switchtime;
193
194	p = td->td_proc;
195	switch (clock_id) {
196	case CLOCK_REALTIME:		/* Default to precise. */
197	case CLOCK_REALTIME_PRECISE:
198		nanotime(ats);
199		break;
200	case CLOCK_REALTIME_FAST:
201		getnanotime(ats);
202		break;
203	case CLOCK_VIRTUAL:
204		PROC_LOCK(p);
205		PROC_SLOCK(p);
206		calcru(p, &user, &sys);
207		PROC_SUNLOCK(p);
208		PROC_UNLOCK(p);
209		TIMEVAL_TO_TIMESPEC(&user, ats);
210		break;
211	case CLOCK_PROF:
212		PROC_LOCK(p);
213		PROC_SLOCK(p);
214		calcru(p, &user, &sys);
215		PROC_SUNLOCK(p);
216		PROC_UNLOCK(p);
217		timevaladd(&user, &sys);
218		TIMEVAL_TO_TIMESPEC(&user, ats);
219		break;
220	case CLOCK_MONOTONIC:		/* Default to precise. */
221	case CLOCK_MONOTONIC_PRECISE:
222	case CLOCK_UPTIME:
223	case CLOCK_UPTIME_PRECISE:
224		nanouptime(ats);
225		break;
226	case CLOCK_UPTIME_FAST:
227	case CLOCK_MONOTONIC_FAST:
228		getnanouptime(ats);
229		break;
230	case CLOCK_SECOND:
231		ats->tv_sec = time_second;
232		ats->tv_nsec = 0;
233		break;
234	case CLOCK_THREAD_CPUTIME_ID:
235		critical_enter();
236		switchtime = PCPU_GET(switchtime);
237		curtime = cpu_ticks();
238		runtime = td->td_runtime;
239		critical_exit();
240		runtime = cputick2usec(runtime + curtime - switchtime);
241		ats->tv_sec = runtime / 1000000;
242		ats->tv_nsec = runtime % 1000000 * 1000;
243		break;
244	default:
245		return (EINVAL);
246	}
247	return (0);
248}
249
250#ifndef _SYS_SYSPROTO_H_
251struct clock_settime_args {
252	clockid_t clock_id;
253	const struct	timespec *tp;
254};
255#endif
256/* ARGSUSED */
257int
258sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
259{
260	struct timespec ats;
261	int error;
262
263	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
264		return (error);
265	return (kern_clock_settime(td, uap->clock_id, &ats));
266}
267
268int
269kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
270{
271	struct timeval atv;
272	int error;
273
274	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
275		return (error);
276	if (clock_id != CLOCK_REALTIME)
277		return (EINVAL);
278	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
279		return (EINVAL);
280	/* XXX Don't convert nsec->usec and back */
281	TIMESPEC_TO_TIMEVAL(&atv, ats);
282	error = settime(td, &atv);
283	return (error);
284}
285
286#ifndef _SYS_SYSPROTO_H_
287struct clock_getres_args {
288	clockid_t clock_id;
289	struct	timespec *tp;
290};
291#endif
292int
293sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
294{
295	struct timespec ts;
296	int error;
297
298	if (uap->tp == NULL)
299		return (0);
300
301	error = kern_clock_getres(td, uap->clock_id, &ts);
302	if (error == 0)
303		error = copyout(&ts, uap->tp, sizeof(ts));
304	return (error);
305}
306
307int
308kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
309{
310
311	ts->tv_sec = 0;
312	switch (clock_id) {
313	case CLOCK_REALTIME:
314	case CLOCK_REALTIME_FAST:
315	case CLOCK_REALTIME_PRECISE:
316	case CLOCK_MONOTONIC:
317	case CLOCK_MONOTONIC_FAST:
318	case CLOCK_MONOTONIC_PRECISE:
319	case CLOCK_UPTIME:
320	case CLOCK_UPTIME_FAST:
321	case CLOCK_UPTIME_PRECISE:
322		/*
323		 * Round up the result of the division cheaply by adding 1.
324		 * Rounding up is especially important if rounding down
325		 * would give 0.  Perfect rounding is unimportant.
326		 */
327		ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
328		break;
329	case CLOCK_VIRTUAL:
330	case CLOCK_PROF:
331		/* Accurately round up here because we can do so cheaply. */
332		ts->tv_nsec = (1000000000 + hz - 1) / hz;
333		break;
334	case CLOCK_SECOND:
335		ts->tv_sec = 1;
336		ts->tv_nsec = 0;
337		break;
338	case CLOCK_THREAD_CPUTIME_ID:
339		/* sync with cputick2usec */
340		ts->tv_nsec = 1000000 / cpu_tickrate();
341		if (ts->tv_nsec == 0)
342			ts->tv_nsec = 1000;
343		break;
344	default:
345		return (EINVAL);
346	}
347	return (0);
348}
349
350static int nanowait;
351
352int
353kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
354{
355	struct timespec ts, ts2, ts3;
356	struct timeval tv;
357	int error;
358
359	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
360		return (EINVAL);
361	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
362		return (0);
363	getnanouptime(&ts);
364	timespecadd(&ts, rqt);
365	TIMESPEC_TO_TIMEVAL(&tv, rqt);
366	for (;;) {
367		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
368		    tvtohz(&tv));
369		getnanouptime(&ts2);
370		if (error != EWOULDBLOCK) {
371			if (error == ERESTART)
372				error = EINTR;
373			if (rmt != NULL) {
374				timespecsub(&ts, &ts2);
375				if (ts.tv_sec < 0)
376					timespecclear(&ts);
377				*rmt = ts;
378			}
379			return (error);
380		}
381		if (timespeccmp(&ts2, &ts, >=))
382			return (0);
383		ts3 = ts;
384		timespecsub(&ts3, &ts2);
385		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
386	}
387}
388
389#ifndef _SYS_SYSPROTO_H_
390struct nanosleep_args {
391	struct	timespec *rqtp;
392	struct	timespec *rmtp;
393};
394#endif
395/* ARGSUSED */
396int
397sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
398{
399	struct timespec rmt, rqt;
400	int error;
401
402	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
403	if (error)
404		return (error);
405
406	if (uap->rmtp &&
407	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
408			return (EFAULT);
409	error = kern_nanosleep(td, &rqt, &rmt);
410	if (error && uap->rmtp) {
411		int error2;
412
413		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
414		if (error2)
415			error = error2;
416	}
417	return (error);
418}
419
420#ifndef _SYS_SYSPROTO_H_
421struct gettimeofday_args {
422	struct	timeval *tp;
423	struct	timezone *tzp;
424};
425#endif
426/* ARGSUSED */
427int
428sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
429{
430	struct timeval atv;
431	struct timezone rtz;
432	int error = 0;
433
434	if (uap->tp) {
435		microtime(&atv);
436		error = copyout(&atv, uap->tp, sizeof (atv));
437	}
438	if (error == 0 && uap->tzp != NULL) {
439		rtz.tz_minuteswest = tz_minuteswest;
440		rtz.tz_dsttime = tz_dsttime;
441		error = copyout(&rtz, uap->tzp, sizeof (rtz));
442	}
443	return (error);
444}
445
446#ifndef _SYS_SYSPROTO_H_
447struct settimeofday_args {
448	struct	timeval *tv;
449	struct	timezone *tzp;
450};
451#endif
452/* ARGSUSED */
453int
454sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
455{
456	struct timeval atv, *tvp;
457	struct timezone atz, *tzp;
458	int error;
459
460	if (uap->tv) {
461		error = copyin(uap->tv, &atv, sizeof(atv));
462		if (error)
463			return (error);
464		tvp = &atv;
465	} else
466		tvp = NULL;
467	if (uap->tzp) {
468		error = copyin(uap->tzp, &atz, sizeof(atz));
469		if (error)
470			return (error);
471		tzp = &atz;
472	} else
473		tzp = NULL;
474	return (kern_settimeofday(td, tvp, tzp));
475}
476
477int
478kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
479{
480	int error;
481
482	error = priv_check(td, PRIV_SETTIMEOFDAY);
483	if (error)
484		return (error);
485	/* Verify all parameters before changing time. */
486	if (tv) {
487		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
488			return (EINVAL);
489		error = settime(td, tv);
490	}
491	if (tzp && error == 0) {
492		tz_minuteswest = tzp->tz_minuteswest;
493		tz_dsttime = tzp->tz_dsttime;
494	}
495	return (error);
496}
497
498/*
499 * Get value of an interval timer.  The process virtual and profiling virtual
500 * time timers are kept in the p_stats area, since they can be swapped out.
501 * These are kept internally in the way they are specified externally: in
502 * time until they expire.
503 *
504 * The real time interval timer is kept in the process table slot for the
505 * process, and its value (it_value) is kept as an absolute time rather than
506 * as a delta, so that it is easy to keep periodic real-time signals from
507 * drifting.
508 *
509 * Virtual time timers are processed in the hardclock() routine of
510 * kern_clock.c.  The real time timer is processed by a timeout routine,
511 * called from the softclock() routine.  Since a callout may be delayed in
512 * real time due to interrupt processing in the system, it is possible for
513 * the real time timeout routine (realitexpire, given below), to be delayed
514 * in real time past when it is supposed to occur.  It does not suffice,
515 * therefore, to reload the real timer .it_value from the real time timers
516 * .it_interval.  Rather, we compute the next time in absolute time the timer
517 * should go off.
518 */
519#ifndef _SYS_SYSPROTO_H_
520struct getitimer_args {
521	u_int	which;
522	struct	itimerval *itv;
523};
524#endif
525int
526sys_getitimer(struct thread *td, struct getitimer_args *uap)
527{
528	struct itimerval aitv;
529	int error;
530
531	error = kern_getitimer(td, uap->which, &aitv);
532	if (error != 0)
533		return (error);
534	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
535}
536
537int
538kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
539{
540	struct proc *p = td->td_proc;
541	struct timeval ctv;
542
543	if (which > ITIMER_PROF)
544		return (EINVAL);
545
546	if (which == ITIMER_REAL) {
547		/*
548		 * Convert from absolute to relative time in .it_value
549		 * part of real time timer.  If time for real time timer
550		 * has passed return 0, else return difference between
551		 * current time and time for the timer to go off.
552		 */
553		PROC_LOCK(p);
554		*aitv = p->p_realtimer;
555		PROC_UNLOCK(p);
556		if (timevalisset(&aitv->it_value)) {
557			getmicrouptime(&ctv);
558			if (timevalcmp(&aitv->it_value, &ctv, <))
559				timevalclear(&aitv->it_value);
560			else
561				timevalsub(&aitv->it_value, &ctv);
562		}
563	} else {
564		PROC_SLOCK(p);
565		*aitv = p->p_stats->p_timer[which];
566		PROC_SUNLOCK(p);
567	}
568	return (0);
569}
570
571#ifndef _SYS_SYSPROTO_H_
572struct setitimer_args {
573	u_int	which;
574	struct	itimerval *itv, *oitv;
575};
576#endif
577int
578sys_setitimer(struct thread *td, struct setitimer_args *uap)
579{
580	struct itimerval aitv, oitv;
581	int error;
582
583	if (uap->itv == NULL) {
584		uap->itv = uap->oitv;
585		return (sys_getitimer(td, (struct getitimer_args *)uap));
586	}
587
588	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
589		return (error);
590	error = kern_setitimer(td, uap->which, &aitv, &oitv);
591	if (error != 0 || uap->oitv == NULL)
592		return (error);
593	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
594}
595
596int
597kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
598    struct itimerval *oitv)
599{
600	struct proc *p = td->td_proc;
601	struct timeval ctv;
602
603	if (aitv == NULL)
604		return (kern_getitimer(td, which, oitv));
605
606	if (which > ITIMER_PROF)
607		return (EINVAL);
608	if (itimerfix(&aitv->it_value))
609		return (EINVAL);
610	if (!timevalisset(&aitv->it_value))
611		timevalclear(&aitv->it_interval);
612	else if (itimerfix(&aitv->it_interval))
613		return (EINVAL);
614
615	if (which == ITIMER_REAL) {
616		PROC_LOCK(p);
617		if (timevalisset(&p->p_realtimer.it_value))
618			callout_stop(&p->p_itcallout);
619		getmicrouptime(&ctv);
620		if (timevalisset(&aitv->it_value)) {
621			callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
622			    realitexpire, p);
623			timevaladd(&aitv->it_value, &ctv);
624		}
625		*oitv = p->p_realtimer;
626		p->p_realtimer = *aitv;
627		PROC_UNLOCK(p);
628		if (timevalisset(&oitv->it_value)) {
629			if (timevalcmp(&oitv->it_value, &ctv, <))
630				timevalclear(&oitv->it_value);
631			else
632				timevalsub(&oitv->it_value, &ctv);
633		}
634	} else {
635		PROC_SLOCK(p);
636		*oitv = p->p_stats->p_timer[which];
637		p->p_stats->p_timer[which] = *aitv;
638		PROC_SUNLOCK(p);
639	}
640	return (0);
641}
642
643/*
644 * Real interval timer expired:
645 * send process whose timer expired an alarm signal.
646 * If time is not set up to reload, then just return.
647 * Else compute next time timer should go off which is > current time.
648 * This is where delay in processing this timeout causes multiple
649 * SIGALRM calls to be compressed into one.
650 * tvtohz() always adds 1 to allow for the time until the next clock
651 * interrupt being strictly less than 1 clock tick, but we don't want
652 * that here since we want to appear to be in sync with the clock
653 * interrupt even when we're delayed.
654 */
655void
656realitexpire(void *arg)
657{
658	struct proc *p;
659	struct timeval ctv, ntv;
660
661	p = (struct proc *)arg;
662	PROC_LOCK(p);
663	kern_psignal(p, SIGALRM);
664	if (!timevalisset(&p->p_realtimer.it_interval)) {
665		timevalclear(&p->p_realtimer.it_value);
666		if (p->p_flag & P_WEXIT)
667			wakeup(&p->p_itcallout);
668		PROC_UNLOCK(p);
669		return;
670	}
671	for (;;) {
672		timevaladd(&p->p_realtimer.it_value,
673		    &p->p_realtimer.it_interval);
674		getmicrouptime(&ctv);
675		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
676			ntv = p->p_realtimer.it_value;
677			timevalsub(&ntv, &ctv);
678			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
679			    realitexpire, p);
680			PROC_UNLOCK(p);
681			return;
682		}
683	}
684	/*NOTREACHED*/
685}
686
687/*
688 * Check that a proposed value to load into the .it_value or
689 * .it_interval part of an interval timer is acceptable, and
690 * fix it to have at least minimal value (i.e. if it is less
691 * than the resolution of the clock, round it up.)
692 */
693int
694itimerfix(struct timeval *tv)
695{
696
697	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
698		return (EINVAL);
699	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
700		tv->tv_usec = tick;
701	return (0);
702}
703
704/*
705 * Decrement an interval timer by a specified number
706 * of microseconds, which must be less than a second,
707 * i.e. < 1000000.  If the timer expires, then reload
708 * it.  In this case, carry over (usec - old value) to
709 * reduce the value reloaded into the timer so that
710 * the timer does not drift.  This routine assumes
711 * that it is called in a context where the timers
712 * on which it is operating cannot change in value.
713 */
714int
715itimerdecr(struct itimerval *itp, int usec)
716{
717
718	if (itp->it_value.tv_usec < usec) {
719		if (itp->it_value.tv_sec == 0) {
720			/* expired, and already in next interval */
721			usec -= itp->it_value.tv_usec;
722			goto expire;
723		}
724		itp->it_value.tv_usec += 1000000;
725		itp->it_value.tv_sec--;
726	}
727	itp->it_value.tv_usec -= usec;
728	usec = 0;
729	if (timevalisset(&itp->it_value))
730		return (1);
731	/* expired, exactly at end of interval */
732expire:
733	if (timevalisset(&itp->it_interval)) {
734		itp->it_value = itp->it_interval;
735		itp->it_value.tv_usec -= usec;
736		if (itp->it_value.tv_usec < 0) {
737			itp->it_value.tv_usec += 1000000;
738			itp->it_value.tv_sec--;
739		}
740	} else
741		itp->it_value.tv_usec = 0;		/* sec is already 0 */
742	return (0);
743}
744
745/*
746 * Add and subtract routines for timevals.
747 * N.B.: subtract routine doesn't deal with
748 * results which are before the beginning,
749 * it just gets very confused in this case.
750 * Caveat emptor.
751 */
752void
753timevaladd(struct timeval *t1, const struct timeval *t2)
754{
755
756	t1->tv_sec += t2->tv_sec;
757	t1->tv_usec += t2->tv_usec;
758	timevalfix(t1);
759}
760
761void
762timevalsub(struct timeval *t1, const struct timeval *t2)
763{
764
765	t1->tv_sec -= t2->tv_sec;
766	t1->tv_usec -= t2->tv_usec;
767	timevalfix(t1);
768}
769
770static void
771timevalfix(struct timeval *t1)
772{
773
774	if (t1->tv_usec < 0) {
775		t1->tv_sec--;
776		t1->tv_usec += 1000000;
777	}
778	if (t1->tv_usec >= 1000000) {
779		t1->tv_sec++;
780		t1->tv_usec -= 1000000;
781	}
782}
783
784/*
785 * ratecheck(): simple time-based rate-limit checking.
786 */
787int
788ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
789{
790	struct timeval tv, delta;
791	int rv = 0;
792
793	getmicrouptime(&tv);		/* NB: 10ms precision */
794	delta = tv;
795	timevalsub(&delta, lasttime);
796
797	/*
798	 * check for 0,0 is so that the message will be seen at least once,
799	 * even if interval is huge.
800	 */
801	if (timevalcmp(&delta, mininterval, >=) ||
802	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
803		*lasttime = tv;
804		rv = 1;
805	}
806
807	return (rv);
808}
809
810/*
811 * ppsratecheck(): packets (or events) per second limitation.
812 *
813 * Return 0 if the limit is to be enforced (e.g. the caller
814 * should drop a packet because of the rate limitation).
815 *
816 * maxpps of 0 always causes zero to be returned.  maxpps of -1
817 * always causes 1 to be returned; this effectively defeats rate
818 * limiting.
819 *
820 * Note that we maintain the struct timeval for compatibility
821 * with other bsd systems.  We reuse the storage and just monitor
822 * clock ticks for minimal overhead.
823 */
824int
825ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
826{
827	int now;
828
829	/*
830	 * Reset the last time and counter if this is the first call
831	 * or more than a second has passed since the last update of
832	 * lasttime.
833	 */
834	now = ticks;
835	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
836		lasttime->tv_sec = now;
837		*curpps = 1;
838		return (maxpps != 0);
839	} else {
840		(*curpps)++;		/* NB: ignore potential overflow */
841		return (maxpps < 0 || *curpps < maxpps);
842	}
843}
844
845static void
846itimer_start(void)
847{
848	struct kclock rt_clock = {
849		.timer_create  = realtimer_create,
850		.timer_delete  = realtimer_delete,
851		.timer_settime = realtimer_settime,
852		.timer_gettime = realtimer_gettime,
853		.event_hook    = NULL
854	};
855
856	itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
857		NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
858	register_posix_clock(CLOCK_REALTIME,  &rt_clock);
859	register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
860	p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
861	p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
862	p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
863	EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
864		(void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
865	EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
866		(void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
867}
868
869int
870register_posix_clock(int clockid, struct kclock *clk)
871{
872	if ((unsigned)clockid >= MAX_CLOCKS) {
873		printf("%s: invalid clockid\n", __func__);
874		return (0);
875	}
876	posix_clocks[clockid] = *clk;
877	return (1);
878}
879
880static int
881itimer_init(void *mem, int size, int flags)
882{
883	struct itimer *it;
884
885	it = (struct itimer *)mem;
886	mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
887	return (0);
888}
889
890static void
891itimer_fini(void *mem, int size)
892{
893	struct itimer *it;
894
895	it = (struct itimer *)mem;
896	mtx_destroy(&it->it_mtx);
897}
898
899static void
900itimer_enter(struct itimer *it)
901{
902
903	mtx_assert(&it->it_mtx, MA_OWNED);
904	it->it_usecount++;
905}
906
907static void
908itimer_leave(struct itimer *it)
909{
910
911	mtx_assert(&it->it_mtx, MA_OWNED);
912	KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
913
914	if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
915		wakeup(it);
916}
917
918#ifndef _SYS_SYSPROTO_H_
919struct ktimer_create_args {
920	clockid_t clock_id;
921	struct sigevent * evp;
922	int * timerid;
923};
924#endif
925int
926sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
927{
928	struct sigevent *evp1, ev;
929	int id;
930	int error;
931
932	if (uap->evp != NULL) {
933		error = copyin(uap->evp, &ev, sizeof(ev));
934		if (error != 0)
935			return (error);
936		evp1 = &ev;
937	} else
938		evp1 = NULL;
939
940	error = kern_timer_create(td, uap->clock_id, evp1, &id, -1);
941
942	if (error == 0) {
943		error = copyout(&id, uap->timerid, sizeof(int));
944		if (error != 0)
945			kern_timer_delete(td, id);
946	}
947	return (error);
948}
949
950static int
951kern_timer_create(struct thread *td, clockid_t clock_id,
952	struct sigevent *evp, int *timerid, int preset_id)
953{
954	struct proc *p = td->td_proc;
955	struct itimer *it;
956	int id;
957	int error;
958
959	if (clock_id < 0 || clock_id >= MAX_CLOCKS)
960		return (EINVAL);
961
962	if (posix_clocks[clock_id].timer_create == NULL)
963		return (EINVAL);
964
965	if (evp != NULL) {
966		if (evp->sigev_notify != SIGEV_NONE &&
967		    evp->sigev_notify != SIGEV_SIGNAL &&
968		    evp->sigev_notify != SIGEV_THREAD_ID)
969			return (EINVAL);
970		if ((evp->sigev_notify == SIGEV_SIGNAL ||
971		     evp->sigev_notify == SIGEV_THREAD_ID) &&
972			!_SIG_VALID(evp->sigev_signo))
973			return (EINVAL);
974	}
975
976	if (p->p_itimers == NULL)
977		itimers_alloc(p);
978
979	it = uma_zalloc(itimer_zone, M_WAITOK);
980	it->it_flags = 0;
981	it->it_usecount = 0;
982	it->it_active = 0;
983	timespecclear(&it->it_time.it_value);
984	timespecclear(&it->it_time.it_interval);
985	it->it_overrun = 0;
986	it->it_overrun_last = 0;
987	it->it_clockid = clock_id;
988	it->it_timerid = -1;
989	it->it_proc = p;
990	ksiginfo_init(&it->it_ksi);
991	it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
992	error = CLOCK_CALL(clock_id, timer_create, (it));
993	if (error != 0)
994		goto out;
995
996	PROC_LOCK(p);
997	if (preset_id != -1) {
998		KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
999		id = preset_id;
1000		if (p->p_itimers->its_timers[id] != NULL) {
1001			PROC_UNLOCK(p);
1002			error = 0;
1003			goto out;
1004		}
1005	} else {
1006		/*
1007		 * Find a free timer slot, skipping those reserved
1008		 * for setitimer().
1009		 */
1010		for (id = 3; id < TIMER_MAX; id++)
1011			if (p->p_itimers->its_timers[id] == NULL)
1012				break;
1013		if (id == TIMER_MAX) {
1014			PROC_UNLOCK(p);
1015			error = EAGAIN;
1016			goto out;
1017		}
1018	}
1019	it->it_timerid = id;
1020	p->p_itimers->its_timers[id] = it;
1021	if (evp != NULL)
1022		it->it_sigev = *evp;
1023	else {
1024		it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1025		switch (clock_id) {
1026		default:
1027		case CLOCK_REALTIME:
1028			it->it_sigev.sigev_signo = SIGALRM;
1029			break;
1030		case CLOCK_VIRTUAL:
1031 			it->it_sigev.sigev_signo = SIGVTALRM;
1032			break;
1033		case CLOCK_PROF:
1034			it->it_sigev.sigev_signo = SIGPROF;
1035			break;
1036		}
1037		it->it_sigev.sigev_value.sival_int = id;
1038	}
1039
1040	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1041	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1042		it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1043		it->it_ksi.ksi_code = SI_TIMER;
1044		it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1045		it->it_ksi.ksi_timerid = id;
1046	}
1047	PROC_UNLOCK(p);
1048	*timerid = id;
1049	return (0);
1050
1051out:
1052	ITIMER_LOCK(it);
1053	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1054	ITIMER_UNLOCK(it);
1055	uma_zfree(itimer_zone, it);
1056	return (error);
1057}
1058
1059#ifndef _SYS_SYSPROTO_H_
1060struct ktimer_delete_args {
1061	int timerid;
1062};
1063#endif
1064int
1065sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1066{
1067	return (kern_timer_delete(td, uap->timerid));
1068}
1069
1070static struct itimer *
1071itimer_find(struct proc *p, int timerid)
1072{
1073	struct itimer *it;
1074
1075	PROC_LOCK_ASSERT(p, MA_OWNED);
1076	if ((p->p_itimers == NULL) ||
1077	    (timerid < 0) || (timerid >= TIMER_MAX) ||
1078	    (it = p->p_itimers->its_timers[timerid]) == NULL) {
1079		return (NULL);
1080	}
1081	ITIMER_LOCK(it);
1082	if ((it->it_flags & ITF_DELETING) != 0) {
1083		ITIMER_UNLOCK(it);
1084		it = NULL;
1085	}
1086	return (it);
1087}
1088
1089static int
1090kern_timer_delete(struct thread *td, int timerid)
1091{
1092	struct proc *p = td->td_proc;
1093	struct itimer *it;
1094
1095	PROC_LOCK(p);
1096	it = itimer_find(p, timerid);
1097	if (it == NULL) {
1098		PROC_UNLOCK(p);
1099		return (EINVAL);
1100	}
1101	PROC_UNLOCK(p);
1102
1103	it->it_flags |= ITF_DELETING;
1104	while (it->it_usecount > 0) {
1105		it->it_flags |= ITF_WANTED;
1106		msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1107	}
1108	it->it_flags &= ~ITF_WANTED;
1109	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1110	ITIMER_UNLOCK(it);
1111
1112	PROC_LOCK(p);
1113	if (KSI_ONQ(&it->it_ksi))
1114		sigqueue_take(&it->it_ksi);
1115	p->p_itimers->its_timers[timerid] = NULL;
1116	PROC_UNLOCK(p);
1117	uma_zfree(itimer_zone, it);
1118	return (0);
1119}
1120
1121#ifndef _SYS_SYSPROTO_H_
1122struct ktimer_settime_args {
1123	int timerid;
1124	int flags;
1125	const struct itimerspec * value;
1126	struct itimerspec * ovalue;
1127};
1128#endif
1129int
1130sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1131{
1132	struct proc *p = td->td_proc;
1133	struct itimer *it;
1134	struct itimerspec val, oval, *ovalp;
1135	int error;
1136
1137	error = copyin(uap->value, &val, sizeof(val));
1138	if (error != 0)
1139		return (error);
1140
1141	if (uap->ovalue != NULL)
1142		ovalp = &oval;
1143	else
1144		ovalp = NULL;
1145
1146	PROC_LOCK(p);
1147	if (uap->timerid < 3 ||
1148	    (it = itimer_find(p, uap->timerid)) == NULL) {
1149		PROC_UNLOCK(p);
1150		error = EINVAL;
1151	} else {
1152		PROC_UNLOCK(p);
1153		itimer_enter(it);
1154		error = CLOCK_CALL(it->it_clockid, timer_settime,
1155				(it, uap->flags, &val, ovalp));
1156		itimer_leave(it);
1157		ITIMER_UNLOCK(it);
1158	}
1159	if (error == 0 && uap->ovalue != NULL)
1160		error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1161	return (error);
1162}
1163
1164#ifndef _SYS_SYSPROTO_H_
1165struct ktimer_gettime_args {
1166	int timerid;
1167	struct itimerspec * value;
1168};
1169#endif
1170int
1171sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1172{
1173	struct proc *p = td->td_proc;
1174	struct itimer *it;
1175	struct itimerspec val;
1176	int error;
1177
1178	PROC_LOCK(p);
1179	if (uap->timerid < 3 ||
1180	   (it = itimer_find(p, uap->timerid)) == NULL) {
1181		PROC_UNLOCK(p);
1182		error = EINVAL;
1183	} else {
1184		PROC_UNLOCK(p);
1185		itimer_enter(it);
1186		error = CLOCK_CALL(it->it_clockid, timer_gettime,
1187				(it, &val));
1188		itimer_leave(it);
1189		ITIMER_UNLOCK(it);
1190	}
1191	if (error == 0)
1192		error = copyout(&val, uap->value, sizeof(val));
1193	return (error);
1194}
1195
1196#ifndef _SYS_SYSPROTO_H_
1197struct timer_getoverrun_args {
1198	int timerid;
1199};
1200#endif
1201int
1202sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1203{
1204	struct proc *p = td->td_proc;
1205	struct itimer *it;
1206	int error ;
1207
1208	PROC_LOCK(p);
1209	if (uap->timerid < 3 ||
1210	    (it = itimer_find(p, uap->timerid)) == NULL) {
1211		PROC_UNLOCK(p);
1212		error = EINVAL;
1213	} else {
1214		td->td_retval[0] = it->it_overrun_last;
1215		ITIMER_UNLOCK(it);
1216		PROC_UNLOCK(p);
1217		error = 0;
1218	}
1219	return (error);
1220}
1221
1222static int
1223realtimer_create(struct itimer *it)
1224{
1225	callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1226	return (0);
1227}
1228
1229static int
1230realtimer_delete(struct itimer *it)
1231{
1232	mtx_assert(&it->it_mtx, MA_OWNED);
1233
1234	/*
1235	 * clear timer's value and interval to tell realtimer_expire
1236	 * to not rearm the timer.
1237	 */
1238	timespecclear(&it->it_time.it_value);
1239	timespecclear(&it->it_time.it_interval);
1240	ITIMER_UNLOCK(it);
1241	callout_drain(&it->it_callout);
1242	ITIMER_LOCK(it);
1243	return (0);
1244}
1245
1246static int
1247realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1248{
1249	struct timespec cts;
1250
1251	mtx_assert(&it->it_mtx, MA_OWNED);
1252
1253	realtimer_clocktime(it->it_clockid, &cts);
1254	*ovalue = it->it_time;
1255	if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1256		timespecsub(&ovalue->it_value, &cts);
1257		if (ovalue->it_value.tv_sec < 0 ||
1258		    (ovalue->it_value.tv_sec == 0 &&
1259		     ovalue->it_value.tv_nsec == 0)) {
1260			ovalue->it_value.tv_sec  = 0;
1261			ovalue->it_value.tv_nsec = 1;
1262		}
1263	}
1264	return (0);
1265}
1266
1267static int
1268realtimer_settime(struct itimer *it, int flags,
1269	struct itimerspec *value, struct itimerspec *ovalue)
1270{
1271	struct timespec cts, ts;
1272	struct timeval tv;
1273	struct itimerspec val;
1274
1275	mtx_assert(&it->it_mtx, MA_OWNED);
1276
1277	val = *value;
1278	if (itimespecfix(&val.it_value))
1279		return (EINVAL);
1280
1281	if (timespecisset(&val.it_value)) {
1282		if (itimespecfix(&val.it_interval))
1283			return (EINVAL);
1284	} else {
1285		timespecclear(&val.it_interval);
1286	}
1287
1288	if (ovalue != NULL)
1289		realtimer_gettime(it, ovalue);
1290
1291	it->it_time = val;
1292	if (timespecisset(&val.it_value)) {
1293		realtimer_clocktime(it->it_clockid, &cts);
1294		ts = val.it_value;
1295		if ((flags & TIMER_ABSTIME) == 0) {
1296			/* Convert to absolute time. */
1297			timespecadd(&it->it_time.it_value, &cts);
1298		} else {
1299			timespecsub(&ts, &cts);
1300			/*
1301			 * We don't care if ts is negative, tztohz will
1302			 * fix it.
1303			 */
1304		}
1305		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1306		callout_reset(&it->it_callout, tvtohz(&tv),
1307			realtimer_expire, it);
1308	} else {
1309		callout_stop(&it->it_callout);
1310	}
1311
1312	return (0);
1313}
1314
1315static void
1316realtimer_clocktime(clockid_t id, struct timespec *ts)
1317{
1318	if (id == CLOCK_REALTIME)
1319		getnanotime(ts);
1320	else	/* CLOCK_MONOTONIC */
1321		getnanouptime(ts);
1322}
1323
1324int
1325itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1326{
1327	struct itimer *it;
1328
1329	PROC_LOCK_ASSERT(p, MA_OWNED);
1330	it = itimer_find(p, timerid);
1331	if (it != NULL) {
1332		ksi->ksi_overrun = it->it_overrun;
1333		it->it_overrun_last = it->it_overrun;
1334		it->it_overrun = 0;
1335		ITIMER_UNLOCK(it);
1336		return (0);
1337	}
1338	return (EINVAL);
1339}
1340
1341int
1342itimespecfix(struct timespec *ts)
1343{
1344
1345	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1346		return (EINVAL);
1347	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1348		ts->tv_nsec = tick * 1000;
1349	return (0);
1350}
1351
1352/* Timeout callback for realtime timer */
1353static void
1354realtimer_expire(void *arg)
1355{
1356	struct timespec cts, ts;
1357	struct timeval tv;
1358	struct itimer *it;
1359
1360	it = (struct itimer *)arg;
1361
1362	realtimer_clocktime(it->it_clockid, &cts);
1363	/* Only fire if time is reached. */
1364	if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1365		if (timespecisset(&it->it_time.it_interval)) {
1366			timespecadd(&it->it_time.it_value,
1367				    &it->it_time.it_interval);
1368			while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1369				if (it->it_overrun < INT_MAX)
1370					it->it_overrun++;
1371				else
1372					it->it_ksi.ksi_errno = ERANGE;
1373				timespecadd(&it->it_time.it_value,
1374					    &it->it_time.it_interval);
1375			}
1376		} else {
1377			/* single shot timer ? */
1378			timespecclear(&it->it_time.it_value);
1379		}
1380		if (timespecisset(&it->it_time.it_value)) {
1381			ts = it->it_time.it_value;
1382			timespecsub(&ts, &cts);
1383			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1384			callout_reset(&it->it_callout, tvtohz(&tv),
1385				 realtimer_expire, it);
1386		}
1387		itimer_enter(it);
1388		ITIMER_UNLOCK(it);
1389		itimer_fire(it);
1390		ITIMER_LOCK(it);
1391		itimer_leave(it);
1392	} else if (timespecisset(&it->it_time.it_value)) {
1393		ts = it->it_time.it_value;
1394		timespecsub(&ts, &cts);
1395		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1396		callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1397 			it);
1398	}
1399}
1400
1401void
1402itimer_fire(struct itimer *it)
1403{
1404	struct proc *p = it->it_proc;
1405	struct thread *td;
1406
1407	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1408	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1409		if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
1410			ITIMER_LOCK(it);
1411			timespecclear(&it->it_time.it_value);
1412			timespecclear(&it->it_time.it_interval);
1413			callout_stop(&it->it_callout);
1414			ITIMER_UNLOCK(it);
1415			return;
1416		}
1417		if (!KSI_ONQ(&it->it_ksi)) {
1418			it->it_ksi.ksi_errno = 0;
1419			ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
1420			tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
1421		} else {
1422			if (it->it_overrun < INT_MAX)
1423				it->it_overrun++;
1424			else
1425				it->it_ksi.ksi_errno = ERANGE;
1426		}
1427		PROC_UNLOCK(p);
1428	}
1429}
1430
1431static void
1432itimers_alloc(struct proc *p)
1433{
1434	struct itimers *its;
1435	int i;
1436
1437	its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1438	LIST_INIT(&its->its_virtual);
1439	LIST_INIT(&its->its_prof);
1440	TAILQ_INIT(&its->its_worklist);
1441	for (i = 0; i < TIMER_MAX; i++)
1442		its->its_timers[i] = NULL;
1443	PROC_LOCK(p);
1444	if (p->p_itimers == NULL) {
1445		p->p_itimers = its;
1446		PROC_UNLOCK(p);
1447	}
1448	else {
1449		PROC_UNLOCK(p);
1450		free(its, M_SUBPROC);
1451	}
1452}
1453
1454static void
1455itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
1456{
1457	itimers_event_hook_exit(arg, p);
1458}
1459
1460/* Clean up timers when some process events are being triggered. */
1461static void
1462itimers_event_hook_exit(void *arg, struct proc *p)
1463{
1464	struct itimers *its;
1465	struct itimer *it;
1466	int event = (int)(intptr_t)arg;
1467	int i;
1468
1469	if (p->p_itimers != NULL) {
1470		its = p->p_itimers;
1471		for (i = 0; i < MAX_CLOCKS; ++i) {
1472			if (posix_clocks[i].event_hook != NULL)
1473				CLOCK_CALL(i, event_hook, (p, i, event));
1474		}
1475		/*
1476		 * According to susv3, XSI interval timers should be inherited
1477		 * by new image.
1478		 */
1479		if (event == ITIMER_EV_EXEC)
1480			i = 3;
1481		else if (event == ITIMER_EV_EXIT)
1482			i = 0;
1483		else
1484			panic("unhandled event");
1485		for (; i < TIMER_MAX; ++i) {
1486			if ((it = its->its_timers[i]) != NULL)
1487				kern_timer_delete(curthread, i);
1488		}
1489		if (its->its_timers[0] == NULL &&
1490		    its->its_timers[1] == NULL &&
1491		    its->its_timers[2] == NULL) {
1492			free(its, M_SUBPROC);
1493			p->p_itimers = NULL;
1494		}
1495	}
1496}
1497