x86_64-gf2m.pl revision 279264
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# May 2011
11#
12# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
13# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
14# the time being... Except that it has two code paths: code suitable
15# for any x86_64 CPU and PCLMULQDQ one suitable for Westmere and
16# later. Improvement varies from one benchmark and �-arch to another.
17# Vanilla code path is at most 20% faster than compiler-generated code
18# [not very impressive], while PCLMULQDQ - whole 85%-160% better on
19# 163- and 571-bit ECDH benchmarks on Intel CPUs. Keep in mind that
20# these coefficients are not ones for bn_GF2m_mul_2x2 itself, as not
21# all CPU time is burnt in it...
22
23$flavour = shift;
24$output  = shift;
25if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
26
27$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
28
29$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
30( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
31( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
32die "can't locate x86_64-xlate.pl";
33
34open OUT,"| \"$^X\" $xlate $flavour $output";
35*STDOUT=*OUT;
36
37($lo,$hi)=("%rax","%rdx");	$a=$lo;
38($i0,$i1)=("%rsi","%rdi");
39($t0,$t1)=("%rbx","%rcx");
40($b,$mask)=("%rbp","%r8");
41($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(9..15));
42($R,$Tx)=("%xmm0","%xmm1");
43
44$code.=<<___;
45.text
46
47.type	_mul_1x1,\@abi-omnipotent
48.align	16
49_mul_1x1:
50	sub	\$128+8,%rsp
51	mov	\$-1,$a1
52	lea	($a,$a),$i0
53	shr	\$3,$a1
54	lea	(,$a,4),$i1
55	and	$a,$a1			# a1=a&0x1fffffffffffffff
56	lea	(,$a,8),$a8
57	sar	\$63,$a			# broadcast 63rd bit
58	lea	($a1,$a1),$a2
59	sar	\$63,$i0		# broadcast 62nd bit
60	lea	(,$a1,4),$a4
61	and	$b,$a
62	sar	\$63,$i1		# boardcast 61st bit
63	mov	$a,$hi			# $a is $lo
64	shl	\$63,$lo
65	and	$b,$i0
66	shr	\$1,$hi
67	mov	$i0,$t1
68	shl	\$62,$i0
69	and	$b,$i1
70	shr	\$2,$t1
71	xor	$i0,$lo
72	mov	$i1,$t0
73	shl	\$61,$i1
74	xor	$t1,$hi
75	shr	\$3,$t0
76	xor	$i1,$lo
77	xor	$t0,$hi
78
79	mov	$a1,$a12
80	movq	\$0,0(%rsp)		# tab[0]=0
81	xor	$a2,$a12		# a1^a2
82	mov	$a1,8(%rsp)		# tab[1]=a1
83	 mov	$a4,$a48
84	mov	$a2,16(%rsp)		# tab[2]=a2
85	 xor	$a8,$a48		# a4^a8
86	mov	$a12,24(%rsp)		# tab[3]=a1^a2
87
88	xor	$a4,$a1
89	mov	$a4,32(%rsp)		# tab[4]=a4
90	xor	$a4,$a2
91	mov	$a1,40(%rsp)		# tab[5]=a1^a4
92	xor	$a4,$a12
93	mov	$a2,48(%rsp)		# tab[6]=a2^a4
94	 xor	$a48,$a1		# a1^a4^a4^a8=a1^a8
95	mov	$a12,56(%rsp)		# tab[7]=a1^a2^a4
96	 xor	$a48,$a2		# a2^a4^a4^a8=a1^a8
97
98	mov	$a8,64(%rsp)		# tab[8]=a8
99	xor	$a48,$a12		# a1^a2^a4^a4^a8=a1^a2^a8
100	mov	$a1,72(%rsp)		# tab[9]=a1^a8
101	 xor	$a4,$a1			# a1^a8^a4
102	mov	$a2,80(%rsp)		# tab[10]=a2^a8
103	 xor	$a4,$a2			# a2^a8^a4
104	mov	$a12,88(%rsp)		# tab[11]=a1^a2^a8
105
106	xor	$a4,$a12		# a1^a2^a8^a4
107	mov	$a48,96(%rsp)		# tab[12]=a4^a8
108	 mov	$mask,$i0
109	mov	$a1,104(%rsp)		# tab[13]=a1^a4^a8
110	 and	$b,$i0
111	mov	$a2,112(%rsp)		# tab[14]=a2^a4^a8
112	 shr	\$4,$b
113	mov	$a12,120(%rsp)		# tab[15]=a1^a2^a4^a8
114	 mov	$mask,$i1
115	 and	$b,$i1
116	 shr	\$4,$b
117
118	movq	(%rsp,$i0,8),$R		# half of calculations is done in SSE2
119	mov	$mask,$i0
120	and	$b,$i0
121	shr	\$4,$b
122___
123    for ($n=1;$n<8;$n++) {
124	$code.=<<___;
125	mov	(%rsp,$i1,8),$t1
126	mov	$mask,$i1
127	mov	$t1,$t0
128	shl	\$`8*$n-4`,$t1
129	and	$b,$i1
130	 movq	(%rsp,$i0,8),$Tx
131	shr	\$`64-(8*$n-4)`,$t0
132	xor	$t1,$lo
133	 pslldq	\$$n,$Tx
134	 mov	$mask,$i0
135	shr	\$4,$b
136	xor	$t0,$hi
137	 and	$b,$i0
138	 shr	\$4,$b
139	 pxor	$Tx,$R
140___
141    }
142$code.=<<___;
143	mov	(%rsp,$i1,8),$t1
144	mov	$t1,$t0
145	shl	\$`8*$n-4`,$t1
146	movq	$R,$i0
147	shr	\$`64-(8*$n-4)`,$t0
148	xor	$t1,$lo
149	psrldq	\$8,$R
150	xor	$t0,$hi
151	movq	$R,$i1
152	xor	$i0,$lo
153	xor	$i1,$hi
154
155	add	\$128+8,%rsp
156	ret
157.Lend_mul_1x1:
158.size	_mul_1x1,.-_mul_1x1
159___
160
161($rp,$a1,$a0,$b1,$b0) = $win64?	("%rcx","%rdx","%r8", "%r9","%r10") :	# Win64 order
162				("%rdi","%rsi","%rdx","%rcx","%r8");	# Unix order
163
164$code.=<<___;
165.extern	OPENSSL_ia32cap_P
166.globl	bn_GF2m_mul_2x2
167.type	bn_GF2m_mul_2x2,\@abi-omnipotent
168.align	16
169bn_GF2m_mul_2x2:
170	mov	OPENSSL_ia32cap_P(%rip),%rax
171	bt	\$33,%rax
172	jnc	.Lvanilla_mul_2x2
173
174	movq		$a1,%xmm0
175	movq		$b1,%xmm1
176	movq		$a0,%xmm2
177___
178$code.=<<___ if ($win64);
179	movq		40(%rsp),%xmm3
180___
181$code.=<<___ if (!$win64);
182	movq		$b0,%xmm3
183___
184$code.=<<___;
185	movdqa		%xmm0,%xmm4
186	movdqa		%xmm1,%xmm5
187	pclmulqdq	\$0,%xmm1,%xmm0	# a1�b1
188	pxor		%xmm2,%xmm4
189	pxor		%xmm3,%xmm5
190	pclmulqdq	\$0,%xmm3,%xmm2	# a0�b0
191	pclmulqdq	\$0,%xmm5,%xmm4	# (a0+a1)�(b0+b1)
192	xorps		%xmm0,%xmm4
193	xorps		%xmm2,%xmm4	# (a0+a1)�(b0+b1)-a0�b0-a1�b1
194	movdqa		%xmm4,%xmm5
195	pslldq		\$8,%xmm4
196	psrldq		\$8,%xmm5
197	pxor		%xmm4,%xmm2
198	pxor		%xmm5,%xmm0
199	movdqu		%xmm2,0($rp)
200	movdqu		%xmm0,16($rp)
201	ret
202
203.align	16
204.Lvanilla_mul_2x2:
205	lea	-8*17(%rsp),%rsp
206___
207$code.=<<___ if ($win64);
208	mov	`8*17+40`(%rsp),$b0
209	mov	%rdi,8*15(%rsp)
210	mov	%rsi,8*16(%rsp)
211___
212$code.=<<___;
213	mov	%r14,8*10(%rsp)
214	mov	%r13,8*11(%rsp)
215	mov	%r12,8*12(%rsp)
216	mov	%rbp,8*13(%rsp)
217	mov	%rbx,8*14(%rsp)
218.Lbody_mul_2x2:
219	mov	$rp,32(%rsp)		# save the arguments
220	mov	$a1,40(%rsp)
221	mov	$a0,48(%rsp)
222	mov	$b1,56(%rsp)
223	mov	$b0,64(%rsp)
224
225	mov	\$0xf,$mask
226	mov	$a1,$a
227	mov	$b1,$b
228	call	_mul_1x1		# a1�b1
229	mov	$lo,16(%rsp)
230	mov	$hi,24(%rsp)
231
232	mov	48(%rsp),$a
233	mov	64(%rsp),$b
234	call	_mul_1x1		# a0�b0
235	mov	$lo,0(%rsp)
236	mov	$hi,8(%rsp)
237
238	mov	40(%rsp),$a
239	mov	56(%rsp),$b
240	xor	48(%rsp),$a
241	xor	64(%rsp),$b
242	call	_mul_1x1		# (a0+a1)�(b0+b1)
243___
244	@r=("%rbx","%rcx","%rdi","%rsi");
245$code.=<<___;
246	mov	0(%rsp),@r[0]
247	mov	8(%rsp),@r[1]
248	mov	16(%rsp),@r[2]
249	mov	24(%rsp),@r[3]
250	mov	32(%rsp),%rbp
251
252	xor	$hi,$lo
253	xor	@r[1],$hi
254	xor	@r[0],$lo
255	mov	@r[0],0(%rbp)
256	xor	@r[2],$hi
257	mov	@r[3],24(%rbp)
258	xor	@r[3],$lo
259	xor	@r[3],$hi
260	xor	$hi,$lo
261	mov	$hi,16(%rbp)
262	mov	$lo,8(%rbp)
263
264	mov	8*10(%rsp),%r14
265	mov	8*11(%rsp),%r13
266	mov	8*12(%rsp),%r12
267	mov	8*13(%rsp),%rbp
268	mov	8*14(%rsp),%rbx
269___
270$code.=<<___ if ($win64);
271	mov	8*15(%rsp),%rdi
272	mov	8*16(%rsp),%rsi
273___
274$code.=<<___;
275	lea	8*17(%rsp),%rsp
276	ret
277.Lend_mul_2x2:
278.size	bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2
279.asciz	"GF(2^m) Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
280.align	16
281___
282
283# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
284#               CONTEXT *context,DISPATCHER_CONTEXT *disp)
285if ($win64) {
286$rec="%rcx";
287$frame="%rdx";
288$context="%r8";
289$disp="%r9";
290
291$code.=<<___;
292.extern __imp_RtlVirtualUnwind
293
294.type	se_handler,\@abi-omnipotent
295.align	16
296se_handler:
297	push	%rsi
298	push	%rdi
299	push	%rbx
300	push	%rbp
301	push	%r12
302	push	%r13
303	push	%r14
304	push	%r15
305	pushfq
306	sub	\$64,%rsp
307
308	mov	152($context),%rax	# pull context->Rsp
309	mov	248($context),%rbx	# pull context->Rip
310
311	lea	.Lbody_mul_2x2(%rip),%r10
312	cmp	%r10,%rbx		# context->Rip<"prologue" label
313	jb	.Lin_prologue
314
315	mov	8*10(%rax),%r14		# mimic epilogue
316	mov	8*11(%rax),%r13
317	mov	8*12(%rax),%r12
318	mov	8*13(%rax),%rbp
319	mov	8*14(%rax),%rbx
320	mov	8*15(%rax),%rdi
321	mov	8*16(%rax),%rsi
322
323	mov	%rbx,144($context)	# restore context->Rbx
324	mov	%rbp,160($context)	# restore context->Rbp
325	mov	%rsi,168($context)	# restore context->Rsi
326	mov	%rdi,176($context)	# restore context->Rdi
327	mov	%r12,216($context)	# restore context->R12
328	mov	%r13,224($context)	# restore context->R13
329	mov	%r14,232($context)	# restore context->R14
330
331.Lin_prologue:
332	lea	8*17(%rax),%rax
333	mov	%rax,152($context)	# restore context->Rsp
334
335	mov	40($disp),%rdi		# disp->ContextRecord
336	mov	$context,%rsi		# context
337	mov	\$154,%ecx		# sizeof(CONTEXT)
338	.long	0xa548f3fc		# cld; rep movsq
339
340	mov	$disp,%rsi
341	xor	%rcx,%rcx		# arg1, UNW_FLAG_NHANDLER
342	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
343	mov	0(%rsi),%r8		# arg3, disp->ControlPc
344	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
345	mov	40(%rsi),%r10		# disp->ContextRecord
346	lea	56(%rsi),%r11		# &disp->HandlerData
347	lea	24(%rsi),%r12		# &disp->EstablisherFrame
348	mov	%r10,32(%rsp)		# arg5
349	mov	%r11,40(%rsp)		# arg6
350	mov	%r12,48(%rsp)		# arg7
351	mov	%rcx,56(%rsp)		# arg8, (NULL)
352	call	*__imp_RtlVirtualUnwind(%rip)
353
354	mov	\$1,%eax		# ExceptionContinueSearch
355	add	\$64,%rsp
356	popfq
357	pop	%r15
358	pop	%r14
359	pop	%r13
360	pop	%r12
361	pop	%rbp
362	pop	%rbx
363	pop	%rdi
364	pop	%rsi
365	ret
366.size	se_handler,.-se_handler
367
368.section	.pdata
369.align	4
370	.rva	_mul_1x1
371	.rva	.Lend_mul_1x1
372	.rva	.LSEH_info_1x1
373
374	.rva	.Lvanilla_mul_2x2
375	.rva	.Lend_mul_2x2
376	.rva	.LSEH_info_2x2
377.section	.xdata
378.align	8
379.LSEH_info_1x1:
380	.byte	0x01,0x07,0x02,0x00
381	.byte	0x07,0x01,0x11,0x00	# sub rsp,128+8
382.LSEH_info_2x2:
383	.byte	9,0,0,0
384	.rva	se_handler
385___
386}
387
388$code =~ s/\`([^\`]*)\`/eval($1)/gem;
389print $code;
390close STDOUT;
391