CGException.cpp revision 243830
115755Swosch//===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===//
215755Swosch//
315755Swosch//                     The LLVM Compiler Infrastructure
415755Swosch//
515755Swosch// This file is distributed under the University of Illinois Open Source
615755Swosch// License. See LICENSE.TXT for details.
715755Swosch//
815755Swosch//===----------------------------------------------------------------------===//
915755Swosch//
1015755Swosch// This contains code dealing with C++ exception related code generation.
1115755Swosch//
1215755Swosch//===----------------------------------------------------------------------===//
1315755Swosch
1415755Swosch#include "CodeGenFunction.h"
1515755Swosch#include "CGCleanup.h"
1615755Swosch#include "CGObjCRuntime.h"
1715755Swosch#include "TargetInfo.h"
1815755Swosch#include "clang/AST/StmtCXX.h"
1915755Swosch#include "llvm/Intrinsics.h"
2015755Swosch#include "llvm/Support/CallSite.h"
2115755Swosch
2215755Swoschusing namespace clang;
2315755Swoschusing namespace CodeGen;
2415755Swosch
2515755Swoschstatic llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) {
2615755Swosch  // void *__cxa_allocate_exception(size_t thrown_size);
2715755Swosch
2815755Swosch  llvm::FunctionType *FTy =
2915755Swosch    llvm::FunctionType::get(CGF.Int8PtrTy, CGF.SizeTy, /*IsVarArgs=*/false);
3015755Swosch
3115755Swosch  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception");
3215755Swosch}
3315755Swosch
3415755Swoschstatic llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) {
3515755Swosch  // void __cxa_free_exception(void *thrown_exception);
36
37  llvm::FunctionType *FTy =
38    llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
39
40  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception");
41}
42
43static llvm::Constant *getThrowFn(CodeGenFunction &CGF) {
44  // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
45  //                  void (*dest) (void *));
46
47  llvm::Type *Args[3] = { CGF.Int8PtrTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
48  llvm::FunctionType *FTy =
49    llvm::FunctionType::get(CGF.VoidTy, Args, /*IsVarArgs=*/false);
50
51  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw");
52}
53
54static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) {
55  // void __cxa_rethrow();
56
57  llvm::FunctionType *FTy =
58    llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
59
60  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow");
61}
62
63static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) {
64  // void *__cxa_get_exception_ptr(void*);
65
66  llvm::FunctionType *FTy =
67    llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
68
69  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr");
70}
71
72static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) {
73  // void *__cxa_begin_catch(void*);
74
75  llvm::FunctionType *FTy =
76    llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
77
78  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch");
79}
80
81static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) {
82  // void __cxa_end_catch();
83
84  llvm::FunctionType *FTy =
85    llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
86
87  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch");
88}
89
90static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) {
91  // void __cxa_call_unexepcted(void *thrown_exception);
92
93  llvm::FunctionType *FTy =
94    llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
95
96  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected");
97}
98
99llvm::Constant *CodeGenFunction::getUnwindResumeFn() {
100  llvm::FunctionType *FTy =
101    llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
102
103  if (CGM.getLangOpts().SjLjExceptions)
104    return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume");
105  return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume");
106}
107
108llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() {
109  llvm::FunctionType *FTy =
110    llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
111
112  if (CGM.getLangOpts().SjLjExceptions)
113    return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow");
114  return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow");
115}
116
117static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) {
118  // void __terminate();
119
120  llvm::FunctionType *FTy =
121    llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
122
123  StringRef name;
124
125  // In C++, use std::terminate().
126  if (CGF.getLangOpts().CPlusPlus)
127    name = "_ZSt9terminatev"; // FIXME: mangling!
128  else if (CGF.getLangOpts().ObjC1 &&
129           CGF.getLangOpts().ObjCRuntime.hasTerminate())
130    name = "objc_terminate";
131  else
132    name = "abort";
133  return CGF.CGM.CreateRuntimeFunction(FTy, name);
134}
135
136static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF,
137                                            StringRef Name) {
138  llvm::FunctionType *FTy =
139    llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
140
141  return CGF.CGM.CreateRuntimeFunction(FTy, Name);
142}
143
144namespace {
145  /// The exceptions personality for a function.
146  struct EHPersonality {
147    const char *PersonalityFn;
148
149    // If this is non-null, this personality requires a non-standard
150    // function for rethrowing an exception after a catchall cleanup.
151    // This function must have prototype void(void*).
152    const char *CatchallRethrowFn;
153
154    static const EHPersonality &get(const LangOptions &Lang);
155    static const EHPersonality GNU_C;
156    static const EHPersonality GNU_C_SJLJ;
157    static const EHPersonality GNU_ObjC;
158    static const EHPersonality GNU_ObjCXX;
159    static const EHPersonality NeXT_ObjC;
160    static const EHPersonality GNU_CPlusPlus;
161    static const EHPersonality GNU_CPlusPlus_SJLJ;
162  };
163}
164
165const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", 0 };
166const EHPersonality EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", 0 };
167const EHPersonality EHPersonality::NeXT_ObjC = { "__objc_personality_v0", 0 };
168const EHPersonality EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", 0};
169const EHPersonality
170EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", 0 };
171const EHPersonality
172EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"};
173const EHPersonality
174EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", 0 };
175
176static const EHPersonality &getCPersonality(const LangOptions &L) {
177  if (L.SjLjExceptions)
178    return EHPersonality::GNU_C_SJLJ;
179  return EHPersonality::GNU_C;
180}
181
182static const EHPersonality &getObjCPersonality(const LangOptions &L) {
183  switch (L.ObjCRuntime.getKind()) {
184  case ObjCRuntime::FragileMacOSX:
185    return getCPersonality(L);
186  case ObjCRuntime::MacOSX:
187  case ObjCRuntime::iOS:
188    return EHPersonality::NeXT_ObjC;
189  case ObjCRuntime::GNUstep:
190  case ObjCRuntime::GCC:
191  case ObjCRuntime::ObjFW:
192    return EHPersonality::GNU_ObjC;
193  }
194  llvm_unreachable("bad runtime kind");
195}
196
197static const EHPersonality &getCXXPersonality(const LangOptions &L) {
198  if (L.SjLjExceptions)
199    return EHPersonality::GNU_CPlusPlus_SJLJ;
200  else
201    return EHPersonality::GNU_CPlusPlus;
202}
203
204/// Determines the personality function to use when both C++
205/// and Objective-C exceptions are being caught.
206static const EHPersonality &getObjCXXPersonality(const LangOptions &L) {
207  switch (L.ObjCRuntime.getKind()) {
208  // The ObjC personality defers to the C++ personality for non-ObjC
209  // handlers.  Unlike the C++ case, we use the same personality
210  // function on targets using (backend-driven) SJLJ EH.
211  case ObjCRuntime::MacOSX:
212  case ObjCRuntime::iOS:
213    return EHPersonality::NeXT_ObjC;
214
215  // In the fragile ABI, just use C++ exception handling and hope
216  // they're not doing crazy exception mixing.
217  case ObjCRuntime::FragileMacOSX:
218    return getCXXPersonality(L);
219
220  // The GCC runtime's personality function inherently doesn't support
221  // mixed EH.  Use the C++ personality just to avoid returning null.
222  case ObjCRuntime::GCC:
223  case ObjCRuntime::ObjFW: // XXX: this will change soon
224    return EHPersonality::GNU_ObjC;
225  case ObjCRuntime::GNUstep:
226    return EHPersonality::GNU_ObjCXX;
227  }
228  llvm_unreachable("bad runtime kind");
229}
230
231const EHPersonality &EHPersonality::get(const LangOptions &L) {
232  if (L.CPlusPlus && L.ObjC1)
233    return getObjCXXPersonality(L);
234  else if (L.CPlusPlus)
235    return getCXXPersonality(L);
236  else if (L.ObjC1)
237    return getObjCPersonality(L);
238  else
239    return getCPersonality(L);
240}
241
242static llvm::Constant *getPersonalityFn(CodeGenModule &CGM,
243                                        const EHPersonality &Personality) {
244  llvm::Constant *Fn =
245    CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true),
246                              Personality.PersonalityFn);
247  return Fn;
248}
249
250static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM,
251                                        const EHPersonality &Personality) {
252  llvm::Constant *Fn = getPersonalityFn(CGM, Personality);
253  return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
254}
255
256/// Check whether a personality function could reasonably be swapped
257/// for a C++ personality function.
258static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) {
259  for (llvm::Constant::use_iterator
260         I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) {
261    llvm::User *User = *I;
262
263    // Conditionally white-list bitcasts.
264    if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) {
265      if (CE->getOpcode() != llvm::Instruction::BitCast) return false;
266      if (!PersonalityHasOnlyCXXUses(CE))
267        return false;
268      continue;
269    }
270
271    // Otherwise, it has to be a landingpad instruction.
272    llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(User);
273    if (!LPI) return false;
274
275    for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) {
276      // Look for something that would've been returned by the ObjC
277      // runtime's GetEHType() method.
278      llvm::Value *Val = LPI->getClause(I)->stripPointerCasts();
279      if (LPI->isCatch(I)) {
280        // Check if the catch value has the ObjC prefix.
281        if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val))
282          // ObjC EH selector entries are always global variables with
283          // names starting like this.
284          if (GV->getName().startswith("OBJC_EHTYPE"))
285            return false;
286      } else {
287        // Check if any of the filter values have the ObjC prefix.
288        llvm::Constant *CVal = cast<llvm::Constant>(Val);
289        for (llvm::User::op_iterator
290               II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) {
291          if (llvm::GlobalVariable *GV =
292              cast<llvm::GlobalVariable>((*II)->stripPointerCasts()))
293            // ObjC EH selector entries are always global variables with
294            // names starting like this.
295            if (GV->getName().startswith("OBJC_EHTYPE"))
296              return false;
297        }
298      }
299    }
300  }
301
302  return true;
303}
304
305/// Try to use the C++ personality function in ObjC++.  Not doing this
306/// can cause some incompatibilities with gcc, which is more
307/// aggressive about only using the ObjC++ personality in a function
308/// when it really needs it.
309void CodeGenModule::SimplifyPersonality() {
310  // If we're not in ObjC++ -fexceptions, there's nothing to do.
311  if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions)
312    return;
313
314  // Both the problem this endeavors to fix and the way the logic
315  // above works is specific to the NeXT runtime.
316  if (!LangOpts.ObjCRuntime.isNeXTFamily())
317    return;
318
319  const EHPersonality &ObjCXX = EHPersonality::get(LangOpts);
320  const EHPersonality &CXX = getCXXPersonality(LangOpts);
321  if (&ObjCXX == &CXX)
322    return;
323
324  assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 &&
325         "Different EHPersonalities using the same personality function.");
326
327  llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn);
328
329  // Nothing to do if it's unused.
330  if (!Fn || Fn->use_empty()) return;
331
332  // Can't do the optimization if it has non-C++ uses.
333  if (!PersonalityHasOnlyCXXUses(Fn)) return;
334
335  // Create the C++ personality function and kill off the old
336  // function.
337  llvm::Constant *CXXFn = getPersonalityFn(*this, CXX);
338
339  // This can happen if the user is screwing with us.
340  if (Fn->getType() != CXXFn->getType()) return;
341
342  Fn->replaceAllUsesWith(CXXFn);
343  Fn->eraseFromParent();
344}
345
346/// Returns the value to inject into a selector to indicate the
347/// presence of a catch-all.
348static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) {
349  // Possibly we should use @llvm.eh.catch.all.value here.
350  return llvm::ConstantPointerNull::get(CGF.Int8PtrTy);
351}
352
353namespace {
354  /// A cleanup to free the exception object if its initialization
355  /// throws.
356  struct FreeException : EHScopeStack::Cleanup {
357    llvm::Value *exn;
358    FreeException(llvm::Value *exn) : exn(exn) {}
359    void Emit(CodeGenFunction &CGF, Flags flags) {
360      CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn)
361        ->setDoesNotThrow();
362    }
363  };
364}
365
366// Emits an exception expression into the given location.  This
367// differs from EmitAnyExprToMem only in that, if a final copy-ctor
368// call is required, an exception within that copy ctor causes
369// std::terminate to be invoked.
370static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e,
371                             llvm::Value *addr) {
372  // Make sure the exception object is cleaned up if there's an
373  // exception during initialization.
374  CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr);
375  EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin();
376
377  // __cxa_allocate_exception returns a void*;  we need to cast this
378  // to the appropriate type for the object.
379  llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo();
380  llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty);
381
382  // FIXME: this isn't quite right!  If there's a final unelided call
383  // to a copy constructor, then according to [except.terminate]p1 we
384  // must call std::terminate() if that constructor throws, because
385  // technically that copy occurs after the exception expression is
386  // evaluated but before the exception is caught.  But the best way
387  // to handle that is to teach EmitAggExpr to do the final copy
388  // differently if it can't be elided.
389  CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(),
390                       /*IsInit*/ true);
391
392  // Deactivate the cleanup block.
393  CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr));
394}
395
396llvm::Value *CodeGenFunction::getExceptionSlot() {
397  if (!ExceptionSlot)
398    ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot");
399  return ExceptionSlot;
400}
401
402llvm::Value *CodeGenFunction::getEHSelectorSlot() {
403  if (!EHSelectorSlot)
404    EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot");
405  return EHSelectorSlot;
406}
407
408llvm::Value *CodeGenFunction::getExceptionFromSlot() {
409  return Builder.CreateLoad(getExceptionSlot(), "exn");
410}
411
412llvm::Value *CodeGenFunction::getSelectorFromSlot() {
413  return Builder.CreateLoad(getEHSelectorSlot(), "sel");
414}
415
416void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) {
417  if (!E->getSubExpr()) {
418    if (getInvokeDest()) {
419      Builder.CreateInvoke(getReThrowFn(*this),
420                           getUnreachableBlock(),
421                           getInvokeDest())
422        ->setDoesNotReturn();
423    } else {
424      Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn();
425      Builder.CreateUnreachable();
426    }
427
428    // throw is an expression, and the expression emitters expect us
429    // to leave ourselves at a valid insertion point.
430    EmitBlock(createBasicBlock("throw.cont"));
431
432    return;
433  }
434
435  QualType ThrowType = E->getSubExpr()->getType();
436
437  // Now allocate the exception object.
438  llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
439  uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity();
440
441  llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this);
442  llvm::CallInst *ExceptionPtr =
443    Builder.CreateCall(AllocExceptionFn,
444                       llvm::ConstantInt::get(SizeTy, TypeSize),
445                       "exception");
446  ExceptionPtr->setDoesNotThrow();
447
448  EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr);
449
450  // Now throw the exception.
451  llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType,
452                                                         /*ForEH=*/true);
453
454  // The address of the destructor.  If the exception type has a
455  // trivial destructor (or isn't a record), we just pass null.
456  llvm::Constant *Dtor = 0;
457  if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) {
458    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
459    if (!Record->hasTrivialDestructor()) {
460      CXXDestructorDecl *DtorD = Record->getDestructor();
461      Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete);
462      Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy);
463    }
464  }
465  if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy);
466
467  if (getInvokeDest()) {
468    llvm::InvokeInst *ThrowCall =
469      Builder.CreateInvoke3(getThrowFn(*this),
470                            getUnreachableBlock(), getInvokeDest(),
471                            ExceptionPtr, TypeInfo, Dtor);
472    ThrowCall->setDoesNotReturn();
473  } else {
474    llvm::CallInst *ThrowCall =
475      Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor);
476    ThrowCall->setDoesNotReturn();
477    Builder.CreateUnreachable();
478  }
479
480  // throw is an expression, and the expression emitters expect us
481  // to leave ourselves at a valid insertion point.
482  EmitBlock(createBasicBlock("throw.cont"));
483}
484
485void CodeGenFunction::EmitStartEHSpec(const Decl *D) {
486  if (!CGM.getLangOpts().CXXExceptions)
487    return;
488
489  const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
490  if (FD == 0)
491    return;
492  const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
493  if (Proto == 0)
494    return;
495
496  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
497  if (isNoexceptExceptionSpec(EST)) {
498    if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
499      // noexcept functions are simple terminate scopes.
500      EHStack.pushTerminate();
501    }
502  } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
503    unsigned NumExceptions = Proto->getNumExceptions();
504    EHFilterScope *Filter = EHStack.pushFilter(NumExceptions);
505
506    for (unsigned I = 0; I != NumExceptions; ++I) {
507      QualType Ty = Proto->getExceptionType(I);
508      QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType();
509      llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType,
510                                                        /*ForEH=*/true);
511      Filter->setFilter(I, EHType);
512    }
513  }
514}
515
516/// Emit the dispatch block for a filter scope if necessary.
517static void emitFilterDispatchBlock(CodeGenFunction &CGF,
518                                    EHFilterScope &filterScope) {
519  llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock();
520  if (!dispatchBlock) return;
521  if (dispatchBlock->use_empty()) {
522    delete dispatchBlock;
523    return;
524  }
525
526  CGF.EmitBlockAfterUses(dispatchBlock);
527
528  // If this isn't a catch-all filter, we need to check whether we got
529  // here because the filter triggered.
530  if (filterScope.getNumFilters()) {
531    // Load the selector value.
532    llvm::Value *selector = CGF.getSelectorFromSlot();
533    llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected");
534
535    llvm::Value *zero = CGF.Builder.getInt32(0);
536    llvm::Value *failsFilter =
537      CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails");
538    CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock(false));
539
540    CGF.EmitBlock(unexpectedBB);
541  }
542
543  // Call __cxa_call_unexpected.  This doesn't need to be an invoke
544  // because __cxa_call_unexpected magically filters exceptions
545  // according to the last landing pad the exception was thrown
546  // into.  Seriously.
547  llvm::Value *exn = CGF.getExceptionFromSlot();
548  CGF.Builder.CreateCall(getUnexpectedFn(CGF), exn)
549    ->setDoesNotReturn();
550  CGF.Builder.CreateUnreachable();
551}
552
553void CodeGenFunction::EmitEndEHSpec(const Decl *D) {
554  if (!CGM.getLangOpts().CXXExceptions)
555    return;
556
557  const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
558  if (FD == 0)
559    return;
560  const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
561  if (Proto == 0)
562    return;
563
564  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
565  if (isNoexceptExceptionSpec(EST)) {
566    if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
567      EHStack.popTerminate();
568    }
569  } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
570    EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin());
571    emitFilterDispatchBlock(*this, filterScope);
572    EHStack.popFilter();
573  }
574}
575
576void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) {
577  EnterCXXTryStmt(S);
578  EmitStmt(S.getTryBlock());
579  ExitCXXTryStmt(S);
580}
581
582void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
583  unsigned NumHandlers = S.getNumHandlers();
584  EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers);
585
586  for (unsigned I = 0; I != NumHandlers; ++I) {
587    const CXXCatchStmt *C = S.getHandler(I);
588
589    llvm::BasicBlock *Handler = createBasicBlock("catch");
590    if (C->getExceptionDecl()) {
591      // FIXME: Dropping the reference type on the type into makes it
592      // impossible to correctly implement catch-by-reference
593      // semantics for pointers.  Unfortunately, this is what all
594      // existing compilers do, and it's not clear that the standard
595      // personality routine is capable of doing this right.  See C++ DR 388:
596      //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388
597      QualType CaughtType = C->getCaughtType();
598      CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType();
599
600      llvm::Value *TypeInfo = 0;
601      if (CaughtType->isObjCObjectPointerType())
602        TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType);
603      else
604        TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true);
605      CatchScope->setHandler(I, TypeInfo, Handler);
606    } else {
607      // No exception decl indicates '...', a catch-all.
608      CatchScope->setCatchAllHandler(I, Handler);
609    }
610  }
611}
612
613llvm::BasicBlock *
614CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) {
615  // The dispatch block for the end of the scope chain is a block that
616  // just resumes unwinding.
617  if (si == EHStack.stable_end())
618    return getEHResumeBlock(true);
619
620  // Otherwise, we should look at the actual scope.
621  EHScope &scope = *EHStack.find(si);
622
623  llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock();
624  if (!dispatchBlock) {
625    switch (scope.getKind()) {
626    case EHScope::Catch: {
627      // Apply a special case to a single catch-all.
628      EHCatchScope &catchScope = cast<EHCatchScope>(scope);
629      if (catchScope.getNumHandlers() == 1 &&
630          catchScope.getHandler(0).isCatchAll()) {
631        dispatchBlock = catchScope.getHandler(0).Block;
632
633      // Otherwise, make a dispatch block.
634      } else {
635        dispatchBlock = createBasicBlock("catch.dispatch");
636      }
637      break;
638    }
639
640    case EHScope::Cleanup:
641      dispatchBlock = createBasicBlock("ehcleanup");
642      break;
643
644    case EHScope::Filter:
645      dispatchBlock = createBasicBlock("filter.dispatch");
646      break;
647
648    case EHScope::Terminate:
649      dispatchBlock = getTerminateHandler();
650      break;
651    }
652    scope.setCachedEHDispatchBlock(dispatchBlock);
653  }
654  return dispatchBlock;
655}
656
657/// Check whether this is a non-EH scope, i.e. a scope which doesn't
658/// affect exception handling.  Currently, the only non-EH scopes are
659/// normal-only cleanup scopes.
660static bool isNonEHScope(const EHScope &S) {
661  switch (S.getKind()) {
662  case EHScope::Cleanup:
663    return !cast<EHCleanupScope>(S).isEHCleanup();
664  case EHScope::Filter:
665  case EHScope::Catch:
666  case EHScope::Terminate:
667    return false;
668  }
669
670  llvm_unreachable("Invalid EHScope Kind!");
671}
672
673llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() {
674  assert(EHStack.requiresLandingPad());
675  assert(!EHStack.empty());
676
677  if (!CGM.getLangOpts().Exceptions)
678    return 0;
679
680  // Check the innermost scope for a cached landing pad.  If this is
681  // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad.
682  llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad();
683  if (LP) return LP;
684
685  // Build the landing pad for this scope.
686  LP = EmitLandingPad();
687  assert(LP);
688
689  // Cache the landing pad on the innermost scope.  If this is a
690  // non-EH scope, cache the landing pad on the enclosing scope, too.
691  for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) {
692    ir->setCachedLandingPad(LP);
693    if (!isNonEHScope(*ir)) break;
694  }
695
696  return LP;
697}
698
699// This code contains a hack to work around a design flaw in
700// LLVM's EH IR which breaks semantics after inlining.  This same
701// hack is implemented in llvm-gcc.
702//
703// The LLVM EH abstraction is basically a thin veneer over the
704// traditional GCC zero-cost design: for each range of instructions
705// in the function, there is (at most) one "landing pad" with an
706// associated chain of EH actions.  A language-specific personality
707// function interprets this chain of actions and (1) decides whether
708// or not to resume execution at the landing pad and (2) if so,
709// provides an integer indicating why it's stopping.  In LLVM IR,
710// the association of a landing pad with a range of instructions is
711// achieved via an invoke instruction, the chain of actions becomes
712// the arguments to the @llvm.eh.selector call, and the selector
713// call returns the integer indicator.  Other than the required
714// presence of two intrinsic function calls in the landing pad,
715// the IR exactly describes the layout of the output code.
716//
717// A principal advantage of this design is that it is completely
718// language-agnostic; in theory, the LLVM optimizers can treat
719// landing pads neutrally, and targets need only know how to lower
720// the intrinsics to have a functioning exceptions system (assuming
721// that platform exceptions follow something approximately like the
722// GCC design).  Unfortunately, landing pads cannot be combined in a
723// language-agnostic way: given selectors A and B, there is no way
724// to make a single landing pad which faithfully represents the
725// semantics of propagating an exception first through A, then
726// through B, without knowing how the personality will interpret the
727// (lowered form of the) selectors.  This means that inlining has no
728// choice but to crudely chain invokes (i.e., to ignore invokes in
729// the inlined function, but to turn all unwindable calls into
730// invokes), which is only semantically valid if every unwind stops
731// at every landing pad.
732//
733// Therefore, the invoke-inline hack is to guarantee that every
734// landing pad has a catch-all.
735enum CleanupHackLevel_t {
736  /// A level of hack that requires that all landing pads have
737  /// catch-alls.
738  CHL_MandatoryCatchall,
739
740  /// A level of hack that requires that all landing pads handle
741  /// cleanups.
742  CHL_MandatoryCleanup,
743
744  /// No hacks at all;  ideal IR generation.
745  CHL_Ideal
746};
747const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup;
748
749llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
750  assert(EHStack.requiresLandingPad());
751
752  EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope());
753  switch (innermostEHScope.getKind()) {
754  case EHScope::Terminate:
755    return getTerminateLandingPad();
756
757  case EHScope::Catch:
758  case EHScope::Cleanup:
759  case EHScope::Filter:
760    if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad())
761      return lpad;
762  }
763
764  // Save the current IR generation state.
765  CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP();
766
767  const EHPersonality &personality = EHPersonality::get(getLangOpts());
768
769  // Create and configure the landing pad.
770  llvm::BasicBlock *lpad = createBasicBlock("lpad");
771  EmitBlock(lpad);
772
773  llvm::LandingPadInst *LPadInst =
774    Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL),
775                             getOpaquePersonalityFn(CGM, personality), 0);
776
777  llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0);
778  Builder.CreateStore(LPadExn, getExceptionSlot());
779  llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1);
780  Builder.CreateStore(LPadSel, getEHSelectorSlot());
781
782  // Save the exception pointer.  It's safe to use a single exception
783  // pointer per function because EH cleanups can never have nested
784  // try/catches.
785  // Build the landingpad instruction.
786
787  // Accumulate all the handlers in scope.
788  bool hasCatchAll = false;
789  bool hasCleanup = false;
790  bool hasFilter = false;
791  SmallVector<llvm::Value*, 4> filterTypes;
792  llvm::SmallPtrSet<llvm::Value*, 4> catchTypes;
793  for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end();
794         I != E; ++I) {
795
796    switch (I->getKind()) {
797    case EHScope::Cleanup:
798      // If we have a cleanup, remember that.
799      hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup());
800      continue;
801
802    case EHScope::Filter: {
803      assert(I.next() == EHStack.end() && "EH filter is not end of EH stack");
804      assert(!hasCatchAll && "EH filter reached after catch-all");
805
806      // Filter scopes get added to the landingpad in weird ways.
807      EHFilterScope &filter = cast<EHFilterScope>(*I);
808      hasFilter = true;
809
810      // Add all the filter values.
811      for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i)
812        filterTypes.push_back(filter.getFilter(i));
813      goto done;
814    }
815
816    case EHScope::Terminate:
817      // Terminate scopes are basically catch-alls.
818      assert(!hasCatchAll);
819      hasCatchAll = true;
820      goto done;
821
822    case EHScope::Catch:
823      break;
824    }
825
826    EHCatchScope &catchScope = cast<EHCatchScope>(*I);
827    for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) {
828      EHCatchScope::Handler handler = catchScope.getHandler(hi);
829
830      // If this is a catch-all, register that and abort.
831      if (!handler.Type) {
832        assert(!hasCatchAll);
833        hasCatchAll = true;
834        goto done;
835      }
836
837      // Check whether we already have a handler for this type.
838      if (catchTypes.insert(handler.Type))
839        // If not, add it directly to the landingpad.
840        LPadInst->addClause(handler.Type);
841    }
842  }
843
844 done:
845  // If we have a catch-all, add null to the landingpad.
846  assert(!(hasCatchAll && hasFilter));
847  if (hasCatchAll) {
848    LPadInst->addClause(getCatchAllValue(*this));
849
850  // If we have an EH filter, we need to add those handlers in the
851  // right place in the landingpad, which is to say, at the end.
852  } else if (hasFilter) {
853    // Create a filter expression: a constant array indicating which filter
854    // types there are. The personality routine only lands here if the filter
855    // doesn't match.
856    llvm::SmallVector<llvm::Constant*, 8> Filters;
857    llvm::ArrayType *AType =
858      llvm::ArrayType::get(!filterTypes.empty() ?
859                             filterTypes[0]->getType() : Int8PtrTy,
860                           filterTypes.size());
861
862    for (unsigned i = 0, e = filterTypes.size(); i != e; ++i)
863      Filters.push_back(cast<llvm::Constant>(filterTypes[i]));
864    llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters);
865    LPadInst->addClause(FilterArray);
866
867    // Also check whether we need a cleanup.
868    if (hasCleanup)
869      LPadInst->setCleanup(true);
870
871  // Otherwise, signal that we at least have cleanups.
872  } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) {
873    if (CleanupHackLevel == CHL_MandatoryCatchall)
874      LPadInst->addClause(getCatchAllValue(*this));
875    else
876      LPadInst->setCleanup(true);
877  }
878
879  assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) &&
880         "landingpad instruction has no clauses!");
881
882  // Tell the backend how to generate the landing pad.
883  Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope()));
884
885  // Restore the old IR generation state.
886  Builder.restoreIP(savedIP);
887
888  return lpad;
889}
890
891namespace {
892  /// A cleanup to call __cxa_end_catch.  In many cases, the caught
893  /// exception type lets us state definitively that the thrown exception
894  /// type does not have a destructor.  In particular:
895  ///   - Catch-alls tell us nothing, so we have to conservatively
896  ///     assume that the thrown exception might have a destructor.
897  ///   - Catches by reference behave according to their base types.
898  ///   - Catches of non-record types will only trigger for exceptions
899  ///     of non-record types, which never have destructors.
900  ///   - Catches of record types can trigger for arbitrary subclasses
901  ///     of the caught type, so we have to assume the actual thrown
902  ///     exception type might have a throwing destructor, even if the
903  ///     caught type's destructor is trivial or nothrow.
904  struct CallEndCatch : EHScopeStack::Cleanup {
905    CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {}
906    bool MightThrow;
907
908    void Emit(CodeGenFunction &CGF, Flags flags) {
909      if (!MightThrow) {
910        CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow();
911        return;
912      }
913
914      CGF.EmitCallOrInvoke(getEndCatchFn(CGF));
915    }
916  };
917}
918
919/// Emits a call to __cxa_begin_catch and enters a cleanup to call
920/// __cxa_end_catch.
921///
922/// \param EndMightThrow - true if __cxa_end_catch might throw
923static llvm::Value *CallBeginCatch(CodeGenFunction &CGF,
924                                   llvm::Value *Exn,
925                                   bool EndMightThrow) {
926  llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn);
927  Call->setDoesNotThrow();
928
929  CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow);
930
931  return Call;
932}
933
934/// A "special initializer" callback for initializing a catch
935/// parameter during catch initialization.
936static void InitCatchParam(CodeGenFunction &CGF,
937                           const VarDecl &CatchParam,
938                           llvm::Value *ParamAddr) {
939  // Load the exception from where the landing pad saved it.
940  llvm::Value *Exn = CGF.getExceptionFromSlot();
941
942  CanQualType CatchType =
943    CGF.CGM.getContext().getCanonicalType(CatchParam.getType());
944  llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType);
945
946  // If we're catching by reference, we can just cast the object
947  // pointer to the appropriate pointer.
948  if (isa<ReferenceType>(CatchType)) {
949    QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType();
950    bool EndCatchMightThrow = CaughtType->isRecordType();
951
952    // __cxa_begin_catch returns the adjusted object pointer.
953    llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow);
954
955    // We have no way to tell the personality function that we're
956    // catching by reference, so if we're catching a pointer,
957    // __cxa_begin_catch will actually return that pointer by value.
958    if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) {
959      QualType PointeeType = PT->getPointeeType();
960
961      // When catching by reference, generally we should just ignore
962      // this by-value pointer and use the exception object instead.
963      if (!PointeeType->isRecordType()) {
964
965        // Exn points to the struct _Unwind_Exception header, which
966        // we have to skip past in order to reach the exception data.
967        unsigned HeaderSize =
968          CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException();
969        AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize);
970
971      // However, if we're catching a pointer-to-record type that won't
972      // work, because the personality function might have adjusted
973      // the pointer.  There's actually no way for us to fully satisfy
974      // the language/ABI contract here:  we can't use Exn because it
975      // might have the wrong adjustment, but we can't use the by-value
976      // pointer because it's off by a level of abstraction.
977      //
978      // The current solution is to dump the adjusted pointer into an
979      // alloca, which breaks language semantics (because changing the
980      // pointer doesn't change the exception) but at least works.
981      // The better solution would be to filter out non-exact matches
982      // and rethrow them, but this is tricky because the rethrow
983      // really needs to be catchable by other sites at this landing
984      // pad.  The best solution is to fix the personality function.
985      } else {
986        // Pull the pointer for the reference type off.
987        llvm::Type *PtrTy =
988          cast<llvm::PointerType>(LLVMCatchTy)->getElementType();
989
990        // Create the temporary and write the adjusted pointer into it.
991        llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp");
992        llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
993        CGF.Builder.CreateStore(Casted, ExnPtrTmp);
994
995        // Bind the reference to the temporary.
996        AdjustedExn = ExnPtrTmp;
997      }
998    }
999
1000    llvm::Value *ExnCast =
1001      CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref");
1002    CGF.Builder.CreateStore(ExnCast, ParamAddr);
1003    return;
1004  }
1005
1006  // Non-aggregates (plus complexes).
1007  bool IsComplex = false;
1008  if (!CGF.hasAggregateLLVMType(CatchType) ||
1009      (IsComplex = CatchType->isAnyComplexType())) {
1010    llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false);
1011
1012    // If the catch type is a pointer type, __cxa_begin_catch returns
1013    // the pointer by value.
1014    if (CatchType->hasPointerRepresentation()) {
1015      llvm::Value *CastExn =
1016        CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted");
1017
1018      switch (CatchType.getQualifiers().getObjCLifetime()) {
1019      case Qualifiers::OCL_Strong:
1020        CastExn = CGF.EmitARCRetainNonBlock(CastExn);
1021        // fallthrough
1022
1023      case Qualifiers::OCL_None:
1024      case Qualifiers::OCL_ExplicitNone:
1025      case Qualifiers::OCL_Autoreleasing:
1026        CGF.Builder.CreateStore(CastExn, ParamAddr);
1027        return;
1028
1029      case Qualifiers::OCL_Weak:
1030        CGF.EmitARCInitWeak(ParamAddr, CastExn);
1031        return;
1032      }
1033      llvm_unreachable("bad ownership qualifier!");
1034    }
1035
1036    // Otherwise, it returns a pointer into the exception object.
1037
1038    llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
1039    llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
1040
1041    if (IsComplex) {
1042      CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false),
1043                             ParamAddr, /*volatile*/ false);
1044    } else {
1045      unsigned Alignment =
1046        CGF.getContext().getDeclAlign(&CatchParam).getQuantity();
1047      llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar");
1048      CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment,
1049                            CatchType);
1050    }
1051    return;
1052  }
1053
1054  assert(isa<RecordType>(CatchType) && "unexpected catch type!");
1055
1056  llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
1057
1058  // Check for a copy expression.  If we don't have a copy expression,
1059  // that means a trivial copy is okay.
1060  const Expr *copyExpr = CatchParam.getInit();
1061  if (!copyExpr) {
1062    llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true);
1063    llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
1064    CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType);
1065    return;
1066  }
1067
1068  // We have to call __cxa_get_exception_ptr to get the adjusted
1069  // pointer before copying.
1070  llvm::CallInst *rawAdjustedExn =
1071    CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn);
1072  rawAdjustedExn->setDoesNotThrow();
1073
1074  // Cast that to the appropriate type.
1075  llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
1076
1077  // The copy expression is defined in terms of an OpaqueValueExpr.
1078  // Find it and map it to the adjusted expression.
1079  CodeGenFunction::OpaqueValueMapping
1080    opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr),
1081           CGF.MakeAddrLValue(adjustedExn, CatchParam.getType()));
1082
1083  // Call the copy ctor in a terminate scope.
1084  CGF.EHStack.pushTerminate();
1085
1086  // Perform the copy construction.
1087  CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam);
1088  CGF.EmitAggExpr(copyExpr,
1089                  AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(),
1090                                        AggValueSlot::IsNotDestructed,
1091                                        AggValueSlot::DoesNotNeedGCBarriers,
1092                                        AggValueSlot::IsNotAliased));
1093
1094  // Leave the terminate scope.
1095  CGF.EHStack.popTerminate();
1096
1097  // Undo the opaque value mapping.
1098  opaque.pop();
1099
1100  // Finally we can call __cxa_begin_catch.
1101  CallBeginCatch(CGF, Exn, true);
1102}
1103
1104/// Begins a catch statement by initializing the catch variable and
1105/// calling __cxa_begin_catch.
1106static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) {
1107  // We have to be very careful with the ordering of cleanups here:
1108  //   C++ [except.throw]p4:
1109  //     The destruction [of the exception temporary] occurs
1110  //     immediately after the destruction of the object declared in
1111  //     the exception-declaration in the handler.
1112  //
1113  // So the precise ordering is:
1114  //   1.  Construct catch variable.
1115  //   2.  __cxa_begin_catch
1116  //   3.  Enter __cxa_end_catch cleanup
1117  //   4.  Enter dtor cleanup
1118  //
1119  // We do this by using a slightly abnormal initialization process.
1120  // Delegation sequence:
1121  //   - ExitCXXTryStmt opens a RunCleanupsScope
1122  //     - EmitAutoVarAlloca creates the variable and debug info
1123  //       - InitCatchParam initializes the variable from the exception
1124  //       - CallBeginCatch calls __cxa_begin_catch
1125  //       - CallBeginCatch enters the __cxa_end_catch cleanup
1126  //     - EmitAutoVarCleanups enters the variable destructor cleanup
1127  //   - EmitCXXTryStmt emits the code for the catch body
1128  //   - EmitCXXTryStmt close the RunCleanupsScope
1129
1130  VarDecl *CatchParam = S->getExceptionDecl();
1131  if (!CatchParam) {
1132    llvm::Value *Exn = CGF.getExceptionFromSlot();
1133    CallBeginCatch(CGF, Exn, true);
1134    return;
1135  }
1136
1137  // Emit the local.
1138  CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
1139  InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF));
1140  CGF.EmitAutoVarCleanups(var);
1141}
1142
1143/// Emit the structure of the dispatch block for the given catch scope.
1144/// It is an invariant that the dispatch block already exists.
1145static void emitCatchDispatchBlock(CodeGenFunction &CGF,
1146                                   EHCatchScope &catchScope) {
1147  llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock();
1148  assert(dispatchBlock);
1149
1150  // If there's only a single catch-all, getEHDispatchBlock returned
1151  // that catch-all as the dispatch block.
1152  if (catchScope.getNumHandlers() == 1 &&
1153      catchScope.getHandler(0).isCatchAll()) {
1154    assert(dispatchBlock == catchScope.getHandler(0).Block);
1155    return;
1156  }
1157
1158  CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP();
1159  CGF.EmitBlockAfterUses(dispatchBlock);
1160
1161  // Select the right handler.
1162  llvm::Value *llvm_eh_typeid_for =
1163    CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for);
1164
1165  // Load the selector value.
1166  llvm::Value *selector = CGF.getSelectorFromSlot();
1167
1168  // Test against each of the exception types we claim to catch.
1169  for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) {
1170    assert(i < e && "ran off end of handlers!");
1171    const EHCatchScope::Handler &handler = catchScope.getHandler(i);
1172
1173    llvm::Value *typeValue = handler.Type;
1174    assert(typeValue && "fell into catch-all case!");
1175    typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy);
1176
1177    // Figure out the next block.
1178    bool nextIsEnd;
1179    llvm::BasicBlock *nextBlock;
1180
1181    // If this is the last handler, we're at the end, and the next
1182    // block is the block for the enclosing EH scope.
1183    if (i + 1 == e) {
1184      nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope());
1185      nextIsEnd = true;
1186
1187    // If the next handler is a catch-all, we're at the end, and the
1188    // next block is that handler.
1189    } else if (catchScope.getHandler(i+1).isCatchAll()) {
1190      nextBlock = catchScope.getHandler(i+1).Block;
1191      nextIsEnd = true;
1192
1193    // Otherwise, we're not at the end and we need a new block.
1194    } else {
1195      nextBlock = CGF.createBasicBlock("catch.fallthrough");
1196      nextIsEnd = false;
1197    }
1198
1199    // Figure out the catch type's index in the LSDA's type table.
1200    llvm::CallInst *typeIndex =
1201      CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue);
1202    typeIndex->setDoesNotThrow();
1203
1204    llvm::Value *matchesTypeIndex =
1205      CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches");
1206    CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock);
1207
1208    // If the next handler is a catch-all, we're completely done.
1209    if (nextIsEnd) {
1210      CGF.Builder.restoreIP(savedIP);
1211      return;
1212    }
1213    // Otherwise we need to emit and continue at that block.
1214    CGF.EmitBlock(nextBlock);
1215  }
1216}
1217
1218void CodeGenFunction::popCatchScope() {
1219  EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin());
1220  if (catchScope.hasEHBranches())
1221    emitCatchDispatchBlock(*this, catchScope);
1222  EHStack.popCatch();
1223}
1224
1225void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
1226  unsigned NumHandlers = S.getNumHandlers();
1227  EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin());
1228  assert(CatchScope.getNumHandlers() == NumHandlers);
1229
1230  // If the catch was not required, bail out now.
1231  if (!CatchScope.hasEHBranches()) {
1232    EHStack.popCatch();
1233    return;
1234  }
1235
1236  // Emit the structure of the EH dispatch for this catch.
1237  emitCatchDispatchBlock(*this, CatchScope);
1238
1239  // Copy the handler blocks off before we pop the EH stack.  Emitting
1240  // the handlers might scribble on this memory.
1241  SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers);
1242  memcpy(Handlers.data(), CatchScope.begin(),
1243         NumHandlers * sizeof(EHCatchScope::Handler));
1244
1245  EHStack.popCatch();
1246
1247  // The fall-through block.
1248  llvm::BasicBlock *ContBB = createBasicBlock("try.cont");
1249
1250  // We just emitted the body of the try; jump to the continue block.
1251  if (HaveInsertPoint())
1252    Builder.CreateBr(ContBB);
1253
1254  // Determine if we need an implicit rethrow for all these catch handlers;
1255  // see the comment below.
1256  bool doImplicitRethrow = false;
1257  if (IsFnTryBlock)
1258    doImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) ||
1259                        isa<CXXConstructorDecl>(CurCodeDecl);
1260
1261  // Perversely, we emit the handlers backwards precisely because we
1262  // want them to appear in source order.  In all of these cases, the
1263  // catch block will have exactly one predecessor, which will be a
1264  // particular block in the catch dispatch.  However, in the case of
1265  // a catch-all, one of the dispatch blocks will branch to two
1266  // different handlers, and EmitBlockAfterUses will cause the second
1267  // handler to be moved before the first.
1268  for (unsigned I = NumHandlers; I != 0; --I) {
1269    llvm::BasicBlock *CatchBlock = Handlers[I-1].Block;
1270    EmitBlockAfterUses(CatchBlock);
1271
1272    // Catch the exception if this isn't a catch-all.
1273    const CXXCatchStmt *C = S.getHandler(I-1);
1274
1275    // Enter a cleanup scope, including the catch variable and the
1276    // end-catch.
1277    RunCleanupsScope CatchScope(*this);
1278
1279    // Initialize the catch variable and set up the cleanups.
1280    BeginCatch(*this, C);
1281
1282    // Perform the body of the catch.
1283    EmitStmt(C->getHandlerBlock());
1284
1285    // [except.handle]p11:
1286    //   The currently handled exception is rethrown if control
1287    //   reaches the end of a handler of the function-try-block of a
1288    //   constructor or destructor.
1289
1290    // It is important that we only do this on fallthrough and not on
1291    // return.  Note that it's illegal to put a return in a
1292    // constructor function-try-block's catch handler (p14), so this
1293    // really only applies to destructors.
1294    if (doImplicitRethrow && HaveInsertPoint()) {
1295      EmitCallOrInvoke(getReThrowFn(*this));
1296      Builder.CreateUnreachable();
1297      Builder.ClearInsertionPoint();
1298    }
1299
1300    // Fall out through the catch cleanups.
1301    CatchScope.ForceCleanup();
1302
1303    // Branch out of the try.
1304    if (HaveInsertPoint())
1305      Builder.CreateBr(ContBB);
1306  }
1307
1308  EmitBlock(ContBB);
1309}
1310
1311namespace {
1312  struct CallEndCatchForFinally : EHScopeStack::Cleanup {
1313    llvm::Value *ForEHVar;
1314    llvm::Value *EndCatchFn;
1315    CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn)
1316      : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {}
1317
1318    void Emit(CodeGenFunction &CGF, Flags flags) {
1319      llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch");
1320      llvm::BasicBlock *CleanupContBB =
1321        CGF.createBasicBlock("finally.cleanup.cont");
1322
1323      llvm::Value *ShouldEndCatch =
1324        CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch");
1325      CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB);
1326      CGF.EmitBlock(EndCatchBB);
1327      CGF.EmitCallOrInvoke(EndCatchFn); // catch-all, so might throw
1328      CGF.EmitBlock(CleanupContBB);
1329    }
1330  };
1331
1332  struct PerformFinally : EHScopeStack::Cleanup {
1333    const Stmt *Body;
1334    llvm::Value *ForEHVar;
1335    llvm::Value *EndCatchFn;
1336    llvm::Value *RethrowFn;
1337    llvm::Value *SavedExnVar;
1338
1339    PerformFinally(const Stmt *Body, llvm::Value *ForEHVar,
1340                   llvm::Value *EndCatchFn,
1341                   llvm::Value *RethrowFn, llvm::Value *SavedExnVar)
1342      : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn),
1343        RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {}
1344
1345    void Emit(CodeGenFunction &CGF, Flags flags) {
1346      // Enter a cleanup to call the end-catch function if one was provided.
1347      if (EndCatchFn)
1348        CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup,
1349                                                        ForEHVar, EndCatchFn);
1350
1351      // Save the current cleanup destination in case there are
1352      // cleanups in the finally block.
1353      llvm::Value *SavedCleanupDest =
1354        CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(),
1355                               "cleanup.dest.saved");
1356
1357      // Emit the finally block.
1358      CGF.EmitStmt(Body);
1359
1360      // If the end of the finally is reachable, check whether this was
1361      // for EH.  If so, rethrow.
1362      if (CGF.HaveInsertPoint()) {
1363        llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow");
1364        llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont");
1365
1366        llvm::Value *ShouldRethrow =
1367          CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow");
1368        CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB);
1369
1370        CGF.EmitBlock(RethrowBB);
1371        if (SavedExnVar) {
1372          CGF.EmitCallOrInvoke(RethrowFn, CGF.Builder.CreateLoad(SavedExnVar));
1373        } else {
1374          CGF.EmitCallOrInvoke(RethrowFn);
1375        }
1376        CGF.Builder.CreateUnreachable();
1377
1378        CGF.EmitBlock(ContBB);
1379
1380        // Restore the cleanup destination.
1381        CGF.Builder.CreateStore(SavedCleanupDest,
1382                                CGF.getNormalCleanupDestSlot());
1383      }
1384
1385      // Leave the end-catch cleanup.  As an optimization, pretend that
1386      // the fallthrough path was inaccessible; we've dynamically proven
1387      // that we're not in the EH case along that path.
1388      if (EndCatchFn) {
1389        CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
1390        CGF.PopCleanupBlock();
1391        CGF.Builder.restoreIP(SavedIP);
1392      }
1393
1394      // Now make sure we actually have an insertion point or the
1395      // cleanup gods will hate us.
1396      CGF.EnsureInsertPoint();
1397    }
1398  };
1399}
1400
1401/// Enters a finally block for an implementation using zero-cost
1402/// exceptions.  This is mostly general, but hard-codes some
1403/// language/ABI-specific behavior in the catch-all sections.
1404void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF,
1405                                         const Stmt *body,
1406                                         llvm::Constant *beginCatchFn,
1407                                         llvm::Constant *endCatchFn,
1408                                         llvm::Constant *rethrowFn) {
1409  assert((beginCatchFn != 0) == (endCatchFn != 0) &&
1410         "begin/end catch functions not paired");
1411  assert(rethrowFn && "rethrow function is required");
1412
1413  BeginCatchFn = beginCatchFn;
1414
1415  // The rethrow function has one of the following two types:
1416  //   void (*)()
1417  //   void (*)(void*)
1418  // In the latter case we need to pass it the exception object.
1419  // But we can't use the exception slot because the @finally might
1420  // have a landing pad (which would overwrite the exception slot).
1421  llvm::FunctionType *rethrowFnTy =
1422    cast<llvm::FunctionType>(
1423      cast<llvm::PointerType>(rethrowFn->getType())->getElementType());
1424  SavedExnVar = 0;
1425  if (rethrowFnTy->getNumParams())
1426    SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn");
1427
1428  // A finally block is a statement which must be executed on any edge
1429  // out of a given scope.  Unlike a cleanup, the finally block may
1430  // contain arbitrary control flow leading out of itself.  In
1431  // addition, finally blocks should always be executed, even if there
1432  // are no catch handlers higher on the stack.  Therefore, we
1433  // surround the protected scope with a combination of a normal
1434  // cleanup (to catch attempts to break out of the block via normal
1435  // control flow) and an EH catch-all (semantically "outside" any try
1436  // statement to which the finally block might have been attached).
1437  // The finally block itself is generated in the context of a cleanup
1438  // which conditionally leaves the catch-all.
1439
1440  // Jump destination for performing the finally block on an exception
1441  // edge.  We'll never actually reach this block, so unreachable is
1442  // fine.
1443  RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock());
1444
1445  // Whether the finally block is being executed for EH purposes.
1446  ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh");
1447  CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar);
1448
1449  // Enter a normal cleanup which will perform the @finally block.
1450  CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body,
1451                                          ForEHVar, endCatchFn,
1452                                          rethrowFn, SavedExnVar);
1453
1454  // Enter a catch-all scope.
1455  llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall");
1456  EHCatchScope *catchScope = CGF.EHStack.pushCatch(1);
1457  catchScope->setCatchAllHandler(0, catchBB);
1458}
1459
1460void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) {
1461  // Leave the finally catch-all.
1462  EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin());
1463  llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block;
1464
1465  CGF.popCatchScope();
1466
1467  // If there are any references to the catch-all block, emit it.
1468  if (catchBB->use_empty()) {
1469    delete catchBB;
1470  } else {
1471    CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP();
1472    CGF.EmitBlock(catchBB);
1473
1474    llvm::Value *exn = 0;
1475
1476    // If there's a begin-catch function, call it.
1477    if (BeginCatchFn) {
1478      exn = CGF.getExceptionFromSlot();
1479      CGF.Builder.CreateCall(BeginCatchFn, exn)->setDoesNotThrow();
1480    }
1481
1482    // If we need to remember the exception pointer to rethrow later, do so.
1483    if (SavedExnVar) {
1484      if (!exn) exn = CGF.getExceptionFromSlot();
1485      CGF.Builder.CreateStore(exn, SavedExnVar);
1486    }
1487
1488    // Tell the cleanups in the finally block that we're do this for EH.
1489    CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar);
1490
1491    // Thread a jump through the finally cleanup.
1492    CGF.EmitBranchThroughCleanup(RethrowDest);
1493
1494    CGF.Builder.restoreIP(savedIP);
1495  }
1496
1497  // Finally, leave the @finally cleanup.
1498  CGF.PopCleanupBlock();
1499}
1500
1501llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() {
1502  if (TerminateLandingPad)
1503    return TerminateLandingPad;
1504
1505  CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1506
1507  // This will get inserted at the end of the function.
1508  TerminateLandingPad = createBasicBlock("terminate.lpad");
1509  Builder.SetInsertPoint(TerminateLandingPad);
1510
1511  // Tell the backend that this is a landing pad.
1512  const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts());
1513  llvm::LandingPadInst *LPadInst =
1514    Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL),
1515                             getOpaquePersonalityFn(CGM, Personality), 0);
1516  LPadInst->addClause(getCatchAllValue(*this));
1517
1518  llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
1519  TerminateCall->setDoesNotReturn();
1520  TerminateCall->setDoesNotThrow();
1521  Builder.CreateUnreachable();
1522
1523  // Restore the saved insertion state.
1524  Builder.restoreIP(SavedIP);
1525
1526  return TerminateLandingPad;
1527}
1528
1529llvm::BasicBlock *CodeGenFunction::getTerminateHandler() {
1530  if (TerminateHandler)
1531    return TerminateHandler;
1532
1533  CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1534
1535  // Set up the terminate handler.  This block is inserted at the very
1536  // end of the function by FinishFunction.
1537  TerminateHandler = createBasicBlock("terminate.handler");
1538  Builder.SetInsertPoint(TerminateHandler);
1539  llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
1540  TerminateCall->setDoesNotReturn();
1541  TerminateCall->setDoesNotThrow();
1542  Builder.CreateUnreachable();
1543
1544  // Restore the saved insertion state.
1545  Builder.restoreIP(SavedIP);
1546
1547  return TerminateHandler;
1548}
1549
1550llvm::BasicBlock *CodeGenFunction::getEHResumeBlock(bool isCleanup) {
1551  if (EHResumeBlock) return EHResumeBlock;
1552
1553  CGBuilderTy::InsertPoint SavedIP = Builder.saveIP();
1554
1555  // We emit a jump to a notional label at the outermost unwind state.
1556  EHResumeBlock = createBasicBlock("eh.resume");
1557  Builder.SetInsertPoint(EHResumeBlock);
1558
1559  const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts());
1560
1561  // This can always be a call because we necessarily didn't find
1562  // anything on the EH stack which needs our help.
1563  const char *RethrowName = Personality.CatchallRethrowFn;
1564  if (RethrowName != 0 && !isCleanup) {
1565    Builder.CreateCall(getCatchallRethrowFn(*this, RethrowName),
1566                       getExceptionFromSlot())
1567      ->setDoesNotReturn();
1568  } else {
1569    switch (CleanupHackLevel) {
1570    case CHL_MandatoryCatchall:
1571      // In mandatory-catchall mode, we need to use
1572      // _Unwind_Resume_or_Rethrow, or whatever the personality's
1573      // equivalent is.
1574      Builder.CreateCall(getUnwindResumeOrRethrowFn(),
1575                         getExceptionFromSlot())
1576        ->setDoesNotReturn();
1577      break;
1578    case CHL_MandatoryCleanup: {
1579      // In mandatory-cleanup mode, we should use 'resume'.
1580
1581      // Recreate the landingpad's return value for the 'resume' instruction.
1582      llvm::Value *Exn = getExceptionFromSlot();
1583      llvm::Value *Sel = getSelectorFromSlot();
1584
1585      llvm::Type *LPadType = llvm::StructType::get(Exn->getType(),
1586                                                   Sel->getType(), NULL);
1587      llvm::Value *LPadVal = llvm::UndefValue::get(LPadType);
1588      LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val");
1589      LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val");
1590
1591      Builder.CreateResume(LPadVal);
1592      Builder.restoreIP(SavedIP);
1593      return EHResumeBlock;
1594    }
1595    case CHL_Ideal:
1596      // In an idealized mode where we don't have to worry about the
1597      // optimizer combining landing pads, we should just use
1598      // _Unwind_Resume (or the personality's equivalent).
1599      Builder.CreateCall(getUnwindResumeFn(), getExceptionFromSlot())
1600        ->setDoesNotReturn();
1601      break;
1602    }
1603  }
1604
1605  Builder.CreateUnreachable();
1606
1607  Builder.restoreIP(SavedIP);
1608
1609  return EHResumeBlock;
1610}
1611