1/*-
2 * Generic routines for LSI Fusion adapters.
3 * FreeBSD Version.
4 *
5 * Copyright (c) 2000, 2001 by Greg Ansley
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice immediately at the beginning of the file, without modification,
12 *    this list of conditions, and the following disclaimer.
13 * 2. The name of the author may not be used to endorse or promote products
14 *    derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28/*-
29 * Copyright (c) 2002, 2006 by Matthew Jacob
30 * All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions are
34 * met:
35 * 1. Redistributions of source code must retain the above copyright
36 *    notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38 *    substantially similar to the "NO WARRANTY" disclaimer below
39 *    ("Disclaimer") and any redistribution must be conditioned upon including
40 *    a substantially similar Disclaimer requirement for further binary
41 *    redistribution.
42 * 3. Neither the names of the above listed copyright holders nor the names
43 *    of any contributors may be used to endorse or promote products derived
44 *    from this software without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57 *
58 * Support from Chris Ellsworth in order to make SAS adapters work
59 * is gratefully acknowledged.
60 *
61 *
62 * Support from LSI-Logic has also gone a great deal toward making this a
63 * workable subsystem and is gratefully acknowledged.
64 */
65/*-
66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67 * Copyright (c) 2005, WHEEL Sp. z o.o.
68 * Copyright (c) 2004, 2005 Justin T. Gibbs
69 * All rights reserved.
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions are
73 * met:
74 * 1. Redistributions of source code must retain the above copyright
75 *    notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77 *    substantially similar to the "NO WARRANTY" disclaimer below
78 *    ("Disclaimer") and any redistribution must be conditioned upon including
79 *    a substantially similar Disclaimer requirement for further binary
80 *    redistribution.
81 * 3. Neither the names of the above listed copyright holders nor the names
82 *    of any contributors may be used to endorse or promote products derived
83 *    from this software without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96 */
97
98#include <sys/cdefs.h>
99__FBSDID("$FreeBSD$");
100
101#include <dev/mpt/mpt.h>
102#include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
103#include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
104
105#include <dev/mpt/mpilib/mpi.h>
106#include <dev/mpt/mpilib/mpi_ioc.h>
107#include <dev/mpt/mpilib/mpi_fc.h>
108#include <dev/mpt/mpilib/mpi_targ.h>
109
110#include <sys/sysctl.h>
111
112#define MPT_MAX_TRYS 3
113#define MPT_MAX_WAIT 300000
114
115static int maxwait_ack = 0;
116static int maxwait_int = 0;
117static int maxwait_state = 0;
118
119static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
120mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
121
122static mpt_reply_handler_t mpt_default_reply_handler;
123static mpt_reply_handler_t mpt_config_reply_handler;
124static mpt_reply_handler_t mpt_handshake_reply_handler;
125static mpt_reply_handler_t mpt_event_reply_handler;
126static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
127			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
128static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
129static int mpt_soft_reset(struct mpt_softc *mpt);
130static void mpt_hard_reset(struct mpt_softc *mpt);
131static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
132static void mpt_dma_buf_free(struct mpt_softc *mpt);
133static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
134static int mpt_enable_ioc(struct mpt_softc *mpt, int);
135
136/************************* Personality Module Support *************************/
137/*
138 * We include one extra entry that is guaranteed to be NULL
139 * to simplify our itterator.
140 */
141static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
142static __inline struct mpt_personality*
143	mpt_pers_find(struct mpt_softc *, u_int);
144static __inline struct mpt_personality*
145	mpt_pers_find_reverse(struct mpt_softc *, u_int);
146
147static __inline struct mpt_personality *
148mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
149{
150	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
151		("mpt_pers_find: starting position out of range"));
152
153	while (start_at < MPT_MAX_PERSONALITIES
154	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
155		start_at++;
156	}
157	return (mpt_personalities[start_at]);
158}
159
160/*
161 * Used infrequently, so no need to optimize like a forward
162 * traversal where we use the MAX+1 is guaranteed to be NULL
163 * trick.
164 */
165static __inline struct mpt_personality *
166mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
167{
168	while (start_at < MPT_MAX_PERSONALITIES
169	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
170		start_at--;
171	}
172	if (start_at < MPT_MAX_PERSONALITIES)
173		return (mpt_personalities[start_at]);
174	return (NULL);
175}
176
177#define MPT_PERS_FOREACH(mpt, pers)				\
178	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
179	     pers != NULL;					\
180	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
181
182#define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
183	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
184	     pers != NULL;						\
185	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
186
187static mpt_load_handler_t      mpt_stdload;
188static mpt_probe_handler_t     mpt_stdprobe;
189static mpt_attach_handler_t    mpt_stdattach;
190static mpt_enable_handler_t    mpt_stdenable;
191static mpt_ready_handler_t     mpt_stdready;
192static mpt_event_handler_t     mpt_stdevent;
193static mpt_reset_handler_t     mpt_stdreset;
194static mpt_shutdown_handler_t  mpt_stdshutdown;
195static mpt_detach_handler_t    mpt_stddetach;
196static mpt_unload_handler_t    mpt_stdunload;
197static struct mpt_personality mpt_default_personality =
198{
199	.load		= mpt_stdload,
200	.probe		= mpt_stdprobe,
201	.attach		= mpt_stdattach,
202	.enable		= mpt_stdenable,
203	.ready		= mpt_stdready,
204	.event		= mpt_stdevent,
205	.reset		= mpt_stdreset,
206	.shutdown	= mpt_stdshutdown,
207	.detach		= mpt_stddetach,
208	.unload		= mpt_stdunload
209};
210
211static mpt_load_handler_t      mpt_core_load;
212static mpt_attach_handler_t    mpt_core_attach;
213static mpt_enable_handler_t    mpt_core_enable;
214static mpt_reset_handler_t     mpt_core_ioc_reset;
215static mpt_event_handler_t     mpt_core_event;
216static mpt_shutdown_handler_t  mpt_core_shutdown;
217static mpt_shutdown_handler_t  mpt_core_detach;
218static mpt_unload_handler_t    mpt_core_unload;
219static struct mpt_personality mpt_core_personality =
220{
221	.name		= "mpt_core",
222	.load		= mpt_core_load,
223//	.attach		= mpt_core_attach,
224//	.enable		= mpt_core_enable,
225	.event		= mpt_core_event,
226	.reset		= mpt_core_ioc_reset,
227	.shutdown	= mpt_core_shutdown,
228	.detach		= mpt_core_detach,
229	.unload		= mpt_core_unload,
230};
231
232/*
233 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
234 * ordering information.  We want the core to always register FIRST.
235 * other modules are set to SI_ORDER_SECOND.
236 */
237static moduledata_t mpt_core_mod = {
238	"mpt_core", mpt_modevent, &mpt_core_personality
239};
240DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
241MODULE_VERSION(mpt_core, 1);
242
243#define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
244
245int
246mpt_modevent(module_t mod, int type, void *data)
247{
248	struct mpt_personality *pers;
249	int error;
250
251	pers = (struct mpt_personality *)data;
252
253	error = 0;
254	switch (type) {
255	case MOD_LOAD:
256	{
257		mpt_load_handler_t **def_handler;
258		mpt_load_handler_t **pers_handler;
259		int i;
260
261		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
262			if (mpt_personalities[i] == NULL)
263				break;
264		}
265		if (i >= MPT_MAX_PERSONALITIES) {
266			error = ENOMEM;
267			break;
268		}
269		pers->id = i;
270		mpt_personalities[i] = pers;
271
272		/* Install standard/noop handlers for any NULL entries. */
273		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
274		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
275		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
276			if (*pers_handler == NULL)
277				*pers_handler = *def_handler;
278			pers_handler++;
279			def_handler++;
280		}
281
282		error = (pers->load(pers));
283		if (error != 0)
284			mpt_personalities[i] = NULL;
285		break;
286	}
287	case MOD_SHUTDOWN:
288		break;
289	case MOD_QUIESCE:
290		break;
291	case MOD_UNLOAD:
292		error = pers->unload(pers);
293		mpt_personalities[pers->id] = NULL;
294		break;
295	default:
296		error = EINVAL;
297		break;
298	}
299	return (error);
300}
301
302static int
303mpt_stdload(struct mpt_personality *pers)
304{
305
306	/* Load is always successful. */
307	return (0);
308}
309
310static int
311mpt_stdprobe(struct mpt_softc *mpt)
312{
313
314	/* Probe is always successful. */
315	return (0);
316}
317
318static int
319mpt_stdattach(struct mpt_softc *mpt)
320{
321
322	/* Attach is always successful. */
323	return (0);
324}
325
326static int
327mpt_stdenable(struct mpt_softc *mpt)
328{
329
330	/* Enable is always successful. */
331	return (0);
332}
333
334static void
335mpt_stdready(struct mpt_softc *mpt)
336{
337
338}
339
340static int
341mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
342{
343
344	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
345	/* Event was not for us. */
346	return (0);
347}
348
349static void
350mpt_stdreset(struct mpt_softc *mpt, int type)
351{
352
353}
354
355static void
356mpt_stdshutdown(struct mpt_softc *mpt)
357{
358
359}
360
361static void
362mpt_stddetach(struct mpt_softc *mpt)
363{
364
365}
366
367static int
368mpt_stdunload(struct mpt_personality *pers)
369{
370
371	/* Unload is always successful. */
372	return (0);
373}
374
375/*
376 * Post driver attachment, we may want to perform some global actions.
377 * Here is the hook to do so.
378 */
379
380static void
381mpt_postattach(void *unused)
382{
383	struct mpt_softc *mpt;
384	struct mpt_personality *pers;
385
386	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
387		MPT_PERS_FOREACH(mpt, pers)
388			pers->ready(mpt);
389	}
390}
391SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
392
393/******************************* Bus DMA Support ******************************/
394void
395mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
396{
397	struct mpt_map_info *map_info;
398
399	map_info = (struct mpt_map_info *)arg;
400	map_info->error = error;
401	map_info->phys = segs->ds_addr;
402}
403
404/**************************** Reply/Event Handling ****************************/
405int
406mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
407		     mpt_handler_t handler, uint32_t *phandler_id)
408{
409
410	switch (type) {
411	case MPT_HANDLER_REPLY:
412	{
413		u_int cbi;
414		u_int free_cbi;
415
416		if (phandler_id == NULL)
417			return (EINVAL);
418
419		free_cbi = MPT_HANDLER_ID_NONE;
420		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
421			/*
422			 * If the same handler is registered multiple
423			 * times, don't error out.  Just return the
424			 * index of the original registration.
425			 */
426			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
427				*phandler_id = MPT_CBI_TO_HID(cbi);
428				return (0);
429			}
430
431			/*
432			 * Fill from the front in the hope that
433			 * all registered handlers consume only a
434			 * single cache line.
435			 *
436			 * We don't break on the first empty slot so
437			 * that the full table is checked to see if
438			 * this handler was previously registered.
439			 */
440			if (free_cbi == MPT_HANDLER_ID_NONE &&
441			    (mpt_reply_handlers[cbi]
442			  == mpt_default_reply_handler))
443				free_cbi = cbi;
444		}
445		if (free_cbi == MPT_HANDLER_ID_NONE) {
446			return (ENOMEM);
447		}
448		mpt_reply_handlers[free_cbi] = handler.reply_handler;
449		*phandler_id = MPT_CBI_TO_HID(free_cbi);
450		break;
451	}
452	default:
453		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
454		return (EINVAL);
455	}
456	return (0);
457}
458
459int
460mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
461		       mpt_handler_t handler, uint32_t handler_id)
462{
463
464	switch (type) {
465	case MPT_HANDLER_REPLY:
466	{
467		u_int cbi;
468
469		cbi = MPT_CBI(handler_id);
470		if (cbi >= MPT_NUM_REPLY_HANDLERS
471		 || mpt_reply_handlers[cbi] != handler.reply_handler)
472			return (ENOENT);
473		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
474		break;
475	}
476	default:
477		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
478		return (EINVAL);
479	}
480	return (0);
481}
482
483static int
484mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
485	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
486{
487
488	mpt_prt(mpt,
489	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
490	    req, req->serno, reply_desc, reply_frame);
491
492	if (reply_frame != NULL)
493		mpt_dump_reply_frame(mpt, reply_frame);
494
495	mpt_prt(mpt, "Reply Frame Ignored\n");
496
497	return (/*free_reply*/TRUE);
498}
499
500static int
501mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
502 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
503{
504
505	if (req != NULL) {
506		if (reply_frame != NULL) {
507			MSG_CONFIG *cfgp;
508			MSG_CONFIG_REPLY *reply;
509
510			cfgp = (MSG_CONFIG *)req->req_vbuf;
511			reply = (MSG_CONFIG_REPLY *)reply_frame;
512			req->IOCStatus = le16toh(reply_frame->IOCStatus);
513			bcopy(&reply->Header, &cfgp->Header,
514			      sizeof(cfgp->Header));
515			cfgp->ExtPageLength = reply->ExtPageLength;
516			cfgp->ExtPageType = reply->ExtPageType;
517		}
518		req->state &= ~REQ_STATE_QUEUED;
519		req->state |= REQ_STATE_DONE;
520		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
521		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
522			wakeup(req);
523		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
524			/*
525			 * Whew- we can free this request (late completion)
526			 */
527			mpt_free_request(mpt, req);
528		}
529	}
530
531	return (TRUE);
532}
533
534static int
535mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
536 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
537{
538
539	/* Nothing to be done. */
540	return (TRUE);
541}
542
543static int
544mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
545    uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
546{
547	int free_reply;
548
549	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
550	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
551
552	free_reply = TRUE;
553	switch (reply_frame->Function) {
554	case MPI_FUNCTION_EVENT_NOTIFICATION:
555	{
556		MSG_EVENT_NOTIFY_REPLY *msg;
557		struct mpt_personality *pers;
558		u_int handled;
559
560		handled = 0;
561		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
562		msg->EventDataLength = le16toh(msg->EventDataLength);
563		msg->IOCStatus = le16toh(msg->IOCStatus);
564		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
565		msg->Event = le32toh(msg->Event);
566		MPT_PERS_FOREACH(mpt, pers)
567			handled += pers->event(mpt, req, msg);
568
569		if (handled == 0 && mpt->mpt_pers_mask == 0) {
570			mpt_lprt(mpt, MPT_PRT_INFO,
571				"No Handlers For Any Event Notify Frames. "
572				"Event %#x (ACK %sequired).\n",
573				msg->Event, msg->AckRequired? "r" : "not r");
574		} else if (handled == 0) {
575			mpt_lprt(mpt,
576				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
577				"Unhandled Event Notify Frame. Event %#x "
578				"(ACK %sequired).\n",
579				msg->Event, msg->AckRequired? "r" : "not r");
580		}
581
582		if (msg->AckRequired) {
583			request_t *ack_req;
584			uint32_t context;
585
586			context = req->index | MPT_REPLY_HANDLER_EVENTS;
587			ack_req = mpt_get_request(mpt, FALSE);
588			if (ack_req == NULL) {
589				struct mpt_evtf_record *evtf;
590
591				evtf = (struct mpt_evtf_record *)reply_frame;
592				evtf->context = context;
593				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
594				free_reply = FALSE;
595				break;
596			}
597			mpt_send_event_ack(mpt, ack_req, msg, context);
598			/*
599			 * Don't check for CONTINUATION_REPLY here
600			 */
601			return (free_reply);
602		}
603		break;
604	}
605	case MPI_FUNCTION_PORT_ENABLE:
606		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
607		break;
608	case MPI_FUNCTION_EVENT_ACK:
609		break;
610	default:
611		mpt_prt(mpt, "unknown event function: %x\n",
612			reply_frame->Function);
613		break;
614	}
615
616	/*
617	 * I'm not sure that this continuation stuff works as it should.
618	 *
619	 * I've had FC async events occur that free the frame up because
620	 * the continuation bit isn't set, and then additional async events
621	 * then occur using the same context. As you might imagine, this
622	 * leads to Very Bad Thing.
623	 *
624	 *  Let's just be safe for now and not free them up until we figure
625	 * out what's actually happening here.
626	 */
627#if	0
628	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
629		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
630		mpt_free_request(mpt, req);
631		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
632		    reply_frame->Function, req, req->serno);
633		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
634			MSG_EVENT_NOTIFY_REPLY *msg =
635			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
636			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
637			    msg->Event, msg->AckRequired);
638		}
639	} else {
640		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
641		    reply_frame->Function, req, req->serno);
642		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
643			MSG_EVENT_NOTIFY_REPLY *msg =
644			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
645			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
646			    msg->Event, msg->AckRequired);
647		}
648		mpt_prtc(mpt, "\n");
649	}
650#endif
651	return (free_reply);
652}
653
654/*
655 * Process an asynchronous event from the IOC.
656 */
657static int
658mpt_core_event(struct mpt_softc *mpt, request_t *req,
659	       MSG_EVENT_NOTIFY_REPLY *msg)
660{
661
662	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
663                 msg->Event & 0xFF);
664	switch(msg->Event & 0xFF) {
665	case MPI_EVENT_NONE:
666		break;
667	case MPI_EVENT_LOG_DATA:
668	{
669		int i;
670
671		/* Some error occurred that LSI wants logged */
672		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
673			msg->IOCLogInfo);
674		mpt_prt(mpt, "\tEvtLogData: Event Data:");
675		for (i = 0; i < msg->EventDataLength; i++)
676			mpt_prtc(mpt, "  %08x", msg->Data[i]);
677		mpt_prtc(mpt, "\n");
678		break;
679	}
680	case MPI_EVENT_EVENT_CHANGE:
681		/*
682		 * This is just an acknowledgement
683		 * of our mpt_send_event_request.
684		 */
685		break;
686	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
687		break;
688	default:
689		return (0);
690		break;
691	}
692	return (1);
693}
694
695static void
696mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
697		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
698{
699	MSG_EVENT_ACK *ackp;
700
701	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
702	memset(ackp, 0, sizeof (*ackp));
703	ackp->Function = MPI_FUNCTION_EVENT_ACK;
704	ackp->Event = htole32(msg->Event);
705	ackp->EventContext = htole32(msg->EventContext);
706	ackp->MsgContext = htole32(context);
707	mpt_check_doorbell(mpt);
708	mpt_send_cmd(mpt, ack_req);
709}
710
711/***************************** Interrupt Handling *****************************/
712void
713mpt_intr(void *arg)
714{
715	struct mpt_softc *mpt;
716	uint32_t reply_desc;
717	int ntrips = 0;
718
719	mpt = (struct mpt_softc *)arg;
720	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
721	MPT_LOCK_ASSERT(mpt);
722
723	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
724		request_t	  *req;
725		MSG_DEFAULT_REPLY *reply_frame;
726		uint32_t	   reply_baddr;
727		uint32_t           ctxt_idx;
728		u_int		   cb_index;
729		u_int		   req_index;
730		u_int		   offset;
731		int		   free_rf;
732
733		req = NULL;
734		reply_frame = NULL;
735		reply_baddr = 0;
736		offset = 0;
737		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
738			/*
739			 * Ensure that the reply frame is coherent.
740			 */
741			reply_baddr = MPT_REPLY_BADDR(reply_desc);
742			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
743			bus_dmamap_sync_range(mpt->reply_dmat,
744			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
745			    BUS_DMASYNC_POSTREAD);
746			reply_frame = MPT_REPLY_OTOV(mpt, offset);
747			ctxt_idx = le32toh(reply_frame->MsgContext);
748		} else {
749			uint32_t type;
750
751			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
752			ctxt_idx = reply_desc;
753			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
754				    reply_desc);
755
756			switch (type) {
757			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
758				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
759				break;
760			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
761				ctxt_idx = GET_IO_INDEX(reply_desc);
762				if (mpt->tgt_cmd_ptrs == NULL) {
763					mpt_prt(mpt,
764					    "mpt_intr: no target cmd ptrs\n");
765					reply_desc = MPT_REPLY_EMPTY;
766					break;
767				}
768				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
769					mpt_prt(mpt,
770					    "mpt_intr: bad tgt cmd ctxt %u\n",
771					    ctxt_idx);
772					reply_desc = MPT_REPLY_EMPTY;
773					ntrips = 1000;
774					break;
775				}
776				req = mpt->tgt_cmd_ptrs[ctxt_idx];
777				if (req == NULL) {
778					mpt_prt(mpt, "no request backpointer "
779					    "at index %u", ctxt_idx);
780					reply_desc = MPT_REPLY_EMPTY;
781					ntrips = 1000;
782					break;
783				}
784				/*
785				 * Reformulate ctxt_idx to be just as if
786				 * it were another type of context reply
787				 * so the code below will find the request
788				 * via indexing into the pool.
789				 */
790				ctxt_idx =
791				    req->index | mpt->scsi_tgt_handler_id;
792				req = NULL;
793				break;
794			case MPI_CONTEXT_REPLY_TYPE_LAN:
795				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
796				    reply_desc);
797				reply_desc = MPT_REPLY_EMPTY;
798				break;
799			default:
800				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
801				reply_desc = MPT_REPLY_EMPTY;
802				break;
803			}
804			if (reply_desc == MPT_REPLY_EMPTY) {
805				if (ntrips++ > 1000) {
806					break;
807				}
808				continue;
809			}
810		}
811
812		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
813		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
814		if (req_index < MPT_MAX_REQUESTS(mpt)) {
815			req = &mpt->request_pool[req_index];
816		} else {
817			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
818			    " 0x%x)\n", req_index, reply_desc);
819		}
820
821		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
822		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
823		free_rf = mpt_reply_handlers[cb_index](mpt, req,
824		    reply_desc, reply_frame);
825
826		if (reply_frame != NULL && free_rf) {
827			bus_dmamap_sync_range(mpt->reply_dmat,
828			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
829			    BUS_DMASYNC_PREREAD);
830			mpt_free_reply(mpt, reply_baddr);
831		}
832
833		/*
834		 * If we got ourselves disabled, don't get stuck in a loop
835		 */
836		if (mpt->disabled) {
837			mpt_disable_ints(mpt);
838			break;
839		}
840		if (ntrips++ > 1000) {
841			break;
842		}
843	}
844	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
845}
846
847/******************************* Error Recovery *******************************/
848void
849mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
850			    u_int iocstatus)
851{
852	MSG_DEFAULT_REPLY  ioc_status_frame;
853	request_t	  *req;
854
855	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
856	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
857	ioc_status_frame.IOCStatus = iocstatus;
858	while((req = TAILQ_FIRST(chain)) != NULL) {
859		MSG_REQUEST_HEADER *msg_hdr;
860		u_int		    cb_index;
861
862		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
863		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
864		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
865		ioc_status_frame.Function = msg_hdr->Function;
866		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
867		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
868		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
869		    &ioc_status_frame);
870		if (mpt_req_on_pending_list(mpt, req) != 0)
871			TAILQ_REMOVE(chain, req, links);
872	}
873}
874
875/********************************* Diagnostics ********************************/
876/*
877 * Perform a diagnostic dump of a reply frame.
878 */
879void
880mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
881{
882
883	mpt_prt(mpt, "Address Reply:\n");
884	mpt_print_reply(reply_frame);
885}
886
887/******************************* Doorbell Access ******************************/
888static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
889static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
890
891static __inline uint32_t
892mpt_rd_db(struct mpt_softc *mpt)
893{
894
895	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
896}
897
898static __inline uint32_t
899mpt_rd_intr(struct mpt_softc *mpt)
900{
901
902	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
903}
904
905/* Busy wait for a door bell to be read by IOC */
906static int
907mpt_wait_db_ack(struct mpt_softc *mpt)
908{
909	int i;
910
911	for (i=0; i < MPT_MAX_WAIT; i++) {
912		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
913			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
914			return (MPT_OK);
915		}
916		DELAY(200);
917	}
918	return (MPT_FAIL);
919}
920
921/* Busy wait for a door bell interrupt */
922static int
923mpt_wait_db_int(struct mpt_softc *mpt)
924{
925	int i;
926
927	for (i = 0; i < MPT_MAX_WAIT; i++) {
928		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
929			maxwait_int = i > maxwait_int ? i : maxwait_int;
930			return MPT_OK;
931		}
932		DELAY(100);
933	}
934	return (MPT_FAIL);
935}
936
937/* Wait for IOC to transition to a give state */
938void
939mpt_check_doorbell(struct mpt_softc *mpt)
940{
941	uint32_t db = mpt_rd_db(mpt);
942
943	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
944		mpt_prt(mpt, "Device not running\n");
945		mpt_print_db(db);
946	}
947}
948
949/* Wait for IOC to transition to a give state */
950static int
951mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
952{
953	int i;
954
955	for (i = 0; i < MPT_MAX_WAIT; i++) {
956		uint32_t db = mpt_rd_db(mpt);
957		if (MPT_STATE(db) == state) {
958			maxwait_state = i > maxwait_state ? i : maxwait_state;
959			return (MPT_OK);
960		}
961		DELAY(100);
962	}
963	return (MPT_FAIL);
964}
965
966
967/************************* Intialization/Configuration ************************/
968static int mpt_download_fw(struct mpt_softc *mpt);
969
970/* Issue the reset COMMAND to the IOC */
971static int
972mpt_soft_reset(struct mpt_softc *mpt)
973{
974
975	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
976
977	/* Have to use hard reset if we are not in Running state */
978	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
979		mpt_prt(mpt, "soft reset failed: device not running\n");
980		return (MPT_FAIL);
981	}
982
983	/* If door bell is in use we don't have a chance of getting
984	 * a word in since the IOC probably crashed in message
985	 * processing. So don't waste our time.
986	 */
987	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
988		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
989		return (MPT_FAIL);
990	}
991
992	/* Send the reset request to the IOC */
993	mpt_write(mpt, MPT_OFFSET_DOORBELL,
994	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
995	if (mpt_wait_db_ack(mpt) != MPT_OK) {
996		mpt_prt(mpt, "soft reset failed: ack timeout\n");
997		return (MPT_FAIL);
998	}
999
1000	/* Wait for the IOC to reload and come out of reset state */
1001	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1002		mpt_prt(mpt, "soft reset failed: device did not restart\n");
1003		return (MPT_FAIL);
1004	}
1005
1006	return MPT_OK;
1007}
1008
1009static int
1010mpt_enable_diag_mode(struct mpt_softc *mpt)
1011{
1012	int try;
1013
1014	try = 20;
1015	while (--try) {
1016
1017		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1018			break;
1019
1020		/* Enable diagnostic registers */
1021		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1022		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1023		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1024		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1025		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1026		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1027
1028		DELAY(100000);
1029	}
1030	if (try == 0)
1031		return (EIO);
1032	return (0);
1033}
1034
1035static void
1036mpt_disable_diag_mode(struct mpt_softc *mpt)
1037{
1038
1039	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1040}
1041
1042/* This is a magic diagnostic reset that resets all the ARM
1043 * processors in the chip.
1044 */
1045static void
1046mpt_hard_reset(struct mpt_softc *mpt)
1047{
1048	int error;
1049	int wait;
1050	uint32_t diagreg;
1051
1052	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1053
1054	if (mpt->is_1078) {
1055		mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
1056		DELAY(1000);
1057		return;
1058	}
1059
1060	error = mpt_enable_diag_mode(mpt);
1061	if (error) {
1062		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1063		mpt_prt(mpt, "Trying to reset anyway.\n");
1064	}
1065
1066	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1067
1068	/*
1069	 * This appears to be a workaround required for some
1070	 * firmware or hardware revs.
1071	 */
1072	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1073	DELAY(1000);
1074
1075	/* Diag. port is now active so we can now hit the reset bit */
1076	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1077
1078        /*
1079         * Ensure that the reset has finished.  We delay 1ms
1080         * prior to reading the register to make sure the chip
1081         * has sufficiently completed its reset to handle register
1082         * accesses.
1083         */
1084	wait = 5000;
1085	do {
1086		DELAY(1000);
1087		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1088	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1089
1090	if (wait == 0) {
1091		mpt_prt(mpt, "WARNING - Failed hard reset! "
1092			"Trying to initialize anyway.\n");
1093	}
1094
1095	/*
1096	 * If we have firmware to download, it must be loaded before
1097	 * the controller will become operational.  Do so now.
1098	 */
1099	if (mpt->fw_image != NULL) {
1100
1101		error = mpt_download_fw(mpt);
1102
1103		if (error) {
1104			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1105			mpt_prt(mpt, "Trying to initialize anyway.\n");
1106		}
1107	}
1108
1109	/*
1110	 * Reseting the controller should have disabled write
1111	 * access to the diagnostic registers, but disable
1112	 * manually to be sure.
1113	 */
1114	mpt_disable_diag_mode(mpt);
1115}
1116
1117static void
1118mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1119{
1120
1121	/*
1122	 * Complete all pending requests with a status
1123	 * appropriate for an IOC reset.
1124	 */
1125	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1126				   MPI_IOCSTATUS_INVALID_STATE);
1127}
1128
1129/*
1130 * Reset the IOC when needed. Try software command first then if needed
1131 * poke at the magic diagnostic reset. Note that a hard reset resets
1132 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1133 * fouls up the PCI configuration registers.
1134 */
1135int
1136mpt_reset(struct mpt_softc *mpt, int reinit)
1137{
1138	struct	mpt_personality *pers;
1139	int	ret;
1140	int	retry_cnt = 0;
1141
1142	/*
1143	 * Try a soft reset. If that fails, get out the big hammer.
1144	 */
1145 again:
1146	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1147		int	cnt;
1148		for (cnt = 0; cnt < 5; cnt++) {
1149			/* Failed; do a hard reset */
1150			mpt_hard_reset(mpt);
1151
1152			/*
1153			 * Wait for the IOC to reload
1154			 * and come out of reset state
1155			 */
1156			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1157			if (ret == MPT_OK) {
1158				break;
1159			}
1160			/*
1161			 * Okay- try to check again...
1162			 */
1163			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1164			if (ret == MPT_OK) {
1165				break;
1166			}
1167			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1168			    retry_cnt, cnt);
1169		}
1170	}
1171
1172	if (retry_cnt == 0) {
1173		/*
1174		 * Invoke reset handlers.  We bump the reset count so
1175		 * that mpt_wait_req() understands that regardless of
1176		 * the specified wait condition, it should stop its wait.
1177		 */
1178		mpt->reset_cnt++;
1179		MPT_PERS_FOREACH(mpt, pers)
1180			pers->reset(mpt, ret);
1181	}
1182
1183	if (reinit) {
1184		ret = mpt_enable_ioc(mpt, 1);
1185		if (ret == MPT_OK) {
1186			mpt_enable_ints(mpt);
1187		}
1188	}
1189	if (ret != MPT_OK && retry_cnt++ < 2) {
1190		goto again;
1191	}
1192	return ret;
1193}
1194
1195/* Return a command buffer to the free queue */
1196void
1197mpt_free_request(struct mpt_softc *mpt, request_t *req)
1198{
1199	request_t *nxt;
1200	struct mpt_evtf_record *record;
1201	uint32_t offset, reply_baddr;
1202
1203	if (req == NULL || req != &mpt->request_pool[req->index]) {
1204		panic("mpt_free_request: bad req ptr");
1205	}
1206	if ((nxt = req->chain) != NULL) {
1207		req->chain = NULL;
1208		mpt_free_request(mpt, nxt);	/* NB: recursion */
1209	}
1210	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1211	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1212	MPT_LOCK_ASSERT(mpt);
1213	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1214	    ("mpt_free_request: req %p:%u func %x already on freelist",
1215	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1216	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1217	    ("mpt_free_request: req %p:%u func %x on pending list",
1218	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1219#ifdef	INVARIANTS
1220	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1221#endif
1222
1223	req->ccb = NULL;
1224	if (LIST_EMPTY(&mpt->ack_frames)) {
1225		/*
1226		 * Insert free ones at the tail
1227		 */
1228		req->serno = 0;
1229		req->state = REQ_STATE_FREE;
1230#ifdef	INVARIANTS
1231		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1232#endif
1233		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1234		if (mpt->getreqwaiter != 0) {
1235			mpt->getreqwaiter = 0;
1236			wakeup(&mpt->request_free_list);
1237		}
1238		return;
1239	}
1240
1241	/*
1242	 * Process an ack frame deferred due to resource shortage.
1243	 */
1244	record = LIST_FIRST(&mpt->ack_frames);
1245	LIST_REMOVE(record, links);
1246	req->state = REQ_STATE_ALLOCATED;
1247	mpt_assign_serno(mpt, req);
1248	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1249	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1250	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1251	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1252	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1253	mpt_free_reply(mpt, reply_baddr);
1254}
1255
1256/* Get a command buffer from the free queue */
1257request_t *
1258mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1259{
1260	request_t *req;
1261
1262retry:
1263	MPT_LOCK_ASSERT(mpt);
1264	req = TAILQ_FIRST(&mpt->request_free_list);
1265	if (req != NULL) {
1266		KASSERT(req == &mpt->request_pool[req->index],
1267		    ("mpt_get_request: corrupted request free list"));
1268		KASSERT(req->state == REQ_STATE_FREE,
1269		    ("req %p:%u not free on free list %x index %d function %x",
1270		    req, req->serno, req->state, req->index,
1271		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1272		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1273		req->state = REQ_STATE_ALLOCATED;
1274		req->chain = NULL;
1275		mpt_assign_serno(mpt, req);
1276	} else if (sleep_ok != 0) {
1277		mpt->getreqwaiter = 1;
1278		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1279		goto retry;
1280	}
1281	return (req);
1282}
1283
1284/* Pass the command to the IOC */
1285void
1286mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1287{
1288
1289	if (mpt->verbose > MPT_PRT_DEBUG2) {
1290		mpt_dump_request(mpt, req);
1291	}
1292	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1293	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1294	req->state |= REQ_STATE_QUEUED;
1295	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1296	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1297	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1298	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1299	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1300	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1301	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1302	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1303}
1304
1305/*
1306 * Wait for a request to complete.
1307 *
1308 * Inputs:
1309 *	mpt		softc of controller executing request
1310 *	req		request to wait for
1311 *	sleep_ok	nonzero implies may sleep in this context
1312 *	time_ms		timeout in ms.  0 implies no timeout.
1313 *
1314 * Return Values:
1315 *	0		Request completed
1316 *	non-0		Timeout fired before request completion.
1317 */
1318int
1319mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1320	     mpt_req_state_t state, mpt_req_state_t mask,
1321	     int sleep_ok, int time_ms)
1322{
1323	int   error;
1324	int   timeout;
1325	u_int saved_cnt;
1326
1327	/*
1328	 * timeout is in ms.  0 indicates infinite wait.
1329	 * Convert to ticks or 500us units depending on
1330	 * our sleep mode.
1331	 */
1332	if (sleep_ok != 0) {
1333		timeout = (time_ms * hz) / 1000;
1334	} else {
1335		timeout = time_ms * 2;
1336	}
1337	req->state |= REQ_STATE_NEED_WAKEUP;
1338	mask &= ~REQ_STATE_NEED_WAKEUP;
1339	saved_cnt = mpt->reset_cnt;
1340	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1341		if (sleep_ok != 0) {
1342			error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout);
1343			if (error == EWOULDBLOCK) {
1344				timeout = 0;
1345				break;
1346			}
1347		} else {
1348			if (time_ms != 0 && --timeout == 0) {
1349				break;
1350			}
1351			DELAY(500);
1352			mpt_intr(mpt);
1353		}
1354	}
1355	req->state &= ~REQ_STATE_NEED_WAKEUP;
1356	if (mpt->reset_cnt != saved_cnt) {
1357		return (EIO);
1358	}
1359	if (time_ms && timeout <= 0) {
1360		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1361		req->state |= REQ_STATE_TIMEDOUT;
1362		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1363		return (ETIMEDOUT);
1364	}
1365	return (0);
1366}
1367
1368/*
1369 * Send a command to the IOC via the handshake register.
1370 *
1371 * Only done at initialization time and for certain unusual
1372 * commands such as device/bus reset as specified by LSI.
1373 */
1374int
1375mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1376{
1377	int i;
1378	uint32_t data, *data32;
1379
1380	/* Check condition of the IOC */
1381	data = mpt_rd_db(mpt);
1382	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1383	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1384	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1385	 || MPT_DB_IS_IN_USE(data)) {
1386		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1387		mpt_print_db(data);
1388		return (EBUSY);
1389	}
1390
1391	/* We move things in 32 bit chunks */
1392	len = (len + 3) >> 2;
1393	data32 = cmd;
1394
1395	/* Clear any left over pending doorbell interrupts */
1396	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1397		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1398
1399	/*
1400	 * Tell the handshake reg. we are going to send a command
1401         * and how long it is going to be.
1402	 */
1403	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1404	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1405	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1406
1407	/* Wait for the chip to notice */
1408	if (mpt_wait_db_int(mpt) != MPT_OK) {
1409		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1410		return (ETIMEDOUT);
1411	}
1412
1413	/* Clear the interrupt */
1414	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1415
1416	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1417		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1418		return (ETIMEDOUT);
1419	}
1420
1421	/* Send the command */
1422	for (i = 0; i < len; i++) {
1423		mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++));
1424		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1425			mpt_prt(mpt,
1426			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1427			return (ETIMEDOUT);
1428		}
1429	}
1430	return MPT_OK;
1431}
1432
1433/* Get the response from the handshake register */
1434int
1435mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1436{
1437	int left, reply_left;
1438	u_int16_t *data16;
1439	uint32_t data;
1440	MSG_DEFAULT_REPLY *hdr;
1441
1442	/* We move things out in 16 bit chunks */
1443	reply_len >>= 1;
1444	data16 = (u_int16_t *)reply;
1445
1446	hdr = (MSG_DEFAULT_REPLY *)reply;
1447
1448	/* Get first word */
1449	if (mpt_wait_db_int(mpt) != MPT_OK) {
1450		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1451		return ETIMEDOUT;
1452	}
1453	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1454	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1455	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1456
1457	/* Get Second Word */
1458	if (mpt_wait_db_int(mpt) != MPT_OK) {
1459		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1460		return ETIMEDOUT;
1461	}
1462	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1463	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1464	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1465
1466	/*
1467	 * With the second word, we can now look at the length.
1468	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1469	 */
1470	if ((reply_len >> 1) != hdr->MsgLength &&
1471	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1472		mpt_prt(mpt, "reply length does not match message length: "
1473			"got %x; expected %zx for function %x\n",
1474			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1475	}
1476
1477	/* Get rest of the reply; but don't overflow the provided buffer */
1478	left = (hdr->MsgLength << 1) - 2;
1479	reply_left =  reply_len - 2;
1480	while (left--) {
1481		u_int16_t datum;
1482
1483		if (mpt_wait_db_int(mpt) != MPT_OK) {
1484			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1485			return ETIMEDOUT;
1486		}
1487		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1488		datum = le16toh(data & MPT_DB_DATA_MASK);
1489
1490		if (reply_left-- > 0)
1491			*data16++ = datum;
1492
1493		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1494	}
1495
1496	/* One more wait & clear at the end */
1497	if (mpt_wait_db_int(mpt) != MPT_OK) {
1498		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1499		return ETIMEDOUT;
1500	}
1501	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1502
1503	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1504		if (mpt->verbose >= MPT_PRT_TRACE)
1505			mpt_print_reply(hdr);
1506		return (MPT_FAIL | hdr->IOCStatus);
1507	}
1508
1509	return (0);
1510}
1511
1512static int
1513mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1514{
1515	MSG_IOC_FACTS f_req;
1516	int error;
1517
1518	memset(&f_req, 0, sizeof f_req);
1519	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1520	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1521	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1522	if (error) {
1523		return(error);
1524	}
1525	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1526	return (error);
1527}
1528
1529static int
1530mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1531{
1532	MSG_PORT_FACTS f_req;
1533	int error;
1534
1535	memset(&f_req, 0, sizeof f_req);
1536	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1537	f_req.PortNumber = port;
1538	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1539	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1540	if (error) {
1541		return(error);
1542	}
1543	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1544	return (error);
1545}
1546
1547/*
1548 * Send the initialization request. This is where we specify how many
1549 * SCSI busses and how many devices per bus we wish to emulate.
1550 * This is also the command that specifies the max size of the reply
1551 * frames from the IOC that we will be allocating.
1552 */
1553static int
1554mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1555{
1556	int error = 0;
1557	MSG_IOC_INIT init;
1558	MSG_IOC_INIT_REPLY reply;
1559
1560	memset(&init, 0, sizeof init);
1561	init.WhoInit = who;
1562	init.Function = MPI_FUNCTION_IOC_INIT;
1563	init.MaxDevices = 0;	/* at least 256 devices per bus */
1564	init.MaxBuses = 16;	/* at least 16 busses */
1565
1566	init.MsgVersion = htole16(MPI_VERSION);
1567	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1568	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1569	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1570
1571	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1572		return(error);
1573	}
1574
1575	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1576	return (error);
1577}
1578
1579
1580/*
1581 * Utiltity routine to read configuration headers and pages
1582 */
1583int
1584mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1585		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1586{
1587	MSG_CONFIG *cfgp;
1588	SGE_SIMPLE32 *se;
1589
1590	cfgp = req->req_vbuf;
1591	memset(cfgp, 0, sizeof *cfgp);
1592	cfgp->Action = params->Action;
1593	cfgp->Function = MPI_FUNCTION_CONFIG;
1594	cfgp->Header.PageVersion = params->PageVersion;
1595	cfgp->Header.PageNumber = params->PageNumber;
1596	cfgp->PageAddress = htole32(params->PageAddress);
1597	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1598	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1599		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1600		cfgp->Header.PageLength = 0;
1601		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1602		cfgp->ExtPageType = params->ExtPageType;
1603	} else {
1604		cfgp->Header.PageType = params->PageType;
1605		cfgp->Header.PageLength = params->PageLength;
1606	}
1607	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1608	se->Address = htole32(addr);
1609	MPI_pSGE_SET_LENGTH(se, len);
1610	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1611	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1612	    MPI_SGE_FLAGS_END_OF_LIST |
1613	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1614	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1615	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1616	se->FlagsLength = htole32(se->FlagsLength);
1617	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1618
1619	mpt_check_doorbell(mpt);
1620	mpt_send_cmd(mpt, req);
1621	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1622			     sleep_ok, timeout_ms));
1623}
1624
1625int
1626mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1627		       uint32_t PageAddress, int ExtPageType,
1628		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1629		       int sleep_ok, int timeout_ms)
1630{
1631	request_t  *req;
1632	cfgparms_t params;
1633	MSG_CONFIG_REPLY *cfgp;
1634	int	    error;
1635
1636	req = mpt_get_request(mpt, sleep_ok);
1637	if (req == NULL) {
1638		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1639		return (ENOMEM);
1640	}
1641
1642	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1643	params.PageVersion = PageVersion;
1644	params.PageLength = 0;
1645	params.PageNumber = PageNumber;
1646	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1647	params.PageAddress = PageAddress;
1648	params.ExtPageType = ExtPageType;
1649	params.ExtPageLength = 0;
1650	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1651				  sleep_ok, timeout_ms);
1652	if (error != 0) {
1653		/*
1654		 * Leave the request. Without resetting the chip, it's
1655		 * still owned by it and we'll just get into trouble
1656		 * freeing it now. Mark it as abandoned so that if it
1657		 * shows up later it can be freed.
1658		 */
1659		mpt_prt(mpt, "read_extcfg_header timed out\n");
1660		return (ETIMEDOUT);
1661	}
1662
1663        switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1664	case MPI_IOCSTATUS_SUCCESS:
1665		cfgp = req->req_vbuf;
1666		rslt->PageVersion = cfgp->Header.PageVersion;
1667		rslt->PageNumber = cfgp->Header.PageNumber;
1668		rslt->PageType = cfgp->Header.PageType;
1669		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1670		rslt->ExtPageType = cfgp->ExtPageType;
1671		error = 0;
1672		break;
1673	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1674		mpt_lprt(mpt, MPT_PRT_DEBUG,
1675		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1676		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1677		error = EINVAL;
1678		break;
1679	default:
1680		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1681			req->IOCStatus);
1682		error = EIO;
1683		break;
1684	}
1685	mpt_free_request(mpt, req);
1686	return (error);
1687}
1688
1689int
1690mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1691		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1692		     int sleep_ok, int timeout_ms)
1693{
1694	request_t    *req;
1695	cfgparms_t    params;
1696	int	      error;
1697
1698	req = mpt_get_request(mpt, sleep_ok);
1699	if (req == NULL) {
1700		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1701		return (-1);
1702	}
1703
1704	params.Action = Action;
1705	params.PageVersion = hdr->PageVersion;
1706	params.PageLength = 0;
1707	params.PageNumber = hdr->PageNumber;
1708	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1709	params.PageAddress = PageAddress;
1710	params.ExtPageType = hdr->ExtPageType;
1711	params.ExtPageLength = hdr->ExtPageLength;
1712	error = mpt_issue_cfg_req(mpt, req, &params,
1713				  req->req_pbuf + MPT_RQSL(mpt),
1714				  len, sleep_ok, timeout_ms);
1715	if (error != 0) {
1716		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1717		return (-1);
1718	}
1719
1720	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1721		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1722			req->IOCStatus);
1723		mpt_free_request(mpt, req);
1724		return (-1);
1725	}
1726	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1727	mpt_free_request(mpt, req);
1728	return (0);
1729}
1730
1731int
1732mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1733		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1734		    int sleep_ok, int timeout_ms)
1735{
1736	request_t  *req;
1737	cfgparms_t params;
1738	MSG_CONFIG *cfgp;
1739	int	    error;
1740
1741	req = mpt_get_request(mpt, sleep_ok);
1742	if (req == NULL) {
1743		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1744		return (ENOMEM);
1745	}
1746
1747	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1748	params.PageVersion = 0;
1749	params.PageLength = 0;
1750	params.PageNumber = PageNumber;
1751	params.PageType = PageType;
1752	params.PageAddress = PageAddress;
1753	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1754				  sleep_ok, timeout_ms);
1755	if (error != 0) {
1756		/*
1757		 * Leave the request. Without resetting the chip, it's
1758		 * still owned by it and we'll just get into trouble
1759		 * freeing it now. Mark it as abandoned so that if it
1760		 * shows up later it can be freed.
1761		 */
1762		mpt_prt(mpt, "read_cfg_header timed out\n");
1763		return (ETIMEDOUT);
1764	}
1765
1766        switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1767	case MPI_IOCSTATUS_SUCCESS:
1768		cfgp = req->req_vbuf;
1769		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1770		error = 0;
1771		break;
1772	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1773		mpt_lprt(mpt, MPT_PRT_DEBUG,
1774		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1775		    PageType, PageNumber, PageAddress);
1776		error = EINVAL;
1777		break;
1778	default:
1779		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1780			req->IOCStatus);
1781		error = EIO;
1782		break;
1783	}
1784	mpt_free_request(mpt, req);
1785	return (error);
1786}
1787
1788int
1789mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1790		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1791		  int timeout_ms)
1792{
1793	request_t    *req;
1794	cfgparms_t    params;
1795	int	      error;
1796
1797	req = mpt_get_request(mpt, sleep_ok);
1798	if (req == NULL) {
1799		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1800		return (-1);
1801	}
1802
1803	params.Action = Action;
1804	params.PageVersion = hdr->PageVersion;
1805	params.PageLength = hdr->PageLength;
1806	params.PageNumber = hdr->PageNumber;
1807	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1808	params.PageAddress = PageAddress;
1809	error = mpt_issue_cfg_req(mpt, req, &params,
1810				  req->req_pbuf + MPT_RQSL(mpt),
1811				  len, sleep_ok, timeout_ms);
1812	if (error != 0) {
1813		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1814		return (-1);
1815	}
1816
1817	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1818		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1819			req->IOCStatus);
1820		mpt_free_request(mpt, req);
1821		return (-1);
1822	}
1823	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1824	mpt_free_request(mpt, req);
1825	return (0);
1826}
1827
1828int
1829mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1830		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1831		   int timeout_ms)
1832{
1833	request_t    *req;
1834	cfgparms_t    params;
1835	u_int	      hdr_attr;
1836	int	      error;
1837
1838	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1839	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1840	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1841		mpt_prt(mpt, "page type 0x%x not changeable\n",
1842			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1843		return (-1);
1844	}
1845
1846#if	0
1847	/*
1848	 * We shouldn't mask off other bits here.
1849	 */
1850	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1851#endif
1852
1853	req = mpt_get_request(mpt, sleep_ok);
1854	if (req == NULL)
1855		return (-1);
1856
1857	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1858
1859	/*
1860	 * There isn't any point in restoring stripped out attributes
1861	 * if you then mask them going down to issue the request.
1862	 */
1863
1864	params.Action = Action;
1865	params.PageVersion = hdr->PageVersion;
1866	params.PageLength = hdr->PageLength;
1867	params.PageNumber = hdr->PageNumber;
1868	params.PageAddress = PageAddress;
1869#if	0
1870	/* Restore stripped out attributes */
1871	hdr->PageType |= hdr_attr;
1872	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1873#else
1874	params.PageType = hdr->PageType;
1875#endif
1876	error = mpt_issue_cfg_req(mpt, req, &params,
1877				  req->req_pbuf + MPT_RQSL(mpt),
1878				  len, sleep_ok, timeout_ms);
1879	if (error != 0) {
1880		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1881		return (-1);
1882	}
1883
1884        if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1885		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1886			req->IOCStatus);
1887		mpt_free_request(mpt, req);
1888		return (-1);
1889	}
1890	mpt_free_request(mpt, req);
1891	return (0);
1892}
1893
1894/*
1895 * Read IOC configuration information
1896 */
1897static int
1898mpt_read_config_info_ioc(struct mpt_softc *mpt)
1899{
1900	CONFIG_PAGE_HEADER hdr;
1901	struct mpt_raid_volume *mpt_raid;
1902	int rv;
1903	int i;
1904	size_t len;
1905
1906	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1907		2, 0, &hdr, FALSE, 5000);
1908	/*
1909	 * If it's an invalid page, so what? Not a supported function....
1910	 */
1911	if (rv == EINVAL) {
1912		return (0);
1913	}
1914	if (rv) {
1915		return (rv);
1916	}
1917
1918	mpt_lprt(mpt, MPT_PRT_DEBUG,
1919	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1920	    hdr.PageVersion, hdr.PageLength << 2,
1921	    hdr.PageNumber, hdr.PageType);
1922
1923	len = hdr.PageLength * sizeof(uint32_t);
1924	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1925	if (mpt->ioc_page2 == NULL) {
1926		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1927		mpt_raid_free_mem(mpt);
1928		return (ENOMEM);
1929	}
1930	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1931	rv = mpt_read_cur_cfg_page(mpt, 0,
1932	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1933	if (rv) {
1934		mpt_prt(mpt, "failed to read IOC Page 2\n");
1935		mpt_raid_free_mem(mpt);
1936		return (EIO);
1937	}
1938	mpt2host_config_page_ioc2(mpt->ioc_page2);
1939
1940	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1941		uint32_t mask;
1942
1943		mpt_prt(mpt, "Capabilities: (");
1944		for (mask = 1; mask != 0; mask <<= 1) {
1945			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1946				continue;
1947			}
1948			switch (mask) {
1949			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1950				mpt_prtc(mpt, " RAID-0");
1951				break;
1952			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1953				mpt_prtc(mpt, " RAID-1E");
1954				break;
1955			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1956				mpt_prtc(mpt, " RAID-1");
1957				break;
1958			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1959				mpt_prtc(mpt, " SES");
1960				break;
1961			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1962				mpt_prtc(mpt, " SAFTE");
1963				break;
1964			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1965				mpt_prtc(mpt, " Multi-Channel-Arrays");
1966			default:
1967				break;
1968			}
1969		}
1970		mpt_prtc(mpt, " )\n");
1971		if ((mpt->ioc_page2->CapabilitiesFlags
1972		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1973		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1974		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1975			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1976				mpt->ioc_page2->NumActiveVolumes,
1977				mpt->ioc_page2->NumActiveVolumes != 1
1978			      ? "s " : " ",
1979				mpt->ioc_page2->MaxVolumes);
1980			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1981				mpt->ioc_page2->NumActivePhysDisks,
1982				mpt->ioc_page2->NumActivePhysDisks != 1
1983			      ? "s " : " ",
1984				mpt->ioc_page2->MaxPhysDisks);
1985		}
1986	}
1987
1988	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1989	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1990	if (mpt->raid_volumes == NULL) {
1991		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1992		mpt_raid_free_mem(mpt);
1993		return (ENOMEM);
1994	}
1995
1996	/*
1997	 * Copy critical data out of ioc_page2 so that we can
1998	 * safely refresh the page without windows of unreliable
1999	 * data.
2000	 */
2001	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
2002
2003	len = sizeof(*mpt->raid_volumes->config_page) +
2004	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2005	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2006		mpt_raid = &mpt->raid_volumes[i];
2007		mpt_raid->config_page =
2008		    malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2009		if (mpt_raid->config_page == NULL) {
2010			mpt_prt(mpt, "Could not allocate RAID page data\n");
2011			mpt_raid_free_mem(mpt);
2012			return (ENOMEM);
2013		}
2014	}
2015	mpt->raid_page0_len = len;
2016
2017	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2018	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2019	if (mpt->raid_disks == NULL) {
2020		mpt_prt(mpt, "Could not allocate RAID disk data\n");
2021		mpt_raid_free_mem(mpt);
2022		return (ENOMEM);
2023	}
2024	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2025
2026	/*
2027	 * Load page 3.
2028	 */
2029	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2030	    3, 0, &hdr, FALSE, 5000);
2031	if (rv) {
2032		mpt_raid_free_mem(mpt);
2033		return (EIO);
2034	}
2035
2036	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2037	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2038
2039	len = hdr.PageLength * sizeof(uint32_t);
2040	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2041	if (mpt->ioc_page3 == NULL) {
2042		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2043		mpt_raid_free_mem(mpt);
2044		return (ENOMEM);
2045	}
2046	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2047	rv = mpt_read_cur_cfg_page(mpt, 0,
2048	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2049	if (rv) {
2050		mpt_raid_free_mem(mpt);
2051		return (EIO);
2052	}
2053	mpt2host_config_page_ioc3(mpt->ioc_page3);
2054	mpt_raid_wakeup(mpt);
2055	return (0);
2056}
2057
2058/*
2059 * Enable IOC port
2060 */
2061static int
2062mpt_send_port_enable(struct mpt_softc *mpt, int port)
2063{
2064	request_t	*req;
2065	MSG_PORT_ENABLE *enable_req;
2066	int		 error;
2067
2068	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2069	if (req == NULL)
2070		return (-1);
2071
2072	enable_req = req->req_vbuf;
2073	memset(enable_req, 0,  MPT_RQSL(mpt));
2074
2075	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2076	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2077	enable_req->PortNumber = port;
2078
2079	mpt_check_doorbell(mpt);
2080	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2081
2082	mpt_send_cmd(mpt, req);
2083	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2084	    FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2085	if (error != 0) {
2086		mpt_prt(mpt, "port %d enable timed out\n", port);
2087		return (-1);
2088	}
2089	mpt_free_request(mpt, req);
2090	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2091	return (0);
2092}
2093
2094/*
2095 * Enable/Disable asynchronous event reporting.
2096 */
2097static int
2098mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2099{
2100	request_t *req;
2101	MSG_EVENT_NOTIFY *enable_req;
2102
2103	req = mpt_get_request(mpt, FALSE);
2104	if (req == NULL) {
2105		return (ENOMEM);
2106	}
2107	enable_req = req->req_vbuf;
2108	memset(enable_req, 0, sizeof *enable_req);
2109
2110	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2111	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2112	enable_req->Switch     = onoff;
2113
2114	mpt_check_doorbell(mpt);
2115	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2116	    onoff ? "en" : "dis");
2117	/*
2118	 * Send the command off, but don't wait for it.
2119	 */
2120	mpt_send_cmd(mpt, req);
2121	return (0);
2122}
2123
2124/*
2125 * Un-mask the interrupts on the chip.
2126 */
2127void
2128mpt_enable_ints(struct mpt_softc *mpt)
2129{
2130
2131	/* Unmask every thing except door bell int */
2132	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2133}
2134
2135/*
2136 * Mask the interrupts on the chip.
2137 */
2138void
2139mpt_disable_ints(struct mpt_softc *mpt)
2140{
2141
2142	/* Mask all interrupts */
2143	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2144	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2145}
2146
2147static void
2148mpt_sysctl_attach(struct mpt_softc *mpt)
2149{
2150	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2151	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2152
2153	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2154		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2155		       "Debugging/Verbose level");
2156	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2157		       "role", CTLFLAG_RD, &mpt->role, 0,
2158		       "HBA role");
2159#ifdef	MPT_TEST_MULTIPATH
2160	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2161		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2162		       "Next Target to Fail");
2163#endif
2164}
2165
2166int
2167mpt_attach(struct mpt_softc *mpt)
2168{
2169	struct mpt_personality *pers;
2170	int i;
2171	int error;
2172
2173	mpt_core_attach(mpt);
2174	mpt_core_enable(mpt);
2175
2176	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2177	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2178		pers = mpt_personalities[i];
2179		if (pers == NULL) {
2180			continue;
2181		}
2182		if (pers->probe(mpt) == 0) {
2183			error = pers->attach(mpt);
2184			if (error != 0) {
2185				mpt_detach(mpt);
2186				return (error);
2187			}
2188			mpt->mpt_pers_mask |= (0x1 << pers->id);
2189			pers->use_count++;
2190		}
2191	}
2192
2193	/*
2194	 * Now that we've attached everything, do the enable function
2195	 * for all of the personalities. This allows the personalities
2196	 * to do setups that are appropriate for them prior to enabling
2197	 * any ports.
2198	 */
2199	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2200		pers = mpt_personalities[i];
2201		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2202			error = pers->enable(mpt);
2203			if (error != 0) {
2204				mpt_prt(mpt, "personality %s attached but would"
2205				    " not enable (%d)\n", pers->name, error);
2206				mpt_detach(mpt);
2207				return (error);
2208			}
2209		}
2210	}
2211	return (0);
2212}
2213
2214int
2215mpt_shutdown(struct mpt_softc *mpt)
2216{
2217	struct mpt_personality *pers;
2218
2219	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2220		pers->shutdown(mpt);
2221	}
2222	return (0);
2223}
2224
2225int
2226mpt_detach(struct mpt_softc *mpt)
2227{
2228	struct mpt_personality *pers;
2229
2230	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2231		pers->detach(mpt);
2232		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2233		pers->use_count--;
2234	}
2235	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2236	return (0);
2237}
2238
2239static int
2240mpt_core_load(struct mpt_personality *pers)
2241{
2242	int i;
2243
2244	/*
2245	 * Setup core handlers and insert the default handler
2246	 * into all "empty slots".
2247	 */
2248	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2249		mpt_reply_handlers[i] = mpt_default_reply_handler;
2250	}
2251
2252	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2253	    mpt_event_reply_handler;
2254	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2255	    mpt_config_reply_handler;
2256	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2257	    mpt_handshake_reply_handler;
2258	return (0);
2259}
2260
2261/*
2262 * Initialize per-instance driver data and perform
2263 * initial controller configuration.
2264 */
2265static int
2266mpt_core_attach(struct mpt_softc *mpt)
2267{
2268        int val, error;
2269
2270	LIST_INIT(&mpt->ack_frames);
2271	/* Put all request buffers on the free list */
2272	TAILQ_INIT(&mpt->request_pending_list);
2273	TAILQ_INIT(&mpt->request_free_list);
2274	TAILQ_INIT(&mpt->request_timeout_list);
2275	for (val = 0; val < MPT_MAX_LUNS; val++) {
2276		STAILQ_INIT(&mpt->trt[val].atios);
2277		STAILQ_INIT(&mpt->trt[val].inots);
2278	}
2279	STAILQ_INIT(&mpt->trt_wildcard.atios);
2280	STAILQ_INIT(&mpt->trt_wildcard.inots);
2281#ifdef	MPT_TEST_MULTIPATH
2282	mpt->failure_id = -1;
2283#endif
2284	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2285	mpt_sysctl_attach(mpt);
2286	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2287	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2288
2289	MPT_LOCK(mpt);
2290	error = mpt_configure_ioc(mpt, 0, 0);
2291	MPT_UNLOCK(mpt);
2292
2293	return (error);
2294}
2295
2296static int
2297mpt_core_enable(struct mpt_softc *mpt)
2298{
2299
2300	/*
2301	 * We enter with the IOC enabled, but async events
2302	 * not enabled, ports not enabled and interrupts
2303	 * not enabled.
2304	 */
2305	MPT_LOCK(mpt);
2306
2307	/*
2308	 * Enable asynchronous event reporting- all personalities
2309	 * have attached so that they should be able to now field
2310	 * async events.
2311	 */
2312	mpt_send_event_request(mpt, 1);
2313
2314	/*
2315	 * Catch any pending interrupts
2316	 *
2317	 * This seems to be crucial- otherwise
2318	 * the portenable below times out.
2319	 */
2320	mpt_intr(mpt);
2321
2322	/*
2323	 * Enable Interrupts
2324	 */
2325	mpt_enable_ints(mpt);
2326
2327	/*
2328	 * Catch any pending interrupts
2329	 *
2330	 * This seems to be crucial- otherwise
2331	 * the portenable below times out.
2332	 */
2333	mpt_intr(mpt);
2334
2335	/*
2336	 * Enable the port.
2337	 */
2338	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2339		mpt_prt(mpt, "failed to enable port 0\n");
2340		MPT_UNLOCK(mpt);
2341		return (ENXIO);
2342	}
2343	MPT_UNLOCK(mpt);
2344	return (0);
2345}
2346
2347static void
2348mpt_core_shutdown(struct mpt_softc *mpt)
2349{
2350
2351	mpt_disable_ints(mpt);
2352}
2353
2354static void
2355mpt_core_detach(struct mpt_softc *mpt)
2356{
2357	int val;
2358
2359	/*
2360	 * XXX: FREE MEMORY
2361	 */
2362	mpt_disable_ints(mpt);
2363
2364	/* Make sure no request has pending timeouts. */
2365	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2366		request_t *req = &mpt->request_pool[val];
2367		mpt_callout_drain(mpt, &req->callout);
2368	}
2369
2370	mpt_dma_buf_free(mpt);
2371}
2372
2373static int
2374mpt_core_unload(struct mpt_personality *pers)
2375{
2376
2377	/* Unload is always successful. */
2378	return (0);
2379}
2380
2381#define FW_UPLOAD_REQ_SIZE				\
2382	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2383       + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2384
2385static int
2386mpt_upload_fw(struct mpt_softc *mpt)
2387{
2388	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2389	MSG_FW_UPLOAD_REPLY fw_reply;
2390	MSG_FW_UPLOAD *fw_req;
2391	FW_UPLOAD_TCSGE *tsge;
2392	SGE_SIMPLE32 *sge;
2393	uint32_t flags;
2394	int error;
2395
2396	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2397	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2398	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2399	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2400	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2401	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2402	tsge->DetailsLength = 12;
2403	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2404	tsge->ImageSize = htole32(mpt->fw_image_size);
2405	sge = (SGE_SIMPLE32 *)(tsge + 1);
2406	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2407	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2408	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2409	flags <<= MPI_SGE_FLAGS_SHIFT;
2410	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2411	sge->Address = htole32(mpt->fw_phys);
2412	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2413	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2414	if (error)
2415		return(error);
2416	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2417	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2418	return (error);
2419}
2420
2421static void
2422mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2423	       uint32_t *data, bus_size_t len)
2424{
2425	uint32_t *data_end;
2426
2427	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2428	if (mpt->is_sas) {
2429		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2430	}
2431	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2432	while (data != data_end) {
2433		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2434		data++;
2435	}
2436	if (mpt->is_sas) {
2437		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2438	}
2439}
2440
2441static int
2442mpt_download_fw(struct mpt_softc *mpt)
2443{
2444	MpiFwHeader_t *fw_hdr;
2445	int error;
2446	uint32_t ext_offset;
2447	uint32_t data;
2448
2449	if (mpt->pci_pio_reg == NULL) {
2450		mpt_prt(mpt, "No PIO resource!\n");
2451		return (ENXIO);
2452	}
2453
2454	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2455		mpt->fw_image_size);
2456
2457	error = mpt_enable_diag_mode(mpt);
2458	if (error != 0) {
2459		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2460		return (EIO);
2461	}
2462
2463	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2464		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2465
2466	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2467	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2468	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2469		       fw_hdr->ImageSize);
2470	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2471
2472	ext_offset = fw_hdr->NextImageHeaderOffset;
2473	while (ext_offset != 0) {
2474		MpiExtImageHeader_t *ext;
2475
2476		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2477		ext_offset = ext->NextImageHeaderOffset;
2478		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2479		    BUS_DMASYNC_PREWRITE);
2480		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2481			       ext->ImageSize);
2482		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2483		    BUS_DMASYNC_POSTWRITE);
2484	}
2485
2486	if (mpt->is_sas) {
2487		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2488	}
2489	/* Setup the address to jump to on reset. */
2490	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2491	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2492
2493	/*
2494	 * The controller sets the "flash bad" status after attempting
2495	 * to auto-boot from flash.  Clear the status so that the controller
2496	 * will continue the boot process with our newly installed firmware.
2497	 */
2498	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2499	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2500	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2501	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2502
2503	if (mpt->is_sas) {
2504		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2505	}
2506
2507	/*
2508	 * Re-enable the processor and clear the boot halt flag.
2509	 */
2510	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2511	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2512	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2513
2514	mpt_disable_diag_mode(mpt);
2515	return (0);
2516}
2517
2518static int
2519mpt_dma_buf_alloc(struct mpt_softc *mpt)
2520{
2521	struct mpt_map_info mi;
2522	uint8_t *vptr;
2523	uint32_t pptr, end;
2524	int i, error;
2525
2526	/* Create a child tag for data buffers */
2527	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2528	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2529	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2530	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2531	    &mpt->buffer_dmat) != 0) {
2532		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2533		return (1);
2534	}
2535
2536	/* Create a child tag for request buffers */
2537	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2538	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2539	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2540	    &mpt->request_dmat) != 0) {
2541		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2542		return (1);
2543	}
2544
2545	/* Allocate some DMA accessible memory for requests */
2546	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2547	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2548		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2549		    MPT_REQ_MEM_SIZE(mpt));
2550		return (1);
2551	}
2552
2553	mi.mpt = mpt;
2554	mi.error = 0;
2555
2556	/* Load and lock it into "bus space" */
2557	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2558	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2559
2560	if (mi.error) {
2561		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2562		    mi.error);
2563		return (1);
2564	}
2565	mpt->request_phys = mi.phys;
2566
2567	/*
2568	 * Now create per-request dma maps
2569	 */
2570	i = 0;
2571	pptr =  mpt->request_phys;
2572	vptr =  mpt->request;
2573	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2574	while(pptr < end) {
2575		request_t *req = &mpt->request_pool[i];
2576		req->index = i++;
2577
2578		/* Store location of Request Data */
2579		req->req_pbuf = pptr;
2580		req->req_vbuf = vptr;
2581
2582		pptr += MPT_REQUEST_AREA;
2583		vptr += MPT_REQUEST_AREA;
2584
2585		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2586		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2587
2588		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2589		if (error) {
2590			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2591			    error);
2592			return (1);
2593		}
2594	}
2595
2596	return (0);
2597}
2598
2599static void
2600mpt_dma_buf_free(struct mpt_softc *mpt)
2601{
2602	int i;
2603
2604	if (mpt->request_dmat == 0) {
2605		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2606		return;
2607	}
2608	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2609		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2610	}
2611	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2612	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2613	bus_dma_tag_destroy(mpt->request_dmat);
2614	mpt->request_dmat = 0;
2615	bus_dma_tag_destroy(mpt->buffer_dmat);
2616}
2617
2618/*
2619 * Allocate/Initialize data structures for the controller.  Called
2620 * once at instance startup.
2621 */
2622static int
2623mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2624{
2625	PTR_MSG_PORT_FACTS_REPLY pfp;
2626	int error, port, val;
2627	size_t len;
2628
2629	if (tn == MPT_MAX_TRYS) {
2630		return (-1);
2631	}
2632
2633	/*
2634	 * No need to reset if the IOC is already in the READY state.
2635	 *
2636	 * Force reset if initialization failed previously.
2637	 * Note that a hard_reset of the second channel of a '929
2638	 * will stop operation of the first channel.  Hopefully, if the
2639	 * first channel is ok, the second will not require a hard
2640	 * reset.
2641	 */
2642	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2643		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2644			return (mpt_configure_ioc(mpt, tn++, 1));
2645		}
2646		needreset = 0;
2647	}
2648
2649	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2650		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2651		return (mpt_configure_ioc(mpt, tn++, 1));
2652	}
2653	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2654
2655	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2656	    mpt->ioc_facts.MsgVersion >> 8,
2657	    mpt->ioc_facts.MsgVersion & 0xFF,
2658	    mpt->ioc_facts.HeaderVersion >> 8,
2659	    mpt->ioc_facts.HeaderVersion & 0xFF);
2660
2661	/*
2662	 * Now that we know request frame size, we can calculate
2663	 * the actual (reasonable) segment limit for read/write I/O.
2664	 *
2665	 * This limit is constrained by:
2666	 *
2667	 *  + The size of each area we allocate per command (and how
2668	 *    many chain segments we can fit into it).
2669	 *  + The total number of areas we've set up.
2670	 *  + The actual chain depth the card will allow.
2671	 *
2672	 * The first area's segment count is limited by the I/O request
2673	 * at the head of it. We cannot allocate realistically more
2674	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2675	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2676	 *
2677	 */
2678	/* total number of request areas we (can) allocate */
2679	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2680
2681	/* converted to the number of chain areas possible */
2682	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2683
2684	/* limited by the number of chain areas the card will support */
2685	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2686		mpt_lprt(mpt, MPT_PRT_INFO,
2687		    "chain depth limited to %u (from %u)\n",
2688		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2689		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2690	}
2691
2692	/* converted to the number of simple sges in chain segments. */
2693	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2694
2695	/*
2696	 * Use this as the basis for reporting the maximum I/O size to CAM.
2697	 */
2698	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2699
2700	error = mpt_dma_buf_alloc(mpt);
2701	if (error != 0) {
2702		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2703		return (EIO);
2704	}
2705
2706	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2707		request_t *req = &mpt->request_pool[val];
2708		req->state = REQ_STATE_ALLOCATED;
2709		mpt_callout_init(mpt, &req->callout);
2710		mpt_free_request(mpt, req);
2711	}
2712
2713	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2714		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2715		 mpt->max_cam_seg_cnt);
2716
2717	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2718	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2719	mpt_lprt(mpt, MPT_PRT_INFO,
2720	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2721	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2722	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2723	    mpt->ioc_facts.RequestFrameSize << 2,
2724	    mpt->ioc_facts.MaxChainDepth);
2725	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2726	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2727	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2728
2729	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2730	mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2731	if (mpt->port_facts == NULL) {
2732		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2733		return (ENOMEM);
2734	}
2735
2736
2737	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2738	    (mpt->fw_uploaded == 0)) {
2739		struct mpt_map_info mi;
2740
2741		/*
2742		 * In some configurations, the IOC's firmware is
2743		 * stored in a shared piece of system NVRAM that
2744		 * is only accessible via the BIOS.  In this
2745		 * case, the firmware keeps a copy of firmware in
2746		 * RAM until the OS driver retrieves it.  Once
2747		 * retrieved, we are responsible for re-downloading
2748		 * the firmware after any hard-reset.
2749		 */
2750		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2751		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2752		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2753		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2754		    &mpt->fw_dmat);
2755		if (error != 0) {
2756			mpt_prt(mpt, "cannot create firmware dma tag\n");
2757			return (ENOMEM);
2758		}
2759		error = bus_dmamem_alloc(mpt->fw_dmat,
2760		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2761		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2762		if (error != 0) {
2763			mpt_prt(mpt, "cannot allocate firmware memory\n");
2764			bus_dma_tag_destroy(mpt->fw_dmat);
2765			return (ENOMEM);
2766		}
2767		mi.mpt = mpt;
2768		mi.error = 0;
2769		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2770		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2771		mpt->fw_phys = mi.phys;
2772
2773		error = mpt_upload_fw(mpt);
2774		if (error != 0) {
2775			mpt_prt(mpt, "firmware upload failed.\n");
2776			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2777			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2778			    mpt->fw_dmap);
2779			bus_dma_tag_destroy(mpt->fw_dmat);
2780			mpt->fw_image = NULL;
2781			return (EIO);
2782		}
2783		mpt->fw_uploaded = 1;
2784	}
2785
2786	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2787		pfp = &mpt->port_facts[port];
2788		error = mpt_get_portfacts(mpt, 0, pfp);
2789		if (error != MPT_OK) {
2790			mpt_prt(mpt,
2791			    "mpt_get_portfacts on port %d failed\n", port);
2792			free(mpt->port_facts, M_DEVBUF);
2793			mpt->port_facts = NULL;
2794			return (mpt_configure_ioc(mpt, tn++, 1));
2795		}
2796		mpt2host_portfacts_reply(pfp);
2797
2798		if (port > 0) {
2799			error = MPT_PRT_INFO;
2800		} else {
2801			error = MPT_PRT_DEBUG;
2802		}
2803		mpt_lprt(mpt, error,
2804		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2805		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2806		    pfp->MaxDevices);
2807
2808	}
2809
2810	/*
2811	 * XXX: Not yet supporting more than port 0
2812	 */
2813	pfp = &mpt->port_facts[0];
2814	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2815		mpt->is_fc = 1;
2816		mpt->is_sas = 0;
2817		mpt->is_spi = 0;
2818	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2819		mpt->is_fc = 0;
2820		mpt->is_sas = 1;
2821		mpt->is_spi = 0;
2822	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2823		mpt->is_fc = 0;
2824		mpt->is_sas = 0;
2825		mpt->is_spi = 1;
2826		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2827			mpt->mpt_ini_id = pfp->PortSCSIID;
2828	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2829		mpt_prt(mpt, "iSCSI not supported yet\n");
2830		return (ENXIO);
2831	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2832		mpt_prt(mpt, "Inactive Port\n");
2833		return (ENXIO);
2834	} else {
2835		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2836		return (ENXIO);
2837	}
2838
2839	/*
2840	 * Set our role with what this port supports.
2841	 *
2842	 * Note this might be changed later in different modules
2843	 * if this is different from what is wanted.
2844	 */
2845	mpt->role = MPT_ROLE_NONE;
2846	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2847		mpt->role |= MPT_ROLE_INITIATOR;
2848	}
2849	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2850		mpt->role |= MPT_ROLE_TARGET;
2851	}
2852
2853	/*
2854	 * Enable the IOC
2855	 */
2856	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2857		mpt_prt(mpt, "unable to initialize IOC\n");
2858		return (ENXIO);
2859	}
2860
2861	/*
2862	 * Read IOC configuration information.
2863	 *
2864	 * We need this to determine whether or not we have certain
2865	 * settings for Integrated Mirroring (e.g.).
2866	 */
2867	mpt_read_config_info_ioc(mpt);
2868
2869	return (0);
2870}
2871
2872static int
2873mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2874{
2875	uint32_t pptr;
2876	int val;
2877
2878	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2879		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2880		return (EIO);
2881	}
2882
2883	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2884
2885	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2886		mpt_prt(mpt, "IOC failed to go to run state\n");
2887		return (ENXIO);
2888	}
2889	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2890
2891	/*
2892	 * Give it reply buffers
2893	 *
2894	 * Do *not* exceed global credits.
2895	 */
2896	for (val = 0, pptr = mpt->reply_phys;
2897	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2898	     pptr += MPT_REPLY_SIZE) {
2899		mpt_free_reply(mpt, pptr);
2900		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2901			break;
2902	}
2903
2904
2905	/*
2906	 * Enable the port if asked. This is only done if we're resetting
2907	 * the IOC after initial startup.
2908	 */
2909	if (portenable) {
2910		/*
2911		 * Enable asynchronous event reporting
2912		 */
2913		mpt_send_event_request(mpt, 1);
2914
2915		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2916			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2917			return (ENXIO);
2918		}
2919	}
2920	return (MPT_OK);
2921}
2922
2923/*
2924 * Endian Conversion Functions- only used on Big Endian machines
2925 */
2926#if	_BYTE_ORDER == _BIG_ENDIAN
2927void
2928mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2929{
2930
2931	MPT_2_HOST32(sge, FlagsLength);
2932	MPT_2_HOST32(sge, u.Address64.Low);
2933	MPT_2_HOST32(sge, u.Address64.High);
2934}
2935
2936void
2937mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2938{
2939
2940	MPT_2_HOST16(rp, MsgVersion);
2941	MPT_2_HOST16(rp, HeaderVersion);
2942	MPT_2_HOST32(rp, MsgContext);
2943	MPT_2_HOST16(rp, IOCExceptions);
2944	MPT_2_HOST16(rp, IOCStatus);
2945	MPT_2_HOST32(rp, IOCLogInfo);
2946	MPT_2_HOST16(rp, ReplyQueueDepth);
2947	MPT_2_HOST16(rp, RequestFrameSize);
2948	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2949	MPT_2_HOST16(rp, ProductID);
2950	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2951	MPT_2_HOST16(rp, GlobalCredits);
2952	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2953	MPT_2_HOST16(rp, CurReplyFrameSize);
2954	MPT_2_HOST32(rp, FWImageSize);
2955	MPT_2_HOST32(rp, IOCCapabilities);
2956	MPT_2_HOST32(rp, FWVersion.Word);
2957	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2958	MPT_2_HOST16(rp, Reserved2);
2959	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2960	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2961}
2962
2963void
2964mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2965{
2966
2967	MPT_2_HOST16(pfp, Reserved);
2968	MPT_2_HOST16(pfp, Reserved1);
2969	MPT_2_HOST32(pfp, MsgContext);
2970	MPT_2_HOST16(pfp, Reserved2);
2971	MPT_2_HOST16(pfp, IOCStatus);
2972	MPT_2_HOST32(pfp, IOCLogInfo);
2973	MPT_2_HOST16(pfp, MaxDevices);
2974	MPT_2_HOST16(pfp, PortSCSIID);
2975	MPT_2_HOST16(pfp, ProtocolFlags);
2976	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2977	MPT_2_HOST16(pfp, MaxPersistentIDs);
2978	MPT_2_HOST16(pfp, MaxLanBuckets);
2979	MPT_2_HOST16(pfp, Reserved4);
2980	MPT_2_HOST32(pfp, Reserved5);
2981}
2982
2983void
2984mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2985{
2986	int i;
2987
2988	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2989	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2990		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2991	}
2992}
2993
2994void
2995mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
2996{
2997
2998	MPT_2_HOST16(ioc3, Reserved2);
2999}
3000
3001void
3002mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3003{
3004
3005	MPT_2_HOST32(sp0, Capabilities);
3006	MPT_2_HOST32(sp0, PhysicalInterface);
3007}
3008
3009void
3010mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3011{
3012
3013	MPT_2_HOST32(sp1, Configuration);
3014	MPT_2_HOST32(sp1, OnBusTimerValue);
3015	MPT_2_HOST16(sp1, IDConfig);
3016}
3017
3018void
3019host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3020{
3021
3022	HOST_2_MPT32(sp1, Configuration);
3023	HOST_2_MPT32(sp1, OnBusTimerValue);
3024	HOST_2_MPT16(sp1, IDConfig);
3025}
3026
3027void
3028mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3029{
3030	int i;
3031
3032	MPT_2_HOST32(sp2, PortFlags);
3033	MPT_2_HOST32(sp2, PortSettings);
3034	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3035	    sizeof(*sp2->DeviceSettings); i++) {
3036		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3037	}
3038}
3039
3040void
3041mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3042{
3043
3044	MPT_2_HOST32(sd0, NegotiatedParameters);
3045	MPT_2_HOST32(sd0, Information);
3046}
3047
3048void
3049mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3050{
3051
3052	MPT_2_HOST32(sd1, RequestedParameters);
3053	MPT_2_HOST32(sd1, Reserved);
3054	MPT_2_HOST32(sd1, Configuration);
3055}
3056
3057void
3058host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3059{
3060
3061	HOST_2_MPT32(sd1, RequestedParameters);
3062	HOST_2_MPT32(sd1, Reserved);
3063	HOST_2_MPT32(sd1, Configuration);
3064}
3065
3066void
3067mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3068{
3069
3070	MPT_2_HOST32(fp0, Flags);
3071	MPT_2_HOST32(fp0, PortIdentifier);
3072	MPT_2_HOST32(fp0, WWNN.Low);
3073	MPT_2_HOST32(fp0, WWNN.High);
3074	MPT_2_HOST32(fp0, WWPN.Low);
3075	MPT_2_HOST32(fp0, WWPN.High);
3076	MPT_2_HOST32(fp0, SupportedServiceClass);
3077	MPT_2_HOST32(fp0, SupportedSpeeds);
3078	MPT_2_HOST32(fp0, CurrentSpeed);
3079	MPT_2_HOST32(fp0, MaxFrameSize);
3080	MPT_2_HOST32(fp0, FabricWWNN.Low);
3081	MPT_2_HOST32(fp0, FabricWWNN.High);
3082	MPT_2_HOST32(fp0, FabricWWPN.Low);
3083	MPT_2_HOST32(fp0, FabricWWPN.High);
3084	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3085	MPT_2_HOST32(fp0, MaxInitiators);
3086}
3087
3088void
3089mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3090{
3091
3092	MPT_2_HOST32(fp1, Flags);
3093	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3094	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3095	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3096	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3097}
3098
3099void
3100host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3101{
3102
3103	HOST_2_MPT32(fp1, Flags);
3104	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3105	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3106	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3107	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3108}
3109
3110void
3111mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3112{
3113	int i;
3114
3115	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3116	MPT_2_HOST16(volp, VolumeSettings.Settings);
3117	MPT_2_HOST32(volp, MaxLBA);
3118	MPT_2_HOST32(volp, MaxLBAHigh);
3119	MPT_2_HOST32(volp, StripeSize);
3120	MPT_2_HOST32(volp, Reserved2);
3121	MPT_2_HOST32(volp, Reserved3);
3122	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3123		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3124	}
3125}
3126
3127void
3128mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3129{
3130
3131	MPT_2_HOST32(rpd0, Reserved1);
3132	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3133	MPT_2_HOST32(rpd0, MaxLBA);
3134	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3135	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3136	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3137}
3138
3139void
3140mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3141{
3142
3143	MPT_2_HOST16(vi, TotalBlocks.High);
3144	MPT_2_HOST16(vi, TotalBlocks.Low);
3145	MPT_2_HOST16(vi, BlocksRemaining.High);
3146	MPT_2_HOST16(vi, BlocksRemaining.Low);
3147}
3148#endif
3149