kern_time.c revision 164713
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_time.c 164713 2006-11-28 03:24:34Z davidxu $");
34
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/limits.h>
40#include <sys/clock.h>
41#include <sys/lock.h>
42#include <sys/mutex.h>
43#include <sys/sysproto.h>
44#include <sys/eventhandler.h>
45#include <sys/resourcevar.h>
46#include <sys/signalvar.h>
47#include <sys/kernel.h>
48#include <sys/syscallsubr.h>
49#include <sys/sysctl.h>
50#include <sys/sysent.h>
51#include <sys/priv.h>
52#include <sys/proc.h>
53#include <sys/posix4.h>
54#include <sys/time.h>
55#include <sys/timers.h>
56#include <sys/timetc.h>
57#include <sys/vnode.h>
58
59#include <security/mac/mac_framework.h>
60
61#include <vm/vm.h>
62#include <vm/vm_extern.h>
63
64#define MAX_CLOCKS 	(CLOCK_MONOTONIC+1)
65
66static struct kclock	posix_clocks[MAX_CLOCKS];
67static uma_zone_t	itimer_zone = NULL;
68
69/*
70 * Time of day and interval timer support.
71 *
72 * These routines provide the kernel entry points to get and set
73 * the time-of-day and per-process interval timers.  Subroutines
74 * here provide support for adding and subtracting timeval structures
75 * and decrementing interval timers, optionally reloading the interval
76 * timers when they expire.
77 */
78
79static int	settime(struct thread *, struct timeval *);
80static void	timevalfix(struct timeval *);
81static void	no_lease_updatetime(int);
82
83static void	itimer_start(void);
84static int	itimer_init(void *, int, int);
85static void	itimer_fini(void *, int);
86static void	itimer_enter(struct itimer *);
87static void	itimer_leave(struct itimer *);
88static struct itimer *itimer_find(struct proc *, int);
89static void	itimers_alloc(struct proc *);
90static void	itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
91static void	itimers_event_hook_exit(void *arg, struct proc *p);
92static int	realtimer_create(struct itimer *);
93static int	realtimer_gettime(struct itimer *, struct itimerspec *);
94static int	realtimer_settime(struct itimer *, int,
95			struct itimerspec *, struct itimerspec *);
96static int	realtimer_delete(struct itimer *);
97static void	realtimer_clocktime(clockid_t, struct timespec *);
98static void	realtimer_expire(void *);
99static int	kern_timer_create(struct thread *, clockid_t,
100			struct sigevent *, int *, int);
101static int	kern_timer_delete(struct thread *, int);
102
103int		register_posix_clock(int, struct kclock *);
104void		itimer_fire(struct itimer *it);
105int		itimespecfix(struct timespec *ts);
106
107#define CLOCK_CALL(clock, call, arglist)		\
108	((*posix_clocks[clock].call) arglist)
109
110SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
111
112
113static void
114no_lease_updatetime(deltat)
115	int deltat;
116{
117}
118
119void (*lease_updatetime)(int)  = no_lease_updatetime;
120
121static int
122settime(struct thread *td, struct timeval *tv)
123{
124	struct timeval delta, tv1, tv2;
125	static struct timeval maxtime, laststep;
126	struct timespec ts;
127	int s;
128
129	s = splclock();
130	microtime(&tv1);
131	delta = *tv;
132	timevalsub(&delta, &tv1);
133
134	/*
135	 * If the system is secure, we do not allow the time to be
136	 * set to a value earlier than 1 second less than the highest
137	 * time we have yet seen. The worst a miscreant can do in
138	 * this circumstance is "freeze" time. He couldn't go
139	 * back to the past.
140	 *
141	 * We similarly do not allow the clock to be stepped more
142	 * than one second, nor more than once per second. This allows
143	 * a miscreant to make the clock march double-time, but no worse.
144	 */
145	if (securelevel_gt(td->td_ucred, 1) != 0) {
146		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
147			/*
148			 * Update maxtime to latest time we've seen.
149			 */
150			if (tv1.tv_sec > maxtime.tv_sec)
151				maxtime = tv1;
152			tv2 = *tv;
153			timevalsub(&tv2, &maxtime);
154			if (tv2.tv_sec < -1) {
155				tv->tv_sec = maxtime.tv_sec - 1;
156				printf("Time adjustment clamped to -1 second\n");
157			}
158		} else {
159			if (tv1.tv_sec == laststep.tv_sec) {
160				splx(s);
161				return (EPERM);
162			}
163			if (delta.tv_sec > 1) {
164				tv->tv_sec = tv1.tv_sec + 1;
165				printf("Time adjustment clamped to +1 second\n");
166			}
167			laststep = *tv;
168		}
169	}
170
171	ts.tv_sec = tv->tv_sec;
172	ts.tv_nsec = tv->tv_usec * 1000;
173	mtx_lock(&Giant);
174	tc_setclock(&ts);
175	(void) splsoftclock();
176	lease_updatetime(delta.tv_sec);
177	splx(s);
178	resettodr();
179	mtx_unlock(&Giant);
180	return (0);
181}
182
183#ifndef _SYS_SYSPROTO_H_
184struct clock_gettime_args {
185	clockid_t clock_id;
186	struct	timespec *tp;
187};
188#endif
189
190/*
191 * MPSAFE
192 */
193/* ARGSUSED */
194int
195clock_gettime(struct thread *td, struct clock_gettime_args *uap)
196{
197	struct timespec ats;
198	int error;
199
200	error = kern_clock_gettime(td, uap->clock_id, &ats);
201	if (error == 0)
202		error = copyout(&ats, uap->tp, sizeof(ats));
203
204	return (error);
205}
206
207int
208kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
209{
210	struct timeval sys, user;
211	struct proc *p;
212
213	p = td->td_proc;
214	switch (clock_id) {
215	case CLOCK_REALTIME:		/* Default to precise. */
216	case CLOCK_REALTIME_PRECISE:
217		nanotime(ats);
218		break;
219	case CLOCK_REALTIME_FAST:
220		getnanotime(ats);
221		break;
222	case CLOCK_VIRTUAL:
223		PROC_LOCK(p);
224		calcru(p, &user, &sys);
225		PROC_UNLOCK(p);
226		TIMEVAL_TO_TIMESPEC(&user, ats);
227		break;
228	case CLOCK_PROF:
229		PROC_LOCK(p);
230		calcru(p, &user, &sys);
231		PROC_UNLOCK(p);
232		timevaladd(&user, &sys);
233		TIMEVAL_TO_TIMESPEC(&user, ats);
234		break;
235	case CLOCK_MONOTONIC:		/* Default to precise. */
236	case CLOCK_MONOTONIC_PRECISE:
237	case CLOCK_UPTIME:
238	case CLOCK_UPTIME_PRECISE:
239		nanouptime(ats);
240		break;
241	case CLOCK_UPTIME_FAST:
242	case CLOCK_MONOTONIC_FAST:
243		getnanouptime(ats);
244		break;
245	case CLOCK_SECOND:
246		ats->tv_sec = time_second;
247		ats->tv_nsec = 0;
248		break;
249	default:
250		return (EINVAL);
251	}
252	return (0);
253}
254
255#ifndef _SYS_SYSPROTO_H_
256struct clock_settime_args {
257	clockid_t clock_id;
258	const struct	timespec *tp;
259};
260#endif
261
262/*
263 * MPSAFE
264 */
265/* ARGSUSED */
266int
267clock_settime(struct thread *td, struct clock_settime_args *uap)
268{
269	struct timespec ats;
270	int error;
271
272	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
273		return (error);
274	return (kern_clock_settime(td, uap->clock_id, &ats));
275}
276
277int
278kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
279{
280	struct timeval atv;
281	int error;
282
283#ifdef MAC
284	error = mac_check_system_settime(td->td_ucred);
285	if (error)
286		return (error);
287#endif
288	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
289		return (error);
290	if (clock_id != CLOCK_REALTIME)
291		return (EINVAL);
292	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
293		return (EINVAL);
294	/* XXX Don't convert nsec->usec and back */
295	TIMESPEC_TO_TIMEVAL(&atv, ats);
296	error = settime(td, &atv);
297	return (error);
298}
299
300#ifndef _SYS_SYSPROTO_H_
301struct clock_getres_args {
302	clockid_t clock_id;
303	struct	timespec *tp;
304};
305#endif
306
307int
308clock_getres(struct thread *td, struct clock_getres_args *uap)
309{
310	struct timespec ts;
311	int error;
312
313	if (uap->tp == NULL)
314		return (0);
315
316	error = kern_clock_getres(td, uap->clock_id, &ts);
317	if (error == 0)
318		error = copyout(&ts, uap->tp, sizeof(ts));
319	return (error);
320}
321
322int
323kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
324{
325
326	ts->tv_sec = 0;
327	switch (clock_id) {
328	case CLOCK_REALTIME:
329	case CLOCK_REALTIME_FAST:
330	case CLOCK_REALTIME_PRECISE:
331	case CLOCK_MONOTONIC:
332	case CLOCK_MONOTONIC_FAST:
333	case CLOCK_MONOTONIC_PRECISE:
334	case CLOCK_UPTIME:
335	case CLOCK_UPTIME_FAST:
336	case CLOCK_UPTIME_PRECISE:
337		/*
338		 * Round up the result of the division cheaply by adding 1.
339		 * Rounding up is especially important if rounding down
340		 * would give 0.  Perfect rounding is unimportant.
341		 */
342		ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
343		break;
344	case CLOCK_VIRTUAL:
345	case CLOCK_PROF:
346		/* Accurately round up here because we can do so cheaply. */
347		ts->tv_nsec = (1000000000 + hz - 1) / hz;
348		break;
349	case CLOCK_SECOND:
350		ts->tv_sec = 1;
351		ts->tv_nsec = 0;
352		break;
353	default:
354		return (EINVAL);
355	}
356	return (0);
357}
358
359static int nanowait;
360
361int
362kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
363{
364	struct timespec ts, ts2, ts3;
365	struct timeval tv;
366	int error;
367
368	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
369		return (EINVAL);
370	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
371		return (0);
372	getnanouptime(&ts);
373	timespecadd(&ts, rqt);
374	TIMESPEC_TO_TIMEVAL(&tv, rqt);
375	for (;;) {
376		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
377		    tvtohz(&tv));
378		getnanouptime(&ts2);
379		if (error != EWOULDBLOCK) {
380			if (error == ERESTART)
381				error = EINTR;
382			if (rmt != NULL) {
383				timespecsub(&ts, &ts2);
384				if (ts.tv_sec < 0)
385					timespecclear(&ts);
386				*rmt = ts;
387			}
388			return (error);
389		}
390		if (timespeccmp(&ts2, &ts, >=))
391			return (0);
392		ts3 = ts;
393		timespecsub(&ts3, &ts2);
394		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
395	}
396}
397
398#ifndef _SYS_SYSPROTO_H_
399struct nanosleep_args {
400	struct	timespec *rqtp;
401	struct	timespec *rmtp;
402};
403#endif
404
405/*
406 * MPSAFE
407 */
408/* ARGSUSED */
409int
410nanosleep(struct thread *td, struct nanosleep_args *uap)
411{
412	struct timespec rmt, rqt;
413	int error;
414
415	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
416	if (error)
417		return (error);
418
419	if (uap->rmtp &&
420	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
421			return (EFAULT);
422	error = kern_nanosleep(td, &rqt, &rmt);
423	if (error && uap->rmtp) {
424		int error2;
425
426		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
427		if (error2)
428			error = error2;
429	}
430	return (error);
431}
432
433#ifndef _SYS_SYSPROTO_H_
434struct gettimeofday_args {
435	struct	timeval *tp;
436	struct	timezone *tzp;
437};
438#endif
439/*
440 * MPSAFE
441 */
442/* ARGSUSED */
443int
444gettimeofday(struct thread *td, struct gettimeofday_args *uap)
445{
446	struct timeval atv;
447	struct timezone rtz;
448	int error = 0;
449
450	if (uap->tp) {
451		microtime(&atv);
452		error = copyout(&atv, uap->tp, sizeof (atv));
453	}
454	if (error == 0 && uap->tzp != NULL) {
455		rtz.tz_minuteswest = tz_minuteswest;
456		rtz.tz_dsttime = tz_dsttime;
457		error = copyout(&rtz, uap->tzp, sizeof (rtz));
458	}
459	return (error);
460}
461
462#ifndef _SYS_SYSPROTO_H_
463struct settimeofday_args {
464	struct	timeval *tv;
465	struct	timezone *tzp;
466};
467#endif
468/*
469 * MPSAFE
470 */
471/* ARGSUSED */
472int
473settimeofday(struct thread *td, struct settimeofday_args *uap)
474{
475	struct timeval atv, *tvp;
476	struct timezone atz, *tzp;
477	int error;
478
479	if (uap->tv) {
480		error = copyin(uap->tv, &atv, sizeof(atv));
481		if (error)
482			return (error);
483		tvp = &atv;
484	} else
485		tvp = NULL;
486	if (uap->tzp) {
487		error = copyin(uap->tzp, &atz, sizeof(atz));
488		if (error)
489			return (error);
490		tzp = &atz;
491	} else
492		tzp = NULL;
493	return (kern_settimeofday(td, tvp, tzp));
494}
495
496int
497kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
498{
499	int error;
500
501#ifdef MAC
502	error = mac_check_system_settime(td->td_ucred);
503	if (error)
504		return (error);
505#endif
506	error = priv_check(td, PRIV_SETTIMEOFDAY);
507	if (error)
508		return (error);
509	/* Verify all parameters before changing time. */
510	if (tv) {
511		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
512			return (EINVAL);
513		error = settime(td, tv);
514	}
515	if (tzp && error == 0) {
516		tz_minuteswest = tzp->tz_minuteswest;
517		tz_dsttime = tzp->tz_dsttime;
518	}
519	return (error);
520}
521
522/*
523 * Get value of an interval timer.  The process virtual and
524 * profiling virtual time timers are kept in the p_stats area, since
525 * they can be swapped out.  These are kept internally in the
526 * way they are specified externally: in time until they expire.
527 *
528 * The real time interval timer is kept in the process table slot
529 * for the process, and its value (it_value) is kept as an
530 * absolute time rather than as a delta, so that it is easy to keep
531 * periodic real-time signals from drifting.
532 *
533 * Virtual time timers are processed in the hardclock() routine of
534 * kern_clock.c.  The real time timer is processed by a timeout
535 * routine, called from the softclock() routine.  Since a callout
536 * may be delayed in real time due to interrupt processing in the system,
537 * it is possible for the real time timeout routine (realitexpire, given below),
538 * to be delayed in real time past when it is supposed to occur.  It
539 * does not suffice, therefore, to reload the real timer .it_value from the
540 * real time timers .it_interval.  Rather, we compute the next time in
541 * absolute time the timer should go off.
542 */
543#ifndef _SYS_SYSPROTO_H_
544struct getitimer_args {
545	u_int	which;
546	struct	itimerval *itv;
547};
548#endif
549/*
550 * MPSAFE
551 */
552int
553getitimer(struct thread *td, struct getitimer_args *uap)
554{
555	struct itimerval aitv;
556	int error;
557
558	error = kern_getitimer(td, uap->which, &aitv);
559	if (error != 0)
560		return (error);
561	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
562}
563
564int
565kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
566{
567	struct proc *p = td->td_proc;
568	struct timeval ctv;
569
570	if (which > ITIMER_PROF)
571		return (EINVAL);
572
573	if (which == ITIMER_REAL) {
574		/*
575		 * Convert from absolute to relative time in .it_value
576		 * part of real time timer.  If time for real time timer
577		 * has passed return 0, else return difference between
578		 * current time and time for the timer to go off.
579		 */
580		PROC_LOCK(p);
581		*aitv = p->p_realtimer;
582		PROC_UNLOCK(p);
583		if (timevalisset(&aitv->it_value)) {
584			getmicrouptime(&ctv);
585			if (timevalcmp(&aitv->it_value, &ctv, <))
586				timevalclear(&aitv->it_value);
587			else
588				timevalsub(&aitv->it_value, &ctv);
589		}
590	} else {
591		mtx_lock_spin(&sched_lock);
592		*aitv = p->p_stats->p_timer[which];
593		mtx_unlock_spin(&sched_lock);
594	}
595	return (0);
596}
597
598#ifndef _SYS_SYSPROTO_H_
599struct setitimer_args {
600	u_int	which;
601	struct	itimerval *itv, *oitv;
602};
603#endif
604
605/*
606 * MPSAFE
607 */
608int
609setitimer(struct thread *td, struct setitimer_args *uap)
610{
611	struct itimerval aitv, oitv;
612	int error;
613
614	if (uap->itv == NULL) {
615		uap->itv = uap->oitv;
616		return (getitimer(td, (struct getitimer_args *)uap));
617	}
618
619	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
620		return (error);
621	error = kern_setitimer(td, uap->which, &aitv, &oitv);
622	if (error != 0 || uap->oitv == NULL)
623		return (error);
624	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
625}
626
627int
628kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
629    struct itimerval *oitv)
630{
631	struct proc *p = td->td_proc;
632	struct timeval ctv;
633
634	if (aitv == NULL)
635		return (kern_getitimer(td, which, oitv));
636
637	if (which > ITIMER_PROF)
638		return (EINVAL);
639	if (itimerfix(&aitv->it_value))
640		return (EINVAL);
641	if (!timevalisset(&aitv->it_value))
642		timevalclear(&aitv->it_interval);
643	else if (itimerfix(&aitv->it_interval))
644		return (EINVAL);
645
646	if (which == ITIMER_REAL) {
647		PROC_LOCK(p);
648		if (timevalisset(&p->p_realtimer.it_value))
649			callout_stop(&p->p_itcallout);
650		getmicrouptime(&ctv);
651		if (timevalisset(&aitv->it_value)) {
652			callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
653			    realitexpire, p);
654			timevaladd(&aitv->it_value, &ctv);
655		}
656		*oitv = p->p_realtimer;
657		p->p_realtimer = *aitv;
658		PROC_UNLOCK(p);
659		if (timevalisset(&oitv->it_value)) {
660			if (timevalcmp(&oitv->it_value, &ctv, <))
661				timevalclear(&oitv->it_value);
662			else
663				timevalsub(&oitv->it_value, &ctv);
664		}
665	} else {
666		mtx_lock_spin(&sched_lock);
667		*oitv = p->p_stats->p_timer[which];
668		p->p_stats->p_timer[which] = *aitv;
669		mtx_unlock_spin(&sched_lock);
670	}
671	return (0);
672}
673
674/*
675 * Real interval timer expired:
676 * send process whose timer expired an alarm signal.
677 * If time is not set up to reload, then just return.
678 * Else compute next time timer should go off which is > current time.
679 * This is where delay in processing this timeout causes multiple
680 * SIGALRM calls to be compressed into one.
681 * tvtohz() always adds 1 to allow for the time until the next clock
682 * interrupt being strictly less than 1 clock tick, but we don't want
683 * that here since we want to appear to be in sync with the clock
684 * interrupt even when we're delayed.
685 */
686void
687realitexpire(void *arg)
688{
689	struct proc *p;
690	struct timeval ctv, ntv;
691
692	p = (struct proc *)arg;
693	PROC_LOCK(p);
694	psignal(p, SIGALRM);
695	if (!timevalisset(&p->p_realtimer.it_interval)) {
696		timevalclear(&p->p_realtimer.it_value);
697		if (p->p_flag & P_WEXIT)
698			wakeup(&p->p_itcallout);
699		PROC_UNLOCK(p);
700		return;
701	}
702	for (;;) {
703		timevaladd(&p->p_realtimer.it_value,
704		    &p->p_realtimer.it_interval);
705		getmicrouptime(&ctv);
706		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
707			ntv = p->p_realtimer.it_value;
708			timevalsub(&ntv, &ctv);
709			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
710			    realitexpire, p);
711			PROC_UNLOCK(p);
712			return;
713		}
714	}
715	/*NOTREACHED*/
716}
717
718/*
719 * Check that a proposed value to load into the .it_value or
720 * .it_interval part of an interval timer is acceptable, and
721 * fix it to have at least minimal value (i.e. if it is less
722 * than the resolution of the clock, round it up.)
723 */
724int
725itimerfix(struct timeval *tv)
726{
727
728	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
729		return (EINVAL);
730	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
731		tv->tv_usec = tick;
732	return (0);
733}
734
735/*
736 * Decrement an interval timer by a specified number
737 * of microseconds, which must be less than a second,
738 * i.e. < 1000000.  If the timer expires, then reload
739 * it.  In this case, carry over (usec - old value) to
740 * reduce the value reloaded into the timer so that
741 * the timer does not drift.  This routine assumes
742 * that it is called in a context where the timers
743 * on which it is operating cannot change in value.
744 */
745int
746itimerdecr(struct itimerval *itp, int usec)
747{
748
749	if (itp->it_value.tv_usec < usec) {
750		if (itp->it_value.tv_sec == 0) {
751			/* expired, and already in next interval */
752			usec -= itp->it_value.tv_usec;
753			goto expire;
754		}
755		itp->it_value.tv_usec += 1000000;
756		itp->it_value.tv_sec--;
757	}
758	itp->it_value.tv_usec -= usec;
759	usec = 0;
760	if (timevalisset(&itp->it_value))
761		return (1);
762	/* expired, exactly at end of interval */
763expire:
764	if (timevalisset(&itp->it_interval)) {
765		itp->it_value = itp->it_interval;
766		itp->it_value.tv_usec -= usec;
767		if (itp->it_value.tv_usec < 0) {
768			itp->it_value.tv_usec += 1000000;
769			itp->it_value.tv_sec--;
770		}
771	} else
772		itp->it_value.tv_usec = 0;		/* sec is already 0 */
773	return (0);
774}
775
776/*
777 * Add and subtract routines for timevals.
778 * N.B.: subtract routine doesn't deal with
779 * results which are before the beginning,
780 * it just gets very confused in this case.
781 * Caveat emptor.
782 */
783void
784timevaladd(struct timeval *t1, const struct timeval *t2)
785{
786
787	t1->tv_sec += t2->tv_sec;
788	t1->tv_usec += t2->tv_usec;
789	timevalfix(t1);
790}
791
792void
793timevalsub(struct timeval *t1, const struct timeval *t2)
794{
795
796	t1->tv_sec -= t2->tv_sec;
797	t1->tv_usec -= t2->tv_usec;
798	timevalfix(t1);
799}
800
801static void
802timevalfix(struct timeval *t1)
803{
804
805	if (t1->tv_usec < 0) {
806		t1->tv_sec--;
807		t1->tv_usec += 1000000;
808	}
809	if (t1->tv_usec >= 1000000) {
810		t1->tv_sec++;
811		t1->tv_usec -= 1000000;
812	}
813}
814
815/*
816 * ratecheck(): simple time-based rate-limit checking.
817 */
818int
819ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
820{
821	struct timeval tv, delta;
822	int rv = 0;
823
824	getmicrouptime(&tv);		/* NB: 10ms precision */
825	delta = tv;
826	timevalsub(&delta, lasttime);
827
828	/*
829	 * check for 0,0 is so that the message will be seen at least once,
830	 * even if interval is huge.
831	 */
832	if (timevalcmp(&delta, mininterval, >=) ||
833	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
834		*lasttime = tv;
835		rv = 1;
836	}
837
838	return (rv);
839}
840
841/*
842 * ppsratecheck(): packets (or events) per second limitation.
843 *
844 * Return 0 if the limit is to be enforced (e.g. the caller
845 * should drop a packet because of the rate limitation).
846 *
847 * maxpps of 0 always causes zero to be returned.  maxpps of -1
848 * always causes 1 to be returned; this effectively defeats rate
849 * limiting.
850 *
851 * Note that we maintain the struct timeval for compatibility
852 * with other bsd systems.  We reuse the storage and just monitor
853 * clock ticks for minimal overhead.
854 */
855int
856ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
857{
858	int now;
859
860	/*
861	 * Reset the last time and counter if this is the first call
862	 * or more than a second has passed since the last update of
863	 * lasttime.
864	 */
865	now = ticks;
866	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
867		lasttime->tv_sec = now;
868		*curpps = 1;
869		return (maxpps != 0);
870	} else {
871		(*curpps)++;		/* NB: ignore potential overflow */
872		return (maxpps < 0 || *curpps < maxpps);
873	}
874}
875
876static void
877itimer_start(void)
878{
879	struct kclock rt_clock = {
880		.timer_create  = realtimer_create,
881		.timer_delete  = realtimer_delete,
882		.timer_settime = realtimer_settime,
883		.timer_gettime = realtimer_gettime,
884		.event_hook    = NULL
885	};
886
887	itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
888		NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
889	register_posix_clock(CLOCK_REALTIME,  &rt_clock);
890	register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
891	p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
892	p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
893	p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
894	EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
895		(void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
896	EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
897		(void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
898}
899
900int
901register_posix_clock(int clockid, struct kclock *clk)
902{
903	if ((unsigned)clockid >= MAX_CLOCKS) {
904		printf("%s: invalid clockid\n", __func__);
905		return (0);
906	}
907	posix_clocks[clockid] = *clk;
908	return (1);
909}
910
911static int
912itimer_init(void *mem, int size, int flags)
913{
914	struct itimer *it;
915
916	it = (struct itimer *)mem;
917	mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
918	return (0);
919}
920
921static void
922itimer_fini(void *mem, int size)
923{
924	struct itimer *it;
925
926	it = (struct itimer *)mem;
927	mtx_destroy(&it->it_mtx);
928}
929
930static void
931itimer_enter(struct itimer *it)
932{
933
934	mtx_assert(&it->it_mtx, MA_OWNED);
935	it->it_usecount++;
936}
937
938static void
939itimer_leave(struct itimer *it)
940{
941
942	mtx_assert(&it->it_mtx, MA_OWNED);
943	KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
944
945	if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
946		wakeup(it);
947}
948
949#ifndef _SYS_SYSPROTO_H_
950struct ktimer_create_args {
951	clockid_t clock_id;
952	struct sigevent * evp;
953	int * timerid;
954};
955#endif
956
957int
958ktimer_create(struct thread *td, struct ktimer_create_args *uap)
959{
960	struct sigevent *evp1, ev;
961	int id;
962	int error;
963
964	if (uap->evp != NULL) {
965		error = copyin(uap->evp, &ev, sizeof(ev));
966		if (error != 0)
967			return (error);
968		evp1 = &ev;
969	} else
970		evp1 = NULL;
971
972	error = kern_timer_create(td, uap->clock_id, evp1, &id, -1);
973
974	if (error == 0) {
975		error = copyout(&id, uap->timerid, sizeof(int));
976		if (error != 0)
977			kern_timer_delete(td, id);
978	}
979	return (error);
980}
981
982static int
983kern_timer_create(struct thread *td, clockid_t clock_id,
984	struct sigevent *evp, int *timerid, int preset_id)
985{
986	struct proc *p = td->td_proc;
987	struct itimer *it;
988	int id;
989	int error;
990
991	if (clock_id < 0 || clock_id >= MAX_CLOCKS)
992		return (EINVAL);
993
994	if (posix_clocks[clock_id].timer_create == NULL)
995		return (EINVAL);
996
997	if (evp != NULL) {
998		if (evp->sigev_notify != SIGEV_NONE &&
999		    evp->sigev_notify != SIGEV_SIGNAL &&
1000		    evp->sigev_notify != SIGEV_THREAD_ID)
1001			return (EINVAL);
1002		if ((evp->sigev_notify == SIGEV_SIGNAL ||
1003		     evp->sigev_notify == SIGEV_THREAD_ID) &&
1004			!_SIG_VALID(evp->sigev_signo))
1005			return (EINVAL);
1006	}
1007
1008	if (p->p_itimers == NULL)
1009		itimers_alloc(p);
1010
1011	it = uma_zalloc(itimer_zone, M_WAITOK);
1012	it->it_flags = 0;
1013	it->it_usecount = 0;
1014	it->it_active = 0;
1015	timespecclear(&it->it_time.it_value);
1016	timespecclear(&it->it_time.it_interval);
1017	it->it_overrun = 0;
1018	it->it_overrun_last = 0;
1019	it->it_clockid = clock_id;
1020	it->it_timerid = -1;
1021	it->it_proc = p;
1022	ksiginfo_init(&it->it_ksi);
1023	it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1024	error = CLOCK_CALL(clock_id, timer_create, (it));
1025	if (error != 0)
1026		goto out;
1027
1028	PROC_LOCK(p);
1029	if (preset_id != -1) {
1030		KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1031		id = preset_id;
1032		if (p->p_itimers->its_timers[id] != NULL) {
1033			PROC_UNLOCK(p);
1034			error = 0;
1035			goto out;
1036		}
1037	} else {
1038		/*
1039		 * Find a free timer slot, skipping those reserved
1040		 * for setitimer().
1041		 */
1042		for (id = 3; id < TIMER_MAX; id++)
1043			if (p->p_itimers->its_timers[id] == NULL)
1044				break;
1045		if (id == TIMER_MAX) {
1046			PROC_UNLOCK(p);
1047			error = EAGAIN;
1048			goto out;
1049		}
1050	}
1051	it->it_timerid = id;
1052	p->p_itimers->its_timers[id] = it;
1053	if (evp != NULL)
1054		it->it_sigev = *evp;
1055	else {
1056		it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1057		switch (clock_id) {
1058		default:
1059		case CLOCK_REALTIME:
1060			it->it_sigev.sigev_signo = SIGALRM;
1061			break;
1062		case CLOCK_VIRTUAL:
1063 			it->it_sigev.sigev_signo = SIGVTALRM;
1064			break;
1065		case CLOCK_PROF:
1066			it->it_sigev.sigev_signo = SIGPROF;
1067			break;
1068		}
1069		it->it_sigev.sigev_value.sival_int = id;
1070	}
1071
1072	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1073	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1074		it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1075		it->it_ksi.ksi_code = SI_TIMER;
1076		it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1077		it->it_ksi.ksi_timerid = id;
1078	}
1079	PROC_UNLOCK(p);
1080	*timerid = id;
1081	return (0);
1082
1083out:
1084	ITIMER_LOCK(it);
1085	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1086	ITIMER_UNLOCK(it);
1087	uma_zfree(itimer_zone, it);
1088	return (error);
1089}
1090
1091#ifndef _SYS_SYSPROTO_H_
1092struct ktimer_delete_args {
1093	int timerid;
1094};
1095#endif
1096
1097int
1098ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1099{
1100	return (kern_timer_delete(td, uap->timerid));
1101}
1102
1103static struct itimer *
1104itimer_find(struct proc *p, int timerid)
1105{
1106	struct itimer *it;
1107
1108	PROC_LOCK_ASSERT(p, MA_OWNED);
1109	if ((p->p_itimers == NULL) || (timerid >= TIMER_MAX) ||
1110	    (it = p->p_itimers->its_timers[timerid]) == NULL) {
1111		return (NULL);
1112	}
1113	ITIMER_LOCK(it);
1114	if ((it->it_flags & ITF_DELETING) != 0) {
1115		ITIMER_UNLOCK(it);
1116		it = NULL;
1117	}
1118	return (it);
1119}
1120
1121static int
1122kern_timer_delete(struct thread *td, int timerid)
1123{
1124	struct proc *p = td->td_proc;
1125	struct itimer *it;
1126
1127	PROC_LOCK(p);
1128	it = itimer_find(p, timerid);
1129	if (it == NULL) {
1130		PROC_UNLOCK(p);
1131		return (EINVAL);
1132	}
1133	PROC_UNLOCK(p);
1134
1135	it->it_flags |= ITF_DELETING;
1136	while (it->it_usecount > 0) {
1137		it->it_flags |= ITF_WANTED;
1138		msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1139	}
1140	it->it_flags &= ~ITF_WANTED;
1141	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1142	ITIMER_UNLOCK(it);
1143
1144	PROC_LOCK(p);
1145	if (KSI_ONQ(&it->it_ksi))
1146		sigqueue_take(&it->it_ksi);
1147	p->p_itimers->its_timers[timerid] = NULL;
1148	PROC_UNLOCK(p);
1149	uma_zfree(itimer_zone, it);
1150	return (0);
1151}
1152
1153#ifndef _SYS_SYSPROTO_H_
1154struct ktimer_settime_args {
1155	int timerid;
1156	int flags;
1157	const struct itimerspec * value;
1158	struct itimerspec * ovalue;
1159};
1160#endif
1161
1162int
1163ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1164{
1165	struct proc *p = td->td_proc;
1166	struct itimer *it;
1167	struct itimerspec val, oval, *ovalp;
1168	int error;
1169
1170	error = copyin(uap->value, &val, sizeof(val));
1171	if (error != 0)
1172		return (error);
1173
1174	if (uap->ovalue != NULL)
1175		ovalp = &oval;
1176	else
1177		ovalp = NULL;
1178
1179	PROC_LOCK(p);
1180	if (uap->timerid < 3 ||
1181	    (it = itimer_find(p, uap->timerid)) == NULL) {
1182		PROC_UNLOCK(p);
1183		error = EINVAL;
1184	} else {
1185		PROC_UNLOCK(p);
1186		itimer_enter(it);
1187		error = CLOCK_CALL(it->it_clockid, timer_settime,
1188				(it, uap->flags, &val, ovalp));
1189		itimer_leave(it);
1190		ITIMER_UNLOCK(it);
1191	}
1192	if (error == 0 && uap->ovalue != NULL)
1193		error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1194	return (error);
1195}
1196
1197#ifndef _SYS_SYSPROTO_H_
1198struct ktimer_gettime_args {
1199	int timerid;
1200	struct itimerspec * value;
1201};
1202#endif
1203
1204int
1205ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1206{
1207	struct proc *p = td->td_proc;
1208	struct itimer *it;
1209	struct itimerspec val;
1210	int error;
1211
1212	PROC_LOCK(p);
1213	if (uap->timerid < 3 ||
1214	   (it = itimer_find(p, uap->timerid)) == NULL) {
1215		PROC_UNLOCK(p);
1216		error = EINVAL;
1217	} else {
1218		PROC_UNLOCK(p);
1219		itimer_enter(it);
1220		error = CLOCK_CALL(it->it_clockid, timer_gettime,
1221				(it, &val));
1222		itimer_leave(it);
1223		ITIMER_UNLOCK(it);
1224	}
1225	if (error == 0)
1226		error = copyout(&val, uap->value, sizeof(val));
1227	return (error);
1228}
1229
1230#ifndef _SYS_SYSPROTO_H_
1231struct timer_getoverrun_args {
1232	int timerid;
1233};
1234#endif
1235
1236int
1237ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1238{
1239	struct proc *p = td->td_proc;
1240	struct itimer *it;
1241	int error ;
1242
1243	PROC_LOCK(p);
1244	if (uap->timerid < 3 ||
1245	    (it = itimer_find(p, uap->timerid)) == NULL) {
1246		PROC_UNLOCK(p);
1247		error = EINVAL;
1248	} else {
1249		td->td_retval[0] = it->it_overrun_last;
1250		ITIMER_UNLOCK(it);
1251		PROC_UNLOCK(p);
1252		error = 0;
1253	}
1254	return (error);
1255}
1256
1257static int
1258realtimer_create(struct itimer *it)
1259{
1260	callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1261	return (0);
1262}
1263
1264static int
1265realtimer_delete(struct itimer *it)
1266{
1267	mtx_assert(&it->it_mtx, MA_OWNED);
1268
1269	ITIMER_UNLOCK(it);
1270	callout_drain(&it->it_callout);
1271	ITIMER_LOCK(it);
1272	return (0);
1273}
1274
1275static int
1276realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1277{
1278	struct timespec cts;
1279
1280	mtx_assert(&it->it_mtx, MA_OWNED);
1281
1282	realtimer_clocktime(it->it_clockid, &cts);
1283	*ovalue = it->it_time;
1284	if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1285		timespecsub(&ovalue->it_value, &cts);
1286		if (ovalue->it_value.tv_sec < 0 ||
1287		    (ovalue->it_value.tv_sec == 0 &&
1288		     ovalue->it_value.tv_nsec == 0)) {
1289			ovalue->it_value.tv_sec  = 0;
1290			ovalue->it_value.tv_nsec = 1;
1291		}
1292	}
1293	return (0);
1294}
1295
1296static int
1297realtimer_settime(struct itimer *it, int flags,
1298	struct itimerspec *value, struct itimerspec *ovalue)
1299{
1300	struct timespec cts, ts;
1301	struct timeval tv;
1302	struct itimerspec val;
1303
1304	mtx_assert(&it->it_mtx, MA_OWNED);
1305
1306	val = *value;
1307	if (itimespecfix(&val.it_value))
1308		return (EINVAL);
1309
1310	if (timespecisset(&val.it_value)) {
1311		if (itimespecfix(&val.it_interval))
1312			return (EINVAL);
1313	} else {
1314		timespecclear(&val.it_interval);
1315	}
1316
1317	if (ovalue != NULL)
1318		realtimer_gettime(it, ovalue);
1319
1320	it->it_time = val;
1321	if (timespecisset(&val.it_value)) {
1322		realtimer_clocktime(it->it_clockid, &cts);
1323		ts = val.it_value;
1324		if ((flags & TIMER_ABSTIME) == 0) {
1325			/* Convert to absolute time. */
1326			timespecadd(&it->it_time.it_value, &cts);
1327		} else {
1328			timespecsub(&ts, &cts);
1329			/*
1330			 * We don't care if ts is negative, tztohz will
1331			 * fix it.
1332			 */
1333		}
1334		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1335		callout_reset(&it->it_callout, tvtohz(&tv),
1336			realtimer_expire, it);
1337	} else {
1338		callout_stop(&it->it_callout);
1339	}
1340
1341	return (0);
1342}
1343
1344static void
1345realtimer_clocktime(clockid_t id, struct timespec *ts)
1346{
1347	if (id == CLOCK_REALTIME)
1348		getnanotime(ts);
1349	else	/* CLOCK_MONOTONIC */
1350		getnanouptime(ts);
1351}
1352
1353int
1354itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1355{
1356	struct itimer *it;
1357
1358	PROC_LOCK_ASSERT(p, MA_OWNED);
1359	it = itimer_find(p, timerid);
1360	if (it != NULL) {
1361		ksi->ksi_overrun = it->it_overrun;
1362		it->it_overrun_last = it->it_overrun;
1363		it->it_overrun = 0;
1364		ITIMER_UNLOCK(it);
1365		return (0);
1366	}
1367	return (EINVAL);
1368}
1369
1370int
1371itimespecfix(struct timespec *ts)
1372{
1373
1374	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1375		return (EINVAL);
1376	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1377		ts->tv_nsec = tick * 1000;
1378	return (0);
1379}
1380
1381/* Timeout callback for realtime timer */
1382static void
1383realtimer_expire(void *arg)
1384{
1385	struct timespec cts, ts;
1386	struct timeval tv;
1387	struct itimer *it;
1388	struct proc *p;
1389
1390	it = (struct itimer *)arg;
1391	p = it->it_proc;
1392
1393	realtimer_clocktime(it->it_clockid, &cts);
1394	/* Only fire if time is reached. */
1395	if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1396		if (timespecisset(&it->it_time.it_interval)) {
1397			timespecadd(&it->it_time.it_value,
1398				    &it->it_time.it_interval);
1399			while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1400				if (it->it_overrun < INT_MAX)
1401					it->it_overrun++;
1402				else
1403					it->it_ksi.ksi_errno = ERANGE;
1404				timespecadd(&it->it_time.it_value,
1405					    &it->it_time.it_interval);
1406			}
1407		} else {
1408			/* single shot timer ? */
1409			timespecclear(&it->it_time.it_value);
1410		}
1411		if (timespecisset(&it->it_time.it_value)) {
1412			ts = it->it_time.it_value;
1413			timespecsub(&ts, &cts);
1414			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1415			callout_reset(&it->it_callout, tvtohz(&tv),
1416				 realtimer_expire, it);
1417		}
1418		ITIMER_UNLOCK(it);
1419		itimer_fire(it);
1420		ITIMER_LOCK(it);
1421	} else if (timespecisset(&it->it_time.it_value)) {
1422		ts = it->it_time.it_value;
1423		timespecsub(&ts, &cts);
1424		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1425		callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1426 			it);
1427	}
1428}
1429
1430void
1431itimer_fire(struct itimer *it)
1432{
1433	struct proc *p = it->it_proc;
1434	int ret;
1435
1436	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1437	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1438		PROC_LOCK(p);
1439		if (!KSI_ONQ(&it->it_ksi)) {
1440			it->it_ksi.ksi_errno = 0;
1441			ret = psignal_event(p, &it->it_sigev, &it->it_ksi);
1442			if (__predict_false(ret != 0)) {
1443				it->it_overrun++;
1444				/*
1445				 * Broken userland code, thread went
1446				 * away, disarm the timer.
1447				 */
1448				if (ret == ESRCH) {
1449					ITIMER_LOCK(it);
1450					timespecclear(&it->it_time.it_value);
1451					timespecclear(&it->it_time.it_interval);
1452					callout_stop(&it->it_callout);
1453					ITIMER_UNLOCK(it);
1454				}
1455			}
1456		} else {
1457			if (it->it_overrun < INT_MAX)
1458				it->it_overrun++;
1459			else
1460				it->it_ksi.ksi_errno = ERANGE;
1461		}
1462		PROC_UNLOCK(p);
1463	}
1464}
1465
1466static void
1467itimers_alloc(struct proc *p)
1468{
1469	struct itimers *its;
1470	int i;
1471
1472	its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1473	LIST_INIT(&its->its_virtual);
1474	LIST_INIT(&its->its_prof);
1475	TAILQ_INIT(&its->its_worklist);
1476	for (i = 0; i < TIMER_MAX; i++)
1477		its->its_timers[i] = NULL;
1478	PROC_LOCK(p);
1479	if (p->p_itimers == NULL) {
1480		p->p_itimers = its;
1481		PROC_UNLOCK(p);
1482	}
1483	else {
1484		PROC_UNLOCK(p);
1485		free(its, M_SUBPROC);
1486	}
1487}
1488
1489static void
1490itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
1491{
1492	itimers_event_hook_exit(arg, p);
1493}
1494
1495/* Clean up timers when some process events are being triggered. */
1496static void
1497itimers_event_hook_exit(void *arg, struct proc *p)
1498{
1499	struct itimers *its;
1500	struct itimer *it;
1501	int event = (int)(intptr_t)arg;
1502	int i;
1503
1504	if (p->p_itimers != NULL) {
1505		its = p->p_itimers;
1506		for (i = 0; i < MAX_CLOCKS; ++i) {
1507			if (posix_clocks[i].event_hook != NULL)
1508				CLOCK_CALL(i, event_hook, (p, i, event));
1509		}
1510		/*
1511		 * According to susv3, XSI interval timers should be inherited
1512		 * by new image.
1513		 */
1514		if (event == ITIMER_EV_EXEC)
1515			i = 3;
1516		else if (event == ITIMER_EV_EXIT)
1517			i = 0;
1518		else
1519			panic("unhandled event");
1520		for (; i < TIMER_MAX; ++i) {
1521			if ((it = its->its_timers[i]) != NULL)
1522				kern_timer_delete(curthread, i);
1523		}
1524		if (its->its_timers[0] == NULL &&
1525		    its->its_timers[1] == NULL &&
1526		    its->its_timers[2] == NULL) {
1527			free(its, M_SUBPROC);
1528			p->p_itimers = NULL;
1529		}
1530	}
1531}
1532