1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd/*
22209962Smm * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23168404Spjd * Use is subject to license terms.
24168404Spjd */
25249195Smm/*
26249195Smm * Copyright (c) 2013 by Delphix. All rights reserved.
27249195Smm */
28168404Spjd
29168404Spjd#include <sys/zfs_context.h>
30168404Spjd#include <sys/spa.h>
31168404Spjd#include <sys/vdev_impl.h>
32168404Spjd#include <sys/zio.h>
33185029Spjd#include <sys/kstat.h>
34168404Spjd
35168404Spjd/*
36168404Spjd * Virtual device read-ahead caching.
37168404Spjd *
38168404Spjd * This file implements a simple LRU read-ahead cache.  When the DMU reads
39168404Spjd * a given block, it will often want other, nearby blocks soon thereafter.
40168404Spjd * We take advantage of this by reading a larger disk region and caching
41185029Spjd * the result.  In the best case, this can turn 128 back-to-back 512-byte
42185029Spjd * reads into a single 64k read followed by 127 cache hits; this reduces
43168404Spjd * latency dramatically.  In the worst case, it can turn an isolated 512-byte
44185029Spjd * read into a 64k read, which doesn't affect latency all that much but is
45168404Spjd * terribly wasteful of bandwidth.  A more intelligent version of the cache
46168404Spjd * could keep track of access patterns and not do read-ahead unless it sees
47185029Spjd * at least two temporally close I/Os to the same region.  Currently, only
48185029Spjd * metadata I/O is inflated.  A futher enhancement could take advantage of
49185029Spjd * more semantic information about the I/O.  And it could use something
50185029Spjd * faster than an AVL tree; that was chosen solely for convenience.
51168404Spjd *
52168404Spjd * There are five cache operations: allocate, fill, read, write, evict.
53168404Spjd *
54168404Spjd * (1) Allocate.  This reserves a cache entry for the specified region.
55168404Spjd *     We separate the allocate and fill operations so that multiple threads
56168404Spjd *     don't generate I/O for the same cache miss.
57168404Spjd *
58168404Spjd * (2) Fill.  When the I/O for a cache miss completes, the fill routine
59168404Spjd *     places the data in the previously allocated cache entry.
60168404Spjd *
61168404Spjd * (3) Read.  Read data from the cache.
62168404Spjd *
63168404Spjd * (4) Write.  Update cache contents after write completion.
64168404Spjd *
65168404Spjd * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
66168404Spjd *     if the total cache size exceeds zfs_vdev_cache_size.
67168404Spjd */
68168404Spjd
69168404Spjd/*
70168404Spjd * These tunables are for performance analysis.
71168404Spjd */
72168404Spjd/*
73168404Spjd * All i/os smaller than zfs_vdev_cache_max will be turned into
74168404Spjd * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
75185029Spjd * track buffer).  At most zfs_vdev_cache_size bytes will be kept in each
76168404Spjd * vdev's vdev_cache.
77223622Smm *
78223622Smm * TODO: Note that with the current ZFS code, it turns out that the
79223622Smm * vdev cache is not helpful, and in some cases actually harmful.  It
80223622Smm * is better if we disable this.  Once some time has passed, we should
81223622Smm * actually remove this to simplify the code.  For now we just disable
82223622Smm * it by setting the zfs_vdev_cache_size to zero.  Note that Solaris 11
83223622Smm * has made these same changes.
84168404Spjd */
85185029Spjdint zfs_vdev_cache_max = 1<<14;			/* 16KB */
86223622Smmint zfs_vdev_cache_size = 0;
87168404Spjdint zfs_vdev_cache_bshift = 16;
88168404Spjd
89185029Spjd#define	VCBS (1 << zfs_vdev_cache_bshift)	/* 64KB */
90185029Spjd
91168404SpjdSYSCTL_DECL(_vfs_zfs_vdev);
92168404SpjdSYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, cache, CTLFLAG_RW, 0, "ZFS VDEV Cache");
93168404SpjdTUNABLE_INT("vfs.zfs.vdev.cache.max", &zfs_vdev_cache_max);
94168404SpjdSYSCTL_INT(_vfs_zfs_vdev_cache, OID_AUTO, max, CTLFLAG_RDTUN,
95168404Spjd    &zfs_vdev_cache_max, 0, "Maximum I/O request size that increase read size");
96168404SpjdTUNABLE_INT("vfs.zfs.vdev.cache.size", &zfs_vdev_cache_size);
97168404SpjdSYSCTL_INT(_vfs_zfs_vdev_cache, OID_AUTO, size, CTLFLAG_RDTUN,
98168404Spjd    &zfs_vdev_cache_size, 0, "Size of VDEV cache");
99185029SpjdTUNABLE_INT("vfs.zfs.vdev.cache.bshift", &zfs_vdev_cache_bshift);
100185029SpjdSYSCTL_INT(_vfs_zfs_vdev_cache, OID_AUTO, bshift, CTLFLAG_RDTUN,
101185029Spjd    &zfs_vdev_cache_bshift, 0, "Turn too small requests into 1 << this value");
102168404Spjd
103185029Spjdkstat_t	*vdc_ksp = NULL;
104168404Spjd
105185029Spjdtypedef struct vdc_stats {
106185029Spjd	kstat_named_t vdc_stat_delegations;
107185029Spjd	kstat_named_t vdc_stat_hits;
108185029Spjd	kstat_named_t vdc_stat_misses;
109185029Spjd} vdc_stats_t;
110185029Spjd
111185029Spjdstatic vdc_stats_t vdc_stats = {
112185029Spjd	{ "delegations",	KSTAT_DATA_UINT64 },
113185029Spjd	{ "hits",		KSTAT_DATA_UINT64 },
114185029Spjd	{ "misses",		KSTAT_DATA_UINT64 }
115185029Spjd};
116185029Spjd
117185029Spjd#define	VDCSTAT_BUMP(stat)	atomic_add_64(&vdc_stats.stat.value.ui64, 1);
118185029Spjd
119168404Spjdstatic int
120168404Spjdvdev_cache_offset_compare(const void *a1, const void *a2)
121168404Spjd{
122168404Spjd	const vdev_cache_entry_t *ve1 = a1;
123168404Spjd	const vdev_cache_entry_t *ve2 = a2;
124168404Spjd
125168404Spjd	if (ve1->ve_offset < ve2->ve_offset)
126168404Spjd		return (-1);
127168404Spjd	if (ve1->ve_offset > ve2->ve_offset)
128168404Spjd		return (1);
129168404Spjd	return (0);
130168404Spjd}
131168404Spjd
132168404Spjdstatic int
133168404Spjdvdev_cache_lastused_compare(const void *a1, const void *a2)
134168404Spjd{
135168404Spjd	const vdev_cache_entry_t *ve1 = a1;
136168404Spjd	const vdev_cache_entry_t *ve2 = a2;
137168404Spjd
138168404Spjd	if (ve1->ve_lastused < ve2->ve_lastused)
139168404Spjd		return (-1);
140168404Spjd	if (ve1->ve_lastused > ve2->ve_lastused)
141168404Spjd		return (1);
142168404Spjd
143168404Spjd	/*
144168404Spjd	 * Among equally old entries, sort by offset to ensure uniqueness.
145168404Spjd	 */
146168404Spjd	return (vdev_cache_offset_compare(a1, a2));
147168404Spjd}
148168404Spjd
149168404Spjd/*
150168404Spjd * Evict the specified entry from the cache.
151168404Spjd */
152168404Spjdstatic void
153168404Spjdvdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
154168404Spjd{
155168404Spjd	ASSERT(MUTEX_HELD(&vc->vc_lock));
156168404Spjd	ASSERT(ve->ve_fill_io == NULL);
157168404Spjd	ASSERT(ve->ve_data != NULL);
158168404Spjd
159168404Spjd	avl_remove(&vc->vc_lastused_tree, ve);
160168404Spjd	avl_remove(&vc->vc_offset_tree, ve);
161168404Spjd	zio_buf_free(ve->ve_data, VCBS);
162168404Spjd	kmem_free(ve, sizeof (vdev_cache_entry_t));
163168404Spjd}
164168404Spjd
165168404Spjd/*
166168404Spjd * Allocate an entry in the cache.  At the point we don't have the data,
167168404Spjd * we're just creating a placeholder so that multiple threads don't all
168168404Spjd * go off and read the same blocks.
169168404Spjd */
170168404Spjdstatic vdev_cache_entry_t *
171168404Spjdvdev_cache_allocate(zio_t *zio)
172168404Spjd{
173168404Spjd	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
174168404Spjd	uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
175168404Spjd	vdev_cache_entry_t *ve;
176168404Spjd
177168404Spjd	ASSERT(MUTEX_HELD(&vc->vc_lock));
178168404Spjd
179168404Spjd	if (zfs_vdev_cache_size == 0)
180168404Spjd		return (NULL);
181168404Spjd
182168404Spjd	/*
183168404Spjd	 * If adding a new entry would exceed the cache size,
184168404Spjd	 * evict the oldest entry (LRU).
185168404Spjd	 */
186168404Spjd	if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
187168404Spjd	    zfs_vdev_cache_size) {
188168404Spjd		ve = avl_first(&vc->vc_lastused_tree);
189185029Spjd		if (ve->ve_fill_io != NULL)
190168404Spjd			return (NULL);
191168404Spjd		ASSERT(ve->ve_hits != 0);
192168404Spjd		vdev_cache_evict(vc, ve);
193168404Spjd	}
194168404Spjd
195168404Spjd	ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
196168404Spjd	ve->ve_offset = offset;
197219089Spjd	ve->ve_lastused = ddi_get_lbolt();
198168404Spjd	ve->ve_data = zio_buf_alloc(VCBS);
199168404Spjd
200168404Spjd	avl_add(&vc->vc_offset_tree, ve);
201168404Spjd	avl_add(&vc->vc_lastused_tree, ve);
202168404Spjd
203168404Spjd	return (ve);
204168404Spjd}
205168404Spjd
206168404Spjdstatic void
207168404Spjdvdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
208168404Spjd{
209168404Spjd	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
210168404Spjd
211168404Spjd	ASSERT(MUTEX_HELD(&vc->vc_lock));
212168404Spjd	ASSERT(ve->ve_fill_io == NULL);
213168404Spjd
214219089Spjd	if (ve->ve_lastused != ddi_get_lbolt()) {
215168404Spjd		avl_remove(&vc->vc_lastused_tree, ve);
216219089Spjd		ve->ve_lastused = ddi_get_lbolt();
217168404Spjd		avl_add(&vc->vc_lastused_tree, ve);
218168404Spjd	}
219168404Spjd
220168404Spjd	ve->ve_hits++;
221168404Spjd	bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
222168404Spjd}
223168404Spjd
224168404Spjd/*
225168404Spjd * Fill a previously allocated cache entry with data.
226168404Spjd */
227168404Spjdstatic void
228209962Smmvdev_cache_fill(zio_t *fio)
229168404Spjd{
230209962Smm	vdev_t *vd = fio->io_vd;
231168404Spjd	vdev_cache_t *vc = &vd->vdev_cache;
232209962Smm	vdev_cache_entry_t *ve = fio->io_private;
233209962Smm	zio_t *pio;
234168404Spjd
235209962Smm	ASSERT(fio->io_size == VCBS);
236168404Spjd
237168404Spjd	/*
238168404Spjd	 * Add data to the cache.
239168404Spjd	 */
240168404Spjd	mutex_enter(&vc->vc_lock);
241168404Spjd
242209962Smm	ASSERT(ve->ve_fill_io == fio);
243209962Smm	ASSERT(ve->ve_offset == fio->io_offset);
244209962Smm	ASSERT(ve->ve_data == fio->io_data);
245168404Spjd
246168404Spjd	ve->ve_fill_io = NULL;
247168404Spjd
248168404Spjd	/*
249168404Spjd	 * Even if this cache line was invalidated by a missed write update,
250168404Spjd	 * any reads that were queued up before the missed update are still
251168404Spjd	 * valid, so we can satisfy them from this line before we evict it.
252168404Spjd	 */
253209962Smm	while ((pio = zio_walk_parents(fio)) != NULL)
254209962Smm		vdev_cache_hit(vc, ve, pio);
255168404Spjd
256209962Smm	if (fio->io_error || ve->ve_missed_update)
257168404Spjd		vdev_cache_evict(vc, ve);
258168404Spjd
259168404Spjd	mutex_exit(&vc->vc_lock);
260168404Spjd}
261168404Spjd
262168404Spjd/*
263168404Spjd * Read data from the cache.  Returns 0 on cache hit, errno on a miss.
264168404Spjd */
265168404Spjdint
266168404Spjdvdev_cache_read(zio_t *zio)
267168404Spjd{
268168404Spjd	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
269168404Spjd	vdev_cache_entry_t *ve, ve_search;
270168404Spjd	uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
271168404Spjd	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
272168404Spjd	zio_t *fio;
273168404Spjd
274168404Spjd	ASSERT(zio->io_type == ZIO_TYPE_READ);
275168404Spjd
276168404Spjd	if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
277249195Smm		return (SET_ERROR(EINVAL));
278168404Spjd
279168404Spjd	if (zio->io_size > zfs_vdev_cache_max)
280249195Smm		return (SET_ERROR(EOVERFLOW));
281168404Spjd
282168404Spjd	/*
283168404Spjd	 * If the I/O straddles two or more cache blocks, don't cache it.
284168404Spjd	 */
285208047Smm	if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
286249195Smm		return (SET_ERROR(EXDEV));
287168404Spjd
288168404Spjd	ASSERT(cache_phase + zio->io_size <= VCBS);
289168404Spjd
290168404Spjd	mutex_enter(&vc->vc_lock);
291168404Spjd
292168404Spjd	ve_search.ve_offset = cache_offset;
293168404Spjd	ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
294168404Spjd
295168404Spjd	if (ve != NULL) {
296168404Spjd		if (ve->ve_missed_update) {
297168404Spjd			mutex_exit(&vc->vc_lock);
298249195Smm			return (SET_ERROR(ESTALE));
299168404Spjd		}
300168404Spjd
301168404Spjd		if ((fio = ve->ve_fill_io) != NULL) {
302168404Spjd			zio_vdev_io_bypass(zio);
303209962Smm			zio_add_child(zio, fio);
304168404Spjd			mutex_exit(&vc->vc_lock);
305185029Spjd			VDCSTAT_BUMP(vdc_stat_delegations);
306168404Spjd			return (0);
307168404Spjd		}
308168404Spjd
309168404Spjd		vdev_cache_hit(vc, ve, zio);
310168404Spjd		zio_vdev_io_bypass(zio);
311168404Spjd
312168404Spjd		mutex_exit(&vc->vc_lock);
313185029Spjd		VDCSTAT_BUMP(vdc_stat_hits);
314168404Spjd		return (0);
315168404Spjd	}
316168404Spjd
317168404Spjd	ve = vdev_cache_allocate(zio);
318168404Spjd
319168404Spjd	if (ve == NULL) {
320168404Spjd		mutex_exit(&vc->vc_lock);
321249195Smm		return (SET_ERROR(ENOMEM));
322168404Spjd	}
323168404Spjd
324185029Spjd	fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
325168404Spjd	    ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_CACHE_FILL,
326185029Spjd	    ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
327168404Spjd
328168404Spjd	ve->ve_fill_io = fio;
329168404Spjd	zio_vdev_io_bypass(zio);
330209962Smm	zio_add_child(zio, fio);
331168404Spjd
332168404Spjd	mutex_exit(&vc->vc_lock);
333168404Spjd	zio_nowait(fio);
334185029Spjd	VDCSTAT_BUMP(vdc_stat_misses);
335168404Spjd
336168404Spjd	return (0);
337168404Spjd}
338168404Spjd
339168404Spjd/*
340168404Spjd * Update cache contents upon write completion.
341168404Spjd */
342168404Spjdvoid
343168404Spjdvdev_cache_write(zio_t *zio)
344168404Spjd{
345168404Spjd	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
346168404Spjd	vdev_cache_entry_t *ve, ve_search;
347168404Spjd	uint64_t io_start = zio->io_offset;
348168404Spjd	uint64_t io_end = io_start + zio->io_size;
349168404Spjd	uint64_t min_offset = P2ALIGN(io_start, VCBS);
350168404Spjd	uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
351168404Spjd	avl_index_t where;
352168404Spjd
353168404Spjd	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
354168404Spjd
355168404Spjd	mutex_enter(&vc->vc_lock);
356168404Spjd
357168404Spjd	ve_search.ve_offset = min_offset;
358168404Spjd	ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
359168404Spjd
360168404Spjd	if (ve == NULL)
361168404Spjd		ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
362168404Spjd
363168404Spjd	while (ve != NULL && ve->ve_offset < max_offset) {
364168404Spjd		uint64_t start = MAX(ve->ve_offset, io_start);
365168404Spjd		uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
366168404Spjd
367168404Spjd		if (ve->ve_fill_io != NULL) {
368168404Spjd			ve->ve_missed_update = 1;
369168404Spjd		} else {
370168404Spjd			bcopy((char *)zio->io_data + start - io_start,
371168404Spjd			    ve->ve_data + start - ve->ve_offset, end - start);
372168404Spjd		}
373168404Spjd		ve = AVL_NEXT(&vc->vc_offset_tree, ve);
374168404Spjd	}
375168404Spjd	mutex_exit(&vc->vc_lock);
376168404Spjd}
377168404Spjd
378168404Spjdvoid
379185029Spjdvdev_cache_purge(vdev_t *vd)
380185029Spjd{
381185029Spjd	vdev_cache_t *vc = &vd->vdev_cache;
382185029Spjd	vdev_cache_entry_t *ve;
383185029Spjd
384185029Spjd	mutex_enter(&vc->vc_lock);
385185029Spjd	while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
386185029Spjd		vdev_cache_evict(vc, ve);
387185029Spjd	mutex_exit(&vc->vc_lock);
388185029Spjd}
389185029Spjd
390185029Spjdvoid
391168404Spjdvdev_cache_init(vdev_t *vd)
392168404Spjd{
393168404Spjd	vdev_cache_t *vc = &vd->vdev_cache;
394168404Spjd
395168404Spjd	mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
396168404Spjd
397168404Spjd	avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
398168404Spjd	    sizeof (vdev_cache_entry_t),
399168404Spjd	    offsetof(struct vdev_cache_entry, ve_offset_node));
400168404Spjd
401168404Spjd	avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
402168404Spjd	    sizeof (vdev_cache_entry_t),
403168404Spjd	    offsetof(struct vdev_cache_entry, ve_lastused_node));
404168404Spjd}
405168404Spjd
406168404Spjdvoid
407168404Spjdvdev_cache_fini(vdev_t *vd)
408168404Spjd{
409168404Spjd	vdev_cache_t *vc = &vd->vdev_cache;
410168404Spjd
411185029Spjd	vdev_cache_purge(vd);
412168404Spjd
413168404Spjd	avl_destroy(&vc->vc_offset_tree);
414168404Spjd	avl_destroy(&vc->vc_lastused_tree);
415168404Spjd
416168404Spjd	mutex_destroy(&vc->vc_lock);
417168404Spjd}
418185029Spjd
419185029Spjdvoid
420185029Spjdvdev_cache_stat_init(void)
421185029Spjd{
422185029Spjd	vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
423185029Spjd	    KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
424185029Spjd	    KSTAT_FLAG_VIRTUAL);
425185029Spjd	if (vdc_ksp != NULL) {
426185029Spjd		vdc_ksp->ks_data = &vdc_stats;
427185029Spjd		kstat_install(vdc_ksp);
428185029Spjd	}
429185029Spjd}
430185029Spjd
431185029Spjdvoid
432185029Spjdvdev_cache_stat_fini(void)
433185029Spjd{
434185029Spjd	if (vdc_ksp != NULL) {
435185029Spjd		kstat_delete(vdc_ksp);
436185029Spjd		vdc_ksp = NULL;
437185029Spjd	}
438185029Spjd}
439