CodeGenTypes.cpp revision 202379
1//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the code that handles AST -> LLVM type lowering.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenTypes.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/RecordLayout.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Module.h"
22#include "llvm/Target/TargetData.h"
23
24#include "CGCall.h"
25#include "CGRecordLayoutBuilder.h"
26
27using namespace clang;
28using namespace CodeGen;
29
30CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
31                           const llvm::TargetData &TD, const ABIInfo &Info)
32  : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
33    TheABIInfo(Info) {
34}
35
36CodeGenTypes::~CodeGenTypes() {
37  for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
38         I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
39      I != E; ++I)
40    delete I->second;
41
42  for (llvm::FoldingSet<CGFunctionInfo>::iterator
43       I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
44    delete &*I++;
45}
46
47/// ConvertType - Convert the specified type to its LLVM form.
48const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
49  llvm::PATypeHolder Result = ConvertTypeRecursive(T);
50
51  // Any pointers that were converted defered evaluation of their pointee type,
52  // creating an opaque type instead.  This is in order to avoid problems with
53  // circular types.  Loop through all these defered pointees, if any, and
54  // resolve them now.
55  while (!PointersToResolve.empty()) {
56    std::pair<QualType, llvm::OpaqueType*> P = PointersToResolve.pop_back_val();
57
58    // We can handle bare pointers here because we know that the only pointers
59    // to the Opaque type are P.second and from other types.  Refining the
60    // opqaue type away will invalidate P.second, but we don't mind :).
61    const llvm::Type *NT = ConvertTypeForMemRecursive(P.first);
62    P.second->refineAbstractTypeTo(NT);
63  }
64
65  return Result;
66}
67
68const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) {
69  T = Context.getCanonicalType(T);
70
71  // See if type is already cached.
72  llvm::DenseMap<Type *, llvm::PATypeHolder>::iterator
73    I = TypeCache.find(T.getTypePtr());
74  // If type is found in map and this is not a definition for a opaque
75  // place holder type then use it. Otherwise, convert type T.
76  if (I != TypeCache.end())
77    return I->second.get();
78
79  const llvm::Type *ResultType = ConvertNewType(T);
80  TypeCache.insert(std::make_pair(T.getTypePtr(),
81                                  llvm::PATypeHolder(ResultType)));
82  return ResultType;
83}
84
85const llvm::Type *CodeGenTypes::ConvertTypeForMemRecursive(QualType T) {
86  const llvm::Type *ResultType = ConvertTypeRecursive(T);
87  if (ResultType->isInteger(1))
88    return llvm::IntegerType::get(getLLVMContext(),
89                                  (unsigned)Context.getTypeSize(T));
90  // FIXME: Should assert that the llvm type and AST type has the same size.
91  return ResultType;
92}
93
94/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
95/// ConvertType in that it is used to convert to the memory representation for
96/// a type.  For example, the scalar representation for _Bool is i1, but the
97/// memory representation is usually i8 or i32, depending on the target.
98const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
99  const llvm::Type *R = ConvertType(T);
100
101  // If this is a non-bool type, don't map it.
102  if (!R->isInteger(1))
103    return R;
104
105  // Otherwise, return an integer of the target-specified size.
106  return llvm::IntegerType::get(getLLVMContext(),
107                                (unsigned)Context.getTypeSize(T));
108
109}
110
111// Code to verify a given function type is complete, i.e. the return type
112// and all of the argument types are complete.
113static const TagType *VerifyFuncTypeComplete(const Type* T) {
114  const FunctionType *FT = cast<FunctionType>(T);
115  if (const TagType* TT = FT->getResultType()->getAs<TagType>())
116    if (!TT->getDecl()->isDefinition())
117      return TT;
118  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(T))
119    for (unsigned i = 0; i < FPT->getNumArgs(); i++)
120      if (const TagType* TT = FPT->getArgType(i)->getAs<TagType>())
121        if (!TT->getDecl()->isDefinition())
122          return TT;
123  return 0;
124}
125
126/// UpdateCompletedType - When we find the full definition for a TagDecl,
127/// replace the 'opaque' type we previously made for it if applicable.
128void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
129  const Type *Key = Context.getTagDeclType(TD).getTypePtr();
130  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI =
131    TagDeclTypes.find(Key);
132  if (TDTI == TagDeclTypes.end()) return;
133
134  // Remember the opaque LLVM type for this tagdecl.
135  llvm::PATypeHolder OpaqueHolder = TDTI->second;
136  assert(isa<llvm::OpaqueType>(OpaqueHolder.get()) &&
137         "Updating compilation of an already non-opaque type?");
138
139  // Remove it from TagDeclTypes so that it will be regenerated.
140  TagDeclTypes.erase(TDTI);
141
142  // Generate the new type.
143  const llvm::Type *NT = ConvertTagDeclType(TD);
144
145  // Refine the old opaque type to its new definition.
146  cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NT);
147
148  // Since we just completed a tag type, check to see if any function types
149  // were completed along with the tag type.
150  // FIXME: This is very inefficient; if we track which function types depend
151  // on which tag types, though, it should be reasonably efficient.
152  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator i;
153  for (i = FunctionTypes.begin(); i != FunctionTypes.end(); ++i) {
154    if (const TagType* TT = VerifyFuncTypeComplete(i->first)) {
155      // This function type still depends on an incomplete tag type; make sure
156      // that tag type has an associated opaque type.
157      ConvertTagDeclType(TT->getDecl());
158    } else {
159      // This function no longer depends on an incomplete tag type; create the
160      // function type, and refine the opaque type to the new function type.
161      llvm::PATypeHolder OpaqueHolder = i->second;
162      const llvm::Type *NFT = ConvertNewType(QualType(i->first, 0));
163      cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NFT);
164      FunctionTypes.erase(i);
165    }
166  }
167}
168
169static const llvm::Type* getTypeForFormat(llvm::LLVMContext &VMContext,
170                                          const llvm::fltSemantics &format) {
171  if (&format == &llvm::APFloat::IEEEsingle)
172    return llvm::Type::getFloatTy(VMContext);
173  if (&format == &llvm::APFloat::IEEEdouble)
174    return llvm::Type::getDoubleTy(VMContext);
175  if (&format == &llvm::APFloat::IEEEquad)
176    return llvm::Type::getFP128Ty(VMContext);
177  if (&format == &llvm::APFloat::PPCDoubleDouble)
178    return llvm::Type::getPPC_FP128Ty(VMContext);
179  if (&format == &llvm::APFloat::x87DoubleExtended)
180    return llvm::Type::getX86_FP80Ty(VMContext);
181  assert(0 && "Unknown float format!");
182  return 0;
183}
184
185const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
186  const clang::Type &Ty = *Context.getCanonicalType(T).getTypePtr();
187
188  switch (Ty.getTypeClass()) {
189#define TYPE(Class, Base)
190#define ABSTRACT_TYPE(Class, Base)
191#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
192#define DEPENDENT_TYPE(Class, Base) case Type::Class:
193#include "clang/AST/TypeNodes.def"
194    assert(false && "Non-canonical or dependent types aren't possible.");
195    break;
196
197  case Type::Builtin: {
198    switch (cast<BuiltinType>(Ty).getKind()) {
199    case BuiltinType::Void:
200    case BuiltinType::ObjCId:
201    case BuiltinType::ObjCClass:
202    case BuiltinType::ObjCSel:
203      // LLVM void type can only be used as the result of a function call.  Just
204      // map to the same as char.
205      return llvm::IntegerType::get(getLLVMContext(), 8);
206
207    case BuiltinType::Bool:
208      // Note that we always return bool as i1 for use as a scalar type.
209      return llvm::Type::getInt1Ty(getLLVMContext());
210
211    case BuiltinType::Char_S:
212    case BuiltinType::Char_U:
213    case BuiltinType::SChar:
214    case BuiltinType::UChar:
215    case BuiltinType::Short:
216    case BuiltinType::UShort:
217    case BuiltinType::Int:
218    case BuiltinType::UInt:
219    case BuiltinType::Long:
220    case BuiltinType::ULong:
221    case BuiltinType::LongLong:
222    case BuiltinType::ULongLong:
223    case BuiltinType::WChar:
224    case BuiltinType::Char16:
225    case BuiltinType::Char32:
226      return llvm::IntegerType::get(getLLVMContext(),
227        static_cast<unsigned>(Context.getTypeSize(T)));
228
229    case BuiltinType::Float:
230    case BuiltinType::Double:
231    case BuiltinType::LongDouble:
232      return getTypeForFormat(getLLVMContext(),
233                              Context.getFloatTypeSemantics(T));
234
235    case BuiltinType::NullPtr: {
236      // Model std::nullptr_t as i8*
237      const llvm::Type *Ty = llvm::IntegerType::get(getLLVMContext(), 8);
238      return llvm::PointerType::getUnqual(Ty);
239    }
240
241    case BuiltinType::UInt128:
242    case BuiltinType::Int128:
243      return llvm::IntegerType::get(getLLVMContext(), 128);
244
245    case BuiltinType::Overload:
246    case BuiltinType::Dependent:
247    case BuiltinType::UndeducedAuto:
248      assert(0 && "Unexpected builtin type!");
249      break;
250    }
251    assert(0 && "Unknown builtin type!");
252    break;
253  }
254  case Type::Complex: {
255    const llvm::Type *EltTy =
256      ConvertTypeRecursive(cast<ComplexType>(Ty).getElementType());
257    return llvm::StructType::get(TheModule.getContext(), EltTy, EltTy, NULL);
258  }
259  case Type::LValueReference:
260  case Type::RValueReference: {
261    const ReferenceType &RTy = cast<ReferenceType>(Ty);
262    QualType ETy = RTy.getPointeeType();
263    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
264    PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
265    return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
266  }
267  case Type::Pointer: {
268    const PointerType &PTy = cast<PointerType>(Ty);
269    QualType ETy = PTy.getPointeeType();
270    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
271    PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
272    return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
273  }
274
275  case Type::VariableArray: {
276    const VariableArrayType &A = cast<VariableArrayType>(Ty);
277    assert(A.getIndexTypeCVRQualifiers() == 0 &&
278           "FIXME: We only handle trivial array types so far!");
279    // VLAs resolve to the innermost element type; this matches
280    // the return of alloca, and there isn't any obviously better choice.
281    return ConvertTypeForMemRecursive(A.getElementType());
282  }
283  case Type::IncompleteArray: {
284    const IncompleteArrayType &A = cast<IncompleteArrayType>(Ty);
285    assert(A.getIndexTypeCVRQualifiers() == 0 &&
286           "FIXME: We only handle trivial array types so far!");
287    // int X[] -> [0 x int]
288    return llvm::ArrayType::get(ConvertTypeForMemRecursive(A.getElementType()), 0);
289  }
290  case Type::ConstantArray: {
291    const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
292    const llvm::Type *EltTy = ConvertTypeForMemRecursive(A.getElementType());
293    return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
294  }
295  case Type::ExtVector:
296  case Type::Vector: {
297    const VectorType &VT = cast<VectorType>(Ty);
298    return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()),
299                                 VT.getNumElements());
300  }
301  case Type::FunctionNoProto:
302  case Type::FunctionProto: {
303    // First, check whether we can build the full function type.
304    if (const TagType* TT = VerifyFuncTypeComplete(&Ty)) {
305      // This function's type depends on an incomplete tag type; make sure
306      // we have an opaque type corresponding to the tag type.
307      ConvertTagDeclType(TT->getDecl());
308      // Create an opaque type for this function type, save it, and return it.
309      llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext());
310      FunctionTypes.insert(std::make_pair(&Ty, ResultType));
311      return ResultType;
312    }
313    // The function type can be built; call the appropriate routines to
314    // build it.
315    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(&Ty))
316      return GetFunctionType(getFunctionInfo(FPT), FPT->isVariadic());
317
318    const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(&Ty);
319    return GetFunctionType(getFunctionInfo(FNPT), true);
320  }
321
322  case Type::ObjCInterface: {
323    // Objective-C interfaces are always opaque (outside of the
324    // runtime, which can do whatever it likes); we never refine
325    // these.
326    const llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(&Ty)];
327    if (!T)
328        T = llvm::OpaqueType::get(getLLVMContext());
329    return T;
330  }
331
332  case Type::ObjCObjectPointer: {
333    // Protocol qualifications do not influence the LLVM type, we just return a
334    // pointer to the underlying interface type. We don't need to worry about
335    // recursive conversion.
336    const llvm::Type *T =
337      ConvertTypeRecursive(cast<ObjCObjectPointerType>(Ty).getPointeeType());
338    return llvm::PointerType::getUnqual(T);
339  }
340
341  case Type::Record:
342  case Type::Enum: {
343    const TagDecl *TD = cast<TagType>(Ty).getDecl();
344    const llvm::Type *Res = ConvertTagDeclType(TD);
345
346    std::string TypeName(TD->getKindName());
347    TypeName += '.';
348
349    // Name the codegen type after the typedef name
350    // if there is no tag type name available
351    if (TD->getIdentifier())
352      // FIXME: We should not have to check for a null decl context here.
353      // Right now we do it because the implicit Obj-C decls don't have one.
354      TypeName += TD->getDeclContext() ? TD->getQualifiedNameAsString() :
355        TD->getNameAsString();
356    else if (const TypedefType *TdT = dyn_cast<TypedefType>(T))
357      // FIXME: We should not have to check for a null decl context here.
358      // Right now we do it because the implicit Obj-C decls don't have one.
359      TypeName += TdT->getDecl()->getDeclContext() ?
360        TdT->getDecl()->getQualifiedNameAsString() :
361        TdT->getDecl()->getNameAsString();
362    else
363      TypeName += "anon";
364
365    TheModule.addTypeName(TypeName, Res);
366    return Res;
367  }
368
369  case Type::BlockPointer: {
370    const QualType FTy = cast<BlockPointerType>(Ty).getPointeeType();
371    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
372    PointersToResolve.push_back(std::make_pair(FTy, PointeeType));
373    return llvm::PointerType::get(PointeeType, FTy.getAddressSpace());
374  }
375
376  case Type::MemberPointer: {
377    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
378    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
379    // If we ever want to support other ABIs this needs to be abstracted.
380
381    QualType ETy = cast<MemberPointerType>(Ty).getPointeeType();
382    const llvm::Type *PtrDiffTy =
383        ConvertTypeRecursive(Context.getPointerDiffType());
384    if (ETy->isFunctionType())
385      return llvm::StructType::get(TheModule.getContext(), PtrDiffTy, PtrDiffTy,
386                                   NULL);
387    return PtrDiffTy;
388  }
389
390  case Type::TemplateSpecialization:
391    assert(false && "Dependent types can't get here");
392  }
393
394  // FIXME: implement.
395  return llvm::OpaqueType::get(getLLVMContext());
396}
397
398/// ConvertTagDeclType - Lay out a tagged decl type like struct or union or
399/// enum.
400const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) {
401
402  // FIXME. This may have to move to a better place.
403  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
404    for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
405         e = RD->bases_end(); i != e; ++i) {
406      if (!i->isVirtual()) {
407        const CXXRecordDecl *Base =
408          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
409        ConvertTagDeclType(Base);
410      }
411    }
412  }
413
414  // TagDecl's are not necessarily unique, instead use the (clang)
415  // type connected to the decl.
416  const Type *Key =
417    Context.getTagDeclType(TD).getTypePtr();
418  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI =
419    TagDeclTypes.find(Key);
420
421  // If we've already compiled this tag type, use the previous definition.
422  if (TDTI != TagDeclTypes.end())
423    return TDTI->second;
424
425  // If this is still a forward definition, just define an opaque type to use
426  // for this tagged decl.
427  if (!TD->isDefinition()) {
428    llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext());
429    TagDeclTypes.insert(std::make_pair(Key, ResultType));
430    return ResultType;
431  }
432
433  // Okay, this is a definition of a type.  Compile the implementation now.
434
435  if (TD->isEnum())  // Don't bother storing enums in TagDeclTypes.
436    return ConvertTypeRecursive(cast<EnumDecl>(TD)->getIntegerType());
437
438  // This decl could well be recursive.  In this case, insert an opaque
439  // definition of this type, which the recursive uses will get.  We will then
440  // refine this opaque version later.
441
442  // Create new OpaqueType now for later use in case this is a recursive
443  // type.  This will later be refined to the actual type.
444  llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get(getLLVMContext());
445  TagDeclTypes.insert(std::make_pair(Key, ResultHolder));
446
447  const RecordDecl *RD = cast<const RecordDecl>(TD);
448
449  // Layout fields.
450  CGRecordLayout *Layout = CGRecordLayoutBuilder::ComputeLayout(*this, RD);
451
452  CGRecordLayouts[Key] = Layout;
453  const llvm::Type *ResultType = Layout->getLLVMType();
454
455  // Refine our Opaque type to ResultType.  This can invalidate ResultType, so
456  // make sure to read the result out of the holder.
457  cast<llvm::OpaqueType>(ResultHolder.get())
458    ->refineAbstractTypeTo(ResultType);
459
460  return ResultHolder.get();
461}
462
463/// getLLVMFieldNo - Return llvm::StructType element number
464/// that corresponds to the field FD.
465unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) {
466  assert(!FD->isBitField() && "Don't use getLLVMFieldNo on bit fields!");
467
468  llvm::DenseMap<const FieldDecl*, unsigned>::iterator I = FieldInfo.find(FD);
469  assert (I != FieldInfo.end()  && "Unable to find field info");
470  return I->second;
471}
472
473/// addFieldInfo - Assign field number to field FD.
474void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) {
475  FieldInfo[FD] = No;
476}
477
478/// getBitFieldInfo - Return the BitFieldInfo  that corresponds to the field FD.
479CodeGenTypes::BitFieldInfo CodeGenTypes::getBitFieldInfo(const FieldDecl *FD) {
480  llvm::DenseMap<const FieldDecl *, BitFieldInfo>::iterator
481    I = BitFields.find(FD);
482  assert (I != BitFields.end()  && "Unable to find bitfield info");
483  return I->second;
484}
485
486/// addBitFieldInfo - Assign a start bit and a size to field FD.
487void CodeGenTypes::addBitFieldInfo(const FieldDecl *FD, unsigned FieldNo,
488                                   unsigned Start, unsigned Size) {
489  BitFields.insert(std::make_pair(FD, BitFieldInfo(FieldNo, Start, Size)));
490}
491
492/// getCGRecordLayout - Return record layout info for the given llvm::Type.
493const CGRecordLayout &
494CodeGenTypes::getCGRecordLayout(const TagDecl *TD) const {
495  const Type *Key = Context.getTagDeclType(TD).getTypePtr();
496  llvm::DenseMap<const Type*, CGRecordLayout *>::const_iterator I
497    = CGRecordLayouts.find(Key);
498  assert (I != CGRecordLayouts.end()
499          && "Unable to find record layout information for type");
500  return *I->second;
501}
502