refclock_chu.c revision 82498
1/*
2 * refclock_chu - clock driver for Canadian CHU time/frequency station
3 */
4#ifdef HAVE_CONFIG_H
5#include <config.h>
6#endif
7
8#if defined(REFCLOCK) && defined(CLOCK_CHU)
9
10#include "ntpd.h"
11#include "ntp_io.h"
12#include "ntp_refclock.h"
13#include "ntp_calendar.h"
14#include "ntp_stdlib.h"
15
16#include <stdio.h>
17#include <ctype.h>
18#include <math.h>
19
20#ifdef HAVE_AUDIO
21#include "audio.h"
22#endif /* HAVE_AUDIO */
23
24#define ICOM 	1		/* undefine to suppress ICOM code */
25
26#ifdef ICOM
27#include "icom.h"
28#endif /* ICOM */
29
30/*
31 * Audio CHU demodulator/decoder
32 *
33 * This driver synchronizes the computer time using data encoded in
34 * radio transmissions from Canadian time/frequency station CHU in
35 * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
36 * 7335 kHz and 14670 kHz in upper sideband, compatible AM mode. An
37 * ordinary shortwave receiver can be tuned manually to one of these
38 * frequencies or, in the case of ICOM receivers, the receiver can be
39 * tuned automatically using this program as propagation conditions
40 * change throughout the day and night.
41 *
42 * The driver receives, demodulates and decodes the radio signals when
43 * connected to the audio codec of a Sun workstation running SunOS or
44 * Solaris, and with a little help, other workstations with similar
45 * codecs or sound cards. In this implementation, only one audio driver
46 * and codec can be supported on a single machine.
47 *
48 * The driver can be compiled to use a Bell 103 compatible modem or
49 * modem chip to receive the radio signal and demodulate the data.
50 * Alternatively, the driver can be compiled to use the audio codec of
51 * the Sun workstation or another with compatible audio drivers. In the
52 * latter case, the driver implements the modem using DSP routines, so
53 * the radio can be connected directly to either the microphone on line
54 * input port. In either case, the driver decodes the data using a
55 * maximum likelihood technique which exploits the considerable degree
56 * of redundancy available to maximize accuracy and minimize errors.
57 *
58 * The CHU time broadcast includes an audio signal compatible with the
59 * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). It consist
60 * of nine, ten-character bursts transmitted at 300 bps and beginning
61 * each second from second 31 to second 39 of the minute. Each character
62 * consists of eight data bits plus one start bit and two stop bits to
63 * encode two hex digits. The burst data consist of five characters (ten
64 * hex digits) followed by a repeat of these characters. In format A,
65 * the characters are repeated in the same polarity; in format B, the
66 * characters are repeated in the opposite polarity.
67 *
68 * Format A bursts are sent at seconds 32 through 39 of the minute in
69 * hex digits
70 *
71 *	6dddhhmmss6dddhhmmss
72 *
73 * The first ten digits encode a frame marker (6) followed by the day
74 * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
75 * format A bursts are sent during the third decade of seconds the tens
76 * digit of ss is always 3. The driver uses this to determine correct
77 * burst synchronization. These digits are then repeated with the same
78 * polarity.
79 *
80 * Format B bursts are sent at second 31 of the minute in hex digits
81 *
82 *	xdyyyyttaaxdyyyyttaa
83 *
84 * The first ten digits encode a code (x described below) followed by
85 * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
86 * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
87 * digits are then repeated with inverted polarity.
88 *
89 * The x is coded
90 *
91 * 1 Sign of DUT (0 = +)
92 * 2 Leap second warning. One second will be added.
93 * 4 Leap second warning. One second will be subtracted.
94 * 8 Even parity bit for this nibble.
95 *
96 * By design, the last stop bit of the last character in the burst
97 * coincides with 0.5 second. Since characters have 11 bits and are
98 * transmitted at 300 bps, the last stop bit of the first character
99 * coincides with 0.5 - 10 * 11/300 = 0.133 second. Depending on the
100 * UART, character interrupts can vary somewhere between the beginning
101 * of bit 9 and end of bit 11. These eccentricities can be corrected
102 * along with the radio propagation delay using fudge time 1.
103 *
104 * Debugging aids
105 *
106 * The timecode format used for debugging and data recording includes
107 * data helpful in diagnosing problems with the radio signal and serial
108 * connections. With debugging enabled (-d -d -d on the ntpd command
109 * line), the driver produces one line for each burst in two formats
110 * corresponding to format A and B. Following is format A:
111 *
112 *	n b f s m code
113 *
114 * where n is the number of characters in the burst (0-11), b the burst
115 * distance (0-40), f the field alignment (-1, 0, 1), s the
116 * synchronization distance (0-16), m the burst number (2-9) and code
117 * the burst characters as received. Note that the hex digits in each
118 * character are reversed, so the burst
119 *
120 *	10 38 0 16 9 06851292930685129293
121 *
122 * is interpreted as containing 11 characters with burst distance 38,
123 * field alignment 0, synchronization distance 16 and burst number 9.
124 * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
125 * second 39.
126 *
127 * When the audio driver is compiled, format A is preceded by
128 * the current gain (0-255) and relative signal level (0-9999). The
129 * receiver folume control should be set so that the gain is somewhere
130 * near the middle of the range 0-255, which results in a signal level
131 * near 1000.
132 *
133 * Following is format B:
134 *
135 *	n b s code
136 *
137 * where n is the number of characters in the burst (0-11), b the burst
138 * distance (0-40), s the synchronization distance (0-40) and code the
139 * burst characters as received. Note that the hex digits in each
140 * character are reversed and the last ten digits inverted, so the burst
141 *
142 *	11 40 1091891300ef6e76ecff
143 *
144 * is interpreted as containing 11 characters with burst distance 40.
145 * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
146 * - UTC 31 seconds.
147 *
148 * In addition to the above, the reference timecode is updated and
149 * written to the clockstats file and debug score after the last burst
150 * received in the minute. The format is
151 *
152 *	qq yyyy ddd hh:mm:ss nn dd tt
153 *
154 * where qq are the error flags, as described below, yyyy is the year,
155 * ddd the day, hh:mm:ss the time of day, nn the number of format A
156 * bursts received during the previous minute, dd the decoding distance
157 * and tt the number of timestamps. The error flags are cleared after
158 * every update.
159 *
160 * Fudge factors
161 *
162 * For accuracies better than the low millisceconds, fudge time1 can be
163 * set to the radio propagation delay from CHU to the receiver. This can
164 * be done conviently using the minimuf program. When the modem driver
165 * is compiled, fudge flag3 enables the ppsclock line discipline. Fudge
166 * flag4 causes the dubugging output described above to be recorded in
167 * the clockstats file.
168 *
169 * When the audio driver is compiled, fudge flag2 selects the audio
170 * input port, where 0 is the mike port (default) and 1 is the line-in
171 * port. It does not seem useful to select the compact disc player port.
172 * Fudge flag3 enables audio monitoring of the input signal. For this
173 * purpose, the speaker volume must be set before the driver is started.
174 *
175 * The audio codec code is normally compiled in the driver if the
176 * architecture supports it (HAVE_AUDIO defined), but is used only if the
177 * link /dev/chu_audio is defined and valid. The serial port
178 * code is alwasy compiled in the driver, but is used only if the autdio
179 * codec is not available and the link /dev/chu%d is defined and valid.
180 * The ICOM code is normally compiled in the driver if selected (ICOM
181 * defined), but is used only if the link /dev/icom%d is defined and
182 * valid and the mode keyword on the server configuration command
183 * specifies a nonzero mode (ICOM ID select code). The C-IV speed is
184 * 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps
185 * if one. The C-IV trace is turned on if the debug level is greater
186 * than one.
187 */
188/*
189 * Interface definitions
190 */
191#define	SPEED232	B300	/* uart speed (300 baud) */
192#define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
193#define	REFID		"CHU"	/* reference ID */
194#define	DEVICE		"/dev/chu%d" /* device name and unit */
195#define	SPEED232	B300	/* UART speed (300 baud) */
196#ifdef ICOM
197#define DWELL		5	/* minutes before qsy */
198#define NCHAN		3	/* number of channels */
199#endif /* ICOM */
200#ifdef HAVE_AUDIO
201
202/*
203 * Audio demodulator definitions
204 */
205#define SECOND		8000	/* nominal sample rate (Hz) */
206#define BAUD		300	/* modulation rate (bps) */
207#define OFFSET		128	/* companded sample offset */
208#define SIZE		256	/* decompanding table size */
209#define	MAXSIG		6000.	/* maximum signal level */
210#define LIMIT		1000.	/* soft limiter threshold */
211#define AGAIN		6.	/* baseband gain */
212#define LAG		10	/* discriminator lag */
213#define	DEVICE_AUDIO	"/dev/chu_audio" /* device name */
214#define	DESCRIPTION	"CHU Audio/Modem Receiver" /* WRU */
215#else
216#define	DESCRIPTION	"CHU Modem Receiver" /* WRU */
217#endif /* HAVE_AUDIO */
218
219/*
220 * Decoder definitions
221 */
222#define CHAR		(11. / 300.) /* character time (s) */
223#define	FUDGE		.185	/* offset to first stop bit (s) */
224#define BURST		11	/* max characters per burst */
225#define MINCHAR		9	/* min characters per burst */
226#define MINDIST		28	/* min burst distance (of 40)  */
227#define MINSYNC		8	/* min sync distance (of 16) */
228#define MINSTAMP	20	/* min timestamps (of 60) */
229#define PANIC		(4 * 1440) /* panic restart */
230
231/*
232 * Hex extension codes (>= 16)
233 */
234#define HEX_MISS	16	/* miss */
235#define HEX_SOFT	17	/* soft error */
236#define HEX_HARD	18	/* hard error */
237
238/*
239 * Status bits (status)
240 */
241#define RUNT		0x0001	/* runt burst */
242#define NOISE		0x0002	/* noise burst */
243#define BFRAME		0x0004	/* invalid format B frame sync */
244#define BFORMAT		0x0008	/* invalid format B data */
245#define AFRAME		0x0010	/* invalid format A frame sync */
246#define AFORMAT		0x0020	/* invalid format A data */
247#define DECODE		0x0040	/* invalid data decode */
248#define STAMP		0x0080	/* too few timestamps */
249#define INYEAR		0x0100	/* valid B frame */
250#define INSYNC		0x0200	/* clock synchronized */
251
252/*
253 * Alarm status bits (alarm)
254 *
255 * These alarms are set at the end of a minute in which at least one
256 * burst was received. SYNERR is raised if the AFRAME or BFRAME status
257 * bits are set during the minute, FMTERR is raised if the AFORMAT or
258 * BFORMAT status bits are set, DECERR is raised if the DECODE status
259 * bit is set and TSPERR is raised if the STAMP status bit is set.
260 */
261#define SYNERR		0x01	/* frame sync error */
262#define FMTERR		0x02	/* data format error */
263#define DECERR		0x04	/* data decoding error */
264#define TSPERR		0x08	/* insufficient data */
265
266#ifdef HAVE_AUDIO
267struct surv {
268	double	shift[12];	/* mark register */
269	double	es_max, es_min;	/* max/min envelope signals */
270	double	dist;		/* sample distance */
271	int	uart;		/* decoded character */
272};
273#endif /* HAVE_AUDIO */
274
275/*
276 * CHU unit control structure
277 */
278struct chuunit {
279	u_char	decode[20][16];	/* maximum likelihood decoding matrix */
280	l_fp	cstamp[BURST];	/* character timestamps */
281	l_fp	tstamp[MAXSTAGE]; /* timestamp samples */
282	l_fp	timestamp;	/* current buffer timestamp */
283	l_fp	laststamp;	/* last buffer timestamp */
284	l_fp	charstamp;	/* character time as a l_fp */
285	int	errflg;		/* error flags */
286	int	status;		/* status bits */
287	int	bufptr;		/* buffer index pointer */
288	char	ident[10];	/* transmitter frequency */
289#ifdef ICOM
290	int	fd_icom;	/* ICOM file descriptor */
291	int	chan;		/* frequency identifier */
292	int	dwell;		/* dwell minutes at current frequency */
293#endif /* ICOM */
294
295	/*
296	 * Character burst variables
297	 */
298	int	cbuf[BURST];	/* character buffer */
299	int	ntstamp;	/* number of timestamp samples */
300	int	ndx;		/* buffer start index */
301	int	prevsec;	/* previous burst second */
302	int	burdist;	/* burst distance */
303	int	mindist;	/* minimum distance */
304	int	syndist;	/* sync distance */
305	int	burstcnt;	/* format A bursts this minute */
306
307	/*
308	 * Format particulars
309	 */
310	int	leap;		/* leap/dut code */
311	int	dut;		/* UTC1 correction */
312	int	tai;		/* TAI - UTC correction */
313	int	dst;		/* Canadian DST code */
314
315#ifdef HAVE_AUDIO
316	/*
317	 * Audio codec variables
318	 */
319	int	fd_audio;	/* audio port file descriptor */
320	double	comp[SIZE];	/* decompanding table */
321	int	port;		/* codec port */
322	int	gain;		/* codec gain */
323	int	bufcnt;		/* samples in buffer */
324	int	clipcnt;	/* sample clip count */
325	int	seccnt;		/* second interval counter */
326
327	/*
328	 * Modem variables
329	 */
330	l_fp	tick;		/* audio sample increment */
331	double	bpf[9];		/* IIR bandpass filter */
332	double	disc[LAG];	/* discriminator shift register */
333	double	lpf[27];	/* FIR lowpass filter */
334	double	monitor;	/* audio monitor */
335	double	maxsignal;	/* signal level */
336	int	discptr;	/* discriminator pointer */
337
338	/*
339	 * Maximum likelihood UART variables
340	 */
341	double	baud;		/* baud interval */
342	struct surv surv[8];	/* UART survivor structures */
343	int	decptr;		/* decode pointer */
344	int	dbrk;		/* holdoff counter */
345#endif /* HAVE_AUDIO */
346};
347
348/*
349 * Function prototypes
350 */
351static	int	chu_start	P((int, struct peer *));
352static	void	chu_shutdown	P((int, struct peer *));
353static	void	chu_receive	P((struct recvbuf *));
354static	void	chu_poll	P((int, struct peer *));
355
356/*
357 * More function prototypes
358 */
359static	void	chu_decode	P((struct peer *, int));
360static	void	chu_burst	P((struct peer *));
361static	void	chu_clear	P((struct peer *));
362static	void	chu_a		P((struct peer *, int));
363static	void	chu_b		P((struct peer *, int));
364static	int	chu_dist	P((int, int));
365static	int	chu_major	P((struct peer *));
366#ifdef HAVE_AUDIO
367static	void	chu_uart	P((struct surv *, double));
368static	void	chu_rf		P((struct peer *, double));
369static	void	chu_gain	P((struct peer *));
370static	void	chu_audio_receive P((struct recvbuf *rbufp));
371#endif /* HAVE_AUDIO */
372static	void	chu_serial_receive P((struct recvbuf *rbufp));
373
374/*
375 * Global variables
376 */
377static char hexchar[] = "0123456789abcdef_-=";
378#ifdef ICOM
379static double qsy[NCHAN] = {3.33, 7.335, 14.67}; /* frequencies (MHz) */
380#endif /* ICOM */
381
382/*
383 * Transfer vector
384 */
385struct	refclock refclock_chu = {
386	chu_start,		/* start up driver */
387	chu_shutdown,		/* shut down driver */
388	chu_poll,		/* transmit poll message */
389	noentry,		/* not used (old chu_control) */
390	noentry,		/* initialize driver (not used) */
391	noentry,		/* not used (old chu_buginfo) */
392	NOFLAGS			/* not used */
393};
394
395
396/*
397 * chu_start - open the devices and initialize data for processing
398 */
399static int
400chu_start(
401	int	unit,		/* instance number (not used) */
402	struct peer *peer	/* peer structure pointer */
403	)
404{
405	struct chuunit *up;
406	struct refclockproc *pp;
407	char device[20];	/* device name */
408	int	fd;		/* file descriptor */
409#ifdef ICOM
410	char	tbuf[80];	/* trace buffer */
411	int	temp;
412#endif /* ICOM */
413#ifdef HAVE_AUDIO
414	int	fd_audio;	/* audio port file descriptor */
415	int	i;		/* index */
416	double	step;		/* codec adjustment */
417
418	/*
419	 * Open audio device.
420	 */
421	fd_audio = audio_init(DEVICE_AUDIO);
422#ifdef DEBUG
423	if (fd_audio > 0 && debug)
424		audio_show();
425#endif
426
427	/*
428	 * Open serial port in raw mode.
429	 */
430	if (fd_audio > 0) {
431		fd = fd_audio;
432	} else {
433		sprintf(device, DEVICE, unit);
434		fd = refclock_open(device, SPEED232, LDISC_RAW);
435	}
436#else /* HAVE_AUDIO */
437
438	/*
439	 * Open serial port in raw mode.
440	 */
441	sprintf(device, DEVICE, unit);
442	fd = refclock_open(device, SPEED232, LDISC_RAW);
443#endif /* HAVE_AUDIO */
444	if (fd <= 0)
445		return (0);
446
447	/*
448	 * Allocate and initialize unit structure
449	 */
450	if (!(up = (struct chuunit *)
451	      emalloc(sizeof(struct chuunit)))) {
452		close(fd);
453		return (0);
454	}
455	memset((char *)up, 0, sizeof(struct chuunit));
456	pp = peer->procptr;
457	pp->unitptr = (caddr_t)up;
458	pp->io.clock_recv = chu_receive;
459	pp->io.srcclock = (caddr_t)peer;
460	pp->io.datalen = 0;
461	pp->io.fd = fd;
462	if (!io_addclock(&pp->io)) {
463		close(fd);
464		free(up);
465		return (0);
466	}
467
468	/*
469	 * Initialize miscellaneous variables
470	 */
471	peer->precision = PRECISION;
472	pp->clockdesc = DESCRIPTION;
473	memcpy((char *)&pp->refid, REFID, 4);
474	DTOLFP(CHAR, &up->charstamp);
475#ifdef HAVE_AUDIO
476
477	/*
478	 * The companded samples are encoded sign-magnitude. The table
479	 * contains all the 256 values in the interest of speed. We do
480	 * this even if the audio codec is not available. C'est la lazy.
481	 */
482	up->fd_audio = fd_audio;
483	up->gain = 127;
484	up->comp[0] = up->comp[OFFSET] = 0.;
485	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
486	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
487	step = 2.;
488	for (i = 3; i < OFFSET; i++) {
489		up->comp[i] = up->comp[i - 1] + step;
490		up->comp[OFFSET + i] = -up->comp[i];
491                if (i % 16 == 0)
492                	step *= 2.;
493	}
494	DTOLFP(1. / SECOND, &up->tick);
495#endif /* HAVE_AUDIO */
496	strcpy(up->ident, "X");
497#ifdef ICOM
498	temp = 0;
499#ifdef DEBUG
500	if (debug > 1)
501		temp = P_TRACE;
502#endif
503	if (peer->ttlmax > 0) {
504		if (peer->ttlmax & 0x80)
505			up->fd_icom = icom_init("/dev/icom", B1200,
506			    temp);
507		else
508			up->fd_icom = icom_init("/dev/icom", B9600,
509			    temp);
510	}
511	if (up->fd_icom > 0) {
512		if (icom_freq(up->fd_icom, peer->ttlmax & 0x7f,
513		    qsy[up->chan]) < 0) {
514			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
515			    msyslog(LOG_ERR,
516			    "ICOM bus error; autotune disabled");
517			up->errflg = CEVNT_FAULT;
518			close(up->fd_icom);
519			up->fd_icom = 0;
520		} else {
521			sprintf(up->ident, "%.1f", qsy[up->chan]);
522			sprintf(tbuf, "chu: QSY to %s MHz", up->ident);
523			record_clock_stats(&peer->srcadr, tbuf);
524#ifdef DEBUG
525			if (debug)
526				printf("%s\n", tbuf);
527#endif
528		}
529	}
530#endif /* ICOM */
531	return (1);
532}
533
534
535/*
536 * chu_shutdown - shut down the clock
537 */
538static void
539chu_shutdown(
540	int	unit,		/* instance number (not used) */
541	struct peer *peer	/* peer structure pointer */
542	)
543{
544	struct chuunit *up;
545	struct refclockproc *pp;
546
547	pp = peer->procptr;
548	up = (struct chuunit *)pp->unitptr;
549	if (up == NULL)
550		return;
551	io_closeclock(&pp->io);
552	if (up->fd_icom > 0)
553		close(up->fd_icom);
554	free(up);
555}
556
557/*
558 * chu_receive - receive data from the audio or serial device
559 */
560static void
561chu_receive(
562	struct recvbuf *rbufp	/* receive buffer structure pointer */
563	)
564{
565#ifdef HAVE_AUDIO
566	struct chuunit *up;
567	struct refclockproc *pp;
568	struct peer *peer;
569
570	peer = (struct peer *)rbufp->recv_srcclock;
571	pp = peer->procptr;
572	up = (struct chuunit *)pp->unitptr;
573
574	/*
575	 * If the audio codec is warmed up, the buffer contains codec
576	 * samples which need to be demodulated and decoded into CHU
577	 * characters using the software UART. Otherwise, the buffer
578	 * contains CHU characters from the serial port, so the software
579	 * UART is bypassed. In this case the CPU will probably run a
580	 * few degrees cooler.
581	 */
582	if (up->fd_audio > 0)
583		chu_audio_receive(rbufp);
584	else
585		chu_serial_receive(rbufp);
586#else
587	chu_serial_receive(rbufp);
588#endif /* HAVE_AUDIO */
589}
590
591#ifdef HAVE_AUDIO
592
593/*
594 * chu_audio_receive - receive data from the audio device
595 */
596static void
597chu_audio_receive(
598	struct recvbuf *rbufp	/* receive buffer structure pointer */
599	)
600{
601	struct chuunit *up;
602	struct refclockproc *pp;
603	struct peer *peer;
604
605	double	sample;		/* codec sample */
606	u_char	*dpt;		/* buffer pointer */
607	l_fp	ltemp;		/* l_fp temp */
608	int	isneg;		/* parity flag */
609	double	dtemp;
610	int	i, j;
611
612	peer = (struct peer *)rbufp->recv_srcclock;
613	pp = peer->procptr;
614	up = (struct chuunit *)pp->unitptr;
615
616	/*
617	 * Main loop - read until there ain't no more. Note codec
618	 * samples are bit-inverted.
619	 */
620	up->timestamp = rbufp->recv_time;
621	up->bufcnt = rbufp->recv_length;
622	DTOLFP(up->bufcnt * 1. / SECOND, &ltemp);
623	L_SUB(&up->timestamp, &ltemp);
624	dpt = (u_char *)&rbufp->recv_space;
625	for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) {
626		sample = up->comp[~*dpt & 0xff];
627
628		/*
629		 * Clip noise spikes greater than MAXSIG. If no clips,
630		 * increase the gain a tad; if the clips are too high,
631		 * decrease a tad.
632		 */
633		if (sample > MAXSIG) {
634			sample = MAXSIG;
635			up->clipcnt++;
636		} else if (sample < -MAXSIG) {
637			sample = -MAXSIG;
638			up->clipcnt++;
639		}
640		up->seccnt = (up->seccnt + 1) % SECOND;
641		if (up->seccnt == 0) {
642			if (pp->sloppyclockflag & CLK_FLAG2)
643				up->port = 2;
644			else
645				up->port = 1;
646			chu_gain(peer);
647		}
648		chu_rf(peer, sample);
649
650		/*
651		 * During development, it is handy to have an audio
652		 * monitor that can be switched to various signals. This
653		 * code converts the linear signal left in up->monitor
654		 * to codec format. If we can get the grass out of this
655		 * thing and improve modem performance, this expensive
656		 * code will be permanently nixed.
657		 */
658		isneg = 0;
659		dtemp = up->monitor;
660		if (sample < 0) {
661			isneg = 1;
662			dtemp-= dtemp;
663		}
664		i = 0;
665		j = OFFSET >> 1;
666		while (j != 0) {
667			if (dtemp > up->comp[i])
668				i += j;
669			else if (dtemp < up->comp[i])
670				i -= j;
671			else
672				break;
673			j >>= 1;
674		}
675		if (isneg)
676			*dpt = ~(i + OFFSET);
677		else
678			*dpt = ~i;
679		dpt++;
680		L_ADD(&up->timestamp, &up->tick);
681	}
682
683	/*
684	 * Squawk to the monitor speaker if enabled.
685	 */
686	if (pp->sloppyclockflag & CLK_FLAG3)
687		if (write(pp->io.fd, (u_char *)&rbufp->recv_space,
688		    (u_int)up->bufcnt) < 0)
689			perror("chu:");
690}
691
692
693/*
694 * chu_rf - filter and demodulate the FSK signal
695 *
696 * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
697 * and space 2025 Hz. It uses a bandpass filter followed by a soft
698 * limiter, FM discriminator and lowpass filter. A maximum likelihood
699 * decoder samples the baseband signal at eight times the baud rate and
700 * detects the start bit of each character.
701 *
702 * The filters are built for speed, which explains the rather clumsy
703 * code. Hopefully, the compiler will efficiently implement the move-
704 * and-muiltiply-and-add operations.
705 */
706static void
707chu_rf(
708	struct peer *peer,	/* peer structure pointer */
709	double	sample		/* analog sample */
710	)
711{
712	struct refclockproc *pp;
713	struct chuunit *up;
714	struct surv *sp;
715
716	/*
717	 * Local variables
718	 */
719	double	signal;		/* bandpass signal */
720	double	limit;		/* limiter signal */
721	double	disc;		/* discriminator signal */
722	double	lpf;		/* lowpass signal */
723	double	span;		/* UART signal span */
724	double	dist;		/* UART signal distance */
725	int	i, j;
726
727	pp = peer->procptr;
728	up = (struct chuunit *)pp->unitptr;
729
730	/*
731	 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
732	 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB.
733	 */
734	signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
735	signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
736	signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
737	signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
738	signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
739	signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
740	signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
741	signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
742	up->bpf[0] = sample - signal;
743	signal = up->bpf[0] * 6.176213e-03
744	    + up->bpf[1] * 3.156599e-03
745	    + up->bpf[2] * 7.567487e-03
746	    + up->bpf[3] * 4.344580e-03
747	    + up->bpf[4] * 1.190128e-02
748	    + up->bpf[5] * 4.344580e-03
749	    + up->bpf[6] * 7.567487e-03
750	    + up->bpf[7] * 3.156599e-03
751	    + up->bpf[8] * 6.176213e-03;
752
753	up->monitor = signal / 4.;	/* note monitor after filter */
754
755	/*
756	 * Soft limiter/discriminator. The 11-sample discriminator lag
757	 * interval corresponds to three cycles of 2125 Hz, which
758	 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
759	 * Hz. The discriminator output varies +-0.5 interval for input
760	 * frequency 2025-2225 Hz. However, we don't get to sample at
761	 * this frequency, so the discriminator output is biased. Life
762	 * at 8000 Hz sucks.
763	 */
764	limit = signal;
765	if (limit > LIMIT)
766		limit = LIMIT;
767	else if (limit < -LIMIT)
768		limit = -LIMIT;
769	disc = up->disc[up->discptr] * -limit;
770	up->disc[up->discptr] = limit;
771	up->discptr = (up->discptr + 1 ) % LAG;
772	if (disc >= 0)
773		disc = SQRT(disc);
774	else
775		disc = -SQRT(-disc);
776
777	/*
778	 * Lowpass filter. Raised cosine, Ts = 1 / 300, beta = 0.1.
779	 */
780	lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
781	lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
782	lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
783	lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
784	lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
785	lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
786	lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
787	lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
788	lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
789	lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
790	lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
791	lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
792	lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
793	lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
794	lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
795	lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
796	lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
797	lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
798	lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
799	lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
800	lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
801	lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
802	lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
803	lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
804	lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
805	lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
806	lpf += up->lpf[0] = disc * 2.538771e-02;
807
808	/*
809	 * Maximum likelihood decoder. The UART updates each of the
810	 * eight survivors and determines the span, slice level and
811	 * tentative decoded character. Valid 11-bit characters are
812	 * framed so that bit 1 and bit 11 (stop bits) are mark and bit
813	 * 2 (start bit) is space. When a valid character is found, the
814	 * survivor with maximum distance determines the final decoded
815	 * character.
816	 */
817	up->baud += 1. / SECOND;
818	if (up->baud > 1. / (BAUD * 8.)) {
819		up->baud -= 1. / (BAUD * 8.);
820		sp = &up->surv[up->decptr];
821		span = sp->es_max - sp->es_min;
822		up->maxsignal += (span - up->maxsignal) / 80.;
823		if (up->dbrk > 0) {
824			up->dbrk--;
825		} else if ((sp->uart & 0x403) == 0x401 && span > 1000.)
826		    {
827			dist = 0;
828			j = 0;
829			for (i = 0; i < 8; i++) {
830				if (up->surv[i].dist > dist) {
831					dist = up->surv[i].dist;
832					j = i;
833				}
834			}
835			chu_decode(peer, (up->surv[j].uart >> 2) &
836			    0xff);
837			up->dbrk = 80;
838		}
839		up->decptr = (up->decptr + 1) % 8;
840		chu_uart(sp, -lpf * AGAIN);
841	}
842}
843
844
845/*
846 * chu_uart - maximum likelihood UART
847 *
848 * This routine updates a shift register holding the last 11 envelope
849 * samples. It then computes the slice level and span over these samples
850 * and determines the tentative data bits and distance. The calling
851 * program selects over the last eight survivors the one with maximum
852 * distance to determine the decoded character.
853 */
854static void
855chu_uart(
856	struct surv *sp,	/* survivor structure pointer */
857	double	sample		/* baseband signal */
858	)
859{
860	double	es_max, es_min;	/* max/min envelope */
861	double	slice;		/* slice level */
862	double	dist;		/* distance */
863	double	dtemp;
864	int	i;
865
866	/*
867	 * Save the sample and shift right. At the same time, measure
868	 * the maximum and minimum over all eleven samples.
869	 */
870	es_max = -1e6;
871	es_min = 1e6;
872	sp->shift[0] = sample;
873	for (i = 11; i > 0; i--) {
874		sp->shift[i] = sp->shift[i - 1];
875		if (sp->shift[i] > es_max)
876			es_max = sp->shift[i];
877		if (sp->shift[i] < es_min)
878			es_min = sp->shift[i];
879	}
880
881	/*
882	 * Determine the slice level midway beteen the maximum and
883	 * minimum and the span as the maximum less the minimum. Compute
884	 * the distance on the assumption the first and last bits must
885	 * be mark, the second space and the rest either mark or space.
886	 */
887	slice = (es_max + es_min) / 2.;
888	dist = 0;
889	sp->uart = 0;
890	for (i = 1; i < 12; i++) {
891		sp->uart <<= 1;
892		dtemp = sp->shift[i];
893		if (dtemp > slice)
894			sp->uart |= 0x1;
895		if (i == 1 || i == 11) {
896			dist += dtemp - es_min;
897		} else if (i == 10) {
898			dist += es_max - dtemp;
899		} else {
900			if (dtemp > slice)
901				dist += dtemp - es_min;
902			else
903				dist += es_max - dtemp;
904		}
905	}
906	sp->es_max = es_max;
907	sp->es_min = es_min;
908	sp->dist = dist / (11 * (es_max - es_min));
909}
910#endif /* HAVE_AUDIO */
911
912
913/*
914 * chu_serial_receive - receive data from the serial device
915 */
916static void
917chu_serial_receive(
918	struct recvbuf *rbufp	/* receive buffer structure pointer */
919	)
920{
921	struct chuunit *up;
922	struct refclockproc *pp;
923	struct peer *peer;
924
925	u_char	*dpt;		/* receive buffer pointer */
926
927	peer = (struct peer *)rbufp->recv_srcclock;
928	pp = peer->procptr;
929	up = (struct chuunit *)pp->unitptr;
930
931	/*
932	 * Initialize pointers and read the timecode and timestamp.
933	 */
934	up->timestamp = rbufp->recv_time;
935	dpt = (u_char *)&rbufp->recv_space;
936	chu_decode(peer, *dpt);
937}
938
939
940/*
941 * chu_decode - decode the character data
942 */
943static void
944chu_decode(
945	struct peer *peer,	/* peer structure pointer */
946	int	hexhex		/* data character */
947	)
948{
949	struct refclockproc *pp;
950	struct chuunit *up;
951
952	l_fp	tstmp;		/* timestamp temp */
953	double	dtemp;
954
955	pp = peer->procptr;
956	up = (struct chuunit *)pp->unitptr;
957
958	/*
959	 * If the interval since the last character is greater than the
960	 * longest burst, process the last burst and start a new one. If
961	 * the interval is less than this but greater than two
962	 * characters, consider this a noise burst and reject it.
963	 */
964	tstmp = up->timestamp;
965	if (L_ISZERO(&up->laststamp))
966		up->laststamp = up->timestamp;
967	L_SUB(&tstmp, &up->laststamp);
968	up->laststamp = up->timestamp;
969	LFPTOD(&tstmp, dtemp);
970	if (dtemp > BURST * CHAR) {
971		chu_burst(peer);
972		up->ndx = 0;
973	} else if (dtemp > 2.5 * CHAR) {
974		up->ndx = 0;
975	}
976
977	/*
978	 * Append the character to the current burst and append the
979	 * timestamp to the timestamp list.
980	 */
981	if (up->ndx < BURST) {
982		up->cbuf[up->ndx] = hexhex & 0xff;
983		up->cstamp[up->ndx] = up->timestamp;
984		up->ndx++;
985
986	}
987}
988
989
990/*
991 * chu_burst - search for valid burst format
992 */
993static void
994chu_burst(
995	struct peer *peer
996	)
997{
998	struct chuunit *up;
999	struct refclockproc *pp;
1000
1001	int	i;
1002
1003	pp = peer->procptr;
1004	up = (struct chuunit *)pp->unitptr;
1005
1006	/*
1007	 * Correlate a block of five characters with the next block of
1008	 * five characters. The burst distance is defined as the number
1009	 * of bits that match in the two blocks for format A and that
1010	 * match the inverse for format B.
1011	 */
1012	if (up->ndx < MINCHAR) {
1013		up->status |= RUNT;
1014		return;
1015	}
1016	up->burdist = 0;
1017	for (i = 0; i < 5 && i < up->ndx - 5; i++)
1018		up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
1019
1020	/*
1021	 * If the burst distance is at least MINDIST, this must be a
1022	 * format A burst; if the value is not greater than -MINDIST, it
1023	 * must be a format B burst. If the B burst is perfect, we
1024	 * believe it; otherwise, it is a noise burst and of no use to
1025	 * anybody.
1026	 */
1027	if (up->burdist >= MINDIST) {
1028		chu_a(peer, up->ndx);
1029	} else if (up->burdist <= -MINDIST) {
1030		chu_b(peer, up->ndx);
1031	} else {
1032		up->status |= NOISE;
1033		return;
1034	}
1035
1036	/*
1037	 * If this is a valid burst, wait a guard time of ten seconds to
1038	 * allow for more bursts, then arm the poll update routine to
1039	 * process the minute. Don't do this if this is called from the
1040	 * timer interrupt routine.
1041	 */
1042	if (peer->outdate != current_time)
1043		peer->nextdate = current_time + 10;
1044}
1045
1046
1047/*
1048 * chu_b - decode format B burst
1049 */
1050static void
1051chu_b(
1052	struct peer *peer,
1053	int	nchar
1054	)
1055{
1056	struct	refclockproc *pp;
1057	struct	chuunit *up;
1058
1059	u_char	code[11];	/* decoded timecode */
1060	char	tbuf[80];	/* trace buffer */
1061	l_fp	offset;		/* timestamp offset */
1062	int	i;
1063
1064	pp = peer->procptr;
1065	up = (struct chuunit *)pp->unitptr;
1066
1067	/*
1068	 * In a format B burst, a character is considered valid only if
1069	 * the first occurrence matches the last occurrence. The burst
1070	 * is considered valid only if all characters are valid; that
1071	 * is, only if the distance is 40.
1072	 */
1073	sprintf(tbuf, "chuB %04x %2d %2d ", up->status, nchar,
1074	    -up->burdist);
1075	for (i = 0; i < nchar; i++)
1076		sprintf(&tbuf[strlen(tbuf)], "%02x",
1077		    up->cbuf[i]);
1078	if (pp->sloppyclockflag & CLK_FLAG4)
1079		record_clock_stats(&peer->srcadr, tbuf);
1080#ifdef DEBUG
1081	if (debug)
1082		printf("%s\n", tbuf);
1083#endif
1084	if (up->burdist > -40) {
1085		up->status |= BFRAME;
1086		return;
1087	}
1088	up->status |= INYEAR;
1089
1090	/*
1091	 * Convert the burst data to internal format. If this succeeds,
1092	 * save the timestamps for later.
1093	 */
1094	for (i = 0; i < 5; i++) {
1095		code[2 * i] = hexchar[up->cbuf[i] & 0xf];
1096		code[2 * i + 1] = hexchar[(up->cbuf[i] >>
1097		    4) & 0xf];
1098	}
1099	if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut,
1100	    &pp->year, &up->tai, &up->dst) != 5) {
1101		up->status |= BFORMAT;
1102		return;
1103	}
1104	if (up->leap & 0x8)
1105		up->dut = -up->dut;
1106	offset.l_ui = 31;
1107	offset.l_f = 0;
1108	for (i = 0; i < nchar && i < 10; i++) {
1109		up->tstamp[up->ntstamp] = up->cstamp[i];
1110		L_SUB(&up->tstamp[up->ntstamp], &offset);
1111		L_ADD(&offset, &up->charstamp);
1112		if (up->ntstamp < MAXSTAGE)
1113			up->ntstamp++;
1114	}
1115}
1116
1117
1118/*
1119 * chu_a - decode format A burst
1120 */
1121static void
1122chu_a(
1123	struct peer *peer,
1124	int nchar
1125	)
1126{
1127	struct refclockproc *pp;
1128	struct chuunit *up;
1129
1130	char	tbuf[80];	/* trace buffer */
1131	l_fp	offset;		/* timestamp offset */
1132	int	val;		/* distance */
1133	int	temp;
1134	int	i, j, k;
1135
1136	pp = peer->procptr;
1137	up = (struct chuunit *)pp->unitptr;
1138
1139	/*
1140	 * Determine correct burst phase. There are three cases
1141	 * corresponding to in-phase, one character early or one
1142	 * character late. These cases are distinguished by the position
1143	 * of the framing digits x6 at positions 0 and 5 and x3 at
1144	 * positions 4 and 9. The correct phase is when the distance
1145	 * relative to the framing digits is maximum. The burst is valid
1146	 * only if the maximum distance is at least MINSYNC.
1147	 */
1148	up->syndist = k = 0;
1149	val = -16;
1150	for (i = -1; i < 2; i++) {
1151		temp = up->cbuf[i + 4] & 0xf;
1152		if (i >= 0)
1153			temp |= (up->cbuf[i] & 0xf) << 4;
1154		val = chu_dist(temp, 0x63);
1155		temp = (up->cbuf[i + 5] & 0xf) << 4;
1156		if (i + 9 < nchar)
1157			temp |= up->cbuf[i + 9] & 0xf;
1158		val += chu_dist(temp, 0x63);
1159		if (val > up->syndist) {
1160			up->syndist = val;
1161			k = i;
1162		}
1163	}
1164	temp = (up->cbuf[k + 4] >> 4) & 0xf;
1165	if (temp > 9 || k + 9 >= nchar || temp != ((up->cbuf[k + 9] >>
1166	    4) & 0xf))
1167		temp = 0;
1168#ifdef HAVE_AUDIO
1169	if (up->fd_audio)
1170		sprintf(tbuf, "chuA %04x %4.0f %2d %2d %2d %2d %1d ",
1171		    up->status, up->maxsignal, nchar, up->burdist, k,
1172		    up->syndist, temp);
1173	else
1174		sprintf(tbuf, "chuA %04x %2d %2d %2d %2d %1d ",
1175		    up->status, nchar, up->burdist, k, up->syndist,
1176		    temp);
1177
1178#else
1179	sprintf(tbuf, "chuA %04x %2d %2d %2d %2d %1d ", up->status,
1180	    nchar, up->burdist, k, up->syndist, temp);
1181#endif /* HAVE_AUDIO */
1182	for (i = 0; i < nchar; i++)
1183		sprintf(&tbuf[strlen(tbuf)], "%02x",
1184		    up->cbuf[i]);
1185	if (pp->sloppyclockflag & CLK_FLAG4)
1186		record_clock_stats(&peer->srcadr, tbuf);
1187#ifdef DEBUG
1188	if (debug)
1189		printf("%s\n", tbuf);
1190#endif
1191	if (up->syndist < MINSYNC) {
1192		up->status |= AFRAME;
1193		return;
1194	}
1195
1196	/*
1197	 * A valid burst requires the first seconds number to match the
1198	 * last seconds number. If so, the burst timestamps are
1199	 * corrected to the current minute and saved for later
1200	 * processing. In addition, the seconds decode is advanced from
1201	 * the previous burst to the current one.
1202	 */
1203	if (temp != 0) {
1204		offset.l_ui = 30 + temp;
1205		offset.l_f = 0;
1206		i = 0;
1207		if (k < 0)
1208			offset = up->charstamp;
1209		else if (k > 0)
1210			i = 1;
1211		for (; i < nchar && i < k + 10; i++) {
1212			up->tstamp[up->ntstamp] = up->cstamp[i];
1213			L_SUB(&up->tstamp[up->ntstamp], &offset);
1214			L_ADD(&offset, &up->charstamp);
1215			if (up->ntstamp < MAXSTAGE)
1216				up->ntstamp++;
1217		}
1218		while (temp > up->prevsec) {
1219			for (j = 15; j > 0; j--) {
1220				up->decode[9][j] = up->decode[9][j - 1];
1221				up->decode[19][j] =
1222				    up->decode[19][j - 1];
1223			}
1224			up->decode[9][j] = up->decode[19][j] = 0;
1225			up->prevsec++;
1226		}
1227	}
1228	i = -(2 * k);
1229	for (j = 0; j < nchar; j++) {
1230		if (i < 0 || i > 19) {
1231			i += 2;
1232			continue;
1233		}
1234		up->decode[i][up->cbuf[j] & 0xf]++;
1235		i++;
1236		up->decode[i][(up->cbuf[j] >> 4) & 0xf]++;
1237		i++;
1238	}
1239	up->burstcnt++;
1240}
1241
1242
1243/*
1244 * chu_poll - called by the transmit procedure
1245 */
1246static void
1247chu_poll(
1248	int unit,
1249	struct peer *peer	/* peer structure pointer */
1250	)
1251{
1252	struct refclockproc *pp;
1253	struct chuunit *up;
1254	char	synchar, qual, leapchar;
1255	int	minset;
1256	int	temp;
1257#ifdef ICOM
1258	char	tbuf[80];	/* trace buffer */
1259#endif /* ICOM */
1260	pp = peer->procptr;
1261	up = (struct chuunit *)pp->unitptr;
1262	if (pp->coderecv == pp->codeproc)
1263		up->errflg = CEVNT_TIMEOUT;
1264	else
1265		pp->polls++;
1266	minset = ((current_time - peer->update) + 30) / 60;
1267	if (up->status & INSYNC) {
1268		if (minset > PANIC)
1269			up->status = 0;
1270		else
1271			peer->reach |= 1;
1272	}
1273
1274	/*
1275	 * Process the last burst, if still in the burst buffer.
1276	 * Don't mess with anything if nothing has been heard.
1277	 */
1278	chu_burst(peer);
1279#ifdef ICOM
1280	if (up->burstcnt > 2) {
1281		up->dwell = 0;
1282	} else if (up->dwell < DWELL) {
1283		up->dwell++;
1284	} else if (up->fd_icom > 0) {
1285		up->dwell = 0;
1286		up->chan = (up->chan + 1) % NCHAN;
1287		icom_freq(up->fd_icom, peer->ttlmax & 0x7f, qsy[up->chan]);
1288		sprintf(up->ident, "%.3f", qsy[up->chan]);
1289		sprintf(tbuf, "chu: QSY to %s MHz", up->ident);
1290		record_clock_stats(&peer->srcadr, tbuf);
1291#ifdef DEBUG
1292		if (debug)
1293			printf("%s\n", tbuf);
1294#endif
1295	}
1296#endif /* ICOM */
1297	if (up->burstcnt == 0)
1298		return;
1299	temp = chu_major(peer);
1300	if (up->status & INYEAR)
1301		up->status |= INSYNC;
1302	qual = 0;
1303	if (up->status & (BFRAME | AFRAME))
1304		qual |= SYNERR;
1305	if (up->status & (BFORMAT | AFORMAT))
1306		qual |= FMTERR;
1307	if (up->status & DECODE)
1308		qual |= DECERR;
1309	if (up->status & STAMP)
1310		qual |= TSPERR;
1311	synchar = leapchar = ' ';
1312	if (!(up->status & INSYNC)) {
1313		pp->leap = LEAP_NOTINSYNC;
1314		synchar = '?';
1315	} else if (up->leap & 0x2) {
1316		pp->leap = LEAP_ADDSECOND;
1317		leapchar = 'L';
1318	} else {
1319		pp->leap = LEAP_NOWARNING;
1320	}
1321#ifdef HAVE_AUDIO
1322	if (up->fd_audio)
1323		sprintf(pp->a_lastcode,
1324		    "%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %d %s %d %d %d %d",
1325		    synchar, qual, pp->year, pp->day, pp->hour,
1326		    pp->minute, pp->second, leapchar, up->dst, up->dut,
1327		    minset, up->gain, up->ident, up->tai, up->burstcnt,
1328		    up->mindist, up->ntstamp);
1329	else
1330		sprintf(pp->a_lastcode,
1331		    "%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %s %d %d %d %d",
1332		    synchar, qual, pp->year, pp->day, pp->hour,
1333		    pp->minute, pp->second, leapchar, up->dst, up->dut,
1334		    minset, up->ident, up->tai, up->burstcnt,
1335		    up->mindist, up->ntstamp);
1336#else
1337	sprintf(pp->a_lastcode,
1338	    "%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %s %d %d %d %d",
1339	    synchar, qual, pp->year, pp->day, pp->hour, pp->minute,
1340	    pp->second, leapchar, up->dst, up->dut, minset,
1341	    up->ident, up->tai, up->burstcnt, up->mindist, up->ntstamp);
1342#endif /* HAVE_AUDIO */
1343	pp->lencode = strlen(pp->a_lastcode);
1344
1345	/*
1346	 * If timestamps have been stuffed, the timecode is ipso fatso
1347	 * correct and can be selected to discipline the clock.
1348	 */
1349	if (temp > 0) {
1350		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1351		refclock_receive(peer);
1352	} else if (pp->sloppyclockflag & CLK_FLAG4) {
1353		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1354	}
1355#ifdef DEBUG
1356	if (debug)
1357		printf("chu: timecode %d %s\n", pp->lencode,
1358		    pp->a_lastcode);
1359#endif
1360	chu_clear(peer);
1361	if (up->errflg)
1362		refclock_report(peer, up->errflg);
1363	up->errflg = 0;
1364}
1365
1366
1367/*
1368 * chu_major - majority decoder
1369 */
1370static int
1371chu_major(
1372	struct peer *peer	/* peer structure pointer */
1373	)
1374{
1375	struct refclockproc *pp;
1376	struct chuunit *up;
1377
1378	u_char	code[11];	/* decoded timecode */
1379	l_fp	toffset, offset; /* l_fp temps */
1380	int	val1, val2;	/* maximum distance */
1381	int	synchar;	/* stray cat */
1382	double	dtemp;
1383	int	temp;
1384	int	i, j, k;
1385
1386	pp = peer->procptr;
1387	up = (struct chuunit *)pp->unitptr;
1388
1389	/*
1390	 * Majority decoder. Each burst encodes two replications at each
1391	 * digit position in the timecode. Each row of the decoding
1392	 * matrix encodes the number of occurences of each digit found
1393	 * at the corresponding position. The maximum over all
1394	 * occurences at each position is the distance for this position
1395	 * and the corresponding digit is the maximumn likelihood
1396	 * candidate. If the distance is zero, assume a miss '_'; if the
1397	 * distance is not more than half the total number of
1398	 * occurences, assume a soft error '-'; if two different digits
1399	 * with the same distance are found, assume a hard error '='.
1400	 * These will later cause a format error when the timecode is
1401	 * interpreted. The decoding distance is defined as the minimum
1402	 * distance over the first nine digits. The tenth digit varies
1403	 * over the seconds, so we don't count it.
1404	 */
1405	up->mindist = 16;
1406	for (i = 0; i < 9; i++) {
1407		val1 = val2 = 0;
1408		k = 0;
1409		for (j = 0; j < 16; j++) {
1410			temp = up->decode[i][j] + up->decode[i + 10][j];
1411			if (temp > val1) {
1412				val2 = val1;
1413				val1 = temp;
1414				k = j;
1415			}
1416		}
1417		if (val1 == 0)
1418			code[i] = HEX_MISS;
1419		else if (val1 == val2)
1420			code[i] = HEX_HARD;
1421		else if (val1 <= up->burstcnt)
1422			code[i] = HEX_SOFT;
1423		else
1424			code[i] = k;
1425		if (val1 < up->mindist)
1426			up->mindist = val1;
1427		code[i] = hexchar[code[i]];
1428	}
1429	code[i] = 0;
1430
1431	/*
1432	 * A valid timecode requires at least three bursts and a
1433	 * decoding distance greater than half the total number of
1434	 * occurences. A valid timecode also requires at least 20 valid
1435	 * timestamps.
1436	 */
1437	if (up->burstcnt < 3 || up->mindist <= up->burstcnt)
1438		up->status |= DECODE;
1439	if (up->ntstamp < MINSTAMP)
1440		up->status |= STAMP;
1441
1442	/*
1443	 * Compute the timecode timestamp from the days, hours and
1444	 * minutes of the timecode. Use clocktime() for the aggregate
1445	 * minutes and the minute offset computed from the burst
1446	 * seconds. Note that this code relies on the filesystem time
1447	 * for the years and does not use the years of the timecode.
1448	 */
1449	if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day,
1450	    &pp->hour, &pp->minute) != 4) {
1451		up->status |= AFORMAT;
1452		return (0);
1453	}
1454	if (up->status & (DECODE | STAMP)) {
1455		up->errflg = CEVNT_BADREPLY;
1456		return (0);
1457	}
1458	L_CLR(&offset);
1459	if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
1460	    up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
1461		up->errflg = CEVNT_BADTIME;
1462		return (0);
1463	}
1464	pp->lastref = offset;
1465	for (i = 0; i < up->ntstamp; i++) {
1466		toffset = offset;
1467		L_SUB(&toffset, &up->tstamp[i]);
1468		LFPTOD(&toffset, dtemp);
1469		SAMPLE(dtemp + FUDGE + pp->fudgetime1);
1470	}
1471	return (i);
1472}
1473
1474
1475/*
1476 * chu_clear - clear decoding matrix
1477 */
1478static void
1479chu_clear(
1480	struct peer *peer	/* peer structure pointer */
1481	)
1482{
1483	struct refclockproc *pp;
1484	struct chuunit *up;
1485	int	i, j;
1486
1487	pp = peer->procptr;
1488	up = (struct chuunit *)pp->unitptr;
1489
1490	/*
1491	 * Clear stuff for the minute.
1492	 */
1493	up->ndx = up->prevsec = 0;
1494	up->burstcnt = up->mindist = up->ntstamp = 0;
1495	up->status &= INSYNC | INYEAR;
1496	up->burstcnt = 0;
1497	for (i = 0; i < 20; i++) {
1498		for (j = 0; j < 16; j++)
1499			up->decode[i][j] = 0;
1500	}
1501}
1502
1503
1504/*
1505 * chu_dist - determine the distance of two octet arguments
1506 */
1507static int
1508chu_dist(
1509	int	x,		/* an octet of bits */
1510	int	y		/* another octet of bits */
1511	)
1512{
1513	int	val;		/* bit count */
1514	int	temp;
1515	int	i;
1516
1517	/*
1518	 * The distance is determined as the weight of the exclusive OR
1519	 * of the two arguments. The weight is determined by the number
1520	 * of one bits in the result. Each one bit increases the weight,
1521	 * while each zero bit decreases it.
1522	 */
1523	temp = x ^ y;
1524	val = 0;
1525	for (i = 0; i < 8; i++) {
1526		if ((temp & 0x1) == 0)
1527			val++;
1528		else
1529			val--;
1530		temp >>= 1;
1531	}
1532	return (val);
1533}
1534
1535
1536#ifdef HAVE_AUDIO
1537/*
1538 * chu_gain - adjust codec gain
1539 *
1540 * This routine is called once each second. If the signal envelope
1541 * amplitude is too low, the codec gain is bumped up by four units; if
1542 * too high, it is bumped down. The decoder is relatively insensitive to
1543 * amplitude, so this crudity works just fine. The input port is set and
1544 * the error flag is cleared, mostly to be ornery.
1545 */
1546static void
1547chu_gain(
1548	struct peer *peer	/* peer structure pointer */
1549	)
1550{
1551	struct refclockproc *pp;
1552	struct chuunit *up;
1553
1554	pp = peer->procptr;
1555	up = (struct chuunit *)pp->unitptr;
1556
1557	/*
1558	 * Apparently, the codec uses only the high order bits of the
1559	 * gain control field. Thus, it may take awhile for changes to
1560	 * wiggle the hardware bits.
1561	 */
1562	if (up->clipcnt == 0) {
1563		up->gain += 4;
1564		if (up->gain > 255)
1565			up->gain = 255;
1566	} else if (up->clipcnt > SECOND / 100) {
1567		up->gain -= 4;
1568		if (up->gain < 0)
1569			up->gain = 0;
1570	}
1571	audio_gain(up->gain, up->port);
1572	up->clipcnt = 0;
1573}
1574#endif /* HAVE_AUDIO */
1575
1576
1577#else
1578int refclock_chu_bs;
1579#endif /* REFCLOCK */
1580