refclock_chu.c revision 56746
1/*
2 * refclock_chu - clock driver for Canadian CHU time/frequency station
3 */
4#ifdef HAVE_CONFIG_H
5#include <config.h>
6#endif
7
8#if defined(REFCLOCK) && defined(CLOCK_CHU)
9
10#include <stdio.h>
11#include <ctype.h>
12#include <sys/time.h>
13#include <time.h>
14#include <math.h>
15
16#include "ntpd.h"
17#include "ntp_io.h"
18#include "ntp_refclock.h"
19#include "ntp_calendar.h"
20#include "ntp_stdlib.h"
21#ifdef AUDIO_CHU
22#include "audio.h"
23#endif /* AUDIO_CHU */
24
25#define ICOM 	1		/* undefine to suppress ICOM code */
26
27#ifdef ICOM
28#include "icom.h"
29#endif /* ICOM */
30
31/*
32 * Audio CHU demodulator/decoder
33 *
34 * This driver synchronizes the computer time using data encoded in
35 * radio transmissions from Canadian time/frequency station CHU in
36 * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
37 * 7335 kHz and 14670 kHz in upper sideband, compatible AM mode. An
38 * ordinary shortwave receiver can be tuned manually to one of these
39 * frequencies or, in the case of ICOM receivers, the receiver can be
40 * tuned automatically using this program as propagation conditions
41 * change throughout the day and night.
42 *
43 * The driver receives, demodulates and decodes the radio signals when
44 * connected to the audio codec of a Sun workstation running SunOS or
45 * Solaris, and with a little help, other workstations with similar
46 * codecs or sound cards. In this implementation, only one audio driver
47 * and codec can be supported on a single machine.
48 *
49 * The driver can be compiled to use a Bell 103 compatible modem or
50 * modem chip to receive the radio signal and demodulate the data.
51 * Alternatively, the driver can be compiled to use the audio codec of
52 * the Sun workstation or another with compatible audio drivers. In the
53 * latter case, the driver implements the modem using DSP routines, so
54 * the radio can be connected directly to either the microphone on line
55 * input port. In either case, the driver decodes the data using a
56 * maximum likelihood technique which exploits the considerable degree
57 * of redundancy available to maximize accuracy and minimize errors.
58 *
59 * The CHU time broadcast includes an audio signal compatible with the
60 * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). It consist
61 * of nine, ten-character bursts transmitted at 300 bps and beginning
62 * each second from second 31 to second 39 of the minute. Each character
63 * consists of eight data bits plus one start bit and two stop bits to
64 * encode two hex digits. The burst data consist of five characters (ten
65 * hex digits) followed by a repeat of these characters. In format A,
66 * the characters are repeated in the same polarity; in format B, the
67 * characters are repeated in the opposite polarity.
68 *
69 * Format A bursts are sent at seconds 32 through 39 of the minute in
70 * hex digits
71 *
72 *	6dddhhmmss6dddhhmmss
73 *
74 * The first ten digits encode a frame marker (6) followed by the day
75 * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
76 * format A bursts are sent during the third decade of seconds the tens
77 * digit of ss is always 3. The driver uses this to determine correct
78 * burst synchronization. These digits are then repeated with the same
79 * polarity.
80 *
81 * Format B bursts are sent at second 31 of the minute in hex digits
82 *
83 *	xdyyyyttaaxdyyyyttaa
84 *
85 * The first ten digits encode a code (x described below) followed by
86 * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
87 * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
88 * digits are then repeated with inverted polarity.
89 *
90 * The x is coded
91 *
92 * 1 Sign of DUT (0 = +)
93 * 2 Leap second warning. One second will be added.
94 * 4 Leap second warning. One second will be subtracted.
95 * 8 Even parity bit for this nibble.
96 *
97 * By design, the last stop bit of the last character in the burst
98 * coincides with 0.5 second. Since characters have 11 bits and are
99 * transmitted at 300 bps, the last stop bit of the first character
100 * coincides with 0.5 - 10 * 11/300 = 0.133 second. Depending on the
101 * UART, character interrupts can vary somewhere between the beginning
102 * of bit 9 and end of bit 11. These eccentricities can be corrected
103 * along with the radio propagation delay using fudge time 1.
104 *
105 * Debugging aids
106 *
107 * The timecode format used for debugging and data recording includes
108 * data helpful in diagnosing problems with the radio signal and serial
109 * connections. With debugging enabled (-d -d -d on the ntpd command
110 * line), the driver produces one line for each burst in two formats
111 * corresponding to format A and B. Following is format A:
112 *
113 *	n b f s m code
114 *
115 * where n is the number of characters in the burst (0-11), b the burst
116 * distance (0-40), f the field alignment (-1, 0, 1), s the
117 * synchronization distance (0-16), m the burst number (2-9) and code
118 * the burst characters as received. Note that the hex digits in each
119 * character are reversed, so the burst
120 *
121 *	10 38 0 16 9 06851292930685129293
122 *
123 * is interpreted as containing 11 characters with burst distance 38,
124 * field alignment 0, synchronization distance 16 and burst number 9.
125 * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
126 * second 39.
127 *
128 * When the audio driver is compiled, format A is preceded by
129 * the current gain (0-255) and relative signal level (0-9999). The
130 * receiver folume control should be set so that the gain is somewhere
131 * near the middle of the range 0-255, which results in a signal level
132 * near 1000.
133 *
134 * Following is format B:
135 *
136 *	n b s code
137 *
138 * where n is the number of characters in the burst (0-11), b the burst
139 * distance (0-40), s the synchronization distance (0-40) and code the
140 * burst characters as received. Note that the hex digits in each
141 * character are reversed and the last ten digits inverted, so the burst
142 *
143 *	11 40 1091891300ef6e76ecff
144 *
145 * is interpreted as containing 11 characters with burst distance 40.
146 * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
147 * - UTC 31 seconds.
148 *
149 * In addition to the above, the reference timecode is updated and
150 * written to the clockstats file and debug score after the last burst
151 * received in the minute. The format is
152 *
153 *	qq yyyy ddd hh:mm:ss nn dd tt
154 *
155 * where qq are the error flags, as described below, yyyy is the year,
156 * ddd the day, hh:mm:ss the time of day, nn the number of format A
157 * bursts received during the previous minute, dd the decoding distance
158 * and tt the number of timestamps. The error flags are cleared after
159 * every update.
160 *
161 * Fudge factors
162 *
163 * For accuracies better than the low millisceconds, fudge time1 can be
164 * set to the radio propagation delay from CHU to the receiver. This can
165 * be done conviently using the minimuf program. When the modem driver
166 * is compiled, fudge flag3 enables the ppsclock line discipline. Fudge
167 * flag4 causes the dubugging output described above to be recorded in
168 * the clockstats file.
169 *
170 * When the audio driver is compiled, fudge flag2 selects the audio
171 * input port, where 0 is the mike port (default) and 1 is the line-in
172 * port. It does not seem useful to select the compact disc player port.
173 * Fudge flag3 enables audio monitoring of the input signal. For this
174 * purpose, the speaker volume must be set before the driver is started.
175 *
176 * The ICOM code is normally compiled in the driver. It isn't used,
177 * unless the mode keyword on the server configuration command specifies
178 * a nonzero ICOM ID select code. The C-IV trace is turned on if the
179 * debug level is greater than one.
180 */
181/*
182 * Interface definitions
183 */
184#define	SPEED232	B300	/* uart speed (300 baud) */
185#define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
186#define	REFID		"CHU"	/* reference ID */
187#ifdef ICOM
188#define DWELL		5	/* minutes before qsy */
189#define NCHAN		3	/* number of channels */
190#endif /* ICOM */
191#ifdef AUDIO_CHU
192#define	DESCRIPTION	"CHU Modem Receiver" /* WRU */
193
194/*
195 * Audio demodulator definitions
196 */
197#define SECOND		8000	/* nominal sample rate (Hz) */
198#define BAUD		300	/* modulation rate (bps) */
199#define OFFSET		128	/* companded sample offset */
200#define SIZE		256	/* decompanding table size */
201#define	MAXSIG		6000.	/* maximum signal level */
202#define LIMIT		1000.	/* soft limiter threshold */
203#define AGAIN		6.	/* baseband gain */
204#define LAG		10	/* discriminator lag */
205#else
206#define	DEVICE		"/dev/chu%d" /* device name and unit */
207#define	SPEED232	B300	/* UART speed (300 baud) */
208#define	DESCRIPTION	"CHU Audio Receiver" /* WRU */
209#endif /* AUDIO_CHU */
210
211/*
212 * Decoder definitions
213 */
214#define CHAR		(11. / 300.) /* character time (s) */
215#define	FUDGE		.185	/* offset to first stop bit (s) */
216#define BURST		11	/* max characters per burst */
217#define MINCHAR		9	/* min characters per burst */
218#define MINDIST		28	/* min burst distance (of 40)  */
219#define MINSYNC		8	/* min sync distance (of 16) */
220#define MINSTAMP	20	/* min timestamps (of 60) */
221#define PANIC		(4 * 1440) /* panic restart */
222
223/*
224 * Hex extension codes (>= 16)
225 */
226#define HEX_MISS	16	/* miss */
227#define HEX_SOFT	17	/* soft error */
228#define HEX_HARD	18	/* hard error */
229
230/*
231 * Status bits (status)
232 */
233#define RUNT		0x0001	/* runt burst */
234#define NOISE		0x0002	/* noise burst */
235#define BFRAME		0x0004	/* invalid format B frame sync */
236#define BFORMAT		0x0008	/* invalid format B data */
237#define AFRAME		0x0010	/* invalid format A frame sync */
238#define AFORMAT		0x0020	/* invalid format A data */
239#define DECODE		0x0040	/* invalid data decode */
240#define STAMP		0x0080	/* too few timestamps */
241#define INYEAR		0x0100	/* valid B frame */
242#define INSYNC		0x0200	/* clock synchronized */
243
244/*
245 * Alarm status bits (alarm)
246 *
247 * These alarms are set at the end of a minute in which at least one
248 * burst was received. SYNERR is raised if the AFRAME or BFRAME status
249 * bits are set during the minute, FMTERR is raised if the AFORMAT or
250 * BFORMAT status bits are set, DECERR is raised if the DECODE status
251 * bit is set and TSPERR is raised if the STAMP status bit is set.
252 */
253#define SYNERR		0x01	/* frame sync error */
254#define FMTERR		0x02	/* data format error */
255#define DECERR		0x04	/* data decoding error */
256#define TSPERR		0x08	/* insufficient data */
257
258#ifdef AUDIO_CHU
259struct surv {
260	double	shift[12];	/* mark register */
261	double	es_max, es_min;	/* max/min envelope signals */
262	double	dist;		/* sample distance */
263	int	uart;		/* decoded character */
264};
265#endif /* AUDIO_CHU */
266
267/*
268 * CHU unit control structure
269 */
270struct chuunit {
271	u_char	decode[20][16];	/* maximum likelihood decoding matrix */
272	l_fp	cstamp[BURST];	/* character timestamps */
273	l_fp	tstamp[MAXSTAGE]; /* timestamp samples */
274	l_fp	timestamp;	/* current buffer timestamp */
275	l_fp	laststamp;	/* last buffer timestamp */
276	l_fp	charstamp;	/* character time as a l_fp */
277	int	errflg;		/* error flags */
278	int	status;		/* status bits */
279	int	bufptr;		/* buffer index pointer */
280	char	ident[10];	/* transmitter frequency */
281#ifdef ICOM
282	int	chan;		/* frequency identifier */
283	int	dwell;		/* dwell minutes at current frequency */
284	int	fd_icom;	/* ICOM file descriptor */
285#endif /* ICOM */
286
287	/*
288	 * Character burst variables
289	 */
290	int	cbuf[BURST];	/* character buffer */
291	int	ntstamp;	/* number of timestamp samples */
292	int	ndx;		/* buffer start index */
293	int	prevsec;	/* previous burst second */
294	int	burdist;	/* burst distance */
295	int	mindist;	/* minimum distance */
296	int	syndist;	/* sync distance */
297	int	burstcnt;	/* format A bursts this minute */
298
299	/*
300	 * Format particulars
301	 */
302	int	leap;		/* leap/dut code */
303	int	dut;		/* UTC1 correction */
304	int	tai;		/* TAI - UTC correction */
305	int	dst;		/* Canadian DST code */
306
307#ifdef AUDIO_CHU
308	/*
309	 * Audio codec variables
310	 */
311	double	comp[SIZE];	/* decompanding table */
312	int	port;		/* codec port */
313	int	gain;		/* codec gain */
314	int	bufcnt;		/* samples in buffer */
315	int	clipcnt;	/* sample clip count */
316	int	seccnt;		/* second interval counter */
317
318	/*
319	 * Modem variables
320	 */
321	l_fp	tick;		/* audio sample increment */
322	double	bpf[9];		/* IIR bandpass filter */
323	double	disc[LAG];	/* discriminator shift register */
324	double	lpf[27];	/* FIR lowpass filter */
325	double	monitor;	/* audio monitor */
326	double	maxsignal;	/* signal level */
327	int	discptr;	/* discriminator pointer */
328
329	/*
330	 * Maximum likelihood UART variables
331	 */
332	double	baud;		/* baud interval */
333	struct surv surv[8];	/* UART survivor structures */
334	int	decptr;		/* decode pointer */
335	int	dbrk;		/* holdoff counter */
336#endif /* AUDIO_CHU */
337};
338
339/*
340 * Function prototypes
341 */
342static	int	chu_start	P((int, struct peer *));
343static	void	chu_shutdown	P((int, struct peer *));
344static	void	chu_receive	P((struct recvbuf *));
345static	void	chu_poll	P((int, struct peer *));
346
347/*
348 * More function prototypes
349 */
350static	void	chu_decode	P((struct peer *, int));
351static	void	chu_burst	P((struct peer *));
352static	void	chu_clear	P((struct peer *));
353static	void	chu_a		P((struct peer *, int));
354static	void	chu_b		P((struct peer *, int));
355static	int	chu_dist	P((int, int));
356static	int	chu_major	P((struct peer *));
357#ifdef AUDIO_CHU
358static	void	chu_uart	P((struct surv *, double));
359static	void	chu_rf		P((struct peer *, double));
360static	void	chu_gain	P((struct peer *));
361#endif /* AUDIO_CHU */
362
363/*
364 * Global variables
365 */
366static char hexchar[] = "0123456789abcdef_-=";
367#ifdef ICOM
368static double qsy[NCHAN] = {3.33, 7.335, 14.67}; /* frequencies (MHz) */
369#endif /* ICOM */
370
371/*
372 * Transfer vector
373 */
374struct	refclock refclock_chu = {
375	chu_start,		/* start up driver */
376	chu_shutdown,		/* shut down driver */
377	chu_poll,		/* transmit poll message */
378	noentry,		/* not used (old chu_control) */
379	noentry,		/* initialize driver (not used) */
380	noentry,		/* not used (old chu_buginfo) */
381	NOFLAGS			/* not used */
382};
383
384
385/*
386 * chu_start - open the devices and initialize data for processing
387 */
388static int
389chu_start(
390	int	unit,		/* instance number (not used) */
391	struct peer *peer	/* peer structure pointer */
392	)
393{
394	struct chuunit *up;
395	struct refclockproc *pp;
396	int	fd;		/* file descriptor */
397#ifdef ICOM
398	char	tbuf[80];	/* trace buffer */
399	int	temp;
400#endif /* ICOM */
401#ifdef AUDIO_CHU
402	int	i;		/* index */
403	double	step;		/* codec adjustment */
404
405	/*
406	 * Open audio device
407	 */
408	fd = audio_init();
409	if (fd < 0)
410		return (0);
411#ifdef DEBUG
412	if (debug)
413		audio_show();
414#endif
415#else
416	char device[20];	/* device name */
417
418	/*
419	 * Open serial port in raw mode.
420	 */
421	(void)sprintf(device, DEVICE, unit);
422	if (!(fd = refclock_open(device, SPEED232, LDISC_RAW))) {
423		return (0);
424	}
425#endif /* AUDIO_CHU */
426
427	/*
428	 * Allocate and initialize unit structure
429	 */
430	if (!(up = (struct chuunit *)
431	      emalloc(sizeof(struct chuunit)))) {
432		(void) close(fd);
433		return (0);
434	}
435	memset((char *)up, 0, sizeof(struct chuunit));
436	pp = peer->procptr;
437	pp->unitptr = (caddr_t)up;
438	pp->io.clock_recv = chu_receive;
439	pp->io.srcclock = (caddr_t)peer;
440	pp->io.datalen = 0;
441	pp->io.fd = fd;
442	if (!io_addclock(&pp->io)) {
443		(void)close(fd);
444		free(up);
445		return (0);
446	}
447
448	/*
449	 * Initialize miscellaneous variables
450	 */
451	peer->precision = PRECISION;
452	pp->clockdesc = DESCRIPTION;
453	memcpy((char *)&pp->refid, REFID, 4);
454	DTOLFP(CHAR, &up->charstamp);
455#ifdef AUDIO_CHU
456	up->gain = 127;
457
458	/*
459	 * The companded samples are encoded sign-magnitude. The table
460	 * contains all the 256 values in the interest of speed.
461	 */
462	up->comp[0] = up->comp[OFFSET] = 0.;
463	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
464	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
465	step = 2.;
466	for (i = 3; i < OFFSET; i++) {
467		up->comp[i] = up->comp[i - 1] + step;
468		up->comp[OFFSET + i] = -up->comp[i];
469                if (i % 16 == 0)
470                	step *= 2.;
471	}
472	DTOLFP(1. / SECOND, &up->tick);
473#endif /* AUDIO_CHU */
474	strcpy(up->ident, "X");
475#ifdef ICOM
476	temp = 0;
477#ifdef DEBUG
478	if (debug > 1)
479		temp = P_TRACE;
480#endif
481	if (peer->ttl > 0) {
482		if (peer->ttl & 0x80)
483			up->fd_icom = icom_init("/dev/icom", B1200,
484			    temp);
485		else
486			up->fd_icom = icom_init("/dev/icom", B9600,
487			    temp);
488	}
489	if (up->fd_icom > 0) {
490		if (icom_freq(up->fd_icom, peer->ttl & 0x7f,
491		    qsy[up->chan]) < 0) {
492			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
493			    msyslog(LOG_ERR,
494			    "ICOM bus error; autotune disabled");
495			up->errflg = CEVNT_FAULT;
496			close(up->fd_icom);
497			up->fd_icom = 0;
498		} else {
499			sprintf(up->ident, "%.1f", qsy[up->chan]);
500			sprintf(tbuf, "chu: QSY to %s MHz", up->ident);
501			record_clock_stats(&peer->srcadr, tbuf);
502#ifdef DEBUG
503			if (debug)
504				printf("%s\n", tbuf);
505#endif
506		}
507	}
508#endif /* ICOM */
509	return (1);
510}
511
512
513/*
514 * chu_shutdown - shut down the clock
515 */
516static void
517chu_shutdown(
518	int	unit,		/* instance number (not used) */
519	struct peer *peer	/* peer structure pointer */
520	)
521{
522	struct chuunit *up;
523	struct refclockproc *pp;
524
525	pp = peer->procptr;
526	up = (struct chuunit *)pp->unitptr;
527	io_closeclock(&pp->io);
528	if (up->fd_icom > 0)
529		close(up->fd_icom);
530	free(up);
531}
532
533#ifdef AUDIO_CHU
534
535/*
536 * chu_receive - receive data from the audio device
537 */
538static void
539chu_receive(
540	struct recvbuf *rbufp	/* receive buffer structure pointer */
541	)
542{
543	struct chuunit *up;
544	struct refclockproc *pp;
545	struct peer *peer;
546
547	double	sample;		/* codec sample */
548	u_char	*dpt;		/* buffer pointer */
549	l_fp	ltemp;		/* l_fp temp */
550	int	isneg;		/* parity flag */
551	double	dtemp;
552	int	i, j;
553
554	peer = (struct peer *)rbufp->recv_srcclock;
555	pp = peer->procptr;
556	up = (struct chuunit *)pp->unitptr;
557
558	/*
559	 * Main loop - read until there ain't no more. Note codec
560	 * samples are bit-inverted.
561	 */
562	up->timestamp = rbufp->recv_time;
563	up->bufcnt = rbufp->recv_length;
564	DTOLFP(up->bufcnt * 1. / SECOND, &ltemp);
565	L_SUB(&up->timestamp, &ltemp);
566	dpt = (u_char *)&rbufp->recv_space;
567	for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) {
568		sample = up->comp[~*dpt & 0xff];
569
570		/*
571		 * Clip noise spikes greater than MAXSIG. If no clips,
572		 * increase the gain a tad; if the clips are too high,
573		 * decrease a tad.
574		 */
575		if (sample > MAXSIG) {
576			sample = MAXSIG;
577			up->clipcnt++;
578		} else if (sample < -MAXSIG) {
579			sample = -MAXSIG;
580			up->clipcnt++;
581		}
582		up->seccnt = (up->seccnt + 1) % SECOND;
583		if (up->seccnt == 0) {
584			if (pp->sloppyclockflag & CLK_FLAG2)
585				up->port = 2;
586			else
587				up->port = 1;
588			chu_gain(peer);
589		}
590		chu_rf(peer, sample);
591
592		/*
593		 * During development, it is handy to have an audio
594		 * monitor that can be switched to various signals. This
595		 * code converts the linear signal left in up->monitor
596		 * to codec format. If we can get the grass out of this
597		 * thing and improve modem performance, this expensive
598		 * code will be permanently nixed.
599		 */
600		isneg = 0;
601		dtemp = up->monitor;
602		if (sample < 0) {
603			isneg = 1;
604			dtemp-= dtemp;
605		}
606		i = 0;
607		j = OFFSET >> 1;
608		while (j != 0) {
609			if (dtemp > up->comp[i])
610				i += j;
611			else if (dtemp < up->comp[i])
612				i -= j;
613			else
614				break;
615			j >>= 1;
616		}
617		if (isneg)
618			*dpt = ~(i + OFFSET);
619		else
620			*dpt = ~i;
621		dpt++;
622		L_ADD(&up->timestamp, &up->tick);
623	}
624
625	/*
626	 * Squawk to the monitor speaker if enabled.
627	 */
628	if (pp->sloppyclockflag & CLK_FLAG3)
629		if (write(pp->io.fd, (u_char *)&rbufp->recv_space,
630		    (u_int)up->bufcnt) < 0)
631			perror("chu:");
632}
633
634
635/*
636 * chu_rf - filter and demodulate the FSK signal
637 *
638 * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
639 * and space 2025 Hz. It uses a bandpass filter followed by a soft
640 * limiter, FM discriminator and lowpass filter. A maximum likelihood
641 * decoder samples the baseband signal at eight times the baud rate and
642 * detects the start bit of each character.
643 *
644 * The filters are built for speed, which explains the rather clumsy
645 * code. Hopefully, the compiler will efficiently implement the move-
646 * and-muiltiply-and-add operations.
647 */
648static void
649chu_rf(
650	struct peer *peer,	/* peer structure pointer */
651	double	sample		/* analog sample */
652	)
653{
654	struct refclockproc *pp;
655	struct chuunit *up;
656	struct surv *sp;
657
658	/*
659	 * Local variables
660	 */
661	double	signal;		/* bandpass signal */
662	double	limit;		/* limiter signal */
663	double	disc;		/* discriminator signal */
664	double	lpf;		/* lowpass signal */
665	double	span;		/* UART signal span */
666	double	dist;		/* UART signal distance */
667	int	i, j;
668
669	pp = peer->procptr;
670	up = (struct chuunit *)pp->unitptr;
671
672	/*
673	 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
674	 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB.
675	 */
676	signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
677	signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
678	signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
679	signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
680	signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
681	signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
682	signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
683	signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
684	up->bpf[0] = sample - signal;
685	signal = up->bpf[0] * 6.176213e-03
686	    + up->bpf[1] * 3.156599e-03
687	    + up->bpf[2] * 7.567487e-03
688	    + up->bpf[3] * 4.344580e-03
689	    + up->bpf[4] * 1.190128e-02
690	    + up->bpf[5] * 4.344580e-03
691	    + up->bpf[6] * 7.567487e-03
692	    + up->bpf[7] * 3.156599e-03
693	    + up->bpf[8] * 6.176213e-03;
694
695	up->monitor = signal / 4.;	/* note monitor after filter */
696
697	/*
698	 * Soft limiter/discriminator. The 11-sample discriminator lag
699	 * interval corresponds to three cycles of 2125 Hz, which
700	 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
701	 * Hz. The discriminator output varies +-0.5 interval for input
702	 * frequency 2025-2225 Hz. However, we don't get to sample at
703	 * this frequency, so the discriminator output is biased. Life
704	 * at 8000 Hz sucks.
705	 */
706	limit = signal;
707	if (limit > LIMIT)
708		limit = LIMIT;
709	else if (limit < -LIMIT)
710		limit = -LIMIT;
711	disc = up->disc[up->discptr] * -limit;
712	up->disc[up->discptr] = limit;
713	up->discptr = (up->discptr + 1 ) % LAG;
714	if (disc >= 0)
715		disc = sqrt(disc);
716	else
717		disc = -sqrt(-disc);
718
719	/*
720	 * Lowpass filter. Raised cosine, Ts = 1 / 300, beta = 0.1.
721	 */
722	lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
723	lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
724	lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
725	lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
726	lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
727	lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
728	lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
729	lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
730	lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
731	lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
732	lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
733	lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
734	lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
735	lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
736	lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
737	lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
738	lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
739	lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
740	lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
741	lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
742	lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
743	lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
744	lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
745	lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
746	lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
747	lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
748	lpf += up->lpf[0] = disc * 2.538771e-02;
749
750	/*
751	 * Maximum likelihood decoder. The UART updates each of the
752	 * eight survivors and determines the span, slice level and
753	 * tentative decoded character. Valid 11-bit characters are
754	 * framed so that bit 1 and bit 11 (stop bits) are mark and bit
755	 * 2 (start bit) is space. When a valid character is found, the
756	 * survivor with maximum distance determines the final decoded
757	 * character.
758	 */
759	up->baud += 1. / SECOND;
760	if (up->baud > 1. / (BAUD * 8.)) {
761		up->baud -= 1. / (BAUD * 8.);
762		sp = &up->surv[up->decptr];
763		span = sp->es_max - sp->es_min;
764		up->maxsignal += (span - up->maxsignal) / 80.;
765		if (up->dbrk > 0) {
766			up->dbrk--;
767		} else if ((sp->uart & 0x403) == 0x401 && span > 1000.)
768		    {
769			dist = 0;
770			j = 0;
771			for (i = 0; i < 8; i++) {
772				if (up->surv[i].dist > dist) {
773					dist = up->surv[i].dist;
774					j = i;
775				}
776			}
777			chu_decode(peer, (up->surv[j].uart >> 2) &
778			    0xff);
779			up->dbrk = 80;
780		}
781		up->decptr = (up->decptr + 1) % 8;
782		chu_uart(sp, -lpf * AGAIN);
783	}
784}
785
786
787/*
788 * chu_uart - maximum likelihood UART
789 *
790 * This routine updates a shift register holding the last 11 envelope
791 * samples. It then computes the slice level and span over these samples
792 * and determines the tentative data bits and distance. The calling
793 * program selects over the last eight survivors the one with maximum
794 * distance to determine the decoded character.
795 */
796static void
797chu_uart(
798	struct surv *sp,	/* survivor structure pointer */
799	double	sample		/* baseband signal */
800	)
801{
802	double	es_max, es_min;	/* max/min envelope */
803	double	slice;		/* slice level */
804	double	dist;		/* distance */
805	double	dtemp;
806	int	i;
807
808	/*
809	 * Save the sample and shift right. At the same time, measure
810	 * the maximum and minimum over all eleven samples.
811	 */
812	es_max = -1e6;
813	es_min = 1e6;
814	sp->shift[0] = sample;
815	for (i = 11; i > 0; i--) {
816		sp->shift[i] = sp->shift[i - 1];
817		if (sp->shift[i] > es_max)
818			es_max = sp->shift[i];
819		if (sp->shift[i] < es_min)
820			es_min = sp->shift[i];
821	}
822
823	/*
824	 * Determine the slice level midway beteen the maximum and
825	 * minimum and the span as the maximum less the minimum. Compute
826	 * the distance on the assumption the first and last bits must
827	 * be mark, the second space and the rest either mark or space.
828	 */
829	slice = (es_max + es_min) / 2.;
830	dist = 0;
831	sp->uart = 0;
832	for (i = 1; i < 12; i++) {
833		sp->uart <<= 1;
834		dtemp = sp->shift[i];
835		if (dtemp > slice)
836			sp->uart |= 0x1;
837		if (i == 1 || i == 11) {
838			dist += dtemp - es_min;
839		} else if (i == 10) {
840			dist += es_max - dtemp;
841		} else {
842			if (dtemp > slice)
843				dist += dtemp - es_min;
844			else
845				dist += es_max - dtemp;
846		}
847	}
848	sp->es_max = es_max;
849	sp->es_min = es_min;
850	sp->dist = dist / (11 * (es_max - es_min));
851}
852
853
854#else /* AUDIO_CHU */
855/*
856 * chu_receive - receive data from the serial interface
857 */
858static void
859chu_receive(
860	struct recvbuf *rbufp	/* receive buffer structure pointer */
861	)
862{
863	struct chuunit *up;
864	struct refclockproc *pp;
865	struct peer *peer;
866
867	u_char	*dpt;		/* receive buffer pointer */
868
869	peer = (struct peer *)rbufp->recv_srcclock;
870	pp = peer->procptr;
871	up = (struct chuunit *)pp->unitptr;
872
873	/*
874	 * Initialize pointers and read the timecode and timestamp.
875	 */
876	up->timestamp = rbufp->recv_time;
877	dpt = (u_char *)&rbufp->recv_space;
878	chu_decode(peer, *dpt);
879}
880#endif /* AUDIO_CHU */
881
882
883/*
884 * chu_decode - decode the data
885 */
886static void
887chu_decode(
888	struct peer *peer,	/* peer structure pointer */
889	int	hexhex		/* data character */
890	)
891{
892	struct refclockproc *pp;
893	struct chuunit *up;
894
895	l_fp	tstmp;		/* timestamp temp */
896	double	dtemp;
897
898	pp = peer->procptr;
899	up = (struct chuunit *)pp->unitptr;
900
901	/*
902	 * If the interval since the last character is greater than the
903	 * longest burst, process the last burst and start a new one. If
904	 * the interval is less than this but greater than two
905	 * characters, consider this a noise burst and reject it.
906	 */
907	tstmp = up->timestamp;
908	if (L_ISZERO(&up->laststamp))
909		up->laststamp = up->timestamp;
910	L_SUB(&tstmp, &up->laststamp);
911	up->laststamp = up->timestamp;
912	LFPTOD(&tstmp, dtemp);
913	if (dtemp > BURST * CHAR) {
914		chu_burst(peer);
915		up->ndx = 0;
916	} else if (dtemp > 2.5 * CHAR) {
917		up->ndx = 0;
918	}
919
920	/*
921	 * Append the character to the current burst and append the
922	 * timestamp to the timestamp list.
923	 */
924	if (up->ndx < BURST) {
925		up->cbuf[up->ndx] = hexhex & 0xff;
926		up->cstamp[up->ndx] = up->timestamp;
927		up->ndx++;
928
929	}
930}
931
932
933/*
934 * chu_burst - search for valid burst format
935 */
936static void
937chu_burst(
938	struct peer *peer
939	)
940{
941	struct chuunit *up;
942	struct refclockproc *pp;
943
944	int	i;
945
946	pp = peer->procptr;
947	up = (struct chuunit *)pp->unitptr;
948
949	/*
950	 * Correlate a block of five characters with the next block of
951	 * five characters. The burst distance is defined as the number
952	 * of bits that match in the two blocks for format A and that
953	 * match the inverse for format B.
954	 */
955	if (up->ndx < MINCHAR) {
956		up->status |= RUNT;
957		return;
958	}
959	up->burdist = 0;
960	for (i = 0; i < 5 && i < up->ndx - 5; i++)
961		up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
962
963	/*
964	 * If the burst distance is at least MINDIST, this must be a
965	 * format A burst; if the value is not greater than -MINDIST, it
966	 * must be a format B burst. If the B burst is perfect, we
967	 * believe it; otherwise, it is a noise burst and of no use to
968	 * anybody.
969	 */
970	if (up->burdist >= MINDIST) {
971		chu_a(peer, up->ndx);
972	} else if (up->burdist <= -MINDIST) {
973		chu_b(peer, up->ndx);
974	} else {
975		up->status |= NOISE;
976		return;
977	}
978
979	/*
980	 * If this is a valid burst, wait a guard time of ten seconds to
981	 * allow for more bursts, then arm the poll update routine to
982	 * process the minute. Don't do this if this is called from the
983	 * timer interrupt routine.
984	 */
985	if (peer->outdate != current_time)
986		peer->nextdate = current_time + 10;
987}
988
989
990/*
991 * chu_b - decode format B burst
992 */
993static void
994chu_b(
995	struct peer *peer,
996	int	nchar
997	)
998{
999	struct	refclockproc *pp;
1000	struct	chuunit *up;
1001
1002	u_char	code[11];	/* decoded timecode */
1003	char	tbuf[80];	/* trace buffer */
1004	l_fp	offset;		/* timestamp offset */
1005	int	i;
1006
1007	pp = peer->procptr;
1008	up = (struct chuunit *)pp->unitptr;
1009
1010	/*
1011	 * In a format B burst, a character is considered valid only if
1012	 * the first occurrence matches the last occurrence. The burst
1013	 * is considered valid only if all characters are valid; that
1014	 * is, only if the distance is 40.
1015	 */
1016	sprintf(tbuf, "chuB %04x %2d %2d ", up->status, nchar,
1017	    -up->burdist);
1018	for (i = 0; i < nchar; i++)
1019		sprintf(&tbuf[strlen(tbuf)], "%02x",
1020		    up->cbuf[i]);
1021	if (pp->sloppyclockflag & CLK_FLAG4)
1022		record_clock_stats(&peer->srcadr, tbuf);
1023#ifdef DEBUG
1024	if (debug)
1025		printf("%s\n", tbuf);
1026#endif
1027	if (up->burdist > -40) {
1028		up->status |= BFRAME;
1029		return;
1030	}
1031	up->status |= INYEAR;
1032
1033	/*
1034	 * Convert the burst data to internal format. If this succeeds,
1035	 * save the timestamps for later.
1036	 */
1037	for (i = 0; i < 5; i++) {
1038		code[2 * i] = hexchar[up->cbuf[i] & 0xf];
1039		code[2 * i + 1] = hexchar[(up->cbuf[i] >>
1040		    4) & 0xf];
1041	}
1042	if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut,
1043	    &pp->year, &up->tai, &up->dst) != 5) {
1044		up->status |= BFORMAT;
1045		return;
1046	}
1047	if (up->leap & 0x8)
1048		up->dut = -up->dut;
1049	offset.l_ui = 31;
1050	offset.l_f = 0;
1051	for (i = 0; i < nchar && i < 10; i++) {
1052		up->tstamp[up->ntstamp] = up->cstamp[i];
1053		L_SUB(&up->tstamp[up->ntstamp], &offset);
1054		L_ADD(&offset, &up->charstamp);
1055		if (up->ntstamp < MAXSTAGE)
1056			up->ntstamp++;
1057	}
1058}
1059
1060
1061/*
1062 * chu_a - decode format A burst
1063 */
1064static void
1065chu_a(
1066	struct peer *peer,
1067	int nchar
1068	)
1069{
1070	struct refclockproc *pp;
1071	struct chuunit *up;
1072
1073	char	tbuf[80];	/* trace buffer */
1074	l_fp	offset;		/* timestamp offset */
1075	int	val;		/* distance */
1076	int	temp;
1077	int	i, j, k;
1078
1079	pp = peer->procptr;
1080	up = (struct chuunit *)pp->unitptr;
1081
1082	/*
1083	 * Determine correct burst phase. There are three cases
1084	 * corresponding to in-phase, one character early or one
1085	 * character late. These cases are distinguished by the position
1086	 * of the framing digits x6 at positions 0 and 5 and x3 at
1087	 * positions 4 and 9. The correct phase is when the distance
1088	 * relative to the framing digits is maximum. The burst is valid
1089	 * only if the maximum distance is at least MINSYNC.
1090	 */
1091	up->syndist = k = 0;
1092	val = -16;
1093	for (i = -1; i < 2; i++) {
1094		temp = up->cbuf[i + 4] & 0xf;
1095		if (i >= 0)
1096			temp |= (up->cbuf[i] & 0xf) << 4;
1097		val = chu_dist(temp, 0x63);
1098		temp = (up->cbuf[i + 5] & 0xf) << 4;
1099		if (i + 9 < nchar)
1100			temp |= up->cbuf[i + 9] & 0xf;
1101		val += chu_dist(temp, 0x63);
1102		if (val > up->syndist) {
1103			up->syndist = val;
1104			k = i;
1105		}
1106	}
1107	temp = (up->cbuf[k + 4] >> 4) & 0xf;
1108	if (temp > 9 || k + 9 >= nchar || temp != ((up->cbuf[k + 9] >>
1109	    4) & 0xf))
1110		temp = 0;
1111#ifdef AUDIO_CHU
1112	sprintf(tbuf, "chuA %04x %4.0f %2d %2d %2d %2d %1d ",
1113	    up->status, up->maxsignal, nchar, up->burdist, k,
1114	    up->syndist, temp);
1115#else
1116	sprintf(tbuf, "chuA %04x %2d %2d %2d %2d %1d ", up->status,
1117	    nchar, up->burdist, k, up->syndist, temp);
1118#endif /* AUDIO_CHU */
1119	for (i = 0; i < nchar; i++)
1120		sprintf(&tbuf[strlen(tbuf)], "%02x",
1121		    up->cbuf[i]);
1122	if (pp->sloppyclockflag & CLK_FLAG4)
1123		record_clock_stats(&peer->srcadr, tbuf);
1124#ifdef DEBUG
1125	if (debug)
1126		printf("%s\n", tbuf);
1127#endif
1128	if (up->syndist < MINSYNC) {
1129		up->status |= AFRAME;
1130		return;
1131	}
1132
1133	/*
1134	 * A valid burst requires the first seconds number to match the
1135	 * last seconds number. If so, the burst timestamps are
1136	 * corrected to the current minute and saved for later
1137	 * processing. In addition, the seconds decode is advanced from
1138	 * the previous burst to the current one.
1139	 */
1140	if (temp != 0) {
1141		offset.l_ui = 30 + temp;
1142		offset.l_f = 0;
1143		i = 0;
1144		if (k < 0)
1145			offset = up->charstamp;
1146		else if (k > 0)
1147			i = 1;
1148		for (; i < nchar && i < k + 10; i++) {
1149			up->tstamp[up->ntstamp] = up->cstamp[i];
1150			L_SUB(&up->tstamp[up->ntstamp], &offset);
1151			L_ADD(&offset, &up->charstamp);
1152			if (up->ntstamp < MAXSTAGE)
1153				up->ntstamp++;
1154		}
1155		while (temp > up->prevsec) {
1156			for (j = 15; j > 0; j--) {
1157				up->decode[9][j] = up->decode[9][j - 1];
1158				up->decode[19][j] =
1159				    up->decode[19][j - 1];
1160			}
1161			up->decode[9][j] = up->decode[19][j] = 0;
1162			up->prevsec++;
1163		}
1164	}
1165	i = -(2 * k);
1166	for (j = 0; j < nchar; j++) {
1167		if (i < 0 || i > 19) {
1168			i += 2;
1169			continue;
1170		}
1171		up->decode[i][up->cbuf[j] & 0xf]++;
1172		i++;
1173		up->decode[i][(up->cbuf[j] >> 4) & 0xf]++;
1174		i++;
1175	}
1176	up->burstcnt++;
1177}
1178
1179
1180/*
1181 * chu_poll - called by the transmit procedure
1182 */
1183static void
1184chu_poll(
1185	int unit,
1186	struct peer *peer	/* peer structure pointer */
1187	)
1188{
1189	struct refclockproc *pp;
1190	struct chuunit *up;
1191	char	synchar, qual, leapchar;
1192	int	minset;
1193	int	temp;
1194#ifdef ICOM
1195	char	tbuf[80];	/* trace buffer */
1196#endif /* ICOM */
1197	pp = peer->procptr;
1198	up = (struct chuunit *)pp->unitptr;
1199	if (pp->coderecv == pp->codeproc)
1200		up->errflg = CEVNT_TIMEOUT;
1201	else
1202		pp->polls++;
1203	minset = ((current_time - peer->update) + 30) / 60;
1204	if (up->status & INSYNC) {
1205		if (minset > PANIC)
1206			up->status = 0;
1207		else
1208			peer->reach |= 1;
1209	}
1210
1211	/*
1212	 * Process the last burst, if still in the burst buffer.
1213	 * Don't mess with anything if nothing has been heard.
1214	 */
1215	chu_burst(peer);
1216#ifdef ICOM
1217	if (up->burstcnt > 2) {
1218		up->dwell = 0;
1219	} else if (up->dwell < DWELL) {
1220		up->dwell++;
1221	} else if (up->fd_icom > 0) {
1222		up->dwell = 0;
1223		up->chan = (up->chan + 1) % NCHAN;
1224		icom_freq(up->fd_icom, peer->ttl & 0x7f, qsy[up->chan]);
1225		sprintf(up->ident, "%.3f", qsy[up->chan]);
1226		sprintf(tbuf, "chu: QSY to %s MHz", up->ident);
1227		record_clock_stats(&peer->srcadr, tbuf);
1228#ifdef DEBUG
1229		if (debug)
1230			printf("%s\n", tbuf);
1231#endif
1232	}
1233#endif /* ICOM */
1234	if (up->burstcnt == 0)
1235		return;
1236	temp = chu_major(peer);
1237	if (up->status & INYEAR)
1238		up->status |= INSYNC;
1239	qual = 0;
1240	if (up->status & (BFRAME | AFRAME))
1241		qual |= SYNERR;
1242	if (up->status & (BFORMAT | AFORMAT))
1243		qual |= FMTERR;
1244	if (up->status & DECODE)
1245		qual |= DECERR;
1246	if (up->status & STAMP)
1247		qual |= TSPERR;
1248	synchar = leapchar = ' ';
1249	if (!(up->status & INSYNC)) {
1250		pp->leap = LEAP_NOTINSYNC;
1251		synchar = '?';
1252	} else if (up->leap & 0x2) {
1253		pp->leap = LEAP_ADDSECOND;
1254		leapchar = 'L';
1255	} else {
1256		pp->leap = LEAP_NOWARNING;
1257	}
1258#ifdef AUDIO_CHU
1259	sprintf(pp->a_lastcode,
1260	    "%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %d %s %d %d %d %d",
1261	    synchar, qual, pp->year, pp->day, pp->hour, pp->minute,
1262	    pp->second, leapchar, up->dst, up->dut, minset, up->gain,
1263	    up->ident, up->tai, up->burstcnt, up->mindist, up->ntstamp);
1264#else
1265	sprintf(pp->a_lastcode,
1266	    "%c%1X %4d %3d %02d:%02d:%02d.000 %c%x %+d %d %s %d %d %d %d",
1267	    synchar, qual, pp->year, pp->day, pp->hour, pp->minute,
1268	    pp->second, leapchar, up->dst, up->dut, minset,
1269	    up->ident, up->tai, up->burstcnt, up->mindist, up->ntstamp);
1270#endif /* AUDIO_CHU */
1271	pp->lencode = strlen(pp->a_lastcode);
1272
1273	/*
1274	 * If timestamps have been stuffed, the timecode is ipso fatso
1275	 * correct and can be selected to discipline the clock.
1276	 */
1277	if (temp > 0) {
1278		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1279		refclock_receive(peer);
1280	} else if (pp->sloppyclockflag & CLK_FLAG4) {
1281		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1282	}
1283#ifdef DEBUG
1284	if (debug)
1285		printf("chu: timecode %d %s\n", pp->lencode,
1286		    pp->a_lastcode);
1287#endif
1288	chu_clear(peer);
1289	if (up->errflg)
1290		refclock_report(peer, up->errflg);
1291	up->errflg = 0;
1292}
1293
1294
1295/*
1296 * chu_major - majority decoder
1297 */
1298static int
1299chu_major(
1300	struct peer *peer	/* peer structure pointer */
1301	)
1302{
1303	struct refclockproc *pp;
1304	struct chuunit *up;
1305
1306	u_char	code[11];	/* decoded timecode */
1307	l_fp	toffset, offset; /* l_fp temps */
1308	int	val1, val2;	/* maximum distance */
1309	int	synchar;	/* stray cat */
1310	double	dtemp;
1311	int	temp;
1312	int	i, j, k;
1313
1314	pp = peer->procptr;
1315	up = (struct chuunit *)pp->unitptr;
1316
1317	/*
1318	 * Majority decoder. Each burst encodes two replications at each
1319	 * digit position in the timecode. Each row of the decoding
1320	 * matrix encodes the number of occurences of each digit found
1321	 * at the corresponding position. The maximum over all
1322	 * occurences at each position is the distance for this position
1323	 * and the corresponding digit is the maximumn likelihood
1324	 * candidate. If the distance is zero, assume a miss '_'; if the
1325	 * distance is not more than half the total number of
1326	 * occurences, assume a soft error '-'; if two different digits
1327	 * with the same distance are found, assume a hard error '='.
1328	 * These will later cause a format error when the timecode is
1329	 * interpreted. The decoding distance is defined as the minimum
1330	 * distance over the first nine digits. The tenth digit varies
1331	 * over the seconds, so we don't count it.
1332	 */
1333	up->mindist = 16;
1334	for (i = 0; i < 9; i++) {
1335		val1 = val2 = 0;
1336		k = 0;
1337		for (j = 0; j < 16; j++) {
1338			temp = up->decode[i][j] + up->decode[i + 10][j];
1339			if (temp > val1) {
1340				val2 = val1;
1341				val1 = temp;
1342				k = j;
1343			}
1344		}
1345		if (val1 == 0)
1346			code[i] = HEX_MISS;
1347		else if (val1 == val2)
1348			code[i] = HEX_HARD;
1349		else if (val1 <= up->burstcnt)
1350			code[i] = HEX_SOFT;
1351		else
1352			code[i] = k;
1353		if (val1 < up->mindist)
1354			up->mindist = val1;
1355		code[i] = hexchar[code[i]];
1356	}
1357	code[i] = 0;
1358
1359	/*
1360	 * A valid timecode requires at least three bursts and a
1361	 * decoding distance greater than half the total number of
1362	 * occurences. A valid timecode also requires at least 20 valid
1363	 * timestamps.
1364	 */
1365	if (up->burstcnt < 3 || up->mindist <= up->burstcnt)
1366		up->status |= DECODE;
1367	if (up->ntstamp < MINSTAMP)
1368		up->status |= STAMP;
1369
1370	/*
1371	 * Compute the timecode timestamp from the days, hours and
1372	 * minutes of the timecode. Use clocktime() for the aggregate
1373	 * minutes and the minute offset computed from the burst
1374	 * seconds. Note that this code relies on the filesystem time
1375	 * for the years and does not use the years of the timecode.
1376	 */
1377	if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day,
1378	    &pp->hour, &pp->minute) != 4) {
1379		up->status |= AFORMAT;
1380		return (0);
1381	}
1382	if (up->status & (DECODE | STAMP)) {
1383		up->errflg = CEVNT_BADREPLY;
1384		return (0);
1385	}
1386	L_CLR(&offset);
1387	if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
1388	    up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
1389		up->errflg = CEVNT_BADTIME;
1390		return (0);
1391	}
1392	pp->lastref = offset;
1393	pp->variance = 0;
1394	for (i = 0; i < up->ntstamp; i++) {
1395		toffset = offset;
1396		L_SUB(&toffset, &up->tstamp[i]);
1397		LFPTOD(&toffset, dtemp);
1398		SAMPLE(dtemp + FUDGE + pp->fudgetime1);
1399	}
1400	return (i);
1401}
1402
1403
1404/*
1405 * chu_clear - clear decoding matrix
1406 */
1407static void
1408chu_clear(
1409	struct peer *peer	/* peer structure pointer */
1410	)
1411{
1412	struct refclockproc *pp;
1413	struct chuunit *up;
1414	int	i, j;
1415
1416	pp = peer->procptr;
1417	up = (struct chuunit *)pp->unitptr;
1418
1419	/*
1420	 * Clear stuff for the minute.
1421	 */
1422	up->ndx = up->prevsec = 0;
1423	up->burstcnt = up->mindist = up->ntstamp = 0;
1424	up->status &= INSYNC | INYEAR;
1425	up->burstcnt = 0;
1426	for (i = 0; i < 20; i++) {
1427		for (j = 0; j < 16; j++)
1428			up->decode[i][j] = 0;
1429	}
1430}
1431
1432
1433/*
1434 * chu_dist - determine the distance of two octet arguments
1435 */
1436static int
1437chu_dist(
1438	int	x,		/* an octet of bits */
1439	int	y		/* another octet of bits */
1440	)
1441{
1442	int	val;		/* bit count */
1443	int	temp;
1444	int	i;
1445
1446	/*
1447	 * The distance is determined as the weight of the exclusive OR
1448	 * of the two arguments. The weight is determined by the number
1449	 * of one bits in the result. Each one bit increases the weight,
1450	 * while each zero bit decreases it.
1451	 */
1452	temp = x ^ y;
1453	val = 0;
1454	for (i = 0; i < 8; i++) {
1455		if ((temp & 0x1) == 0)
1456			val++;
1457		else
1458			val--;
1459		temp >>= 1;
1460	}
1461	return (val);
1462}
1463
1464
1465#ifdef AUDIO_CHU
1466/*
1467 * chu_gain - adjust codec gain
1468 *
1469 * This routine is called once each second. If the signal envelope
1470 * amplitude is too low, the codec gain is bumped up by four units; if
1471 * too high, it is bumped down. The decoder is relatively insensitive to
1472 * amplitude, so this crudity works just fine. The input port is set and
1473 * the error flag is cleared, mostly to be ornery.
1474 */
1475static void
1476chu_gain(
1477	struct peer *peer	/* peer structure pointer */
1478	)
1479{
1480	struct refclockproc *pp;
1481	struct chuunit *up;
1482
1483	pp = peer->procptr;
1484	up = (struct chuunit *)pp->unitptr;
1485
1486	/*
1487	 * Apparently, the codec uses only the high order bits of the
1488	 * gain control field. Thus, it may take awhile for changes to
1489	 * wiggle the hardware bits.
1490	 */
1491	if (up->clipcnt == 0) {
1492		up->gain += 4;
1493		if (up->gain > 255)
1494			up->gain = 255;
1495	} else if (up->clipcnt > SECOND / 100) {
1496		up->gain -= 4;
1497		if (up->gain < 0)
1498			up->gain = 0;
1499	}
1500	audio_gain(up->gain, up->port);
1501	up->clipcnt = 0;
1502}
1503#endif /* AUDIO_CHU */
1504
1505
1506#else
1507int refclock_chu_bs;
1508#endif /* REFCLOCK */
1509