CodeGenTypes.cpp revision 249423
1174294Sobrien//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2174294Sobrien//
3174294Sobrien//                     The LLVM Compiler Infrastructure
4174294Sobrien//
5174294Sobrien// This file is distributed under the University of Illinois Open Source
6174294Sobrien// License. See LICENSE.TXT for details.
7174294Sobrien//
8174294Sobrien//===----------------------------------------------------------------------===//
9174294Sobrien//
10174294Sobrien// This is the code that handles AST -> LLVM type lowering.
11174294Sobrien//
12174294Sobrien//===----------------------------------------------------------------------===//
13174294Sobrien
14174294Sobrien#include "CodeGenTypes.h"
15174294Sobrien#include "CGCXXABI.h"
16174294Sobrien#include "CGCall.h"
17174294Sobrien#include "CGOpenCLRuntime.h"
18174294Sobrien#include "CGRecordLayout.h"
19174294Sobrien#include "TargetInfo.h"
20174294Sobrien#include "clang/AST/ASTContext.h"
21174294Sobrien#include "clang/AST/DeclCXX.h"
22174294Sobrien#include "clang/AST/DeclObjC.h"
23174294Sobrien#include "clang/AST/Expr.h"
24174294Sobrien#include "clang/AST/RecordLayout.h"
25174294Sobrien#include "llvm/IR/DataLayout.h"
26174294Sobrien#include "llvm/IR/DerivedTypes.h"
27174294Sobrien#include "llvm/IR/Module.h"
28174294Sobrienusing namespace clang;
29174294Sobrienusing namespace CodeGen;
30174294Sobrien
31174294SobrienCodeGenTypes::CodeGenTypes(CodeGenModule &CGM)
32174294Sobrien  : Context(CGM.getContext()), Target(Context.getTargetInfo()),
33174294Sobrien    TheModule(CGM.getModule()), TheDataLayout(CGM.getDataLayout()),
34174294Sobrien    TheABIInfo(CGM.getTargetCodeGenInfo().getABIInfo()),
35174294Sobrien    TheCXXABI(CGM.getCXXABI()),
36174294Sobrien    CodeGenOpts(CGM.getCodeGenOpts()), CGM(CGM) {
37174294Sobrien  SkippedLayout = false;
38174294Sobrien}
39174294Sobrien
40174294SobrienCodeGenTypes::~CodeGenTypes() {
41174294Sobrien  for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
42174294Sobrien         I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
43174294Sobrien      I != E; ++I)
44174294Sobrien    delete I->second;
45174294Sobrien
46174294Sobrien  for (llvm::FoldingSet<CGFunctionInfo>::iterator
47174294Sobrien       I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
48174294Sobrien    delete &*I++;
49174294Sobrien}
50174294Sobrien
51174294Sobrienvoid CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
52174294Sobrien                                     llvm::StructType *Ty,
53174294Sobrien                                     StringRef suffix) {
54174294Sobrien  SmallString<256> TypeName;
55174294Sobrien  llvm::raw_svector_ostream OS(TypeName);
56174294Sobrien  OS << RD->getKindName() << '.';
57174294Sobrien
58174294Sobrien  // Name the codegen type after the typedef name
59174294Sobrien  // if there is no tag type name available
60174294Sobrien  if (RD->getIdentifier()) {
61174294Sobrien    // FIXME: We should not have to check for a null decl context here.
62174294Sobrien    // Right now we do it because the implicit Obj-C decls don't have one.
63174294Sobrien    if (RD->getDeclContext())
64174294Sobrien      RD->printQualifiedName(OS);
65174294Sobrien    else
66174294Sobrien      RD->printName(OS);
67174294Sobrien  } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
68174294Sobrien    // FIXME: We should not have to check for a null decl context here.
69174294Sobrien    // Right now we do it because the implicit Obj-C decls don't have one.
70    if (TDD->getDeclContext())
71      TDD->printQualifiedName(OS);
72    else
73      TDD->printName(OS);
74  } else
75    OS << "anon";
76
77  if (!suffix.empty())
78    OS << suffix;
79
80  Ty->setName(OS.str());
81}
82
83/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
84/// ConvertType in that it is used to convert to the memory representation for
85/// a type.  For example, the scalar representation for _Bool is i1, but the
86/// memory representation is usually i8 or i32, depending on the target.
87llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
88  llvm::Type *R = ConvertType(T);
89
90  // If this is a non-bool type, don't map it.
91  if (!R->isIntegerTy(1))
92    return R;
93
94  // Otherwise, return an integer of the target-specified size.
95  return llvm::IntegerType::get(getLLVMContext(),
96                                (unsigned)Context.getTypeSize(T));
97}
98
99
100/// isRecordLayoutComplete - Return true if the specified type is already
101/// completely laid out.
102bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
103  llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
104  RecordDeclTypes.find(Ty);
105  return I != RecordDeclTypes.end() && !I->second->isOpaque();
106}
107
108static bool
109isSafeToConvert(QualType T, CodeGenTypes &CGT,
110                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
111
112
113/// isSafeToConvert - Return true if it is safe to convert the specified record
114/// decl to IR and lay it out, false if doing so would cause us to get into a
115/// recursive compilation mess.
116static bool
117isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
118                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
119  // If we have already checked this type (maybe the same type is used by-value
120  // multiple times in multiple structure fields, don't check again.
121  if (!AlreadyChecked.insert(RD)) return true;
122
123  const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
124
125  // If this type is already laid out, converting it is a noop.
126  if (CGT.isRecordLayoutComplete(Key)) return true;
127
128  // If this type is currently being laid out, we can't recursively compile it.
129  if (CGT.isRecordBeingLaidOut(Key))
130    return false;
131
132  // If this type would require laying out bases that are currently being laid
133  // out, don't do it.  This includes virtual base classes which get laid out
134  // when a class is translated, even though they aren't embedded by-value into
135  // the class.
136  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
137    for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
138         E = CRD->bases_end(); I != E; ++I)
139      if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
140                           CGT, AlreadyChecked))
141        return false;
142  }
143
144  // If this type would require laying out members that are currently being laid
145  // out, don't do it.
146  for (RecordDecl::field_iterator I = RD->field_begin(),
147       E = RD->field_end(); I != E; ++I)
148    if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
149      return false;
150
151  // If there are no problems, lets do it.
152  return true;
153}
154
155/// isSafeToConvert - Return true if it is safe to convert this field type,
156/// which requires the structure elements contained by-value to all be
157/// recursively safe to convert.
158static bool
159isSafeToConvert(QualType T, CodeGenTypes &CGT,
160                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
161  T = T.getCanonicalType();
162
163  // If this is a record, check it.
164  if (const RecordType *RT = dyn_cast<RecordType>(T))
165    return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
166
167  // If this is an array, check the elements, which are embedded inline.
168  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
169    return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
170
171  // Otherwise, there is no concern about transforming this.  We only care about
172  // things that are contained by-value in a structure that can have another
173  // structure as a member.
174  return true;
175}
176
177
178/// isSafeToConvert - Return true if it is safe to convert the specified record
179/// decl to IR and lay it out, false if doing so would cause us to get into a
180/// recursive compilation mess.
181static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
182  // If no structs are being laid out, we can certainly do this one.
183  if (CGT.noRecordsBeingLaidOut()) return true;
184
185  llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
186  return isSafeToConvert(RD, CGT, AlreadyChecked);
187}
188
189
190/// isFuncTypeArgumentConvertible - Return true if the specified type in a
191/// function argument or result position can be converted to an IR type at this
192/// point.  This boils down to being whether it is complete, as well as whether
193/// we've temporarily deferred expanding the type because we're in a recursive
194/// context.
195bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
196  // If this isn't a tagged type, we can convert it!
197  const TagType *TT = Ty->getAs<TagType>();
198  if (TT == 0) return true;
199
200  // Incomplete types cannot be converted.
201  if (TT->isIncompleteType())
202    return false;
203
204  // If this is an enum, then it is always safe to convert.
205  const RecordType *RT = dyn_cast<RecordType>(TT);
206  if (RT == 0) return true;
207
208  // Otherwise, we have to be careful.  If it is a struct that we're in the
209  // process of expanding, then we can't convert the function type.  That's ok
210  // though because we must be in a pointer context under the struct, so we can
211  // just convert it to a dummy type.
212  //
213  // We decide this by checking whether ConvertRecordDeclType returns us an
214  // opaque type for a struct that we know is defined.
215  return isSafeToConvert(RT->getDecl(), *this);
216}
217
218
219/// Code to verify a given function type is complete, i.e. the return type
220/// and all of the argument types are complete.  Also check to see if we are in
221/// a RS_StructPointer context, and if so whether any struct types have been
222/// pended.  If so, we don't want to ask the ABI lowering code to handle a type
223/// that cannot be converted to an IR type.
224bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
225  if (!isFuncTypeArgumentConvertible(FT->getResultType()))
226    return false;
227
228  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
229    for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
230      if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
231        return false;
232
233  return true;
234}
235
236/// UpdateCompletedType - When we find the full definition for a TagDecl,
237/// replace the 'opaque' type we previously made for it if applicable.
238void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
239  // If this is an enum being completed, then we flush all non-struct types from
240  // the cache.  This allows function types and other things that may be derived
241  // from the enum to be recomputed.
242  if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
243    // Only flush the cache if we've actually already converted this type.
244    if (TypeCache.count(ED->getTypeForDecl())) {
245      // Okay, we formed some types based on this.  We speculated that the enum
246      // would be lowered to i32, so we only need to flush the cache if this
247      // didn't happen.
248      if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
249        TypeCache.clear();
250    }
251    return;
252  }
253
254  // If we completed a RecordDecl that we previously used and converted to an
255  // anonymous type, then go ahead and complete it now.
256  const RecordDecl *RD = cast<RecordDecl>(TD);
257  if (RD->isDependentType()) return;
258
259  // Only complete it if we converted it already.  If we haven't converted it
260  // yet, we'll just do it lazily.
261  if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
262    ConvertRecordDeclType(RD);
263}
264
265static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
266                                    const llvm::fltSemantics &format,
267                                    bool UseNativeHalf = false) {
268  if (&format == &llvm::APFloat::IEEEhalf) {
269    if (UseNativeHalf)
270      return llvm::Type::getHalfTy(VMContext);
271    else
272      return llvm::Type::getInt16Ty(VMContext);
273  }
274  if (&format == &llvm::APFloat::IEEEsingle)
275    return llvm::Type::getFloatTy(VMContext);
276  if (&format == &llvm::APFloat::IEEEdouble)
277    return llvm::Type::getDoubleTy(VMContext);
278  if (&format == &llvm::APFloat::IEEEquad)
279    return llvm::Type::getFP128Ty(VMContext);
280  if (&format == &llvm::APFloat::PPCDoubleDouble)
281    return llvm::Type::getPPC_FP128Ty(VMContext);
282  if (&format == &llvm::APFloat::x87DoubleExtended)
283    return llvm::Type::getX86_FP80Ty(VMContext);
284  llvm_unreachable("Unknown float format!");
285}
286
287/// ConvertType - Convert the specified type to its LLVM form.
288llvm::Type *CodeGenTypes::ConvertType(QualType T) {
289  T = Context.getCanonicalType(T);
290
291  const Type *Ty = T.getTypePtr();
292
293  // RecordTypes are cached and processed specially.
294  if (const RecordType *RT = dyn_cast<RecordType>(Ty))
295    return ConvertRecordDeclType(RT->getDecl());
296
297  // See if type is already cached.
298  llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
299  // If type is found in map then use it. Otherwise, convert type T.
300  if (TCI != TypeCache.end())
301    return TCI->second;
302
303  // If we don't have it in the cache, convert it now.
304  llvm::Type *ResultType = 0;
305  switch (Ty->getTypeClass()) {
306  case Type::Record: // Handled above.
307#define TYPE(Class, Base)
308#define ABSTRACT_TYPE(Class, Base)
309#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
310#define DEPENDENT_TYPE(Class, Base) case Type::Class:
311#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
312#include "clang/AST/TypeNodes.def"
313    llvm_unreachable("Non-canonical or dependent types aren't possible.");
314
315  case Type::Builtin: {
316    switch (cast<BuiltinType>(Ty)->getKind()) {
317    case BuiltinType::Void:
318    case BuiltinType::ObjCId:
319    case BuiltinType::ObjCClass:
320    case BuiltinType::ObjCSel:
321      // LLVM void type can only be used as the result of a function call.  Just
322      // map to the same as char.
323      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
324      break;
325
326    case BuiltinType::Bool:
327      // Note that we always return bool as i1 for use as a scalar type.
328      ResultType = llvm::Type::getInt1Ty(getLLVMContext());
329      break;
330
331    case BuiltinType::Char_S:
332    case BuiltinType::Char_U:
333    case BuiltinType::SChar:
334    case BuiltinType::UChar:
335    case BuiltinType::Short:
336    case BuiltinType::UShort:
337    case BuiltinType::Int:
338    case BuiltinType::UInt:
339    case BuiltinType::Long:
340    case BuiltinType::ULong:
341    case BuiltinType::LongLong:
342    case BuiltinType::ULongLong:
343    case BuiltinType::WChar_S:
344    case BuiltinType::WChar_U:
345    case BuiltinType::Char16:
346    case BuiltinType::Char32:
347      ResultType = llvm::IntegerType::get(getLLVMContext(),
348                                 static_cast<unsigned>(Context.getTypeSize(T)));
349      break;
350
351    case BuiltinType::Half:
352      // Half FP can either be storage-only (lowered to i16) or native.
353      ResultType = getTypeForFormat(getLLVMContext(),
354          Context.getFloatTypeSemantics(T),
355          Context.getLangOpts().NativeHalfType);
356      break;
357    case BuiltinType::Float:
358    case BuiltinType::Double:
359    case BuiltinType::LongDouble:
360      ResultType = getTypeForFormat(getLLVMContext(),
361                                    Context.getFloatTypeSemantics(T),
362                                    /* UseNativeHalf = */ false);
363      break;
364
365    case BuiltinType::NullPtr:
366      // Model std::nullptr_t as i8*
367      ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
368      break;
369
370    case BuiltinType::UInt128:
371    case BuiltinType::Int128:
372      ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
373      break;
374
375    case BuiltinType::OCLImage1d:
376    case BuiltinType::OCLImage1dArray:
377    case BuiltinType::OCLImage1dBuffer:
378    case BuiltinType::OCLImage2d:
379    case BuiltinType::OCLImage2dArray:
380    case BuiltinType::OCLImage3d:
381    case BuiltinType::OCLSampler:
382    case BuiltinType::OCLEvent:
383      ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
384      break;
385
386    case BuiltinType::Dependent:
387#define BUILTIN_TYPE(Id, SingletonId)
388#define PLACEHOLDER_TYPE(Id, SingletonId) \
389    case BuiltinType::Id:
390#include "clang/AST/BuiltinTypes.def"
391      llvm_unreachable("Unexpected placeholder builtin type!");
392    }
393    break;
394  }
395  case Type::Complex: {
396    llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
397    ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
398    break;
399  }
400  case Type::LValueReference:
401  case Type::RValueReference: {
402    const ReferenceType *RTy = cast<ReferenceType>(Ty);
403    QualType ETy = RTy->getPointeeType();
404    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
405    unsigned AS = Context.getTargetAddressSpace(ETy);
406    ResultType = llvm::PointerType::get(PointeeType, AS);
407    break;
408  }
409  case Type::Pointer: {
410    const PointerType *PTy = cast<PointerType>(Ty);
411    QualType ETy = PTy->getPointeeType();
412    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
413    if (PointeeType->isVoidTy())
414      PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
415    unsigned AS = Context.getTargetAddressSpace(ETy);
416    ResultType = llvm::PointerType::get(PointeeType, AS);
417    break;
418  }
419
420  case Type::VariableArray: {
421    const VariableArrayType *A = cast<VariableArrayType>(Ty);
422    assert(A->getIndexTypeCVRQualifiers() == 0 &&
423           "FIXME: We only handle trivial array types so far!");
424    // VLAs resolve to the innermost element type; this matches
425    // the return of alloca, and there isn't any obviously better choice.
426    ResultType = ConvertTypeForMem(A->getElementType());
427    break;
428  }
429  case Type::IncompleteArray: {
430    const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
431    assert(A->getIndexTypeCVRQualifiers() == 0 &&
432           "FIXME: We only handle trivial array types so far!");
433    // int X[] -> [0 x int], unless the element type is not sized.  If it is
434    // unsized (e.g. an incomplete struct) just use [0 x i8].
435    ResultType = ConvertTypeForMem(A->getElementType());
436    if (!ResultType->isSized()) {
437      SkippedLayout = true;
438      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
439    }
440    ResultType = llvm::ArrayType::get(ResultType, 0);
441    break;
442  }
443  case Type::ConstantArray: {
444    const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
445    llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
446
447    // Lower arrays of undefined struct type to arrays of i8 just to have a
448    // concrete type.
449    if (!EltTy->isSized()) {
450      SkippedLayout = true;
451      EltTy = llvm::Type::getInt8Ty(getLLVMContext());
452    }
453
454    ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
455    break;
456  }
457  case Type::ExtVector:
458  case Type::Vector: {
459    const VectorType *VT = cast<VectorType>(Ty);
460    ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
461                                       VT->getNumElements());
462    break;
463  }
464  case Type::FunctionNoProto:
465  case Type::FunctionProto: {
466    const FunctionType *FT = cast<FunctionType>(Ty);
467    // First, check whether we can build the full function type.  If the
468    // function type depends on an incomplete type (e.g. a struct or enum), we
469    // cannot lower the function type.
470    if (!isFuncTypeConvertible(FT)) {
471      // This function's type depends on an incomplete tag type.
472
473      // Force conversion of all the relevant record types, to make sure
474      // we re-convert the FunctionType when appropriate.
475      if (const RecordType *RT = FT->getResultType()->getAs<RecordType>())
476        ConvertRecordDeclType(RT->getDecl());
477      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
478        for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
479          if (const RecordType *RT = FPT->getArgType(i)->getAs<RecordType>())
480            ConvertRecordDeclType(RT->getDecl());
481
482      // Return a placeholder type.
483      ResultType = llvm::StructType::get(getLLVMContext());
484
485      SkippedLayout = true;
486      break;
487    }
488
489    // While we're converting the argument types for a function, we don't want
490    // to recursively convert any pointed-to structs.  Converting directly-used
491    // structs is ok though.
492    if (!RecordsBeingLaidOut.insert(Ty)) {
493      ResultType = llvm::StructType::get(getLLVMContext());
494
495      SkippedLayout = true;
496      break;
497    }
498
499    // The function type can be built; call the appropriate routines to
500    // build it.
501    const CGFunctionInfo *FI;
502    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
503      FI = &arrangeFreeFunctionType(
504                   CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
505    } else {
506      const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
507      FI = &arrangeFreeFunctionType(
508                CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
509    }
510
511    // If there is something higher level prodding our CGFunctionInfo, then
512    // don't recurse into it again.
513    if (FunctionsBeingProcessed.count(FI)) {
514
515      ResultType = llvm::StructType::get(getLLVMContext());
516      SkippedLayout = true;
517    } else {
518
519      // Otherwise, we're good to go, go ahead and convert it.
520      ResultType = GetFunctionType(*FI);
521    }
522
523    RecordsBeingLaidOut.erase(Ty);
524
525    if (SkippedLayout)
526      TypeCache.clear();
527
528    if (RecordsBeingLaidOut.empty())
529      while (!DeferredRecords.empty())
530        ConvertRecordDeclType(DeferredRecords.pop_back_val());
531    break;
532  }
533
534  case Type::ObjCObject:
535    ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
536    break;
537
538  case Type::ObjCInterface: {
539    // Objective-C interfaces are always opaque (outside of the
540    // runtime, which can do whatever it likes); we never refine
541    // these.
542    llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
543    if (!T)
544      T = llvm::StructType::create(getLLVMContext());
545    ResultType = T;
546    break;
547  }
548
549  case Type::ObjCObjectPointer: {
550    // Protocol qualifications do not influence the LLVM type, we just return a
551    // pointer to the underlying interface type. We don't need to worry about
552    // recursive conversion.
553    llvm::Type *T =
554      ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
555    ResultType = T->getPointerTo();
556    break;
557  }
558
559  case Type::Enum: {
560    const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
561    if (ED->isCompleteDefinition() || ED->isFixed())
562      return ConvertType(ED->getIntegerType());
563    // Return a placeholder 'i32' type.  This can be changed later when the
564    // type is defined (see UpdateCompletedType), but is likely to be the
565    // "right" answer.
566    ResultType = llvm::Type::getInt32Ty(getLLVMContext());
567    break;
568  }
569
570  case Type::BlockPointer: {
571    const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
572    llvm::Type *PointeeType = ConvertTypeForMem(FTy);
573    unsigned AS = Context.getTargetAddressSpace(FTy);
574    ResultType = llvm::PointerType::get(PointeeType, AS);
575    break;
576  }
577
578  case Type::MemberPointer: {
579    ResultType =
580      getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
581    break;
582  }
583
584  case Type::Atomic: {
585    QualType valueType = cast<AtomicType>(Ty)->getValueType();
586    ResultType = ConvertTypeForMem(valueType);
587
588    // Pad out to the inflated size if necessary.
589    uint64_t valueSize = Context.getTypeSize(valueType);
590    uint64_t atomicSize = Context.getTypeSize(Ty);
591    if (valueSize != atomicSize) {
592      assert(valueSize < atomicSize);
593      llvm::Type *elts[] = {
594        ResultType,
595        llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
596      };
597      ResultType = llvm::StructType::get(getLLVMContext(),
598                                         llvm::makeArrayRef(elts));
599    }
600    break;
601  }
602  }
603
604  assert(ResultType && "Didn't convert a type?");
605
606  TypeCache[Ty] = ResultType;
607  return ResultType;
608}
609
610bool CodeGenModule::isPaddedAtomicType(QualType type) {
611  return isPaddedAtomicType(type->castAs<AtomicType>());
612}
613
614bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
615  return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
616}
617
618/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
619llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
620  // TagDecl's are not necessarily unique, instead use the (clang)
621  // type connected to the decl.
622  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
623
624  llvm::StructType *&Entry = RecordDeclTypes[Key];
625
626  // If we don't have a StructType at all yet, create the forward declaration.
627  if (Entry == 0) {
628    Entry = llvm::StructType::create(getLLVMContext());
629    addRecordTypeName(RD, Entry, "");
630  }
631  llvm::StructType *Ty = Entry;
632
633  // If this is still a forward declaration, or the LLVM type is already
634  // complete, there's nothing more to do.
635  RD = RD->getDefinition();
636  if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
637    return Ty;
638
639  // If converting this type would cause us to infinitely loop, don't do it!
640  if (!isSafeToConvert(RD, *this)) {
641    DeferredRecords.push_back(RD);
642    return Ty;
643  }
644
645  // Okay, this is a definition of a type.  Compile the implementation now.
646  bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
647  assert(InsertResult && "Recursively compiling a struct?");
648
649  // Force conversion of non-virtual base classes recursively.
650  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
651    for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
652         e = CRD->bases_end(); i != e; ++i) {
653      if (i->isVirtual()) continue;
654
655      ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
656    }
657  }
658
659  // Layout fields.
660  CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
661  CGRecordLayouts[Key] = Layout;
662
663  // We're done laying out this struct.
664  bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
665  assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
666
667  // If this struct blocked a FunctionType conversion, then recompute whatever
668  // was derived from that.
669  // FIXME: This is hugely overconservative.
670  if (SkippedLayout)
671    TypeCache.clear();
672
673  // If we're done converting the outer-most record, then convert any deferred
674  // structs as well.
675  if (RecordsBeingLaidOut.empty())
676    while (!DeferredRecords.empty())
677      ConvertRecordDeclType(DeferredRecords.pop_back_val());
678
679  return Ty;
680}
681
682/// getCGRecordLayout - Return record layout info for the given record decl.
683const CGRecordLayout &
684CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
685  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
686
687  const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
688  if (!Layout) {
689    // Compute the type information.
690    ConvertRecordDeclType(RD);
691
692    // Now try again.
693    Layout = CGRecordLayouts.lookup(Key);
694  }
695
696  assert(Layout && "Unable to find record layout information for type");
697  return *Layout;
698}
699
700bool CodeGenTypes::isZeroInitializable(QualType T) {
701  // No need to check for member pointers when not compiling C++.
702  if (!Context.getLangOpts().CPlusPlus)
703    return true;
704
705  T = Context.getBaseElementType(T);
706
707  // Records are non-zero-initializable if they contain any
708  // non-zero-initializable subobjects.
709  if (const RecordType *RT = T->getAs<RecordType>()) {
710    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
711    return isZeroInitializable(RD);
712  }
713
714  // We have to ask the ABI about member pointers.
715  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
716    return getCXXABI().isZeroInitializable(MPT);
717
718  // Everything else is okay.
719  return true;
720}
721
722bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
723  return getCGRecordLayout(RD).isZeroInitializable();
724}
725