CodeGenTypes.cpp revision 198893
183322Speter//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
283322Speter//
383322Speter//                     The LLVM Compiler Infrastructure
483322Speter//
587629Smikeh// This file is distributed under the University of Illinois Open Source
684829Sdes// License. See LICENSE.TXT for details.
783322Speter//
8109607Sjake//===----------------------------------------------------------------------===//
9109607Sjake//
10109607Sjake// This is the code that handles AST -> LLVM type lowering.
11109607Sjake//
12109607Sjake//===----------------------------------------------------------------------===//
13109607Sjake
1483322Speter#include "CodeGenTypes.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/RecordLayout.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Module.h"
22#include "llvm/Target/TargetData.h"
23
24#include "CGCall.h"
25#include "CGRecordLayoutBuilder.h"
26
27using namespace clang;
28using namespace CodeGen;
29
30CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
31                           const llvm::TargetData &TD)
32  : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
33    TheABIInfo(0) {
34}
35
36CodeGenTypes::~CodeGenTypes() {
37  for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
38         I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
39      I != E; ++I)
40    delete I->second;
41  CGRecordLayouts.clear();
42}
43
44/// ConvertType - Convert the specified type to its LLVM form.
45const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
46  llvm::PATypeHolder Result = ConvertTypeRecursive(T);
47
48  // Any pointers that were converted defered evaluation of their pointee type,
49  // creating an opaque type instead.  This is in order to avoid problems with
50  // circular types.  Loop through all these defered pointees, if any, and
51  // resolve them now.
52  while (!PointersToResolve.empty()) {
53    std::pair<QualType, llvm::OpaqueType*> P =
54      PointersToResolve.back();
55    PointersToResolve.pop_back();
56    // We can handle bare pointers here because we know that the only pointers
57    // to the Opaque type are P.second and from other types.  Refining the
58    // opqaue type away will invalidate P.second, but we don't mind :).
59    const llvm::Type *NT = ConvertTypeForMemRecursive(P.first);
60    P.second->refineAbstractTypeTo(NT);
61  }
62
63  return Result;
64}
65
66const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) {
67  T = Context.getCanonicalType(T);
68
69  // See if type is already cached.
70  llvm::DenseMap<Type *, llvm::PATypeHolder>::iterator
71    I = TypeCache.find(T.getTypePtr());
72  // If type is found in map and this is not a definition for a opaque
73  // place holder type then use it. Otherwise, convert type T.
74  if (I != TypeCache.end())
75    return I->second.get();
76
77  const llvm::Type *ResultType = ConvertNewType(T);
78  TypeCache.insert(std::make_pair(T.getTypePtr(),
79                                  llvm::PATypeHolder(ResultType)));
80  return ResultType;
81}
82
83const llvm::Type *CodeGenTypes::ConvertTypeForMemRecursive(QualType T) {
84  const llvm::Type *ResultType = ConvertTypeRecursive(T);
85  if (ResultType == llvm::Type::getInt1Ty(getLLVMContext()))
86    return llvm::IntegerType::get(getLLVMContext(),
87                                  (unsigned)Context.getTypeSize(T));
88  return ResultType;
89}
90
91/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
92/// ConvertType in that it is used to convert to the memory representation for
93/// a type.  For example, the scalar representation for _Bool is i1, but the
94/// memory representation is usually i8 or i32, depending on the target.
95const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
96  const llvm::Type *R = ConvertType(T);
97
98  // If this is a non-bool type, don't map it.
99  if (R != llvm::Type::getInt1Ty(getLLVMContext()))
100    return R;
101
102  // Otherwise, return an integer of the target-specified size.
103  return llvm::IntegerType::get(getLLVMContext(),
104                                (unsigned)Context.getTypeSize(T));
105
106}
107
108// Code to verify a given function type is complete, i.e. the return type
109// and all of the argument types are complete.
110static const TagType *VerifyFuncTypeComplete(const Type* T) {
111  const FunctionType *FT = cast<FunctionType>(T);
112  if (const TagType* TT = FT->getResultType()->getAs<TagType>())
113    if (!TT->getDecl()->isDefinition())
114      return TT;
115  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(T))
116    for (unsigned i = 0; i < FPT->getNumArgs(); i++)
117      if (const TagType* TT = FPT->getArgType(i)->getAs<TagType>())
118        if (!TT->getDecl()->isDefinition())
119          return TT;
120  return 0;
121}
122
123/// UpdateCompletedType - When we find the full definition for a TagDecl,
124/// replace the 'opaque' type we previously made for it if applicable.
125void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
126  const Type *Key = Context.getTagDeclType(TD).getTypePtr();
127  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI =
128    TagDeclTypes.find(Key);
129  if (TDTI == TagDeclTypes.end()) return;
130
131  // Remember the opaque LLVM type for this tagdecl.
132  llvm::PATypeHolder OpaqueHolder = TDTI->second;
133  assert(isa<llvm::OpaqueType>(OpaqueHolder.get()) &&
134         "Updating compilation of an already non-opaque type?");
135
136  // Remove it from TagDeclTypes so that it will be regenerated.
137  TagDeclTypes.erase(TDTI);
138
139  // Generate the new type.
140  const llvm::Type *NT = ConvertTagDeclType(TD);
141
142  // Refine the old opaque type to its new definition.
143  cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NT);
144
145  // Since we just completed a tag type, check to see if any function types
146  // were completed along with the tag type.
147  // FIXME: This is very inefficient; if we track which function types depend
148  // on which tag types, though, it should be reasonably efficient.
149  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator i;
150  for (i = FunctionTypes.begin(); i != FunctionTypes.end(); ++i) {
151    if (const TagType* TT = VerifyFuncTypeComplete(i->first)) {
152      // This function type still depends on an incomplete tag type; make sure
153      // that tag type has an associated opaque type.
154      ConvertTagDeclType(TT->getDecl());
155    } else {
156      // This function no longer depends on an incomplete tag type; create the
157      // function type, and refine the opaque type to the new function type.
158      llvm::PATypeHolder OpaqueHolder = i->second;
159      const llvm::Type *NFT = ConvertNewType(QualType(i->first, 0));
160      cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NFT);
161      FunctionTypes.erase(i);
162    }
163  }
164}
165
166static const llvm::Type* getTypeForFormat(llvm::LLVMContext &VMContext,
167                                          const llvm::fltSemantics &format) {
168  if (&format == &llvm::APFloat::IEEEsingle)
169    return llvm::Type::getFloatTy(VMContext);
170  if (&format == &llvm::APFloat::IEEEdouble)
171    return llvm::Type::getDoubleTy(VMContext);
172  if (&format == &llvm::APFloat::IEEEquad)
173    return llvm::Type::getFP128Ty(VMContext);
174  if (&format == &llvm::APFloat::PPCDoubleDouble)
175    return llvm::Type::getPPC_FP128Ty(VMContext);
176  if (&format == &llvm::APFloat::x87DoubleExtended)
177    return llvm::Type::getX86_FP80Ty(VMContext);
178  assert(0 && "Unknown float format!");
179  return 0;
180}
181
182const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
183  const clang::Type &Ty = *Context.getCanonicalType(T).getTypePtr();
184
185  switch (Ty.getTypeClass()) {
186#define TYPE(Class, Base)
187#define ABSTRACT_TYPE(Class, Base)
188#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
189#define DEPENDENT_TYPE(Class, Base) case Type::Class:
190#include "clang/AST/TypeNodes.def"
191    assert(false && "Non-canonical or dependent types aren't possible.");
192    break;
193
194  case Type::Builtin: {
195    switch (cast<BuiltinType>(Ty).getKind()) {
196    default: assert(0 && "Unknown builtin type!");
197    case BuiltinType::Void:
198    case BuiltinType::ObjCId:
199    case BuiltinType::ObjCClass:
200      // LLVM void type can only be used as the result of a function call.  Just
201      // map to the same as char.
202      return llvm::IntegerType::get(getLLVMContext(), 8);
203
204    case BuiltinType::Bool:
205      // Note that we always return bool as i1 for use as a scalar type.
206      return llvm::Type::getInt1Ty(getLLVMContext());
207
208    case BuiltinType::Char_S:
209    case BuiltinType::Char_U:
210    case BuiltinType::SChar:
211    case BuiltinType::UChar:
212    case BuiltinType::Short:
213    case BuiltinType::UShort:
214    case BuiltinType::Int:
215    case BuiltinType::UInt:
216    case BuiltinType::Long:
217    case BuiltinType::ULong:
218    case BuiltinType::LongLong:
219    case BuiltinType::ULongLong:
220    case BuiltinType::WChar:
221    case BuiltinType::Char16:
222    case BuiltinType::Char32:
223      return llvm::IntegerType::get(getLLVMContext(),
224        static_cast<unsigned>(Context.getTypeSize(T)));
225
226    case BuiltinType::Float:
227    case BuiltinType::Double:
228    case BuiltinType::LongDouble:
229      return getTypeForFormat(getLLVMContext(),
230                              Context.getFloatTypeSemantics(T));
231
232    case BuiltinType::NullPtr: {
233      // Model std::nullptr_t as i8*
234      const llvm::Type *Ty = llvm::IntegerType::get(getLLVMContext(), 8);
235      return llvm::PointerType::getUnqual(Ty);
236    }
237
238    case BuiltinType::UInt128:
239    case BuiltinType::Int128:
240      return llvm::IntegerType::get(getLLVMContext(), 128);
241    }
242    break;
243  }
244  case Type::FixedWidthInt:
245    return llvm::IntegerType::get(getLLVMContext(),
246                                  cast<FixedWidthIntType>(T)->getWidth());
247  case Type::Complex: {
248    const llvm::Type *EltTy =
249      ConvertTypeRecursive(cast<ComplexType>(Ty).getElementType());
250    return llvm::StructType::get(TheModule.getContext(), EltTy, EltTy, NULL);
251  }
252  case Type::LValueReference:
253  case Type::RValueReference: {
254    const ReferenceType &RTy = cast<ReferenceType>(Ty);
255    QualType ETy = RTy.getPointeeType();
256    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
257    PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
258    return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
259  }
260  case Type::Pointer: {
261    const PointerType &PTy = cast<PointerType>(Ty);
262    QualType ETy = PTy.getPointeeType();
263    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
264    PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
265    return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
266  }
267
268  case Type::VariableArray: {
269    const VariableArrayType &A = cast<VariableArrayType>(Ty);
270    assert(A.getIndexTypeCVRQualifiers() == 0 &&
271           "FIXME: We only handle trivial array types so far!");
272    // VLAs resolve to the innermost element type; this matches
273    // the return of alloca, and there isn't any obviously better choice.
274    return ConvertTypeForMemRecursive(A.getElementType());
275  }
276  case Type::IncompleteArray: {
277    const IncompleteArrayType &A = cast<IncompleteArrayType>(Ty);
278    assert(A.getIndexTypeCVRQualifiers() == 0 &&
279           "FIXME: We only handle trivial array types so far!");
280    // int X[] -> [0 x int]
281    return llvm::ArrayType::get(ConvertTypeForMemRecursive(A.getElementType()), 0);
282  }
283  case Type::ConstantArray: {
284    const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
285    const llvm::Type *EltTy = ConvertTypeForMemRecursive(A.getElementType());
286    return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
287  }
288  case Type::ExtVector:
289  case Type::Vector: {
290    const VectorType &VT = cast<VectorType>(Ty);
291    return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()),
292                                 VT.getNumElements());
293  }
294  case Type::FunctionNoProto:
295  case Type::FunctionProto: {
296    // First, check whether we can build the full function type.
297    if (const TagType* TT = VerifyFuncTypeComplete(&Ty)) {
298      // This function's type depends on an incomplete tag type; make sure
299      // we have an opaque type corresponding to the tag type.
300      ConvertTagDeclType(TT->getDecl());
301      // Create an opaque type for this function type, save it, and return it.
302      llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext());
303      FunctionTypes.insert(std::make_pair(&Ty, ResultType));
304      return ResultType;
305    }
306    // The function type can be built; call the appropriate routines to
307    // build it.
308    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(&Ty))
309      return GetFunctionType(getFunctionInfo(FPT), FPT->isVariadic());
310
311    const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(&Ty);
312    return GetFunctionType(getFunctionInfo(FNPT), true);
313  }
314
315  case Type::ObjCInterface: {
316    // Objective-C interfaces are always opaque (outside of the
317    // runtime, which can do whatever it likes); we never refine
318    // these.
319    const llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(&Ty)];
320    if (!T)
321        T = llvm::OpaqueType::get(getLLVMContext());
322    return T;
323  }
324
325  case Type::ObjCObjectPointer: {
326    // Protocol qualifications do not influence the LLVM type, we just return a
327    // pointer to the underlying interface type. We don't need to worry about
328    // recursive conversion.
329    const llvm::Type *T =
330      ConvertTypeRecursive(cast<ObjCObjectPointerType>(Ty).getPointeeType());
331    return llvm::PointerType::getUnqual(T);
332  }
333
334  case Type::Record:
335  case Type::Enum: {
336    const TagDecl *TD = cast<TagType>(Ty).getDecl();
337    const llvm::Type *Res = ConvertTagDeclType(TD);
338
339    std::string TypeName(TD->getKindName());
340    TypeName += '.';
341
342    // Name the codegen type after the typedef name
343    // if there is no tag type name available
344    if (TD->getIdentifier())
345      // FIXME: We should not have to check for a null decl context here.
346      // Right now we do it because the implicit Obj-C decls don't have one.
347      TypeName += TD->getDeclContext() ? TD->getQualifiedNameAsString() :
348        TD->getNameAsString();
349    else if (const TypedefType *TdT = dyn_cast<TypedefType>(T))
350      // FIXME: We should not have to check for a null decl context here.
351      // Right now we do it because the implicit Obj-C decls don't have one.
352      TypeName += TdT->getDecl()->getDeclContext() ?
353        TdT->getDecl()->getQualifiedNameAsString() :
354        TdT->getDecl()->getNameAsString();
355    else
356      TypeName += "anon";
357
358    TheModule.addTypeName(TypeName, Res);
359    return Res;
360  }
361
362  case Type::BlockPointer: {
363    const QualType FTy = cast<BlockPointerType>(Ty).getPointeeType();
364    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
365    PointersToResolve.push_back(std::make_pair(FTy, PointeeType));
366    return llvm::PointerType::get(PointeeType, FTy.getAddressSpace());
367  }
368
369  case Type::MemberPointer: {
370    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
371    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
372    // If we ever want to support other ABIs this needs to be abstracted.
373
374    QualType ETy = cast<MemberPointerType>(Ty).getPointeeType();
375    if (ETy->isFunctionType()) {
376      return llvm::StructType::get(TheModule.getContext(),
377                                   ConvertType(Context.getPointerDiffType()),
378                                   ConvertType(Context.getPointerDiffType()),
379                                   NULL);
380    } else
381      return ConvertType(Context.getPointerDiffType());
382  }
383
384  case Type::TemplateSpecialization:
385    assert(false && "Dependent types can't get here");
386  }
387
388  // FIXME: implement.
389  return llvm::OpaqueType::get(getLLVMContext());
390}
391
392/// ConvertTagDeclType - Lay out a tagged decl type like struct or union or
393/// enum.
394const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) {
395
396  // FIXME. This may have to move to a better place.
397  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
398    for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
399         e = RD->bases_end(); i != e; ++i) {
400      if (!i->isVirtual()) {
401        const CXXRecordDecl *Base =
402          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
403        ConvertTagDeclType(Base);
404      }
405    }
406  }
407
408  // TagDecl's are not necessarily unique, instead use the (clang)
409  // type connected to the decl.
410  const Type *Key =
411    Context.getTagDeclType(TD).getTypePtr();
412  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI =
413    TagDeclTypes.find(Key);
414
415  // If we've already compiled this tag type, use the previous definition.
416  if (TDTI != TagDeclTypes.end())
417    return TDTI->second;
418
419  // If this is still a forward definition, just define an opaque type to use
420  // for this tagged decl.
421  if (!TD->isDefinition()) {
422    llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext());
423    TagDeclTypes.insert(std::make_pair(Key, ResultType));
424    return ResultType;
425  }
426
427  // Okay, this is a definition of a type.  Compile the implementation now.
428
429  if (TD->isEnum()) {
430    // Don't bother storing enums in TagDeclTypes.
431    return ConvertTypeRecursive(cast<EnumDecl>(TD)->getIntegerType());
432  }
433
434  // This decl could well be recursive.  In this case, insert an opaque
435  // definition of this type, which the recursive uses will get.  We will then
436  // refine this opaque version later.
437
438  // Create new OpaqueType now for later use in case this is a recursive
439  // type.  This will later be refined to the actual type.
440  llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get(getLLVMContext());
441  TagDeclTypes.insert(std::make_pair(Key, ResultHolder));
442
443  const llvm::Type *ResultType;
444  const RecordDecl *RD = cast<const RecordDecl>(TD);
445
446  // Layout fields.
447  CGRecordLayout *Layout =
448    CGRecordLayoutBuilder::ComputeLayout(*this, RD);
449
450  CGRecordLayouts[Key] = Layout;
451  ResultType = Layout->getLLVMType();
452
453  // Refine our Opaque type to ResultType.  This can invalidate ResultType, so
454  // make sure to read the result out of the holder.
455  cast<llvm::OpaqueType>(ResultHolder.get())
456    ->refineAbstractTypeTo(ResultType);
457
458  return ResultHolder.get();
459}
460
461/// getLLVMFieldNo - Return llvm::StructType element number
462/// that corresponds to the field FD.
463unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) {
464  assert(!FD->isBitField() && "Don't use getLLVMFieldNo on bit fields!");
465
466  llvm::DenseMap<const FieldDecl*, unsigned>::iterator I = FieldInfo.find(FD);
467  assert (I != FieldInfo.end()  && "Unable to find field info");
468  return I->second;
469}
470
471/// addFieldInfo - Assign field number to field FD.
472void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) {
473  FieldInfo[FD] = No;
474}
475
476/// getBitFieldInfo - Return the BitFieldInfo  that corresponds to the field FD.
477CodeGenTypes::BitFieldInfo CodeGenTypes::getBitFieldInfo(const FieldDecl *FD) {
478  llvm::DenseMap<const FieldDecl *, BitFieldInfo>::iterator
479    I = BitFields.find(FD);
480  assert (I != BitFields.end()  && "Unable to find bitfield info");
481  return I->second;
482}
483
484/// addBitFieldInfo - Assign a start bit and a size to field FD.
485void CodeGenTypes::addBitFieldInfo(const FieldDecl *FD, unsigned FieldNo,
486                                   unsigned Start, unsigned Size) {
487  BitFields.insert(std::make_pair(FD, BitFieldInfo(FieldNo, Start, Size)));
488}
489
490/// getCGRecordLayout - Return record layout info for the given llvm::Type.
491const CGRecordLayout &
492CodeGenTypes::getCGRecordLayout(const TagDecl *TD) const {
493  const Type *Key =
494    Context.getTagDeclType(TD).getTypePtr();
495  llvm::DenseMap<const Type*, CGRecordLayout *>::iterator I
496    = CGRecordLayouts.find(Key);
497  assert (I != CGRecordLayouts.end()
498          && "Unable to find record layout information for type");
499  return *I->second;
500}
501