radix.c revision 50476
1/*
2 * Copyright (c) 1988, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgment:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)radix.c	8.4 (Berkeley) 11/2/94
34 *
35 * $FreeBSD: head/sbin/routed/radix.c 50476 1999-08-28 00:22:10Z peter $
36 */
37
38/*
39 * Routines to build and maintain radix trees for routing lookups.
40 */
41
42#include "defs.h"
43
44#if !defined(sgi) && !defined(__NetBSD__)
45static char sccsid[] __attribute__((unused)) = "@(#)rdisc.c	8.1 (Berkeley) x/y/95";
46#elif defined(__NetBSD__)
47__RCSID("$NetBSD$");
48#endif
49#ident "$Revision: 1.3 $"
50
51#define log(x, msg) syslog(x, msg)
52#define panic(s) {log(LOG_ERR,s); exit(1);}
53#define min(a,b) (((a)<(b))?(a):(b))
54
55int	max_keylen;
56struct radix_mask *rn_mkfreelist;
57struct radix_node_head *mask_rnhead;
58static char *addmask_key;
59static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
60static char *rn_zeros, *rn_ones;
61
62#define rn_masktop (mask_rnhead->rnh_treetop)
63#undef Bcmp
64#define Bcmp(a, b, l) (l == 0 ? 0 \
65		       : memcmp((caddr_t)(a), (caddr_t)(b), (size_t)l))
66
67static int rn_satisfies_leaf(char *, struct radix_node *, int);
68
69/*
70 * The data structure for the keys is a radix tree with one way
71 * branching removed.  The index rn_b at an internal node n represents a bit
72 * position to be tested.  The tree is arranged so that all descendants
73 * of a node n have keys whose bits all agree up to position rn_b - 1.
74 * (We say the index of n is rn_b.)
75 *
76 * There is at least one descendant which has a one bit at position rn_b,
77 * and at least one with a zero there.
78 *
79 * A route is determined by a pair of key and mask.  We require that the
80 * bit-wise logical and of the key and mask to be the key.
81 * We define the index of a route to associated with the mask to be
82 * the first bit number in the mask where 0 occurs (with bit number 0
83 * representing the highest order bit).
84 *
85 * We say a mask is normal if every bit is 0, past the index of the mask.
86 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
87 * and m is a normal mask, then the route applies to every descendant of n.
88 * If the index(m) < rn_b, this implies the trailing last few bits of k
89 * before bit b are all 0, (and hence consequently true of every descendant
90 * of n), so the route applies to all descendants of the node as well.
91 *
92 * Similar logic shows that a non-normal mask m such that
93 * index(m) <= index(n) could potentially apply to many children of n.
94 * Thus, for each non-host route, we attach its mask to a list at an internal
95 * node as high in the tree as we can go.
96 *
97 * The present version of the code makes use of normal routes in short-
98 * circuiting an explict mask and compare operation when testing whether
99 * a key satisfies a normal route, and also in remembering the unique leaf
100 * that governs a subtree.
101 */
102
103struct radix_node *
104rn_search(void *v_arg,
105	  struct radix_node *head)
106{
107	struct radix_node *x;
108	caddr_t v;
109
110	for (x = head, v = v_arg; x->rn_b >= 0;) {
111		if (x->rn_bmask & v[x->rn_off])
112			x = x->rn_r;
113		else
114			x = x->rn_l;
115	}
116	return (x);
117}
118
119struct radix_node *
120rn_search_m(void *v_arg,
121	    struct radix_node *head,
122	    void *m_arg)
123{
124	struct radix_node *x;
125	caddr_t v = v_arg, m = m_arg;
126
127	for (x = head; x->rn_b >= 0;) {
128		if ((x->rn_bmask & m[x->rn_off]) &&
129		    (x->rn_bmask & v[x->rn_off]))
130			x = x->rn_r;
131		else
132			x = x->rn_l;
133	}
134	return x;
135}
136
137int
138rn_refines(void* m_arg, void *n_arg)
139{
140	caddr_t m = m_arg, n = n_arg;
141	caddr_t lim, lim2 = lim = n + *(u_char *)n;
142	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
143	int masks_are_equal = 1;
144
145	if (longer > 0)
146		lim -= longer;
147	while (n < lim) {
148		if (*n & ~(*m))
149			return 0;
150		if (*n++ != *m++)
151			masks_are_equal = 0;
152	}
153	while (n < lim2)
154		if (*n++)
155			return 0;
156	if (masks_are_equal && (longer < 0))
157		for (lim2 = m - longer; m < lim2; )
158			if (*m++)
159				return 1;
160	return (!masks_are_equal);
161}
162
163struct radix_node *
164rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
165{
166	struct radix_node *x;
167	caddr_t netmask = 0;
168
169	if (m_arg) {
170		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
171			return (0);
172		netmask = x->rn_key;
173	}
174	x = rn_match(v_arg, head);
175	if (x && netmask) {
176		while (x && x->rn_mask != netmask)
177			x = x->rn_dupedkey;
178	}
179	return x;
180}
181
182static int
183rn_satisfies_leaf(char *trial,
184		  struct radix_node *leaf,
185		  int skip)
186{
187	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
188	char *cplim;
189	int length = min(*(u_char *)cp, *(u_char *)cp2);
190
191	if (cp3 == 0)
192		cp3 = rn_ones;
193	else
194		length = min(length, *(u_char *)cp3);
195	cplim = cp + length; cp3 += skip; cp2 += skip;
196	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
197		if ((*cp ^ *cp2) & *cp3)
198			return 0;
199	return 1;
200}
201
202struct radix_node *
203rn_match(void *v_arg,
204	 struct radix_node_head *head)
205{
206	caddr_t v = v_arg;
207	struct radix_node *t = head->rnh_treetop, *x;
208	caddr_t cp = v, cp2;
209	caddr_t cplim;
210	struct radix_node *saved_t, *top = t;
211	int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
212	int test, b, rn_b;
213
214	/*
215	 * Open code rn_search(v, top) to avoid overhead of extra
216	 * subroutine call.
217	 */
218	for (; t->rn_b >= 0; ) {
219		if (t->rn_bmask & cp[t->rn_off])
220			t = t->rn_r;
221		else
222			t = t->rn_l;
223	}
224	/*
225	 * See if we match exactly as a host destination
226	 * or at least learn how many bits match, for normal mask finesse.
227	 *
228	 * It doesn't hurt us to limit how many bytes to check
229	 * to the length of the mask, since if it matches we had a genuine
230	 * match and the leaf we have is the most specific one anyway;
231	 * if it didn't match with a shorter length it would fail
232	 * with a long one.  This wins big for class B&C netmasks which
233	 * are probably the most common case...
234	 */
235	if (t->rn_mask)
236		vlen = *(u_char *)t->rn_mask;
237	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
238	for (; cp < cplim; cp++, cp2++)
239		if (*cp != *cp2)
240			goto on1;
241	/*
242	 * This extra grot is in case we are explicitly asked
243	 * to look up the default.  Ugh!
244	 * Or 255.255.255.255
245	 *
246	 * In this case, we have a complete match of the key.  Unless
247	 * the node is one of the roots, we are finished.
248	 * If it is the zeros root, then take what we have, prefering
249	 * any real data.
250	 * If it is the ones root, then pretend the target key was followed
251	 * by a byte of zeros.
252	 */
253	if (!(t->rn_flags & RNF_ROOT))
254		return t;		/* not a root */
255	if (t->rn_dupedkey) {
256		t = t->rn_dupedkey;
257		return t;		/* have some real data */
258	}
259	if (*(cp-1) == 0)
260		return t;		/* not the ones root */
261	b = 0;				/* fake a zero after 255.255.255.255 */
262	goto on2;
263on1:
264	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
265	for (b = 7; (test >>= 1) > 0;)
266		b--;
267on2:
268	matched_off = cp - v;
269	b += matched_off << 3;
270	rn_b = -1 - b;
271	/*
272	 * If there is a host route in a duped-key chain, it will be first.
273	 */
274	if ((saved_t = t)->rn_mask == 0)
275		t = t->rn_dupedkey;
276	for (; t; t = t->rn_dupedkey) {
277		/*
278		 * Even if we don't match exactly as a host,
279		 * we may match if the leaf we wound up at is
280		 * a route to a net.
281		 */
282		if (t->rn_flags & RNF_NORMAL) {
283			if (rn_b <= t->rn_b)
284				return t;
285		} else if (rn_satisfies_leaf(v, t, matched_off)) {
286			return t;
287		}
288	}
289	t = saved_t;
290	/* start searching up the tree */
291	do {
292		struct radix_mask *m;
293		t = t->rn_p;
294		if ((m = t->rn_mklist)) {
295			/*
296			 * If non-contiguous masks ever become important
297			 * we can restore the masking and open coding of
298			 * the search and satisfaction test and put the
299			 * calculation of "off" back before the "do".
300			 */
301			do {
302				if (m->rm_flags & RNF_NORMAL) {
303					if (rn_b <= m->rm_b)
304						return (m->rm_leaf);
305				} else {
306					off = min(t->rn_off, matched_off);
307					x = rn_search_m(v, t, m->rm_mask);
308					while (x && x->rn_mask != m->rm_mask)
309						x = x->rn_dupedkey;
310					if (x && rn_satisfies_leaf(v, x, off))
311						    return x;
312				}
313			} while ((m = m->rm_mklist));
314		}
315	} while (t != top);
316	return 0;
317}
318
319#ifdef RN_DEBUG
320int	rn_nodenum;
321struct	radix_node *rn_clist;
322int	rn_saveinfo;
323int	rn_debug =  1;
324#endif
325
326struct radix_node *
327rn_newpair(void *v, int b, struct radix_node nodes[2])
328{
329	struct radix_node *tt = nodes, *t = tt + 1;
330	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
331	t->rn_l = tt; t->rn_off = b >> 3;
332	tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
333	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
334#ifdef RN_DEBUG
335	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
336	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
337#endif
338	return t;
339}
340
341struct radix_node *
342rn_insert(void* v_arg,
343	  struct radix_node_head *head,
344	  int *dupentry,
345	  struct radix_node nodes[2])
346{
347	caddr_t v = v_arg;
348	struct radix_node *top = head->rnh_treetop;
349	int head_off = top->rn_off, vlen = (int)*((u_char *)v);
350	struct radix_node *t = rn_search(v_arg, top);
351	caddr_t cp = v + head_off;
352	int b;
353	struct radix_node *tt;
354
355	/*
356	 * Find first bit at which v and t->rn_key differ
357	 */
358    {
359		caddr_t cp2 = t->rn_key + head_off;
360		int cmp_res;
361	caddr_t cplim = v + vlen;
362
363	while (cp < cplim)
364		if (*cp2++ != *cp++)
365			goto on1;
366	/* handle adding 255.255.255.255 */
367	if (!(t->rn_flags & RNF_ROOT) || *(cp2-1) == 0) {
368		*dupentry = 1;
369		return t;
370	}
371on1:
372	*dupentry = 0;
373	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
374	for (b = (cp - v) << 3; cmp_res; b--)
375		cmp_res >>= 1;
376    }
377    {
378	    struct radix_node *p, *x = top;
379	cp = v;
380	do {
381		p = x;
382		if (cp[x->rn_off] & x->rn_bmask)
383			x = x->rn_r;
384		else x = x->rn_l;
385	} while ((unsigned)b > (unsigned)x->rn_b);
386#ifdef RN_DEBUG
387	if (rn_debug)
388		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
389#endif
390	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
391	if ((cp[p->rn_off] & p->rn_bmask) == 0)
392		p->rn_l = t;
393	else
394		p->rn_r = t;
395	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
396	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
397		t->rn_r = x;
398	} else {
399		t->rn_r = tt; t->rn_l = x;
400	}
401#ifdef RN_DEBUG
402	if (rn_debug)
403		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
404#endif
405    }
406	return (tt);
407}
408
409struct radix_node *
410rn_addmask(void *n_arg, int search, int skip)
411{
412	caddr_t netmask = (caddr_t)n_arg;
413	struct radix_node *x;
414	caddr_t cp, cplim;
415	int b = 0, mlen, j;
416	int maskduplicated, m0, isnormal;
417	struct radix_node *saved_x;
418	static int last_zeroed = 0;
419
420	if ((mlen = *(u_char *)netmask) > max_keylen)
421		mlen = max_keylen;
422	if (skip == 0)
423		skip = 1;
424	if (mlen <= skip)
425		return (mask_rnhead->rnh_nodes);
426	if (skip > 1)
427		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
428	if ((m0 = mlen) > skip)
429		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
430	/*
431	 * Trim trailing zeroes.
432	 */
433	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
434		cp--;
435	mlen = cp - addmask_key;
436	if (mlen <= skip) {
437		if (m0 >= last_zeroed)
438			last_zeroed = mlen;
439		return (mask_rnhead->rnh_nodes);
440	}
441	if (m0 < last_zeroed)
442		Bzero(addmask_key + m0, last_zeroed - m0);
443	*addmask_key = last_zeroed = mlen;
444	x = rn_search(addmask_key, rn_masktop);
445	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
446		x = 0;
447	if (x || search)
448		return (x);
449	x = (struct radix_node *)rtmalloc(max_keylen + 2*sizeof(*x),
450					  "rn_addmask");
451	saved_x = x;
452	Bzero(x, max_keylen + 2 * sizeof (*x));
453	netmask = cp = (caddr_t)(x + 2);
454	Bcopy(addmask_key, cp, mlen);
455	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
456	if (maskduplicated) {
457		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
458		Free(saved_x);
459		return (x);
460	}
461	/*
462	 * Calculate index of mask, and check for normalcy.
463	 */
464	cplim = netmask + mlen; isnormal = 1;
465	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
466		cp++;
467	if (cp != cplim) {
468		for (j = 0x80; (j & *cp) != 0; j >>= 1)
469			b++;
470		if (*cp != normal_chars[b] || cp != (cplim - 1))
471			isnormal = 0;
472	}
473	b += (cp - netmask) << 3;
474	x->rn_b = -1 - b;
475	if (isnormal)
476		x->rn_flags |= RNF_NORMAL;
477	return (x);
478}
479
480static int	/* XXX: arbitrary ordering for non-contiguous masks */
481rn_lexobetter(void *m_arg, void *n_arg)
482{
483	u_char *mp = m_arg, *np = n_arg, *lim;
484
485	if (*mp > *np)
486		return 1;  /* not really, but need to check longer one first */
487	if (*mp == *np)
488		for (lim = mp + *mp; mp < lim;)
489			if (*mp++ > *np++)
490				return 1;
491	return 0;
492}
493
494static struct radix_mask *
495rn_new_radix_mask(struct radix_node *tt,
496		  struct radix_mask *next)
497{
498	struct radix_mask *m;
499
500	MKGet(m);
501	if (m == 0) {
502		log(LOG_ERR, "Mask for route not entered\n");
503		return (0);
504	}
505	Bzero(m, sizeof *m);
506	m->rm_b = tt->rn_b;
507	m->rm_flags = tt->rn_flags;
508	if (tt->rn_flags & RNF_NORMAL)
509		m->rm_leaf = tt;
510	else
511		m->rm_mask = tt->rn_mask;
512	m->rm_mklist = next;
513	tt->rn_mklist = m;
514	return m;
515}
516
517struct radix_node *
518rn_addroute(void *v_arg,
519	    void *n_arg,
520	    struct radix_node_head *head,
521	    struct radix_node treenodes[2])
522{
523	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
524	struct radix_node *t, *x = 0, *tt;
525	struct radix_node *saved_tt, *top = head->rnh_treetop;
526	short b = 0, b_leaf = 0;
527	int keyduplicated;
528	caddr_t mmask;
529	struct radix_mask *m, **mp;
530
531	/*
532	 * In dealing with non-contiguous masks, there may be
533	 * many different routes which have the same mask.
534	 * We will find it useful to have a unique pointer to
535	 * the mask to speed avoiding duplicate references at
536	 * nodes and possibly save time in calculating indices.
537	 */
538	if (netmask)  {
539		if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
540			return (0);
541		b_leaf = x->rn_b;
542		b = -1 - x->rn_b;
543		netmask = x->rn_key;
544	}
545	/*
546	 * Deal with duplicated keys: attach node to previous instance
547	 */
548	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
549	if (keyduplicated) {
550		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
551			if (tt->rn_mask == netmask)
552				return (0);
553			if (netmask == 0 ||
554			    (tt->rn_mask &&
555			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
556			       rn_refines(netmask, tt->rn_mask) ||
557			       rn_lexobetter(netmask, tt->rn_mask))))
558				break;
559		}
560		/*
561		 * If the mask is not duplicated, we wouldn't
562		 * find it among possible duplicate key entries
563		 * anyway, so the above test doesn't hurt.
564		 *
565		 * We sort the masks for a duplicated key the same way as
566		 * in a masklist -- most specific to least specific.
567		 * This may require the unfortunate nuisance of relocating
568		 * the head of the list.
569		 */
570		if (tt == saved_tt) {
571			struct	radix_node *xx = x;
572			/* link in at head of list */
573			(tt = treenodes)->rn_dupedkey = t;
574			tt->rn_flags = t->rn_flags;
575			tt->rn_p = x = t->rn_p;
576			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
577			saved_tt = tt; x = xx;
578		} else {
579			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
580			t->rn_dupedkey = tt;
581		}
582#ifdef RN_DEBUG
583		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
584		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
585#endif
586		tt->rn_key = (caddr_t) v;
587		tt->rn_b = -1;
588		tt->rn_flags = RNF_ACTIVE;
589	}
590	/*
591	 * Put mask in tree.
592	 */
593	if (netmask) {
594		tt->rn_mask = netmask;
595		tt->rn_b = x->rn_b;
596		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
597	}
598	t = saved_tt->rn_p;
599	if (keyduplicated)
600		goto on2;
601	b_leaf = -1 - t->rn_b;
602	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
603	/* Promote general routes from below */
604	if (x->rn_b < 0) {
605	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
606		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
607			if ((*mp = m = rn_new_radix_mask(x, 0)))
608				mp = &m->rm_mklist;
609		}
610	} else if (x->rn_mklist) {
611		/*
612		 * Skip over masks whose index is > that of new node
613		 */
614		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
615			if (m->rm_b >= b_leaf)
616				break;
617		t->rn_mklist = m; *mp = 0;
618	}
619on2:
620	/* Add new route to highest possible ancestor's list */
621	if ((netmask == 0) || (b > t->rn_b ))
622		return tt; /* can't lift at all */
623	b_leaf = tt->rn_b;
624	do {
625		x = t;
626		t = t->rn_p;
627	} while (b <= t->rn_b && x != top);
628	/*
629	 * Search through routes associated with node to
630	 * insert new route according to index.
631	 * Need same criteria as when sorting dupedkeys to avoid
632	 * double loop on deletion.
633	 */
634	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
635		if (m->rm_b < b_leaf)
636			continue;
637		if (m->rm_b > b_leaf)
638			break;
639		if (m->rm_flags & RNF_NORMAL) {
640			mmask = m->rm_leaf->rn_mask;
641			if (tt->rn_flags & RNF_NORMAL) {
642				log(LOG_ERR,
643				   "Non-unique normal route, mask not entered");
644				return tt;
645			}
646		} else
647			mmask = m->rm_mask;
648		if (mmask == netmask) {
649			m->rm_refs++;
650			tt->rn_mklist = m;
651			return tt;
652		}
653		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
654			break;
655	}
656	*mp = rn_new_radix_mask(tt, *mp);
657	return tt;
658}
659
660struct radix_node *
661rn_delete(void *v_arg,
662	  void *netmask_arg,
663	  struct radix_node_head *head)
664{
665	struct radix_node *t, *p, *x, *tt;
666	struct radix_mask *m, *saved_m, **mp;
667	struct radix_node *dupedkey, *saved_tt, *top;
668	caddr_t v, netmask;
669	int b, head_off, vlen;
670
671	v = v_arg;
672	netmask = netmask_arg;
673	x = head->rnh_treetop;
674	tt = rn_search(v, x);
675	head_off = x->rn_off;
676	vlen =  *(u_char *)v;
677	saved_tt = tt;
678	top = x;
679	if (tt == 0 ||
680	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
681		return (0);
682	/*
683	 * Delete our route from mask lists.
684	 */
685	if (netmask) {
686		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
687			return (0);
688		netmask = x->rn_key;
689		while (tt->rn_mask != netmask)
690			if ((tt = tt->rn_dupedkey) == 0)
691				return (0);
692	}
693	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
694		goto on1;
695	if (tt->rn_flags & RNF_NORMAL) {
696		if (m->rm_leaf != tt || m->rm_refs > 0) {
697			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
698			return 0;  /* dangling ref could cause disaster */
699		}
700	} else {
701		if (m->rm_mask != tt->rn_mask) {
702			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
703			goto on1;
704		}
705		if (--m->rm_refs >= 0)
706			goto on1;
707	}
708	b = -1 - tt->rn_b;
709	t = saved_tt->rn_p;
710	if (b > t->rn_b)
711		goto on1; /* Wasn't lifted at all */
712	do {
713		x = t;
714		t = t->rn_p;
715	} while (b <= t->rn_b && x != top);
716	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
717		if (m == saved_m) {
718			*mp = m->rm_mklist;
719			MKFree(m);
720			break;
721		}
722	if (m == 0) {
723		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
724		if (tt->rn_flags & RNF_NORMAL)
725			return (0); /* Dangling ref to us */
726	}
727on1:
728	/*
729	 * Eliminate us from tree
730	 */
731	if (tt->rn_flags & RNF_ROOT)
732		return (0);
733#ifdef RN_DEBUG
734	/* Get us out of the creation list */
735	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
736	if (t) t->rn_ybro = tt->rn_ybro;
737#endif
738	t = tt->rn_p;
739	if ((dupedkey = saved_tt->rn_dupedkey)) {
740		if (tt == saved_tt) {
741			x = dupedkey; x->rn_p = t;
742			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
743		} else {
744			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
745				p = p->rn_dupedkey;
746			if (p) p->rn_dupedkey = tt->rn_dupedkey;
747			else log(LOG_ERR, "rn_delete: couldn't find us\n");
748		}
749		t = tt + 1;
750		if  (t->rn_flags & RNF_ACTIVE) {
751#ifndef RN_DEBUG
752			*++x = *t; p = t->rn_p;
753#else
754			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
755#endif
756			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
757			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
758		}
759		goto out;
760	}
761	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
762	p = t->rn_p;
763	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
764	x->rn_p = p;
765	/*
766	 * Demote routes attached to us.
767	 */
768	if (t->rn_mklist) {
769		if (x->rn_b >= 0) {
770			for (mp = &x->rn_mklist; (m = *mp);)
771				mp = &m->rm_mklist;
772			*mp = t->rn_mklist;
773		} else {
774			/* If there are any key,mask pairs in a sibling
775			   duped-key chain, some subset will appear sorted
776			   in the same order attached to our mklist */
777			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
778				if (m == x->rn_mklist) {
779					struct radix_mask *mm = m->rm_mklist;
780					x->rn_mklist = 0;
781					if (--(m->rm_refs) < 0)
782						MKFree(m);
783					m = mm;
784				}
785			if (m)
786				syslog(LOG_ERR, "%s 0x%lx at 0x%lx\n",
787				       "rn_delete: Orphaned Mask",
788				       (unsigned long)m,
789				       (unsigned long)x);
790		}
791	}
792	/*
793	 * We may be holding an active internal node in the tree.
794	 */
795	x = tt + 1;
796	if (t != x) {
797#ifndef RN_DEBUG
798		*t = *x;
799#else
800		b = t->rn_info; *t = *x; t->rn_info = b;
801#endif
802		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
803		p = x->rn_p;
804		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
805	}
806out:
807	tt->rn_flags &= ~RNF_ACTIVE;
808	tt[1].rn_flags &= ~RNF_ACTIVE;
809	return (tt);
810}
811
812int
813rn_walktree(struct radix_node_head *h,
814	    int (*f)(struct radix_node *, struct walkarg *),
815	    struct walkarg *w)
816{
817	int error;
818	struct radix_node *base, *next;
819	struct radix_node *rn = h->rnh_treetop;
820	/*
821	 * This gets complicated because we may delete the node
822	 * while applying the function f to it, so we need to calculate
823	 * the successor node in advance.
824	 */
825	/* First time through node, go left */
826	while (rn->rn_b >= 0)
827		rn = rn->rn_l;
828	for (;;) {
829		base = rn;
830		/* If at right child go back up, otherwise, go right */
831		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
832			rn = rn->rn_p;
833		/* Find the next *leaf* since next node might vanish, too */
834		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
835			rn = rn->rn_l;
836		next = rn;
837		/* Process leaves */
838		while ((rn = base)) {
839			base = rn->rn_dupedkey;
840			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
841				return (error);
842		}
843		rn = next;
844		if (rn->rn_flags & RNF_ROOT)
845			return (0);
846	}
847	/* NOTREACHED */
848}
849
850int
851rn_inithead(void **head, int off)
852{
853	struct radix_node_head *rnh;
854	struct radix_node *t, *tt, *ttt;
855	if (*head)
856		return (1);
857	rnh = (struct radix_node_head *)rtmalloc(sizeof(*rnh), "rn_inithead");
858	Bzero(rnh, sizeof (*rnh));
859	*head = rnh;
860	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
861	ttt = rnh->rnh_nodes + 2;
862	t->rn_r = ttt;
863	t->rn_p = t;
864	tt = t->rn_l;
865	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
866	tt->rn_b = -1 - off;
867	*ttt = *tt;
868	ttt->rn_key = rn_ones;
869	rnh->rnh_addaddr = rn_addroute;
870	rnh->rnh_deladdr = rn_delete;
871	rnh->rnh_matchaddr = rn_match;
872	rnh->rnh_lookup = rn_lookup;
873	rnh->rnh_walktree = rn_walktree;
874	rnh->rnh_treetop = t;
875	return (1);
876}
877
878void
879rn_init(void)
880{
881	char *cp, *cplim;
882	if (max_keylen == 0) {
883		printf("rn_init: radix functions require max_keylen be set\n");
884		return;
885	}
886	rn_zeros = (char *)rtmalloc(3 * max_keylen, "rn_init");
887	Bzero(rn_zeros, 3 * max_keylen);
888	rn_ones = cp = rn_zeros + max_keylen;
889	addmask_key = cplim = rn_ones + max_keylen;
890	while (cp < cplim)
891		*cp++ = -1;
892	if (rn_inithead((void **)&mask_rnhead, 0) == 0)
893		panic("rn_init 2");
894}
895
896