kern_time.c revision 160910
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_time.c 160910 2006-08-02 07:34:51Z davidxu $");
34
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/limits.h>
40#include <sys/lock.h>
41#include <sys/mutex.h>
42#include <sys/sysproto.h>
43#include <sys/eventhandler.h>
44#include <sys/resourcevar.h>
45#include <sys/signalvar.h>
46#include <sys/kernel.h>
47#include <sys/mac.h>
48#include <sys/syscallsubr.h>
49#include <sys/sysctl.h>
50#include <sys/sysent.h>
51#include <sys/proc.h>
52#include <sys/time.h>
53#include <sys/timers.h>
54#include <sys/timetc.h>
55#include <sys/vnode.h>
56
57#include <posix4/posix4.h>
58
59#include <vm/vm.h>
60#include <vm/vm_extern.h>
61
62#define MAX_CLOCKS 	(CLOCK_MONOTONIC+1)
63
64int tz_minuteswest;
65int tz_dsttime;
66
67static struct kclock	posix_clocks[MAX_CLOCKS];
68static uma_zone_t	itimer_zone = NULL;
69
70/*
71 * Time of day and interval timer support.
72 *
73 * These routines provide the kernel entry points to get and set
74 * the time-of-day and per-process interval timers.  Subroutines
75 * here provide support for adding and subtracting timeval structures
76 * and decrementing interval timers, optionally reloading the interval
77 * timers when they expire.
78 */
79
80static int	settime(struct thread *, struct timeval *);
81static void	timevalfix(struct timeval *);
82static void	no_lease_updatetime(int);
83
84static void	itimer_start(void);
85static int	itimer_init(void *, int, int);
86static void	itimer_fini(void *, int);
87static void	itimer_enter(struct itimer *);
88static void	itimer_leave(struct itimer *);
89static struct itimer *itimer_find(struct proc *, int, int);
90static void	itimers_alloc(struct proc *);
91static void	itimers_event_hook(void *arg, struct proc *p);
92static int	realtimer_create(struct itimer *);
93static int	realtimer_gettime(struct itimer *, struct itimerspec *);
94static int	realtimer_settime(struct itimer *, int,
95			struct itimerspec *, struct itimerspec *);
96static int	realtimer_delete(struct itimer *);
97static void	realtimer_clocktime(clockid_t, struct timespec *);
98static void	realtimer_expire(void *);
99static void	realtimer_event_hook(struct proc *, clockid_t, int event);
100static int	kern_timer_create(struct thread *, clockid_t,
101			struct sigevent *, int *, int);
102static int	kern_timer_delete(struct thread *, int);
103
104int		register_posix_clock(int, struct kclock *);
105void		itimer_fire(struct itimer *it);
106int		itimespecfix(struct timespec *ts);
107
108#define CLOCK_CALL(clock, call, arglist)		\
109	((*posix_clocks[clock].call) arglist)
110
111SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
112
113
114static void
115no_lease_updatetime(deltat)
116	int deltat;
117{
118}
119
120void (*lease_updatetime)(int)  = no_lease_updatetime;
121
122static int
123settime(struct thread *td, struct timeval *tv)
124{
125	struct timeval delta, tv1, tv2;
126	static struct timeval maxtime, laststep;
127	struct timespec ts;
128	int s;
129
130	s = splclock();
131	microtime(&tv1);
132	delta = *tv;
133	timevalsub(&delta, &tv1);
134
135	/*
136	 * If the system is secure, we do not allow the time to be
137	 * set to a value earlier than 1 second less than the highest
138	 * time we have yet seen. The worst a miscreant can do in
139	 * this circumstance is "freeze" time. He couldn't go
140	 * back to the past.
141	 *
142	 * We similarly do not allow the clock to be stepped more
143	 * than one second, nor more than once per second. This allows
144	 * a miscreant to make the clock march double-time, but no worse.
145	 */
146	if (securelevel_gt(td->td_ucred, 1) != 0) {
147		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
148			/*
149			 * Update maxtime to latest time we've seen.
150			 */
151			if (tv1.tv_sec > maxtime.tv_sec)
152				maxtime = tv1;
153			tv2 = *tv;
154			timevalsub(&tv2, &maxtime);
155			if (tv2.tv_sec < -1) {
156				tv->tv_sec = maxtime.tv_sec - 1;
157				printf("Time adjustment clamped to -1 second\n");
158			}
159		} else {
160			if (tv1.tv_sec == laststep.tv_sec) {
161				splx(s);
162				return (EPERM);
163			}
164			if (delta.tv_sec > 1) {
165				tv->tv_sec = tv1.tv_sec + 1;
166				printf("Time adjustment clamped to +1 second\n");
167			}
168			laststep = *tv;
169		}
170	}
171
172	ts.tv_sec = tv->tv_sec;
173	ts.tv_nsec = tv->tv_usec * 1000;
174	mtx_lock(&Giant);
175	tc_setclock(&ts);
176	(void) splsoftclock();
177	lease_updatetime(delta.tv_sec);
178	splx(s);
179	resettodr();
180	mtx_unlock(&Giant);
181	return (0);
182}
183
184#ifndef _SYS_SYSPROTO_H_
185struct clock_gettime_args {
186	clockid_t clock_id;
187	struct	timespec *tp;
188};
189#endif
190
191/*
192 * MPSAFE
193 */
194/* ARGSUSED */
195int
196clock_gettime(struct thread *td, struct clock_gettime_args *uap)
197{
198	struct timespec ats;
199	int error;
200
201	error = kern_clock_gettime(td, uap->clock_id, &ats);
202	if (error == 0)
203		error = copyout(&ats, uap->tp, sizeof(ats));
204
205	return (error);
206}
207
208int
209kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
210{
211	struct timeval sys, user;
212	struct proc *p;
213
214	p = td->td_proc;
215	switch (clock_id) {
216	case CLOCK_REALTIME:		/* Default to precise. */
217	case CLOCK_REALTIME_PRECISE:
218		nanotime(ats);
219		break;
220	case CLOCK_REALTIME_FAST:
221		getnanotime(ats);
222		break;
223	case CLOCK_VIRTUAL:
224		PROC_LOCK(p);
225		calcru(p, &user, &sys);
226		PROC_UNLOCK(p);
227		TIMEVAL_TO_TIMESPEC(&user, ats);
228		break;
229	case CLOCK_PROF:
230		PROC_LOCK(p);
231		calcru(p, &user, &sys);
232		PROC_UNLOCK(p);
233		timevaladd(&user, &sys);
234		TIMEVAL_TO_TIMESPEC(&user, ats);
235		break;
236	case CLOCK_MONOTONIC:		/* Default to precise. */
237	case CLOCK_MONOTONIC_PRECISE:
238	case CLOCK_UPTIME:
239	case CLOCK_UPTIME_PRECISE:
240		nanouptime(ats);
241		break;
242	case CLOCK_UPTIME_FAST:
243	case CLOCK_MONOTONIC_FAST:
244		getnanouptime(ats);
245		break;
246	case CLOCK_SECOND:
247		ats->tv_sec = time_second;
248		ats->tv_nsec = 0;
249		break;
250	default:
251		return (EINVAL);
252	}
253	return (0);
254}
255
256#ifndef _SYS_SYSPROTO_H_
257struct clock_settime_args {
258	clockid_t clock_id;
259	const struct	timespec *tp;
260};
261#endif
262
263/*
264 * MPSAFE
265 */
266/* ARGSUSED */
267int
268clock_settime(struct thread *td, struct clock_settime_args *uap)
269{
270	struct timespec ats;
271	int error;
272
273	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
274		return (error);
275	return (kern_clock_settime(td, uap->clock_id, &ats));
276}
277
278int
279kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
280{
281	struct timeval atv;
282	int error;
283
284#ifdef MAC
285	error = mac_check_system_settime(td->td_ucred);
286	if (error)
287		return (error);
288#endif
289	if ((error = suser(td)) != 0)
290		return (error);
291	if (clock_id != CLOCK_REALTIME)
292		return (EINVAL);
293	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
294		return (EINVAL);
295	/* XXX Don't convert nsec->usec and back */
296	TIMESPEC_TO_TIMEVAL(&atv, ats);
297	error = settime(td, &atv);
298	return (error);
299}
300
301#ifndef _SYS_SYSPROTO_H_
302struct clock_getres_args {
303	clockid_t clock_id;
304	struct	timespec *tp;
305};
306#endif
307
308int
309clock_getres(struct thread *td, struct clock_getres_args *uap)
310{
311	struct timespec ts;
312	int error;
313
314	if (uap->tp == NULL)
315		return (0);
316
317	error = kern_clock_getres(td, uap->clock_id, &ts);
318	if (error == 0)
319		error = copyout(&ts, uap->tp, sizeof(ts));
320	return (error);
321}
322
323int
324kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
325{
326
327	ts->tv_sec = 0;
328	switch (clock_id) {
329	case CLOCK_REALTIME:
330	case CLOCK_REALTIME_FAST:
331	case CLOCK_REALTIME_PRECISE:
332	case CLOCK_MONOTONIC:
333	case CLOCK_MONOTONIC_FAST:
334	case CLOCK_MONOTONIC_PRECISE:
335	case CLOCK_UPTIME:
336	case CLOCK_UPTIME_FAST:
337	case CLOCK_UPTIME_PRECISE:
338		/*
339		 * Round up the result of the division cheaply by adding 1.
340		 * Rounding up is especially important if rounding down
341		 * would give 0.  Perfect rounding is unimportant.
342		 */
343		ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
344		break;
345	case CLOCK_VIRTUAL:
346	case CLOCK_PROF:
347		/* Accurately round up here because we can do so cheaply. */
348		ts->tv_nsec = (1000000000 + hz - 1) / hz;
349		break;
350	case CLOCK_SECOND:
351		ts->tv_sec = 1;
352		ts->tv_nsec = 0;
353		break;
354	default:
355		return (EINVAL);
356	}
357	return (0);
358}
359
360static int nanowait;
361
362int
363kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
364{
365	struct timespec ts, ts2, ts3;
366	struct timeval tv;
367	int error;
368
369	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
370		return (EINVAL);
371	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
372		return (0);
373	getnanouptime(&ts);
374	timespecadd(&ts, rqt);
375	TIMESPEC_TO_TIMEVAL(&tv, rqt);
376	for (;;) {
377		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
378		    tvtohz(&tv));
379		getnanouptime(&ts2);
380		if (error != EWOULDBLOCK) {
381			if (error == ERESTART)
382				error = EINTR;
383			if (rmt != NULL) {
384				timespecsub(&ts, &ts2);
385				if (ts.tv_sec < 0)
386					timespecclear(&ts);
387				*rmt = ts;
388			}
389			return (error);
390		}
391		if (timespeccmp(&ts2, &ts, >=))
392			return (0);
393		ts3 = ts;
394		timespecsub(&ts3, &ts2);
395		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
396	}
397}
398
399#ifndef _SYS_SYSPROTO_H_
400struct nanosleep_args {
401	struct	timespec *rqtp;
402	struct	timespec *rmtp;
403};
404#endif
405
406/*
407 * MPSAFE
408 */
409/* ARGSUSED */
410int
411nanosleep(struct thread *td, struct nanosleep_args *uap)
412{
413	struct timespec rmt, rqt;
414	int error;
415
416	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
417	if (error)
418		return (error);
419
420	if (uap->rmtp &&
421	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
422			return (EFAULT);
423	error = kern_nanosleep(td, &rqt, &rmt);
424	if (error && uap->rmtp) {
425		int error2;
426
427		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
428		if (error2)
429			error = error2;
430	}
431	return (error);
432}
433
434#ifndef _SYS_SYSPROTO_H_
435struct gettimeofday_args {
436	struct	timeval *tp;
437	struct	timezone *tzp;
438};
439#endif
440/*
441 * MPSAFE
442 */
443/* ARGSUSED */
444int
445gettimeofday(struct thread *td, struct gettimeofday_args *uap)
446{
447	struct timeval atv;
448	struct timezone rtz;
449	int error = 0;
450
451	if (uap->tp) {
452		microtime(&atv);
453		error = copyout(&atv, uap->tp, sizeof (atv));
454	}
455	if (error == 0 && uap->tzp != NULL) {
456		rtz.tz_minuteswest = tz_minuteswest;
457		rtz.tz_dsttime = tz_dsttime;
458		error = copyout(&rtz, uap->tzp, sizeof (rtz));
459	}
460	return (error);
461}
462
463#ifndef _SYS_SYSPROTO_H_
464struct settimeofday_args {
465	struct	timeval *tv;
466	struct	timezone *tzp;
467};
468#endif
469/*
470 * MPSAFE
471 */
472/* ARGSUSED */
473int
474settimeofday(struct thread *td, struct settimeofday_args *uap)
475{
476	struct timeval atv, *tvp;
477	struct timezone atz, *tzp;
478	int error;
479
480	if (uap->tv) {
481		error = copyin(uap->tv, &atv, sizeof(atv));
482		if (error)
483			return (error);
484		tvp = &atv;
485	} else
486		tvp = NULL;
487	if (uap->tzp) {
488		error = copyin(uap->tzp, &atz, sizeof(atz));
489		if (error)
490			return (error);
491		tzp = &atz;
492	} else
493		tzp = NULL;
494	return (kern_settimeofday(td, tvp, tzp));
495}
496
497int
498kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
499{
500	int error;
501
502#ifdef MAC
503	error = mac_check_system_settime(td->td_ucred);
504	if (error)
505		return (error);
506#endif
507	error = suser(td);
508	if (error)
509		return (error);
510	/* Verify all parameters before changing time. */
511	if (tv) {
512		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
513			return (EINVAL);
514		error = settime(td, tv);
515	}
516	if (tzp && error == 0) {
517		tz_minuteswest = tzp->tz_minuteswest;
518		tz_dsttime = tzp->tz_dsttime;
519	}
520	return (error);
521}
522
523/*
524 * Get value of an interval timer.  The process virtual and
525 * profiling virtual time timers are kept in the p_stats area, since
526 * they can be swapped out.  These are kept internally in the
527 * way they are specified externally: in time until they expire.
528 *
529 * The real time interval timer is kept in the process table slot
530 * for the process, and its value (it_value) is kept as an
531 * absolute time rather than as a delta, so that it is easy to keep
532 * periodic real-time signals from drifting.
533 *
534 * Virtual time timers are processed in the hardclock() routine of
535 * kern_clock.c.  The real time timer is processed by a timeout
536 * routine, called from the softclock() routine.  Since a callout
537 * may be delayed in real time due to interrupt processing in the system,
538 * it is possible for the real time timeout routine (realitexpire, given below),
539 * to be delayed in real time past when it is supposed to occur.  It
540 * does not suffice, therefore, to reload the real timer .it_value from the
541 * real time timers .it_interval.  Rather, we compute the next time in
542 * absolute time the timer should go off.
543 */
544#ifndef _SYS_SYSPROTO_H_
545struct getitimer_args {
546	u_int	which;
547	struct	itimerval *itv;
548};
549#endif
550/*
551 * MPSAFE
552 */
553int
554getitimer(struct thread *td, struct getitimer_args *uap)
555{
556	struct itimerval aitv;
557	int error;
558
559	error = kern_getitimer(td, uap->which, &aitv);
560	if (error != 0)
561		return (error);
562	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
563}
564
565int
566kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
567{
568	struct proc *p = td->td_proc;
569	struct timeval ctv;
570
571	if (which > ITIMER_PROF)
572		return (EINVAL);
573
574	if (which == ITIMER_REAL) {
575		/*
576		 * Convert from absolute to relative time in .it_value
577		 * part of real time timer.  If time for real time timer
578		 * has passed return 0, else return difference between
579		 * current time and time for the timer to go off.
580		 */
581		PROC_LOCK(p);
582		*aitv = p->p_realtimer;
583		PROC_UNLOCK(p);
584		if (timevalisset(&aitv->it_value)) {
585			getmicrouptime(&ctv);
586			if (timevalcmp(&aitv->it_value, &ctv, <))
587				timevalclear(&aitv->it_value);
588			else
589				timevalsub(&aitv->it_value, &ctv);
590		}
591	} else {
592		mtx_lock_spin(&sched_lock);
593		*aitv = p->p_stats->p_timer[which];
594		mtx_unlock_spin(&sched_lock);
595	}
596	return (0);
597}
598
599#ifndef _SYS_SYSPROTO_H_
600struct setitimer_args {
601	u_int	which;
602	struct	itimerval *itv, *oitv;
603};
604#endif
605
606/*
607 * MPSAFE
608 */
609int
610setitimer(struct thread *td, struct setitimer_args *uap)
611{
612	struct itimerval aitv, oitv;
613	int error;
614
615	if (uap->itv == NULL) {
616		uap->itv = uap->oitv;
617		return (getitimer(td, (struct getitimer_args *)uap));
618	}
619
620	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
621		return (error);
622	error = kern_setitimer(td, uap->which, &aitv, &oitv);
623	if (error != 0 || uap->oitv == NULL)
624		return (error);
625	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
626}
627
628int
629kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
630    struct itimerval *oitv)
631{
632	struct proc *p = td->td_proc;
633	struct timeval ctv;
634
635	if (aitv == NULL)
636		return (kern_getitimer(td, which, oitv));
637
638	if (which > ITIMER_PROF)
639		return (EINVAL);
640	if (itimerfix(&aitv->it_value))
641		return (EINVAL);
642	if (!timevalisset(&aitv->it_value))
643		timevalclear(&aitv->it_interval);
644	else if (itimerfix(&aitv->it_interval))
645		return (EINVAL);
646
647	if (which == ITIMER_REAL) {
648		PROC_LOCK(p);
649		if (timevalisset(&p->p_realtimer.it_value))
650			callout_stop(&p->p_itcallout);
651		getmicrouptime(&ctv);
652		if (timevalisset(&aitv->it_value)) {
653			callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
654			    realitexpire, p);
655			timevaladd(&aitv->it_value, &ctv);
656		}
657		*oitv = p->p_realtimer;
658		p->p_realtimer = *aitv;
659		PROC_UNLOCK(p);
660		if (timevalisset(&oitv->it_value)) {
661			if (timevalcmp(&oitv->it_value, &ctv, <))
662				timevalclear(&oitv->it_value);
663			else
664				timevalsub(&oitv->it_value, &ctv);
665		}
666	} else {
667		mtx_lock_spin(&sched_lock);
668		*oitv = p->p_stats->p_timer[which];
669		p->p_stats->p_timer[which] = *aitv;
670		mtx_unlock_spin(&sched_lock);
671	}
672	return (0);
673}
674
675/*
676 * Real interval timer expired:
677 * send process whose timer expired an alarm signal.
678 * If time is not set up to reload, then just return.
679 * Else compute next time timer should go off which is > current time.
680 * This is where delay in processing this timeout causes multiple
681 * SIGALRM calls to be compressed into one.
682 * tvtohz() always adds 1 to allow for the time until the next clock
683 * interrupt being strictly less than 1 clock tick, but we don't want
684 * that here since we want to appear to be in sync with the clock
685 * interrupt even when we're delayed.
686 */
687void
688realitexpire(void *arg)
689{
690	struct proc *p;
691	struct timeval ctv, ntv;
692
693	p = (struct proc *)arg;
694	PROC_LOCK(p);
695	psignal(p, SIGALRM);
696	if (!timevalisset(&p->p_realtimer.it_interval)) {
697		timevalclear(&p->p_realtimer.it_value);
698		if (p->p_flag & P_WEXIT)
699			wakeup(&p->p_itcallout);
700		PROC_UNLOCK(p);
701		return;
702	}
703	for (;;) {
704		timevaladd(&p->p_realtimer.it_value,
705		    &p->p_realtimer.it_interval);
706		getmicrouptime(&ctv);
707		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
708			ntv = p->p_realtimer.it_value;
709			timevalsub(&ntv, &ctv);
710			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
711			    realitexpire, p);
712			PROC_UNLOCK(p);
713			return;
714		}
715	}
716	/*NOTREACHED*/
717}
718
719/*
720 * Check that a proposed value to load into the .it_value or
721 * .it_interval part of an interval timer is acceptable, and
722 * fix it to have at least minimal value (i.e. if it is less
723 * than the resolution of the clock, round it up.)
724 */
725int
726itimerfix(struct timeval *tv)
727{
728
729	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
730		return (EINVAL);
731	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
732		tv->tv_usec = tick;
733	return (0);
734}
735
736/*
737 * Decrement an interval timer by a specified number
738 * of microseconds, which must be less than a second,
739 * i.e. < 1000000.  If the timer expires, then reload
740 * it.  In this case, carry over (usec - old value) to
741 * reduce the value reloaded into the timer so that
742 * the timer does not drift.  This routine assumes
743 * that it is called in a context where the timers
744 * on which it is operating cannot change in value.
745 */
746int
747itimerdecr(struct itimerval *itp, int usec)
748{
749
750	if (itp->it_value.tv_usec < usec) {
751		if (itp->it_value.tv_sec == 0) {
752			/* expired, and already in next interval */
753			usec -= itp->it_value.tv_usec;
754			goto expire;
755		}
756		itp->it_value.tv_usec += 1000000;
757		itp->it_value.tv_sec--;
758	}
759	itp->it_value.tv_usec -= usec;
760	usec = 0;
761	if (timevalisset(&itp->it_value))
762		return (1);
763	/* expired, exactly at end of interval */
764expire:
765	if (timevalisset(&itp->it_interval)) {
766		itp->it_value = itp->it_interval;
767		itp->it_value.tv_usec -= usec;
768		if (itp->it_value.tv_usec < 0) {
769			itp->it_value.tv_usec += 1000000;
770			itp->it_value.tv_sec--;
771		}
772	} else
773		itp->it_value.tv_usec = 0;		/* sec is already 0 */
774	return (0);
775}
776
777/*
778 * Add and subtract routines for timevals.
779 * N.B.: subtract routine doesn't deal with
780 * results which are before the beginning,
781 * it just gets very confused in this case.
782 * Caveat emptor.
783 */
784void
785timevaladd(struct timeval *t1, const struct timeval *t2)
786{
787
788	t1->tv_sec += t2->tv_sec;
789	t1->tv_usec += t2->tv_usec;
790	timevalfix(t1);
791}
792
793void
794timevalsub(struct timeval *t1, const struct timeval *t2)
795{
796
797	t1->tv_sec -= t2->tv_sec;
798	t1->tv_usec -= t2->tv_usec;
799	timevalfix(t1);
800}
801
802static void
803timevalfix(struct timeval *t1)
804{
805
806	if (t1->tv_usec < 0) {
807		t1->tv_sec--;
808		t1->tv_usec += 1000000;
809	}
810	if (t1->tv_usec >= 1000000) {
811		t1->tv_sec++;
812		t1->tv_usec -= 1000000;
813	}
814}
815
816/*
817 * ratecheck(): simple time-based rate-limit checking.
818 */
819int
820ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
821{
822	struct timeval tv, delta;
823	int rv = 0;
824
825	getmicrouptime(&tv);		/* NB: 10ms precision */
826	delta = tv;
827	timevalsub(&delta, lasttime);
828
829	/*
830	 * check for 0,0 is so that the message will be seen at least once,
831	 * even if interval is huge.
832	 */
833	if (timevalcmp(&delta, mininterval, >=) ||
834	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
835		*lasttime = tv;
836		rv = 1;
837	}
838
839	return (rv);
840}
841
842/*
843 * ppsratecheck(): packets (or events) per second limitation.
844 *
845 * Return 0 if the limit is to be enforced (e.g. the caller
846 * should drop a packet because of the rate limitation).
847 *
848 * maxpps of 0 always causes zero to be returned.  maxpps of -1
849 * always causes 1 to be returned; this effectively defeats rate
850 * limiting.
851 *
852 * Note that we maintain the struct timeval for compatibility
853 * with other bsd systems.  We reuse the storage and just monitor
854 * clock ticks for minimal overhead.
855 */
856int
857ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
858{
859	int now;
860
861	/*
862	 * Reset the last time and counter if this is the first call
863	 * or more than a second has passed since the last update of
864	 * lasttime.
865	 */
866	now = ticks;
867	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
868		lasttime->tv_sec = now;
869		*curpps = 1;
870		return (maxpps != 0);
871	} else {
872		(*curpps)++;		/* NB: ignore potential overflow */
873		return (maxpps < 0 || *curpps < maxpps);
874	}
875}
876
877static void
878itimer_start(void)
879{
880	struct kclock rt_clock = {
881		.timer_create  = realtimer_create,
882		.timer_delete  = realtimer_delete,
883		.timer_settime = realtimer_settime,
884		.timer_gettime = realtimer_gettime,
885		.event_hook     = realtimer_event_hook
886	};
887
888	itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
889		NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
890	register_posix_clock(CLOCK_REALTIME,  &rt_clock);
891	register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
892	p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
893	p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
894	p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
895	EVENTHANDLER_REGISTER(process_exit, itimers_event_hook,
896		(void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
897	EVENTHANDLER_REGISTER(process_exec, itimers_event_hook,
898		(void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
899}
900
901int
902register_posix_clock(int clockid, struct kclock *clk)
903{
904	if ((unsigned)clockid >= MAX_CLOCKS) {
905		printf("%s: invalid clockid\n", __func__);
906		return (0);
907	}
908	posix_clocks[clockid] = *clk;
909	return (1);
910}
911
912static int
913itimer_init(void *mem, int size, int flags)
914{
915	struct itimer *it;
916
917	it = (struct itimer *)mem;
918	mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
919	return (0);
920}
921
922static void
923itimer_fini(void *mem, int size)
924{
925	struct itimer *it;
926
927	it = (struct itimer *)mem;
928	mtx_destroy(&it->it_mtx);
929}
930
931static void
932itimer_enter(struct itimer *it)
933{
934
935	mtx_assert(&it->it_mtx, MA_OWNED);
936	it->it_usecount++;
937}
938
939static void
940itimer_leave(struct itimer *it)
941{
942
943	mtx_assert(&it->it_mtx, MA_OWNED);
944	KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
945
946	if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
947		wakeup(it);
948}
949
950#ifndef _SYS_SYSPROTO_H_
951struct ktimer_create_args {
952	clockid_t clock_id;
953	struct sigevent * evp;
954	int * timerid;
955};
956#endif
957
958int
959ktimer_create(struct thread *td, struct ktimer_create_args *uap)
960{
961	struct sigevent *evp1, ev;
962	int id;
963	int error;
964
965	if (uap->evp != NULL) {
966		error = copyin(uap->evp, &ev, sizeof(ev));
967		if (error != 0)
968			return (error);
969		evp1 = &ev;
970	} else
971		evp1 = NULL;
972
973	error = kern_timer_create(td, uap->clock_id, evp1, &id, -1);
974
975	if (error == 0) {
976		error = copyout(&id, uap->timerid, sizeof(int));
977		if (error != 0)
978			kern_timer_delete(td, id);
979	}
980	return (error);
981}
982
983static int
984kern_timer_create(struct thread *td, clockid_t clock_id,
985	struct sigevent *evp, int *timerid, int preset_id)
986{
987	struct proc *p = td->td_proc;
988	struct itimer *it;
989	int id;
990	int error;
991
992	if (clock_id < 0 || clock_id >= MAX_CLOCKS)
993		return (EINVAL);
994
995	if (posix_clocks[clock_id].timer_create == NULL)
996		return (EINVAL);
997
998	if (evp != NULL) {
999		if (evp->sigev_notify != SIGEV_NONE &&
1000		    evp->sigev_notify != SIGEV_SIGNAL &&
1001		    evp->sigev_notify != SIGEV_THREAD_ID)
1002			return (EINVAL);
1003		if ((evp->sigev_notify == SIGEV_SIGNAL ||
1004		     evp->sigev_notify == SIGEV_THREAD_ID) &&
1005			!_SIG_VALID(evp->sigev_signo))
1006			return (EINVAL);
1007	}
1008
1009	if (p->p_itimers == NULL)
1010		itimers_alloc(p);
1011
1012	it = uma_zalloc(itimer_zone, M_WAITOK);
1013	it->it_flags = 0;
1014	it->it_usecount = 0;
1015	it->it_active = 0;
1016	timespecclear(&it->it_time.it_value);
1017	timespecclear(&it->it_time.it_interval);
1018	it->it_overrun = 0;
1019	it->it_overrun_last = 0;
1020	it->it_clockid = clock_id;
1021	it->it_timerid = -1;
1022	it->it_proc = p;
1023	ksiginfo_init(&it->it_ksi);
1024	it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1025	error = CLOCK_CALL(clock_id, timer_create, (it));
1026	if (error != 0)
1027		goto out;
1028
1029	PROC_LOCK(p);
1030	if (preset_id != -1) {
1031		KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1032		id = preset_id;
1033		if (p->p_itimers->its_timers[id] != NULL) {
1034			PROC_UNLOCK(p);
1035			error = 0;
1036			goto out;
1037		}
1038	} else {
1039		/*
1040		 * Find a free timer slot, skipping those reserved
1041		 * for setitimer().
1042		 */
1043		for (id = 3; id < TIMER_MAX; id++)
1044			if (p->p_itimers->its_timers[id] == NULL)
1045				break;
1046		if (id == TIMER_MAX) {
1047			PROC_UNLOCK(p);
1048			error = EAGAIN;
1049			goto out;
1050		}
1051	}
1052	it->it_timerid = id;
1053	p->p_itimers->its_timers[id] = it;
1054	if (evp != NULL)
1055		it->it_sigev = *evp;
1056	else {
1057		it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1058		switch (clock_id) {
1059		default:
1060		case CLOCK_REALTIME:
1061			it->it_sigev.sigev_signo = SIGALRM;
1062			break;
1063		case CLOCK_VIRTUAL:
1064 			it->it_sigev.sigev_signo = SIGVTALRM;
1065			break;
1066		case CLOCK_PROF:
1067			it->it_sigev.sigev_signo = SIGPROF;
1068			break;
1069		}
1070		it->it_sigev.sigev_value.sival_int = id;
1071	}
1072
1073	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1074	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1075		it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1076		it->it_ksi.ksi_code = SI_TIMER;
1077		it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1078		it->it_ksi.ksi_timerid = id;
1079	}
1080	PROC_UNLOCK(p);
1081	*timerid = id;
1082	return (0);
1083
1084out:
1085	ITIMER_LOCK(it);
1086	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1087	ITIMER_UNLOCK(it);
1088	uma_zfree(itimer_zone, it);
1089	return (error);
1090}
1091
1092#ifndef _SYS_SYSPROTO_H_
1093struct ktimer_delete_args {
1094	int timerid;
1095};
1096#endif
1097
1098int
1099ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1100{
1101	return (kern_timer_delete(td, uap->timerid));
1102}
1103
1104static struct itimer *
1105itimer_find(struct proc *p, int timerid, int include_deleting)
1106{
1107	struct itimer *it;
1108
1109	PROC_LOCK_ASSERT(p, MA_OWNED);
1110	if ((p->p_itimers == NULL) || (timerid >= TIMER_MAX) ||
1111	    (it = p->p_itimers->its_timers[timerid]) == NULL) {
1112		return (NULL);
1113	}
1114	ITIMER_LOCK(it);
1115	if (!include_deleting && (it->it_flags & ITF_DELETING) != 0) {
1116		ITIMER_UNLOCK(it);
1117		it = NULL;
1118	}
1119	return (it);
1120}
1121
1122static int
1123kern_timer_delete(struct thread *td, int timerid)
1124{
1125	struct proc *p = td->td_proc;
1126	struct itimer *it;
1127
1128	PROC_LOCK(p);
1129	it = itimer_find(p, timerid, 0);
1130	if (it == NULL) {
1131		PROC_UNLOCK(p);
1132		return (EINVAL);
1133	}
1134	PROC_UNLOCK(p);
1135
1136	it->it_flags |= ITF_DELETING;
1137	while (it->it_usecount > 0) {
1138		it->it_flags |= ITF_WANTED;
1139		msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1140	}
1141	it->it_flags &= ~ITF_WANTED;
1142	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1143	ITIMER_UNLOCK(it);
1144
1145	PROC_LOCK(p);
1146	if (KSI_ONQ(&it->it_ksi))
1147		sigqueue_take(&it->it_ksi);
1148	p->p_itimers->its_timers[timerid] = NULL;
1149	PROC_UNLOCK(p);
1150	uma_zfree(itimer_zone, it);
1151	return (0);
1152}
1153
1154#ifndef _SYS_SYSPROTO_H_
1155struct ktimer_settime_args {
1156	int timerid;
1157	int flags;
1158	const struct itimerspec * value;
1159	struct itimerspec * ovalue;
1160};
1161#endif
1162
1163int
1164ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1165{
1166	struct proc *p = td->td_proc;
1167	struct itimer *it;
1168	struct itimerspec val, oval, *ovalp;
1169	int error;
1170
1171	error = copyin(uap->value, &val, sizeof(val));
1172	if (error != 0)
1173		return (error);
1174
1175	if (uap->ovalue != NULL)
1176		ovalp = &oval;
1177	else
1178		ovalp = NULL;
1179
1180	PROC_LOCK(p);
1181	if (uap->timerid < 3 ||
1182	    (it = itimer_find(p, uap->timerid, 0)) == NULL) {
1183		PROC_UNLOCK(p);
1184		error = EINVAL;
1185	} else {
1186		PROC_UNLOCK(p);
1187		itimer_enter(it);
1188		error = CLOCK_CALL(it->it_clockid, timer_settime,
1189				(it, uap->flags, &val, ovalp));
1190		itimer_leave(it);
1191		ITIMER_UNLOCK(it);
1192	}
1193	if (error == 0 && uap->ovalue != NULL)
1194		error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1195	return (error);
1196}
1197
1198#ifndef _SYS_SYSPROTO_H_
1199struct ktimer_gettime_args {
1200	int timerid;
1201	struct itimerspec * value;
1202};
1203#endif
1204
1205int
1206ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1207{
1208	struct proc *p = td->td_proc;
1209	struct itimer *it;
1210	struct itimerspec val;
1211	int error;
1212
1213	PROC_LOCK(p);
1214	if (uap->timerid < 3 ||
1215	   (it = itimer_find(p, uap->timerid, 0)) == NULL) {
1216		PROC_UNLOCK(p);
1217		error = EINVAL;
1218	} else {
1219		PROC_UNLOCK(p);
1220		itimer_enter(it);
1221		error = CLOCK_CALL(it->it_clockid, timer_gettime,
1222				(it, &val));
1223		itimer_leave(it);
1224		ITIMER_UNLOCK(it);
1225	}
1226	if (error == 0)
1227		error = copyout(&val, uap->value, sizeof(val));
1228	return (error);
1229}
1230
1231#ifndef _SYS_SYSPROTO_H_
1232struct timer_getoverrun_args {
1233	int timerid;
1234};
1235#endif
1236
1237int
1238ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1239{
1240	struct proc *p = td->td_proc;
1241	struct itimer *it;
1242	int error ;
1243
1244	PROC_LOCK(p);
1245	if (uap->timerid < 3 ||
1246	    (it = itimer_find(p, uap->timerid, 0)) == NULL) {
1247		PROC_UNLOCK(p);
1248		error = EINVAL;
1249	} else {
1250		td->td_retval[0] = it->it_overrun_last;
1251		ITIMER_UNLOCK(it);
1252		PROC_UNLOCK(p);
1253		error = 0;
1254	}
1255	return (error);
1256}
1257
1258static int
1259realtimer_create(struct itimer *it)
1260{
1261	callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1262	return (0);
1263}
1264
1265static int
1266realtimer_delete(struct itimer *it)
1267{
1268	mtx_assert(&it->it_mtx, MA_OWNED);
1269	callout_stop(&it->it_callout);
1270	return (0);
1271}
1272
1273static int
1274realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1275{
1276	struct timespec cts;
1277
1278	mtx_assert(&it->it_mtx, MA_OWNED);
1279
1280	realtimer_clocktime(it->it_clockid, &cts);
1281	*ovalue = it->it_time;
1282	if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1283		timespecsub(&ovalue->it_value, &cts);
1284		if (ovalue->it_value.tv_sec < 0 ||
1285		    (ovalue->it_value.tv_sec == 0 &&
1286		     ovalue->it_value.tv_nsec == 0)) {
1287			ovalue->it_value.tv_sec  = 0;
1288			ovalue->it_value.tv_nsec = 1;
1289		}
1290	}
1291	return (0);
1292}
1293
1294static int
1295realtimer_settime(struct itimer *it, int flags,
1296	struct itimerspec *value, struct itimerspec *ovalue)
1297{
1298	struct timespec cts, ts;
1299	struct timeval tv;
1300	struct itimerspec val;
1301
1302	mtx_assert(&it->it_mtx, MA_OWNED);
1303
1304	val = *value;
1305	if (itimespecfix(&val.it_value))
1306		return (EINVAL);
1307
1308	if (timespecisset(&val.it_value)) {
1309		if (itimespecfix(&val.it_interval))
1310			return (EINVAL);
1311	} else {
1312		timespecclear(&val.it_interval);
1313	}
1314
1315	if (ovalue != NULL)
1316		realtimer_gettime(it, ovalue);
1317
1318	it->it_time = val;
1319	if (timespecisset(&val.it_value)) {
1320		realtimer_clocktime(it->it_clockid, &cts);
1321		ts = val.it_value;
1322		if ((flags & TIMER_ABSTIME) == 0) {
1323			/* Convert to absolute time. */
1324			timespecadd(&it->it_time.it_value, &cts);
1325		} else {
1326			timespecsub(&ts, &cts);
1327			/*
1328			 * We don't care if ts is negative, tztohz will
1329			 * fix it.
1330			 */
1331		}
1332		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1333		callout_reset(&it->it_callout, tvtohz(&tv),
1334			realtimer_expire, it);
1335	} else {
1336		callout_stop(&it->it_callout);
1337	}
1338
1339	return (0);
1340}
1341
1342static void
1343realtimer_clocktime(clockid_t id, struct timespec *ts)
1344{
1345	if (id == CLOCK_REALTIME)
1346		getnanotime(ts);
1347	else	/* CLOCK_MONOTONIC */
1348		getnanouptime(ts);
1349}
1350
1351int
1352itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1353{
1354	struct itimer *it;
1355
1356	PROC_LOCK_ASSERT(p, MA_OWNED);
1357	it = itimer_find(p, timerid, 0);
1358	if (it != NULL) {
1359		ksi->ksi_overrun = it->it_overrun;
1360		it->it_overrun_last = it->it_overrun;
1361		it->it_overrun = 0;
1362		ITIMER_UNLOCK(it);
1363		return (0);
1364	}
1365	return (EINVAL);
1366}
1367
1368int
1369itimespecfix(struct timespec *ts)
1370{
1371
1372	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1373		return (EINVAL);
1374	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1375		ts->tv_nsec = tick * 1000;
1376	return (0);
1377}
1378
1379static void
1380realtimer_event_hook(struct proc *p, clockid_t clock_id, int event)
1381{
1382	struct itimers *its;
1383	struct itimer  *it;
1384	int i;
1385
1386	/*
1387	 * Timer 0 (ITIMER_REAL) is XSI interval timer, according to POSIX
1388	 * specification, it should be inherited by new process image.
1389	 */
1390	if (event == ITIMER_EV_EXEC)
1391		i = 1;
1392	else
1393		i = 0;
1394	its = p->p_itimers;
1395	for (; i < TIMER_MAX; i++) {
1396		if ((it = its->its_timers[i]) != NULL &&
1397		     it->it_clockid == clock_id) {
1398			ITIMER_LOCK(it);
1399			callout_stop(&it->it_callout);
1400			ITIMER_UNLOCK(it);
1401		}
1402	}
1403}
1404
1405/* Timeout callback for realtime timer */
1406static void
1407realtimer_expire(void *arg)
1408{
1409	struct timespec cts, ts;
1410	struct timeval tv;
1411	struct itimer *it;
1412	struct proc *p;
1413
1414	it = (struct itimer *)arg;
1415	p = it->it_proc;
1416
1417	realtimer_clocktime(it->it_clockid, &cts);
1418	/* Only fire if time is reached. */
1419	if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1420		if (timespecisset(&it->it_time.it_interval)) {
1421			timespecadd(&it->it_time.it_value,
1422				    &it->it_time.it_interval);
1423			while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1424				if (it->it_overrun < INT_MAX)
1425					it->it_overrun++;
1426				else
1427					it->it_ksi.ksi_errno = ERANGE;
1428				timespecadd(&it->it_time.it_value,
1429					    &it->it_time.it_interval);
1430			}
1431		} else {
1432			/* single shot timer ? */
1433			timespecclear(&it->it_time.it_value);
1434		}
1435		if (timespecisset(&it->it_time.it_value)) {
1436			ts = it->it_time.it_value;
1437			timespecsub(&ts, &cts);
1438			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1439			callout_reset(&it->it_callout, tvtohz(&tv),
1440				 realtimer_expire, it);
1441		}
1442		ITIMER_UNLOCK(it);
1443		itimer_fire(it);
1444		ITIMER_LOCK(it);
1445	} else if (timespecisset(&it->it_time.it_value)) {
1446		ts = it->it_time.it_value;
1447		timespecsub(&ts, &cts);
1448		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1449		callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1450 			it);
1451	}
1452}
1453
1454void
1455itimer_fire(struct itimer *it)
1456{
1457	struct proc *p = it->it_proc;
1458	int ret;
1459
1460	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1461	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1462		PROC_LOCK(p);
1463		if (!KSI_ONQ(&it->it_ksi)) {
1464			it->it_ksi.ksi_errno = 0;
1465			ret = psignal_event(p, &it->it_sigev, &it->it_ksi);
1466			if (__predict_false(ret != 0)) {
1467				it->it_overrun++;
1468				/*
1469				 * Broken userland code, thread went
1470				 * away, disarm the timer.
1471				 */
1472				if (ret == ESRCH) {
1473					ITIMER_LOCK(it);
1474					timespecclear(&it->it_time.it_value);
1475					timespecclear(&it->it_time.it_interval);
1476					callout_stop(&it->it_callout);
1477					ITIMER_UNLOCK(it);
1478				}
1479			}
1480		} else {
1481			if (it->it_overrun < INT_MAX)
1482				it->it_overrun++;
1483			else
1484				it->it_ksi.ksi_errno = ERANGE;
1485		}
1486		PROC_UNLOCK(p);
1487	}
1488}
1489
1490static void
1491itimers_alloc(struct proc *p)
1492{
1493	struct itimers *its;
1494	int i;
1495
1496	its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1497	LIST_INIT(&its->its_virtual);
1498	LIST_INIT(&its->its_prof);
1499	TAILQ_INIT(&its->its_worklist);
1500	for (i = 0; i < TIMER_MAX; i++)
1501		its->its_timers[i] = NULL;
1502	PROC_LOCK(p);
1503	if (p->p_itimers == NULL) {
1504		p->p_itimers = its;
1505		PROC_UNLOCK(p);
1506	}
1507	else {
1508		PROC_UNLOCK(p);
1509		free(its, M_SUBPROC);
1510	}
1511}
1512
1513/* Clean up timers when some process events are being triggered. */
1514static void
1515itimers_event_hook(void *arg, struct proc *p)
1516{
1517	struct itimers *its;
1518	struct itimer *it;
1519	int event = (int)(intptr_t)arg;
1520	int i;
1521
1522	if (p->p_itimers != NULL) {
1523		its = p->p_itimers;
1524		for (i = 0; i < MAX_CLOCKS; ++i) {
1525			if (posix_clocks[i].event_hook != NULL)
1526				CLOCK_CALL(i, event_hook, (p, i, event));
1527		}
1528		/*
1529		 * According to susv3, XSI interval timers should be inherited
1530		 * by new image.
1531		 */
1532		if (event == ITIMER_EV_EXEC)
1533			i = 3;
1534		else if (event == ITIMER_EV_EXIT)
1535			i = 0;
1536		else
1537			panic("unhandled event");
1538		for (; i < TIMER_MAX; ++i) {
1539			if ((it = its->its_timers[i]) != NULL) {
1540				PROC_LOCK(p);
1541				if (KSI_ONQ(&it->it_ksi))
1542					sigqueue_take(&it->it_ksi);
1543				PROC_UNLOCK(p);
1544				uma_zfree(itimer_zone, its->its_timers[i]);
1545				its->its_timers[i] = NULL;
1546			}
1547		}
1548		if (its->its_timers[0] == NULL &&
1549		    its->its_timers[1] == NULL &&
1550		    its->its_timers[2] == NULL) {
1551			free(its, M_SUBPROC);
1552			p->p_itimers = NULL;
1553		}
1554	}
1555}
1556