pvkfmt.c revision 279264
1/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2005.
3 */
4/* ====================================================================
5 * Copyright (c) 2005 The OpenSSL Project.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 *    software must display the following acknowledgment:
21 *    "This product includes software developed by the OpenSSL Project
22 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 *    endorse or promote products derived from this software without
26 *    prior written permission. For written permission, please contact
27 *    licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 *    nor may "OpenSSL" appear in their names without prior written
31 *    permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 *    acknowledgment:
35 *    "This product includes software developed by the OpenSSL Project
36 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com).  This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */
57
58/* Support for PVK format keys and related structures (such a PUBLICKEYBLOB
59 * and PRIVATEKEYBLOB).
60 */
61
62#include "cryptlib.h"
63#include <openssl/pem.h>
64#include <openssl/rand.h>
65#include <openssl/bn.h>
66#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA)
67#include <openssl/dsa.h>
68#include <openssl/rsa.h>
69
70/* Utility function: read a DWORD (4 byte unsigned integer) in little endian
71 * format
72 */
73
74static unsigned int read_ledword(const unsigned char **in)
75	{
76	const unsigned char *p = *in;
77	unsigned int ret;
78	ret = *p++;
79	ret |= (*p++ << 8);
80	ret |= (*p++ << 16);
81	ret |= (*p++ << 24);
82	*in = p;
83	return ret;
84	}
85
86/* Read a BIGNUM in little endian format. The docs say that this should take up
87 * bitlen/8 bytes.
88 */
89
90static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
91	{
92	const unsigned char *p;
93	unsigned char *tmpbuf, *q;
94	unsigned int i;
95	p = *in + nbyte - 1;
96	tmpbuf = OPENSSL_malloc(nbyte);
97	if (!tmpbuf)
98		return 0;
99	q = tmpbuf;
100	for (i = 0; i < nbyte; i++)
101		*q++ = *p--;
102	*r = BN_bin2bn(tmpbuf, nbyte, NULL);
103	OPENSSL_free(tmpbuf);
104	if (*r)
105		{
106		*in += nbyte;
107		return 1;
108		}
109	else
110		return 0;
111	}
112
113
114/* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */
115
116#define MS_PUBLICKEYBLOB	0x6
117#define MS_PRIVATEKEYBLOB	0x7
118#define MS_RSA1MAGIC		0x31415352L
119#define MS_RSA2MAGIC		0x32415352L
120#define MS_DSS1MAGIC		0x31535344L
121#define MS_DSS2MAGIC		0x32535344L
122
123#define MS_KEYALG_RSA_KEYX	0xa400
124#define MS_KEYALG_DSS_SIGN	0x2200
125
126#define MS_KEYTYPE_KEYX		0x1
127#define MS_KEYTYPE_SIGN		0x2
128
129/* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
130#define MS_PVKMAGIC		0xb0b5f11eL
131/* Salt length for PVK files */
132#define PVK_SALTLEN		0x10
133
134static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
135						unsigned int bitlen, int ispub);
136static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
137						unsigned int bitlen, int ispub);
138
139static int do_blob_header(const unsigned char **in, unsigned int length,
140				unsigned int *pmagic, unsigned int *pbitlen,
141				int *pisdss, int *pispub)
142	{
143	const unsigned char *p = *in;
144	if (length < 16)
145		return 0;
146	/* bType */
147	if (*p == MS_PUBLICKEYBLOB)
148		{
149		if (*pispub == 0)
150			{
151			PEMerr(PEM_F_DO_BLOB_HEADER,
152					PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
153			return 0;
154			}
155		*pispub = 1;
156		}
157	else if (*p == MS_PRIVATEKEYBLOB)
158		{
159		if (*pispub == 1)
160			{
161			PEMerr(PEM_F_DO_BLOB_HEADER,
162					PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
163			return 0;
164			}
165		*pispub = 0;
166		}
167	else
168		return 0;
169	p++;
170	/* Version */
171	if (*p++ != 0x2)
172		{
173		PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER);
174		return 0;
175		}
176	/* Ignore reserved, aiKeyAlg */
177	p+= 6;
178	*pmagic = read_ledword(&p);
179	*pbitlen = read_ledword(&p);
180	*pisdss = 0;
181	switch (*pmagic)
182		{
183
184		case MS_DSS1MAGIC:
185		*pisdss = 1;
186		case MS_RSA1MAGIC:
187		if (*pispub == 0)
188			{
189			PEMerr(PEM_F_DO_BLOB_HEADER,
190					PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
191			return 0;
192			}
193		break;
194
195		case MS_DSS2MAGIC:
196		*pisdss = 1;
197		case MS_RSA2MAGIC:
198		if (*pispub == 1)
199			{
200			PEMerr(PEM_F_DO_BLOB_HEADER,
201					PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
202			return 0;
203			}
204		break;
205
206		default:
207		PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER);
208		return -1;
209		}
210	*in = p;
211	return 1;
212	}
213
214static unsigned int blob_length(unsigned bitlen, int isdss, int ispub)
215	{
216	unsigned int nbyte, hnbyte;
217	nbyte = (bitlen + 7) >> 3;
218	hnbyte = (bitlen + 15) >> 4;
219	if (isdss)
220		{
221
222		/* Expected length: 20 for q + 3 components bitlen each + 24
223		 * for seed structure.
224		 */
225		if (ispub)
226			return  44 + 3 * nbyte;
227		/* Expected length: 20 for q, priv, 2 bitlen components + 24
228		 * for seed structure.
229		 */
230		else
231			return 64 + 2 * nbyte;
232		}
233	else
234		{
235		/* Expected length: 4 for 'e' + 'n' */
236		if (ispub)
237			return 4 + nbyte;
238		else
239		/* Expected length: 4 for 'e' and 7 other components.
240		 * 2 components are bitlen size, 5 are bitlen/2
241		 */
242			return 4 + 2*nbyte + 5*hnbyte;
243		}
244
245	}
246
247static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length,
248								int ispub)
249	{
250	const unsigned char *p = *in;
251	unsigned int bitlen, magic;
252	int isdss;
253	if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0)
254		{
255		PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
256		return NULL;
257		}
258	length -= 16;
259	if (length < blob_length(bitlen, isdss, ispub))
260		{
261		PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT);
262		return NULL;
263		}
264	if (isdss)
265		return b2i_dss(&p, length, bitlen, ispub);
266	else
267		return b2i_rsa(&p, length, bitlen, ispub);
268	}
269
270static EVP_PKEY *do_b2i_bio(BIO *in, int ispub)
271	{
272	const unsigned char *p;
273	unsigned char hdr_buf[16], *buf = NULL;
274	unsigned int bitlen, magic, length;
275	int isdss;
276	EVP_PKEY *ret = NULL;
277	if (BIO_read(in, hdr_buf, 16) != 16)
278		{
279		PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
280		return NULL;
281		}
282	p = hdr_buf;
283	if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
284		return NULL;
285
286	length = blob_length(bitlen, isdss, ispub);
287	buf = OPENSSL_malloc(length);
288	if (!buf)
289		{
290		PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE);
291		goto err;
292		}
293	p = buf;
294	if (BIO_read(in, buf, length) != (int)length)
295		{
296		PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
297		goto err;
298		}
299
300	if (isdss)
301		ret = b2i_dss(&p, length, bitlen, ispub);
302	else
303		ret = b2i_rsa(&p, length, bitlen, ispub);
304
305	err:
306	if (buf)
307		OPENSSL_free(buf);
308	return ret;
309	}
310
311static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
312						unsigned int bitlen, int ispub)
313	{
314	const unsigned char *p = *in;
315	EVP_PKEY *ret = NULL;
316	DSA *dsa = NULL;
317	BN_CTX *ctx = NULL;
318	unsigned int nbyte;
319	nbyte = (bitlen + 7) >> 3;
320
321	dsa = DSA_new();
322	ret = EVP_PKEY_new();
323	if (!dsa || !ret)
324		goto memerr;
325	if (!read_lebn(&p, nbyte, &dsa->p))
326		goto memerr;
327	if (!read_lebn(&p, 20, &dsa->q))
328		goto memerr;
329	if (!read_lebn(&p, nbyte, &dsa->g))
330		goto memerr;
331	if (ispub)
332		{
333		if (!read_lebn(&p, nbyte, &dsa->pub_key))
334			goto memerr;
335		}
336	else
337		{
338		if (!read_lebn(&p, 20, &dsa->priv_key))
339			goto memerr;
340		/* Calculate public key */
341		if (!(dsa->pub_key = BN_new()))
342			goto memerr;
343		if (!(ctx = BN_CTX_new()))
344			goto memerr;
345
346		if (!BN_mod_exp(dsa->pub_key, dsa->g,
347						 dsa->priv_key, dsa->p, ctx))
348
349			goto memerr;
350		BN_CTX_free(ctx);
351		}
352
353	EVP_PKEY_set1_DSA(ret, dsa);
354	DSA_free(dsa);
355	*in = p;
356	return ret;
357
358	memerr:
359	PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE);
360	if (dsa)
361		DSA_free(dsa);
362	if (ret)
363		EVP_PKEY_free(ret);
364	if (ctx)
365		BN_CTX_free(ctx);
366	return NULL;
367	}
368
369static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
370						unsigned int bitlen, int ispub)
371
372	{
373	const unsigned char *p = *in;
374	EVP_PKEY *ret = NULL;
375	RSA *rsa = NULL;
376	unsigned int nbyte, hnbyte;
377	nbyte = (bitlen + 7) >> 3;
378	hnbyte = (bitlen + 15) >> 4;
379	rsa = RSA_new();
380	ret = EVP_PKEY_new();
381	if (!rsa || !ret)
382		goto memerr;
383	rsa->e = BN_new();
384	if (!rsa->e)
385		goto memerr;
386	if (!BN_set_word(rsa->e, read_ledword(&p)))
387		goto memerr;
388	if (!read_lebn(&p, nbyte, &rsa->n))
389		goto memerr;
390	if (!ispub)
391		{
392		if (!read_lebn(&p, hnbyte, &rsa->p))
393			goto memerr;
394		if (!read_lebn(&p, hnbyte, &rsa->q))
395			goto memerr;
396		if (!read_lebn(&p, hnbyte, &rsa->dmp1))
397			goto memerr;
398		if (!read_lebn(&p, hnbyte, &rsa->dmq1))
399			goto memerr;
400		if (!read_lebn(&p, hnbyte, &rsa->iqmp))
401			goto memerr;
402		if (!read_lebn(&p, nbyte, &rsa->d))
403			goto memerr;
404		}
405
406	EVP_PKEY_set1_RSA(ret, rsa);
407	RSA_free(rsa);
408	*in = p;
409	return ret;
410	memerr:
411	PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE);
412	if (rsa)
413		RSA_free(rsa);
414	if (ret)
415		EVP_PKEY_free(ret);
416	return NULL;
417	}
418
419EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length)
420	{
421	return do_b2i(in, length, 0);
422	}
423
424EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length)
425	{
426	return do_b2i(in, length, 1);
427	}
428
429
430EVP_PKEY *b2i_PrivateKey_bio(BIO *in)
431	{
432	return do_b2i_bio(in, 0);
433	}
434
435EVP_PKEY *b2i_PublicKey_bio(BIO *in)
436	{
437	return do_b2i_bio(in, 1);
438	}
439
440static void write_ledword(unsigned char **out, unsigned int dw)
441	{
442	unsigned char *p = *out;
443	*p++ = dw & 0xff;
444	*p++ = (dw>>8) & 0xff;
445	*p++ = (dw>>16) & 0xff;
446	*p++ = (dw>>24) & 0xff;
447	*out = p;
448	}
449
450static void write_lebn(unsigned char **out, const BIGNUM *bn, int len)
451	{
452	int nb, i;
453	unsigned char *p = *out, *q, c;
454	nb = BN_num_bytes(bn);
455	BN_bn2bin(bn, p);
456	q = p + nb - 1;
457	/* In place byte order reversal */
458	for (i = 0; i < nb/2; i++)
459		{
460		c = *p;
461		*p++ = *q;
462		*q-- = c;
463		}
464	*out += nb;
465	/* Pad with zeroes if we have to */
466	if (len > 0)
467		{
468		len -= nb;
469		if (len > 0)
470			{
471			memset(*out, 0, len);
472			*out += len;
473			}
474		}
475	}
476
477
478static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
479static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);
480
481static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
482static void write_dsa(unsigned char **out, DSA *dsa, int ispub);
483
484static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
485	{
486	unsigned char *p;
487	unsigned int bitlen, magic = 0, keyalg;
488	int outlen, noinc = 0;
489	if (pk->type == EVP_PKEY_DSA)
490		{
491		bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic);
492		keyalg = MS_KEYALG_DSS_SIGN;
493		}
494	else if (pk->type == EVP_PKEY_RSA)
495		{
496		bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic);
497		keyalg = MS_KEYALG_RSA_KEYX;
498		}
499	else
500		return -1;
501	if (bitlen == 0)
502		return -1;
503	outlen = 16 + blob_length(bitlen,
504			keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
505	if (out == NULL)
506		return outlen;
507	if (*out)
508		p = *out;
509	else
510		{
511		p = OPENSSL_malloc(outlen);
512		if (!p)
513			return -1;
514		*out = p;
515		noinc = 1;
516		}
517	if (ispub)
518		*p++ = MS_PUBLICKEYBLOB;
519	else
520		*p++ = MS_PRIVATEKEYBLOB;
521	*p++ = 0x2;
522	*p++ = 0;
523	*p++ = 0;
524	write_ledword(&p, keyalg);
525	write_ledword(&p, magic);
526	write_ledword(&p, bitlen);
527	if (keyalg == MS_KEYALG_DSS_SIGN)
528		write_dsa(&p, pk->pkey.dsa, ispub);
529	else
530		write_rsa(&p, pk->pkey.rsa, ispub);
531	if (!noinc)
532		*out += outlen;
533	return outlen;
534	}
535
536static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
537	{
538	unsigned char *tmp = NULL;
539	int outlen, wrlen;
540	outlen = do_i2b(&tmp, pk, ispub);
541	if (outlen < 0)
542		return -1;
543	wrlen = BIO_write(out, tmp, outlen);
544	OPENSSL_free(tmp);
545	if (wrlen == outlen)
546		return outlen;
547	return -1;
548	}
549
550static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
551	{
552	int bitlen;
553	bitlen = BN_num_bits(dsa->p);
554	if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160)
555		|| (BN_num_bits(dsa->g) > bitlen))
556		goto badkey;
557	if (ispub)
558		{
559		if (BN_num_bits(dsa->pub_key) > bitlen)
560			goto badkey;
561		*pmagic = MS_DSS1MAGIC;
562		}
563	else
564		{
565		if (BN_num_bits(dsa->priv_key) > 160)
566			goto badkey;
567		*pmagic = MS_DSS2MAGIC;
568		}
569
570	return bitlen;
571	badkey:
572	PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
573	return 0;
574	}
575
576static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
577	{
578	int nbyte, hnbyte, bitlen;
579	if (BN_num_bits(rsa->e) > 32)
580		goto badkey;
581	bitlen = BN_num_bits(rsa->n);
582	nbyte = BN_num_bytes(rsa->n);
583	hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
584	if (ispub)
585		{
586		*pmagic = MS_RSA1MAGIC;
587		return bitlen;
588		}
589	else
590	{
591		*pmagic = MS_RSA2MAGIC;
592		/* For private key each component must fit within nbyte or
593		 * hnbyte.
594		 */
595		if (BN_num_bytes(rsa->d) > nbyte)
596			goto badkey;
597		if ((BN_num_bytes(rsa->iqmp) > hnbyte)
598			|| (BN_num_bytes(rsa->p) > hnbyte)
599			|| (BN_num_bytes(rsa->q) > hnbyte)
600			|| (BN_num_bytes(rsa->dmp1) > hnbyte)
601			|| (BN_num_bytes(rsa->dmq1) > hnbyte))
602			goto badkey;
603	}
604	return bitlen;
605	badkey:
606	PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
607	return 0;
608	}
609
610
611static void write_rsa(unsigned char **out, RSA *rsa, int ispub)
612	{
613	int nbyte, hnbyte;
614	nbyte = BN_num_bytes(rsa->n);
615	hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
616	write_lebn(out, rsa->e, 4);
617	write_lebn(out, rsa->n, -1);
618	if (ispub)
619		return;
620	write_lebn(out, rsa->p, hnbyte);
621	write_lebn(out, rsa->q, hnbyte);
622	write_lebn(out, rsa->dmp1, hnbyte);
623	write_lebn(out, rsa->dmq1, hnbyte);
624	write_lebn(out, rsa->iqmp, hnbyte);
625	write_lebn(out, rsa->d, nbyte);
626	}
627
628
629static void write_dsa(unsigned char **out, DSA *dsa, int ispub)
630	{
631	int nbyte;
632	nbyte = BN_num_bytes(dsa->p);
633	write_lebn(out, dsa->p, nbyte);
634	write_lebn(out, dsa->q, 20);
635	write_lebn(out, dsa->g, nbyte);
636	if (ispub)
637		write_lebn(out, dsa->pub_key, nbyte);
638	else
639		write_lebn(out, dsa->priv_key, 20);
640	/* Set "invalid" for seed structure values */
641	memset(*out, 0xff, 24);
642	*out += 24;
643	return;
644	}
645
646
647int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
648	{
649	return do_i2b_bio(out, pk, 0);
650	}
651
652int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
653	{
654	return do_i2b_bio(out, pk, 1);
655	}
656
657#ifndef OPENSSL_NO_RC4
658
659static int do_PVK_header(const unsigned char **in, unsigned int length,
660		int skip_magic,
661	       	unsigned int *psaltlen, unsigned int *pkeylen)
662
663	{
664	const unsigned char *p = *in;
665	unsigned int pvk_magic, is_encrypted;
666	if (skip_magic)
667		{
668		if (length < 20)
669			{
670			PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
671			return 0;
672			}
673		length -= 20;
674		}
675	else
676		{
677		if (length < 24)
678			{
679			PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
680			return 0;
681			}
682		length -= 24;
683		pvk_magic = read_ledword(&p);
684		if (pvk_magic != MS_PVKMAGIC)
685			{
686			PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER);
687			return 0;
688			}
689		}
690	/* Skip reserved */
691	p += 4;
692	/*keytype = */read_ledword(&p);
693	is_encrypted = read_ledword(&p);
694	*psaltlen = read_ledword(&p);
695	*pkeylen = read_ledword(&p);
696
697	if (is_encrypted && !*psaltlen)
698		{
699		PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER);
700		return 0;
701		}
702
703	*in = p;
704	return 1;
705	}
706
707static int derive_pvk_key(unsigned char *key,
708			const unsigned char *salt, unsigned int saltlen,
709			const unsigned char *pass, int passlen)
710	{
711	EVP_MD_CTX mctx;
712	int rv = 1;
713	EVP_MD_CTX_init(&mctx);
714	if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL)
715		|| !EVP_DigestUpdate(&mctx, salt, saltlen)
716		|| !EVP_DigestUpdate(&mctx, pass, passlen)
717		|| !EVP_DigestFinal_ex(&mctx, key, NULL))
718			rv = 0;
719
720	EVP_MD_CTX_cleanup(&mctx);
721	return rv;
722	}
723
724
725static EVP_PKEY *do_PVK_body(const unsigned char **in,
726		unsigned int saltlen, unsigned int keylen,
727		pem_password_cb *cb, void *u)
728	{
729	EVP_PKEY *ret = NULL;
730	const unsigned char *p = *in;
731	unsigned int magic;
732	unsigned char *enctmp = NULL, *q;
733	EVP_CIPHER_CTX cctx;
734	EVP_CIPHER_CTX_init(&cctx);
735	if (saltlen)
736		{
737		char psbuf[PEM_BUFSIZE];
738		unsigned char keybuf[20];
739		int enctmplen, inlen;
740		if (cb)
741			inlen=cb(psbuf,PEM_BUFSIZE,0,u);
742		else
743			inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u);
744		if (inlen <= 0)
745			{
746			PEMerr(PEM_F_DO_PVK_BODY,PEM_R_BAD_PASSWORD_READ);
747			return NULL;
748			}
749		enctmp = OPENSSL_malloc(keylen + 8);
750		if (!enctmp)
751			{
752			PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE);
753			return NULL;
754			}
755		if (!derive_pvk_key(keybuf, p, saltlen,
756			    (unsigned char *)psbuf, inlen))
757			return NULL;
758		p += saltlen;
759		/* Copy BLOBHEADER across, decrypt rest */
760		memcpy(enctmp, p, 8);
761		p += 8;
762		if (keylen < 8)
763			{
764			PEMerr(PEM_F_DO_PVK_BODY, PEM_R_PVK_TOO_SHORT);
765			return NULL;
766			}
767		inlen = keylen - 8;
768		q = enctmp + 8;
769		if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
770			goto err;
771		if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
772			goto err;
773		if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen))
774			goto err;
775		magic = read_ledword((const unsigned char **)&q);
776		if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
777			{
778			q = enctmp + 8;
779			memset(keybuf + 5, 0, 11);
780			if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf,
781								NULL))
782				goto err;
783			OPENSSL_cleanse(keybuf, 20);
784			if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
785				goto err;
786			if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen,
787								&enctmplen))
788				goto err;
789			magic = read_ledword((const unsigned char **)&q);
790			if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
791				{
792				PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT);
793				goto err;
794				}
795			}
796		else
797			OPENSSL_cleanse(keybuf, 20);
798		p = enctmp;
799		}
800
801	ret = b2i_PrivateKey(&p, keylen);
802	err:
803	EVP_CIPHER_CTX_cleanup(&cctx);
804	if (enctmp && saltlen)
805		OPENSSL_free(enctmp);
806	return ret;
807	}
808
809
810EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u)
811	{
812	unsigned char pvk_hdr[24], *buf = NULL;
813	const unsigned char *p;
814	int buflen;
815	EVP_PKEY *ret = NULL;
816	unsigned int saltlen, keylen;
817	if (BIO_read(in, pvk_hdr, 24) != 24)
818		{
819		PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
820		return NULL;
821		}
822	p = pvk_hdr;
823
824	if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen))
825		return 0;
826	buflen = (int) keylen + saltlen;
827	buf = OPENSSL_malloc(buflen);
828	if (!buf)
829		{
830		PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE);
831		return 0;
832		}
833	p = buf;
834	if (BIO_read(in, buf, buflen) != buflen)
835		{
836		PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
837		goto err;
838		}
839	ret = do_PVK_body(&p, saltlen, keylen, cb, u);
840
841	err:
842	if (buf)
843		{
844		OPENSSL_cleanse(buf, buflen);
845		OPENSSL_free(buf);
846		}
847	return ret;
848	}
849
850
851
852static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel,
853		pem_password_cb *cb, void *u)
854	{
855	int outlen = 24, pklen;
856	unsigned char *p, *salt = NULL;
857	EVP_CIPHER_CTX cctx;
858	EVP_CIPHER_CTX_init(&cctx);
859	if (enclevel)
860		outlen += PVK_SALTLEN;
861	pklen = do_i2b(NULL, pk, 0);
862	if (pklen < 0)
863		return -1;
864	outlen += pklen;
865	if (!out)
866		return outlen;
867	if (*out)
868		p = *out;
869	else
870		{
871		p = OPENSSL_malloc(outlen);
872		if (!p)
873			{
874			PEMerr(PEM_F_I2B_PVK,ERR_R_MALLOC_FAILURE);
875			return -1;
876			}
877		*out = p;
878		}
879
880	write_ledword(&p, MS_PVKMAGIC);
881	write_ledword(&p, 0);
882	if (pk->type == EVP_PKEY_DSA)
883		write_ledword(&p, MS_KEYTYPE_SIGN);
884	else
885		write_ledword(&p, MS_KEYTYPE_KEYX);
886	write_ledword(&p, enclevel ? 1 : 0);
887	write_ledword(&p, enclevel ? PVK_SALTLEN: 0);
888	write_ledword(&p, pklen);
889	if (enclevel)
890		{
891		if (RAND_bytes(p, PVK_SALTLEN) <= 0)
892			goto error;
893		salt = p;
894		p += PVK_SALTLEN;
895		}
896	do_i2b(&p, pk, 0);
897	if (enclevel == 0)
898		return outlen;
899	else
900		{
901		char psbuf[PEM_BUFSIZE];
902		unsigned char keybuf[20];
903		int enctmplen, inlen;
904		if (cb)
905			inlen=cb(psbuf,PEM_BUFSIZE,1,u);
906		else
907			inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,1,u);
908		if (inlen <= 0)
909			{
910			PEMerr(PEM_F_I2B_PVK,PEM_R_BAD_PASSWORD_READ);
911			goto error;
912			}
913		if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN,
914			    (unsigned char *)psbuf, inlen))
915			goto error;
916		if (enclevel == 1)
917			memset(keybuf + 5, 0, 11);
918		p = salt + PVK_SALTLEN + 8;
919		if (!EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
920			goto error;
921		OPENSSL_cleanse(keybuf, 20);
922		if (!EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8))
923			goto error;
924		if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen))
925			goto error;
926		}
927	EVP_CIPHER_CTX_cleanup(&cctx);
928	return outlen;
929
930	error:
931	EVP_CIPHER_CTX_cleanup(&cctx);
932	return -1;
933	}
934
935int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
936		pem_password_cb *cb, void *u)
937	{
938	unsigned char *tmp = NULL;
939	int outlen, wrlen;
940	outlen = i2b_PVK(&tmp, pk, enclevel, cb, u);
941	if (outlen < 0)
942		return -1;
943	wrlen = BIO_write(out, tmp, outlen);
944	OPENSSL_free(tmp);
945	if (wrlen == outlen)
946		{
947		PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE);
948		return outlen;
949		}
950	return -1;
951	}
952
953#endif
954
955#endif
956