zfs_vnops.c revision 274110
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
25 */
26
27/* Portions Copyright 2007 Jeremy Teo */
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/time.h>
33#include <sys/systm.h>
34#include <sys/sysmacros.h>
35#include <sys/resource.h>
36#include <sys/vfs.h>
37#include <sys/vm.h>
38#include <sys/vnode.h>
39#include <sys/file.h>
40#include <sys/stat.h>
41#include <sys/kmem.h>
42#include <sys/taskq.h>
43#include <sys/uio.h>
44#include <sys/atomic.h>
45#include <sys/namei.h>
46#include <sys/mman.h>
47#include <sys/cmn_err.h>
48#include <sys/errno.h>
49#include <sys/unistd.h>
50#include <sys/zfs_dir.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/fs/zfs.h>
53#include <sys/dmu.h>
54#include <sys/dmu_objset.h>
55#include <sys/spa.h>
56#include <sys/txg.h>
57#include <sys/dbuf.h>
58#include <sys/zap.h>
59#include <sys/sa.h>
60#include <sys/dirent.h>
61#include <sys/policy.h>
62#include <sys/sunddi.h>
63#include <sys/filio.h>
64#include <sys/sid.h>
65#include <sys/zfs_ctldir.h>
66#include <sys/zfs_fuid.h>
67#include <sys/zfs_sa.h>
68#include <sys/dnlc.h>
69#include <sys/zfs_rlock.h>
70#include <sys/extdirent.h>
71#include <sys/kidmap.h>
72#include <sys/bio.h>
73#include <sys/buf.h>
74#include <sys/sf_buf.h>
75#include <sys/sched.h>
76#include <sys/acl.h>
77#include <vm/vm_param.h>
78#include <vm/vm_pageout.h>
79
80/*
81 * Programming rules.
82 *
83 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
84 * properly lock its in-core state, create a DMU transaction, do the work,
85 * record this work in the intent log (ZIL), commit the DMU transaction,
86 * and wait for the intent log to commit if it is a synchronous operation.
87 * Moreover, the vnode ops must work in both normal and log replay context.
88 * The ordering of events is important to avoid deadlocks and references
89 * to freed memory.  The example below illustrates the following Big Rules:
90 *
91 *  (1)	A check must be made in each zfs thread for a mounted file system.
92 *	This is done avoiding races using ZFS_ENTER(zfsvfs).
93 *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
94 *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
95 *	can return EIO from the calling function.
96 *
97 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
98 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
99 *	First, if it's the last reference, the vnode/znode
100 *	can be freed, so the zp may point to freed memory.  Second, the last
101 *	reference will call zfs_zinactive(), which may induce a lot of work --
102 *	pushing cached pages (which acquires range locks) and syncing out
103 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
104 *	which could deadlock the system if you were already holding one.
105 *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
106 *
107 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
108 *	as they can span dmu_tx_assign() calls.
109 *
110 *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
111 *	This is critical because we don't want to block while holding locks.
112 *	Note, in particular, that if a lock is sometimes acquired before
113 *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
114 *	use a non-blocking assign can deadlock the system.  The scenario:
115 *
116 *	Thread A has grabbed a lock before calling dmu_tx_assign().
117 *	Thread B is in an already-assigned tx, and blocks for this lock.
118 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
119 *	forever, because the previous txg can't quiesce until B's tx commits.
120 *
121 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
122 *	then drop all locks, call dmu_tx_wait(), and try again.
123 *
124 *  (5)	If the operation succeeded, generate the intent log entry for it
125 *	before dropping locks.  This ensures that the ordering of events
126 *	in the intent log matches the order in which they actually occurred.
127 *	During ZIL replay the zfs_log_* functions will update the sequence
128 *	number to indicate the zil transaction has replayed.
129 *
130 *  (6)	At the end of each vnode op, the DMU tx must always commit,
131 *	regardless of whether there were any errors.
132 *
133 *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
134 *	to ensure that synchronous semantics are provided when necessary.
135 *
136 * In general, this is how things should be ordered in each vnode op:
137 *
138 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
139 * top:
140 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
141 *	rw_enter(...);			// grab any other locks you need
142 *	tx = dmu_tx_create(...);	// get DMU tx
143 *	dmu_tx_hold_*();		// hold each object you might modify
144 *	error = dmu_tx_assign(tx, TXG_NOWAIT);	// try to assign
145 *	if (error) {
146 *		rw_exit(...);		// drop locks
147 *		zfs_dirent_unlock(dl);	// unlock directory entry
148 *		VN_RELE(...);		// release held vnodes
149 *		if (error == ERESTART) {
150 *			dmu_tx_wait(tx);
151 *			dmu_tx_abort(tx);
152 *			goto top;
153 *		}
154 *		dmu_tx_abort(tx);	// abort DMU tx
155 *		ZFS_EXIT(zfsvfs);	// finished in zfs
156 *		return (error);		// really out of space
157 *	}
158 *	error = do_real_work();		// do whatever this VOP does
159 *	if (error == 0)
160 *		zfs_log_*(...);		// on success, make ZIL entry
161 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
162 *	rw_exit(...);			// drop locks
163 *	zfs_dirent_unlock(dl);		// unlock directory entry
164 *	VN_RELE(...);			// release held vnodes
165 *	zil_commit(zilog, foid);	// synchronous when necessary
166 *	ZFS_EXIT(zfsvfs);		// finished in zfs
167 *	return (error);			// done, report error
168 */
169
170/* ARGSUSED */
171static int
172zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
173{
174	znode_t	*zp = VTOZ(*vpp);
175	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
176
177	ZFS_ENTER(zfsvfs);
178	ZFS_VERIFY_ZP(zp);
179
180	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
181	    ((flag & FAPPEND) == 0)) {
182		ZFS_EXIT(zfsvfs);
183		return (SET_ERROR(EPERM));
184	}
185
186	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
187	    ZTOV(zp)->v_type == VREG &&
188	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
189		if (fs_vscan(*vpp, cr, 0) != 0) {
190			ZFS_EXIT(zfsvfs);
191			return (SET_ERROR(EACCES));
192		}
193	}
194
195	/* Keep a count of the synchronous opens in the znode */
196	if (flag & (FSYNC | FDSYNC))
197		atomic_inc_32(&zp->z_sync_cnt);
198
199	ZFS_EXIT(zfsvfs);
200	return (0);
201}
202
203/* ARGSUSED */
204static int
205zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
206    caller_context_t *ct)
207{
208	znode_t	*zp = VTOZ(vp);
209	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
210
211	/*
212	 * Clean up any locks held by this process on the vp.
213	 */
214	cleanlocks(vp, ddi_get_pid(), 0);
215	cleanshares(vp, ddi_get_pid());
216
217	ZFS_ENTER(zfsvfs);
218	ZFS_VERIFY_ZP(zp);
219
220	/* Decrement the synchronous opens in the znode */
221	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
222		atomic_dec_32(&zp->z_sync_cnt);
223
224	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
225	    ZTOV(zp)->v_type == VREG &&
226	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
227		VERIFY(fs_vscan(vp, cr, 1) == 0);
228
229	ZFS_EXIT(zfsvfs);
230	return (0);
231}
232
233/*
234 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
235 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
236 */
237static int
238zfs_holey(vnode_t *vp, u_long cmd, offset_t *off)
239{
240	znode_t	*zp = VTOZ(vp);
241	uint64_t noff = (uint64_t)*off; /* new offset */
242	uint64_t file_sz;
243	int error;
244	boolean_t hole;
245
246	file_sz = zp->z_size;
247	if (noff >= file_sz)  {
248		return (SET_ERROR(ENXIO));
249	}
250
251	if (cmd == _FIO_SEEK_HOLE)
252		hole = B_TRUE;
253	else
254		hole = B_FALSE;
255
256	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
257
258	/* end of file? */
259	if ((error == ESRCH) || (noff > file_sz)) {
260		/*
261		 * Handle the virtual hole at the end of file.
262		 */
263		if (hole) {
264			*off = file_sz;
265			return (0);
266		}
267		return (SET_ERROR(ENXIO));
268	}
269
270	if (noff < *off)
271		return (error);
272	*off = noff;
273	return (error);
274}
275
276/* ARGSUSED */
277static int
278zfs_ioctl(vnode_t *vp, u_long com, intptr_t data, int flag, cred_t *cred,
279    int *rvalp, caller_context_t *ct)
280{
281	offset_t off;
282	int error;
283	zfsvfs_t *zfsvfs;
284	znode_t *zp;
285
286	switch (com) {
287	case _FIOFFS:
288		return (0);
289
290		/*
291		 * The following two ioctls are used by bfu.  Faking out,
292		 * necessary to avoid bfu errors.
293		 */
294	case _FIOGDIO:
295	case _FIOSDIO:
296		return (0);
297
298	case _FIO_SEEK_DATA:
299	case _FIO_SEEK_HOLE:
300#ifdef sun
301		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
302			return (SET_ERROR(EFAULT));
303#else
304		off = *(offset_t *)data;
305#endif
306		zp = VTOZ(vp);
307		zfsvfs = zp->z_zfsvfs;
308		ZFS_ENTER(zfsvfs);
309		ZFS_VERIFY_ZP(zp);
310
311		/* offset parameter is in/out */
312		error = zfs_holey(vp, com, &off);
313		ZFS_EXIT(zfsvfs);
314		if (error)
315			return (error);
316#ifdef sun
317		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
318			return (SET_ERROR(EFAULT));
319#else
320		*(offset_t *)data = off;
321#endif
322		return (0);
323	}
324	return (SET_ERROR(ENOTTY));
325}
326
327static vm_page_t
328page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes)
329{
330	vm_object_t obj;
331	vm_page_t pp;
332	int64_t end;
333
334	/*
335	 * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE
336	 * aligned boundaries, if the range is not aligned.  As a result a
337	 * DEV_BSIZE subrange with partially dirty data may get marked as clean.
338	 * It may happen that all DEV_BSIZE subranges are marked clean and thus
339	 * the whole page would be considred clean despite have some dirty data.
340	 * For this reason we should shrink the range to DEV_BSIZE aligned
341	 * boundaries before calling vm_page_clear_dirty.
342	 */
343	end = rounddown2(off + nbytes, DEV_BSIZE);
344	off = roundup2(off, DEV_BSIZE);
345	nbytes = end - off;
346
347	obj = vp->v_object;
348	zfs_vmobject_assert_wlocked(obj);
349
350	for (;;) {
351		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
352		    pp->valid) {
353			if (vm_page_xbusied(pp)) {
354				/*
355				 * Reference the page before unlocking and
356				 * sleeping so that the page daemon is less
357				 * likely to reclaim it.
358				 */
359				vm_page_reference(pp);
360				vm_page_lock(pp);
361				zfs_vmobject_wunlock(obj);
362				vm_page_busy_sleep(pp, "zfsmwb");
363				zfs_vmobject_wlock(obj);
364				continue;
365			}
366			vm_page_sbusy(pp);
367		} else if (pp == NULL) {
368			pp = vm_page_alloc(obj, OFF_TO_IDX(start),
369			    VM_ALLOC_SYSTEM | VM_ALLOC_IFCACHED |
370			    VM_ALLOC_SBUSY);
371		} else {
372			ASSERT(pp != NULL && !pp->valid);
373			pp = NULL;
374		}
375
376		if (pp != NULL) {
377			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
378			vm_object_pip_add(obj, 1);
379			pmap_remove_write(pp);
380			if (nbytes != 0)
381				vm_page_clear_dirty(pp, off, nbytes);
382		}
383		break;
384	}
385	return (pp);
386}
387
388static void
389page_unbusy(vm_page_t pp)
390{
391
392	vm_page_sunbusy(pp);
393	vm_object_pip_subtract(pp->object, 1);
394}
395
396static vm_page_t
397page_hold(vnode_t *vp, int64_t start)
398{
399	vm_object_t obj;
400	vm_page_t pp;
401
402	obj = vp->v_object;
403	zfs_vmobject_assert_wlocked(obj);
404
405	for (;;) {
406		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
407		    pp->valid) {
408			if (vm_page_xbusied(pp)) {
409				/*
410				 * Reference the page before unlocking and
411				 * sleeping so that the page daemon is less
412				 * likely to reclaim it.
413				 */
414				vm_page_reference(pp);
415				vm_page_lock(pp);
416				zfs_vmobject_wunlock(obj);
417				vm_page_busy_sleep(pp, "zfsmwb");
418				zfs_vmobject_wlock(obj);
419				continue;
420			}
421
422			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
423			vm_page_lock(pp);
424			vm_page_hold(pp);
425			vm_page_unlock(pp);
426
427		} else
428			pp = NULL;
429		break;
430	}
431	return (pp);
432}
433
434static void
435page_unhold(vm_page_t pp)
436{
437
438	vm_page_lock(pp);
439	vm_page_unhold(pp);
440	vm_page_unlock(pp);
441}
442
443static caddr_t
444zfs_map_page(vm_page_t pp, struct sf_buf **sfp)
445{
446
447	*sfp = sf_buf_alloc(pp, 0);
448	return ((caddr_t)sf_buf_kva(*sfp));
449}
450
451static void
452zfs_unmap_page(struct sf_buf *sf)
453{
454
455	sf_buf_free(sf);
456}
457
458/*
459 * When a file is memory mapped, we must keep the IO data synchronized
460 * between the DMU cache and the memory mapped pages.  What this means:
461 *
462 * On Write:	If we find a memory mapped page, we write to *both*
463 *		the page and the dmu buffer.
464 */
465static void
466update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid,
467    int segflg, dmu_tx_t *tx)
468{
469	vm_object_t obj;
470	struct sf_buf *sf;
471	caddr_t va;
472	int off;
473
474	ASSERT(vp->v_mount != NULL);
475	obj = vp->v_object;
476	ASSERT(obj != NULL);
477
478	off = start & PAGEOFFSET;
479	zfs_vmobject_wlock(obj);
480	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
481		vm_page_t pp;
482		int nbytes = imin(PAGESIZE - off, len);
483
484		if (segflg == UIO_NOCOPY) {
485			pp = vm_page_lookup(obj, OFF_TO_IDX(start));
486			KASSERT(pp != NULL,
487			    ("zfs update_pages: NULL page in putpages case"));
488			KASSERT(off == 0,
489			    ("zfs update_pages: unaligned data in putpages case"));
490			KASSERT(pp->valid == VM_PAGE_BITS_ALL,
491			    ("zfs update_pages: invalid page in putpages case"));
492			KASSERT(vm_page_sbusied(pp),
493			    ("zfs update_pages: unbusy page in putpages case"));
494			KASSERT(!pmap_page_is_write_mapped(pp),
495			    ("zfs update_pages: writable page in putpages case"));
496			zfs_vmobject_wunlock(obj);
497
498			va = zfs_map_page(pp, &sf);
499			(void) dmu_write(os, oid, start, nbytes, va, tx);
500			zfs_unmap_page(sf);
501
502			zfs_vmobject_wlock(obj);
503			vm_page_undirty(pp);
504		} else if ((pp = page_busy(vp, start, off, nbytes)) != NULL) {
505			zfs_vmobject_wunlock(obj);
506
507			va = zfs_map_page(pp, &sf);
508			(void) dmu_read(os, oid, start+off, nbytes,
509			    va+off, DMU_READ_PREFETCH);;
510			zfs_unmap_page(sf);
511
512			zfs_vmobject_wlock(obj);
513			page_unbusy(pp);
514		}
515		len -= nbytes;
516		off = 0;
517	}
518	if (segflg != UIO_NOCOPY)
519		vm_object_pip_wakeupn(obj, 0);
520	zfs_vmobject_wunlock(obj);
521}
522
523/*
524 * Read with UIO_NOCOPY flag means that sendfile(2) requests
525 * ZFS to populate a range of page cache pages with data.
526 *
527 * NOTE: this function could be optimized to pre-allocate
528 * all pages in advance, drain exclusive busy on all of them,
529 * map them into contiguous KVA region and populate them
530 * in one single dmu_read() call.
531 */
532static int
533mappedread_sf(vnode_t *vp, int nbytes, uio_t *uio)
534{
535	znode_t *zp = VTOZ(vp);
536	objset_t *os = zp->z_zfsvfs->z_os;
537	struct sf_buf *sf;
538	vm_object_t obj;
539	vm_page_t pp;
540	int64_t start;
541	caddr_t va;
542	int len = nbytes;
543	int off;
544	int error = 0;
545
546	ASSERT(uio->uio_segflg == UIO_NOCOPY);
547	ASSERT(vp->v_mount != NULL);
548	obj = vp->v_object;
549	ASSERT(obj != NULL);
550	ASSERT((uio->uio_loffset & PAGEOFFSET) == 0);
551
552	zfs_vmobject_wlock(obj);
553	for (start = uio->uio_loffset; len > 0; start += PAGESIZE) {
554		int bytes = MIN(PAGESIZE, len);
555
556		pp = vm_page_grab(obj, OFF_TO_IDX(start), VM_ALLOC_SBUSY |
557		    VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY);
558		if (pp->valid == 0) {
559			zfs_vmobject_wunlock(obj);
560			va = zfs_map_page(pp, &sf);
561			error = dmu_read(os, zp->z_id, start, bytes, va,
562			    DMU_READ_PREFETCH);
563			if (bytes != PAGESIZE && error == 0)
564				bzero(va + bytes, PAGESIZE - bytes);
565			zfs_unmap_page(sf);
566			zfs_vmobject_wlock(obj);
567			vm_page_sunbusy(pp);
568			vm_page_lock(pp);
569			if (error) {
570				if (pp->wire_count == 0 && pp->valid == 0 &&
571				    !vm_page_busied(pp))
572					vm_page_free(pp);
573			} else {
574				pp->valid = VM_PAGE_BITS_ALL;
575				vm_page_activate(pp);
576			}
577			vm_page_unlock(pp);
578		} else
579			vm_page_sunbusy(pp);
580		if (error)
581			break;
582		uio->uio_resid -= bytes;
583		uio->uio_offset += bytes;
584		len -= bytes;
585	}
586	zfs_vmobject_wunlock(obj);
587	return (error);
588}
589
590/*
591 * When a file is memory mapped, we must keep the IO data synchronized
592 * between the DMU cache and the memory mapped pages.  What this means:
593 *
594 * On Read:	We "read" preferentially from memory mapped pages,
595 *		else we default from the dmu buffer.
596 *
597 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
598 *	 the file is memory mapped.
599 */
600static int
601mappedread(vnode_t *vp, int nbytes, uio_t *uio)
602{
603	znode_t *zp = VTOZ(vp);
604	objset_t *os = zp->z_zfsvfs->z_os;
605	vm_object_t obj;
606	int64_t start;
607	caddr_t va;
608	int len = nbytes;
609	int off;
610	int error = 0;
611
612	ASSERT(vp->v_mount != NULL);
613	obj = vp->v_object;
614	ASSERT(obj != NULL);
615
616	start = uio->uio_loffset;
617	off = start & PAGEOFFSET;
618	zfs_vmobject_wlock(obj);
619	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
620		vm_page_t pp;
621		uint64_t bytes = MIN(PAGESIZE - off, len);
622
623		if (pp = page_hold(vp, start)) {
624			struct sf_buf *sf;
625			caddr_t va;
626
627			zfs_vmobject_wunlock(obj);
628			va = zfs_map_page(pp, &sf);
629			error = uiomove(va + off, bytes, UIO_READ, uio);
630			zfs_unmap_page(sf);
631			zfs_vmobject_wlock(obj);
632			page_unhold(pp);
633		} else {
634			zfs_vmobject_wunlock(obj);
635			error = dmu_read_uio(os, zp->z_id, uio, bytes);
636			zfs_vmobject_wlock(obj);
637		}
638		len -= bytes;
639		off = 0;
640		if (error)
641			break;
642	}
643	zfs_vmobject_wunlock(obj);
644	return (error);
645}
646
647offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
648
649/*
650 * Read bytes from specified file into supplied buffer.
651 *
652 *	IN:	vp	- vnode of file to be read from.
653 *		uio	- structure supplying read location, range info,
654 *			  and return buffer.
655 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
656 *		cr	- credentials of caller.
657 *		ct	- caller context
658 *
659 *	OUT:	uio	- updated offset and range, buffer filled.
660 *
661 *	RETURN:	0 on success, error code on failure.
662 *
663 * Side Effects:
664 *	vp - atime updated if byte count > 0
665 */
666/* ARGSUSED */
667static int
668zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
669{
670	znode_t		*zp = VTOZ(vp);
671	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
672	objset_t	*os;
673	ssize_t		n, nbytes;
674	int		error = 0;
675	rl_t		*rl;
676	xuio_t		*xuio = NULL;
677
678	ZFS_ENTER(zfsvfs);
679	ZFS_VERIFY_ZP(zp);
680	os = zfsvfs->z_os;
681
682	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
683		ZFS_EXIT(zfsvfs);
684		return (SET_ERROR(EACCES));
685	}
686
687	/*
688	 * Validate file offset
689	 */
690	if (uio->uio_loffset < (offset_t)0) {
691		ZFS_EXIT(zfsvfs);
692		return (SET_ERROR(EINVAL));
693	}
694
695	/*
696	 * Fasttrack empty reads
697	 */
698	if (uio->uio_resid == 0) {
699		ZFS_EXIT(zfsvfs);
700		return (0);
701	}
702
703	/*
704	 * Check for mandatory locks
705	 */
706	if (MANDMODE(zp->z_mode)) {
707		if (error = chklock(vp, FREAD,
708		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
709			ZFS_EXIT(zfsvfs);
710			return (error);
711		}
712	}
713
714	/*
715	 * If we're in FRSYNC mode, sync out this znode before reading it.
716	 */
717	if (zfsvfs->z_log &&
718	    (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
719		zil_commit(zfsvfs->z_log, zp->z_id);
720
721	/*
722	 * Lock the range against changes.
723	 */
724	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
725
726	/*
727	 * If we are reading past end-of-file we can skip
728	 * to the end; but we might still need to set atime.
729	 */
730	if (uio->uio_loffset >= zp->z_size) {
731		error = 0;
732		goto out;
733	}
734
735	ASSERT(uio->uio_loffset < zp->z_size);
736	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
737
738#ifdef sun
739	if ((uio->uio_extflg == UIO_XUIO) &&
740	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
741		int nblk;
742		int blksz = zp->z_blksz;
743		uint64_t offset = uio->uio_loffset;
744
745		xuio = (xuio_t *)uio;
746		if ((ISP2(blksz))) {
747			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
748			    blksz)) / blksz;
749		} else {
750			ASSERT(offset + n <= blksz);
751			nblk = 1;
752		}
753		(void) dmu_xuio_init(xuio, nblk);
754
755		if (vn_has_cached_data(vp)) {
756			/*
757			 * For simplicity, we always allocate a full buffer
758			 * even if we only expect to read a portion of a block.
759			 */
760			while (--nblk >= 0) {
761				(void) dmu_xuio_add(xuio,
762				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
763				    blksz), 0, blksz);
764			}
765		}
766	}
767#endif	/* sun */
768
769	while (n > 0) {
770		nbytes = MIN(n, zfs_read_chunk_size -
771		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
772
773#ifdef __FreeBSD__
774		if (uio->uio_segflg == UIO_NOCOPY)
775			error = mappedread_sf(vp, nbytes, uio);
776		else
777#endif /* __FreeBSD__ */
778		if (vn_has_cached_data(vp))
779			error = mappedread(vp, nbytes, uio);
780		else
781			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
782		if (error) {
783			/* convert checksum errors into IO errors */
784			if (error == ECKSUM)
785				error = SET_ERROR(EIO);
786			break;
787		}
788
789		n -= nbytes;
790	}
791out:
792	zfs_range_unlock(rl);
793
794	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
795	ZFS_EXIT(zfsvfs);
796	return (error);
797}
798
799/*
800 * Write the bytes to a file.
801 *
802 *	IN:	vp	- vnode of file to be written to.
803 *		uio	- structure supplying write location, range info,
804 *			  and data buffer.
805 *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
806 *			  set if in append mode.
807 *		cr	- credentials of caller.
808 *		ct	- caller context (NFS/CIFS fem monitor only)
809 *
810 *	OUT:	uio	- updated offset and range.
811 *
812 *	RETURN:	0 on success, error code on failure.
813 *
814 * Timestamps:
815 *	vp - ctime|mtime updated if byte count > 0
816 */
817
818/* ARGSUSED */
819static int
820zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
821{
822	znode_t		*zp = VTOZ(vp);
823	rlim64_t	limit = MAXOFFSET_T;
824	ssize_t		start_resid = uio->uio_resid;
825	ssize_t		tx_bytes;
826	uint64_t	end_size;
827	dmu_tx_t	*tx;
828	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
829	zilog_t		*zilog;
830	offset_t	woff;
831	ssize_t		n, nbytes;
832	rl_t		*rl;
833	int		max_blksz = zfsvfs->z_max_blksz;
834	int		error = 0;
835	arc_buf_t	*abuf;
836	iovec_t		*aiov = NULL;
837	xuio_t		*xuio = NULL;
838	int		i_iov = 0;
839	int		iovcnt = uio->uio_iovcnt;
840	iovec_t		*iovp = uio->uio_iov;
841	int		write_eof;
842	int		count = 0;
843	sa_bulk_attr_t	bulk[4];
844	uint64_t	mtime[2], ctime[2];
845
846	/*
847	 * Fasttrack empty write
848	 */
849	n = start_resid;
850	if (n == 0)
851		return (0);
852
853	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
854		limit = MAXOFFSET_T;
855
856	ZFS_ENTER(zfsvfs);
857	ZFS_VERIFY_ZP(zp);
858
859	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
860	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
861	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
862	    &zp->z_size, 8);
863	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
864	    &zp->z_pflags, 8);
865
866	/*
867	 * If immutable or not appending then return EPERM
868	 */
869	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
870	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
871	    (uio->uio_loffset < zp->z_size))) {
872		ZFS_EXIT(zfsvfs);
873		return (SET_ERROR(EPERM));
874	}
875
876	zilog = zfsvfs->z_log;
877
878	/*
879	 * Validate file offset
880	 */
881	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
882	if (woff < 0) {
883		ZFS_EXIT(zfsvfs);
884		return (SET_ERROR(EINVAL));
885	}
886
887	/*
888	 * Check for mandatory locks before calling zfs_range_lock()
889	 * in order to prevent a deadlock with locks set via fcntl().
890	 */
891	if (MANDMODE((mode_t)zp->z_mode) &&
892	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
893		ZFS_EXIT(zfsvfs);
894		return (error);
895	}
896
897#ifdef sun
898	/*
899	 * Pre-fault the pages to ensure slow (eg NFS) pages
900	 * don't hold up txg.
901	 * Skip this if uio contains loaned arc_buf.
902	 */
903	if ((uio->uio_extflg == UIO_XUIO) &&
904	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
905		xuio = (xuio_t *)uio;
906	else
907		uio_prefaultpages(MIN(n, max_blksz), uio);
908#endif	/* sun */
909
910	/*
911	 * If in append mode, set the io offset pointer to eof.
912	 */
913	if (ioflag & FAPPEND) {
914		/*
915		 * Obtain an appending range lock to guarantee file append
916		 * semantics.  We reset the write offset once we have the lock.
917		 */
918		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
919		woff = rl->r_off;
920		if (rl->r_len == UINT64_MAX) {
921			/*
922			 * We overlocked the file because this write will cause
923			 * the file block size to increase.
924			 * Note that zp_size cannot change with this lock held.
925			 */
926			woff = zp->z_size;
927		}
928		uio->uio_loffset = woff;
929	} else {
930		/*
931		 * Note that if the file block size will change as a result of
932		 * this write, then this range lock will lock the entire file
933		 * so that we can re-write the block safely.
934		 */
935		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
936	}
937
938	if (vn_rlimit_fsize(vp, uio, uio->uio_td)) {
939		zfs_range_unlock(rl);
940		ZFS_EXIT(zfsvfs);
941		return (EFBIG);
942	}
943
944	if (woff >= limit) {
945		zfs_range_unlock(rl);
946		ZFS_EXIT(zfsvfs);
947		return (SET_ERROR(EFBIG));
948	}
949
950	if ((woff + n) > limit || woff > (limit - n))
951		n = limit - woff;
952
953	/* Will this write extend the file length? */
954	write_eof = (woff + n > zp->z_size);
955
956	end_size = MAX(zp->z_size, woff + n);
957
958	/*
959	 * Write the file in reasonable size chunks.  Each chunk is written
960	 * in a separate transaction; this keeps the intent log records small
961	 * and allows us to do more fine-grained space accounting.
962	 */
963	while (n > 0) {
964		abuf = NULL;
965		woff = uio->uio_loffset;
966again:
967		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
968		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
969			if (abuf != NULL)
970				dmu_return_arcbuf(abuf);
971			error = SET_ERROR(EDQUOT);
972			break;
973		}
974
975		if (xuio && abuf == NULL) {
976			ASSERT(i_iov < iovcnt);
977			aiov = &iovp[i_iov];
978			abuf = dmu_xuio_arcbuf(xuio, i_iov);
979			dmu_xuio_clear(xuio, i_iov);
980			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
981			    iovec_t *, aiov, arc_buf_t *, abuf);
982			ASSERT((aiov->iov_base == abuf->b_data) ||
983			    ((char *)aiov->iov_base - (char *)abuf->b_data +
984			    aiov->iov_len == arc_buf_size(abuf)));
985			i_iov++;
986		} else if (abuf == NULL && n >= max_blksz &&
987		    woff >= zp->z_size &&
988		    P2PHASE(woff, max_blksz) == 0 &&
989		    zp->z_blksz == max_blksz) {
990			/*
991			 * This write covers a full block.  "Borrow" a buffer
992			 * from the dmu so that we can fill it before we enter
993			 * a transaction.  This avoids the possibility of
994			 * holding up the transaction if the data copy hangs
995			 * up on a pagefault (e.g., from an NFS server mapping).
996			 */
997			size_t cbytes;
998
999			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
1000			    max_blksz);
1001			ASSERT(abuf != NULL);
1002			ASSERT(arc_buf_size(abuf) == max_blksz);
1003			if (error = uiocopy(abuf->b_data, max_blksz,
1004			    UIO_WRITE, uio, &cbytes)) {
1005				dmu_return_arcbuf(abuf);
1006				break;
1007			}
1008			ASSERT(cbytes == max_blksz);
1009		}
1010
1011		/*
1012		 * Start a transaction.
1013		 */
1014		tx = dmu_tx_create(zfsvfs->z_os);
1015		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1016		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
1017		zfs_sa_upgrade_txholds(tx, zp);
1018		error = dmu_tx_assign(tx, TXG_NOWAIT);
1019		if (error) {
1020			if (error == ERESTART) {
1021				dmu_tx_wait(tx);
1022				dmu_tx_abort(tx);
1023				goto again;
1024			}
1025			dmu_tx_abort(tx);
1026			if (abuf != NULL)
1027				dmu_return_arcbuf(abuf);
1028			break;
1029		}
1030
1031		/*
1032		 * If zfs_range_lock() over-locked we grow the blocksize
1033		 * and then reduce the lock range.  This will only happen
1034		 * on the first iteration since zfs_range_reduce() will
1035		 * shrink down r_len to the appropriate size.
1036		 */
1037		if (rl->r_len == UINT64_MAX) {
1038			uint64_t new_blksz;
1039
1040			if (zp->z_blksz > max_blksz) {
1041				ASSERT(!ISP2(zp->z_blksz));
1042				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
1043			} else {
1044				new_blksz = MIN(end_size, max_blksz);
1045			}
1046			zfs_grow_blocksize(zp, new_blksz, tx);
1047			zfs_range_reduce(rl, woff, n);
1048		}
1049
1050		/*
1051		 * XXX - should we really limit each write to z_max_blksz?
1052		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
1053		 */
1054		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
1055
1056		if (woff + nbytes > zp->z_size)
1057			vnode_pager_setsize(vp, woff + nbytes);
1058
1059		if (abuf == NULL) {
1060			tx_bytes = uio->uio_resid;
1061			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
1062			    uio, nbytes, tx);
1063			tx_bytes -= uio->uio_resid;
1064		} else {
1065			tx_bytes = nbytes;
1066			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
1067			/*
1068			 * If this is not a full block write, but we are
1069			 * extending the file past EOF and this data starts
1070			 * block-aligned, use assign_arcbuf().  Otherwise,
1071			 * write via dmu_write().
1072			 */
1073			if (tx_bytes < max_blksz && (!write_eof ||
1074			    aiov->iov_base != abuf->b_data)) {
1075				ASSERT(xuio);
1076				dmu_write(zfsvfs->z_os, zp->z_id, woff,
1077				    aiov->iov_len, aiov->iov_base, tx);
1078				dmu_return_arcbuf(abuf);
1079				xuio_stat_wbuf_copied();
1080			} else {
1081				ASSERT(xuio || tx_bytes == max_blksz);
1082				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
1083				    woff, abuf, tx);
1084			}
1085			ASSERT(tx_bytes <= uio->uio_resid);
1086			uioskip(uio, tx_bytes);
1087		}
1088		if (tx_bytes && vn_has_cached_data(vp)) {
1089			update_pages(vp, woff, tx_bytes, zfsvfs->z_os,
1090			    zp->z_id, uio->uio_segflg, tx);
1091		}
1092
1093		/*
1094		 * If we made no progress, we're done.  If we made even
1095		 * partial progress, update the znode and ZIL accordingly.
1096		 */
1097		if (tx_bytes == 0) {
1098			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
1099			    (void *)&zp->z_size, sizeof (uint64_t), tx);
1100			dmu_tx_commit(tx);
1101			ASSERT(error != 0);
1102			break;
1103		}
1104
1105		/*
1106		 * Clear Set-UID/Set-GID bits on successful write if not
1107		 * privileged and at least one of the excute bits is set.
1108		 *
1109		 * It would be nice to to this after all writes have
1110		 * been done, but that would still expose the ISUID/ISGID
1111		 * to another app after the partial write is committed.
1112		 *
1113		 * Note: we don't call zfs_fuid_map_id() here because
1114		 * user 0 is not an ephemeral uid.
1115		 */
1116		mutex_enter(&zp->z_acl_lock);
1117		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
1118		    (S_IXUSR >> 6))) != 0 &&
1119		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
1120		    secpolicy_vnode_setid_retain(vp, cr,
1121		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
1122			uint64_t newmode;
1123			zp->z_mode &= ~(S_ISUID | S_ISGID);
1124			newmode = zp->z_mode;
1125			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
1126			    (void *)&newmode, sizeof (uint64_t), tx);
1127		}
1128		mutex_exit(&zp->z_acl_lock);
1129
1130		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
1131		    B_TRUE);
1132
1133		/*
1134		 * Update the file size (zp_size) if it has changed;
1135		 * account for possible concurrent updates.
1136		 */
1137		while ((end_size = zp->z_size) < uio->uio_loffset) {
1138			(void) atomic_cas_64(&zp->z_size, end_size,
1139			    uio->uio_loffset);
1140			ASSERT(error == 0);
1141		}
1142		/*
1143		 * If we are replaying and eof is non zero then force
1144		 * the file size to the specified eof. Note, there's no
1145		 * concurrency during replay.
1146		 */
1147		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1148			zp->z_size = zfsvfs->z_replay_eof;
1149
1150		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1151
1152		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1153		dmu_tx_commit(tx);
1154
1155		if (error != 0)
1156			break;
1157		ASSERT(tx_bytes == nbytes);
1158		n -= nbytes;
1159
1160#ifdef sun
1161		if (!xuio && n > 0)
1162			uio_prefaultpages(MIN(n, max_blksz), uio);
1163#endif	/* sun */
1164	}
1165
1166	zfs_range_unlock(rl);
1167
1168	/*
1169	 * If we're in replay mode, or we made no progress, return error.
1170	 * Otherwise, it's at least a partial write, so it's successful.
1171	 */
1172	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1173		ZFS_EXIT(zfsvfs);
1174		return (error);
1175	}
1176
1177	if (ioflag & (FSYNC | FDSYNC) ||
1178	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1179		zil_commit(zilog, zp->z_id);
1180
1181	ZFS_EXIT(zfsvfs);
1182	return (0);
1183}
1184
1185void
1186zfs_get_done(zgd_t *zgd, int error)
1187{
1188	znode_t *zp = zgd->zgd_private;
1189	objset_t *os = zp->z_zfsvfs->z_os;
1190
1191	if (zgd->zgd_db)
1192		dmu_buf_rele(zgd->zgd_db, zgd);
1193
1194	zfs_range_unlock(zgd->zgd_rl);
1195
1196	/*
1197	 * Release the vnode asynchronously as we currently have the
1198	 * txg stopped from syncing.
1199	 */
1200	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1201
1202	if (error == 0 && zgd->zgd_bp)
1203		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1204
1205	kmem_free(zgd, sizeof (zgd_t));
1206}
1207
1208#ifdef DEBUG
1209static int zil_fault_io = 0;
1210#endif
1211
1212/*
1213 * Get data to generate a TX_WRITE intent log record.
1214 */
1215int
1216zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1217{
1218	zfsvfs_t *zfsvfs = arg;
1219	objset_t *os = zfsvfs->z_os;
1220	znode_t *zp;
1221	uint64_t object = lr->lr_foid;
1222	uint64_t offset = lr->lr_offset;
1223	uint64_t size = lr->lr_length;
1224	blkptr_t *bp = &lr->lr_blkptr;
1225	dmu_buf_t *db;
1226	zgd_t *zgd;
1227	int error = 0;
1228
1229	ASSERT(zio != NULL);
1230	ASSERT(size != 0);
1231
1232	/*
1233	 * Nothing to do if the file has been removed
1234	 */
1235	if (zfs_zget(zfsvfs, object, &zp) != 0)
1236		return (SET_ERROR(ENOENT));
1237	if (zp->z_unlinked) {
1238		/*
1239		 * Release the vnode asynchronously as we currently have the
1240		 * txg stopped from syncing.
1241		 */
1242		VN_RELE_ASYNC(ZTOV(zp),
1243		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1244		return (SET_ERROR(ENOENT));
1245	}
1246
1247	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1248	zgd->zgd_zilog = zfsvfs->z_log;
1249	zgd->zgd_private = zp;
1250
1251	/*
1252	 * Write records come in two flavors: immediate and indirect.
1253	 * For small writes it's cheaper to store the data with the
1254	 * log record (immediate); for large writes it's cheaper to
1255	 * sync the data and get a pointer to it (indirect) so that
1256	 * we don't have to write the data twice.
1257	 */
1258	if (buf != NULL) { /* immediate write */
1259		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1260		/* test for truncation needs to be done while range locked */
1261		if (offset >= zp->z_size) {
1262			error = SET_ERROR(ENOENT);
1263		} else {
1264			error = dmu_read(os, object, offset, size, buf,
1265			    DMU_READ_NO_PREFETCH);
1266		}
1267		ASSERT(error == 0 || error == ENOENT);
1268	} else { /* indirect write */
1269		/*
1270		 * Have to lock the whole block to ensure when it's
1271		 * written out and it's checksum is being calculated
1272		 * that no one can change the data. We need to re-check
1273		 * blocksize after we get the lock in case it's changed!
1274		 */
1275		for (;;) {
1276			uint64_t blkoff;
1277			size = zp->z_blksz;
1278			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1279			offset -= blkoff;
1280			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1281			    RL_READER);
1282			if (zp->z_blksz == size)
1283				break;
1284			offset += blkoff;
1285			zfs_range_unlock(zgd->zgd_rl);
1286		}
1287		/* test for truncation needs to be done while range locked */
1288		if (lr->lr_offset >= zp->z_size)
1289			error = SET_ERROR(ENOENT);
1290#ifdef DEBUG
1291		if (zil_fault_io) {
1292			error = SET_ERROR(EIO);
1293			zil_fault_io = 0;
1294		}
1295#endif
1296		if (error == 0)
1297			error = dmu_buf_hold(os, object, offset, zgd, &db,
1298			    DMU_READ_NO_PREFETCH);
1299
1300		if (error == 0) {
1301			blkptr_t *obp = dmu_buf_get_blkptr(db);
1302			if (obp) {
1303				ASSERT(BP_IS_HOLE(bp));
1304				*bp = *obp;
1305			}
1306
1307			zgd->zgd_db = db;
1308			zgd->zgd_bp = bp;
1309
1310			ASSERT(db->db_offset == offset);
1311			ASSERT(db->db_size == size);
1312
1313			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1314			    zfs_get_done, zgd);
1315			ASSERT(error || lr->lr_length <= zp->z_blksz);
1316
1317			/*
1318			 * On success, we need to wait for the write I/O
1319			 * initiated by dmu_sync() to complete before we can
1320			 * release this dbuf.  We will finish everything up
1321			 * in the zfs_get_done() callback.
1322			 */
1323			if (error == 0)
1324				return (0);
1325
1326			if (error == EALREADY) {
1327				lr->lr_common.lrc_txtype = TX_WRITE2;
1328				error = 0;
1329			}
1330		}
1331	}
1332
1333	zfs_get_done(zgd, error);
1334
1335	return (error);
1336}
1337
1338/*ARGSUSED*/
1339static int
1340zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1341    caller_context_t *ct)
1342{
1343	znode_t *zp = VTOZ(vp);
1344	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1345	int error;
1346
1347	ZFS_ENTER(zfsvfs);
1348	ZFS_VERIFY_ZP(zp);
1349
1350	if (flag & V_ACE_MASK)
1351		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1352	else
1353		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1354
1355	ZFS_EXIT(zfsvfs);
1356	return (error);
1357}
1358
1359/*
1360 * If vnode is for a device return a specfs vnode instead.
1361 */
1362static int
1363specvp_check(vnode_t **vpp, cred_t *cr)
1364{
1365	int error = 0;
1366
1367	if (IS_DEVVP(*vpp)) {
1368		struct vnode *svp;
1369
1370		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1371		VN_RELE(*vpp);
1372		if (svp == NULL)
1373			error = SET_ERROR(ENOSYS);
1374		*vpp = svp;
1375	}
1376	return (error);
1377}
1378
1379
1380/*
1381 * Lookup an entry in a directory, or an extended attribute directory.
1382 * If it exists, return a held vnode reference for it.
1383 *
1384 *	IN:	dvp	- vnode of directory to search.
1385 *		nm	- name of entry to lookup.
1386 *		pnp	- full pathname to lookup [UNUSED].
1387 *		flags	- LOOKUP_XATTR set if looking for an attribute.
1388 *		rdir	- root directory vnode [UNUSED].
1389 *		cr	- credentials of caller.
1390 *		ct	- caller context
1391 *		direntflags - directory lookup flags
1392 *		realpnp - returned pathname.
1393 *
1394 *	OUT:	vpp	- vnode of located entry, NULL if not found.
1395 *
1396 *	RETURN:	0 on success, error code on failure.
1397 *
1398 * Timestamps:
1399 *	NA
1400 */
1401/* ARGSUSED */
1402static int
1403zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct componentname *cnp,
1404    int nameiop, cred_t *cr, kthread_t *td, int flags)
1405{
1406	znode_t *zdp = VTOZ(dvp);
1407	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1408	int	error = 0;
1409	int *direntflags = NULL;
1410	void *realpnp = NULL;
1411
1412	/* fast path */
1413	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1414
1415		if (dvp->v_type != VDIR) {
1416			return (SET_ERROR(ENOTDIR));
1417		} else if (zdp->z_sa_hdl == NULL) {
1418			return (SET_ERROR(EIO));
1419		}
1420
1421		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1422			error = zfs_fastaccesschk_execute(zdp, cr);
1423			if (!error) {
1424				*vpp = dvp;
1425				VN_HOLD(*vpp);
1426				return (0);
1427			}
1428			return (error);
1429		} else {
1430			vnode_t *tvp = dnlc_lookup(dvp, nm);
1431
1432			if (tvp) {
1433				error = zfs_fastaccesschk_execute(zdp, cr);
1434				if (error) {
1435					VN_RELE(tvp);
1436					return (error);
1437				}
1438				if (tvp == DNLC_NO_VNODE) {
1439					VN_RELE(tvp);
1440					return (SET_ERROR(ENOENT));
1441				} else {
1442					*vpp = tvp;
1443					return (specvp_check(vpp, cr));
1444				}
1445			}
1446		}
1447	}
1448
1449	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1450
1451	ZFS_ENTER(zfsvfs);
1452	ZFS_VERIFY_ZP(zdp);
1453
1454	*vpp = NULL;
1455
1456	if (flags & LOOKUP_XATTR) {
1457#ifdef TODO
1458		/*
1459		 * If the xattr property is off, refuse the lookup request.
1460		 */
1461		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1462			ZFS_EXIT(zfsvfs);
1463			return (SET_ERROR(EINVAL));
1464		}
1465#endif
1466
1467		/*
1468		 * We don't allow recursive attributes..
1469		 * Maybe someday we will.
1470		 */
1471		if (zdp->z_pflags & ZFS_XATTR) {
1472			ZFS_EXIT(zfsvfs);
1473			return (SET_ERROR(EINVAL));
1474		}
1475
1476		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1477			ZFS_EXIT(zfsvfs);
1478			return (error);
1479		}
1480
1481		/*
1482		 * Do we have permission to get into attribute directory?
1483		 */
1484
1485		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1486		    B_FALSE, cr)) {
1487			VN_RELE(*vpp);
1488			*vpp = NULL;
1489		}
1490
1491		ZFS_EXIT(zfsvfs);
1492		return (error);
1493	}
1494
1495	if (dvp->v_type != VDIR) {
1496		ZFS_EXIT(zfsvfs);
1497		return (SET_ERROR(ENOTDIR));
1498	}
1499
1500	/*
1501	 * Check accessibility of directory.
1502	 */
1503
1504	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1505		ZFS_EXIT(zfsvfs);
1506		return (error);
1507	}
1508
1509	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1510	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1511		ZFS_EXIT(zfsvfs);
1512		return (SET_ERROR(EILSEQ));
1513	}
1514
1515	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1516	if (error == 0)
1517		error = specvp_check(vpp, cr);
1518
1519	/* Translate errors and add SAVENAME when needed. */
1520	if (cnp->cn_flags & ISLASTCN) {
1521		switch (nameiop) {
1522		case CREATE:
1523		case RENAME:
1524			if (error == ENOENT) {
1525				error = EJUSTRETURN;
1526				cnp->cn_flags |= SAVENAME;
1527				break;
1528			}
1529			/* FALLTHROUGH */
1530		case DELETE:
1531			if (error == 0)
1532				cnp->cn_flags |= SAVENAME;
1533			break;
1534		}
1535	}
1536	if (error == 0 && (nm[0] != '.' || nm[1] != '\0')) {
1537		int ltype = 0;
1538
1539		if (cnp->cn_flags & ISDOTDOT) {
1540			ltype = VOP_ISLOCKED(dvp);
1541			VOP_UNLOCK(dvp, 0);
1542		}
1543		ZFS_EXIT(zfsvfs);
1544		error = vn_lock(*vpp, cnp->cn_lkflags);
1545		if (cnp->cn_flags & ISDOTDOT)
1546			vn_lock(dvp, ltype | LK_RETRY);
1547		if (error != 0) {
1548			VN_RELE(*vpp);
1549			*vpp = NULL;
1550			return (error);
1551		}
1552	} else {
1553		ZFS_EXIT(zfsvfs);
1554	}
1555
1556#ifdef FREEBSD_NAMECACHE
1557	/*
1558	 * Insert name into cache (as non-existent) if appropriate.
1559	 */
1560	if (error == ENOENT && (cnp->cn_flags & MAKEENTRY) && nameiop != CREATE)
1561		cache_enter(dvp, *vpp, cnp);
1562	/*
1563	 * Insert name into cache if appropriate.
1564	 */
1565	if (error == 0 && (cnp->cn_flags & MAKEENTRY)) {
1566		if (!(cnp->cn_flags & ISLASTCN) ||
1567		    (nameiop != DELETE && nameiop != RENAME)) {
1568			cache_enter(dvp, *vpp, cnp);
1569		}
1570	}
1571#endif
1572
1573	return (error);
1574}
1575
1576/*
1577 * Attempt to create a new entry in a directory.  If the entry
1578 * already exists, truncate the file if permissible, else return
1579 * an error.  Return the vp of the created or trunc'd file.
1580 *
1581 *	IN:	dvp	- vnode of directory to put new file entry in.
1582 *		name	- name of new file entry.
1583 *		vap	- attributes of new file.
1584 *		excl	- flag indicating exclusive or non-exclusive mode.
1585 *		mode	- mode to open file with.
1586 *		cr	- credentials of caller.
1587 *		flag	- large file flag [UNUSED].
1588 *		ct	- caller context
1589 *		vsecp 	- ACL to be set
1590 *
1591 *	OUT:	vpp	- vnode of created or trunc'd entry.
1592 *
1593 *	RETURN:	0 on success, error code on failure.
1594 *
1595 * Timestamps:
1596 *	dvp - ctime|mtime updated if new entry created
1597 *	 vp - ctime|mtime always, atime if new
1598 */
1599
1600/* ARGSUSED */
1601static int
1602zfs_create(vnode_t *dvp, char *name, vattr_t *vap, int excl, int mode,
1603    vnode_t **vpp, cred_t *cr, kthread_t *td)
1604{
1605	znode_t		*zp, *dzp = VTOZ(dvp);
1606	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1607	zilog_t		*zilog;
1608	objset_t	*os;
1609	zfs_dirlock_t	*dl;
1610	dmu_tx_t	*tx;
1611	int		error;
1612	ksid_t		*ksid;
1613	uid_t		uid;
1614	gid_t		gid = crgetgid(cr);
1615	zfs_acl_ids_t   acl_ids;
1616	boolean_t	fuid_dirtied;
1617	boolean_t	have_acl = B_FALSE;
1618	void		*vsecp = NULL;
1619	int		flag = 0;
1620
1621	/*
1622	 * If we have an ephemeral id, ACL, or XVATTR then
1623	 * make sure file system is at proper version
1624	 */
1625
1626	ksid = crgetsid(cr, KSID_OWNER);
1627	if (ksid)
1628		uid = ksid_getid(ksid);
1629	else
1630		uid = crgetuid(cr);
1631
1632	if (zfsvfs->z_use_fuids == B_FALSE &&
1633	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1634	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1635		return (SET_ERROR(EINVAL));
1636
1637	ZFS_ENTER(zfsvfs);
1638	ZFS_VERIFY_ZP(dzp);
1639	os = zfsvfs->z_os;
1640	zilog = zfsvfs->z_log;
1641
1642	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1643	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1644		ZFS_EXIT(zfsvfs);
1645		return (SET_ERROR(EILSEQ));
1646	}
1647
1648	if (vap->va_mask & AT_XVATTR) {
1649		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
1650		    crgetuid(cr), cr, vap->va_type)) != 0) {
1651			ZFS_EXIT(zfsvfs);
1652			return (error);
1653		}
1654	}
1655top:
1656	*vpp = NULL;
1657
1658	if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr))
1659		vap->va_mode &= ~S_ISVTX;
1660
1661	if (*name == '\0') {
1662		/*
1663		 * Null component name refers to the directory itself.
1664		 */
1665		VN_HOLD(dvp);
1666		zp = dzp;
1667		dl = NULL;
1668		error = 0;
1669	} else {
1670		/* possible VN_HOLD(zp) */
1671		int zflg = 0;
1672
1673		if (flag & FIGNORECASE)
1674			zflg |= ZCILOOK;
1675
1676		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1677		    NULL, NULL);
1678		if (error) {
1679			if (have_acl)
1680				zfs_acl_ids_free(&acl_ids);
1681			if (strcmp(name, "..") == 0)
1682				error = SET_ERROR(EISDIR);
1683			ZFS_EXIT(zfsvfs);
1684			return (error);
1685		}
1686	}
1687
1688	if (zp == NULL) {
1689		uint64_t txtype;
1690
1691		/*
1692		 * Create a new file object and update the directory
1693		 * to reference it.
1694		 */
1695		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1696			if (have_acl)
1697				zfs_acl_ids_free(&acl_ids);
1698			goto out;
1699		}
1700
1701		/*
1702		 * We only support the creation of regular files in
1703		 * extended attribute directories.
1704		 */
1705
1706		if ((dzp->z_pflags & ZFS_XATTR) &&
1707		    (vap->va_type != VREG)) {
1708			if (have_acl)
1709				zfs_acl_ids_free(&acl_ids);
1710			error = SET_ERROR(EINVAL);
1711			goto out;
1712		}
1713
1714		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1715		    cr, vsecp, &acl_ids)) != 0)
1716			goto out;
1717		have_acl = B_TRUE;
1718
1719		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1720			zfs_acl_ids_free(&acl_ids);
1721			error = SET_ERROR(EDQUOT);
1722			goto out;
1723		}
1724
1725		tx = dmu_tx_create(os);
1726
1727		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1728		    ZFS_SA_BASE_ATTR_SIZE);
1729
1730		fuid_dirtied = zfsvfs->z_fuid_dirty;
1731		if (fuid_dirtied)
1732			zfs_fuid_txhold(zfsvfs, tx);
1733		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1734		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1735		if (!zfsvfs->z_use_sa &&
1736		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1737			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1738			    0, acl_ids.z_aclp->z_acl_bytes);
1739		}
1740		error = dmu_tx_assign(tx, TXG_NOWAIT);
1741		if (error) {
1742			zfs_dirent_unlock(dl);
1743			if (error == ERESTART) {
1744				dmu_tx_wait(tx);
1745				dmu_tx_abort(tx);
1746				goto top;
1747			}
1748			zfs_acl_ids_free(&acl_ids);
1749			dmu_tx_abort(tx);
1750			ZFS_EXIT(zfsvfs);
1751			return (error);
1752		}
1753		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1754
1755		if (fuid_dirtied)
1756			zfs_fuid_sync(zfsvfs, tx);
1757
1758		(void) zfs_link_create(dl, zp, tx, ZNEW);
1759		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1760		if (flag & FIGNORECASE)
1761			txtype |= TX_CI;
1762		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1763		    vsecp, acl_ids.z_fuidp, vap);
1764		zfs_acl_ids_free(&acl_ids);
1765		dmu_tx_commit(tx);
1766	} else {
1767		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1768
1769		if (have_acl)
1770			zfs_acl_ids_free(&acl_ids);
1771		have_acl = B_FALSE;
1772
1773		/*
1774		 * A directory entry already exists for this name.
1775		 */
1776		/*
1777		 * Can't truncate an existing file if in exclusive mode.
1778		 */
1779		if (excl == EXCL) {
1780			error = SET_ERROR(EEXIST);
1781			goto out;
1782		}
1783		/*
1784		 * Can't open a directory for writing.
1785		 */
1786		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1787			error = SET_ERROR(EISDIR);
1788			goto out;
1789		}
1790		/*
1791		 * Verify requested access to file.
1792		 */
1793		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1794			goto out;
1795		}
1796
1797		mutex_enter(&dzp->z_lock);
1798		dzp->z_seq++;
1799		mutex_exit(&dzp->z_lock);
1800
1801		/*
1802		 * Truncate regular files if requested.
1803		 */
1804		if ((ZTOV(zp)->v_type == VREG) &&
1805		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1806			/* we can't hold any locks when calling zfs_freesp() */
1807			zfs_dirent_unlock(dl);
1808			dl = NULL;
1809			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1810			if (error == 0) {
1811				vnevent_create(ZTOV(zp), ct);
1812			}
1813		}
1814	}
1815out:
1816	if (dl)
1817		zfs_dirent_unlock(dl);
1818
1819	if (error) {
1820		if (zp)
1821			VN_RELE(ZTOV(zp));
1822	} else {
1823		*vpp = ZTOV(zp);
1824		error = specvp_check(vpp, cr);
1825	}
1826
1827	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1828		zil_commit(zilog, 0);
1829
1830	ZFS_EXIT(zfsvfs);
1831	return (error);
1832}
1833
1834/*
1835 * Remove an entry from a directory.
1836 *
1837 *	IN:	dvp	- vnode of directory to remove entry from.
1838 *		name	- name of entry to remove.
1839 *		cr	- credentials of caller.
1840 *		ct	- caller context
1841 *		flags	- case flags
1842 *
1843 *	RETURN:	0 on success, error code on failure.
1844 *
1845 * Timestamps:
1846 *	dvp - ctime|mtime
1847 *	 vp - ctime (if nlink > 0)
1848 */
1849
1850uint64_t null_xattr = 0;
1851
1852/*ARGSUSED*/
1853static int
1854zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1855    int flags)
1856{
1857	znode_t		*zp, *dzp = VTOZ(dvp);
1858	znode_t		*xzp;
1859	vnode_t		*vp;
1860	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1861	zilog_t		*zilog;
1862	uint64_t	acl_obj, xattr_obj;
1863	uint64_t 	xattr_obj_unlinked = 0;
1864	uint64_t	obj = 0;
1865	zfs_dirlock_t	*dl;
1866	dmu_tx_t	*tx;
1867	boolean_t	may_delete_now, delete_now = FALSE;
1868	boolean_t	unlinked, toobig = FALSE;
1869	uint64_t	txtype;
1870	pathname_t	*realnmp = NULL;
1871	pathname_t	realnm;
1872	int		error;
1873	int		zflg = ZEXISTS;
1874
1875	ZFS_ENTER(zfsvfs);
1876	ZFS_VERIFY_ZP(dzp);
1877	zilog = zfsvfs->z_log;
1878
1879	if (flags & FIGNORECASE) {
1880		zflg |= ZCILOOK;
1881		pn_alloc(&realnm);
1882		realnmp = &realnm;
1883	}
1884
1885top:
1886	xattr_obj = 0;
1887	xzp = NULL;
1888	/*
1889	 * Attempt to lock directory; fail if entry doesn't exist.
1890	 */
1891	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1892	    NULL, realnmp)) {
1893		if (realnmp)
1894			pn_free(realnmp);
1895		ZFS_EXIT(zfsvfs);
1896		return (error);
1897	}
1898
1899	vp = ZTOV(zp);
1900
1901	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1902		goto out;
1903	}
1904
1905	/*
1906	 * Need to use rmdir for removing directories.
1907	 */
1908	if (vp->v_type == VDIR) {
1909		error = SET_ERROR(EPERM);
1910		goto out;
1911	}
1912
1913	vnevent_remove(vp, dvp, name, ct);
1914
1915	if (realnmp)
1916		dnlc_remove(dvp, realnmp->pn_buf);
1917	else
1918		dnlc_remove(dvp, name);
1919
1920	VI_LOCK(vp);
1921	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1922	VI_UNLOCK(vp);
1923
1924	/*
1925	 * We may delete the znode now, or we may put it in the unlinked set;
1926	 * it depends on whether we're the last link, and on whether there are
1927	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1928	 * allow for either case.
1929	 */
1930	obj = zp->z_id;
1931	tx = dmu_tx_create(zfsvfs->z_os);
1932	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1933	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1934	zfs_sa_upgrade_txholds(tx, zp);
1935	zfs_sa_upgrade_txholds(tx, dzp);
1936	if (may_delete_now) {
1937		toobig =
1938		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1939		/* if the file is too big, only hold_free a token amount */
1940		dmu_tx_hold_free(tx, zp->z_id, 0,
1941		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1942	}
1943
1944	/* are there any extended attributes? */
1945	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1946	    &xattr_obj, sizeof (xattr_obj));
1947	if (error == 0 && xattr_obj) {
1948		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1949		ASSERT0(error);
1950		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1951		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1952	}
1953
1954	mutex_enter(&zp->z_lock);
1955	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1956		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1957	mutex_exit(&zp->z_lock);
1958
1959	/* charge as an update -- would be nice not to charge at all */
1960	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1961
1962	error = dmu_tx_assign(tx, TXG_NOWAIT);
1963	if (error) {
1964		zfs_dirent_unlock(dl);
1965		VN_RELE(vp);
1966		if (xzp)
1967			VN_RELE(ZTOV(xzp));
1968		if (error == ERESTART) {
1969			dmu_tx_wait(tx);
1970			dmu_tx_abort(tx);
1971			goto top;
1972		}
1973		if (realnmp)
1974			pn_free(realnmp);
1975		dmu_tx_abort(tx);
1976		ZFS_EXIT(zfsvfs);
1977		return (error);
1978	}
1979
1980	/*
1981	 * Remove the directory entry.
1982	 */
1983	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1984
1985	if (error) {
1986		dmu_tx_commit(tx);
1987		goto out;
1988	}
1989
1990	if (unlinked) {
1991
1992		/*
1993		 * Hold z_lock so that we can make sure that the ACL obj
1994		 * hasn't changed.  Could have been deleted due to
1995		 * zfs_sa_upgrade().
1996		 */
1997		mutex_enter(&zp->z_lock);
1998		VI_LOCK(vp);
1999		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2000		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
2001		delete_now = may_delete_now && !toobig &&
2002		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
2003		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
2004		    acl_obj;
2005		VI_UNLOCK(vp);
2006	}
2007
2008	if (delete_now) {
2009#ifdef __FreeBSD__
2010		panic("zfs_remove: delete_now branch taken");
2011#endif
2012		if (xattr_obj_unlinked) {
2013			ASSERT3U(xzp->z_links, ==, 2);
2014			mutex_enter(&xzp->z_lock);
2015			xzp->z_unlinked = 1;
2016			xzp->z_links = 0;
2017			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
2018			    &xzp->z_links, sizeof (xzp->z_links), tx);
2019			ASSERT3U(error,  ==,  0);
2020			mutex_exit(&xzp->z_lock);
2021			zfs_unlinked_add(xzp, tx);
2022
2023			if (zp->z_is_sa)
2024				error = sa_remove(zp->z_sa_hdl,
2025				    SA_ZPL_XATTR(zfsvfs), tx);
2026			else
2027				error = sa_update(zp->z_sa_hdl,
2028				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
2029				    sizeof (uint64_t), tx);
2030			ASSERT0(error);
2031		}
2032		VI_LOCK(vp);
2033		vp->v_count--;
2034		ASSERT0(vp->v_count);
2035		VI_UNLOCK(vp);
2036		mutex_exit(&zp->z_lock);
2037		zfs_znode_delete(zp, tx);
2038	} else if (unlinked) {
2039		mutex_exit(&zp->z_lock);
2040		zfs_unlinked_add(zp, tx);
2041#ifdef __FreeBSD__
2042		vp->v_vflag |= VV_NOSYNC;
2043#endif
2044	}
2045
2046	txtype = TX_REMOVE;
2047	if (flags & FIGNORECASE)
2048		txtype |= TX_CI;
2049	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
2050
2051	dmu_tx_commit(tx);
2052out:
2053	if (realnmp)
2054		pn_free(realnmp);
2055
2056	zfs_dirent_unlock(dl);
2057
2058	if (!delete_now)
2059		VN_RELE(vp);
2060	if (xzp)
2061		VN_RELE(ZTOV(xzp));
2062
2063	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2064		zil_commit(zilog, 0);
2065
2066	ZFS_EXIT(zfsvfs);
2067	return (error);
2068}
2069
2070/*
2071 * Create a new directory and insert it into dvp using the name
2072 * provided.  Return a pointer to the inserted directory.
2073 *
2074 *	IN:	dvp	- vnode of directory to add subdir to.
2075 *		dirname	- name of new directory.
2076 *		vap	- attributes of new directory.
2077 *		cr	- credentials of caller.
2078 *		ct	- caller context
2079 *		flags	- case flags
2080 *		vsecp	- ACL to be set
2081 *
2082 *	OUT:	vpp	- vnode of created directory.
2083 *
2084 *	RETURN:	0 on success, error code on failure.
2085 *
2086 * Timestamps:
2087 *	dvp - ctime|mtime updated
2088 *	 vp - ctime|mtime|atime updated
2089 */
2090/*ARGSUSED*/
2091static int
2092zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
2093    caller_context_t *ct, int flags, vsecattr_t *vsecp)
2094{
2095	znode_t		*zp, *dzp = VTOZ(dvp);
2096	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2097	zilog_t		*zilog;
2098	zfs_dirlock_t	*dl;
2099	uint64_t	txtype;
2100	dmu_tx_t	*tx;
2101	int		error;
2102	int		zf = ZNEW;
2103	ksid_t		*ksid;
2104	uid_t		uid;
2105	gid_t		gid = crgetgid(cr);
2106	zfs_acl_ids_t   acl_ids;
2107	boolean_t	fuid_dirtied;
2108
2109	ASSERT(vap->va_type == VDIR);
2110
2111	/*
2112	 * If we have an ephemeral id, ACL, or XVATTR then
2113	 * make sure file system is at proper version
2114	 */
2115
2116	ksid = crgetsid(cr, KSID_OWNER);
2117	if (ksid)
2118		uid = ksid_getid(ksid);
2119	else
2120		uid = crgetuid(cr);
2121	if (zfsvfs->z_use_fuids == B_FALSE &&
2122	    (vsecp || (vap->va_mask & AT_XVATTR) ||
2123	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
2124		return (SET_ERROR(EINVAL));
2125
2126	ZFS_ENTER(zfsvfs);
2127	ZFS_VERIFY_ZP(dzp);
2128	zilog = zfsvfs->z_log;
2129
2130	if (dzp->z_pflags & ZFS_XATTR) {
2131		ZFS_EXIT(zfsvfs);
2132		return (SET_ERROR(EINVAL));
2133	}
2134
2135	if (zfsvfs->z_utf8 && u8_validate(dirname,
2136	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2137		ZFS_EXIT(zfsvfs);
2138		return (SET_ERROR(EILSEQ));
2139	}
2140	if (flags & FIGNORECASE)
2141		zf |= ZCILOOK;
2142
2143	if (vap->va_mask & AT_XVATTR) {
2144		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
2145		    crgetuid(cr), cr, vap->va_type)) != 0) {
2146			ZFS_EXIT(zfsvfs);
2147			return (error);
2148		}
2149	}
2150
2151	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
2152	    vsecp, &acl_ids)) != 0) {
2153		ZFS_EXIT(zfsvfs);
2154		return (error);
2155	}
2156	/*
2157	 * First make sure the new directory doesn't exist.
2158	 *
2159	 * Existence is checked first to make sure we don't return
2160	 * EACCES instead of EEXIST which can cause some applications
2161	 * to fail.
2162	 */
2163top:
2164	*vpp = NULL;
2165
2166	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2167	    NULL, NULL)) {
2168		zfs_acl_ids_free(&acl_ids);
2169		ZFS_EXIT(zfsvfs);
2170		return (error);
2171	}
2172
2173	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2174		zfs_acl_ids_free(&acl_ids);
2175		zfs_dirent_unlock(dl);
2176		ZFS_EXIT(zfsvfs);
2177		return (error);
2178	}
2179
2180	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2181		zfs_acl_ids_free(&acl_ids);
2182		zfs_dirent_unlock(dl);
2183		ZFS_EXIT(zfsvfs);
2184		return (SET_ERROR(EDQUOT));
2185	}
2186
2187	/*
2188	 * Add a new entry to the directory.
2189	 */
2190	tx = dmu_tx_create(zfsvfs->z_os);
2191	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2192	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2193	fuid_dirtied = zfsvfs->z_fuid_dirty;
2194	if (fuid_dirtied)
2195		zfs_fuid_txhold(zfsvfs, tx);
2196	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2197		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2198		    acl_ids.z_aclp->z_acl_bytes);
2199	}
2200
2201	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2202	    ZFS_SA_BASE_ATTR_SIZE);
2203
2204	error = dmu_tx_assign(tx, TXG_NOWAIT);
2205	if (error) {
2206		zfs_dirent_unlock(dl);
2207		if (error == ERESTART) {
2208			dmu_tx_wait(tx);
2209			dmu_tx_abort(tx);
2210			goto top;
2211		}
2212		zfs_acl_ids_free(&acl_ids);
2213		dmu_tx_abort(tx);
2214		ZFS_EXIT(zfsvfs);
2215		return (error);
2216	}
2217
2218	/*
2219	 * Create new node.
2220	 */
2221	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2222
2223	if (fuid_dirtied)
2224		zfs_fuid_sync(zfsvfs, tx);
2225
2226	/*
2227	 * Now put new name in parent dir.
2228	 */
2229	(void) zfs_link_create(dl, zp, tx, ZNEW);
2230
2231	*vpp = ZTOV(zp);
2232
2233	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2234	if (flags & FIGNORECASE)
2235		txtype |= TX_CI;
2236	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2237	    acl_ids.z_fuidp, vap);
2238
2239	zfs_acl_ids_free(&acl_ids);
2240
2241	dmu_tx_commit(tx);
2242
2243	zfs_dirent_unlock(dl);
2244
2245	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2246		zil_commit(zilog, 0);
2247
2248	ZFS_EXIT(zfsvfs);
2249	return (0);
2250}
2251
2252/*
2253 * Remove a directory subdir entry.  If the current working
2254 * directory is the same as the subdir to be removed, the
2255 * remove will fail.
2256 *
2257 *	IN:	dvp	- vnode of directory to remove from.
2258 *		name	- name of directory to be removed.
2259 *		cwd	- vnode of current working directory.
2260 *		cr	- credentials of caller.
2261 *		ct	- caller context
2262 *		flags	- case flags
2263 *
2264 *	RETURN:	0 on success, error code on failure.
2265 *
2266 * Timestamps:
2267 *	dvp - ctime|mtime updated
2268 */
2269/*ARGSUSED*/
2270static int
2271zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2272    caller_context_t *ct, int flags)
2273{
2274	znode_t		*dzp = VTOZ(dvp);
2275	znode_t		*zp;
2276	vnode_t		*vp;
2277	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2278	zilog_t		*zilog;
2279	zfs_dirlock_t	*dl;
2280	dmu_tx_t	*tx;
2281	int		error;
2282	int		zflg = ZEXISTS;
2283
2284	ZFS_ENTER(zfsvfs);
2285	ZFS_VERIFY_ZP(dzp);
2286	zilog = zfsvfs->z_log;
2287
2288	if (flags & FIGNORECASE)
2289		zflg |= ZCILOOK;
2290top:
2291	zp = NULL;
2292
2293	/*
2294	 * Attempt to lock directory; fail if entry doesn't exist.
2295	 */
2296	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2297	    NULL, NULL)) {
2298		ZFS_EXIT(zfsvfs);
2299		return (error);
2300	}
2301
2302	vp = ZTOV(zp);
2303
2304	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2305		goto out;
2306	}
2307
2308	if (vp->v_type != VDIR) {
2309		error = SET_ERROR(ENOTDIR);
2310		goto out;
2311	}
2312
2313	if (vp == cwd) {
2314		error = SET_ERROR(EINVAL);
2315		goto out;
2316	}
2317
2318	vnevent_rmdir(vp, dvp, name, ct);
2319
2320	/*
2321	 * Grab a lock on the directory to make sure that noone is
2322	 * trying to add (or lookup) entries while we are removing it.
2323	 */
2324	rw_enter(&zp->z_name_lock, RW_WRITER);
2325
2326	/*
2327	 * Grab a lock on the parent pointer to make sure we play well
2328	 * with the treewalk and directory rename code.
2329	 */
2330	rw_enter(&zp->z_parent_lock, RW_WRITER);
2331
2332	tx = dmu_tx_create(zfsvfs->z_os);
2333	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2334	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2335	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2336	zfs_sa_upgrade_txholds(tx, zp);
2337	zfs_sa_upgrade_txholds(tx, dzp);
2338	error = dmu_tx_assign(tx, TXG_NOWAIT);
2339	if (error) {
2340		rw_exit(&zp->z_parent_lock);
2341		rw_exit(&zp->z_name_lock);
2342		zfs_dirent_unlock(dl);
2343		VN_RELE(vp);
2344		if (error == ERESTART) {
2345			dmu_tx_wait(tx);
2346			dmu_tx_abort(tx);
2347			goto top;
2348		}
2349		dmu_tx_abort(tx);
2350		ZFS_EXIT(zfsvfs);
2351		return (error);
2352	}
2353
2354#ifdef FREEBSD_NAMECACHE
2355	cache_purge(dvp);
2356#endif
2357
2358	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2359
2360	if (error == 0) {
2361		uint64_t txtype = TX_RMDIR;
2362		if (flags & FIGNORECASE)
2363			txtype |= TX_CI;
2364		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2365	}
2366
2367	dmu_tx_commit(tx);
2368
2369	rw_exit(&zp->z_parent_lock);
2370	rw_exit(&zp->z_name_lock);
2371#ifdef FREEBSD_NAMECACHE
2372	cache_purge(vp);
2373#endif
2374out:
2375	zfs_dirent_unlock(dl);
2376
2377	VN_RELE(vp);
2378
2379	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2380		zil_commit(zilog, 0);
2381
2382	ZFS_EXIT(zfsvfs);
2383	return (error);
2384}
2385
2386/*
2387 * Read as many directory entries as will fit into the provided
2388 * buffer from the given directory cursor position (specified in
2389 * the uio structure).
2390 *
2391 *	IN:	vp	- vnode of directory to read.
2392 *		uio	- structure supplying read location, range info,
2393 *			  and return buffer.
2394 *		cr	- credentials of caller.
2395 *		ct	- caller context
2396 *		flags	- case flags
2397 *
2398 *	OUT:	uio	- updated offset and range, buffer filled.
2399 *		eofp	- set to true if end-of-file detected.
2400 *
2401 *	RETURN:	0 on success, error code on failure.
2402 *
2403 * Timestamps:
2404 *	vp - atime updated
2405 *
2406 * Note that the low 4 bits of the cookie returned by zap is always zero.
2407 * This allows us to use the low range for "special" directory entries:
2408 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2409 * we use the offset 2 for the '.zfs' directory.
2410 */
2411/* ARGSUSED */
2412static int
2413zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, int *ncookies, u_long **cookies)
2414{
2415	znode_t		*zp = VTOZ(vp);
2416	iovec_t		*iovp;
2417	edirent_t	*eodp;
2418	dirent64_t	*odp;
2419	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2420	objset_t	*os;
2421	caddr_t		outbuf;
2422	size_t		bufsize;
2423	zap_cursor_t	zc;
2424	zap_attribute_t	zap;
2425	uint_t		bytes_wanted;
2426	uint64_t	offset; /* must be unsigned; checks for < 1 */
2427	uint64_t	parent;
2428	int		local_eof;
2429	int		outcount;
2430	int		error;
2431	uint8_t		prefetch;
2432	boolean_t	check_sysattrs;
2433	uint8_t		type;
2434	int		ncooks;
2435	u_long		*cooks = NULL;
2436	int		flags = 0;
2437
2438	ZFS_ENTER(zfsvfs);
2439	ZFS_VERIFY_ZP(zp);
2440
2441	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2442	    &parent, sizeof (parent))) != 0) {
2443		ZFS_EXIT(zfsvfs);
2444		return (error);
2445	}
2446
2447	/*
2448	 * If we are not given an eof variable,
2449	 * use a local one.
2450	 */
2451	if (eofp == NULL)
2452		eofp = &local_eof;
2453
2454	/*
2455	 * Check for valid iov_len.
2456	 */
2457	if (uio->uio_iov->iov_len <= 0) {
2458		ZFS_EXIT(zfsvfs);
2459		return (SET_ERROR(EINVAL));
2460	}
2461
2462	/*
2463	 * Quit if directory has been removed (posix)
2464	 */
2465	if ((*eofp = zp->z_unlinked) != 0) {
2466		ZFS_EXIT(zfsvfs);
2467		return (0);
2468	}
2469
2470	error = 0;
2471	os = zfsvfs->z_os;
2472	offset = uio->uio_loffset;
2473	prefetch = zp->z_zn_prefetch;
2474
2475	/*
2476	 * Initialize the iterator cursor.
2477	 */
2478	if (offset <= 3) {
2479		/*
2480		 * Start iteration from the beginning of the directory.
2481		 */
2482		zap_cursor_init(&zc, os, zp->z_id);
2483	} else {
2484		/*
2485		 * The offset is a serialized cursor.
2486		 */
2487		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2488	}
2489
2490	/*
2491	 * Get space to change directory entries into fs independent format.
2492	 */
2493	iovp = uio->uio_iov;
2494	bytes_wanted = iovp->iov_len;
2495	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2496		bufsize = bytes_wanted;
2497		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2498		odp = (struct dirent64 *)outbuf;
2499	} else {
2500		bufsize = bytes_wanted;
2501		outbuf = NULL;
2502		odp = (struct dirent64 *)iovp->iov_base;
2503	}
2504	eodp = (struct edirent *)odp;
2505
2506	if (ncookies != NULL) {
2507		/*
2508		 * Minimum entry size is dirent size and 1 byte for a file name.
2509		 */
2510		ncooks = uio->uio_resid / (sizeof(struct dirent) - sizeof(((struct dirent *)NULL)->d_name) + 1);
2511		cooks = malloc(ncooks * sizeof(u_long), M_TEMP, M_WAITOK);
2512		*cookies = cooks;
2513		*ncookies = ncooks;
2514	}
2515	/*
2516	 * If this VFS supports the system attribute view interface; and
2517	 * we're looking at an extended attribute directory; and we care
2518	 * about normalization conflicts on this vfs; then we must check
2519	 * for normalization conflicts with the sysattr name space.
2520	 */
2521#ifdef TODO
2522	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2523	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2524	    (flags & V_RDDIR_ENTFLAGS);
2525#else
2526	check_sysattrs = 0;
2527#endif
2528
2529	/*
2530	 * Transform to file-system independent format
2531	 */
2532	outcount = 0;
2533	while (outcount < bytes_wanted) {
2534		ino64_t objnum;
2535		ushort_t reclen;
2536		off64_t *next = NULL;
2537
2538		/*
2539		 * Special case `.', `..', and `.zfs'.
2540		 */
2541		if (offset == 0) {
2542			(void) strcpy(zap.za_name, ".");
2543			zap.za_normalization_conflict = 0;
2544			objnum = zp->z_id;
2545			type = DT_DIR;
2546		} else if (offset == 1) {
2547			(void) strcpy(zap.za_name, "..");
2548			zap.za_normalization_conflict = 0;
2549			objnum = parent;
2550			type = DT_DIR;
2551		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2552			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2553			zap.za_normalization_conflict = 0;
2554			objnum = ZFSCTL_INO_ROOT;
2555			type = DT_DIR;
2556		} else {
2557			/*
2558			 * Grab next entry.
2559			 */
2560			if (error = zap_cursor_retrieve(&zc, &zap)) {
2561				if ((*eofp = (error == ENOENT)) != 0)
2562					break;
2563				else
2564					goto update;
2565			}
2566
2567			if (zap.za_integer_length != 8 ||
2568			    zap.za_num_integers != 1) {
2569				cmn_err(CE_WARN, "zap_readdir: bad directory "
2570				    "entry, obj = %lld, offset = %lld\n",
2571				    (u_longlong_t)zp->z_id,
2572				    (u_longlong_t)offset);
2573				error = SET_ERROR(ENXIO);
2574				goto update;
2575			}
2576
2577			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2578			/*
2579			 * MacOS X can extract the object type here such as:
2580			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2581			 */
2582			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2583
2584			if (check_sysattrs && !zap.za_normalization_conflict) {
2585#ifdef TODO
2586				zap.za_normalization_conflict =
2587				    xattr_sysattr_casechk(zap.za_name);
2588#else
2589				panic("%s:%u: TODO", __func__, __LINE__);
2590#endif
2591			}
2592		}
2593
2594		if (flags & V_RDDIR_ACCFILTER) {
2595			/*
2596			 * If we have no access at all, don't include
2597			 * this entry in the returned information
2598			 */
2599			znode_t	*ezp;
2600			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2601				goto skip_entry;
2602			if (!zfs_has_access(ezp, cr)) {
2603				VN_RELE(ZTOV(ezp));
2604				goto skip_entry;
2605			}
2606			VN_RELE(ZTOV(ezp));
2607		}
2608
2609		if (flags & V_RDDIR_ENTFLAGS)
2610			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2611		else
2612			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2613
2614		/*
2615		 * Will this entry fit in the buffer?
2616		 */
2617		if (outcount + reclen > bufsize) {
2618			/*
2619			 * Did we manage to fit anything in the buffer?
2620			 */
2621			if (!outcount) {
2622				error = SET_ERROR(EINVAL);
2623				goto update;
2624			}
2625			break;
2626		}
2627		if (flags & V_RDDIR_ENTFLAGS) {
2628			/*
2629			 * Add extended flag entry:
2630			 */
2631			eodp->ed_ino = objnum;
2632			eodp->ed_reclen = reclen;
2633			/* NOTE: ed_off is the offset for the *next* entry */
2634			next = &(eodp->ed_off);
2635			eodp->ed_eflags = zap.za_normalization_conflict ?
2636			    ED_CASE_CONFLICT : 0;
2637			(void) strncpy(eodp->ed_name, zap.za_name,
2638			    EDIRENT_NAMELEN(reclen));
2639			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2640		} else {
2641			/*
2642			 * Add normal entry:
2643			 */
2644			odp->d_ino = objnum;
2645			odp->d_reclen = reclen;
2646			odp->d_namlen = strlen(zap.za_name);
2647			(void) strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1);
2648			odp->d_type = type;
2649			odp = (dirent64_t *)((intptr_t)odp + reclen);
2650		}
2651		outcount += reclen;
2652
2653		ASSERT(outcount <= bufsize);
2654
2655		/* Prefetch znode */
2656		if (prefetch)
2657			dmu_prefetch(os, objnum, 0, 0);
2658
2659	skip_entry:
2660		/*
2661		 * Move to the next entry, fill in the previous offset.
2662		 */
2663		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2664			zap_cursor_advance(&zc);
2665			offset = zap_cursor_serialize(&zc);
2666		} else {
2667			offset += 1;
2668		}
2669
2670		if (cooks != NULL) {
2671			*cooks++ = offset;
2672			ncooks--;
2673			KASSERT(ncooks >= 0, ("ncookies=%d", ncooks));
2674		}
2675	}
2676	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2677
2678	/* Subtract unused cookies */
2679	if (ncookies != NULL)
2680		*ncookies -= ncooks;
2681
2682	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2683		iovp->iov_base += outcount;
2684		iovp->iov_len -= outcount;
2685		uio->uio_resid -= outcount;
2686	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2687		/*
2688		 * Reset the pointer.
2689		 */
2690		offset = uio->uio_loffset;
2691	}
2692
2693update:
2694	zap_cursor_fini(&zc);
2695	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2696		kmem_free(outbuf, bufsize);
2697
2698	if (error == ENOENT)
2699		error = 0;
2700
2701	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2702
2703	uio->uio_loffset = offset;
2704	ZFS_EXIT(zfsvfs);
2705	if (error != 0 && cookies != NULL) {
2706		free(*cookies, M_TEMP);
2707		*cookies = NULL;
2708		*ncookies = 0;
2709	}
2710	return (error);
2711}
2712
2713ulong_t zfs_fsync_sync_cnt = 4;
2714
2715static int
2716zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2717{
2718	znode_t	*zp = VTOZ(vp);
2719	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2720
2721	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2722
2723	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2724		ZFS_ENTER(zfsvfs);
2725		ZFS_VERIFY_ZP(zp);
2726		zil_commit(zfsvfs->z_log, zp->z_id);
2727		ZFS_EXIT(zfsvfs);
2728	}
2729	return (0);
2730}
2731
2732
2733/*
2734 * Get the requested file attributes and place them in the provided
2735 * vattr structure.
2736 *
2737 *	IN:	vp	- vnode of file.
2738 *		vap	- va_mask identifies requested attributes.
2739 *			  If AT_XVATTR set, then optional attrs are requested
2740 *		flags	- ATTR_NOACLCHECK (CIFS server context)
2741 *		cr	- credentials of caller.
2742 *		ct	- caller context
2743 *
2744 *	OUT:	vap	- attribute values.
2745 *
2746 *	RETURN:	0 (always succeeds).
2747 */
2748/* ARGSUSED */
2749static int
2750zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2751    caller_context_t *ct)
2752{
2753	znode_t *zp = VTOZ(vp);
2754	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2755	int	error = 0;
2756	uint32_t blksize;
2757	u_longlong_t nblocks;
2758	uint64_t links;
2759	uint64_t mtime[2], ctime[2], crtime[2], rdev;
2760	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2761	xoptattr_t *xoap = NULL;
2762	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2763	sa_bulk_attr_t bulk[4];
2764	int count = 0;
2765
2766	ZFS_ENTER(zfsvfs);
2767	ZFS_VERIFY_ZP(zp);
2768
2769	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2770
2771	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2772	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2773	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16);
2774	if (vp->v_type == VBLK || vp->v_type == VCHR)
2775		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
2776		    &rdev, 8);
2777
2778	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2779		ZFS_EXIT(zfsvfs);
2780		return (error);
2781	}
2782
2783	/*
2784	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2785	 * Also, if we are the owner don't bother, since owner should
2786	 * always be allowed to read basic attributes of file.
2787	 */
2788	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2789	    (vap->va_uid != crgetuid(cr))) {
2790		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2791		    skipaclchk, cr)) {
2792			ZFS_EXIT(zfsvfs);
2793			return (error);
2794		}
2795	}
2796
2797	/*
2798	 * Return all attributes.  It's cheaper to provide the answer
2799	 * than to determine whether we were asked the question.
2800	 */
2801
2802	mutex_enter(&zp->z_lock);
2803	vap->va_type = IFTOVT(zp->z_mode);
2804	vap->va_mode = zp->z_mode & ~S_IFMT;
2805#ifdef sun
2806	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2807#else
2808	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
2809#endif
2810	vap->va_nodeid = zp->z_id;
2811	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2812		links = zp->z_links + 1;
2813	else
2814		links = zp->z_links;
2815	vap->va_nlink = MIN(links, LINK_MAX);	/* nlink_t limit! */
2816	vap->va_size = zp->z_size;
2817#ifdef sun
2818	vap->va_rdev = vp->v_rdev;
2819#else
2820	if (vp->v_type == VBLK || vp->v_type == VCHR)
2821		vap->va_rdev = zfs_cmpldev(rdev);
2822#endif
2823	vap->va_seq = zp->z_seq;
2824	vap->va_flags = 0;	/* FreeBSD: Reset chflags(2) flags. */
2825	vap->va_filerev = zp->z_seq;
2826
2827	/*
2828	 * Add in any requested optional attributes and the create time.
2829	 * Also set the corresponding bits in the returned attribute bitmap.
2830	 */
2831	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2832		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2833			xoap->xoa_archive =
2834			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2835			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2836		}
2837
2838		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2839			xoap->xoa_readonly =
2840			    ((zp->z_pflags & ZFS_READONLY) != 0);
2841			XVA_SET_RTN(xvap, XAT_READONLY);
2842		}
2843
2844		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2845			xoap->xoa_system =
2846			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2847			XVA_SET_RTN(xvap, XAT_SYSTEM);
2848		}
2849
2850		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2851			xoap->xoa_hidden =
2852			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2853			XVA_SET_RTN(xvap, XAT_HIDDEN);
2854		}
2855
2856		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2857			xoap->xoa_nounlink =
2858			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2859			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2860		}
2861
2862		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2863			xoap->xoa_immutable =
2864			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2865			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2866		}
2867
2868		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2869			xoap->xoa_appendonly =
2870			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2871			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2872		}
2873
2874		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2875			xoap->xoa_nodump =
2876			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2877			XVA_SET_RTN(xvap, XAT_NODUMP);
2878		}
2879
2880		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2881			xoap->xoa_opaque =
2882			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2883			XVA_SET_RTN(xvap, XAT_OPAQUE);
2884		}
2885
2886		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2887			xoap->xoa_av_quarantined =
2888			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2889			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2890		}
2891
2892		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2893			xoap->xoa_av_modified =
2894			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2895			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2896		}
2897
2898		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2899		    vp->v_type == VREG) {
2900			zfs_sa_get_scanstamp(zp, xvap);
2901		}
2902
2903		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2904			uint64_t times[2];
2905
2906			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2907			    times, sizeof (times));
2908			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2909			XVA_SET_RTN(xvap, XAT_CREATETIME);
2910		}
2911
2912		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2913			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2914			XVA_SET_RTN(xvap, XAT_REPARSE);
2915		}
2916		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2917			xoap->xoa_generation = zp->z_gen;
2918			XVA_SET_RTN(xvap, XAT_GEN);
2919		}
2920
2921		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2922			xoap->xoa_offline =
2923			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2924			XVA_SET_RTN(xvap, XAT_OFFLINE);
2925		}
2926
2927		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2928			xoap->xoa_sparse =
2929			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2930			XVA_SET_RTN(xvap, XAT_SPARSE);
2931		}
2932	}
2933
2934	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2935	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2936	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2937	ZFS_TIME_DECODE(&vap->va_birthtime, crtime);
2938
2939	mutex_exit(&zp->z_lock);
2940
2941	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2942	vap->va_blksize = blksize;
2943	vap->va_bytes = nblocks << 9;	/* nblocks * 512 */
2944
2945	if (zp->z_blksz == 0) {
2946		/*
2947		 * Block size hasn't been set; suggest maximal I/O transfers.
2948		 */
2949		vap->va_blksize = zfsvfs->z_max_blksz;
2950	}
2951
2952	ZFS_EXIT(zfsvfs);
2953	return (0);
2954}
2955
2956/*
2957 * Set the file attributes to the values contained in the
2958 * vattr structure.
2959 *
2960 *	IN:	vp	- vnode of file to be modified.
2961 *		vap	- new attribute values.
2962 *			  If AT_XVATTR set, then optional attrs are being set
2963 *		flags	- ATTR_UTIME set if non-default time values provided.
2964 *			- ATTR_NOACLCHECK (CIFS context only).
2965 *		cr	- credentials of caller.
2966 *		ct	- caller context
2967 *
2968 *	RETURN:	0 on success, error code on failure.
2969 *
2970 * Timestamps:
2971 *	vp - ctime updated, mtime updated if size changed.
2972 */
2973/* ARGSUSED */
2974static int
2975zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2976    caller_context_t *ct)
2977{
2978	znode_t		*zp = VTOZ(vp);
2979	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2980	zilog_t		*zilog;
2981	dmu_tx_t	*tx;
2982	vattr_t		oldva;
2983	xvattr_t	tmpxvattr;
2984	uint_t		mask = vap->va_mask;
2985	uint_t		saved_mask = 0;
2986	uint64_t	saved_mode;
2987	int		trim_mask = 0;
2988	uint64_t	new_mode;
2989	uint64_t	new_uid, new_gid;
2990	uint64_t	xattr_obj;
2991	uint64_t	mtime[2], ctime[2];
2992	znode_t		*attrzp;
2993	int		need_policy = FALSE;
2994	int		err, err2;
2995	zfs_fuid_info_t *fuidp = NULL;
2996	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2997	xoptattr_t	*xoap;
2998	zfs_acl_t	*aclp;
2999	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
3000	boolean_t	fuid_dirtied = B_FALSE;
3001	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
3002	int		count = 0, xattr_count = 0;
3003
3004	if (mask == 0)
3005		return (0);
3006
3007	if (mask & AT_NOSET)
3008		return (SET_ERROR(EINVAL));
3009
3010	ZFS_ENTER(zfsvfs);
3011	ZFS_VERIFY_ZP(zp);
3012
3013	zilog = zfsvfs->z_log;
3014
3015	/*
3016	 * Make sure that if we have ephemeral uid/gid or xvattr specified
3017	 * that file system is at proper version level
3018	 */
3019
3020	if (zfsvfs->z_use_fuids == B_FALSE &&
3021	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
3022	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
3023	    (mask & AT_XVATTR))) {
3024		ZFS_EXIT(zfsvfs);
3025		return (SET_ERROR(EINVAL));
3026	}
3027
3028	if (mask & AT_SIZE && vp->v_type == VDIR) {
3029		ZFS_EXIT(zfsvfs);
3030		return (SET_ERROR(EISDIR));
3031	}
3032
3033	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
3034		ZFS_EXIT(zfsvfs);
3035		return (SET_ERROR(EINVAL));
3036	}
3037
3038	/*
3039	 * If this is an xvattr_t, then get a pointer to the structure of
3040	 * optional attributes.  If this is NULL, then we have a vattr_t.
3041	 */
3042	xoap = xva_getxoptattr(xvap);
3043
3044	xva_init(&tmpxvattr);
3045
3046	/*
3047	 * Immutable files can only alter immutable bit and atime
3048	 */
3049	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
3050	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
3051	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
3052		ZFS_EXIT(zfsvfs);
3053		return (SET_ERROR(EPERM));
3054	}
3055
3056	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
3057		ZFS_EXIT(zfsvfs);
3058		return (SET_ERROR(EPERM));
3059	}
3060
3061	/*
3062	 * Verify timestamps doesn't overflow 32 bits.
3063	 * ZFS can handle large timestamps, but 32bit syscalls can't
3064	 * handle times greater than 2039.  This check should be removed
3065	 * once large timestamps are fully supported.
3066	 */
3067	if (mask & (AT_ATIME | AT_MTIME)) {
3068		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
3069		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
3070			ZFS_EXIT(zfsvfs);
3071			return (SET_ERROR(EOVERFLOW));
3072		}
3073	}
3074
3075top:
3076	attrzp = NULL;
3077	aclp = NULL;
3078
3079	/* Can this be moved to before the top label? */
3080	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
3081		ZFS_EXIT(zfsvfs);
3082		return (SET_ERROR(EROFS));
3083	}
3084
3085	/*
3086	 * First validate permissions
3087	 */
3088
3089	if (mask & AT_SIZE) {
3090		/*
3091		 * XXX - Note, we are not providing any open
3092		 * mode flags here (like FNDELAY), so we may
3093		 * block if there are locks present... this
3094		 * should be addressed in openat().
3095		 */
3096		/* XXX - would it be OK to generate a log record here? */
3097		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
3098		if (err) {
3099			ZFS_EXIT(zfsvfs);
3100			return (err);
3101		}
3102	}
3103
3104	if (mask & (AT_ATIME|AT_MTIME) ||
3105	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
3106	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
3107	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
3108	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
3109	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3110	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3111	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3112		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3113		    skipaclchk, cr);
3114	}
3115
3116	if (mask & (AT_UID|AT_GID)) {
3117		int	idmask = (mask & (AT_UID|AT_GID));
3118		int	take_owner;
3119		int	take_group;
3120
3121		/*
3122		 * NOTE: even if a new mode is being set,
3123		 * we may clear S_ISUID/S_ISGID bits.
3124		 */
3125
3126		if (!(mask & AT_MODE))
3127			vap->va_mode = zp->z_mode;
3128
3129		/*
3130		 * Take ownership or chgrp to group we are a member of
3131		 */
3132
3133		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
3134		take_group = (mask & AT_GID) &&
3135		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
3136
3137		/*
3138		 * If both AT_UID and AT_GID are set then take_owner and
3139		 * take_group must both be set in order to allow taking
3140		 * ownership.
3141		 *
3142		 * Otherwise, send the check through secpolicy_vnode_setattr()
3143		 *
3144		 */
3145
3146		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
3147		    ((idmask == AT_UID) && take_owner) ||
3148		    ((idmask == AT_GID) && take_group)) {
3149			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3150			    skipaclchk, cr) == 0) {
3151				/*
3152				 * Remove setuid/setgid for non-privileged users
3153				 */
3154				secpolicy_setid_clear(vap, vp, cr);
3155				trim_mask = (mask & (AT_UID|AT_GID));
3156			} else {
3157				need_policy =  TRUE;
3158			}
3159		} else {
3160			need_policy =  TRUE;
3161		}
3162	}
3163
3164	mutex_enter(&zp->z_lock);
3165	oldva.va_mode = zp->z_mode;
3166	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3167	if (mask & AT_XVATTR) {
3168		/*
3169		 * Update xvattr mask to include only those attributes
3170		 * that are actually changing.
3171		 *
3172		 * the bits will be restored prior to actually setting
3173		 * the attributes so the caller thinks they were set.
3174		 */
3175		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3176			if (xoap->xoa_appendonly !=
3177			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3178				need_policy = TRUE;
3179			} else {
3180				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3181				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
3182			}
3183		}
3184
3185		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3186			if (xoap->xoa_nounlink !=
3187			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3188				need_policy = TRUE;
3189			} else {
3190				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3191				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
3192			}
3193		}
3194
3195		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3196			if (xoap->xoa_immutable !=
3197			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3198				need_policy = TRUE;
3199			} else {
3200				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3201				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
3202			}
3203		}
3204
3205		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3206			if (xoap->xoa_nodump !=
3207			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3208				need_policy = TRUE;
3209			} else {
3210				XVA_CLR_REQ(xvap, XAT_NODUMP);
3211				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3212			}
3213		}
3214
3215		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3216			if (xoap->xoa_av_modified !=
3217			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3218				need_policy = TRUE;
3219			} else {
3220				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3221				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3222			}
3223		}
3224
3225		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3226			if ((vp->v_type != VREG &&
3227			    xoap->xoa_av_quarantined) ||
3228			    xoap->xoa_av_quarantined !=
3229			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3230				need_policy = TRUE;
3231			} else {
3232				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3233				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3234			}
3235		}
3236
3237		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3238			mutex_exit(&zp->z_lock);
3239			ZFS_EXIT(zfsvfs);
3240			return (SET_ERROR(EPERM));
3241		}
3242
3243		if (need_policy == FALSE &&
3244		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3245		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3246			need_policy = TRUE;
3247		}
3248	}
3249
3250	mutex_exit(&zp->z_lock);
3251
3252	if (mask & AT_MODE) {
3253		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3254			err = secpolicy_setid_setsticky_clear(vp, vap,
3255			    &oldva, cr);
3256			if (err) {
3257				ZFS_EXIT(zfsvfs);
3258				return (err);
3259			}
3260			trim_mask |= AT_MODE;
3261		} else {
3262			need_policy = TRUE;
3263		}
3264	}
3265
3266	if (need_policy) {
3267		/*
3268		 * If trim_mask is set then take ownership
3269		 * has been granted or write_acl is present and user
3270		 * has the ability to modify mode.  In that case remove
3271		 * UID|GID and or MODE from mask so that
3272		 * secpolicy_vnode_setattr() doesn't revoke it.
3273		 */
3274
3275		if (trim_mask) {
3276			saved_mask = vap->va_mask;
3277			vap->va_mask &= ~trim_mask;
3278			if (trim_mask & AT_MODE) {
3279				/*
3280				 * Save the mode, as secpolicy_vnode_setattr()
3281				 * will overwrite it with ova.va_mode.
3282				 */
3283				saved_mode = vap->va_mode;
3284			}
3285		}
3286		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3287		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3288		if (err) {
3289			ZFS_EXIT(zfsvfs);
3290			return (err);
3291		}
3292
3293		if (trim_mask) {
3294			vap->va_mask |= saved_mask;
3295			if (trim_mask & AT_MODE) {
3296				/*
3297				 * Recover the mode after
3298				 * secpolicy_vnode_setattr().
3299				 */
3300				vap->va_mode = saved_mode;
3301			}
3302		}
3303	}
3304
3305	/*
3306	 * secpolicy_vnode_setattr, or take ownership may have
3307	 * changed va_mask
3308	 */
3309	mask = vap->va_mask;
3310
3311	if ((mask & (AT_UID | AT_GID))) {
3312		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3313		    &xattr_obj, sizeof (xattr_obj));
3314
3315		if (err == 0 && xattr_obj) {
3316			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3317			if (err)
3318				goto out2;
3319		}
3320		if (mask & AT_UID) {
3321			new_uid = zfs_fuid_create(zfsvfs,
3322			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3323			if (new_uid != zp->z_uid &&
3324			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3325				if (attrzp)
3326					VN_RELE(ZTOV(attrzp));
3327				err = SET_ERROR(EDQUOT);
3328				goto out2;
3329			}
3330		}
3331
3332		if (mask & AT_GID) {
3333			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3334			    cr, ZFS_GROUP, &fuidp);
3335			if (new_gid != zp->z_gid &&
3336			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3337				if (attrzp)
3338					VN_RELE(ZTOV(attrzp));
3339				err = SET_ERROR(EDQUOT);
3340				goto out2;
3341			}
3342		}
3343	}
3344	tx = dmu_tx_create(zfsvfs->z_os);
3345
3346	if (mask & AT_MODE) {
3347		uint64_t pmode = zp->z_mode;
3348		uint64_t acl_obj;
3349		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3350
3351		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3352		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3353			err = SET_ERROR(EPERM);
3354			goto out;
3355		}
3356
3357		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3358			goto out;
3359
3360		mutex_enter(&zp->z_lock);
3361		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3362			/*
3363			 * Are we upgrading ACL from old V0 format
3364			 * to V1 format?
3365			 */
3366			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3367			    zfs_znode_acl_version(zp) ==
3368			    ZFS_ACL_VERSION_INITIAL) {
3369				dmu_tx_hold_free(tx, acl_obj, 0,
3370				    DMU_OBJECT_END);
3371				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3372				    0, aclp->z_acl_bytes);
3373			} else {
3374				dmu_tx_hold_write(tx, acl_obj, 0,
3375				    aclp->z_acl_bytes);
3376			}
3377		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3378			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3379			    0, aclp->z_acl_bytes);
3380		}
3381		mutex_exit(&zp->z_lock);
3382		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3383	} else {
3384		if ((mask & AT_XVATTR) &&
3385		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3386			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3387		else
3388			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3389	}
3390
3391	if (attrzp) {
3392		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3393	}
3394
3395	fuid_dirtied = zfsvfs->z_fuid_dirty;
3396	if (fuid_dirtied)
3397		zfs_fuid_txhold(zfsvfs, tx);
3398
3399	zfs_sa_upgrade_txholds(tx, zp);
3400
3401	err = dmu_tx_assign(tx, TXG_NOWAIT);
3402	if (err) {
3403		if (err == ERESTART)
3404			dmu_tx_wait(tx);
3405		goto out;
3406	}
3407
3408	count = 0;
3409	/*
3410	 * Set each attribute requested.
3411	 * We group settings according to the locks they need to acquire.
3412	 *
3413	 * Note: you cannot set ctime directly, although it will be
3414	 * updated as a side-effect of calling this function.
3415	 */
3416
3417
3418	if (mask & (AT_UID|AT_GID|AT_MODE))
3419		mutex_enter(&zp->z_acl_lock);
3420	mutex_enter(&zp->z_lock);
3421
3422	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3423	    &zp->z_pflags, sizeof (zp->z_pflags));
3424
3425	if (attrzp) {
3426		if (mask & (AT_UID|AT_GID|AT_MODE))
3427			mutex_enter(&attrzp->z_acl_lock);
3428		mutex_enter(&attrzp->z_lock);
3429		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3430		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3431		    sizeof (attrzp->z_pflags));
3432	}
3433
3434	if (mask & (AT_UID|AT_GID)) {
3435
3436		if (mask & AT_UID) {
3437			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3438			    &new_uid, sizeof (new_uid));
3439			zp->z_uid = new_uid;
3440			if (attrzp) {
3441				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3442				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3443				    sizeof (new_uid));
3444				attrzp->z_uid = new_uid;
3445			}
3446		}
3447
3448		if (mask & AT_GID) {
3449			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3450			    NULL, &new_gid, sizeof (new_gid));
3451			zp->z_gid = new_gid;
3452			if (attrzp) {
3453				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3454				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3455				    sizeof (new_gid));
3456				attrzp->z_gid = new_gid;
3457			}
3458		}
3459		if (!(mask & AT_MODE)) {
3460			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3461			    NULL, &new_mode, sizeof (new_mode));
3462			new_mode = zp->z_mode;
3463		}
3464		err = zfs_acl_chown_setattr(zp);
3465		ASSERT(err == 0);
3466		if (attrzp) {
3467			err = zfs_acl_chown_setattr(attrzp);
3468			ASSERT(err == 0);
3469		}
3470	}
3471
3472	if (mask & AT_MODE) {
3473		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3474		    &new_mode, sizeof (new_mode));
3475		zp->z_mode = new_mode;
3476		ASSERT3U((uintptr_t)aclp, !=, 0);
3477		err = zfs_aclset_common(zp, aclp, cr, tx);
3478		ASSERT0(err);
3479		if (zp->z_acl_cached)
3480			zfs_acl_free(zp->z_acl_cached);
3481		zp->z_acl_cached = aclp;
3482		aclp = NULL;
3483	}
3484
3485
3486	if (mask & AT_ATIME) {
3487		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3488		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3489		    &zp->z_atime, sizeof (zp->z_atime));
3490	}
3491
3492	if (mask & AT_MTIME) {
3493		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3494		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3495		    mtime, sizeof (mtime));
3496	}
3497
3498	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3499	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3500		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3501		    NULL, mtime, sizeof (mtime));
3502		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3503		    &ctime, sizeof (ctime));
3504		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3505		    B_TRUE);
3506	} else if (mask != 0) {
3507		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3508		    &ctime, sizeof (ctime));
3509		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3510		    B_TRUE);
3511		if (attrzp) {
3512			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3513			    SA_ZPL_CTIME(zfsvfs), NULL,
3514			    &ctime, sizeof (ctime));
3515			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3516			    mtime, ctime, B_TRUE);
3517		}
3518	}
3519	/*
3520	 * Do this after setting timestamps to prevent timestamp
3521	 * update from toggling bit
3522	 */
3523
3524	if (xoap && (mask & AT_XVATTR)) {
3525
3526		/*
3527		 * restore trimmed off masks
3528		 * so that return masks can be set for caller.
3529		 */
3530
3531		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3532			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3533		}
3534		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3535			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3536		}
3537		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3538			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3539		}
3540		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3541			XVA_SET_REQ(xvap, XAT_NODUMP);
3542		}
3543		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3544			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3545		}
3546		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3547			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3548		}
3549
3550		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3551			ASSERT(vp->v_type == VREG);
3552
3553		zfs_xvattr_set(zp, xvap, tx);
3554	}
3555
3556	if (fuid_dirtied)
3557		zfs_fuid_sync(zfsvfs, tx);
3558
3559	if (mask != 0)
3560		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3561
3562	mutex_exit(&zp->z_lock);
3563	if (mask & (AT_UID|AT_GID|AT_MODE))
3564		mutex_exit(&zp->z_acl_lock);
3565
3566	if (attrzp) {
3567		if (mask & (AT_UID|AT_GID|AT_MODE))
3568			mutex_exit(&attrzp->z_acl_lock);
3569		mutex_exit(&attrzp->z_lock);
3570	}
3571out:
3572	if (err == 0 && attrzp) {
3573		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3574		    xattr_count, tx);
3575		ASSERT(err2 == 0);
3576	}
3577
3578	if (attrzp)
3579		VN_RELE(ZTOV(attrzp));
3580
3581	if (aclp)
3582		zfs_acl_free(aclp);
3583
3584	if (fuidp) {
3585		zfs_fuid_info_free(fuidp);
3586		fuidp = NULL;
3587	}
3588
3589	if (err) {
3590		dmu_tx_abort(tx);
3591		if (err == ERESTART)
3592			goto top;
3593	} else {
3594		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3595		dmu_tx_commit(tx);
3596	}
3597
3598out2:
3599	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3600		zil_commit(zilog, 0);
3601
3602	ZFS_EXIT(zfsvfs);
3603	return (err);
3604}
3605
3606typedef struct zfs_zlock {
3607	krwlock_t	*zl_rwlock;	/* lock we acquired */
3608	znode_t		*zl_znode;	/* znode we held */
3609	struct zfs_zlock *zl_next;	/* next in list */
3610} zfs_zlock_t;
3611
3612/*
3613 * Drop locks and release vnodes that were held by zfs_rename_lock().
3614 */
3615static void
3616zfs_rename_unlock(zfs_zlock_t **zlpp)
3617{
3618	zfs_zlock_t *zl;
3619
3620	while ((zl = *zlpp) != NULL) {
3621		if (zl->zl_znode != NULL)
3622			VN_RELE(ZTOV(zl->zl_znode));
3623		rw_exit(zl->zl_rwlock);
3624		*zlpp = zl->zl_next;
3625		kmem_free(zl, sizeof (*zl));
3626	}
3627}
3628
3629/*
3630 * Search back through the directory tree, using the ".." entries.
3631 * Lock each directory in the chain to prevent concurrent renames.
3632 * Fail any attempt to move a directory into one of its own descendants.
3633 * XXX - z_parent_lock can overlap with map or grow locks
3634 */
3635static int
3636zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3637{
3638	zfs_zlock_t	*zl;
3639	znode_t		*zp = tdzp;
3640	uint64_t	rootid = zp->z_zfsvfs->z_root;
3641	uint64_t	oidp = zp->z_id;
3642	krwlock_t	*rwlp = &szp->z_parent_lock;
3643	krw_t		rw = RW_WRITER;
3644
3645	/*
3646	 * First pass write-locks szp and compares to zp->z_id.
3647	 * Later passes read-lock zp and compare to zp->z_parent.
3648	 */
3649	do {
3650		if (!rw_tryenter(rwlp, rw)) {
3651			/*
3652			 * Another thread is renaming in this path.
3653			 * Note that if we are a WRITER, we don't have any
3654			 * parent_locks held yet.
3655			 */
3656			if (rw == RW_READER && zp->z_id > szp->z_id) {
3657				/*
3658				 * Drop our locks and restart
3659				 */
3660				zfs_rename_unlock(&zl);
3661				*zlpp = NULL;
3662				zp = tdzp;
3663				oidp = zp->z_id;
3664				rwlp = &szp->z_parent_lock;
3665				rw = RW_WRITER;
3666				continue;
3667			} else {
3668				/*
3669				 * Wait for other thread to drop its locks
3670				 */
3671				rw_enter(rwlp, rw);
3672			}
3673		}
3674
3675		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3676		zl->zl_rwlock = rwlp;
3677		zl->zl_znode = NULL;
3678		zl->zl_next = *zlpp;
3679		*zlpp = zl;
3680
3681		if (oidp == szp->z_id)		/* We're a descendant of szp */
3682			return (SET_ERROR(EINVAL));
3683
3684		if (oidp == rootid)		/* We've hit the top */
3685			return (0);
3686
3687		if (rw == RW_READER) {		/* i.e. not the first pass */
3688			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3689			if (error)
3690				return (error);
3691			zl->zl_znode = zp;
3692		}
3693		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3694		    &oidp, sizeof (oidp));
3695		rwlp = &zp->z_parent_lock;
3696		rw = RW_READER;
3697
3698	} while (zp->z_id != sdzp->z_id);
3699
3700	return (0);
3701}
3702
3703/*
3704 * Move an entry from the provided source directory to the target
3705 * directory.  Change the entry name as indicated.
3706 *
3707 *	IN:	sdvp	- Source directory containing the "old entry".
3708 *		snm	- Old entry name.
3709 *		tdvp	- Target directory to contain the "new entry".
3710 *		tnm	- New entry name.
3711 *		cr	- credentials of caller.
3712 *		ct	- caller context
3713 *		flags	- case flags
3714 *
3715 *	RETURN:	0 on success, error code on failure.
3716 *
3717 * Timestamps:
3718 *	sdvp,tdvp - ctime|mtime updated
3719 */
3720/*ARGSUSED*/
3721static int
3722zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3723    caller_context_t *ct, int flags)
3724{
3725	znode_t		*tdzp, *szp, *tzp;
3726	znode_t		*sdzp = VTOZ(sdvp);
3727	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3728	zilog_t		*zilog;
3729	vnode_t		*realvp;
3730	zfs_dirlock_t	*sdl, *tdl;
3731	dmu_tx_t	*tx;
3732	zfs_zlock_t	*zl;
3733	int		cmp, serr, terr;
3734	int		error = 0;
3735	int		zflg = 0;
3736
3737	ZFS_ENTER(zfsvfs);
3738	ZFS_VERIFY_ZP(sdzp);
3739	zilog = zfsvfs->z_log;
3740
3741	/*
3742	 * Make sure we have the real vp for the target directory.
3743	 */
3744	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3745		tdvp = realvp;
3746
3747	tdzp = VTOZ(tdvp);
3748	ZFS_VERIFY_ZP(tdzp);
3749
3750	/*
3751	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3752	 * ctldir appear to have the same v_vfsp.
3753	 */
3754	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3755		ZFS_EXIT(zfsvfs);
3756		return (SET_ERROR(EXDEV));
3757	}
3758
3759	if (zfsvfs->z_utf8 && u8_validate(tnm,
3760	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3761		ZFS_EXIT(zfsvfs);
3762		return (SET_ERROR(EILSEQ));
3763	}
3764
3765	if (flags & FIGNORECASE)
3766		zflg |= ZCILOOK;
3767
3768top:
3769	szp = NULL;
3770	tzp = NULL;
3771	zl = NULL;
3772
3773	/*
3774	 * This is to prevent the creation of links into attribute space
3775	 * by renaming a linked file into/outof an attribute directory.
3776	 * See the comment in zfs_link() for why this is considered bad.
3777	 */
3778	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3779		ZFS_EXIT(zfsvfs);
3780		return (SET_ERROR(EINVAL));
3781	}
3782
3783	/*
3784	 * Lock source and target directory entries.  To prevent deadlock,
3785	 * a lock ordering must be defined.  We lock the directory with
3786	 * the smallest object id first, or if it's a tie, the one with
3787	 * the lexically first name.
3788	 */
3789	if (sdzp->z_id < tdzp->z_id) {
3790		cmp = -1;
3791	} else if (sdzp->z_id > tdzp->z_id) {
3792		cmp = 1;
3793	} else {
3794		/*
3795		 * First compare the two name arguments without
3796		 * considering any case folding.
3797		 */
3798		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3799
3800		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3801		ASSERT(error == 0 || !zfsvfs->z_utf8);
3802		if (cmp == 0) {
3803			/*
3804			 * POSIX: "If the old argument and the new argument
3805			 * both refer to links to the same existing file,
3806			 * the rename() function shall return successfully
3807			 * and perform no other action."
3808			 */
3809			ZFS_EXIT(zfsvfs);
3810			return (0);
3811		}
3812		/*
3813		 * If the file system is case-folding, then we may
3814		 * have some more checking to do.  A case-folding file
3815		 * system is either supporting mixed case sensitivity
3816		 * access or is completely case-insensitive.  Note
3817		 * that the file system is always case preserving.
3818		 *
3819		 * In mixed sensitivity mode case sensitive behavior
3820		 * is the default.  FIGNORECASE must be used to
3821		 * explicitly request case insensitive behavior.
3822		 *
3823		 * If the source and target names provided differ only
3824		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3825		 * we will treat this as a special case in the
3826		 * case-insensitive mode: as long as the source name
3827		 * is an exact match, we will allow this to proceed as
3828		 * a name-change request.
3829		 */
3830		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3831		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3832		    flags & FIGNORECASE)) &&
3833		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3834		    &error) == 0) {
3835			/*
3836			 * case preserving rename request, require exact
3837			 * name matches
3838			 */
3839			zflg |= ZCIEXACT;
3840			zflg &= ~ZCILOOK;
3841		}
3842	}
3843
3844	/*
3845	 * If the source and destination directories are the same, we should
3846	 * grab the z_name_lock of that directory only once.
3847	 */
3848	if (sdzp == tdzp) {
3849		zflg |= ZHAVELOCK;
3850		rw_enter(&sdzp->z_name_lock, RW_READER);
3851	}
3852
3853	if (cmp < 0) {
3854		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3855		    ZEXISTS | zflg, NULL, NULL);
3856		terr = zfs_dirent_lock(&tdl,
3857		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3858	} else {
3859		terr = zfs_dirent_lock(&tdl,
3860		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3861		serr = zfs_dirent_lock(&sdl,
3862		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3863		    NULL, NULL);
3864	}
3865
3866	if (serr) {
3867		/*
3868		 * Source entry invalid or not there.
3869		 */
3870		if (!terr) {
3871			zfs_dirent_unlock(tdl);
3872			if (tzp)
3873				VN_RELE(ZTOV(tzp));
3874		}
3875
3876		if (sdzp == tdzp)
3877			rw_exit(&sdzp->z_name_lock);
3878
3879		/*
3880		 * FreeBSD: In OpenSolaris they only check if rename source is
3881		 * ".." here, because "." is handled in their lookup. This is
3882		 * not the case for FreeBSD, so we check for "." explicitly.
3883		 */
3884		if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0)
3885			serr = SET_ERROR(EINVAL);
3886		ZFS_EXIT(zfsvfs);
3887		return (serr);
3888	}
3889	if (terr) {
3890		zfs_dirent_unlock(sdl);
3891		VN_RELE(ZTOV(szp));
3892
3893		if (sdzp == tdzp)
3894			rw_exit(&sdzp->z_name_lock);
3895
3896		if (strcmp(tnm, "..") == 0)
3897			terr = SET_ERROR(EINVAL);
3898		ZFS_EXIT(zfsvfs);
3899		return (terr);
3900	}
3901
3902	/*
3903	 * Must have write access at the source to remove the old entry
3904	 * and write access at the target to create the new entry.
3905	 * Note that if target and source are the same, this can be
3906	 * done in a single check.
3907	 */
3908
3909	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3910		goto out;
3911
3912	if (ZTOV(szp)->v_type == VDIR) {
3913		/*
3914		 * Check to make sure rename is valid.
3915		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3916		 */
3917		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3918			goto out;
3919	}
3920
3921	/*
3922	 * Does target exist?
3923	 */
3924	if (tzp) {
3925		/*
3926		 * Source and target must be the same type.
3927		 */
3928		if (ZTOV(szp)->v_type == VDIR) {
3929			if (ZTOV(tzp)->v_type != VDIR) {
3930				error = SET_ERROR(ENOTDIR);
3931				goto out;
3932			}
3933		} else {
3934			if (ZTOV(tzp)->v_type == VDIR) {
3935				error = SET_ERROR(EISDIR);
3936				goto out;
3937			}
3938		}
3939		/*
3940		 * POSIX dictates that when the source and target
3941		 * entries refer to the same file object, rename
3942		 * must do nothing and exit without error.
3943		 */
3944		if (szp->z_id == tzp->z_id) {
3945			error = 0;
3946			goto out;
3947		}
3948	}
3949
3950	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3951	if (tzp)
3952		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3953
3954	/*
3955	 * notify the target directory if it is not the same
3956	 * as source directory.
3957	 */
3958	if (tdvp != sdvp) {
3959		vnevent_rename_dest_dir(tdvp, ct);
3960	}
3961
3962	tx = dmu_tx_create(zfsvfs->z_os);
3963	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3964	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3965	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3966	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3967	if (sdzp != tdzp) {
3968		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3969		zfs_sa_upgrade_txholds(tx, tdzp);
3970	}
3971	if (tzp) {
3972		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3973		zfs_sa_upgrade_txholds(tx, tzp);
3974	}
3975
3976	zfs_sa_upgrade_txholds(tx, szp);
3977	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3978	error = dmu_tx_assign(tx, TXG_NOWAIT);
3979	if (error) {
3980		if (zl != NULL)
3981			zfs_rename_unlock(&zl);
3982		zfs_dirent_unlock(sdl);
3983		zfs_dirent_unlock(tdl);
3984
3985		if (sdzp == tdzp)
3986			rw_exit(&sdzp->z_name_lock);
3987
3988		VN_RELE(ZTOV(szp));
3989		if (tzp)
3990			VN_RELE(ZTOV(tzp));
3991		if (error == ERESTART) {
3992			dmu_tx_wait(tx);
3993			dmu_tx_abort(tx);
3994			goto top;
3995		}
3996		dmu_tx_abort(tx);
3997		ZFS_EXIT(zfsvfs);
3998		return (error);
3999	}
4000
4001	if (tzp)	/* Attempt to remove the existing target */
4002		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
4003
4004	if (error == 0) {
4005		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
4006		if (error == 0) {
4007			szp->z_pflags |= ZFS_AV_MODIFIED;
4008
4009			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
4010			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
4011			ASSERT0(error);
4012
4013			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
4014			if (error == 0) {
4015				zfs_log_rename(zilog, tx, TX_RENAME |
4016				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
4017				    sdl->dl_name, tdzp, tdl->dl_name, szp);
4018
4019				/*
4020				 * Update path information for the target vnode
4021				 */
4022				vn_renamepath(tdvp, ZTOV(szp), tnm,
4023				    strlen(tnm));
4024			} else {
4025				/*
4026				 * At this point, we have successfully created
4027				 * the target name, but have failed to remove
4028				 * the source name.  Since the create was done
4029				 * with the ZRENAMING flag, there are
4030				 * complications; for one, the link count is
4031				 * wrong.  The easiest way to deal with this
4032				 * is to remove the newly created target, and
4033				 * return the original error.  This must
4034				 * succeed; fortunately, it is very unlikely to
4035				 * fail, since we just created it.
4036				 */
4037				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
4038				    ZRENAMING, NULL), ==, 0);
4039			}
4040		}
4041#ifdef FREEBSD_NAMECACHE
4042		if (error == 0) {
4043			cache_purge(sdvp);
4044			cache_purge(tdvp);
4045			cache_purge(ZTOV(szp));
4046			if (tzp)
4047				cache_purge(ZTOV(tzp));
4048		}
4049#endif
4050	}
4051
4052	dmu_tx_commit(tx);
4053out:
4054	if (zl != NULL)
4055		zfs_rename_unlock(&zl);
4056
4057	zfs_dirent_unlock(sdl);
4058	zfs_dirent_unlock(tdl);
4059
4060	if (sdzp == tdzp)
4061		rw_exit(&sdzp->z_name_lock);
4062
4063
4064	VN_RELE(ZTOV(szp));
4065	if (tzp)
4066		VN_RELE(ZTOV(tzp));
4067
4068	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4069		zil_commit(zilog, 0);
4070
4071	ZFS_EXIT(zfsvfs);
4072
4073	return (error);
4074}
4075
4076/*
4077 * Insert the indicated symbolic reference entry into the directory.
4078 *
4079 *	IN:	dvp	- Directory to contain new symbolic link.
4080 *		link	- Name for new symlink entry.
4081 *		vap	- Attributes of new entry.
4082 *		cr	- credentials of caller.
4083 *		ct	- caller context
4084 *		flags	- case flags
4085 *
4086 *	RETURN:	0 on success, error code on failure.
4087 *
4088 * Timestamps:
4089 *	dvp - ctime|mtime updated
4090 */
4091/*ARGSUSED*/
4092static int
4093zfs_symlink(vnode_t *dvp, vnode_t **vpp, char *name, vattr_t *vap, char *link,
4094    cred_t *cr, kthread_t *td)
4095{
4096	znode_t		*zp, *dzp = VTOZ(dvp);
4097	zfs_dirlock_t	*dl;
4098	dmu_tx_t	*tx;
4099	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4100	zilog_t		*zilog;
4101	uint64_t	len = strlen(link);
4102	int		error;
4103	int		zflg = ZNEW;
4104	zfs_acl_ids_t	acl_ids;
4105	boolean_t	fuid_dirtied;
4106	uint64_t	txtype = TX_SYMLINK;
4107	int		flags = 0;
4108
4109	ASSERT(vap->va_type == VLNK);
4110
4111	ZFS_ENTER(zfsvfs);
4112	ZFS_VERIFY_ZP(dzp);
4113	zilog = zfsvfs->z_log;
4114
4115	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4116	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4117		ZFS_EXIT(zfsvfs);
4118		return (SET_ERROR(EILSEQ));
4119	}
4120	if (flags & FIGNORECASE)
4121		zflg |= ZCILOOK;
4122
4123	if (len > MAXPATHLEN) {
4124		ZFS_EXIT(zfsvfs);
4125		return (SET_ERROR(ENAMETOOLONG));
4126	}
4127
4128	if ((error = zfs_acl_ids_create(dzp, 0,
4129	    vap, cr, NULL, &acl_ids)) != 0) {
4130		ZFS_EXIT(zfsvfs);
4131		return (error);
4132	}
4133top:
4134	/*
4135	 * Attempt to lock directory; fail if entry already exists.
4136	 */
4137	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4138	if (error) {
4139		zfs_acl_ids_free(&acl_ids);
4140		ZFS_EXIT(zfsvfs);
4141		return (error);
4142	}
4143
4144	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4145		zfs_acl_ids_free(&acl_ids);
4146		zfs_dirent_unlock(dl);
4147		ZFS_EXIT(zfsvfs);
4148		return (error);
4149	}
4150
4151	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
4152		zfs_acl_ids_free(&acl_ids);
4153		zfs_dirent_unlock(dl);
4154		ZFS_EXIT(zfsvfs);
4155		return (SET_ERROR(EDQUOT));
4156	}
4157	tx = dmu_tx_create(zfsvfs->z_os);
4158	fuid_dirtied = zfsvfs->z_fuid_dirty;
4159	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4160	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4161	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4162	    ZFS_SA_BASE_ATTR_SIZE + len);
4163	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4164	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4165		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4166		    acl_ids.z_aclp->z_acl_bytes);
4167	}
4168	if (fuid_dirtied)
4169		zfs_fuid_txhold(zfsvfs, tx);
4170	error = dmu_tx_assign(tx, TXG_NOWAIT);
4171	if (error) {
4172		zfs_dirent_unlock(dl);
4173		if (error == ERESTART) {
4174			dmu_tx_wait(tx);
4175			dmu_tx_abort(tx);
4176			goto top;
4177		}
4178		zfs_acl_ids_free(&acl_ids);
4179		dmu_tx_abort(tx);
4180		ZFS_EXIT(zfsvfs);
4181		return (error);
4182	}
4183
4184	/*
4185	 * Create a new object for the symlink.
4186	 * for version 4 ZPL datsets the symlink will be an SA attribute
4187	 */
4188	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4189
4190	if (fuid_dirtied)
4191		zfs_fuid_sync(zfsvfs, tx);
4192
4193	mutex_enter(&zp->z_lock);
4194	if (zp->z_is_sa)
4195		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4196		    link, len, tx);
4197	else
4198		zfs_sa_symlink(zp, link, len, tx);
4199	mutex_exit(&zp->z_lock);
4200
4201	zp->z_size = len;
4202	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4203	    &zp->z_size, sizeof (zp->z_size), tx);
4204	/*
4205	 * Insert the new object into the directory.
4206	 */
4207	(void) zfs_link_create(dl, zp, tx, ZNEW);
4208
4209	if (flags & FIGNORECASE)
4210		txtype |= TX_CI;
4211	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4212	*vpp = ZTOV(zp);
4213
4214	zfs_acl_ids_free(&acl_ids);
4215
4216	dmu_tx_commit(tx);
4217
4218	zfs_dirent_unlock(dl);
4219
4220	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4221		zil_commit(zilog, 0);
4222
4223	ZFS_EXIT(zfsvfs);
4224	return (error);
4225}
4226
4227/*
4228 * Return, in the buffer contained in the provided uio structure,
4229 * the symbolic path referred to by vp.
4230 *
4231 *	IN:	vp	- vnode of symbolic link.
4232 *		uio	- structure to contain the link path.
4233 *		cr	- credentials of caller.
4234 *		ct	- caller context
4235 *
4236 *	OUT:	uio	- structure containing the link path.
4237 *
4238 *	RETURN:	0 on success, error code on failure.
4239 *
4240 * Timestamps:
4241 *	vp - atime updated
4242 */
4243/* ARGSUSED */
4244static int
4245zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4246{
4247	znode_t		*zp = VTOZ(vp);
4248	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4249	int		error;
4250
4251	ZFS_ENTER(zfsvfs);
4252	ZFS_VERIFY_ZP(zp);
4253
4254	mutex_enter(&zp->z_lock);
4255	if (zp->z_is_sa)
4256		error = sa_lookup_uio(zp->z_sa_hdl,
4257		    SA_ZPL_SYMLINK(zfsvfs), uio);
4258	else
4259		error = zfs_sa_readlink(zp, uio);
4260	mutex_exit(&zp->z_lock);
4261
4262	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4263
4264	ZFS_EXIT(zfsvfs);
4265	return (error);
4266}
4267
4268/*
4269 * Insert a new entry into directory tdvp referencing svp.
4270 *
4271 *	IN:	tdvp	- Directory to contain new entry.
4272 *		svp	- vnode of new entry.
4273 *		name	- name of new entry.
4274 *		cr	- credentials of caller.
4275 *		ct	- caller context
4276 *
4277 *	RETURN:	0 on success, error code on failure.
4278 *
4279 * Timestamps:
4280 *	tdvp - ctime|mtime updated
4281 *	 svp - ctime updated
4282 */
4283/* ARGSUSED */
4284static int
4285zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4286    caller_context_t *ct, int flags)
4287{
4288	znode_t		*dzp = VTOZ(tdvp);
4289	znode_t		*tzp, *szp;
4290	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4291	zilog_t		*zilog;
4292	zfs_dirlock_t	*dl;
4293	dmu_tx_t	*tx;
4294	vnode_t		*realvp;
4295	int		error;
4296	int		zf = ZNEW;
4297	uint64_t	parent;
4298	uid_t		owner;
4299
4300	ASSERT(tdvp->v_type == VDIR);
4301
4302	ZFS_ENTER(zfsvfs);
4303	ZFS_VERIFY_ZP(dzp);
4304	zilog = zfsvfs->z_log;
4305
4306	if (VOP_REALVP(svp, &realvp, ct) == 0)
4307		svp = realvp;
4308
4309	/*
4310	 * POSIX dictates that we return EPERM here.
4311	 * Better choices include ENOTSUP or EISDIR.
4312	 */
4313	if (svp->v_type == VDIR) {
4314		ZFS_EXIT(zfsvfs);
4315		return (SET_ERROR(EPERM));
4316	}
4317
4318	szp = VTOZ(svp);
4319	ZFS_VERIFY_ZP(szp);
4320
4321	/*
4322	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4323	 * ctldir appear to have the same v_vfsp.
4324	 */
4325	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4326		ZFS_EXIT(zfsvfs);
4327		return (SET_ERROR(EXDEV));
4328	}
4329
4330	/* Prevent links to .zfs/shares files */
4331
4332	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4333	    &parent, sizeof (uint64_t))) != 0) {
4334		ZFS_EXIT(zfsvfs);
4335		return (error);
4336	}
4337	if (parent == zfsvfs->z_shares_dir) {
4338		ZFS_EXIT(zfsvfs);
4339		return (SET_ERROR(EPERM));
4340	}
4341
4342	if (zfsvfs->z_utf8 && u8_validate(name,
4343	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4344		ZFS_EXIT(zfsvfs);
4345		return (SET_ERROR(EILSEQ));
4346	}
4347	if (flags & FIGNORECASE)
4348		zf |= ZCILOOK;
4349
4350	/*
4351	 * We do not support links between attributes and non-attributes
4352	 * because of the potential security risk of creating links
4353	 * into "normal" file space in order to circumvent restrictions
4354	 * imposed in attribute space.
4355	 */
4356	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4357		ZFS_EXIT(zfsvfs);
4358		return (SET_ERROR(EINVAL));
4359	}
4360
4361
4362	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4363	if (owner != crgetuid(cr) && secpolicy_basic_link(svp, cr) != 0) {
4364		ZFS_EXIT(zfsvfs);
4365		return (SET_ERROR(EPERM));
4366	}
4367
4368	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4369		ZFS_EXIT(zfsvfs);
4370		return (error);
4371	}
4372
4373top:
4374	/*
4375	 * Attempt to lock directory; fail if entry already exists.
4376	 */
4377	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4378	if (error) {
4379		ZFS_EXIT(zfsvfs);
4380		return (error);
4381	}
4382
4383	tx = dmu_tx_create(zfsvfs->z_os);
4384	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4385	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4386	zfs_sa_upgrade_txholds(tx, szp);
4387	zfs_sa_upgrade_txholds(tx, dzp);
4388	error = dmu_tx_assign(tx, TXG_NOWAIT);
4389	if (error) {
4390		zfs_dirent_unlock(dl);
4391		if (error == ERESTART) {
4392			dmu_tx_wait(tx);
4393			dmu_tx_abort(tx);
4394			goto top;
4395		}
4396		dmu_tx_abort(tx);
4397		ZFS_EXIT(zfsvfs);
4398		return (error);
4399	}
4400
4401	error = zfs_link_create(dl, szp, tx, 0);
4402
4403	if (error == 0) {
4404		uint64_t txtype = TX_LINK;
4405		if (flags & FIGNORECASE)
4406			txtype |= TX_CI;
4407		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4408	}
4409
4410	dmu_tx_commit(tx);
4411
4412	zfs_dirent_unlock(dl);
4413
4414	if (error == 0) {
4415		vnevent_link(svp, ct);
4416	}
4417
4418	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4419		zil_commit(zilog, 0);
4420
4421	ZFS_EXIT(zfsvfs);
4422	return (error);
4423}
4424
4425#ifdef sun
4426/*
4427 * zfs_null_putapage() is used when the file system has been force
4428 * unmounted. It just drops the pages.
4429 */
4430/* ARGSUSED */
4431static int
4432zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4433		size_t *lenp, int flags, cred_t *cr)
4434{
4435	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4436	return (0);
4437}
4438
4439/*
4440 * Push a page out to disk, klustering if possible.
4441 *
4442 *	IN:	vp	- file to push page to.
4443 *		pp	- page to push.
4444 *		flags	- additional flags.
4445 *		cr	- credentials of caller.
4446 *
4447 *	OUT:	offp	- start of range pushed.
4448 *		lenp	- len of range pushed.
4449 *
4450 *	RETURN:	0 on success, error code on failure.
4451 *
4452 * NOTE: callers must have locked the page to be pushed.  On
4453 * exit, the page (and all other pages in the kluster) must be
4454 * unlocked.
4455 */
4456/* ARGSUSED */
4457static int
4458zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4459		size_t *lenp, int flags, cred_t *cr)
4460{
4461	znode_t		*zp = VTOZ(vp);
4462	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4463	dmu_tx_t	*tx;
4464	u_offset_t	off, koff;
4465	size_t		len, klen;
4466	int		err;
4467
4468	off = pp->p_offset;
4469	len = PAGESIZE;
4470	/*
4471	 * If our blocksize is bigger than the page size, try to kluster
4472	 * multiple pages so that we write a full block (thus avoiding
4473	 * a read-modify-write).
4474	 */
4475	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4476		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4477		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4478		ASSERT(koff <= zp->z_size);
4479		if (koff + klen > zp->z_size)
4480			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4481		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4482	}
4483	ASSERT3U(btop(len), ==, btopr(len));
4484
4485	/*
4486	 * Can't push pages past end-of-file.
4487	 */
4488	if (off >= zp->z_size) {
4489		/* ignore all pages */
4490		err = 0;
4491		goto out;
4492	} else if (off + len > zp->z_size) {
4493		int npages = btopr(zp->z_size - off);
4494		page_t *trunc;
4495
4496		page_list_break(&pp, &trunc, npages);
4497		/* ignore pages past end of file */
4498		if (trunc)
4499			pvn_write_done(trunc, flags);
4500		len = zp->z_size - off;
4501	}
4502
4503	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4504	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4505		err = SET_ERROR(EDQUOT);
4506		goto out;
4507	}
4508top:
4509	tx = dmu_tx_create(zfsvfs->z_os);
4510	dmu_tx_hold_write(tx, zp->z_id, off, len);
4511
4512	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4513	zfs_sa_upgrade_txholds(tx, zp);
4514	err = dmu_tx_assign(tx, TXG_NOWAIT);
4515	if (err != 0) {
4516		if (err == ERESTART) {
4517			dmu_tx_wait(tx);
4518			dmu_tx_abort(tx);
4519			goto top;
4520		}
4521		dmu_tx_abort(tx);
4522		goto out;
4523	}
4524
4525	if (zp->z_blksz <= PAGESIZE) {
4526		caddr_t va = zfs_map_page(pp, S_READ);
4527		ASSERT3U(len, <=, PAGESIZE);
4528		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4529		zfs_unmap_page(pp, va);
4530	} else {
4531		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4532	}
4533
4534	if (err == 0) {
4535		uint64_t mtime[2], ctime[2];
4536		sa_bulk_attr_t bulk[3];
4537		int count = 0;
4538
4539		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4540		    &mtime, 16);
4541		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4542		    &ctime, 16);
4543		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4544		    &zp->z_pflags, 8);
4545		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4546		    B_TRUE);
4547		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4548	}
4549	dmu_tx_commit(tx);
4550
4551out:
4552	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4553	if (offp)
4554		*offp = off;
4555	if (lenp)
4556		*lenp = len;
4557
4558	return (err);
4559}
4560
4561/*
4562 * Copy the portion of the file indicated from pages into the file.
4563 * The pages are stored in a page list attached to the files vnode.
4564 *
4565 *	IN:	vp	- vnode of file to push page data to.
4566 *		off	- position in file to put data.
4567 *		len	- amount of data to write.
4568 *		flags	- flags to control the operation.
4569 *		cr	- credentials of caller.
4570 *		ct	- caller context.
4571 *
4572 *	RETURN:	0 on success, error code on failure.
4573 *
4574 * Timestamps:
4575 *	vp - ctime|mtime updated
4576 */
4577/*ARGSUSED*/
4578static int
4579zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4580    caller_context_t *ct)
4581{
4582	znode_t		*zp = VTOZ(vp);
4583	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4584	page_t		*pp;
4585	size_t		io_len;
4586	u_offset_t	io_off;
4587	uint_t		blksz;
4588	rl_t		*rl;
4589	int		error = 0;
4590
4591	ZFS_ENTER(zfsvfs);
4592	ZFS_VERIFY_ZP(zp);
4593
4594	/*
4595	 * Align this request to the file block size in case we kluster.
4596	 * XXX - this can result in pretty aggresive locking, which can
4597	 * impact simultanious read/write access.  One option might be
4598	 * to break up long requests (len == 0) into block-by-block
4599	 * operations to get narrower locking.
4600	 */
4601	blksz = zp->z_blksz;
4602	if (ISP2(blksz))
4603		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4604	else
4605		io_off = 0;
4606	if (len > 0 && ISP2(blksz))
4607		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4608	else
4609		io_len = 0;
4610
4611	if (io_len == 0) {
4612		/*
4613		 * Search the entire vp list for pages >= io_off.
4614		 */
4615		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4616		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4617		goto out;
4618	}
4619	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4620
4621	if (off > zp->z_size) {
4622		/* past end of file */
4623		zfs_range_unlock(rl);
4624		ZFS_EXIT(zfsvfs);
4625		return (0);
4626	}
4627
4628	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4629
4630	for (off = io_off; io_off < off + len; io_off += io_len) {
4631		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4632			pp = page_lookup(vp, io_off,
4633			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4634		} else {
4635			pp = page_lookup_nowait(vp, io_off,
4636			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4637		}
4638
4639		if (pp != NULL && pvn_getdirty(pp, flags)) {
4640			int err;
4641
4642			/*
4643			 * Found a dirty page to push
4644			 */
4645			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4646			if (err)
4647				error = err;
4648		} else {
4649			io_len = PAGESIZE;
4650		}
4651	}
4652out:
4653	zfs_range_unlock(rl);
4654	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4655		zil_commit(zfsvfs->z_log, zp->z_id);
4656	ZFS_EXIT(zfsvfs);
4657	return (error);
4658}
4659#endif	/* sun */
4660
4661/*ARGSUSED*/
4662void
4663zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4664{
4665	znode_t	*zp = VTOZ(vp);
4666	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4667	int error;
4668
4669	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4670	if (zp->z_sa_hdl == NULL) {
4671		/*
4672		 * The fs has been unmounted, or we did a
4673		 * suspend/resume and this file no longer exists.
4674		 */
4675		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4676		vrecycle(vp);
4677		return;
4678	}
4679
4680	mutex_enter(&zp->z_lock);
4681	if (zp->z_unlinked) {
4682		/*
4683		 * Fast path to recycle a vnode of a removed file.
4684		 */
4685		mutex_exit(&zp->z_lock);
4686		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4687		vrecycle(vp);
4688		return;
4689	}
4690	mutex_exit(&zp->z_lock);
4691
4692	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4693		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4694
4695		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4696		zfs_sa_upgrade_txholds(tx, zp);
4697		error = dmu_tx_assign(tx, TXG_WAIT);
4698		if (error) {
4699			dmu_tx_abort(tx);
4700		} else {
4701			mutex_enter(&zp->z_lock);
4702			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4703			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4704			zp->z_atime_dirty = 0;
4705			mutex_exit(&zp->z_lock);
4706			dmu_tx_commit(tx);
4707		}
4708	}
4709	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4710}
4711
4712#ifdef sun
4713/*
4714 * Bounds-check the seek operation.
4715 *
4716 *	IN:	vp	- vnode seeking within
4717 *		ooff	- old file offset
4718 *		noffp	- pointer to new file offset
4719 *		ct	- caller context
4720 *
4721 *	RETURN:	0 on success, EINVAL if new offset invalid.
4722 */
4723/* ARGSUSED */
4724static int
4725zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4726    caller_context_t *ct)
4727{
4728	if (vp->v_type == VDIR)
4729		return (0);
4730	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4731}
4732
4733/*
4734 * Pre-filter the generic locking function to trap attempts to place
4735 * a mandatory lock on a memory mapped file.
4736 */
4737static int
4738zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4739    flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4740{
4741	znode_t *zp = VTOZ(vp);
4742	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4743
4744	ZFS_ENTER(zfsvfs);
4745	ZFS_VERIFY_ZP(zp);
4746
4747	/*
4748	 * We are following the UFS semantics with respect to mapcnt
4749	 * here: If we see that the file is mapped already, then we will
4750	 * return an error, but we don't worry about races between this
4751	 * function and zfs_map().
4752	 */
4753	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4754		ZFS_EXIT(zfsvfs);
4755		return (SET_ERROR(EAGAIN));
4756	}
4757	ZFS_EXIT(zfsvfs);
4758	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4759}
4760
4761/*
4762 * If we can't find a page in the cache, we will create a new page
4763 * and fill it with file data.  For efficiency, we may try to fill
4764 * multiple pages at once (klustering) to fill up the supplied page
4765 * list.  Note that the pages to be filled are held with an exclusive
4766 * lock to prevent access by other threads while they are being filled.
4767 */
4768static int
4769zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4770    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4771{
4772	znode_t *zp = VTOZ(vp);
4773	page_t *pp, *cur_pp;
4774	objset_t *os = zp->z_zfsvfs->z_os;
4775	u_offset_t io_off, total;
4776	size_t io_len;
4777	int err;
4778
4779	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4780		/*
4781		 * We only have a single page, don't bother klustering
4782		 */
4783		io_off = off;
4784		io_len = PAGESIZE;
4785		pp = page_create_va(vp, io_off, io_len,
4786		    PG_EXCL | PG_WAIT, seg, addr);
4787	} else {
4788		/*
4789		 * Try to find enough pages to fill the page list
4790		 */
4791		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4792		    &io_len, off, plsz, 0);
4793	}
4794	if (pp == NULL) {
4795		/*
4796		 * The page already exists, nothing to do here.
4797		 */
4798		*pl = NULL;
4799		return (0);
4800	}
4801
4802	/*
4803	 * Fill the pages in the kluster.
4804	 */
4805	cur_pp = pp;
4806	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4807		caddr_t va;
4808
4809		ASSERT3U(io_off, ==, cur_pp->p_offset);
4810		va = zfs_map_page(cur_pp, S_WRITE);
4811		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4812		    DMU_READ_PREFETCH);
4813		zfs_unmap_page(cur_pp, va);
4814		if (err) {
4815			/* On error, toss the entire kluster */
4816			pvn_read_done(pp, B_ERROR);
4817			/* convert checksum errors into IO errors */
4818			if (err == ECKSUM)
4819				err = SET_ERROR(EIO);
4820			return (err);
4821		}
4822		cur_pp = cur_pp->p_next;
4823	}
4824
4825	/*
4826	 * Fill in the page list array from the kluster starting
4827	 * from the desired offset `off'.
4828	 * NOTE: the page list will always be null terminated.
4829	 */
4830	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4831	ASSERT(pl == NULL || (*pl)->p_offset == off);
4832
4833	return (0);
4834}
4835
4836/*
4837 * Return pointers to the pages for the file region [off, off + len]
4838 * in the pl array.  If plsz is greater than len, this function may
4839 * also return page pointers from after the specified region
4840 * (i.e. the region [off, off + plsz]).  These additional pages are
4841 * only returned if they are already in the cache, or were created as
4842 * part of a klustered read.
4843 *
4844 *	IN:	vp	- vnode of file to get data from.
4845 *		off	- position in file to get data from.
4846 *		len	- amount of data to retrieve.
4847 *		plsz	- length of provided page list.
4848 *		seg	- segment to obtain pages for.
4849 *		addr	- virtual address of fault.
4850 *		rw	- mode of created pages.
4851 *		cr	- credentials of caller.
4852 *		ct	- caller context.
4853 *
4854 *	OUT:	protp	- protection mode of created pages.
4855 *		pl	- list of pages created.
4856 *
4857 *	RETURN:	0 on success, error code on failure.
4858 *
4859 * Timestamps:
4860 *	vp - atime updated
4861 */
4862/* ARGSUSED */
4863static int
4864zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4865    page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4866    enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4867{
4868	znode_t		*zp = VTOZ(vp);
4869	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4870	page_t		**pl0 = pl;
4871	int		err = 0;
4872
4873	/* we do our own caching, faultahead is unnecessary */
4874	if (pl == NULL)
4875		return (0);
4876	else if (len > plsz)
4877		len = plsz;
4878	else
4879		len = P2ROUNDUP(len, PAGESIZE);
4880	ASSERT(plsz >= len);
4881
4882	ZFS_ENTER(zfsvfs);
4883	ZFS_VERIFY_ZP(zp);
4884
4885	if (protp)
4886		*protp = PROT_ALL;
4887
4888	/*
4889	 * Loop through the requested range [off, off + len) looking
4890	 * for pages.  If we don't find a page, we will need to create
4891	 * a new page and fill it with data from the file.
4892	 */
4893	while (len > 0) {
4894		if (*pl = page_lookup(vp, off, SE_SHARED))
4895			*(pl+1) = NULL;
4896		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4897			goto out;
4898		while (*pl) {
4899			ASSERT3U((*pl)->p_offset, ==, off);
4900			off += PAGESIZE;
4901			addr += PAGESIZE;
4902			if (len > 0) {
4903				ASSERT3U(len, >=, PAGESIZE);
4904				len -= PAGESIZE;
4905			}
4906			ASSERT3U(plsz, >=, PAGESIZE);
4907			plsz -= PAGESIZE;
4908			pl++;
4909		}
4910	}
4911
4912	/*
4913	 * Fill out the page array with any pages already in the cache.
4914	 */
4915	while (plsz > 0 &&
4916	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4917			off += PAGESIZE;
4918			plsz -= PAGESIZE;
4919	}
4920out:
4921	if (err) {
4922		/*
4923		 * Release any pages we have previously locked.
4924		 */
4925		while (pl > pl0)
4926			page_unlock(*--pl);
4927	} else {
4928		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4929	}
4930
4931	*pl = NULL;
4932
4933	ZFS_EXIT(zfsvfs);
4934	return (err);
4935}
4936
4937/*
4938 * Request a memory map for a section of a file.  This code interacts
4939 * with common code and the VM system as follows:
4940 *
4941 * - common code calls mmap(), which ends up in smmap_common()
4942 * - this calls VOP_MAP(), which takes you into (say) zfs
4943 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4944 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4945 * - zfs_addmap() updates z_mapcnt
4946 */
4947/*ARGSUSED*/
4948static int
4949zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4950    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4951    caller_context_t *ct)
4952{
4953	znode_t *zp = VTOZ(vp);
4954	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4955	segvn_crargs_t	vn_a;
4956	int		error;
4957
4958	ZFS_ENTER(zfsvfs);
4959	ZFS_VERIFY_ZP(zp);
4960
4961	if ((prot & PROT_WRITE) && (zp->z_pflags &
4962	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4963		ZFS_EXIT(zfsvfs);
4964		return (SET_ERROR(EPERM));
4965	}
4966
4967	if ((prot & (PROT_READ | PROT_EXEC)) &&
4968	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4969		ZFS_EXIT(zfsvfs);
4970		return (SET_ERROR(EACCES));
4971	}
4972
4973	if (vp->v_flag & VNOMAP) {
4974		ZFS_EXIT(zfsvfs);
4975		return (SET_ERROR(ENOSYS));
4976	}
4977
4978	if (off < 0 || len > MAXOFFSET_T - off) {
4979		ZFS_EXIT(zfsvfs);
4980		return (SET_ERROR(ENXIO));
4981	}
4982
4983	if (vp->v_type != VREG) {
4984		ZFS_EXIT(zfsvfs);
4985		return (SET_ERROR(ENODEV));
4986	}
4987
4988	/*
4989	 * If file is locked, disallow mapping.
4990	 */
4991	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4992		ZFS_EXIT(zfsvfs);
4993		return (SET_ERROR(EAGAIN));
4994	}
4995
4996	as_rangelock(as);
4997	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4998	if (error != 0) {
4999		as_rangeunlock(as);
5000		ZFS_EXIT(zfsvfs);
5001		return (error);
5002	}
5003
5004	vn_a.vp = vp;
5005	vn_a.offset = (u_offset_t)off;
5006	vn_a.type = flags & MAP_TYPE;
5007	vn_a.prot = prot;
5008	vn_a.maxprot = maxprot;
5009	vn_a.cred = cr;
5010	vn_a.amp = NULL;
5011	vn_a.flags = flags & ~MAP_TYPE;
5012	vn_a.szc = 0;
5013	vn_a.lgrp_mem_policy_flags = 0;
5014
5015	error = as_map(as, *addrp, len, segvn_create, &vn_a);
5016
5017	as_rangeunlock(as);
5018	ZFS_EXIT(zfsvfs);
5019	return (error);
5020}
5021
5022/* ARGSUSED */
5023static int
5024zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5025    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5026    caller_context_t *ct)
5027{
5028	uint64_t pages = btopr(len);
5029
5030	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
5031	return (0);
5032}
5033
5034/*
5035 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
5036 * more accurate mtime for the associated file.  Since we don't have a way of
5037 * detecting when the data was actually modified, we have to resort to
5038 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
5039 * last page is pushed.  The problem occurs when the msync() call is omitted,
5040 * which by far the most common case:
5041 *
5042 * 	open()
5043 * 	mmap()
5044 * 	<modify memory>
5045 * 	munmap()
5046 * 	close()
5047 * 	<time lapse>
5048 * 	putpage() via fsflush
5049 *
5050 * If we wait until fsflush to come along, we can have a modification time that
5051 * is some arbitrary point in the future.  In order to prevent this in the
5052 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
5053 * torn down.
5054 */
5055/* ARGSUSED */
5056static int
5057zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5058    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
5059    caller_context_t *ct)
5060{
5061	uint64_t pages = btopr(len);
5062
5063	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
5064	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
5065
5066	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
5067	    vn_has_cached_data(vp))
5068		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
5069
5070	return (0);
5071}
5072
5073/*
5074 * Free or allocate space in a file.  Currently, this function only
5075 * supports the `F_FREESP' command.  However, this command is somewhat
5076 * misnamed, as its functionality includes the ability to allocate as
5077 * well as free space.
5078 *
5079 *	IN:	vp	- vnode of file to free data in.
5080 *		cmd	- action to take (only F_FREESP supported).
5081 *		bfp	- section of file to free/alloc.
5082 *		flag	- current file open mode flags.
5083 *		offset	- current file offset.
5084 *		cr	- credentials of caller [UNUSED].
5085 *		ct	- caller context.
5086 *
5087 *	RETURN:	0 on success, error code on failure.
5088 *
5089 * Timestamps:
5090 *	vp - ctime|mtime updated
5091 */
5092/* ARGSUSED */
5093static int
5094zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
5095    offset_t offset, cred_t *cr, caller_context_t *ct)
5096{
5097	znode_t		*zp = VTOZ(vp);
5098	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5099	uint64_t	off, len;
5100	int		error;
5101
5102	ZFS_ENTER(zfsvfs);
5103	ZFS_VERIFY_ZP(zp);
5104
5105	if (cmd != F_FREESP) {
5106		ZFS_EXIT(zfsvfs);
5107		return (SET_ERROR(EINVAL));
5108	}
5109
5110	if (error = convoff(vp, bfp, 0, offset)) {
5111		ZFS_EXIT(zfsvfs);
5112		return (error);
5113	}
5114
5115	if (bfp->l_len < 0) {
5116		ZFS_EXIT(zfsvfs);
5117		return (SET_ERROR(EINVAL));
5118	}
5119
5120	off = bfp->l_start;
5121	len = bfp->l_len; /* 0 means from off to end of file */
5122
5123	error = zfs_freesp(zp, off, len, flag, TRUE);
5124
5125	ZFS_EXIT(zfsvfs);
5126	return (error);
5127}
5128#endif	/* sun */
5129
5130CTASSERT(sizeof(struct zfid_short) <= sizeof(struct fid));
5131CTASSERT(sizeof(struct zfid_long) <= sizeof(struct fid));
5132
5133/*ARGSUSED*/
5134static int
5135zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
5136{
5137	znode_t		*zp = VTOZ(vp);
5138	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5139	uint32_t	gen;
5140	uint64_t	gen64;
5141	uint64_t	object = zp->z_id;
5142	zfid_short_t	*zfid;
5143	int		size, i, error;
5144
5145	ZFS_ENTER(zfsvfs);
5146	ZFS_VERIFY_ZP(zp);
5147
5148	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5149	    &gen64, sizeof (uint64_t))) != 0) {
5150		ZFS_EXIT(zfsvfs);
5151		return (error);
5152	}
5153
5154	gen = (uint32_t)gen64;
5155
5156	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
5157
5158#ifdef illumos
5159	if (fidp->fid_len < size) {
5160		fidp->fid_len = size;
5161		ZFS_EXIT(zfsvfs);
5162		return (SET_ERROR(ENOSPC));
5163	}
5164#else
5165	fidp->fid_len = size;
5166#endif
5167
5168	zfid = (zfid_short_t *)fidp;
5169
5170	zfid->zf_len = size;
5171
5172	for (i = 0; i < sizeof (zfid->zf_object); i++)
5173		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5174
5175	/* Must have a non-zero generation number to distinguish from .zfs */
5176	if (gen == 0)
5177		gen = 1;
5178	for (i = 0; i < sizeof (zfid->zf_gen); i++)
5179		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5180
5181	if (size == LONG_FID_LEN) {
5182		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
5183		zfid_long_t	*zlfid;
5184
5185		zlfid = (zfid_long_t *)fidp;
5186
5187		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
5188			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
5189
5190		/* XXX - this should be the generation number for the objset */
5191		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
5192			zlfid->zf_setgen[i] = 0;
5193	}
5194
5195	ZFS_EXIT(zfsvfs);
5196	return (0);
5197}
5198
5199static int
5200zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5201    caller_context_t *ct)
5202{
5203	znode_t		*zp, *xzp;
5204	zfsvfs_t	*zfsvfs;
5205	zfs_dirlock_t	*dl;
5206	int		error;
5207
5208	switch (cmd) {
5209	case _PC_LINK_MAX:
5210		*valp = INT_MAX;
5211		return (0);
5212
5213	case _PC_FILESIZEBITS:
5214		*valp = 64;
5215		return (0);
5216#ifdef sun
5217	case _PC_XATTR_EXISTS:
5218		zp = VTOZ(vp);
5219		zfsvfs = zp->z_zfsvfs;
5220		ZFS_ENTER(zfsvfs);
5221		ZFS_VERIFY_ZP(zp);
5222		*valp = 0;
5223		error = zfs_dirent_lock(&dl, zp, "", &xzp,
5224		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
5225		if (error == 0) {
5226			zfs_dirent_unlock(dl);
5227			if (!zfs_dirempty(xzp))
5228				*valp = 1;
5229			VN_RELE(ZTOV(xzp));
5230		} else if (error == ENOENT) {
5231			/*
5232			 * If there aren't extended attributes, it's the
5233			 * same as having zero of them.
5234			 */
5235			error = 0;
5236		}
5237		ZFS_EXIT(zfsvfs);
5238		return (error);
5239
5240	case _PC_SATTR_ENABLED:
5241	case _PC_SATTR_EXISTS:
5242		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5243		    (vp->v_type == VREG || vp->v_type == VDIR);
5244		return (0);
5245
5246	case _PC_ACCESS_FILTERING:
5247		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5248		    vp->v_type == VDIR;
5249		return (0);
5250
5251	case _PC_ACL_ENABLED:
5252		*valp = _ACL_ACE_ENABLED;
5253		return (0);
5254#endif	/* sun */
5255	case _PC_MIN_HOLE_SIZE:
5256		*valp = (int)SPA_MINBLOCKSIZE;
5257		return (0);
5258#ifdef sun
5259	case _PC_TIMESTAMP_RESOLUTION:
5260		/* nanosecond timestamp resolution */
5261		*valp = 1L;
5262		return (0);
5263#endif	/* sun */
5264	case _PC_ACL_EXTENDED:
5265		*valp = 0;
5266		return (0);
5267
5268	case _PC_ACL_NFS4:
5269		*valp = 1;
5270		return (0);
5271
5272	case _PC_ACL_PATH_MAX:
5273		*valp = ACL_MAX_ENTRIES;
5274		return (0);
5275
5276	default:
5277		return (EOPNOTSUPP);
5278	}
5279}
5280
5281/*ARGSUSED*/
5282static int
5283zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5284    caller_context_t *ct)
5285{
5286	znode_t *zp = VTOZ(vp);
5287	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5288	int error;
5289	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5290
5291	ZFS_ENTER(zfsvfs);
5292	ZFS_VERIFY_ZP(zp);
5293	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5294	ZFS_EXIT(zfsvfs);
5295
5296	return (error);
5297}
5298
5299/*ARGSUSED*/
5300int
5301zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5302    caller_context_t *ct)
5303{
5304	znode_t *zp = VTOZ(vp);
5305	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5306	int error;
5307	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5308	zilog_t	*zilog = zfsvfs->z_log;
5309
5310	ZFS_ENTER(zfsvfs);
5311	ZFS_VERIFY_ZP(zp);
5312
5313	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5314
5315	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5316		zil_commit(zilog, 0);
5317
5318	ZFS_EXIT(zfsvfs);
5319	return (error);
5320}
5321
5322#ifdef sun
5323/*
5324 * The smallest read we may consider to loan out an arcbuf.
5325 * This must be a power of 2.
5326 */
5327int zcr_blksz_min = (1 << 10);	/* 1K */
5328/*
5329 * If set to less than the file block size, allow loaning out of an
5330 * arcbuf for a partial block read.  This must be a power of 2.
5331 */
5332int zcr_blksz_max = (1 << 17);	/* 128K */
5333
5334/*ARGSUSED*/
5335static int
5336zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5337    caller_context_t *ct)
5338{
5339	znode_t	*zp = VTOZ(vp);
5340	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5341	int max_blksz = zfsvfs->z_max_blksz;
5342	uio_t *uio = &xuio->xu_uio;
5343	ssize_t size = uio->uio_resid;
5344	offset_t offset = uio->uio_loffset;
5345	int blksz;
5346	int fullblk, i;
5347	arc_buf_t *abuf;
5348	ssize_t maxsize;
5349	int preamble, postamble;
5350
5351	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5352		return (SET_ERROR(EINVAL));
5353
5354	ZFS_ENTER(zfsvfs);
5355	ZFS_VERIFY_ZP(zp);
5356	switch (ioflag) {
5357	case UIO_WRITE:
5358		/*
5359		 * Loan out an arc_buf for write if write size is bigger than
5360		 * max_blksz, and the file's block size is also max_blksz.
5361		 */
5362		blksz = max_blksz;
5363		if (size < blksz || zp->z_blksz != blksz) {
5364			ZFS_EXIT(zfsvfs);
5365			return (SET_ERROR(EINVAL));
5366		}
5367		/*
5368		 * Caller requests buffers for write before knowing where the
5369		 * write offset might be (e.g. NFS TCP write).
5370		 */
5371		if (offset == -1) {
5372			preamble = 0;
5373		} else {
5374			preamble = P2PHASE(offset, blksz);
5375			if (preamble) {
5376				preamble = blksz - preamble;
5377				size -= preamble;
5378			}
5379		}
5380
5381		postamble = P2PHASE(size, blksz);
5382		size -= postamble;
5383
5384		fullblk = size / blksz;
5385		(void) dmu_xuio_init(xuio,
5386		    (preamble != 0) + fullblk + (postamble != 0));
5387		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5388		    int, postamble, int,
5389		    (preamble != 0) + fullblk + (postamble != 0));
5390
5391		/*
5392		 * Have to fix iov base/len for partial buffers.  They
5393		 * currently represent full arc_buf's.
5394		 */
5395		if (preamble) {
5396			/* data begins in the middle of the arc_buf */
5397			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5398			    blksz);
5399			ASSERT(abuf);
5400			(void) dmu_xuio_add(xuio, abuf,
5401			    blksz - preamble, preamble);
5402		}
5403
5404		for (i = 0; i < fullblk; i++) {
5405			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5406			    blksz);
5407			ASSERT(abuf);
5408			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5409		}
5410
5411		if (postamble) {
5412			/* data ends in the middle of the arc_buf */
5413			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5414			    blksz);
5415			ASSERT(abuf);
5416			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5417		}
5418		break;
5419	case UIO_READ:
5420		/*
5421		 * Loan out an arc_buf for read if the read size is larger than
5422		 * the current file block size.  Block alignment is not
5423		 * considered.  Partial arc_buf will be loaned out for read.
5424		 */
5425		blksz = zp->z_blksz;
5426		if (blksz < zcr_blksz_min)
5427			blksz = zcr_blksz_min;
5428		if (blksz > zcr_blksz_max)
5429			blksz = zcr_blksz_max;
5430		/* avoid potential complexity of dealing with it */
5431		if (blksz > max_blksz) {
5432			ZFS_EXIT(zfsvfs);
5433			return (SET_ERROR(EINVAL));
5434		}
5435
5436		maxsize = zp->z_size - uio->uio_loffset;
5437		if (size > maxsize)
5438			size = maxsize;
5439
5440		if (size < blksz || vn_has_cached_data(vp)) {
5441			ZFS_EXIT(zfsvfs);
5442			return (SET_ERROR(EINVAL));
5443		}
5444		break;
5445	default:
5446		ZFS_EXIT(zfsvfs);
5447		return (SET_ERROR(EINVAL));
5448	}
5449
5450	uio->uio_extflg = UIO_XUIO;
5451	XUIO_XUZC_RW(xuio) = ioflag;
5452	ZFS_EXIT(zfsvfs);
5453	return (0);
5454}
5455
5456/*ARGSUSED*/
5457static int
5458zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5459{
5460	int i;
5461	arc_buf_t *abuf;
5462	int ioflag = XUIO_XUZC_RW(xuio);
5463
5464	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5465
5466	i = dmu_xuio_cnt(xuio);
5467	while (i-- > 0) {
5468		abuf = dmu_xuio_arcbuf(xuio, i);
5469		/*
5470		 * if abuf == NULL, it must be a write buffer
5471		 * that has been returned in zfs_write().
5472		 */
5473		if (abuf)
5474			dmu_return_arcbuf(abuf);
5475		ASSERT(abuf || ioflag == UIO_WRITE);
5476	}
5477
5478	dmu_xuio_fini(xuio);
5479	return (0);
5480}
5481
5482/*
5483 * Predeclare these here so that the compiler assumes that
5484 * this is an "old style" function declaration that does
5485 * not include arguments => we won't get type mismatch errors
5486 * in the initializations that follow.
5487 */
5488static int zfs_inval();
5489static int zfs_isdir();
5490
5491static int
5492zfs_inval()
5493{
5494	return (SET_ERROR(EINVAL));
5495}
5496
5497static int
5498zfs_isdir()
5499{
5500	return (SET_ERROR(EISDIR));
5501}
5502/*
5503 * Directory vnode operations template
5504 */
5505vnodeops_t *zfs_dvnodeops;
5506const fs_operation_def_t zfs_dvnodeops_template[] = {
5507	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5508	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5509	VOPNAME_READ,		{ .error = zfs_isdir },
5510	VOPNAME_WRITE,		{ .error = zfs_isdir },
5511	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5512	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5513	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5514	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5515	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5516	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5517	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5518	VOPNAME_LINK,		{ .vop_link = zfs_link },
5519	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5520	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5521	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5522	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5523	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5524	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5525	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5526	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5527	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5528	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5529	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5530	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5531	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
5532	NULL,			NULL
5533};
5534
5535/*
5536 * Regular file vnode operations template
5537 */
5538vnodeops_t *zfs_fvnodeops;
5539const fs_operation_def_t zfs_fvnodeops_template[] = {
5540	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5541	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5542	VOPNAME_READ,		{ .vop_read = zfs_read },
5543	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5544	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5545	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5546	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5547	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5548	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5549	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5550	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5551	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5552	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5553	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5554	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5555	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5556	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5557	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5558	VOPNAME_MAP,		{ .vop_map = zfs_map },
5559	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5560	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5561	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5562	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5563	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5564	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5565	VOPNAME_REQZCBUF, 	{ .vop_reqzcbuf = zfs_reqzcbuf },
5566	VOPNAME_RETZCBUF, 	{ .vop_retzcbuf = zfs_retzcbuf },
5567	NULL,			NULL
5568};
5569
5570/*
5571 * Symbolic link vnode operations template
5572 */
5573vnodeops_t *zfs_symvnodeops;
5574const fs_operation_def_t zfs_symvnodeops_template[] = {
5575	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5576	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5577	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5578	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5579	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5580	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5581	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5582	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5583	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5584	NULL,			NULL
5585};
5586
5587/*
5588 * special share hidden files vnode operations template
5589 */
5590vnodeops_t *zfs_sharevnodeops;
5591const fs_operation_def_t zfs_sharevnodeops_template[] = {
5592	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5593	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5594	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5595	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5596	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5597	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5598	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5599	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5600	NULL,			NULL
5601};
5602
5603/*
5604 * Extended attribute directory vnode operations template
5605 *
5606 * This template is identical to the directory vnodes
5607 * operation template except for restricted operations:
5608 *	VOP_MKDIR()
5609 *	VOP_SYMLINK()
5610 *
5611 * Note that there are other restrictions embedded in:
5612 *	zfs_create()	- restrict type to VREG
5613 *	zfs_link()	- no links into/out of attribute space
5614 *	zfs_rename()	- no moves into/out of attribute space
5615 */
5616vnodeops_t *zfs_xdvnodeops;
5617const fs_operation_def_t zfs_xdvnodeops_template[] = {
5618	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5619	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5620	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5621	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5622	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5623	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5624	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5625	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5626	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5627	VOPNAME_LINK,		{ .vop_link = zfs_link },
5628	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5629	VOPNAME_MKDIR,		{ .error = zfs_inval },
5630	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5631	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5632	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5633	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5634	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5635	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5636	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5637	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5638	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5639	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5640	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5641	NULL,			NULL
5642};
5643
5644/*
5645 * Error vnode operations template
5646 */
5647vnodeops_t *zfs_evnodeops;
5648const fs_operation_def_t zfs_evnodeops_template[] = {
5649	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5650	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5651	NULL,			NULL
5652};
5653#endif	/* sun */
5654
5655static int
5656ioflags(int ioflags)
5657{
5658	int flags = 0;
5659
5660	if (ioflags & IO_APPEND)
5661		flags |= FAPPEND;
5662	if (ioflags & IO_NDELAY)
5663        	flags |= FNONBLOCK;
5664	if (ioflags & IO_SYNC)
5665		flags |= (FSYNC | FDSYNC | FRSYNC);
5666
5667	return (flags);
5668}
5669
5670static int
5671zfs_getpages(struct vnode *vp, vm_page_t *m, int count, int reqpage)
5672{
5673	znode_t *zp = VTOZ(vp);
5674	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5675	objset_t *os = zp->z_zfsvfs->z_os;
5676	vm_page_t mfirst, mlast, mreq;
5677	vm_object_t object;
5678	caddr_t va;
5679	struct sf_buf *sf;
5680	off_t startoff, endoff;
5681	int i, error;
5682	vm_pindex_t reqstart, reqend;
5683	int pcount, lsize, reqsize, size;
5684
5685	ZFS_ENTER(zfsvfs);
5686	ZFS_VERIFY_ZP(zp);
5687
5688	pcount = OFF_TO_IDX(round_page(count));
5689	mreq = m[reqpage];
5690	object = mreq->object;
5691	error = 0;
5692
5693	KASSERT(vp->v_object == object, ("mismatching object"));
5694
5695	if (pcount > 1 && zp->z_blksz > PAGESIZE) {
5696		startoff = rounddown(IDX_TO_OFF(mreq->pindex), zp->z_blksz);
5697		reqstart = OFF_TO_IDX(round_page(startoff));
5698		if (reqstart < m[0]->pindex)
5699			reqstart = 0;
5700		else
5701			reqstart = reqstart - m[0]->pindex;
5702		endoff = roundup(IDX_TO_OFF(mreq->pindex) + PAGE_SIZE,
5703		    zp->z_blksz);
5704		reqend = OFF_TO_IDX(trunc_page(endoff)) - 1;
5705		if (reqend > m[pcount - 1]->pindex)
5706			reqend = m[pcount - 1]->pindex;
5707		reqsize = reqend - m[reqstart]->pindex + 1;
5708		KASSERT(reqstart <= reqpage && reqpage < reqstart + reqsize,
5709		    ("reqpage beyond [reqstart, reqstart + reqsize[ bounds"));
5710	} else {
5711		reqstart = reqpage;
5712		reqsize = 1;
5713	}
5714	mfirst = m[reqstart];
5715	mlast = m[reqstart + reqsize - 1];
5716
5717	zfs_vmobject_wlock(object);
5718
5719	for (i = 0; i < reqstart; i++) {
5720		vm_page_lock(m[i]);
5721		vm_page_free(m[i]);
5722		vm_page_unlock(m[i]);
5723	}
5724	for (i = reqstart + reqsize; i < pcount; i++) {
5725		vm_page_lock(m[i]);
5726		vm_page_free(m[i]);
5727		vm_page_unlock(m[i]);
5728	}
5729
5730	if (mreq->valid && reqsize == 1) {
5731		if (mreq->valid != VM_PAGE_BITS_ALL)
5732			vm_page_zero_invalid(mreq, TRUE);
5733		zfs_vmobject_wunlock(object);
5734		ZFS_EXIT(zfsvfs);
5735		return (zfs_vm_pagerret_ok);
5736	}
5737
5738	PCPU_INC(cnt.v_vnodein);
5739	PCPU_ADD(cnt.v_vnodepgsin, reqsize);
5740
5741	if (IDX_TO_OFF(mreq->pindex) >= object->un_pager.vnp.vnp_size) {
5742		for (i = reqstart; i < reqstart + reqsize; i++) {
5743			if (i != reqpage) {
5744				vm_page_lock(m[i]);
5745				vm_page_free(m[i]);
5746				vm_page_unlock(m[i]);
5747			}
5748		}
5749		zfs_vmobject_wunlock(object);
5750		ZFS_EXIT(zfsvfs);
5751		return (zfs_vm_pagerret_bad);
5752	}
5753
5754	lsize = PAGE_SIZE;
5755	if (IDX_TO_OFF(mlast->pindex) + lsize > object->un_pager.vnp.vnp_size)
5756		lsize = object->un_pager.vnp.vnp_size - IDX_TO_OFF(mlast->pindex);
5757
5758	zfs_vmobject_wunlock(object);
5759
5760	for (i = reqstart; i < reqstart + reqsize; i++) {
5761		size = PAGE_SIZE;
5762		if (i == (reqstart + reqsize - 1))
5763			size = lsize;
5764		va = zfs_map_page(m[i], &sf);
5765		error = dmu_read(os, zp->z_id, IDX_TO_OFF(m[i]->pindex),
5766		    size, va, DMU_READ_PREFETCH);
5767		if (size != PAGE_SIZE)
5768			bzero(va + size, PAGE_SIZE - size);
5769		zfs_unmap_page(sf);
5770		if (error != 0)
5771			break;
5772	}
5773
5774	zfs_vmobject_wlock(object);
5775
5776	for (i = reqstart; i < reqstart + reqsize; i++) {
5777		if (!error)
5778			m[i]->valid = VM_PAGE_BITS_ALL;
5779		KASSERT(m[i]->dirty == 0, ("zfs_getpages: page %p is dirty", m[i]));
5780		if (i != reqpage)
5781			vm_page_readahead_finish(m[i]);
5782	}
5783
5784	zfs_vmobject_wunlock(object);
5785
5786	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5787	ZFS_EXIT(zfsvfs);
5788	return (error ? zfs_vm_pagerret_error : zfs_vm_pagerret_ok);
5789}
5790
5791static int
5792zfs_freebsd_getpages(ap)
5793	struct vop_getpages_args /* {
5794		struct vnode *a_vp;
5795		vm_page_t *a_m;
5796		int a_count;
5797		int a_reqpage;
5798		vm_ooffset_t a_offset;
5799	} */ *ap;
5800{
5801
5802	return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_reqpage));
5803}
5804
5805static int
5806zfs_freebsd_bmap(ap)
5807	struct vop_bmap_args /* {
5808		struct vnode *a_vp;
5809		daddr_t  a_bn;
5810		struct bufobj **a_bop;
5811		daddr_t *a_bnp;
5812		int *a_runp;
5813		int *a_runb;
5814	} */ *ap;
5815{
5816
5817	if (ap->a_bop != NULL)
5818		*ap->a_bop = &ap->a_vp->v_bufobj;
5819	if (ap->a_bnp != NULL)
5820		*ap->a_bnp = ap->a_bn;
5821	if (ap->a_runp != NULL)
5822		*ap->a_runp = 0;
5823	if (ap->a_runb != NULL)
5824		*ap->a_runb = 0;
5825
5826	return (0);
5827}
5828
5829static int
5830zfs_freebsd_open(ap)
5831	struct vop_open_args /* {
5832		struct vnode *a_vp;
5833		int a_mode;
5834		struct ucred *a_cred;
5835		struct thread *a_td;
5836	} */ *ap;
5837{
5838	vnode_t	*vp = ap->a_vp;
5839	znode_t *zp = VTOZ(vp);
5840	int error;
5841
5842	error = zfs_open(&vp, ap->a_mode, ap->a_cred, NULL);
5843	if (error == 0)
5844		vnode_create_vobject(vp, zp->z_size, ap->a_td);
5845	return (error);
5846}
5847
5848static int
5849zfs_freebsd_close(ap)
5850	struct vop_close_args /* {
5851		struct vnode *a_vp;
5852		int  a_fflag;
5853		struct ucred *a_cred;
5854		struct thread *a_td;
5855	} */ *ap;
5856{
5857
5858	return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred, NULL));
5859}
5860
5861static int
5862zfs_freebsd_ioctl(ap)
5863	struct vop_ioctl_args /* {
5864		struct vnode *a_vp;
5865		u_long a_command;
5866		caddr_t a_data;
5867		int a_fflag;
5868		struct ucred *cred;
5869		struct thread *td;
5870	} */ *ap;
5871{
5872
5873	return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data,
5874	    ap->a_fflag, ap->a_cred, NULL, NULL));
5875}
5876
5877static int
5878zfs_freebsd_read(ap)
5879	struct vop_read_args /* {
5880		struct vnode *a_vp;
5881		struct uio *a_uio;
5882		int a_ioflag;
5883		struct ucred *a_cred;
5884	} */ *ap;
5885{
5886
5887	return (zfs_read(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
5888	    ap->a_cred, NULL));
5889}
5890
5891static int
5892zfs_freebsd_write(ap)
5893	struct vop_write_args /* {
5894		struct vnode *a_vp;
5895		struct uio *a_uio;
5896		int a_ioflag;
5897		struct ucred *a_cred;
5898	} */ *ap;
5899{
5900
5901	return (zfs_write(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
5902	    ap->a_cred, NULL));
5903}
5904
5905static int
5906zfs_freebsd_access(ap)
5907	struct vop_access_args /* {
5908		struct vnode *a_vp;
5909		accmode_t a_accmode;
5910		struct ucred *a_cred;
5911		struct thread *a_td;
5912	} */ *ap;
5913{
5914	vnode_t *vp = ap->a_vp;
5915	znode_t *zp = VTOZ(vp);
5916	accmode_t accmode;
5917	int error = 0;
5918
5919	/*
5920	 * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND,
5921	 */
5922	accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND);
5923	if (accmode != 0)
5924		error = zfs_access(ap->a_vp, accmode, 0, ap->a_cred, NULL);
5925
5926	/*
5927	 * VADMIN has to be handled by vaccess().
5928	 */
5929	if (error == 0) {
5930		accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND);
5931		if (accmode != 0) {
5932			error = vaccess(vp->v_type, zp->z_mode, zp->z_uid,
5933			    zp->z_gid, accmode, ap->a_cred, NULL);
5934		}
5935	}
5936
5937	/*
5938	 * For VEXEC, ensure that at least one execute bit is set for
5939	 * non-directories.
5940	 */
5941	if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR &&
5942	    (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) {
5943		error = EACCES;
5944	}
5945
5946	return (error);
5947}
5948
5949static int
5950zfs_freebsd_lookup(ap)
5951	struct vop_lookup_args /* {
5952		struct vnode *a_dvp;
5953		struct vnode **a_vpp;
5954		struct componentname *a_cnp;
5955	} */ *ap;
5956{
5957	struct componentname *cnp = ap->a_cnp;
5958	char nm[NAME_MAX + 1];
5959
5960	ASSERT(cnp->cn_namelen < sizeof(nm));
5961	strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof(nm)));
5962
5963	return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop,
5964	    cnp->cn_cred, cnp->cn_thread, 0));
5965}
5966
5967static int
5968zfs_freebsd_create(ap)
5969	struct vop_create_args /* {
5970		struct vnode *a_dvp;
5971		struct vnode **a_vpp;
5972		struct componentname *a_cnp;
5973		struct vattr *a_vap;
5974	} */ *ap;
5975{
5976	struct componentname *cnp = ap->a_cnp;
5977	vattr_t *vap = ap->a_vap;
5978	int mode;
5979
5980	ASSERT(cnp->cn_flags & SAVENAME);
5981
5982	vattr_init_mask(vap);
5983	mode = vap->va_mode & ALLPERMS;
5984
5985	return (zfs_create(ap->a_dvp, cnp->cn_nameptr, vap, !EXCL, mode,
5986	    ap->a_vpp, cnp->cn_cred, cnp->cn_thread));
5987}
5988
5989static int
5990zfs_freebsd_remove(ap)
5991	struct vop_remove_args /* {
5992		struct vnode *a_dvp;
5993		struct vnode *a_vp;
5994		struct componentname *a_cnp;
5995	} */ *ap;
5996{
5997
5998	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
5999
6000	return (zfs_remove(ap->a_dvp, ap->a_cnp->cn_nameptr,
6001	    ap->a_cnp->cn_cred, NULL, 0));
6002}
6003
6004static int
6005zfs_freebsd_mkdir(ap)
6006	struct vop_mkdir_args /* {
6007		struct vnode *a_dvp;
6008		struct vnode **a_vpp;
6009		struct componentname *a_cnp;
6010		struct vattr *a_vap;
6011	} */ *ap;
6012{
6013	vattr_t *vap = ap->a_vap;
6014
6015	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6016
6017	vattr_init_mask(vap);
6018
6019	return (zfs_mkdir(ap->a_dvp, ap->a_cnp->cn_nameptr, vap, ap->a_vpp,
6020	    ap->a_cnp->cn_cred, NULL, 0, NULL));
6021}
6022
6023static int
6024zfs_freebsd_rmdir(ap)
6025	struct vop_rmdir_args /* {
6026		struct vnode *a_dvp;
6027		struct vnode *a_vp;
6028		struct componentname *a_cnp;
6029	} */ *ap;
6030{
6031	struct componentname *cnp = ap->a_cnp;
6032
6033	ASSERT(cnp->cn_flags & SAVENAME);
6034
6035	return (zfs_rmdir(ap->a_dvp, cnp->cn_nameptr, NULL, cnp->cn_cred, NULL, 0));
6036}
6037
6038static int
6039zfs_freebsd_readdir(ap)
6040	struct vop_readdir_args /* {
6041		struct vnode *a_vp;
6042		struct uio *a_uio;
6043		struct ucred *a_cred;
6044		int *a_eofflag;
6045		int *a_ncookies;
6046		u_long **a_cookies;
6047	} */ *ap;
6048{
6049
6050	return (zfs_readdir(ap->a_vp, ap->a_uio, ap->a_cred, ap->a_eofflag,
6051	    ap->a_ncookies, ap->a_cookies));
6052}
6053
6054static int
6055zfs_freebsd_fsync(ap)
6056	struct vop_fsync_args /* {
6057		struct vnode *a_vp;
6058		int a_waitfor;
6059		struct thread *a_td;
6060	} */ *ap;
6061{
6062
6063	vop_stdfsync(ap);
6064	return (zfs_fsync(ap->a_vp, 0, ap->a_td->td_ucred, NULL));
6065}
6066
6067static int
6068zfs_freebsd_getattr(ap)
6069	struct vop_getattr_args /* {
6070		struct vnode *a_vp;
6071		struct vattr *a_vap;
6072		struct ucred *a_cred;
6073	} */ *ap;
6074{
6075	vattr_t *vap = ap->a_vap;
6076	xvattr_t xvap;
6077	u_long fflags = 0;
6078	int error;
6079
6080	xva_init(&xvap);
6081	xvap.xva_vattr = *vap;
6082	xvap.xva_vattr.va_mask |= AT_XVATTR;
6083
6084	/* Convert chflags into ZFS-type flags. */
6085	/* XXX: what about SF_SETTABLE?. */
6086	XVA_SET_REQ(&xvap, XAT_IMMUTABLE);
6087	XVA_SET_REQ(&xvap, XAT_APPENDONLY);
6088	XVA_SET_REQ(&xvap, XAT_NOUNLINK);
6089	XVA_SET_REQ(&xvap, XAT_NODUMP);
6090	XVA_SET_REQ(&xvap, XAT_READONLY);
6091	XVA_SET_REQ(&xvap, XAT_ARCHIVE);
6092	XVA_SET_REQ(&xvap, XAT_SYSTEM);
6093	XVA_SET_REQ(&xvap, XAT_HIDDEN);
6094	XVA_SET_REQ(&xvap, XAT_REPARSE);
6095	XVA_SET_REQ(&xvap, XAT_OFFLINE);
6096	XVA_SET_REQ(&xvap, XAT_SPARSE);
6097
6098	error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred, NULL);
6099	if (error != 0)
6100		return (error);
6101
6102	/* Convert ZFS xattr into chflags. */
6103#define	FLAG_CHECK(fflag, xflag, xfield)	do {			\
6104	if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0)		\
6105		fflags |= (fflag);					\
6106} while (0)
6107	FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE,
6108	    xvap.xva_xoptattrs.xoa_immutable);
6109	FLAG_CHECK(SF_APPEND, XAT_APPENDONLY,
6110	    xvap.xva_xoptattrs.xoa_appendonly);
6111	FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK,
6112	    xvap.xva_xoptattrs.xoa_nounlink);
6113	FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE,
6114	    xvap.xva_xoptattrs.xoa_archive);
6115	FLAG_CHECK(UF_NODUMP, XAT_NODUMP,
6116	    xvap.xva_xoptattrs.xoa_nodump);
6117	FLAG_CHECK(UF_READONLY, XAT_READONLY,
6118	    xvap.xva_xoptattrs.xoa_readonly);
6119	FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM,
6120	    xvap.xva_xoptattrs.xoa_system);
6121	FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN,
6122	    xvap.xva_xoptattrs.xoa_hidden);
6123	FLAG_CHECK(UF_REPARSE, XAT_REPARSE,
6124	    xvap.xva_xoptattrs.xoa_reparse);
6125	FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE,
6126	    xvap.xva_xoptattrs.xoa_offline);
6127	FLAG_CHECK(UF_SPARSE, XAT_SPARSE,
6128	    xvap.xva_xoptattrs.xoa_sparse);
6129
6130#undef	FLAG_CHECK
6131	*vap = xvap.xva_vattr;
6132	vap->va_flags = fflags;
6133	return (0);
6134}
6135
6136static int
6137zfs_freebsd_setattr(ap)
6138	struct vop_setattr_args /* {
6139		struct vnode *a_vp;
6140		struct vattr *a_vap;
6141		struct ucred *a_cred;
6142	} */ *ap;
6143{
6144	vnode_t *vp = ap->a_vp;
6145	vattr_t *vap = ap->a_vap;
6146	cred_t *cred = ap->a_cred;
6147	xvattr_t xvap;
6148	u_long fflags;
6149	uint64_t zflags;
6150
6151	vattr_init_mask(vap);
6152	vap->va_mask &= ~AT_NOSET;
6153
6154	xva_init(&xvap);
6155	xvap.xva_vattr = *vap;
6156
6157	zflags = VTOZ(vp)->z_pflags;
6158
6159	if (vap->va_flags != VNOVAL) {
6160		zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs;
6161		int error;
6162
6163		if (zfsvfs->z_use_fuids == B_FALSE)
6164			return (EOPNOTSUPP);
6165
6166		fflags = vap->va_flags;
6167		/*
6168		 * XXX KDM
6169		 * We need to figure out whether it makes sense to allow
6170		 * UF_REPARSE through, since we don't really have other
6171		 * facilities to handle reparse points and zfs_setattr()
6172		 * doesn't currently allow setting that attribute anyway.
6173		 */
6174		if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE|
6175		     UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE|
6176		     UF_OFFLINE|UF_SPARSE)) != 0)
6177			return (EOPNOTSUPP);
6178		/*
6179		 * Unprivileged processes are not permitted to unset system
6180		 * flags, or modify flags if any system flags are set.
6181		 * Privileged non-jail processes may not modify system flags
6182		 * if securelevel > 0 and any existing system flags are set.
6183		 * Privileged jail processes behave like privileged non-jail
6184		 * processes if the security.jail.chflags_allowed sysctl is
6185		 * is non-zero; otherwise, they behave like unprivileged
6186		 * processes.
6187		 */
6188		if (secpolicy_fs_owner(vp->v_mount, cred) == 0 ||
6189		    priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0) == 0) {
6190			if (zflags &
6191			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6192				error = securelevel_gt(cred, 0);
6193				if (error != 0)
6194					return (error);
6195			}
6196		} else {
6197			/*
6198			 * Callers may only modify the file flags on objects they
6199			 * have VADMIN rights for.
6200			 */
6201			if ((error = VOP_ACCESS(vp, VADMIN, cred, curthread)) != 0)
6202				return (error);
6203			if (zflags &
6204			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6205				return (EPERM);
6206			}
6207			if (fflags &
6208			    (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) {
6209				return (EPERM);
6210			}
6211		}
6212
6213#define	FLAG_CHANGE(fflag, zflag, xflag, xfield)	do {		\
6214	if (((fflags & (fflag)) && !(zflags & (zflag))) ||		\
6215	    ((zflags & (zflag)) && !(fflags & (fflag)))) {		\
6216		XVA_SET_REQ(&xvap, (xflag));				\
6217		(xfield) = ((fflags & (fflag)) != 0);			\
6218	}								\
6219} while (0)
6220		/* Convert chflags into ZFS-type flags. */
6221		/* XXX: what about SF_SETTABLE?. */
6222		FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE,
6223		    xvap.xva_xoptattrs.xoa_immutable);
6224		FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY,
6225		    xvap.xva_xoptattrs.xoa_appendonly);
6226		FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK,
6227		    xvap.xva_xoptattrs.xoa_nounlink);
6228		FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE,
6229		    xvap.xva_xoptattrs.xoa_archive);
6230		FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP,
6231		    xvap.xva_xoptattrs.xoa_nodump);
6232		FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY,
6233		    xvap.xva_xoptattrs.xoa_readonly);
6234		FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM,
6235		    xvap.xva_xoptattrs.xoa_system);
6236		FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN,
6237		    xvap.xva_xoptattrs.xoa_hidden);
6238		FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE,
6239		    xvap.xva_xoptattrs.xoa_hidden);
6240		FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE,
6241		    xvap.xva_xoptattrs.xoa_offline);
6242		FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE,
6243		    xvap.xva_xoptattrs.xoa_sparse);
6244#undef	FLAG_CHANGE
6245	}
6246	return (zfs_setattr(vp, (vattr_t *)&xvap, 0, cred, NULL));
6247}
6248
6249static int
6250zfs_freebsd_rename(ap)
6251	struct vop_rename_args  /* {
6252		struct vnode *a_fdvp;
6253		struct vnode *a_fvp;
6254		struct componentname *a_fcnp;
6255		struct vnode *a_tdvp;
6256		struct vnode *a_tvp;
6257		struct componentname *a_tcnp;
6258	} */ *ap;
6259{
6260	vnode_t *fdvp = ap->a_fdvp;
6261	vnode_t *fvp = ap->a_fvp;
6262	vnode_t *tdvp = ap->a_tdvp;
6263	vnode_t *tvp = ap->a_tvp;
6264	int error;
6265
6266	ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART));
6267	ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART));
6268
6269	/*
6270	 * Check for cross-device rename.
6271	 */
6272	if ((fdvp->v_mount != tdvp->v_mount) ||
6273	    (tvp && (fdvp->v_mount != tvp->v_mount)))
6274		error = EXDEV;
6275	else
6276		error = zfs_rename(fdvp, ap->a_fcnp->cn_nameptr, tdvp,
6277		    ap->a_tcnp->cn_nameptr, ap->a_fcnp->cn_cred, NULL, 0);
6278	if (tdvp == tvp)
6279		VN_RELE(tdvp);
6280	else
6281		VN_URELE(tdvp);
6282	if (tvp)
6283		VN_URELE(tvp);
6284	VN_RELE(fdvp);
6285	VN_RELE(fvp);
6286
6287	return (error);
6288}
6289
6290static int
6291zfs_freebsd_symlink(ap)
6292	struct vop_symlink_args /* {
6293		struct vnode *a_dvp;
6294		struct vnode **a_vpp;
6295		struct componentname *a_cnp;
6296		struct vattr *a_vap;
6297		char *a_target;
6298	} */ *ap;
6299{
6300	struct componentname *cnp = ap->a_cnp;
6301	vattr_t *vap = ap->a_vap;
6302
6303	ASSERT(cnp->cn_flags & SAVENAME);
6304
6305	vap->va_type = VLNK;	/* FreeBSD: Syscall only sets va_mode. */
6306	vattr_init_mask(vap);
6307
6308	return (zfs_symlink(ap->a_dvp, ap->a_vpp, cnp->cn_nameptr, vap,
6309	    ap->a_target, cnp->cn_cred, cnp->cn_thread));
6310}
6311
6312static int
6313zfs_freebsd_readlink(ap)
6314	struct vop_readlink_args /* {
6315		struct vnode *a_vp;
6316		struct uio *a_uio;
6317		struct ucred *a_cred;
6318	} */ *ap;
6319{
6320
6321	return (zfs_readlink(ap->a_vp, ap->a_uio, ap->a_cred, NULL));
6322}
6323
6324static int
6325zfs_freebsd_link(ap)
6326	struct vop_link_args /* {
6327		struct vnode *a_tdvp;
6328		struct vnode *a_vp;
6329		struct componentname *a_cnp;
6330	} */ *ap;
6331{
6332	struct componentname *cnp = ap->a_cnp;
6333	vnode_t *vp = ap->a_vp;
6334	vnode_t *tdvp = ap->a_tdvp;
6335
6336	if (tdvp->v_mount != vp->v_mount)
6337		return (EXDEV);
6338
6339	ASSERT(cnp->cn_flags & SAVENAME);
6340
6341	return (zfs_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_cred, NULL, 0));
6342}
6343
6344static int
6345zfs_freebsd_inactive(ap)
6346	struct vop_inactive_args /* {
6347		struct vnode *a_vp;
6348		struct thread *a_td;
6349	} */ *ap;
6350{
6351	vnode_t *vp = ap->a_vp;
6352
6353	zfs_inactive(vp, ap->a_td->td_ucred, NULL);
6354	return (0);
6355}
6356
6357static int
6358zfs_freebsd_reclaim(ap)
6359	struct vop_reclaim_args /* {
6360		struct vnode *a_vp;
6361		struct thread *a_td;
6362	} */ *ap;
6363{
6364	vnode_t	*vp = ap->a_vp;
6365	znode_t	*zp = VTOZ(vp);
6366	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
6367
6368	ASSERT(zp != NULL);
6369
6370	/* Destroy the vm object and flush associated pages. */
6371	vnode_destroy_vobject(vp);
6372
6373	/*
6374	 * z_teardown_inactive_lock protects from a race with
6375	 * zfs_znode_dmu_fini in zfsvfs_teardown during
6376	 * force unmount.
6377	 */
6378	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
6379	if (zp->z_sa_hdl == NULL)
6380		zfs_znode_free(zp);
6381	else
6382		zfs_zinactive(zp);
6383	rw_exit(&zfsvfs->z_teardown_inactive_lock);
6384
6385	vp->v_data = NULL;
6386	return (0);
6387}
6388
6389static int
6390zfs_freebsd_fid(ap)
6391	struct vop_fid_args /* {
6392		struct vnode *a_vp;
6393		struct fid *a_fid;
6394	} */ *ap;
6395{
6396
6397	return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL));
6398}
6399
6400static int
6401zfs_freebsd_pathconf(ap)
6402	struct vop_pathconf_args /* {
6403		struct vnode *a_vp;
6404		int a_name;
6405		register_t *a_retval;
6406	} */ *ap;
6407{
6408	ulong_t val;
6409	int error;
6410
6411	error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->td_ucred, NULL);
6412	if (error == 0)
6413		*ap->a_retval = val;
6414	else if (error == EOPNOTSUPP)
6415		error = vop_stdpathconf(ap);
6416	return (error);
6417}
6418
6419static int
6420zfs_freebsd_fifo_pathconf(ap)
6421	struct vop_pathconf_args /* {
6422		struct vnode *a_vp;
6423		int a_name;
6424		register_t *a_retval;
6425	} */ *ap;
6426{
6427
6428	switch (ap->a_name) {
6429	case _PC_ACL_EXTENDED:
6430	case _PC_ACL_NFS4:
6431	case _PC_ACL_PATH_MAX:
6432	case _PC_MAC_PRESENT:
6433		return (zfs_freebsd_pathconf(ap));
6434	default:
6435		return (fifo_specops.vop_pathconf(ap));
6436	}
6437}
6438
6439/*
6440 * FreeBSD's extended attributes namespace defines file name prefix for ZFS'
6441 * extended attribute name:
6442 *
6443 *	NAMESPACE	PREFIX
6444 *	system		freebsd:system:
6445 *	user		(none, can be used to access ZFS fsattr(5) attributes
6446 *			created on Solaris)
6447 */
6448static int
6449zfs_create_attrname(int attrnamespace, const char *name, char *attrname,
6450    size_t size)
6451{
6452	const char *namespace, *prefix, *suffix;
6453
6454	/* We don't allow '/' character in attribute name. */
6455	if (strchr(name, '/') != NULL)
6456		return (EINVAL);
6457	/* We don't allow attribute names that start with "freebsd:" string. */
6458	if (strncmp(name, "freebsd:", 8) == 0)
6459		return (EINVAL);
6460
6461	bzero(attrname, size);
6462
6463	switch (attrnamespace) {
6464	case EXTATTR_NAMESPACE_USER:
6465#if 0
6466		prefix = "freebsd:";
6467		namespace = EXTATTR_NAMESPACE_USER_STRING;
6468		suffix = ":";
6469#else
6470		/*
6471		 * This is the default namespace by which we can access all
6472		 * attributes created on Solaris.
6473		 */
6474		prefix = namespace = suffix = "";
6475#endif
6476		break;
6477	case EXTATTR_NAMESPACE_SYSTEM:
6478		prefix = "freebsd:";
6479		namespace = EXTATTR_NAMESPACE_SYSTEM_STRING;
6480		suffix = ":";
6481		break;
6482	case EXTATTR_NAMESPACE_EMPTY:
6483	default:
6484		return (EINVAL);
6485	}
6486	if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix,
6487	    name) >= size) {
6488		return (ENAMETOOLONG);
6489	}
6490	return (0);
6491}
6492
6493/*
6494 * Vnode operating to retrieve a named extended attribute.
6495 */
6496static int
6497zfs_getextattr(struct vop_getextattr_args *ap)
6498/*
6499vop_getextattr {
6500	IN struct vnode *a_vp;
6501	IN int a_attrnamespace;
6502	IN const char *a_name;
6503	INOUT struct uio *a_uio;
6504	OUT size_t *a_size;
6505	IN struct ucred *a_cred;
6506	IN struct thread *a_td;
6507};
6508*/
6509{
6510	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6511	struct thread *td = ap->a_td;
6512	struct nameidata nd;
6513	char attrname[255];
6514	struct vattr va;
6515	vnode_t *xvp = NULL, *vp;
6516	int error, flags;
6517
6518	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6519	    ap->a_cred, ap->a_td, VREAD);
6520	if (error != 0)
6521		return (error);
6522
6523	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6524	    sizeof(attrname));
6525	if (error != 0)
6526		return (error);
6527
6528	ZFS_ENTER(zfsvfs);
6529
6530	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6531	    LOOKUP_XATTR);
6532	if (error != 0) {
6533		ZFS_EXIT(zfsvfs);
6534		return (error);
6535	}
6536
6537	flags = FREAD;
6538	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6539	    xvp, td);
6540	error = vn_open_cred(&nd, &flags, 0, 0, ap->a_cred, NULL);
6541	vp = nd.ni_vp;
6542	NDFREE(&nd, NDF_ONLY_PNBUF);
6543	if (error != 0) {
6544		ZFS_EXIT(zfsvfs);
6545		if (error == ENOENT)
6546			error = ENOATTR;
6547		return (error);
6548	}
6549
6550	if (ap->a_size != NULL) {
6551		error = VOP_GETATTR(vp, &va, ap->a_cred);
6552		if (error == 0)
6553			*ap->a_size = (size_t)va.va_size;
6554	} else if (ap->a_uio != NULL)
6555		error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6556
6557	VOP_UNLOCK(vp, 0);
6558	vn_close(vp, flags, ap->a_cred, td);
6559	ZFS_EXIT(zfsvfs);
6560
6561	return (error);
6562}
6563
6564/*
6565 * Vnode operation to remove a named attribute.
6566 */
6567int
6568zfs_deleteextattr(struct vop_deleteextattr_args *ap)
6569/*
6570vop_deleteextattr {
6571	IN struct vnode *a_vp;
6572	IN int a_attrnamespace;
6573	IN const char *a_name;
6574	IN struct ucred *a_cred;
6575	IN struct thread *a_td;
6576};
6577*/
6578{
6579	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6580	struct thread *td = ap->a_td;
6581	struct nameidata nd;
6582	char attrname[255];
6583	struct vattr va;
6584	vnode_t *xvp = NULL, *vp;
6585	int error, flags;
6586
6587	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6588	    ap->a_cred, ap->a_td, VWRITE);
6589	if (error != 0)
6590		return (error);
6591
6592	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6593	    sizeof(attrname));
6594	if (error != 0)
6595		return (error);
6596
6597	ZFS_ENTER(zfsvfs);
6598
6599	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6600	    LOOKUP_XATTR);
6601	if (error != 0) {
6602		ZFS_EXIT(zfsvfs);
6603		return (error);
6604	}
6605
6606	NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
6607	    UIO_SYSSPACE, attrname, xvp, td);
6608	error = namei(&nd);
6609	vp = nd.ni_vp;
6610	NDFREE(&nd, NDF_ONLY_PNBUF);
6611	if (error != 0) {
6612		ZFS_EXIT(zfsvfs);
6613		if (error == ENOENT)
6614			error = ENOATTR;
6615		return (error);
6616	}
6617	error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd);
6618
6619	vput(nd.ni_dvp);
6620	if (vp == nd.ni_dvp)
6621		vrele(vp);
6622	else
6623		vput(vp);
6624	ZFS_EXIT(zfsvfs);
6625
6626	return (error);
6627}
6628
6629/*
6630 * Vnode operation to set a named attribute.
6631 */
6632static int
6633zfs_setextattr(struct vop_setextattr_args *ap)
6634/*
6635vop_setextattr {
6636	IN struct vnode *a_vp;
6637	IN int a_attrnamespace;
6638	IN const char *a_name;
6639	INOUT struct uio *a_uio;
6640	IN struct ucred *a_cred;
6641	IN struct thread *a_td;
6642};
6643*/
6644{
6645	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6646	struct thread *td = ap->a_td;
6647	struct nameidata nd;
6648	char attrname[255];
6649	struct vattr va;
6650	vnode_t *xvp = NULL, *vp;
6651	int error, flags;
6652
6653	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6654	    ap->a_cred, ap->a_td, VWRITE);
6655	if (error != 0)
6656		return (error);
6657
6658	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6659	    sizeof(attrname));
6660	if (error != 0)
6661		return (error);
6662
6663	ZFS_ENTER(zfsvfs);
6664
6665	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6666	    LOOKUP_XATTR | CREATE_XATTR_DIR);
6667	if (error != 0) {
6668		ZFS_EXIT(zfsvfs);
6669		return (error);
6670	}
6671
6672	flags = FFLAGS(O_WRONLY | O_CREAT);
6673	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6674	    xvp, td);
6675	error = vn_open_cred(&nd, &flags, 0600, 0, ap->a_cred, NULL);
6676	vp = nd.ni_vp;
6677	NDFREE(&nd, NDF_ONLY_PNBUF);
6678	if (error != 0) {
6679		ZFS_EXIT(zfsvfs);
6680		return (error);
6681	}
6682
6683	VATTR_NULL(&va);
6684	va.va_size = 0;
6685	error = VOP_SETATTR(vp, &va, ap->a_cred);
6686	if (error == 0)
6687		VOP_WRITE(vp, ap->a_uio, IO_UNIT | IO_SYNC, ap->a_cred);
6688
6689	VOP_UNLOCK(vp, 0);
6690	vn_close(vp, flags, ap->a_cred, td);
6691	ZFS_EXIT(zfsvfs);
6692
6693	return (error);
6694}
6695
6696/*
6697 * Vnode operation to retrieve extended attributes on a vnode.
6698 */
6699static int
6700zfs_listextattr(struct vop_listextattr_args *ap)
6701/*
6702vop_listextattr {
6703	IN struct vnode *a_vp;
6704	IN int a_attrnamespace;
6705	INOUT struct uio *a_uio;
6706	OUT size_t *a_size;
6707	IN struct ucred *a_cred;
6708	IN struct thread *a_td;
6709};
6710*/
6711{
6712	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6713	struct thread *td = ap->a_td;
6714	struct nameidata nd;
6715	char attrprefix[16];
6716	u_char dirbuf[sizeof(struct dirent)];
6717	struct dirent *dp;
6718	struct iovec aiov;
6719	struct uio auio, *uio = ap->a_uio;
6720	size_t *sizep = ap->a_size;
6721	size_t plen;
6722	vnode_t *xvp = NULL, *vp;
6723	int done, error, eof, pos;
6724
6725	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6726	    ap->a_cred, ap->a_td, VREAD);
6727	if (error != 0)
6728		return (error);
6729
6730	error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix,
6731	    sizeof(attrprefix));
6732	if (error != 0)
6733		return (error);
6734	plen = strlen(attrprefix);
6735
6736	ZFS_ENTER(zfsvfs);
6737
6738	if (sizep != NULL)
6739		*sizep = 0;
6740
6741	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6742	    LOOKUP_XATTR);
6743	if (error != 0) {
6744		ZFS_EXIT(zfsvfs);
6745		/*
6746		 * ENOATTR means that the EA directory does not yet exist,
6747		 * i.e. there are no extended attributes there.
6748		 */
6749		if (error == ENOATTR)
6750			error = 0;
6751		return (error);
6752	}
6753
6754	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
6755	    UIO_SYSSPACE, ".", xvp, td);
6756	error = namei(&nd);
6757	vp = nd.ni_vp;
6758	NDFREE(&nd, NDF_ONLY_PNBUF);
6759	if (error != 0) {
6760		ZFS_EXIT(zfsvfs);
6761		return (error);
6762	}
6763
6764	auio.uio_iov = &aiov;
6765	auio.uio_iovcnt = 1;
6766	auio.uio_segflg = UIO_SYSSPACE;
6767	auio.uio_td = td;
6768	auio.uio_rw = UIO_READ;
6769	auio.uio_offset = 0;
6770
6771	do {
6772		u_char nlen;
6773
6774		aiov.iov_base = (void *)dirbuf;
6775		aiov.iov_len = sizeof(dirbuf);
6776		auio.uio_resid = sizeof(dirbuf);
6777		error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL);
6778		done = sizeof(dirbuf) - auio.uio_resid;
6779		if (error != 0)
6780			break;
6781		for (pos = 0; pos < done;) {
6782			dp = (struct dirent *)(dirbuf + pos);
6783			pos += dp->d_reclen;
6784			/*
6785			 * XXX: Temporarily we also accept DT_UNKNOWN, as this
6786			 * is what we get when attribute was created on Solaris.
6787			 */
6788			if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN)
6789				continue;
6790			if (plen == 0 && strncmp(dp->d_name, "freebsd:", 8) == 0)
6791				continue;
6792			else if (strncmp(dp->d_name, attrprefix, plen) != 0)
6793				continue;
6794			nlen = dp->d_namlen - plen;
6795			if (sizep != NULL)
6796				*sizep += 1 + nlen;
6797			else if (uio != NULL) {
6798				/*
6799				 * Format of extattr name entry is one byte for
6800				 * length and the rest for name.
6801				 */
6802				error = uiomove(&nlen, 1, uio->uio_rw, uio);
6803				if (error == 0) {
6804					error = uiomove(dp->d_name + plen, nlen,
6805					    uio->uio_rw, uio);
6806				}
6807				if (error != 0)
6808					break;
6809			}
6810		}
6811	} while (!eof && error == 0);
6812
6813	vput(vp);
6814	ZFS_EXIT(zfsvfs);
6815
6816	return (error);
6817}
6818
6819int
6820zfs_freebsd_getacl(ap)
6821	struct vop_getacl_args /* {
6822		struct vnode *vp;
6823		acl_type_t type;
6824		struct acl *aclp;
6825		struct ucred *cred;
6826		struct thread *td;
6827	} */ *ap;
6828{
6829	int		error;
6830	vsecattr_t      vsecattr;
6831
6832	if (ap->a_type != ACL_TYPE_NFS4)
6833		return (EINVAL);
6834
6835	vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT;
6836	if (error = zfs_getsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL))
6837		return (error);
6838
6839	error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt);
6840	if (vsecattr.vsa_aclentp != NULL)
6841		kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz);
6842
6843	return (error);
6844}
6845
6846int
6847zfs_freebsd_setacl(ap)
6848	struct vop_setacl_args /* {
6849		struct vnode *vp;
6850		acl_type_t type;
6851		struct acl *aclp;
6852		struct ucred *cred;
6853		struct thread *td;
6854	} */ *ap;
6855{
6856	int		error;
6857	vsecattr_t      vsecattr;
6858	int		aclbsize;	/* size of acl list in bytes */
6859	aclent_t	*aaclp;
6860
6861	if (ap->a_type != ACL_TYPE_NFS4)
6862		return (EINVAL);
6863
6864	if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES)
6865		return (EINVAL);
6866
6867	/*
6868	 * With NFSv4 ACLs, chmod(2) may need to add additional entries,
6869	 * splitting every entry into two and appending "canonical six"
6870	 * entries at the end.  Don't allow for setting an ACL that would
6871	 * cause chmod(2) to run out of ACL entries.
6872	 */
6873	if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES)
6874		return (ENOSPC);
6875
6876	error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR);
6877	if (error != 0)
6878		return (error);
6879
6880	vsecattr.vsa_mask = VSA_ACE;
6881	aclbsize = ap->a_aclp->acl_cnt * sizeof(ace_t);
6882	vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP);
6883	aaclp = vsecattr.vsa_aclentp;
6884	vsecattr.vsa_aclentsz = aclbsize;
6885
6886	aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp);
6887	error = zfs_setsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL);
6888	kmem_free(aaclp, aclbsize);
6889
6890	return (error);
6891}
6892
6893int
6894zfs_freebsd_aclcheck(ap)
6895	struct vop_aclcheck_args /* {
6896		struct vnode *vp;
6897		acl_type_t type;
6898		struct acl *aclp;
6899		struct ucred *cred;
6900		struct thread *td;
6901	} */ *ap;
6902{
6903
6904	return (EOPNOTSUPP);
6905}
6906
6907struct vop_vector zfs_vnodeops;
6908struct vop_vector zfs_fifoops;
6909struct vop_vector zfs_shareops;
6910
6911struct vop_vector zfs_vnodeops = {
6912	.vop_default =		&default_vnodeops,
6913	.vop_inactive =		zfs_freebsd_inactive,
6914	.vop_reclaim =		zfs_freebsd_reclaim,
6915	.vop_access =		zfs_freebsd_access,
6916#ifdef FREEBSD_NAMECACHE
6917	.vop_lookup =		vfs_cache_lookup,
6918	.vop_cachedlookup =	zfs_freebsd_lookup,
6919#else
6920	.vop_lookup =		zfs_freebsd_lookup,
6921#endif
6922	.vop_getattr =		zfs_freebsd_getattr,
6923	.vop_setattr =		zfs_freebsd_setattr,
6924	.vop_create =		zfs_freebsd_create,
6925	.vop_mknod =		zfs_freebsd_create,
6926	.vop_mkdir =		zfs_freebsd_mkdir,
6927	.vop_readdir =		zfs_freebsd_readdir,
6928	.vop_fsync =		zfs_freebsd_fsync,
6929	.vop_open =		zfs_freebsd_open,
6930	.vop_close =		zfs_freebsd_close,
6931	.vop_rmdir =		zfs_freebsd_rmdir,
6932	.vop_ioctl =		zfs_freebsd_ioctl,
6933	.vop_link =		zfs_freebsd_link,
6934	.vop_symlink =		zfs_freebsd_symlink,
6935	.vop_readlink =		zfs_freebsd_readlink,
6936	.vop_read =		zfs_freebsd_read,
6937	.vop_write =		zfs_freebsd_write,
6938	.vop_remove =		zfs_freebsd_remove,
6939	.vop_rename =		zfs_freebsd_rename,
6940	.vop_pathconf =		zfs_freebsd_pathconf,
6941	.vop_bmap =		zfs_freebsd_bmap,
6942	.vop_fid =		zfs_freebsd_fid,
6943	.vop_getextattr =	zfs_getextattr,
6944	.vop_deleteextattr =	zfs_deleteextattr,
6945	.vop_setextattr =	zfs_setextattr,
6946	.vop_listextattr =	zfs_listextattr,
6947	.vop_getacl =		zfs_freebsd_getacl,
6948	.vop_setacl =		zfs_freebsd_setacl,
6949	.vop_aclcheck =		zfs_freebsd_aclcheck,
6950	.vop_getpages =		zfs_freebsd_getpages,
6951};
6952
6953struct vop_vector zfs_fifoops = {
6954	.vop_default =		&fifo_specops,
6955	.vop_fsync =		zfs_freebsd_fsync,
6956	.vop_access =		zfs_freebsd_access,
6957	.vop_getattr =		zfs_freebsd_getattr,
6958	.vop_inactive =		zfs_freebsd_inactive,
6959	.vop_read =		VOP_PANIC,
6960	.vop_reclaim =		zfs_freebsd_reclaim,
6961	.vop_setattr =		zfs_freebsd_setattr,
6962	.vop_write =		VOP_PANIC,
6963	.vop_pathconf = 	zfs_freebsd_fifo_pathconf,
6964	.vop_fid =		zfs_freebsd_fid,
6965	.vop_getacl =		zfs_freebsd_getacl,
6966	.vop_setacl =		zfs_freebsd_setacl,
6967	.vop_aclcheck =		zfs_freebsd_aclcheck,
6968};
6969
6970/*
6971 * special share hidden files vnode operations template
6972 */
6973struct vop_vector zfs_shareops = {
6974	.vop_default =		&default_vnodeops,
6975	.vop_access =		zfs_freebsd_access,
6976	.vop_inactive =		zfs_freebsd_inactive,
6977	.vop_reclaim =		zfs_freebsd_reclaim,
6978	.vop_fid =		zfs_freebsd_fid,
6979	.vop_pathconf =		zfs_freebsd_pathconf,
6980};
6981