1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file       lzma_decoder.c
4/// \brief      LZMA decoder
5///
6//  Authors:    Igor Pavlov
7//              Lasse Collin
8//
9//  This file has been put into the public domain.
10//  You can do whatever you want with this file.
11//
12///////////////////////////////////////////////////////////////////////////////
13
14#include "lz_decoder.h"
15#include "lzma_common.h"
16#include "lzma_decoder.h"
17#include "range_decoder.h"
18
19
20#ifdef HAVE_SMALL
21
22// Macros for (somewhat) size-optimized code.
23#define seq_4(seq) seq
24
25#define seq_6(seq) seq
26
27#define seq_8(seq) seq
28
29#define seq_len(seq) \
30	seq ## _CHOICE, \
31	seq ## _CHOICE2, \
32	seq ## _BITTREE
33
34#define len_decode(target, ld, pos_state, seq) \
35do { \
36case seq ## _CHOICE: \
37	rc_if_0(ld.choice, seq ## _CHOICE) { \
38		rc_update_0(ld.choice); \
39		probs = ld.low[pos_state];\
40		limit = LEN_LOW_SYMBOLS; \
41		target = MATCH_LEN_MIN; \
42	} else { \
43		rc_update_1(ld.choice); \
44case seq ## _CHOICE2: \
45		rc_if_0(ld.choice2, seq ## _CHOICE2) { \
46			rc_update_0(ld.choice2); \
47			probs = ld.mid[pos_state]; \
48			limit = LEN_MID_SYMBOLS; \
49			target = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; \
50		} else { \
51			rc_update_1(ld.choice2); \
52			probs = ld.high; \
53			limit = LEN_HIGH_SYMBOLS; \
54			target = MATCH_LEN_MIN + LEN_LOW_SYMBOLS \
55					+ LEN_MID_SYMBOLS; \
56		} \
57	} \
58	symbol = 1; \
59case seq ## _BITTREE: \
60	do { \
61		rc_bit(probs[symbol], , , seq ## _BITTREE); \
62	} while (symbol < limit); \
63	target += symbol - limit; \
64} while (0)
65
66#else // HAVE_SMALL
67
68// Unrolled versions
69#define seq_4(seq) \
70	seq ## 0, \
71	seq ## 1, \
72	seq ## 2, \
73	seq ## 3
74
75#define seq_6(seq) \
76	seq ## 0, \
77	seq ## 1, \
78	seq ## 2, \
79	seq ## 3, \
80	seq ## 4, \
81	seq ## 5
82
83#define seq_8(seq) \
84	seq ## 0, \
85	seq ## 1, \
86	seq ## 2, \
87	seq ## 3, \
88	seq ## 4, \
89	seq ## 5, \
90	seq ## 6, \
91	seq ## 7
92
93#define seq_len(seq) \
94	seq ## _CHOICE, \
95	seq ## _LOW0, \
96	seq ## _LOW1, \
97	seq ## _LOW2, \
98	seq ## _CHOICE2, \
99	seq ## _MID0, \
100	seq ## _MID1, \
101	seq ## _MID2, \
102	seq ## _HIGH0, \
103	seq ## _HIGH1, \
104	seq ## _HIGH2, \
105	seq ## _HIGH3, \
106	seq ## _HIGH4, \
107	seq ## _HIGH5, \
108	seq ## _HIGH6, \
109	seq ## _HIGH7
110
111#define len_decode(target, ld, pos_state, seq) \
112do { \
113	symbol = 1; \
114case seq ## _CHOICE: \
115	rc_if_0(ld.choice, seq ## _CHOICE) { \
116		rc_update_0(ld.choice); \
117		rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW0); \
118		rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW1); \
119		rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW2); \
120		target = symbol - LEN_LOW_SYMBOLS + MATCH_LEN_MIN; \
121	} else { \
122		rc_update_1(ld.choice); \
123case seq ## _CHOICE2: \
124		rc_if_0(ld.choice2, seq ## _CHOICE2) { \
125			rc_update_0(ld.choice2); \
126			rc_bit_case(ld.mid[pos_state][symbol], , , \
127					seq ## _MID0); \
128			rc_bit_case(ld.mid[pos_state][symbol], , , \
129					seq ## _MID1); \
130			rc_bit_case(ld.mid[pos_state][symbol], , , \
131					seq ## _MID2); \
132			target = symbol - LEN_MID_SYMBOLS \
133					+ MATCH_LEN_MIN + LEN_LOW_SYMBOLS; \
134		} else { \
135			rc_update_1(ld.choice2); \
136			rc_bit_case(ld.high[symbol], , , seq ## _HIGH0); \
137			rc_bit_case(ld.high[symbol], , , seq ## _HIGH1); \
138			rc_bit_case(ld.high[symbol], , , seq ## _HIGH2); \
139			rc_bit_case(ld.high[symbol], , , seq ## _HIGH3); \
140			rc_bit_case(ld.high[symbol], , , seq ## _HIGH4); \
141			rc_bit_case(ld.high[symbol], , , seq ## _HIGH5); \
142			rc_bit_case(ld.high[symbol], , , seq ## _HIGH6); \
143			rc_bit_case(ld.high[symbol], , , seq ## _HIGH7); \
144			target = symbol - LEN_HIGH_SYMBOLS \
145					+ MATCH_LEN_MIN \
146					+ LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; \
147		} \
148	} \
149} while (0)
150
151#endif // HAVE_SMALL
152
153
154/// Length decoder probabilities; see comments in lzma_common.h.
155typedef struct {
156	probability choice;
157	probability choice2;
158	probability low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
159	probability mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
160	probability high[LEN_HIGH_SYMBOLS];
161} lzma_length_decoder;
162
163
164struct lzma_coder_s {
165	///////////////////
166	// Probabilities //
167	///////////////////
168
169	/// Literals; see comments in lzma_common.h.
170	probability literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
171
172	/// If 1, it's a match. Otherwise it's a single 8-bit literal.
173	probability is_match[STATES][POS_STATES_MAX];
174
175	/// If 1, it's a repeated match. The distance is one of rep0 .. rep3.
176	probability is_rep[STATES];
177
178	/// If 0, distance of a repeated match is rep0.
179	/// Otherwise check is_rep1.
180	probability is_rep0[STATES];
181
182	/// If 0, distance of a repeated match is rep1.
183	/// Otherwise check is_rep2.
184	probability is_rep1[STATES];
185
186	/// If 0, distance of a repeated match is rep2. Otherwise it is rep3.
187	probability is_rep2[STATES];
188
189	/// If 1, the repeated match has length of one byte. Otherwise
190	/// the length is decoded from rep_len_decoder.
191	probability is_rep0_long[STATES][POS_STATES_MAX];
192
193	/// Probability tree for the highest two bits of the match distance.
194	/// There is a separate probability tree for match lengths of
195	/// 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
196	probability pos_slot[LEN_TO_POS_STATES][POS_SLOTS];
197
198	/// Probability trees for additional bits for match distance when the
199	/// distance is in the range [4, 127].
200	probability pos_special[FULL_DISTANCES - END_POS_MODEL_INDEX];
201
202	/// Probability tree for the lowest four bits of a match distance
203	/// that is equal to or greater than 128.
204	probability pos_align[ALIGN_TABLE_SIZE];
205
206	/// Length of a normal match
207	lzma_length_decoder match_len_decoder;
208
209	/// Length of a repeated match
210	lzma_length_decoder rep_len_decoder;
211
212	///////////////////
213	// Decoder state //
214	///////////////////
215
216	// Range coder
217	lzma_range_decoder rc;
218
219	// Types of the most recently seen LZMA symbols
220	lzma_lzma_state state;
221
222	uint32_t rep0;      ///< Distance of the latest match
223	uint32_t rep1;      ///< Distance of second latest match
224	uint32_t rep2;      ///< Distance of third latest match
225	uint32_t rep3;      ///< Distance of fourth latest match
226
227	uint32_t pos_mask; // (1U << pb) - 1
228	uint32_t literal_context_bits;
229	uint32_t literal_pos_mask;
230
231	/// Uncompressed size as bytes, or LZMA_VLI_UNKNOWN if end of
232	/// payload marker is expected.
233	lzma_vli uncompressed_size;
234
235	////////////////////////////////
236	// State of incomplete symbol //
237	////////////////////////////////
238
239	/// Position where to continue the decoder loop
240	enum {
241		SEQ_NORMALIZE,
242		SEQ_IS_MATCH,
243		seq_8(SEQ_LITERAL),
244		seq_8(SEQ_LITERAL_MATCHED),
245		SEQ_LITERAL_WRITE,
246		SEQ_IS_REP,
247		seq_len(SEQ_MATCH_LEN),
248		seq_6(SEQ_POS_SLOT),
249		SEQ_POS_MODEL,
250		SEQ_DIRECT,
251		seq_4(SEQ_ALIGN),
252		SEQ_EOPM,
253		SEQ_IS_REP0,
254		SEQ_SHORTREP,
255		SEQ_IS_REP0_LONG,
256		SEQ_IS_REP1,
257		SEQ_IS_REP2,
258		seq_len(SEQ_REP_LEN),
259		SEQ_COPY,
260	} sequence;
261
262	/// Base of the current probability tree
263	probability *probs;
264
265	/// Symbol being decoded. This is also used as an index variable in
266	/// bittree decoders: probs[symbol]
267	uint32_t symbol;
268
269	/// Used as a loop termination condition on bittree decoders and
270	/// direct bits decoder.
271	uint32_t limit;
272
273	/// Matched literal decoder: 0x100 or 0 to help avoiding branches.
274	/// Bittree reverse decoders: Offset of the next bit: 1 << offset
275	uint32_t offset;
276
277	/// If decoding a literal: match byte.
278	/// If decoding a match: length of the match.
279	uint32_t len;
280};
281
282
283static lzma_ret
284lzma_decode(lzma_coder *restrict coder, lzma_dict *restrict dictptr,
285		const uint8_t *restrict in,
286		size_t *restrict in_pos, size_t in_size)
287{
288	////////////////////
289	// Initialization //
290	////////////////////
291
292	if (!rc_read_init(&coder->rc, in, in_pos, in_size))
293		return LZMA_OK;
294
295	///////////////
296	// Variables //
297	///////////////
298
299	// Making local copies of often-used variables improves both
300	// speed and readability.
301
302	lzma_dict dict = *dictptr;
303
304	const size_t dict_start = dict.pos;
305
306	// Range decoder
307	rc_to_local(coder->rc, *in_pos);
308
309	// State
310	uint32_t state = coder->state;
311	uint32_t rep0 = coder->rep0;
312	uint32_t rep1 = coder->rep1;
313	uint32_t rep2 = coder->rep2;
314	uint32_t rep3 = coder->rep3;
315
316	const uint32_t pos_mask = coder->pos_mask;
317
318	// These variables are actually needed only if we last time ran
319	// out of input in the middle of the decoder loop.
320	probability *probs = coder->probs;
321	uint32_t symbol = coder->symbol;
322	uint32_t limit = coder->limit;
323	uint32_t offset = coder->offset;
324	uint32_t len = coder->len;
325
326	const uint32_t literal_pos_mask = coder->literal_pos_mask;
327	const uint32_t literal_context_bits = coder->literal_context_bits;
328
329	// Temporary variables
330	uint32_t pos_state = dict.pos & pos_mask;
331
332	lzma_ret ret = LZMA_OK;
333
334	// If uncompressed size is known, there must be no end of payload
335	// marker.
336	const bool no_eopm = coder->uncompressed_size
337			!= LZMA_VLI_UNKNOWN;
338	if (no_eopm && coder->uncompressed_size < dict.limit - dict.pos)
339		dict.limit = dict.pos + (size_t)(coder->uncompressed_size);
340
341	// The main decoder loop. The "switch" is used to restart the decoder at
342	// correct location. Once restarted, the "switch" is no longer used.
343	switch (coder->sequence)
344	while (true) {
345		// Calculate new pos_state. This is skipped on the first loop
346		// since we already calculated it when setting up the local
347		// variables.
348		pos_state = dict.pos & pos_mask;
349
350	case SEQ_NORMALIZE:
351	case SEQ_IS_MATCH:
352		if (unlikely(no_eopm && dict.pos == dict.limit))
353			break;
354
355		rc_if_0(coder->is_match[state][pos_state], SEQ_IS_MATCH) {
356			rc_update_0(coder->is_match[state][pos_state]);
357
358			// It's a literal i.e. a single 8-bit byte.
359
360			probs = literal_subcoder(coder->literal,
361					literal_context_bits, literal_pos_mask,
362					dict.pos, dict_get(&dict, 0));
363			symbol = 1;
364
365			if (is_literal_state(state)) {
366				// Decode literal without match byte.
367#ifdef HAVE_SMALL
368	case SEQ_LITERAL:
369				do {
370					rc_bit(probs[symbol], , , SEQ_LITERAL);
371				} while (symbol < (1 << 8));
372#else
373				rc_bit_case(probs[symbol], , , SEQ_LITERAL0);
374				rc_bit_case(probs[symbol], , , SEQ_LITERAL1);
375				rc_bit_case(probs[symbol], , , SEQ_LITERAL2);
376				rc_bit_case(probs[symbol], , , SEQ_LITERAL3);
377				rc_bit_case(probs[symbol], , , SEQ_LITERAL4);
378				rc_bit_case(probs[symbol], , , SEQ_LITERAL5);
379				rc_bit_case(probs[symbol], , , SEQ_LITERAL6);
380				rc_bit_case(probs[symbol], , , SEQ_LITERAL7);
381#endif
382			} else {
383				// Decode literal with match byte.
384				//
385				// We store the byte we compare against
386				// ("match byte") to "len" to minimize the
387				// number of variables we need to store
388				// between decoder calls.
389				len = dict_get(&dict, rep0) << 1;
390
391				// The usage of "offset" allows omitting some
392				// branches, which should give tiny speed
393				// improvement on some CPUs. "offset" gets
394				// set to zero if match_bit didn't match.
395				offset = 0x100;
396
397#ifdef HAVE_SMALL
398	case SEQ_LITERAL_MATCHED:
399				do {
400					const uint32_t match_bit
401							= len & offset;
402					const uint32_t subcoder_index
403							= offset + match_bit
404							+ symbol;
405
406					rc_bit(probs[subcoder_index],
407							offset &= ~match_bit,
408							offset &= match_bit,
409							SEQ_LITERAL_MATCHED);
410
411					// It seems to be faster to do this
412					// here instead of putting it to the
413					// beginning of the loop and then
414					// putting the "case" in the middle
415					// of the loop.
416					len <<= 1;
417
418				} while (symbol < (1 << 8));
419#else
420				// Unroll the loop.
421				uint32_t match_bit;
422				uint32_t subcoder_index;
423
424#	define d(seq) \
425		case seq: \
426			match_bit = len & offset; \
427			subcoder_index = offset + match_bit + symbol; \
428			rc_bit(probs[subcoder_index], \
429					offset &= ~match_bit, \
430					offset &= match_bit, \
431					seq)
432
433				d(SEQ_LITERAL_MATCHED0);
434				len <<= 1;
435				d(SEQ_LITERAL_MATCHED1);
436				len <<= 1;
437				d(SEQ_LITERAL_MATCHED2);
438				len <<= 1;
439				d(SEQ_LITERAL_MATCHED3);
440				len <<= 1;
441				d(SEQ_LITERAL_MATCHED4);
442				len <<= 1;
443				d(SEQ_LITERAL_MATCHED5);
444				len <<= 1;
445				d(SEQ_LITERAL_MATCHED6);
446				len <<= 1;
447				d(SEQ_LITERAL_MATCHED7);
448#	undef d
449#endif
450			}
451
452			//update_literal(state);
453			// Use a lookup table to update to literal state,
454			// since compared to other state updates, this would
455			// need two branches.
456			static const lzma_lzma_state next_state[] = {
457				STATE_LIT_LIT,
458				STATE_LIT_LIT,
459				STATE_LIT_LIT,
460				STATE_LIT_LIT,
461				STATE_MATCH_LIT_LIT,
462				STATE_REP_LIT_LIT,
463				STATE_SHORTREP_LIT_LIT,
464				STATE_MATCH_LIT,
465				STATE_REP_LIT,
466				STATE_SHORTREP_LIT,
467				STATE_MATCH_LIT,
468				STATE_REP_LIT
469			};
470			state = next_state[state];
471
472	case SEQ_LITERAL_WRITE:
473			if (unlikely(dict_put(&dict, symbol))) {
474				coder->sequence = SEQ_LITERAL_WRITE;
475				goto out;
476			}
477
478			continue;
479		}
480
481		// Instead of a new byte we are going to get a byte range
482		// (distance and length) which will be repeated from our
483		// output history.
484
485		rc_update_1(coder->is_match[state][pos_state]);
486
487	case SEQ_IS_REP:
488		rc_if_0(coder->is_rep[state], SEQ_IS_REP) {
489			// Not a repeated match
490			rc_update_0(coder->is_rep[state]);
491			update_match(state);
492
493			// The latest three match distances are kept in
494			// memory in case there are repeated matches.
495			rep3 = rep2;
496			rep2 = rep1;
497			rep1 = rep0;
498
499			// Decode the length of the match.
500			len_decode(len, coder->match_len_decoder,
501					pos_state, SEQ_MATCH_LEN);
502
503			// Prepare to decode the highest two bits of the
504			// match distance.
505			probs = coder->pos_slot[get_len_to_pos_state(len)];
506			symbol = 1;
507
508#ifdef HAVE_SMALL
509	case SEQ_POS_SLOT:
510			do {
511				rc_bit(probs[symbol], , , SEQ_POS_SLOT);
512			} while (symbol < POS_SLOTS);
513#else
514			rc_bit_case(probs[symbol], , , SEQ_POS_SLOT0);
515			rc_bit_case(probs[symbol], , , SEQ_POS_SLOT1);
516			rc_bit_case(probs[symbol], , , SEQ_POS_SLOT2);
517			rc_bit_case(probs[symbol], , , SEQ_POS_SLOT3);
518			rc_bit_case(probs[symbol], , , SEQ_POS_SLOT4);
519			rc_bit_case(probs[symbol], , , SEQ_POS_SLOT5);
520#endif
521			// Get rid of the highest bit that was needed for
522			// indexing of the probability array.
523			symbol -= POS_SLOTS;
524			assert(symbol <= 63);
525
526			if (symbol < START_POS_MODEL_INDEX) {
527				// Match distances [0, 3] have only two bits.
528				rep0 = symbol;
529			} else {
530				// Decode the lowest [1, 29] bits of
531				// the match distance.
532				limit = (symbol >> 1) - 1;
533				assert(limit >= 1 && limit <= 30);
534				rep0 = 2 + (symbol & 1);
535
536				if (symbol < END_POS_MODEL_INDEX) {
537					// Prepare to decode the low bits for
538					// a distance of [4, 127].
539					assert(limit <= 5);
540					rep0 <<= limit;
541					assert(rep0 <= 96);
542					// -1 is fine, because we start
543					// decoding at probs[1], not probs[0].
544					// NOTE: This violates the C standard,
545					// since we are doing pointer
546					// arithmetic past the beginning of
547					// the array.
548					assert((int32_t)(rep0 - symbol - 1)
549							>= -1);
550					assert((int32_t)(rep0 - symbol - 1)
551							<= 82);
552					probs = coder->pos_special + rep0
553							- symbol - 1;
554					symbol = 1;
555					offset = 0;
556	case SEQ_POS_MODEL:
557#ifdef HAVE_SMALL
558					do {
559						rc_bit(probs[symbol], ,
560							rep0 += 1 << offset,
561							SEQ_POS_MODEL);
562					} while (++offset < limit);
563#else
564					switch (limit) {
565					case 5:
566						assert(offset == 0);
567						rc_bit(probs[symbol], ,
568							rep0 += 1,
569							SEQ_POS_MODEL);
570						++offset;
571						--limit;
572					case 4:
573						rc_bit(probs[symbol], ,
574							rep0 += 1 << offset,
575							SEQ_POS_MODEL);
576						++offset;
577						--limit;
578					case 3:
579						rc_bit(probs[symbol], ,
580							rep0 += 1 << offset,
581							SEQ_POS_MODEL);
582						++offset;
583						--limit;
584					case 2:
585						rc_bit(probs[symbol], ,
586							rep0 += 1 << offset,
587							SEQ_POS_MODEL);
588						++offset;
589						--limit;
590					case 1:
591						// We need "symbol" only for
592						// indexing the probability
593						// array, thus we can use
594						// rc_bit_last() here to omit
595						// the unneeded updating of
596						// "symbol".
597						rc_bit_last(probs[symbol], ,
598							rep0 += 1 << offset,
599							SEQ_POS_MODEL);
600					}
601#endif
602				} else {
603					// The distance is >= 128. Decode the
604					// lower bits without probabilities
605					// except the lowest four bits.
606					assert(symbol >= 14);
607					assert(limit >= 6);
608					limit -= ALIGN_BITS;
609					assert(limit >= 2);
610	case SEQ_DIRECT:
611					// Not worth manual unrolling
612					do {
613						rc_direct(rep0, SEQ_DIRECT);
614					} while (--limit > 0);
615
616					// Decode the lowest four bits using
617					// probabilities.
618					rep0 <<= ALIGN_BITS;
619					symbol = 1;
620#ifdef HAVE_SMALL
621					offset = 0;
622	case SEQ_ALIGN:
623					do {
624						rc_bit(coder->pos_align[
625								symbol], ,
626							rep0 += 1 << offset,
627							SEQ_ALIGN);
628					} while (++offset < ALIGN_BITS);
629#else
630	case SEQ_ALIGN0:
631					rc_bit(coder->pos_align[symbol], ,
632							rep0 += 1, SEQ_ALIGN0);
633	case SEQ_ALIGN1:
634					rc_bit(coder->pos_align[symbol], ,
635							rep0 += 2, SEQ_ALIGN1);
636	case SEQ_ALIGN2:
637					rc_bit(coder->pos_align[symbol], ,
638							rep0 += 4, SEQ_ALIGN2);
639	case SEQ_ALIGN3:
640					// Like in SEQ_POS_MODEL, we don't
641					// need "symbol" for anything else
642					// than indexing the probability array.
643					rc_bit_last(coder->pos_align[symbol], ,
644							rep0 += 8, SEQ_ALIGN3);
645#endif
646
647					if (rep0 == UINT32_MAX) {
648						// End of payload marker was
649						// found. It must not be
650						// present if uncompressed
651						// size is known.
652						if (coder->uncompressed_size
653						!= LZMA_VLI_UNKNOWN) {
654							ret = LZMA_DATA_ERROR;
655							goto out;
656						}
657
658	case SEQ_EOPM:
659						// LZMA1 stream with
660						// end-of-payload marker.
661						rc_normalize(SEQ_EOPM);
662						ret = LZMA_STREAM_END;
663						goto out;
664					}
665				}
666			}
667
668			// Validate the distance we just decoded.
669			if (unlikely(!dict_is_distance_valid(&dict, rep0))) {
670				ret = LZMA_DATA_ERROR;
671				goto out;
672			}
673
674		} else {
675			rc_update_1(coder->is_rep[state]);
676
677			// Repeated match
678			//
679			// The match distance is a value that we have had
680			// earlier. The latest four match distances are
681			// available as rep0, rep1, rep2 and rep3. We will
682			// now decode which of them is the new distance.
683			//
684			// There cannot be a match if we haven't produced
685			// any output, so check that first.
686			if (unlikely(!dict_is_distance_valid(&dict, 0))) {
687				ret = LZMA_DATA_ERROR;
688				goto out;
689			}
690
691	case SEQ_IS_REP0:
692			rc_if_0(coder->is_rep0[state], SEQ_IS_REP0) {
693				rc_update_0(coder->is_rep0[state]);
694				// The distance is rep0.
695
696	case SEQ_IS_REP0_LONG:
697				rc_if_0(coder->is_rep0_long[state][pos_state],
698						SEQ_IS_REP0_LONG) {
699					rc_update_0(coder->is_rep0_long[
700							state][pos_state]);
701
702					update_short_rep(state);
703
704	case SEQ_SHORTREP:
705					if (unlikely(dict_put(&dict, dict_get(
706							&dict, rep0)))) {
707						coder->sequence = SEQ_SHORTREP;
708						goto out;
709					}
710
711					continue;
712				}
713
714				// Repeating more than one byte at
715				// distance of rep0.
716				rc_update_1(coder->is_rep0_long[
717						state][pos_state]);
718
719			} else {
720				rc_update_1(coder->is_rep0[state]);
721
722	case SEQ_IS_REP1:
723				// The distance is rep1, rep2 or rep3. Once
724				// we find out which one of these three, it
725				// is stored to rep0 and rep1, rep2 and rep3
726				// are updated accordingly.
727				rc_if_0(coder->is_rep1[state], SEQ_IS_REP1) {
728					rc_update_0(coder->is_rep1[state]);
729
730					const uint32_t distance = rep1;
731					rep1 = rep0;
732					rep0 = distance;
733
734				} else {
735					rc_update_1(coder->is_rep1[state]);
736	case SEQ_IS_REP2:
737					rc_if_0(coder->is_rep2[state],
738							SEQ_IS_REP2) {
739						rc_update_0(coder->is_rep2[
740								state]);
741
742						const uint32_t distance = rep2;
743						rep2 = rep1;
744						rep1 = rep0;
745						rep0 = distance;
746
747					} else {
748						rc_update_1(coder->is_rep2[
749								state]);
750
751						const uint32_t distance = rep3;
752						rep3 = rep2;
753						rep2 = rep1;
754						rep1 = rep0;
755						rep0 = distance;
756					}
757				}
758			}
759
760			update_long_rep(state);
761
762			// Decode the length of the repeated match.
763			len_decode(len, coder->rep_len_decoder,
764					pos_state, SEQ_REP_LEN);
765		}
766
767		/////////////////////////////////
768		// Repeat from history buffer. //
769		/////////////////////////////////
770
771		// The length is always between these limits. There is no way
772		// to trigger the algorithm to set len outside this range.
773		assert(len >= MATCH_LEN_MIN);
774		assert(len <= MATCH_LEN_MAX);
775
776	case SEQ_COPY:
777		// Repeat len bytes from distance of rep0.
778		if (unlikely(dict_repeat(&dict, rep0, &len))) {
779			coder->sequence = SEQ_COPY;
780			goto out;
781		}
782	}
783
784	rc_normalize(SEQ_NORMALIZE);
785	coder->sequence = SEQ_IS_MATCH;
786
787out:
788	// Save state
789
790	// NOTE: Must not copy dict.limit.
791	dictptr->pos = dict.pos;
792	dictptr->full = dict.full;
793
794	rc_from_local(coder->rc, *in_pos);
795
796	coder->state = state;
797	coder->rep0 = rep0;
798	coder->rep1 = rep1;
799	coder->rep2 = rep2;
800	coder->rep3 = rep3;
801
802	coder->probs = probs;
803	coder->symbol = symbol;
804	coder->limit = limit;
805	coder->offset = offset;
806	coder->len = len;
807
808	// Update the remaining amount of uncompressed data if uncompressed
809	// size was known.
810	if (coder->uncompressed_size != LZMA_VLI_UNKNOWN) {
811		coder->uncompressed_size -= dict.pos - dict_start;
812
813		// Since there cannot be end of payload marker if the
814		// uncompressed size was known, we check here if we
815		// finished decoding.
816		if (coder->uncompressed_size == 0 && ret == LZMA_OK
817				&& coder->sequence != SEQ_NORMALIZE)
818			ret = coder->sequence == SEQ_IS_MATCH
819					? LZMA_STREAM_END : LZMA_DATA_ERROR;
820	}
821
822	// We can do an additional check in the range decoder to catch some
823	// corrupted files.
824	if (ret == LZMA_STREAM_END) {
825		if (!rc_is_finished(coder->rc))
826			ret = LZMA_DATA_ERROR;
827
828		// Reset the range decoder so that it is ready to reinitialize
829		// for a new LZMA2 chunk.
830		rc_reset(coder->rc);
831	}
832
833	return ret;
834}
835
836
837
838static void
839lzma_decoder_uncompressed(lzma_coder *coder, lzma_vli uncompressed_size)
840{
841	coder->uncompressed_size = uncompressed_size;
842}
843
844/*
845extern void
846lzma_lzma_decoder_uncompressed(void *coder_ptr, lzma_vli uncompressed_size)
847{
848	// This is hack.
849	(*(lzma_coder **)(coder))->uncompressed_size = uncompressed_size;
850}
851*/
852
853static void
854lzma_decoder_reset(lzma_coder *coder, const void *opt)
855{
856	const lzma_options_lzma *options = opt;
857
858	// NOTE: We assume that lc/lp/pb are valid since they were
859	// successfully decoded with lzma_lzma_decode_properties().
860
861	// Calculate pos_mask. We don't need pos_bits as is for anything.
862	coder->pos_mask = (1U << options->pb) - 1;
863
864	// Initialize the literal decoder.
865	literal_init(coder->literal, options->lc, options->lp);
866
867	coder->literal_context_bits = options->lc;
868	coder->literal_pos_mask = (1U << options->lp) - 1;
869
870	// State
871	coder->state = STATE_LIT_LIT;
872	coder->rep0 = 0;
873	coder->rep1 = 0;
874	coder->rep2 = 0;
875	coder->rep3 = 0;
876	coder->pos_mask = (1U << options->pb) - 1;
877
878	// Range decoder
879	rc_reset(coder->rc);
880
881	// Bit and bittree decoders
882	for (uint32_t i = 0; i < STATES; ++i) {
883		for (uint32_t j = 0; j <= coder->pos_mask; ++j) {
884			bit_reset(coder->is_match[i][j]);
885			bit_reset(coder->is_rep0_long[i][j]);
886		}
887
888		bit_reset(coder->is_rep[i]);
889		bit_reset(coder->is_rep0[i]);
890		bit_reset(coder->is_rep1[i]);
891		bit_reset(coder->is_rep2[i]);
892	}
893
894	for (uint32_t i = 0; i < LEN_TO_POS_STATES; ++i)
895		bittree_reset(coder->pos_slot[i], POS_SLOT_BITS);
896
897	for (uint32_t i = 0; i < FULL_DISTANCES - END_POS_MODEL_INDEX; ++i)
898		bit_reset(coder->pos_special[i]);
899
900	bittree_reset(coder->pos_align, ALIGN_BITS);
901
902	// Len decoders (also bit/bittree)
903	const uint32_t num_pos_states = 1U << options->pb;
904	bit_reset(coder->match_len_decoder.choice);
905	bit_reset(coder->match_len_decoder.choice2);
906	bit_reset(coder->rep_len_decoder.choice);
907	bit_reset(coder->rep_len_decoder.choice2);
908
909	for (uint32_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
910		bittree_reset(coder->match_len_decoder.low[pos_state],
911				LEN_LOW_BITS);
912		bittree_reset(coder->match_len_decoder.mid[pos_state],
913				LEN_MID_BITS);
914
915		bittree_reset(coder->rep_len_decoder.low[pos_state],
916				LEN_LOW_BITS);
917		bittree_reset(coder->rep_len_decoder.mid[pos_state],
918				LEN_MID_BITS);
919	}
920
921	bittree_reset(coder->match_len_decoder.high, LEN_HIGH_BITS);
922	bittree_reset(coder->rep_len_decoder.high, LEN_HIGH_BITS);
923
924	coder->sequence = SEQ_IS_MATCH;
925	coder->probs = NULL;
926	coder->symbol = 0;
927	coder->limit = 0;
928	coder->offset = 0;
929	coder->len = 0;
930
931	return;
932}
933
934
935extern lzma_ret
936lzma_lzma_decoder_create(lzma_lz_decoder *lz, lzma_allocator *allocator,
937		const void *opt, lzma_lz_options *lz_options)
938{
939	if (lz->coder == NULL) {
940		lz->coder = lzma_alloc(sizeof(lzma_coder), allocator);
941		if (lz->coder == NULL)
942			return LZMA_MEM_ERROR;
943
944		lz->code = &lzma_decode;
945		lz->reset = &lzma_decoder_reset;
946		lz->set_uncompressed = &lzma_decoder_uncompressed;
947	}
948
949	// All dictionary sizes are OK here. LZ decoder will take care of
950	// the special cases.
951	const lzma_options_lzma *options = opt;
952	lz_options->dict_size = options->dict_size;
953	lz_options->preset_dict = options->preset_dict;
954	lz_options->preset_dict_size = options->preset_dict_size;
955
956	return LZMA_OK;
957}
958
959
960/// Allocate and initialize LZMA decoder. This is used only via LZ
961/// initialization (lzma_lzma_decoder_init() passes function pointer to
962/// the LZ initialization).
963static lzma_ret
964lzma_decoder_init(lzma_lz_decoder *lz, lzma_allocator *allocator,
965		const void *options, lzma_lz_options *lz_options)
966{
967	if (!is_lclppb_valid(options))
968		return LZMA_PROG_ERROR;
969
970	return_if_error(lzma_lzma_decoder_create(
971			lz, allocator, options, lz_options));
972
973	lzma_decoder_reset(lz->coder, options);
974	lzma_decoder_uncompressed(lz->coder, LZMA_VLI_UNKNOWN);
975
976	return LZMA_OK;
977}
978
979
980extern lzma_ret
981lzma_lzma_decoder_init(lzma_next_coder *next, lzma_allocator *allocator,
982		const lzma_filter_info *filters)
983{
984	// LZMA can only be the last filter in the chain. This is enforced
985	// by the raw_decoder initialization.
986	assert(filters[1].init == NULL);
987
988	return lzma_lz_decoder_init(next, allocator, filters,
989			&lzma_decoder_init);
990}
991
992
993extern bool
994lzma_lzma_lclppb_decode(lzma_options_lzma *options, uint8_t byte)
995{
996	if (byte > (4 * 5 + 4) * 9 + 8)
997		return true;
998
999	// See the file format specification to understand this.
1000	options->pb = byte / (9 * 5);
1001	byte -= options->pb * 9 * 5;
1002	options->lp = byte / 9;
1003	options->lc = byte - options->lp * 9;
1004
1005	return options->lc + options->lp > LZMA_LCLP_MAX;
1006}
1007
1008
1009extern uint64_t
1010lzma_lzma_decoder_memusage_nocheck(const void *options)
1011{
1012	const lzma_options_lzma *const opt = options;
1013	return sizeof(lzma_coder) + lzma_lz_decoder_memusage(opt->dict_size);
1014}
1015
1016
1017extern uint64_t
1018lzma_lzma_decoder_memusage(const void *options)
1019{
1020	if (!is_lclppb_valid(options))
1021		return UINT64_MAX;
1022
1023	return lzma_lzma_decoder_memusage_nocheck(options);
1024}
1025
1026
1027extern lzma_ret
1028lzma_lzma_props_decode(void **options, lzma_allocator *allocator,
1029		const uint8_t *props, size_t props_size)
1030{
1031	if (props_size != 5)
1032		return LZMA_OPTIONS_ERROR;
1033
1034	lzma_options_lzma *opt
1035			= lzma_alloc(sizeof(lzma_options_lzma), allocator);
1036	if (opt == NULL)
1037		return LZMA_MEM_ERROR;
1038
1039	if (lzma_lzma_lclppb_decode(opt, props[0]))
1040		goto error;
1041
1042	// All dictionary sizes are accepted, including zero. LZ decoder
1043	// will automatically use a dictionary at least a few KiB even if
1044	// a smaller dictionary is requested.
1045	opt->dict_size = unaligned_read32le(props + 1);
1046
1047	opt->preset_dict = NULL;
1048	opt->preset_dict_size = 0;
1049
1050	*options = opt;
1051
1052	return LZMA_OK;
1053
1054error:
1055	lzma_free(opt, allocator);
1056	return LZMA_OPTIONS_ERROR;
1057}
1058