ecp_nistp256.c revision 279264
1/* crypto/ec/ecp_nistp256.c */
2/*
3 * Written by Adam Langley (Google) for the OpenSSL project
4 */
5/* Copyright 2011 Google Inc.
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 *
9 * you may not use this file except in compliance with the License.
10 * You may obtain a copy of the License at
11 *
12 *     http://www.apache.org/licenses/LICENSE-2.0
13 *
14 *  Unless required by applicable law or agreed to in writing, software
15 *  distributed under the License is distributed on an "AS IS" BASIS,
16 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 *  See the License for the specific language governing permissions and
18 *  limitations under the License.
19 */
20
21/*
22 * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
23 *
24 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
25 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
26 * work which got its smarts from Daniel J. Bernstein's work on the same.
27 */
28
29#include <openssl/opensslconf.h>
30#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
31
32#ifndef OPENSSL_SYS_VMS
33#include <stdint.h>
34#else
35#include <inttypes.h>
36#endif
37
38#include <string.h>
39#include <openssl/err.h>
40#include "ec_lcl.h"
41
42#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
43  /* even with gcc, the typedef won't work for 32-bit platforms */
44  typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
45  typedef __int128_t int128_t;
46#else
47  #error "Need GCC 3.1 or later to define type uint128_t"
48#endif
49
50typedef uint8_t u8;
51typedef uint32_t u32;
52typedef uint64_t u64;
53typedef int64_t s64;
54
55/* The underlying field.
56 *
57 * P256 operates over GF(2^256-2^224+2^192+2^96-1). We can serialise an element
58 * of this field into 32 bytes. We call this an felem_bytearray. */
59
60typedef u8 felem_bytearray[32];
61
62/* These are the parameters of P256, taken from FIPS 186-3, page 86. These
63 * values are big-endian. */
64static const felem_bytearray nistp256_curve_params[5] = {
65	{0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,       /* p */
66	 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
67	 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
68	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
69	{0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,       /* a = -3 */
70	 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
71	 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
72	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc},      /* b */
73	{0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7,
74	 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
75	 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
76	 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
77	{0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47,       /* x */
78	 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
79	 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
80	 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
81	{0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b,       /* y */
82	 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
83	 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
84	 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
85};
86
87/* The representation of field elements.
88 * ------------------------------------
89 *
90 * We represent field elements with either four 128-bit values, eight 128-bit
91 * values, or four 64-bit values. The field element represented is:
92 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192  (mod p)
93 * or:
94 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512  (mod p)
95 *
96 * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
97 * apart, but are 128-bits wide, the most significant bits of each limb overlap
98 * with the least significant bits of the next.
99 *
100 * A field element with four limbs is an 'felem'. One with eight limbs is a
101 * 'longfelem'
102 *
103 * A field element with four, 64-bit values is called a 'smallfelem'. Small
104 * values are used as intermediate values before multiplication.
105 */
106
107#define NLIMBS 4
108
109typedef uint128_t limb;
110typedef limb felem[NLIMBS];
111typedef limb longfelem[NLIMBS * 2];
112typedef u64 smallfelem[NLIMBS];
113
114/* This is the value of the prime as four 64-bit words, little-endian. */
115static const u64 kPrime[4] = { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
116static const u64 bottom63bits = 0x7ffffffffffffffful;
117
118/* bin32_to_felem takes a little-endian byte array and converts it into felem
119 * form. This assumes that the CPU is little-endian. */
120static void bin32_to_felem(felem out, const u8 in[32])
121	{
122	out[0] = *((u64*) &in[0]);
123	out[1] = *((u64*) &in[8]);
124	out[2] = *((u64*) &in[16]);
125	out[3] = *((u64*) &in[24]);
126	}
127
128/* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian,
129 * 32 byte array. This assumes that the CPU is little-endian. */
130static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
131	{
132	*((u64*) &out[0]) = in[0];
133	*((u64*) &out[8]) = in[1];
134	*((u64*) &out[16]) = in[2];
135	*((u64*) &out[24]) = in[3];
136	}
137
138/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
139static void flip_endian(u8 *out, const u8 *in, unsigned len)
140	{
141	unsigned i;
142	for (i = 0; i < len; ++i)
143		out[i] = in[len-1-i];
144	}
145
146/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
147static int BN_to_felem(felem out, const BIGNUM *bn)
148	{
149	felem_bytearray b_in;
150	felem_bytearray b_out;
151	unsigned num_bytes;
152
153	/* BN_bn2bin eats leading zeroes */
154	memset(b_out, 0, sizeof b_out);
155	num_bytes = BN_num_bytes(bn);
156	if (num_bytes > sizeof b_out)
157		{
158		ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
159		return 0;
160		}
161	if (BN_is_negative(bn))
162		{
163		ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
164		return 0;
165		}
166	num_bytes = BN_bn2bin(bn, b_in);
167	flip_endian(b_out, b_in, num_bytes);
168	bin32_to_felem(out, b_out);
169	return 1;
170	}
171
172/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
173static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
174	{
175	felem_bytearray b_in, b_out;
176	smallfelem_to_bin32(b_in, in);
177	flip_endian(b_out, b_in, sizeof b_out);
178	return BN_bin2bn(b_out, sizeof b_out, out);
179	}
180
181
182/* Field operations
183 * ---------------- */
184
185static void smallfelem_one(smallfelem out)
186	{
187	out[0] = 1;
188	out[1] = 0;
189	out[2] = 0;
190	out[3] = 0;
191	}
192
193static void smallfelem_assign(smallfelem out, const smallfelem in)
194	{
195	out[0] = in[0];
196	out[1] = in[1];
197	out[2] = in[2];
198	out[3] = in[3];
199	}
200
201static void felem_assign(felem out, const felem in)
202	{
203	out[0] = in[0];
204	out[1] = in[1];
205	out[2] = in[2];
206	out[3] = in[3];
207	}
208
209/* felem_sum sets out = out + in. */
210static void felem_sum(felem out, const felem in)
211	{
212	out[0] += in[0];
213	out[1] += in[1];
214	out[2] += in[2];
215	out[3] += in[3];
216	}
217
218/* felem_small_sum sets out = out + in. */
219static void felem_small_sum(felem out, const smallfelem in)
220	{
221	out[0] += in[0];
222	out[1] += in[1];
223	out[2] += in[2];
224	out[3] += in[3];
225	}
226
227/* felem_scalar sets out = out * scalar */
228static void felem_scalar(felem out, const u64 scalar)
229	{
230	out[0] *= scalar;
231	out[1] *= scalar;
232	out[2] *= scalar;
233	out[3] *= scalar;
234	}
235
236/* longfelem_scalar sets out = out * scalar */
237static void longfelem_scalar(longfelem out, const u64 scalar)
238	{
239	out[0] *= scalar;
240	out[1] *= scalar;
241	out[2] *= scalar;
242	out[3] *= scalar;
243	out[4] *= scalar;
244	out[5] *= scalar;
245	out[6] *= scalar;
246	out[7] *= scalar;
247	}
248
249#define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
250#define two105 (((limb)1) << 105)
251#define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
252
253/* zero105 is 0 mod p */
254static const felem zero105 = { two105m41m9, two105, two105m41p9, two105m41p9 };
255
256/* smallfelem_neg sets |out| to |-small|
257 * On exit:
258 *   out[i] < out[i] + 2^105
259 */
260static void smallfelem_neg(felem out, const smallfelem small)
261	{
262	/* In order to prevent underflow, we subtract from 0 mod p. */
263	out[0] = zero105[0] - small[0];
264	out[1] = zero105[1] - small[1];
265	out[2] = zero105[2] - small[2];
266	out[3] = zero105[3] - small[3];
267	}
268
269/* felem_diff subtracts |in| from |out|
270 * On entry:
271 *   in[i] < 2^104
272 * On exit:
273 *   out[i] < out[i] + 2^105
274 */
275static void felem_diff(felem out, const felem in)
276	{
277	/* In order to prevent underflow, we add 0 mod p before subtracting. */
278	out[0] += zero105[0];
279	out[1] += zero105[1];
280	out[2] += zero105[2];
281	out[3] += zero105[3];
282
283	out[0] -= in[0];
284	out[1] -= in[1];
285	out[2] -= in[2];
286	out[3] -= in[3];
287	}
288
289#define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
290#define two107 (((limb)1) << 107)
291#define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
292
293/* zero107 is 0 mod p */
294static const felem zero107 = { two107m43m11, two107, two107m43p11, two107m43p11 };
295
296/* An alternative felem_diff for larger inputs |in|
297 * felem_diff_zero107 subtracts |in| from |out|
298 * On entry:
299 *   in[i] < 2^106
300 * On exit:
301 *   out[i] < out[i] + 2^107
302 */
303static void felem_diff_zero107(felem out, const felem in)
304	{
305	/* In order to prevent underflow, we add 0 mod p before subtracting. */
306	out[0] += zero107[0];
307	out[1] += zero107[1];
308	out[2] += zero107[2];
309	out[3] += zero107[3];
310
311	out[0] -= in[0];
312	out[1] -= in[1];
313	out[2] -= in[2];
314	out[3] -= in[3];
315	}
316
317/* longfelem_diff subtracts |in| from |out|
318 * On entry:
319 *   in[i] < 7*2^67
320 * On exit:
321 *   out[i] < out[i] + 2^70 + 2^40
322 */
323static void longfelem_diff(longfelem out, const longfelem in)
324	{
325	static const limb two70m8p6 = (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6);
326	static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40);
327	static const limb two70 = (((limb)1) << 70);
328	static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) - (((limb)1) << 38) + (((limb)1) << 6);
329	static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6);
330
331	/* add 0 mod p to avoid underflow */
332	out[0] += two70m8p6;
333	out[1] += two70p40;
334	out[2] += two70;
335	out[3] += two70m40m38p6;
336	out[4] += two70m6;
337	out[5] += two70m6;
338	out[6] += two70m6;
339	out[7] += two70m6;
340
341	/* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
342	out[0] -= in[0];
343	out[1] -= in[1];
344	out[2] -= in[2];
345	out[3] -= in[3];
346	out[4] -= in[4];
347	out[5] -= in[5];
348	out[6] -= in[6];
349	out[7] -= in[7];
350	}
351
352#define two64m0 (((limb)1) << 64) - 1
353#define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
354#define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
355#define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
356
357/* zero110 is 0 mod p */
358static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
359
360/* felem_shrink converts an felem into a smallfelem. The result isn't quite
361 * minimal as the value may be greater than p.
362 *
363 * On entry:
364 *   in[i] < 2^109
365 * On exit:
366 *   out[i] < 2^64
367 */
368static void felem_shrink(smallfelem out, const felem in)
369	{
370	felem tmp;
371	u64 a, b, mask;
372	s64 high, low;
373	static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
374
375	/* Carry 2->3 */
376	tmp[3] = zero110[3] + in[3] + ((u64) (in[2] >> 64));
377	/* tmp[3] < 2^110 */
378
379	tmp[2] = zero110[2] + (u64) in[2];
380	tmp[0] = zero110[0] + in[0];
381	tmp[1] = zero110[1] + in[1];
382	/* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
383
384	/* We perform two partial reductions where we eliminate the
385	 * high-word of tmp[3]. We don't update the other words till the end.
386	 */
387	a = tmp[3] >> 64; /* a < 2^46 */
388	tmp[3] = (u64) tmp[3];
389	tmp[3] -= a;
390	tmp[3] += ((limb)a) << 32;
391	/* tmp[3] < 2^79 */
392
393	b = a;
394	a = tmp[3] >> 64; /* a < 2^15 */
395	b += a; /* b < 2^46 + 2^15 < 2^47 */
396	tmp[3] = (u64) tmp[3];
397	tmp[3] -= a;
398	tmp[3] += ((limb)a) << 32;
399	/* tmp[3] < 2^64 + 2^47 */
400
401	/* This adjusts the other two words to complete the two partial
402	 * reductions. */
403	tmp[0] += b;
404	tmp[1] -= (((limb)b) << 32);
405
406	/* In order to make space in tmp[3] for the carry from 2 -> 3, we
407	 * conditionally subtract kPrime if tmp[3] is large enough. */
408	high = tmp[3] >> 64;
409	/* As tmp[3] < 2^65, high is either 1 or 0 */
410	high <<= 63;
411	high >>= 63;
412	/* high is:
413	 *   all ones   if the high word of tmp[3] is 1
414	 *   all zeros  if the high word of tmp[3] if 0 */
415	low = tmp[3];
416	mask = low >> 63;
417	/* mask is:
418	 *   all ones   if the MSB of low is 1
419	 *   all zeros  if the MSB of low if 0 */
420	low &= bottom63bits;
421	low -= kPrime3Test;
422	/* if low was greater than kPrime3Test then the MSB is zero */
423	low = ~low;
424	low >>= 63;
425	/* low is:
426	 *   all ones   if low was > kPrime3Test
427	 *   all zeros  if low was <= kPrime3Test */
428	mask = (mask & low) | high;
429	tmp[0] -= mask & kPrime[0];
430	tmp[1] -= mask & kPrime[1];
431	/* kPrime[2] is zero, so omitted */
432	tmp[3] -= mask & kPrime[3];
433	/* tmp[3] < 2**64 - 2**32 + 1 */
434
435	tmp[1] += ((u64) (tmp[0] >> 64)); tmp[0] = (u64) tmp[0];
436	tmp[2] += ((u64) (tmp[1] >> 64)); tmp[1] = (u64) tmp[1];
437	tmp[3] += ((u64) (tmp[2] >> 64)); tmp[2] = (u64) tmp[2];
438	/* tmp[i] < 2^64 */
439
440	out[0] = tmp[0];
441	out[1] = tmp[1];
442	out[2] = tmp[2];
443	out[3] = tmp[3];
444	}
445
446/* smallfelem_expand converts a smallfelem to an felem */
447static void smallfelem_expand(felem out, const smallfelem in)
448	{
449	out[0] = in[0];
450	out[1] = in[1];
451	out[2] = in[2];
452	out[3] = in[3];
453	}
454
455/* smallfelem_square sets |out| = |small|^2
456 * On entry:
457 *   small[i] < 2^64
458 * On exit:
459 *   out[i] < 7 * 2^64 < 2^67
460 */
461static void smallfelem_square(longfelem out, const smallfelem small)
462	{
463	limb a;
464	u64 high, low;
465
466	a = ((uint128_t) small[0]) * small[0];
467	low = a;
468	high = a >> 64;
469	out[0] = low;
470	out[1] = high;
471
472	a = ((uint128_t) small[0]) * small[1];
473	low = a;
474	high = a >> 64;
475	out[1] += low;
476	out[1] += low;
477	out[2] = high;
478
479	a = ((uint128_t) small[0]) * small[2];
480	low = a;
481	high = a >> 64;
482	out[2] += low;
483	out[2] *= 2;
484	out[3] = high;
485
486	a = ((uint128_t) small[0]) * small[3];
487	low = a;
488	high = a >> 64;
489	out[3] += low;
490	out[4] = high;
491
492	a = ((uint128_t) small[1]) * small[2];
493	low = a;
494	high = a >> 64;
495	out[3] += low;
496	out[3] *= 2;
497	out[4] += high;
498
499	a = ((uint128_t) small[1]) * small[1];
500	low = a;
501	high = a >> 64;
502	out[2] += low;
503	out[3] += high;
504
505	a = ((uint128_t) small[1]) * small[3];
506	low = a;
507	high = a >> 64;
508	out[4] += low;
509	out[4] *= 2;
510	out[5] = high;
511
512	a = ((uint128_t) small[2]) * small[3];
513	low = a;
514	high = a >> 64;
515	out[5] += low;
516	out[5] *= 2;
517	out[6] = high;
518	out[6] += high;
519
520	a = ((uint128_t) small[2]) * small[2];
521	low = a;
522	high = a >> 64;
523	out[4] += low;
524	out[5] += high;
525
526	a = ((uint128_t) small[3]) * small[3];
527	low = a;
528	high = a >> 64;
529	out[6] += low;
530	out[7] = high;
531	}
532
533/* felem_square sets |out| = |in|^2
534 * On entry:
535 *   in[i] < 2^109
536 * On exit:
537 *   out[i] < 7 * 2^64 < 2^67
538 */
539static void felem_square(longfelem out, const felem in)
540	{
541	u64 small[4];
542	felem_shrink(small, in);
543	smallfelem_square(out, small);
544	}
545
546/* smallfelem_mul sets |out| = |small1| * |small2|
547 * On entry:
548 *   small1[i] < 2^64
549 *   small2[i] < 2^64
550 * On exit:
551 *   out[i] < 7 * 2^64 < 2^67
552 */
553static void smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2)
554	{
555	limb a;
556	u64 high, low;
557
558	a = ((uint128_t) small1[0]) * small2[0];
559	low = a;
560	high = a >> 64;
561	out[0] = low;
562	out[1] = high;
563
564
565	a = ((uint128_t) small1[0]) * small2[1];
566	low = a;
567	high = a >> 64;
568	out[1] += low;
569	out[2] = high;
570
571	a = ((uint128_t) small1[1]) * small2[0];
572	low = a;
573	high = a >> 64;
574	out[1] += low;
575	out[2] += high;
576
577
578	a = ((uint128_t) small1[0]) * small2[2];
579	low = a;
580	high = a >> 64;
581	out[2] += low;
582	out[3] = high;
583
584	a = ((uint128_t) small1[1]) * small2[1];
585	low = a;
586	high = a >> 64;
587	out[2] += low;
588	out[3] += high;
589
590	a = ((uint128_t) small1[2]) * small2[0];
591	low = a;
592	high = a >> 64;
593	out[2] += low;
594	out[3] += high;
595
596
597	a = ((uint128_t) small1[0]) * small2[3];
598	low = a;
599	high = a >> 64;
600	out[3] += low;
601	out[4] = high;
602
603	a = ((uint128_t) small1[1]) * small2[2];
604	low = a;
605	high = a >> 64;
606	out[3] += low;
607	out[4] += high;
608
609	a = ((uint128_t) small1[2]) * small2[1];
610	low = a;
611	high = a >> 64;
612	out[3] += low;
613	out[4] += high;
614
615	a = ((uint128_t) small1[3]) * small2[0];
616	low = a;
617	high = a >> 64;
618	out[3] += low;
619	out[4] += high;
620
621
622	a = ((uint128_t) small1[1]) * small2[3];
623	low = a;
624	high = a >> 64;
625	out[4] += low;
626	out[5] = high;
627
628	a = ((uint128_t) small1[2]) * small2[2];
629	low = a;
630	high = a >> 64;
631	out[4] += low;
632	out[5] += high;
633
634	a = ((uint128_t) small1[3]) * small2[1];
635	low = a;
636	high = a >> 64;
637	out[4] += low;
638	out[5] += high;
639
640
641	a = ((uint128_t) small1[2]) * small2[3];
642	low = a;
643	high = a >> 64;
644	out[5] += low;
645	out[6] = high;
646
647	a = ((uint128_t) small1[3]) * small2[2];
648	low = a;
649	high = a >> 64;
650	out[5] += low;
651	out[6] += high;
652
653
654	a = ((uint128_t) small1[3]) * small2[3];
655	low = a;
656	high = a >> 64;
657	out[6] += low;
658	out[7] = high;
659	}
660
661/* felem_mul sets |out| = |in1| * |in2|
662 * On entry:
663 *   in1[i] < 2^109
664 *   in2[i] < 2^109
665 * On exit:
666 *   out[i] < 7 * 2^64 < 2^67
667 */
668static void felem_mul(longfelem out, const felem in1, const felem in2)
669	{
670	smallfelem small1, small2;
671	felem_shrink(small1, in1);
672	felem_shrink(small2, in2);
673	smallfelem_mul(out, small1, small2);
674	}
675
676/* felem_small_mul sets |out| = |small1| * |in2|
677 * On entry:
678 *   small1[i] < 2^64
679 *   in2[i] < 2^109
680 * On exit:
681 *   out[i] < 7 * 2^64 < 2^67
682 */
683static void felem_small_mul(longfelem out, const smallfelem small1, const felem in2)
684	{
685	smallfelem small2;
686	felem_shrink(small2, in2);
687	smallfelem_mul(out, small1, small2);
688	}
689
690#define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
691#define two100 (((limb)1) << 100)
692#define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
693/* zero100 is 0 mod p */
694static const felem zero100 = { two100m36m4, two100, two100m36p4, two100m36p4 };
695
696/* Internal function for the different flavours of felem_reduce.
697 * felem_reduce_ reduces the higher coefficients in[4]-in[7].
698 * On entry:
699 *   out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
700 *   out[1] >= in[7] + 2^32*in[4]
701 *   out[2] >= in[5] + 2^32*in[5]
702 *   out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
703 * On exit:
704 *   out[0] <= out[0] + in[4] + 2^32*in[5]
705 *   out[1] <= out[1] + in[5] + 2^33*in[6]
706 *   out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
707 *   out[3] <= out[3] + 2^32*in[4] + 3*in[7]
708 */
709static void felem_reduce_(felem out, const longfelem in)
710	{
711	int128_t c;
712	/* combine common terms from below */
713	c = in[4] + (in[5] << 32);
714	out[0] += c;
715	out[3] -= c;
716
717	c = in[5] - in[7];
718	out[1] += c;
719	out[2] -= c;
720
721	/* the remaining terms */
722	/* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
723	out[1] -= (in[4] << 32);
724	out[3] += (in[4] << 32);
725
726	/* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
727	out[2] -= (in[5] << 32);
728
729	/* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
730	out[0] -= in[6];
731	out[0] -= (in[6] << 32);
732	out[1] += (in[6] << 33);
733	out[2] += (in[6] * 2);
734	out[3] -= (in[6] << 32);
735
736	/* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
737	out[0] -= in[7];
738	out[0] -= (in[7] << 32);
739	out[2] += (in[7] << 33);
740	out[3] += (in[7] * 3);
741	}
742
743/* felem_reduce converts a longfelem into an felem.
744 * To be called directly after felem_square or felem_mul.
745 * On entry:
746 *   in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
747 *   in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
748 * On exit:
749 *   out[i] < 2^101
750 */
751static void felem_reduce(felem out, const longfelem in)
752	{
753	out[0] = zero100[0] + in[0];
754	out[1] = zero100[1] + in[1];
755	out[2] = zero100[2] + in[2];
756	out[3] = zero100[3] + in[3];
757
758	felem_reduce_(out, in);
759
760	/* out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
761	 * out[1] > 2^100 - 2^64 - 7*2^96 > 0
762	 * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
763	 * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
764	 *
765	 * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
766	 * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
767	 * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
768	 * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
769	 */
770	}
771
772/* felem_reduce_zero105 converts a larger longfelem into an felem.
773 * On entry:
774 *   in[0] < 2^71
775 * On exit:
776 *   out[i] < 2^106
777 */
778static void felem_reduce_zero105(felem out, const longfelem in)
779	{
780	out[0] = zero105[0] + in[0];
781	out[1] = zero105[1] + in[1];
782	out[2] = zero105[2] + in[2];
783	out[3] = zero105[3] + in[3];
784
785	felem_reduce_(out, in);
786
787	/* out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
788	 * out[1] > 2^105 - 2^71 - 2^103 > 0
789	 * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
790	 * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
791	 *
792	 * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
793	 * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
794	 * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
795	 * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
796	 */
797	}
798
799/* subtract_u64 sets *result = *result - v and *carry to one if the subtraction
800 * underflowed. */
801static void subtract_u64(u64* result, u64* carry, u64 v)
802	{
803	uint128_t r = *result;
804	r -= v;
805	*carry = (r >> 64) & 1;
806	*result = (u64) r;
807	}
808
809/* felem_contract converts |in| to its unique, minimal representation.
810 * On entry:
811 *   in[i] < 2^109
812 */
813static void felem_contract(smallfelem out, const felem in)
814	{
815	unsigned i;
816	u64 all_equal_so_far = 0, result = 0, carry;
817
818	felem_shrink(out, in);
819	/* small is minimal except that the value might be > p */
820
821	all_equal_so_far--;
822	/* We are doing a constant time test if out >= kPrime. We need to
823	 * compare each u64, from most-significant to least significant. For
824	 * each one, if all words so far have been equal (m is all ones) then a
825	 * non-equal result is the answer. Otherwise we continue. */
826	for (i = 3; i < 4; i--)
827		{
828		u64 equal;
829		uint128_t a = ((uint128_t) kPrime[i]) - out[i];
830		/* if out[i] > kPrime[i] then a will underflow and the high
831		 * 64-bits will all be set. */
832		result |= all_equal_so_far & ((u64) (a >> 64));
833
834		/* if kPrime[i] == out[i] then |equal| will be all zeros and
835		 * the decrement will make it all ones. */
836		equal = kPrime[i] ^ out[i];
837		equal--;
838		equal &= equal << 32;
839		equal &= equal << 16;
840		equal &= equal << 8;
841		equal &= equal << 4;
842		equal &= equal << 2;
843		equal &= equal << 1;
844		equal = ((s64) equal) >> 63;
845
846		all_equal_so_far &= equal;
847		}
848
849	/* if all_equal_so_far is still all ones then the two values are equal
850	 * and so out >= kPrime is true. */
851	result |= all_equal_so_far;
852
853	/* if out >= kPrime then we subtract kPrime. */
854	subtract_u64(&out[0], &carry, result & kPrime[0]);
855	subtract_u64(&out[1], &carry, carry);
856	subtract_u64(&out[2], &carry, carry);
857	subtract_u64(&out[3], &carry, carry);
858
859	subtract_u64(&out[1], &carry, result & kPrime[1]);
860	subtract_u64(&out[2], &carry, carry);
861	subtract_u64(&out[3], &carry, carry);
862
863	subtract_u64(&out[2], &carry, result & kPrime[2]);
864	subtract_u64(&out[3], &carry, carry);
865
866	subtract_u64(&out[3], &carry, result & kPrime[3]);
867	}
868
869static void smallfelem_square_contract(smallfelem out, const smallfelem in)
870	{
871	longfelem longtmp;
872	felem tmp;
873
874	smallfelem_square(longtmp, in);
875	felem_reduce(tmp, longtmp);
876	felem_contract(out, tmp);
877	}
878
879static void smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem in2)
880	{
881	longfelem longtmp;
882	felem tmp;
883
884	smallfelem_mul(longtmp, in1, in2);
885	felem_reduce(tmp, longtmp);
886	felem_contract(out, tmp);
887	}
888
889/* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
890 * otherwise.
891 * On entry:
892 *   small[i] < 2^64
893 */
894static limb smallfelem_is_zero(const smallfelem small)
895	{
896	limb result;
897	u64 is_p;
898
899	u64 is_zero = small[0] | small[1] | small[2] | small[3];
900	is_zero--;
901	is_zero &= is_zero << 32;
902	is_zero &= is_zero << 16;
903	is_zero &= is_zero << 8;
904	is_zero &= is_zero << 4;
905	is_zero &= is_zero << 2;
906	is_zero &= is_zero << 1;
907	is_zero = ((s64) is_zero) >> 63;
908
909	is_p = (small[0] ^ kPrime[0]) |
910	       (small[1] ^ kPrime[1]) |
911	       (small[2] ^ kPrime[2]) |
912	       (small[3] ^ kPrime[3]);
913	is_p--;
914	is_p &= is_p << 32;
915	is_p &= is_p << 16;
916	is_p &= is_p << 8;
917	is_p &= is_p << 4;
918	is_p &= is_p << 2;
919	is_p &= is_p << 1;
920	is_p = ((s64) is_p) >> 63;
921
922	is_zero |= is_p;
923
924	result = is_zero;
925	result |= ((limb) is_zero) << 64;
926	return result;
927	}
928
929static int smallfelem_is_zero_int(const smallfelem small)
930	{
931	return (int) (smallfelem_is_zero(small) & ((limb)1));
932	}
933
934/* felem_inv calculates |out| = |in|^{-1}
935 *
936 * Based on Fermat's Little Theorem:
937 *   a^p = a (mod p)
938 *   a^{p-1} = 1 (mod p)
939 *   a^{p-2} = a^{-1} (mod p)
940 */
941static void felem_inv(felem out, const felem in)
942	{
943	felem ftmp, ftmp2;
944	/* each e_I will hold |in|^{2^I - 1} */
945	felem e2, e4, e8, e16, e32, e64;
946	longfelem tmp;
947	unsigned i;
948
949	felem_square(tmp, in); felem_reduce(ftmp, tmp);			/* 2^1 */
950	felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);		/* 2^2 - 2^0 */
951	felem_assign(e2, ftmp);
952	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);		/* 2^3 - 2^1 */
953	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);		/* 2^4 - 2^2 */
954	felem_mul(tmp, ftmp, e2); felem_reduce(ftmp, tmp);		/* 2^4 - 2^0 */
955	felem_assign(e4, ftmp);
956	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);		/* 2^5 - 2^1 */
957	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);		/* 2^6 - 2^2 */
958	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);		/* 2^7 - 2^3 */
959	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);		/* 2^8 - 2^4 */
960	felem_mul(tmp, ftmp, e4); felem_reduce(ftmp, tmp);		/* 2^8 - 2^0 */
961	felem_assign(e8, ftmp);
962	for (i = 0; i < 8; i++) {
963		felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
964	}								/* 2^16 - 2^8 */
965	felem_mul(tmp, ftmp, e8); felem_reduce(ftmp, tmp);		/* 2^16 - 2^0 */
966	felem_assign(e16, ftmp);
967	for (i = 0; i < 16; i++) {
968		felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
969	}								/* 2^32 - 2^16 */
970	felem_mul(tmp, ftmp, e16); felem_reduce(ftmp, tmp);		/* 2^32 - 2^0 */
971	felem_assign(e32, ftmp);
972	for (i = 0; i < 32; i++) {
973		felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
974	}								/* 2^64 - 2^32 */
975	felem_assign(e64, ftmp);
976	felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp);		/* 2^64 - 2^32 + 2^0 */
977	for (i = 0; i < 192; i++) {
978		felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
979	}								/* 2^256 - 2^224 + 2^192 */
980
981	felem_mul(tmp, e64, e32); felem_reduce(ftmp2, tmp);		/* 2^64 - 2^0 */
982	for (i = 0; i < 16; i++) {
983		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
984	}								/* 2^80 - 2^16 */
985	felem_mul(tmp, ftmp2, e16); felem_reduce(ftmp2, tmp);		/* 2^80 - 2^0 */
986	for (i = 0; i < 8; i++) {
987		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
988	}								/* 2^88 - 2^8 */
989	felem_mul(tmp, ftmp2, e8); felem_reduce(ftmp2, tmp);		/* 2^88 - 2^0 */
990	for (i = 0; i < 4; i++) {
991		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
992	}								/* 2^92 - 2^4 */
993	felem_mul(tmp, ftmp2, e4); felem_reduce(ftmp2, tmp);		/* 2^92 - 2^0 */
994	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		/* 2^93 - 2^1 */
995	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		/* 2^94 - 2^2 */
996	felem_mul(tmp, ftmp2, e2); felem_reduce(ftmp2, tmp);		/* 2^94 - 2^0 */
997	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		/* 2^95 - 2^1 */
998	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		/* 2^96 - 2^2 */
999	felem_mul(tmp, ftmp2, in); felem_reduce(ftmp2, tmp);		/* 2^96 - 3 */
1000
1001	felem_mul(tmp, ftmp2, ftmp); felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
1002	}
1003
1004static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
1005	{
1006	felem tmp;
1007
1008	smallfelem_expand(tmp, in);
1009	felem_inv(tmp, tmp);
1010	felem_contract(out, tmp);
1011	}
1012
1013/* Group operations
1014 * ----------------
1015 *
1016 * Building on top of the field operations we have the operations on the
1017 * elliptic curve group itself. Points on the curve are represented in Jacobian
1018 * coordinates */
1019
1020/* point_double calculates 2*(x_in, y_in, z_in)
1021 *
1022 * The method is taken from:
1023 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1024 *
1025 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1026 * while x_out == y_in is not (maybe this works, but it's not tested). */
1027static void
1028point_double(felem x_out, felem y_out, felem z_out,
1029	     const felem x_in, const felem y_in, const felem z_in)
1030	{
1031	longfelem tmp, tmp2;
1032	felem delta, gamma, beta, alpha, ftmp, ftmp2;
1033	smallfelem small1, small2;
1034
1035	felem_assign(ftmp, x_in);
1036	/* ftmp[i] < 2^106 */
1037	felem_assign(ftmp2, x_in);
1038	/* ftmp2[i] < 2^106 */
1039
1040	/* delta = z^2 */
1041	felem_square(tmp, z_in);
1042	felem_reduce(delta, tmp);
1043	/* delta[i] < 2^101 */
1044
1045	/* gamma = y^2 */
1046	felem_square(tmp, y_in);
1047	felem_reduce(gamma, tmp);
1048	/* gamma[i] < 2^101 */
1049	felem_shrink(small1, gamma);
1050
1051	/* beta = x*gamma */
1052	felem_small_mul(tmp, small1, x_in);
1053	felem_reduce(beta, tmp);
1054	/* beta[i] < 2^101 */
1055
1056	/* alpha = 3*(x-delta)*(x+delta) */
1057	felem_diff(ftmp, delta);
1058	/* ftmp[i] < 2^105 + 2^106 < 2^107 */
1059	felem_sum(ftmp2, delta);
1060	/* ftmp2[i] < 2^105 + 2^106 < 2^107 */
1061	felem_scalar(ftmp2, 3);
1062	/* ftmp2[i] < 3 * 2^107 < 2^109 */
1063	felem_mul(tmp, ftmp, ftmp2);
1064	felem_reduce(alpha, tmp);
1065	/* alpha[i] < 2^101 */
1066	felem_shrink(small2, alpha);
1067
1068	/* x' = alpha^2 - 8*beta */
1069	smallfelem_square(tmp, small2);
1070	felem_reduce(x_out, tmp);
1071	felem_assign(ftmp, beta);
1072	felem_scalar(ftmp, 8);
1073	/* ftmp[i] < 8 * 2^101 = 2^104 */
1074	felem_diff(x_out, ftmp);
1075	/* x_out[i] < 2^105 + 2^101 < 2^106 */
1076
1077	/* z' = (y + z)^2 - gamma - delta */
1078	felem_sum(delta, gamma);
1079	/* delta[i] < 2^101 + 2^101 = 2^102 */
1080	felem_assign(ftmp, y_in);
1081	felem_sum(ftmp, z_in);
1082	/* ftmp[i] < 2^106 + 2^106 = 2^107 */
1083	felem_square(tmp, ftmp);
1084	felem_reduce(z_out, tmp);
1085	felem_diff(z_out, delta);
1086	/* z_out[i] < 2^105 + 2^101 < 2^106 */
1087
1088	/* y' = alpha*(4*beta - x') - 8*gamma^2 */
1089	felem_scalar(beta, 4);
1090	/* beta[i] < 4 * 2^101 = 2^103 */
1091	felem_diff_zero107(beta, x_out);
1092	/* beta[i] < 2^107 + 2^103 < 2^108 */
1093	felem_small_mul(tmp, small2, beta);
1094	/* tmp[i] < 7 * 2^64 < 2^67 */
1095	smallfelem_square(tmp2, small1);
1096	/* tmp2[i] < 7 * 2^64 */
1097	longfelem_scalar(tmp2, 8);
1098	/* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1099	longfelem_diff(tmp, tmp2);
1100	/* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1101	felem_reduce_zero105(y_out, tmp);
1102	/* y_out[i] < 2^106 */
1103	}
1104
1105/* point_double_small is the same as point_double, except that it operates on
1106 * smallfelems */
1107static void
1108point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
1109		   const smallfelem x_in, const smallfelem y_in, const smallfelem z_in)
1110	{
1111	felem felem_x_out, felem_y_out, felem_z_out;
1112	felem felem_x_in, felem_y_in, felem_z_in;
1113
1114	smallfelem_expand(felem_x_in, x_in);
1115	smallfelem_expand(felem_y_in, y_in);
1116	smallfelem_expand(felem_z_in, z_in);
1117	point_double(felem_x_out, felem_y_out, felem_z_out,
1118		     felem_x_in, felem_y_in, felem_z_in);
1119	felem_shrink(x_out, felem_x_out);
1120	felem_shrink(y_out, felem_y_out);
1121	felem_shrink(z_out, felem_z_out);
1122	}
1123
1124/* copy_conditional copies in to out iff mask is all ones. */
1125static void
1126copy_conditional(felem out, const felem in, limb mask)
1127	{
1128	unsigned i;
1129	for (i = 0; i < NLIMBS; ++i)
1130		{
1131		const limb tmp = mask & (in[i] ^ out[i]);
1132		out[i] ^= tmp;
1133		}
1134	}
1135
1136/* copy_small_conditional copies in to out iff mask is all ones. */
1137static void
1138copy_small_conditional(felem out, const smallfelem in, limb mask)
1139	{
1140	unsigned i;
1141	const u64 mask64 = mask;
1142	for (i = 0; i < NLIMBS; ++i)
1143		{
1144		out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
1145		}
1146	}
1147
1148/* point_add calcuates (x1, y1, z1) + (x2, y2, z2)
1149 *
1150 * The method is taken from:
1151 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1152 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1153 *
1154 * This function includes a branch for checking whether the two input points
1155 * are equal, (while not equal to the point at infinity). This case never
1156 * happens during single point multiplication, so there is no timing leak for
1157 * ECDH or ECDSA signing. */
1158static void point_add(felem x3, felem y3, felem z3,
1159	const felem x1, const felem y1, const felem z1,
1160	const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2)
1161	{
1162	felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1163	longfelem tmp, tmp2;
1164	smallfelem small1, small2, small3, small4, small5;
1165	limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1166
1167	felem_shrink(small3, z1);
1168
1169	z1_is_zero = smallfelem_is_zero(small3);
1170	z2_is_zero = smallfelem_is_zero(z2);
1171
1172	/* ftmp = z1z1 = z1**2 */
1173	smallfelem_square(tmp, small3);
1174	felem_reduce(ftmp, tmp);
1175	/* ftmp[i] < 2^101 */
1176	felem_shrink(small1, ftmp);
1177
1178	if(!mixed)
1179		{
1180		/* ftmp2 = z2z2 = z2**2 */
1181		smallfelem_square(tmp, z2);
1182		felem_reduce(ftmp2, tmp);
1183		/* ftmp2[i] < 2^101 */
1184		felem_shrink(small2, ftmp2);
1185
1186		felem_shrink(small5, x1);
1187
1188		/* u1 = ftmp3 = x1*z2z2 */
1189		smallfelem_mul(tmp, small5, small2);
1190		felem_reduce(ftmp3, tmp);
1191		/* ftmp3[i] < 2^101 */
1192
1193		/* ftmp5 = z1 + z2 */
1194		felem_assign(ftmp5, z1);
1195		felem_small_sum(ftmp5, z2);
1196		/* ftmp5[i] < 2^107 */
1197
1198		/* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1199		felem_square(tmp, ftmp5);
1200		felem_reduce(ftmp5, tmp);
1201		/* ftmp2 = z2z2 + z1z1 */
1202		felem_sum(ftmp2, ftmp);
1203		/* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1204		felem_diff(ftmp5, ftmp2);
1205		/* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1206
1207		/* ftmp2 = z2 * z2z2 */
1208		smallfelem_mul(tmp, small2, z2);
1209		felem_reduce(ftmp2, tmp);
1210
1211		/* s1 = ftmp2 = y1 * z2**3 */
1212		felem_mul(tmp, y1, ftmp2);
1213		felem_reduce(ftmp6, tmp);
1214		/* ftmp6[i] < 2^101 */
1215		}
1216	else
1217		{
1218		/* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
1219
1220		/* u1 = ftmp3 = x1*z2z2 */
1221		felem_assign(ftmp3, x1);
1222		/* ftmp3[i] < 2^106 */
1223
1224		/* ftmp5 = 2z1z2 */
1225		felem_assign(ftmp5, z1);
1226		felem_scalar(ftmp5, 2);
1227		/* ftmp5[i] < 2*2^106 = 2^107 */
1228
1229		/* s1 = ftmp2 = y1 * z2**3 */
1230		felem_assign(ftmp6, y1);
1231		/* ftmp6[i] < 2^106 */
1232		}
1233
1234	/* u2 = x2*z1z1 */
1235	smallfelem_mul(tmp, x2, small1);
1236	felem_reduce(ftmp4, tmp);
1237
1238	/* h = ftmp4 = u2 - u1 */
1239	felem_diff_zero107(ftmp4, ftmp3);
1240	/* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1241	felem_shrink(small4, ftmp4);
1242
1243	x_equal = smallfelem_is_zero(small4);
1244
1245	/* z_out = ftmp5 * h */
1246	felem_small_mul(tmp, small4, ftmp5);
1247	felem_reduce(z_out, tmp);
1248	/* z_out[i] < 2^101 */
1249
1250	/* ftmp = z1 * z1z1 */
1251	smallfelem_mul(tmp, small1, small3);
1252	felem_reduce(ftmp, tmp);
1253
1254	/* s2 = tmp = y2 * z1**3 */
1255	felem_small_mul(tmp, y2, ftmp);
1256	felem_reduce(ftmp5, tmp);
1257
1258	/* r = ftmp5 = (s2 - s1)*2 */
1259	felem_diff_zero107(ftmp5, ftmp6);
1260	/* ftmp5[i] < 2^107 + 2^107 = 2^108*/
1261	felem_scalar(ftmp5, 2);
1262	/* ftmp5[i] < 2^109 */
1263	felem_shrink(small1, ftmp5);
1264	y_equal = smallfelem_is_zero(small1);
1265
1266	if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
1267		{
1268		point_double(x3, y3, z3, x1, y1, z1);
1269		return;
1270		}
1271
1272	/* I = ftmp = (2h)**2 */
1273	felem_assign(ftmp, ftmp4);
1274	felem_scalar(ftmp, 2);
1275	/* ftmp[i] < 2*2^108 = 2^109 */
1276	felem_square(tmp, ftmp);
1277	felem_reduce(ftmp, tmp);
1278
1279	/* J = ftmp2 = h * I */
1280	felem_mul(tmp, ftmp4, ftmp);
1281	felem_reduce(ftmp2, tmp);
1282
1283	/* V = ftmp4 = U1 * I */
1284	felem_mul(tmp, ftmp3, ftmp);
1285	felem_reduce(ftmp4, tmp);
1286
1287	/* x_out = r**2 - J - 2V */
1288	smallfelem_square(tmp, small1);
1289	felem_reduce(x_out, tmp);
1290	felem_assign(ftmp3, ftmp4);
1291	felem_scalar(ftmp4, 2);
1292	felem_sum(ftmp4, ftmp2);
1293	/* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1294	felem_diff(x_out, ftmp4);
1295	/* x_out[i] < 2^105 + 2^101 */
1296
1297	/* y_out = r(V-x_out) - 2 * s1 * J */
1298	felem_diff_zero107(ftmp3, x_out);
1299	/* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1300	felem_small_mul(tmp, small1, ftmp3);
1301	felem_mul(tmp2, ftmp6, ftmp2);
1302	longfelem_scalar(tmp2, 2);
1303	/* tmp2[i] < 2*2^67 = 2^68 */
1304	longfelem_diff(tmp, tmp2);
1305	/* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1306	felem_reduce_zero105(y_out, tmp);
1307	/* y_out[i] < 2^106 */
1308
1309	copy_small_conditional(x_out, x2, z1_is_zero);
1310	copy_conditional(x_out, x1, z2_is_zero);
1311	copy_small_conditional(y_out, y2, z1_is_zero);
1312	copy_conditional(y_out, y1, z2_is_zero);
1313	copy_small_conditional(z_out, z2, z1_is_zero);
1314	copy_conditional(z_out, z1, z2_is_zero);
1315	felem_assign(x3, x_out);
1316	felem_assign(y3, y_out);
1317	felem_assign(z3, z_out);
1318	}
1319
1320/* point_add_small is the same as point_add, except that it operates on
1321 * smallfelems */
1322static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1323			    smallfelem x1, smallfelem y1, smallfelem z1,
1324			    smallfelem x2, smallfelem y2, smallfelem z2)
1325	{
1326	felem felem_x3, felem_y3, felem_z3;
1327	felem felem_x1, felem_y1, felem_z1;
1328	smallfelem_expand(felem_x1, x1);
1329	smallfelem_expand(felem_y1, y1);
1330	smallfelem_expand(felem_z1, z1);
1331	point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2, y2, z2);
1332	felem_shrink(x3, felem_x3);
1333	felem_shrink(y3, felem_y3);
1334	felem_shrink(z3, felem_z3);
1335	}
1336
1337/* Base point pre computation
1338 * --------------------------
1339 *
1340 * Two different sorts of precomputed tables are used in the following code.
1341 * Each contain various points on the curve, where each point is three field
1342 * elements (x, y, z).
1343 *
1344 * For the base point table, z is usually 1 (0 for the point at infinity).
1345 * This table has 2 * 16 elements, starting with the following:
1346 * index | bits    | point
1347 * ------+---------+------------------------------
1348 *     0 | 0 0 0 0 | 0G
1349 *     1 | 0 0 0 1 | 1G
1350 *     2 | 0 0 1 0 | 2^64G
1351 *     3 | 0 0 1 1 | (2^64 + 1)G
1352 *     4 | 0 1 0 0 | 2^128G
1353 *     5 | 0 1 0 1 | (2^128 + 1)G
1354 *     6 | 0 1 1 0 | (2^128 + 2^64)G
1355 *     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1356 *     8 | 1 0 0 0 | 2^192G
1357 *     9 | 1 0 0 1 | (2^192 + 1)G
1358 *    10 | 1 0 1 0 | (2^192 + 2^64)G
1359 *    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1360 *    12 | 1 1 0 0 | (2^192 + 2^128)G
1361 *    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1362 *    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1363 *    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1364 * followed by a copy of this with each element multiplied by 2^32.
1365 *
1366 * The reason for this is so that we can clock bits into four different
1367 * locations when doing simple scalar multiplies against the base point,
1368 * and then another four locations using the second 16 elements.
1369 *
1370 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1371
1372/* gmul is the table of precomputed base points */
1373static const smallfelem gmul[2][16][3] =
1374{{{{0, 0, 0, 0},
1375   {0, 0, 0, 0},
1376   {0, 0, 0, 0}},
1377  {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, 0x6b17d1f2e12c4247},
1378   {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, 0x4fe342e2fe1a7f9b},
1379   {1, 0, 0, 0}},
1380  {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, 0x0fa822bc2811aaa5},
1381   {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, 0xbff44ae8f5dba80d},
1382   {1, 0, 0, 0}},
1383  {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, 0x300a4bbc89d6726f},
1384   {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, 0x72aac7e0d09b4644},
1385   {1, 0, 0, 0}},
1386  {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, 0x447d739beedb5e67},
1387   {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, 0x2d4825ab834131ee},
1388   {1, 0, 0, 0}},
1389  {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, 0xef9519328a9c72ff},
1390   {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, 0x611e9fc37dbb2c9b},
1391   {1, 0, 0, 0}},
1392  {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, 0x550663797b51f5d8},
1393   {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, 0x157164848aecb851},
1394   {1, 0, 0, 0}},
1395  {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, 0xeb5d7745b21141ea},
1396   {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, 0xeafd72ebdbecc17b},
1397   {1, 0, 0, 0}},
1398  {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, 0xa6d39677a7849276},
1399   {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, 0x674f84749b0b8816},
1400   {1, 0, 0, 0}},
1401  {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, 0x4e769e7672c9ddad},
1402   {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, 0x42b99082de830663},
1403   {1, 0, 0, 0}},
1404  {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, 0x78878ef61c6ce04d},
1405   {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, 0xb6cb3f5d7b72c321},
1406   {1, 0, 0, 0}},
1407  {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, 0x0c88bc4d716b1287},
1408   {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, 0xdd5ddea3f3901dc6},
1409   {1, 0, 0, 0}},
1410  {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, 0x68f344af6b317466},
1411   {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, 0x31b9c405f8540a20},
1412   {1, 0, 0, 0}},
1413  {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, 0x4052bf4b6f461db9},
1414   {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, 0xfecf4d5190b0fc61},
1415   {1, 0, 0, 0}},
1416  {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, 0x1eddbae2c802e41a},
1417   {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, 0x43104d86560ebcfc},
1418   {1, 0, 0, 0}},
1419  {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, 0xb48e26b484f7a21c},
1420   {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, 0xfac015404d4d3dab},
1421   {1, 0, 0, 0}}},
1422 {{{0, 0, 0, 0},
1423   {0, 0, 0, 0},
1424   {0, 0, 0, 0}},
1425  {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, 0x7fe36b40af22af89},
1426   {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, 0xe697d45825b63624},
1427   {1, 0, 0, 0}},
1428  {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, 0x4a5b506612a677a6},
1429   {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, 0xeb13461ceac089f1},
1430   {1, 0, 0, 0}},
1431  {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, 0x0781b8291c6a220a},
1432   {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, 0x690cde8df0151593},
1433   {1, 0, 0, 0}},
1434  {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, 0x8a535f566ec73617},
1435   {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, 0x0455c08468b08bd7},
1436   {1, 0, 0, 0}},
1437  {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, 0x06bada7ab77f8276},
1438   {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, 0x5b476dfd0e6cb18a},
1439   {1, 0, 0, 0}},
1440  {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, 0x3e29864e8a2ec908},
1441   {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, 0x239b90ea3dc31e7e},
1442   {1, 0, 0, 0}},
1443  {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, 0x820f4dd949f72ff7},
1444   {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, 0x140406ec783a05ec},
1445   {1, 0, 0, 0}},
1446  {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, 0x68f6b8542783dfee},
1447   {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, 0xcbe1feba92e40ce6},
1448   {1, 0, 0, 0}},
1449  {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, 0xd0b2f94d2f420109},
1450   {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, 0x971459828b0719e5},
1451   {1, 0, 0, 0}},
1452  {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, 0x961610004a866aba},
1453   {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, 0x7acb9fadcee75e44},
1454   {1, 0, 0, 0}},
1455  {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, 0x24eb9acca333bf5b},
1456   {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, 0x69f891c5acd079cc},
1457   {1, 0, 0, 0}},
1458  {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, 0xe51f547c5972a107},
1459   {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, 0x1c309a2b25bb1387},
1460   {1, 0, 0, 0}},
1461  {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, 0x20b87b8aa2c4e503},
1462   {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, 0xf5c6fa49919776be},
1463   {1, 0, 0, 0}},
1464  {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, 0x1ed7d1b9332010b9},
1465   {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, 0x3a2b03f03217257a},
1466   {1, 0, 0, 0}},
1467  {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, 0x15fee545c78dd9f6},
1468   {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, 0x4ab5b6b2b8753f81},
1469   {1, 0, 0, 0}}}};
1470
1471/* select_point selects the |idx|th point from a precomputation table and
1472 * copies it to out. */
1473static void select_point(const u64 idx, unsigned int size, const smallfelem pre_comp[16][3], smallfelem out[3])
1474	{
1475	unsigned i, j;
1476	u64 *outlimbs = &out[0][0];
1477	memset(outlimbs, 0, 3 * sizeof(smallfelem));
1478
1479	for (i = 0; i < size; i++)
1480		{
1481		const u64 *inlimbs = (u64*) &pre_comp[i][0][0];
1482		u64 mask = i ^ idx;
1483		mask |= mask >> 4;
1484		mask |= mask >> 2;
1485		mask |= mask >> 1;
1486		mask &= 1;
1487		mask--;
1488		for (j = 0; j < NLIMBS * 3; j++)
1489			outlimbs[j] |= inlimbs[j] & mask;
1490		}
1491	}
1492
1493/* get_bit returns the |i|th bit in |in| */
1494static char get_bit(const felem_bytearray in, int i)
1495	{
1496	if ((i < 0) || (i >= 256))
1497		return 0;
1498	return (in[i >> 3] >> (i & 7)) & 1;
1499	}
1500
1501/* Interleaved point multiplication using precomputed point multiples:
1502 * The small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[],
1503 * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
1504 * of the generator, using certain (large) precomputed multiples in g_pre_comp.
1505 * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
1506static void batch_mul(felem x_out, felem y_out, felem z_out,
1507	const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
1508	const int mixed, const smallfelem pre_comp[][17][3], const smallfelem g_pre_comp[2][16][3])
1509	{
1510	int i, skip;
1511	unsigned num, gen_mul = (g_scalar != NULL);
1512	felem nq[3], ftmp;
1513	smallfelem tmp[3];
1514	u64 bits;
1515	u8 sign, digit;
1516
1517	/* set nq to the point at infinity */
1518	memset(nq, 0, 3 * sizeof(felem));
1519
1520	/* Loop over all scalars msb-to-lsb, interleaving additions
1521	 * of multiples of the generator (two in each of the last 32 rounds)
1522	 * and additions of other points multiples (every 5th round).
1523	 */
1524	skip = 1; /* save two point operations in the first round */
1525	for (i = (num_points ? 255 : 31); i >= 0; --i)
1526		{
1527		/* double */
1528		if (!skip)
1529			point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1530
1531		/* add multiples of the generator */
1532		if (gen_mul && (i <= 31))
1533			{
1534			/* first, look 32 bits upwards */
1535			bits = get_bit(g_scalar, i + 224) << 3;
1536			bits |= get_bit(g_scalar, i + 160) << 2;
1537			bits |= get_bit(g_scalar, i + 96) << 1;
1538			bits |= get_bit(g_scalar, i + 32);
1539			/* select the point to add, in constant time */
1540			select_point(bits, 16, g_pre_comp[1], tmp);
1541
1542			if (!skip)
1543				{
1544				point_add(nq[0], nq[1], nq[2],
1545					nq[0], nq[1], nq[2],
1546					1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1547				}
1548			else
1549				{
1550				smallfelem_expand(nq[0], tmp[0]);
1551				smallfelem_expand(nq[1], tmp[1]);
1552				smallfelem_expand(nq[2], tmp[2]);
1553				skip = 0;
1554				}
1555
1556			/* second, look at the current position */
1557			bits = get_bit(g_scalar, i + 192) << 3;
1558			bits |= get_bit(g_scalar, i + 128) << 2;
1559			bits |= get_bit(g_scalar, i + 64) << 1;
1560			bits |= get_bit(g_scalar, i);
1561			/* select the point to add, in constant time */
1562			select_point(bits, 16, g_pre_comp[0], tmp);
1563			point_add(nq[0], nq[1], nq[2],
1564				nq[0], nq[1], nq[2],
1565				1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1566			}
1567
1568		/* do other additions every 5 doublings */
1569		if (num_points && (i % 5 == 0))
1570			{
1571			/* loop over all scalars */
1572			for (num = 0; num < num_points; ++num)
1573				{
1574				bits = get_bit(scalars[num], i + 4) << 5;
1575				bits |= get_bit(scalars[num], i + 3) << 4;
1576				bits |= get_bit(scalars[num], i + 2) << 3;
1577				bits |= get_bit(scalars[num], i + 1) << 2;
1578				bits |= get_bit(scalars[num], i) << 1;
1579				bits |= get_bit(scalars[num], i - 1);
1580				ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1581
1582				/* select the point to add or subtract, in constant time */
1583				select_point(digit, 17, pre_comp[num], tmp);
1584				smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative point */
1585				copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
1586				felem_contract(tmp[1], ftmp);
1587
1588				if (!skip)
1589					{
1590					point_add(nq[0], nq[1], nq[2],
1591						nq[0], nq[1], nq[2],
1592						mixed, tmp[0], tmp[1], tmp[2]);
1593					}
1594				else
1595					{
1596					smallfelem_expand(nq[0], tmp[0]);
1597					smallfelem_expand(nq[1], tmp[1]);
1598					smallfelem_expand(nq[2], tmp[2]);
1599					skip = 0;
1600					}
1601				}
1602			}
1603		}
1604	felem_assign(x_out, nq[0]);
1605	felem_assign(y_out, nq[1]);
1606	felem_assign(z_out, nq[2]);
1607	}
1608
1609/* Precomputation for the group generator. */
1610typedef struct {
1611	smallfelem g_pre_comp[2][16][3];
1612	int references;
1613} NISTP256_PRE_COMP;
1614
1615const EC_METHOD *EC_GFp_nistp256_method(void)
1616	{
1617	static const EC_METHOD ret = {
1618		EC_FLAGS_DEFAULT_OCT,
1619		NID_X9_62_prime_field,
1620		ec_GFp_nistp256_group_init,
1621		ec_GFp_simple_group_finish,
1622		ec_GFp_simple_group_clear_finish,
1623		ec_GFp_nist_group_copy,
1624		ec_GFp_nistp256_group_set_curve,
1625		ec_GFp_simple_group_get_curve,
1626		ec_GFp_simple_group_get_degree,
1627		ec_GFp_simple_group_check_discriminant,
1628		ec_GFp_simple_point_init,
1629		ec_GFp_simple_point_finish,
1630		ec_GFp_simple_point_clear_finish,
1631		ec_GFp_simple_point_copy,
1632		ec_GFp_simple_point_set_to_infinity,
1633		ec_GFp_simple_set_Jprojective_coordinates_GFp,
1634		ec_GFp_simple_get_Jprojective_coordinates_GFp,
1635		ec_GFp_simple_point_set_affine_coordinates,
1636		ec_GFp_nistp256_point_get_affine_coordinates,
1637		0 /* point_set_compressed_coordinates */,
1638		0 /* point2oct */,
1639		0 /* oct2point */,
1640		ec_GFp_simple_add,
1641		ec_GFp_simple_dbl,
1642		ec_GFp_simple_invert,
1643		ec_GFp_simple_is_at_infinity,
1644		ec_GFp_simple_is_on_curve,
1645		ec_GFp_simple_cmp,
1646		ec_GFp_simple_make_affine,
1647		ec_GFp_simple_points_make_affine,
1648		ec_GFp_nistp256_points_mul,
1649		ec_GFp_nistp256_precompute_mult,
1650		ec_GFp_nistp256_have_precompute_mult,
1651		ec_GFp_nist_field_mul,
1652		ec_GFp_nist_field_sqr,
1653		0 /* field_div */,
1654		0 /* field_encode */,
1655		0 /* field_decode */,
1656		0 /* field_set_to_one */ };
1657
1658	return &ret;
1659	}
1660
1661/******************************************************************************/
1662/*		       FUNCTIONS TO MANAGE PRECOMPUTATION
1663 */
1664
1665static NISTP256_PRE_COMP *nistp256_pre_comp_new()
1666	{
1667	NISTP256_PRE_COMP *ret = NULL;
1668	ret = (NISTP256_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
1669	if (!ret)
1670		{
1671		ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1672		return ret;
1673		}
1674	memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
1675	ret->references = 1;
1676	return ret;
1677	}
1678
1679static void *nistp256_pre_comp_dup(void *src_)
1680	{
1681	NISTP256_PRE_COMP *src = src_;
1682
1683	/* no need to actually copy, these objects never change! */
1684	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
1685
1686	return src_;
1687	}
1688
1689static void nistp256_pre_comp_free(void *pre_)
1690	{
1691	int i;
1692	NISTP256_PRE_COMP *pre = pre_;
1693
1694	if (!pre)
1695		return;
1696
1697	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1698	if (i > 0)
1699		return;
1700
1701	OPENSSL_free(pre);
1702	}
1703
1704static void nistp256_pre_comp_clear_free(void *pre_)
1705	{
1706	int i;
1707	NISTP256_PRE_COMP *pre = pre_;
1708
1709	if (!pre)
1710		return;
1711
1712	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1713	if (i > 0)
1714		return;
1715
1716	OPENSSL_cleanse(pre, sizeof *pre);
1717	OPENSSL_free(pre);
1718	}
1719
1720/******************************************************************************/
1721/*			   OPENSSL EC_METHOD FUNCTIONS
1722 */
1723
1724int ec_GFp_nistp256_group_init(EC_GROUP *group)
1725	{
1726	int ret;
1727	ret = ec_GFp_simple_group_init(group);
1728	group->a_is_minus3 = 1;
1729	return ret;
1730	}
1731
1732int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1733	const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1734	{
1735	int ret = 0;
1736	BN_CTX *new_ctx = NULL;
1737	BIGNUM *curve_p, *curve_a, *curve_b;
1738
1739	if (ctx == NULL)
1740		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1741	BN_CTX_start(ctx);
1742	if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1743		((curve_a = BN_CTX_get(ctx)) == NULL) ||
1744		((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
1745	BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
1746	BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
1747	BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
1748	if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
1749		(BN_cmp(curve_b, b)))
1750		{
1751		ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE,
1752			EC_R_WRONG_CURVE_PARAMETERS);
1753		goto err;
1754		}
1755	group->field_mod_func = BN_nist_mod_256;
1756	ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1757err:
1758	BN_CTX_end(ctx);
1759	if (new_ctx != NULL)
1760		BN_CTX_free(new_ctx);
1761	return ret;
1762	}
1763
1764/* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
1765 * (X', Y') = (X/Z^2, Y/Z^3) */
1766int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
1767	const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1768	{
1769	felem z1, z2, x_in, y_in;
1770	smallfelem x_out, y_out;
1771	longfelem tmp;
1772
1773	if (EC_POINT_is_at_infinity(group, point))
1774		{
1775		ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1776			EC_R_POINT_AT_INFINITY);
1777		return 0;
1778		}
1779	if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
1780		(!BN_to_felem(z1, &point->Z))) return 0;
1781	felem_inv(z2, z1);
1782	felem_square(tmp, z2); felem_reduce(z1, tmp);
1783	felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
1784	felem_contract(x_out, x_in);
1785	if (x != NULL)
1786		{
1787		if (!smallfelem_to_BN(x, x_out)) {
1788		ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1789			ERR_R_BN_LIB);
1790		return 0;
1791		}
1792		}
1793	felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
1794	felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
1795	felem_contract(y_out, y_in);
1796	if (y != NULL)
1797		{
1798		if (!smallfelem_to_BN(y, y_out))
1799			{
1800			ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1801				ERR_R_BN_LIB);
1802			return 0;
1803			}
1804		}
1805	return 1;
1806	}
1807
1808static void make_points_affine(size_t num, smallfelem points[/* num */][3], smallfelem tmp_smallfelems[/* num+1 */])
1809	{
1810	/* Runs in constant time, unless an input is the point at infinity
1811	 * (which normally shouldn't happen). */
1812	ec_GFp_nistp_points_make_affine_internal(
1813		num,
1814		points,
1815		sizeof(smallfelem),
1816		tmp_smallfelems,
1817		(void (*)(void *)) smallfelem_one,
1818		(int (*)(const void *)) smallfelem_is_zero_int,
1819		(void (*)(void *, const void *)) smallfelem_assign,
1820		(void (*)(void *, const void *)) smallfelem_square_contract,
1821		(void (*)(void *, const void *, const void *)) smallfelem_mul_contract,
1822		(void (*)(void *, const void *)) smallfelem_inv_contract,
1823		(void (*)(void *, const void *)) smallfelem_assign /* nothing to contract */);
1824	}
1825
1826/* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
1827 * Result is stored in r (r can equal one of the inputs). */
1828int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
1829	const BIGNUM *scalar, size_t num, const EC_POINT *points[],
1830	const BIGNUM *scalars[], BN_CTX *ctx)
1831	{
1832	int ret = 0;
1833	int j;
1834	int mixed = 0;
1835	BN_CTX *new_ctx = NULL;
1836	BIGNUM *x, *y, *z, *tmp_scalar;
1837	felem_bytearray g_secret;
1838	felem_bytearray *secrets = NULL;
1839	smallfelem (*pre_comp)[17][3] = NULL;
1840	smallfelem *tmp_smallfelems = NULL;
1841	felem_bytearray tmp;
1842	unsigned i, num_bytes;
1843	int have_pre_comp = 0;
1844	size_t num_points = num;
1845	smallfelem x_in, y_in, z_in;
1846	felem x_out, y_out, z_out;
1847	NISTP256_PRE_COMP *pre = NULL;
1848	const smallfelem (*g_pre_comp)[16][3] = NULL;
1849	EC_POINT *generator = NULL;
1850	const EC_POINT *p = NULL;
1851	const BIGNUM *p_scalar = NULL;
1852
1853	if (ctx == NULL)
1854		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1855	BN_CTX_start(ctx);
1856	if (((x = BN_CTX_get(ctx)) == NULL) ||
1857		((y = BN_CTX_get(ctx)) == NULL) ||
1858		((z = BN_CTX_get(ctx)) == NULL) ||
1859		((tmp_scalar = BN_CTX_get(ctx)) == NULL))
1860		goto err;
1861
1862	if (scalar != NULL)
1863		{
1864		pre = EC_EX_DATA_get_data(group->extra_data,
1865			nistp256_pre_comp_dup, nistp256_pre_comp_free,
1866			nistp256_pre_comp_clear_free);
1867		if (pre)
1868			/* we have precomputation, try to use it */
1869			g_pre_comp = (const smallfelem (*)[16][3]) pre->g_pre_comp;
1870		else
1871			/* try to use the standard precomputation */
1872			g_pre_comp = &gmul[0];
1873		generator = EC_POINT_new(group);
1874		if (generator == NULL)
1875			goto err;
1876		/* get the generator from precomputation */
1877		if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
1878			!smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
1879			!smallfelem_to_BN(z, g_pre_comp[0][1][2]))
1880			{
1881			ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
1882			goto err;
1883			}
1884		if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1885				generator, x, y, z, ctx))
1886			goto err;
1887		if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1888			/* precomputation matches generator */
1889			have_pre_comp = 1;
1890		else
1891			/* we don't have valid precomputation:
1892			 * treat the generator as a random point */
1893			num_points++;
1894		}
1895	if (num_points > 0)
1896		{
1897		if (num_points >= 3)
1898			{
1899			/* unless we precompute multiples for just one or two points,
1900			 * converting those into affine form is time well spent  */
1901			mixed = 1;
1902			}
1903		secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
1904		pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(smallfelem));
1905		if (mixed)
1906			tmp_smallfelems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(smallfelem));
1907		if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_smallfelems == NULL)))
1908			{
1909			ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1910			goto err;
1911			}
1912
1913		/* we treat NULL scalars as 0, and NULL points as points at infinity,
1914		 * i.e., they contribute nothing to the linear combination */
1915		memset(secrets, 0, num_points * sizeof(felem_bytearray));
1916		memset(pre_comp, 0, num_points * 17 * 3 * sizeof(smallfelem));
1917		for (i = 0; i < num_points; ++i)
1918			{
1919			if (i == num)
1920				/* we didn't have a valid precomputation, so we pick
1921				 * the generator */
1922				{
1923				p = EC_GROUP_get0_generator(group);
1924				p_scalar = scalar;
1925				}
1926			else
1927				/* the i^th point */
1928				{
1929				p = points[i];
1930				p_scalar = scalars[i];
1931				}
1932			if ((p_scalar != NULL) && (p != NULL))
1933				{
1934				/* reduce scalar to 0 <= scalar < 2^256 */
1935				if ((BN_num_bits(p_scalar) > 256) || (BN_is_negative(p_scalar)))
1936					{
1937					/* this is an unusual input, and we don't guarantee
1938					 * constant-timeness */
1939					if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
1940						{
1941						ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
1942						goto err;
1943						}
1944					num_bytes = BN_bn2bin(tmp_scalar, tmp);
1945					}
1946				else
1947					num_bytes = BN_bn2bin(p_scalar, tmp);
1948				flip_endian(secrets[i], tmp, num_bytes);
1949				/* precompute multiples */
1950				if ((!BN_to_felem(x_out, &p->X)) ||
1951					(!BN_to_felem(y_out, &p->Y)) ||
1952					(!BN_to_felem(z_out, &p->Z))) goto err;
1953				felem_shrink(pre_comp[i][1][0], x_out);
1954				felem_shrink(pre_comp[i][1][1], y_out);
1955				felem_shrink(pre_comp[i][1][2], z_out);
1956				for (j = 2; j <= 16; ++j)
1957					{
1958					if (j & 1)
1959						{
1960						point_add_small(
1961							pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1962							pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
1963							pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
1964						}
1965					else
1966						{
1967						point_double_small(
1968							pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1969							pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
1970						}
1971					}
1972				}
1973			}
1974		if (mixed)
1975			make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
1976		}
1977
1978	/* the scalar for the generator */
1979	if ((scalar != NULL) && (have_pre_comp))
1980		{
1981		memset(g_secret, 0, sizeof(g_secret));
1982		/* reduce scalar to 0 <= scalar < 2^256 */
1983		if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar)))
1984			{
1985			/* this is an unusual input, and we don't guarantee
1986			 * constant-timeness */
1987			if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
1988				{
1989				ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
1990				goto err;
1991				}
1992			num_bytes = BN_bn2bin(tmp_scalar, tmp);
1993			}
1994		else
1995			num_bytes = BN_bn2bin(scalar, tmp);
1996		flip_endian(g_secret, tmp, num_bytes);
1997		/* do the multiplication with generator precomputation*/
1998		batch_mul(x_out, y_out, z_out,
1999			(const felem_bytearray (*)) secrets, num_points,
2000			g_secret,
2001			mixed, (const smallfelem (*)[17][3]) pre_comp,
2002			g_pre_comp);
2003		}
2004	else
2005		/* do the multiplication without generator precomputation */
2006		batch_mul(x_out, y_out, z_out,
2007			(const felem_bytearray (*)) secrets, num_points,
2008			NULL, mixed, (const smallfelem (*)[17][3]) pre_comp, NULL);
2009	/* reduce the output to its unique minimal representation */
2010	felem_contract(x_in, x_out);
2011	felem_contract(y_in, y_out);
2012	felem_contract(z_in, z_out);
2013	if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
2014		(!smallfelem_to_BN(z, z_in)))
2015		{
2016		ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2017		goto err;
2018		}
2019	ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2020
2021err:
2022	BN_CTX_end(ctx);
2023	if (generator != NULL)
2024		EC_POINT_free(generator);
2025	if (new_ctx != NULL)
2026		BN_CTX_free(new_ctx);
2027	if (secrets != NULL)
2028		OPENSSL_free(secrets);
2029	if (pre_comp != NULL)
2030		OPENSSL_free(pre_comp);
2031	if (tmp_smallfelems != NULL)
2032		OPENSSL_free(tmp_smallfelems);
2033	return ret;
2034	}
2035
2036int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2037	{
2038	int ret = 0;
2039	NISTP256_PRE_COMP *pre = NULL;
2040	int i, j;
2041	BN_CTX *new_ctx = NULL;
2042	BIGNUM *x, *y;
2043	EC_POINT *generator = NULL;
2044	smallfelem tmp_smallfelems[32];
2045	felem x_tmp, y_tmp, z_tmp;
2046
2047	/* throw away old precomputation */
2048	EC_EX_DATA_free_data(&group->extra_data, nistp256_pre_comp_dup,
2049		nistp256_pre_comp_free, nistp256_pre_comp_clear_free);
2050	if (ctx == NULL)
2051		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
2052	BN_CTX_start(ctx);
2053	if (((x = BN_CTX_get(ctx)) == NULL) ||
2054		((y = BN_CTX_get(ctx)) == NULL))
2055		goto err;
2056	/* get the generator */
2057	if (group->generator == NULL) goto err;
2058	generator = EC_POINT_new(group);
2059	if (generator == NULL)
2060		goto err;
2061	BN_bin2bn(nistp256_curve_params[3], sizeof (felem_bytearray), x);
2062	BN_bin2bn(nistp256_curve_params[4], sizeof (felem_bytearray), y);
2063	if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
2064		goto err;
2065	if ((pre = nistp256_pre_comp_new()) == NULL)
2066		goto err;
2067	/* if the generator is the standard one, use built-in precomputation */
2068	if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
2069		{
2070		memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2071		ret = 1;
2072		goto err;
2073		}
2074	if ((!BN_to_felem(x_tmp, &group->generator->X)) ||
2075		(!BN_to_felem(y_tmp, &group->generator->Y)) ||
2076		(!BN_to_felem(z_tmp, &group->generator->Z)))
2077		goto err;
2078	felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
2079	felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
2080	felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
2081	/* compute 2^64*G, 2^128*G, 2^192*G for the first table,
2082	 * 2^32*G, 2^96*G, 2^160*G, 2^224*G for the second one
2083	 */
2084	for (i = 1; i <= 8; i <<= 1)
2085		{
2086		point_double_small(
2087			pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
2088			pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
2089		for (j = 0; j < 31; ++j)
2090			{
2091			point_double_small(
2092				pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
2093				pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
2094			}
2095		if (i == 8)
2096			break;
2097		point_double_small(
2098			pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
2099			pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
2100		for (j = 0; j < 31; ++j)
2101			{
2102			point_double_small(
2103				pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
2104				pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
2105			}
2106		}
2107	for (i = 0; i < 2; i++)
2108		{
2109		/* g_pre_comp[i][0] is the point at infinity */
2110		memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
2111		/* the remaining multiples */
2112		/* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
2113		point_add_small(
2114			pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], pre->g_pre_comp[i][6][2],
2115			pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
2116			pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
2117		/* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
2118		point_add_small(
2119			pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], pre->g_pre_comp[i][10][2],
2120			pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2121			pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
2122		/* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
2123		point_add_small(
2124			pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2125			pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2126			pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2]);
2127		/* 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G */
2128		point_add_small(
2129			pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], pre->g_pre_comp[i][14][2],
2130			pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2131			pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
2132		for (j = 1; j < 8; ++j)
2133			{
2134			/* odd multiples: add G resp. 2^32*G */
2135			point_add_small(
2136				pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1], pre->g_pre_comp[i][2*j+1][2],
2137				pre->g_pre_comp[i][2*j][0], pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
2138				pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], pre->g_pre_comp[i][1][2]);
2139			}
2140		}
2141	make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
2142
2143	if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp256_pre_comp_dup,
2144			nistp256_pre_comp_free, nistp256_pre_comp_clear_free))
2145		goto err;
2146	ret = 1;
2147	pre = NULL;
2148 err:
2149	BN_CTX_end(ctx);
2150	if (generator != NULL)
2151		EC_POINT_free(generator);
2152	if (new_ctx != NULL)
2153		BN_CTX_free(new_ctx);
2154	if (pre)
2155		nistp256_pre_comp_free(pre);
2156	return ret;
2157	}
2158
2159int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
2160	{
2161	if (EC_EX_DATA_get_data(group->extra_data, nistp256_pre_comp_dup,
2162			nistp256_pre_comp_free, nistp256_pre_comp_clear_free)
2163		!= NULL)
2164		return 1;
2165	else
2166		return 0;
2167	}
2168#else
2169static void *dummy=&dummy;
2170#endif
2171