kern_time.c revision 151357
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_time.c 151357 2005-10-15 02:54:18Z ps $");
34
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/sysproto.h>
42#include <sys/resourcevar.h>
43#include <sys/signalvar.h>
44#include <sys/kernel.h>
45#include <sys/mac.h>
46#include <sys/syscallsubr.h>
47#include <sys/sysent.h>
48#include <sys/proc.h>
49#include <sys/time.h>
50#include <sys/timetc.h>
51#include <sys/vnode.h>
52
53#include <vm/vm.h>
54#include <vm/vm_extern.h>
55
56int tz_minuteswest;
57int tz_dsttime;
58
59/*
60 * Time of day and interval timer support.
61 *
62 * These routines provide the kernel entry points to get and set
63 * the time-of-day and per-process interval timers.  Subroutines
64 * here provide support for adding and subtracting timeval structures
65 * and decrementing interval timers, optionally reloading the interval
66 * timers when they expire.
67 */
68
69static int	settime(struct thread *, struct timeval *);
70static void	timevalfix(struct timeval *);
71static void	no_lease_updatetime(int);
72
73static void
74no_lease_updatetime(deltat)
75	int deltat;
76{
77}
78
79void (*lease_updatetime)(int)  = no_lease_updatetime;
80
81static int
82settime(struct thread *td, struct timeval *tv)
83{
84	struct timeval delta, tv1, tv2;
85	static struct timeval maxtime, laststep;
86	struct timespec ts;
87	int s;
88
89	s = splclock();
90	microtime(&tv1);
91	delta = *tv;
92	timevalsub(&delta, &tv1);
93
94	/*
95	 * If the system is secure, we do not allow the time to be
96	 * set to a value earlier than 1 second less than the highest
97	 * time we have yet seen. The worst a miscreant can do in
98	 * this circumstance is "freeze" time. He couldn't go
99	 * back to the past.
100	 *
101	 * We similarly do not allow the clock to be stepped more
102	 * than one second, nor more than once per second. This allows
103	 * a miscreant to make the clock march double-time, but no worse.
104	 */
105	if (securelevel_gt(td->td_ucred, 1) != 0) {
106		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
107			/*
108			 * Update maxtime to latest time we've seen.
109			 */
110			if (tv1.tv_sec > maxtime.tv_sec)
111				maxtime = tv1;
112			tv2 = *tv;
113			timevalsub(&tv2, &maxtime);
114			if (tv2.tv_sec < -1) {
115				tv->tv_sec = maxtime.tv_sec - 1;
116				printf("Time adjustment clamped to -1 second\n");
117			}
118		} else {
119			if (tv1.tv_sec == laststep.tv_sec) {
120				splx(s);
121				return (EPERM);
122			}
123			if (delta.tv_sec > 1) {
124				tv->tv_sec = tv1.tv_sec + 1;
125				printf("Time adjustment clamped to +1 second\n");
126			}
127			laststep = *tv;
128		}
129	}
130
131	ts.tv_sec = tv->tv_sec;
132	ts.tv_nsec = tv->tv_usec * 1000;
133	mtx_lock(&Giant);
134	tc_setclock(&ts);
135	(void) splsoftclock();
136	lease_updatetime(delta.tv_sec);
137	splx(s);
138	resettodr();
139	mtx_unlock(&Giant);
140	return (0);
141}
142
143#ifndef _SYS_SYSPROTO_H_
144struct clock_gettime_args {
145	clockid_t clock_id;
146	struct	timespec *tp;
147};
148#endif
149
150/*
151 * MPSAFE
152 */
153/* ARGSUSED */
154int
155clock_gettime(struct thread *td, struct clock_gettime_args *uap)
156{
157	struct timespec ats;
158	int error;
159
160	error = kern_clock_gettime(td, uap->clock_id, &ats);
161	if (error == 0)
162		error = copyout(&ats, uap->tp, sizeof(ats));
163
164	return (error);
165}
166
167int
168kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
169{
170	struct timeval sys, user;
171	struct proc *p;
172
173	p = td->td_proc;
174	switch (clock_id) {
175	case CLOCK_REALTIME:
176		nanotime(ats);
177		break;
178	case CLOCK_VIRTUAL:
179		PROC_LOCK(p);
180		calcru(p, &user, &sys);
181		PROC_UNLOCK(p);
182		TIMEVAL_TO_TIMESPEC(&user, ats);
183		break;
184	case CLOCK_PROF:
185		PROC_LOCK(p);
186		calcru(p, &user, &sys);
187		PROC_UNLOCK(p);
188		timevaladd(&user, &sys);
189		TIMEVAL_TO_TIMESPEC(&user, ats);
190		break;
191	case CLOCK_MONOTONIC:
192		nanouptime(ats);
193		break;
194	default:
195		return (EINVAL);
196	}
197	return (0);
198}
199
200#ifndef _SYS_SYSPROTO_H_
201struct clock_settime_args {
202	clockid_t clock_id;
203	const struct	timespec *tp;
204};
205#endif
206
207/*
208 * MPSAFE
209 */
210/* ARGSUSED */
211int
212clock_settime(struct thread *td, struct clock_settime_args *uap)
213{
214	struct timespec ats;
215	int error;
216
217	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
218		return (error);
219	return (kern_clock_settime(td, uap->clock_id, &ats));
220}
221
222int
223kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
224{
225	struct timeval atv;
226	int error;
227
228#ifdef MAC
229	error = mac_check_system_settime(td->td_ucred);
230	if (error)
231		return (error);
232#endif
233	if ((error = suser(td)) != 0)
234		return (error);
235	if (clock_id != CLOCK_REALTIME)
236		return (EINVAL);
237	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
238		return (EINVAL);
239	/* XXX Don't convert nsec->usec and back */
240	TIMESPEC_TO_TIMEVAL(&atv, ats);
241	error = settime(td, &atv);
242	return (error);
243}
244
245#ifndef _SYS_SYSPROTO_H_
246struct clock_getres_args {
247	clockid_t clock_id;
248	struct	timespec *tp;
249};
250#endif
251
252int
253clock_getres(struct thread *td, struct clock_getres_args *uap)
254{
255	struct timespec ts;
256	int error;
257
258	if (uap->tp == NULL)
259		return (0);
260
261	error = kern_clock_getres(td, uap->clock_id, &ts);
262	if (error == 0)
263		error = copyout(&ts, uap->tp, sizeof(ts));
264	return (error);
265}
266
267int
268kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
269{
270
271	ts->tv_sec = 0;
272	switch (clock_id) {
273	case CLOCK_REALTIME:
274	case CLOCK_MONOTONIC:
275		/*
276		 * Round up the result of the division cheaply by adding 1.
277		 * Rounding up is especially important if rounding down
278		 * would give 0.  Perfect rounding is unimportant.
279		 */
280		ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
281		break;
282	case CLOCK_VIRTUAL:
283	case CLOCK_PROF:
284		/* Accurately round up here because we can do so cheaply. */
285		ts->tv_nsec = (1000000000 + hz - 1) / hz;
286		break;
287	default:
288		return (EINVAL);
289	}
290	return (0);
291}
292
293static int nanowait;
294
295int
296kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
297{
298	struct timespec ts, ts2, ts3;
299	struct timeval tv;
300	int error;
301
302	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
303		return (EINVAL);
304	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
305		return (0);
306	getnanouptime(&ts);
307	timespecadd(&ts, rqt);
308	TIMESPEC_TO_TIMEVAL(&tv, rqt);
309	for (;;) {
310		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
311		    tvtohz(&tv));
312		getnanouptime(&ts2);
313		if (error != EWOULDBLOCK) {
314			if (error == ERESTART)
315				error = EINTR;
316			if (rmt != NULL) {
317				timespecsub(&ts, &ts2);
318				if (ts.tv_sec < 0)
319					timespecclear(&ts);
320				*rmt = ts;
321			}
322			return (error);
323		}
324		if (timespeccmp(&ts2, &ts, >=))
325			return (0);
326		ts3 = ts;
327		timespecsub(&ts3, &ts2);
328		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
329	}
330}
331
332#ifndef _SYS_SYSPROTO_H_
333struct nanosleep_args {
334	struct	timespec *rqtp;
335	struct	timespec *rmtp;
336};
337#endif
338
339/*
340 * MPSAFE
341 */
342/* ARGSUSED */
343int
344nanosleep(struct thread *td, struct nanosleep_args *uap)
345{
346	struct timespec rmt, rqt;
347	int error;
348
349	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
350	if (error)
351		return (error);
352
353	if (uap->rmtp &&
354	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
355			return (EFAULT);
356	error = kern_nanosleep(td, &rqt, &rmt);
357	if (error && uap->rmtp) {
358		int error2;
359
360		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
361		if (error2)
362			error = error2;
363	}
364	return (error);
365}
366
367#ifndef _SYS_SYSPROTO_H_
368struct gettimeofday_args {
369	struct	timeval *tp;
370	struct	timezone *tzp;
371};
372#endif
373/*
374 * MPSAFE
375 */
376/* ARGSUSED */
377int
378gettimeofday(struct thread *td, struct gettimeofday_args *uap)
379{
380	struct timeval atv;
381	struct timezone rtz;
382	int error = 0;
383
384	if (uap->tp) {
385		microtime(&atv);
386		error = copyout(&atv, uap->tp, sizeof (atv));
387	}
388	if (error == 0 && uap->tzp != NULL) {
389		rtz.tz_minuteswest = tz_minuteswest;
390		rtz.tz_dsttime = tz_dsttime;
391		error = copyout(&rtz, uap->tzp, sizeof (rtz));
392	}
393	return (error);
394}
395
396#ifndef _SYS_SYSPROTO_H_
397struct settimeofday_args {
398	struct	timeval *tv;
399	struct	timezone *tzp;
400};
401#endif
402/*
403 * MPSAFE
404 */
405/* ARGSUSED */
406int
407settimeofday(struct thread *td, struct settimeofday_args *uap)
408{
409	struct timeval atv, *tvp;
410	struct timezone atz, *tzp;
411	int error;
412
413	if (uap->tv) {
414		error = copyin(uap->tv, &atv, sizeof(atv));
415		if (error)
416			return (error);
417		tvp = &atv;
418	} else
419		tvp = NULL;
420	if (uap->tzp) {
421		error = copyin(uap->tzp, &atz, sizeof(atz));
422		if (error)
423			return (error);
424		tzp = &atz;
425	} else
426		tzp = NULL;
427	return (kern_settimeofday(td, tvp, tzp));
428}
429
430int
431kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
432{
433	int error;
434
435#ifdef MAC
436	error = mac_check_system_settime(td->td_ucred);
437	if (error)
438		return (error);
439#endif
440	error = suser(td);
441	if (error)
442		return (error);
443	/* Verify all parameters before changing time. */
444	if (tv) {
445		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
446			return (EINVAL);
447		error = settime(td, tv);
448	}
449	if (tzp && error == 0) {
450		tz_minuteswest = tzp->tz_minuteswest;
451		tz_dsttime = tzp->tz_dsttime;
452	}
453	return (error);
454}
455
456/*
457 * Get value of an interval timer.  The process virtual and
458 * profiling virtual time timers are kept in the p_stats area, since
459 * they can be swapped out.  These are kept internally in the
460 * way they are specified externally: in time until they expire.
461 *
462 * The real time interval timer is kept in the process table slot
463 * for the process, and its value (it_value) is kept as an
464 * absolute time rather than as a delta, so that it is easy to keep
465 * periodic real-time signals from drifting.
466 *
467 * Virtual time timers are processed in the hardclock() routine of
468 * kern_clock.c.  The real time timer is processed by a timeout
469 * routine, called from the softclock() routine.  Since a callout
470 * may be delayed in real time due to interrupt processing in the system,
471 * it is possible for the real time timeout routine (realitexpire, given below),
472 * to be delayed in real time past when it is supposed to occur.  It
473 * does not suffice, therefore, to reload the real timer .it_value from the
474 * real time timers .it_interval.  Rather, we compute the next time in
475 * absolute time the timer should go off.
476 */
477#ifndef _SYS_SYSPROTO_H_
478struct getitimer_args {
479	u_int	which;
480	struct	itimerval *itv;
481};
482#endif
483/*
484 * MPSAFE
485 */
486int
487getitimer(struct thread *td, struct getitimer_args *uap)
488{
489	struct itimerval aitv;
490	int error;
491
492	error = kern_getitimer(td, uap->which, &aitv);
493	if (error != 0)
494		return (error);
495	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
496}
497
498int
499kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
500{
501	struct proc *p = td->td_proc;
502	struct timeval ctv;
503
504	if (which > ITIMER_PROF)
505		return (EINVAL);
506
507	if (which == ITIMER_REAL) {
508		/*
509		 * Convert from absolute to relative time in .it_value
510		 * part of real time timer.  If time for real time timer
511		 * has passed return 0, else return difference between
512		 * current time and time for the timer to go off.
513		 */
514		PROC_LOCK(p);
515		*aitv = p->p_realtimer;
516		PROC_UNLOCK(p);
517		if (timevalisset(&aitv->it_value)) {
518			getmicrouptime(&ctv);
519			if (timevalcmp(&aitv->it_value, &ctv, <))
520				timevalclear(&aitv->it_value);
521			else
522				timevalsub(&aitv->it_value, &ctv);
523		}
524	} else {
525		mtx_lock_spin(&sched_lock);
526		*aitv = p->p_stats->p_timer[which];
527		mtx_unlock_spin(&sched_lock);
528	}
529	return (0);
530}
531
532#ifndef _SYS_SYSPROTO_H_
533struct setitimer_args {
534	u_int	which;
535	struct	itimerval *itv, *oitv;
536};
537#endif
538
539/*
540 * MPSAFE
541 */
542int
543setitimer(struct thread *td, struct setitimer_args *uap)
544{
545	struct itimerval aitv, oitv;
546	int error;
547
548	if (uap->itv == NULL) {
549		uap->itv = uap->oitv;
550		return (getitimer(td, (struct getitimer_args *)uap));
551	}
552
553	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
554		return (error);
555	error = kern_setitimer(td, uap->which, &aitv, &oitv);
556	if (error != 0 || uap->oitv == NULL)
557		return (error);
558	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
559}
560
561int
562kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
563    struct itimerval *oitv)
564{
565	struct proc *p = td->td_proc;
566	struct timeval ctv;
567
568	if (aitv == NULL)
569		return (kern_getitimer(td, which, oitv));
570
571	if (which > ITIMER_PROF)
572		return (EINVAL);
573	if (itimerfix(&aitv->it_value))
574		return (EINVAL);
575	if (!timevalisset(&aitv->it_value))
576		timevalclear(&aitv->it_interval);
577	else if (itimerfix(&aitv->it_interval))
578		return (EINVAL);
579
580	if (which == ITIMER_REAL) {
581		PROC_LOCK(p);
582		if (timevalisset(&p->p_realtimer.it_value))
583			callout_stop(&p->p_itcallout);
584		getmicrouptime(&ctv);
585		if (timevalisset(&aitv->it_value)) {
586			callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
587			    realitexpire, p);
588			timevaladd(&aitv->it_value, &ctv);
589		}
590		*oitv = p->p_realtimer;
591		p->p_realtimer = *aitv;
592		PROC_UNLOCK(p);
593		if (timevalisset(&oitv->it_value)) {
594			if (timevalcmp(&oitv->it_value, &ctv, <))
595				timevalclear(&oitv->it_value);
596			else
597				timevalsub(&oitv->it_value, &ctv);
598		}
599	} else {
600		mtx_lock_spin(&sched_lock);
601		*oitv = p->p_stats->p_timer[which];
602		p->p_stats->p_timer[which] = *aitv;
603		mtx_unlock_spin(&sched_lock);
604	}
605	return (0);
606}
607
608/*
609 * Real interval timer expired:
610 * send process whose timer expired an alarm signal.
611 * If time is not set up to reload, then just return.
612 * Else compute next time timer should go off which is > current time.
613 * This is where delay in processing this timeout causes multiple
614 * SIGALRM calls to be compressed into one.
615 * tvtohz() always adds 1 to allow for the time until the next clock
616 * interrupt being strictly less than 1 clock tick, but we don't want
617 * that here since we want to appear to be in sync with the clock
618 * interrupt even when we're delayed.
619 */
620void
621realitexpire(void *arg)
622{
623	struct proc *p;
624	struct timeval ctv, ntv;
625
626	p = (struct proc *)arg;
627	PROC_LOCK(p);
628	psignal(p, SIGALRM);
629	if (!timevalisset(&p->p_realtimer.it_interval)) {
630		timevalclear(&p->p_realtimer.it_value);
631		if (p->p_flag & P_WEXIT)
632			wakeup(&p->p_itcallout);
633		PROC_UNLOCK(p);
634		return;
635	}
636	for (;;) {
637		timevaladd(&p->p_realtimer.it_value,
638		    &p->p_realtimer.it_interval);
639		getmicrouptime(&ctv);
640		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
641			ntv = p->p_realtimer.it_value;
642			timevalsub(&ntv, &ctv);
643			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
644			    realitexpire, p);
645			PROC_UNLOCK(p);
646			return;
647		}
648	}
649	/*NOTREACHED*/
650}
651
652/*
653 * Check that a proposed value to load into the .it_value or
654 * .it_interval part of an interval timer is acceptable, and
655 * fix it to have at least minimal value (i.e. if it is less
656 * than the resolution of the clock, round it up.)
657 */
658int
659itimerfix(struct timeval *tv)
660{
661
662	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
663	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
664		return (EINVAL);
665	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
666		tv->tv_usec = tick;
667	return (0);
668}
669
670/*
671 * Decrement an interval timer by a specified number
672 * of microseconds, which must be less than a second,
673 * i.e. < 1000000.  If the timer expires, then reload
674 * it.  In this case, carry over (usec - old value) to
675 * reduce the value reloaded into the timer so that
676 * the timer does not drift.  This routine assumes
677 * that it is called in a context where the timers
678 * on which it is operating cannot change in value.
679 */
680int
681itimerdecr(struct itimerval *itp, int usec)
682{
683
684	if (itp->it_value.tv_usec < usec) {
685		if (itp->it_value.tv_sec == 0) {
686			/* expired, and already in next interval */
687			usec -= itp->it_value.tv_usec;
688			goto expire;
689		}
690		itp->it_value.tv_usec += 1000000;
691		itp->it_value.tv_sec--;
692	}
693	itp->it_value.tv_usec -= usec;
694	usec = 0;
695	if (timevalisset(&itp->it_value))
696		return (1);
697	/* expired, exactly at end of interval */
698expire:
699	if (timevalisset(&itp->it_interval)) {
700		itp->it_value = itp->it_interval;
701		itp->it_value.tv_usec -= usec;
702		if (itp->it_value.tv_usec < 0) {
703			itp->it_value.tv_usec += 1000000;
704			itp->it_value.tv_sec--;
705		}
706	} else
707		itp->it_value.tv_usec = 0;		/* sec is already 0 */
708	return (0);
709}
710
711/*
712 * Add and subtract routines for timevals.
713 * N.B.: subtract routine doesn't deal with
714 * results which are before the beginning,
715 * it just gets very confused in this case.
716 * Caveat emptor.
717 */
718void
719timevaladd(struct timeval *t1, const struct timeval *t2)
720{
721
722	t1->tv_sec += t2->tv_sec;
723	t1->tv_usec += t2->tv_usec;
724	timevalfix(t1);
725}
726
727void
728timevalsub(struct timeval *t1, const struct timeval *t2)
729{
730
731	t1->tv_sec -= t2->tv_sec;
732	t1->tv_usec -= t2->tv_usec;
733	timevalfix(t1);
734}
735
736static void
737timevalfix(struct timeval *t1)
738{
739
740	if (t1->tv_usec < 0) {
741		t1->tv_sec--;
742		t1->tv_usec += 1000000;
743	}
744	if (t1->tv_usec >= 1000000) {
745		t1->tv_sec++;
746		t1->tv_usec -= 1000000;
747	}
748}
749
750/*
751 * ratecheck(): simple time-based rate-limit checking.
752 */
753int
754ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
755{
756	struct timeval tv, delta;
757	int rv = 0;
758
759	getmicrouptime(&tv);		/* NB: 10ms precision */
760	delta = tv;
761	timevalsub(&delta, lasttime);
762
763	/*
764	 * check for 0,0 is so that the message will be seen at least once,
765	 * even if interval is huge.
766	 */
767	if (timevalcmp(&delta, mininterval, >=) ||
768	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
769		*lasttime = tv;
770		rv = 1;
771	}
772
773	return (rv);
774}
775
776/*
777 * ppsratecheck(): packets (or events) per second limitation.
778 *
779 * Return 0 if the limit is to be enforced (e.g. the caller
780 * should drop a packet because of the rate limitation).
781 *
782 * maxpps of 0 always causes zero to be returned.  maxpps of -1
783 * always causes 1 to be returned; this effectively defeats rate
784 * limiting.
785 *
786 * Note that we maintain the struct timeval for compatibility
787 * with other bsd systems.  We reuse the storage and just monitor
788 * clock ticks for minimal overhead.
789 */
790int
791ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
792{
793	int now;
794
795	/*
796	 * Reset the last time and counter if this is the first call
797	 * or more than a second has passed since the last update of
798	 * lasttime.
799	 */
800	now = ticks;
801	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
802		lasttime->tv_sec = now;
803		*curpps = 1;
804		return (maxpps != 0);
805	} else {
806		(*curpps)++;		/* NB: ignore potential overflow */
807		return (maxpps < 0 || *curpps < maxpps);
808	}
809}
810