UninitializedValues.cpp revision 249423
1//==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements uninitialized values analysis for source-level CFGs.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Attr.h"
16#include "clang/AST/Decl.h"
17#include "clang/Analysis/Analyses/PostOrderCFGView.h"
18#include "clang/Analysis/Analyses/UninitializedValues.h"
19#include "clang/Analysis/AnalysisContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
22#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/Optional.h"
25#include "llvm/ADT/PackedVector.h"
26#include "llvm/ADT/SmallBitVector.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/Support/SaveAndRestore.h"
29#include <utility>
30
31using namespace clang;
32
33#define DEBUG_LOGGING 0
34
35static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
36  if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
37      !vd->isExceptionVariable() &&
38      vd->getDeclContext() == dc) {
39    QualType ty = vd->getType();
40    return ty->isScalarType() || ty->isVectorType();
41  }
42  return false;
43}
44
45//------------------------------------------------------------------------====//
46// DeclToIndex: a mapping from Decls we track to value indices.
47//====------------------------------------------------------------------------//
48
49namespace {
50class DeclToIndex {
51  llvm::DenseMap<const VarDecl *, unsigned> map;
52public:
53  DeclToIndex() {}
54
55  /// Compute the actual mapping from declarations to bits.
56  void computeMap(const DeclContext &dc);
57
58  /// Return the number of declarations in the map.
59  unsigned size() const { return map.size(); }
60
61  /// Returns the bit vector index for a given declaration.
62  Optional<unsigned> getValueIndex(const VarDecl *d) const;
63};
64}
65
66void DeclToIndex::computeMap(const DeclContext &dc) {
67  unsigned count = 0;
68  DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
69                                               E(dc.decls_end());
70  for ( ; I != E; ++I) {
71    const VarDecl *vd = *I;
72    if (isTrackedVar(vd, &dc))
73      map[vd] = count++;
74  }
75}
76
77Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
78  llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
79  if (I == map.end())
80    return None;
81  return I->second;
82}
83
84//------------------------------------------------------------------------====//
85// CFGBlockValues: dataflow values for CFG blocks.
86//====------------------------------------------------------------------------//
87
88// These values are defined in such a way that a merge can be done using
89// a bitwise OR.
90enum Value { Unknown = 0x0,         /* 00 */
91             Initialized = 0x1,     /* 01 */
92             Uninitialized = 0x2,   /* 10 */
93             MayUninitialized = 0x3 /* 11 */ };
94
95static bool isUninitialized(const Value v) {
96  return v >= Uninitialized;
97}
98static bool isAlwaysUninit(const Value v) {
99  return v == Uninitialized;
100}
101
102namespace {
103
104typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector;
105
106class CFGBlockValues {
107  const CFG &cfg;
108  SmallVector<ValueVector, 8> vals;
109  ValueVector scratch;
110  DeclToIndex declToIndex;
111public:
112  CFGBlockValues(const CFG &cfg);
113
114  unsigned getNumEntries() const { return declToIndex.size(); }
115
116  void computeSetOfDeclarations(const DeclContext &dc);
117  ValueVector &getValueVector(const CFGBlock *block) {
118    return vals[block->getBlockID()];
119  }
120
121  void setAllScratchValues(Value V);
122  void mergeIntoScratch(ValueVector const &source, bool isFirst);
123  bool updateValueVectorWithScratch(const CFGBlock *block);
124
125  bool hasNoDeclarations() const {
126    return declToIndex.size() == 0;
127  }
128
129  void resetScratch();
130
131  ValueVector::reference operator[](const VarDecl *vd);
132
133  Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
134                 const VarDecl *vd) {
135    const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
136    assert(idx.hasValue());
137    return getValueVector(block)[idx.getValue()];
138  }
139};
140} // end anonymous namespace
141
142CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
143
144void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
145  declToIndex.computeMap(dc);
146  unsigned decls = declToIndex.size();
147  scratch.resize(decls);
148  unsigned n = cfg.getNumBlockIDs();
149  if (!n)
150    return;
151  vals.resize(n);
152  for (unsigned i = 0; i < n; ++i)
153    vals[i].resize(decls);
154}
155
156#if DEBUG_LOGGING
157static void printVector(const CFGBlock *block, ValueVector &bv,
158                        unsigned num) {
159  llvm::errs() << block->getBlockID() << " :";
160  for (unsigned i = 0; i < bv.size(); ++i) {
161    llvm::errs() << ' ' << bv[i];
162  }
163  llvm::errs() << " : " << num << '\n';
164}
165#endif
166
167void CFGBlockValues::setAllScratchValues(Value V) {
168  for (unsigned I = 0, E = scratch.size(); I != E; ++I)
169    scratch[I] = V;
170}
171
172void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
173                                      bool isFirst) {
174  if (isFirst)
175    scratch = source;
176  else
177    scratch |= source;
178}
179
180bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
181  ValueVector &dst = getValueVector(block);
182  bool changed = (dst != scratch);
183  if (changed)
184    dst = scratch;
185#if DEBUG_LOGGING
186  printVector(block, scratch, 0);
187#endif
188  return changed;
189}
190
191void CFGBlockValues::resetScratch() {
192  scratch.reset();
193}
194
195ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
196  const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
197  assert(idx.hasValue());
198  return scratch[idx.getValue()];
199}
200
201//------------------------------------------------------------------------====//
202// Worklist: worklist for dataflow analysis.
203//====------------------------------------------------------------------------//
204
205namespace {
206class DataflowWorklist {
207  PostOrderCFGView::iterator PO_I, PO_E;
208  SmallVector<const CFGBlock *, 20> worklist;
209  llvm::BitVector enqueuedBlocks;
210public:
211  DataflowWorklist(const CFG &cfg, PostOrderCFGView &view)
212    : PO_I(view.begin()), PO_E(view.end()),
213      enqueuedBlocks(cfg.getNumBlockIDs(), true) {
214        // Treat the first block as already analyzed.
215        if (PO_I != PO_E) {
216          assert(*PO_I == &cfg.getEntry());
217          enqueuedBlocks[(*PO_I)->getBlockID()] = false;
218          ++PO_I;
219        }
220      }
221
222  void enqueueSuccessors(const CFGBlock *block);
223  const CFGBlock *dequeue();
224};
225}
226
227void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
228  for (CFGBlock::const_succ_iterator I = block->succ_begin(),
229       E = block->succ_end(); I != E; ++I) {
230    const CFGBlock *Successor = *I;
231    if (!Successor || enqueuedBlocks[Successor->getBlockID()])
232      continue;
233    worklist.push_back(Successor);
234    enqueuedBlocks[Successor->getBlockID()] = true;
235  }
236}
237
238const CFGBlock *DataflowWorklist::dequeue() {
239  const CFGBlock *B = 0;
240
241  // First dequeue from the worklist.  This can represent
242  // updates along backedges that we want propagated as quickly as possible.
243  if (!worklist.empty()) {
244    B = worklist.back();
245    worklist.pop_back();
246  }
247  // Next dequeue from the initial reverse post order.  This is the
248  // theoretical ideal in the presence of no back edges.
249  else if (PO_I != PO_E) {
250    B = *PO_I;
251    ++PO_I;
252  }
253  else {
254    return 0;
255  }
256
257  assert(enqueuedBlocks[B->getBlockID()] == true);
258  enqueuedBlocks[B->getBlockID()] = false;
259  return B;
260}
261
262//------------------------------------------------------------------------====//
263// Classification of DeclRefExprs as use or initialization.
264//====------------------------------------------------------------------------//
265
266namespace {
267class FindVarResult {
268  const VarDecl *vd;
269  const DeclRefExpr *dr;
270public:
271  FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
272
273  const DeclRefExpr *getDeclRefExpr() const { return dr; }
274  const VarDecl *getDecl() const { return vd; }
275};
276
277static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
278  while (Ex) {
279    Ex = Ex->IgnoreParenNoopCasts(C);
280    if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
281      if (CE->getCastKind() == CK_LValueBitCast) {
282        Ex = CE->getSubExpr();
283        continue;
284      }
285    }
286    break;
287  }
288  return Ex;
289}
290
291/// If E is an expression comprising a reference to a single variable, find that
292/// variable.
293static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
294  if (const DeclRefExpr *DRE =
295        dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
296    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
297      if (isTrackedVar(VD, DC))
298        return FindVarResult(VD, DRE);
299  return FindVarResult(0, 0);
300}
301
302/// \brief Classify each DeclRefExpr as an initialization or a use. Any
303/// DeclRefExpr which isn't explicitly classified will be assumed to have
304/// escaped the analysis and will be treated as an initialization.
305class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
306public:
307  enum Class {
308    Init,
309    Use,
310    SelfInit,
311    Ignore
312  };
313
314private:
315  const DeclContext *DC;
316  llvm::DenseMap<const DeclRefExpr*, Class> Classification;
317
318  bool isTrackedVar(const VarDecl *VD) const {
319    return ::isTrackedVar(VD, DC);
320  }
321
322  void classify(const Expr *E, Class C);
323
324public:
325  ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
326
327  void VisitDeclStmt(DeclStmt *DS);
328  void VisitUnaryOperator(UnaryOperator *UO);
329  void VisitBinaryOperator(BinaryOperator *BO);
330  void VisitCallExpr(CallExpr *CE);
331  void VisitCastExpr(CastExpr *CE);
332
333  void operator()(Stmt *S) { Visit(S); }
334
335  Class get(const DeclRefExpr *DRE) const {
336    llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
337        = Classification.find(DRE);
338    if (I != Classification.end())
339      return I->second;
340
341    const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
342    if (!VD || !isTrackedVar(VD))
343      return Ignore;
344
345    return Init;
346  }
347};
348}
349
350static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
351  if (Expr *Init = VD->getInit()) {
352    const DeclRefExpr *DRE
353      = dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
354    if (DRE && DRE->getDecl() == VD)
355      return DRE;
356  }
357  return 0;
358}
359
360void ClassifyRefs::classify(const Expr *E, Class C) {
361  // The result of a ?: could also be an lvalue.
362  E = E->IgnoreParens();
363  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
364    const Expr *TrueExpr = CO->getTrueExpr();
365    if (!isa<OpaqueValueExpr>(TrueExpr))
366      classify(TrueExpr, C);
367    classify(CO->getFalseExpr(), C);
368    return;
369  }
370
371  FindVarResult Var = findVar(E, DC);
372  if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
373    Classification[DRE] = std::max(Classification[DRE], C);
374}
375
376void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
377  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end();
378       DI != DE; ++DI) {
379    VarDecl *VD = dyn_cast<VarDecl>(*DI);
380    if (VD && isTrackedVar(VD))
381      if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
382        Classification[DRE] = SelfInit;
383  }
384}
385
386void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
387  // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
388  // is not a compound-assignment, we will treat it as initializing the variable
389  // when TransferFunctions visits it. A compound-assignment does not affect
390  // whether a variable is uninitialized, and there's no point counting it as a
391  // use.
392  if (BO->isCompoundAssignmentOp())
393    classify(BO->getLHS(), Use);
394  else if (BO->getOpcode() == BO_Assign)
395    classify(BO->getLHS(), Ignore);
396}
397
398void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
399  // Increment and decrement are uses despite there being no lvalue-to-rvalue
400  // conversion.
401  if (UO->isIncrementDecrementOp())
402    classify(UO->getSubExpr(), Use);
403}
404
405void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
406  // If a value is passed by const reference to a function, we should not assume
407  // that it is initialized by the call, and we conservatively do not assume
408  // that it is used.
409  for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
410       I != E; ++I)
411    if ((*I)->getType().isConstQualified() && (*I)->isGLValue())
412      classify(*I, Ignore);
413}
414
415void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
416  if (CE->getCastKind() == CK_LValueToRValue)
417    classify(CE->getSubExpr(), Use);
418  else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) {
419    if (CSE->getType()->isVoidType()) {
420      // Squelch any detected load of an uninitialized value if
421      // we cast it to void.
422      // e.g. (void) x;
423      classify(CSE->getSubExpr(), Ignore);
424    }
425  }
426}
427
428//------------------------------------------------------------------------====//
429// Transfer function for uninitialized values analysis.
430//====------------------------------------------------------------------------//
431
432namespace {
433class TransferFunctions : public StmtVisitor<TransferFunctions> {
434  CFGBlockValues &vals;
435  const CFG &cfg;
436  const CFGBlock *block;
437  AnalysisDeclContext &ac;
438  const ClassifyRefs &classification;
439  ObjCNoReturn objCNoRet;
440  UninitVariablesHandler &handler;
441
442public:
443  TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
444                    const CFGBlock *block, AnalysisDeclContext &ac,
445                    const ClassifyRefs &classification,
446                    UninitVariablesHandler &handler)
447    : vals(vals), cfg(cfg), block(block), ac(ac),
448      classification(classification), objCNoRet(ac.getASTContext()),
449      handler(handler) {}
450
451  void reportUse(const Expr *ex, const VarDecl *vd);
452
453  void VisitBinaryOperator(BinaryOperator *bo);
454  void VisitBlockExpr(BlockExpr *be);
455  void VisitCallExpr(CallExpr *ce);
456  void VisitDeclRefExpr(DeclRefExpr *dr);
457  void VisitDeclStmt(DeclStmt *ds);
458  void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
459  void VisitObjCMessageExpr(ObjCMessageExpr *ME);
460
461  bool isTrackedVar(const VarDecl *vd) {
462    return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
463  }
464
465  FindVarResult findVar(const Expr *ex) {
466    return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
467  }
468
469  UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
470    UninitUse Use(ex, isAlwaysUninit(v));
471
472    assert(isUninitialized(v));
473    if (Use.getKind() == UninitUse::Always)
474      return Use;
475
476    // If an edge which leads unconditionally to this use did not initialize
477    // the variable, we can say something stronger than 'may be uninitialized':
478    // we can say 'either it's used uninitialized or you have dead code'.
479    //
480    // We track the number of successors of a node which have been visited, and
481    // visit a node once we have visited all of its successors. Only edges where
482    // the variable might still be uninitialized are followed. Since a variable
483    // can't transfer from being initialized to being uninitialized, this will
484    // trace out the subgraph which inevitably leads to the use and does not
485    // initialize the variable. We do not want to skip past loops, since their
486    // non-termination might be correlated with the initialization condition.
487    //
488    // For example:
489    //
490    //         void f(bool a, bool b) {
491    // block1:   int n;
492    //           if (a) {
493    // block2:     if (b)
494    // block3:       n = 1;
495    // block4:   } else if (b) {
496    // block5:     while (!a) {
497    // block6:       do_work(&a);
498    //               n = 2;
499    //             }
500    //           }
501    // block7:   if (a)
502    // block8:     g();
503    // block9:   return n;
504    //         }
505    //
506    // Starting from the maybe-uninitialized use in block 9:
507    //  * Block 7 is not visited because we have only visited one of its two
508    //    successors.
509    //  * Block 8 is visited because we've visited its only successor.
510    // From block 8:
511    //  * Block 7 is visited because we've now visited both of its successors.
512    // From block 7:
513    //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
514    //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
515    //  * Block 3 is not visited because it initializes 'n'.
516    // Now the algorithm terminates, having visited blocks 7 and 8, and having
517    // found the frontier is blocks 2, 4, and 5.
518    //
519    // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
520    // and 4), so we report that any time either of those edges is taken (in
521    // each case when 'b == false'), 'n' is used uninitialized.
522    SmallVector<const CFGBlock*, 32> Queue;
523    SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
524    Queue.push_back(block);
525    // Specify that we've already visited all successors of the starting block.
526    // This has the dual purpose of ensuring we never add it to the queue, and
527    // of marking it as not being a candidate element of the frontier.
528    SuccsVisited[block->getBlockID()] = block->succ_size();
529    while (!Queue.empty()) {
530      const CFGBlock *B = Queue.back();
531      Queue.pop_back();
532      for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
533           I != E; ++I) {
534        const CFGBlock *Pred = *I;
535        if (vals.getValue(Pred, B, vd) == Initialized)
536          // This block initializes the variable.
537          continue;
538
539        unsigned &SV = SuccsVisited[Pred->getBlockID()];
540        if (!SV) {
541          // When visiting the first successor of a block, mark all NULL
542          // successors as having been visited.
543          for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
544                                             SE = Pred->succ_end();
545               SI != SE; ++SI)
546            if (!*SI)
547              ++SV;
548        }
549
550        if (++SV == Pred->succ_size())
551          // All paths from this block lead to the use and don't initialize the
552          // variable.
553          Queue.push_back(Pred);
554      }
555    }
556
557    // Scan the frontier, looking for blocks where the variable was
558    // uninitialized.
559    for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
560      const CFGBlock *Block = *BI;
561      unsigned BlockID = Block->getBlockID();
562      const Stmt *Term = Block->getTerminator();
563      if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
564          Term) {
565        // This block inevitably leads to the use. If we have an edge from here
566        // to a post-dominator block, and the variable is uninitialized on that
567        // edge, we have found a bug.
568        for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
569             E = Block->succ_end(); I != E; ++I) {
570          const CFGBlock *Succ = *I;
571          if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
572              vals.getValue(Block, Succ, vd) == Uninitialized) {
573            // Switch cases are a special case: report the label to the caller
574            // as the 'terminator', not the switch statement itself. Suppress
575            // situations where no label matched: we can't be sure that's
576            // possible.
577            if (isa<SwitchStmt>(Term)) {
578              const Stmt *Label = Succ->getLabel();
579              if (!Label || !isa<SwitchCase>(Label))
580                // Might not be possible.
581                continue;
582              UninitUse::Branch Branch;
583              Branch.Terminator = Label;
584              Branch.Output = 0; // Ignored.
585              Use.addUninitBranch(Branch);
586            } else {
587              UninitUse::Branch Branch;
588              Branch.Terminator = Term;
589              Branch.Output = I - Block->succ_begin();
590              Use.addUninitBranch(Branch);
591            }
592          }
593        }
594      }
595    }
596
597    return Use;
598  }
599};
600}
601
602void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
603  Value v = vals[vd];
604  if (isUninitialized(v))
605    handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
606}
607
608void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
609  // This represents an initialization of the 'element' value.
610  if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) {
611    const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
612    if (isTrackedVar(VD))
613      vals[VD] = Initialized;
614  }
615}
616
617void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
618  const BlockDecl *bd = be->getBlockDecl();
619  for (BlockDecl::capture_const_iterator i = bd->capture_begin(),
620        e = bd->capture_end() ; i != e; ++i) {
621    const VarDecl *vd = i->getVariable();
622    if (!isTrackedVar(vd))
623      continue;
624    if (i->isByRef()) {
625      vals[vd] = Initialized;
626      continue;
627    }
628    reportUse(be, vd);
629  }
630}
631
632void TransferFunctions::VisitCallExpr(CallExpr *ce) {
633  if (Decl *Callee = ce->getCalleeDecl()) {
634    if (Callee->hasAttr<ReturnsTwiceAttr>()) {
635      // After a call to a function like setjmp or vfork, any variable which is
636      // initialized anywhere within this function may now be initialized. For
637      // now, just assume such a call initializes all variables.  FIXME: Only
638      // mark variables as initialized if they have an initializer which is
639      // reachable from here.
640      vals.setAllScratchValues(Initialized);
641    }
642    else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
643      // Functions labeled like "analyzer_noreturn" are often used to denote
644      // "panic" functions that in special debug situations can still return,
645      // but for the most part should not be treated as returning.  This is a
646      // useful annotation borrowed from the static analyzer that is useful for
647      // suppressing branch-specific false positives when we call one of these
648      // functions but keep pretending the path continues (when in reality the
649      // user doesn't care).
650      vals.setAllScratchValues(Unknown);
651    }
652  }
653}
654
655void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
656  switch (classification.get(dr)) {
657  case ClassifyRefs::Ignore:
658    break;
659  case ClassifyRefs::Use:
660    reportUse(dr, cast<VarDecl>(dr->getDecl()));
661    break;
662  case ClassifyRefs::Init:
663    vals[cast<VarDecl>(dr->getDecl())] = Initialized;
664    break;
665  case ClassifyRefs::SelfInit:
666      handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
667    break;
668  }
669}
670
671void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
672  if (BO->getOpcode() == BO_Assign) {
673    FindVarResult Var = findVar(BO->getLHS());
674    if (const VarDecl *VD = Var.getDecl())
675      vals[VD] = Initialized;
676  }
677}
678
679void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
680  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end();
681       DI != DE; ++DI) {
682    VarDecl *VD = dyn_cast<VarDecl>(*DI);
683    if (VD && isTrackedVar(VD)) {
684      if (getSelfInitExpr(VD)) {
685        // If the initializer consists solely of a reference to itself, we
686        // explicitly mark the variable as uninitialized. This allows code
687        // like the following:
688        //
689        //   int x = x;
690        //
691        // to deliberately leave a variable uninitialized. Different analysis
692        // clients can detect this pattern and adjust their reporting
693        // appropriately, but we need to continue to analyze subsequent uses
694        // of the variable.
695        vals[VD] = Uninitialized;
696      } else if (VD->getInit()) {
697        // Treat the new variable as initialized.
698        vals[VD] = Initialized;
699      } else {
700        // No initializer: the variable is now uninitialized. This matters
701        // for cases like:
702        //   while (...) {
703        //     int n;
704        //     use(n);
705        //     n = 0;
706        //   }
707        // FIXME: Mark the variable as uninitialized whenever its scope is
708        // left, since its scope could be re-entered by a jump over the
709        // declaration.
710        vals[VD] = Uninitialized;
711      }
712    }
713  }
714}
715
716void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
717  // If the Objective-C message expression is an implicit no-return that
718  // is not modeled in the CFG, set the tracked dataflow values to Unknown.
719  if (objCNoRet.isImplicitNoReturn(ME)) {
720    vals.setAllScratchValues(Unknown);
721  }
722}
723
724//------------------------------------------------------------------------====//
725// High-level "driver" logic for uninitialized values analysis.
726//====------------------------------------------------------------------------//
727
728static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
729                       AnalysisDeclContext &ac, CFGBlockValues &vals,
730                       const ClassifyRefs &classification,
731                       llvm::BitVector &wasAnalyzed,
732                       UninitVariablesHandler &handler) {
733  wasAnalyzed[block->getBlockID()] = true;
734  vals.resetScratch();
735  // Merge in values of predecessor blocks.
736  bool isFirst = true;
737  for (CFGBlock::const_pred_iterator I = block->pred_begin(),
738       E = block->pred_end(); I != E; ++I) {
739    const CFGBlock *pred = *I;
740    if (wasAnalyzed[pred->getBlockID()]) {
741      vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
742      isFirst = false;
743    }
744  }
745  // Apply the transfer function.
746  TransferFunctions tf(vals, cfg, block, ac, classification, handler);
747  for (CFGBlock::const_iterator I = block->begin(), E = block->end();
748       I != E; ++I) {
749    if (Optional<CFGStmt> cs = I->getAs<CFGStmt>())
750      tf.Visit(const_cast<Stmt*>(cs->getStmt()));
751  }
752  return vals.updateValueVectorWithScratch(block);
753}
754
755/// PruneBlocksHandler is a special UninitVariablesHandler that is used
756/// to detect when a CFGBlock has any *potential* use of an uninitialized
757/// variable.  It is mainly used to prune out work during the final
758/// reporting pass.
759namespace {
760struct PruneBlocksHandler : public UninitVariablesHandler {
761  PruneBlocksHandler(unsigned numBlocks)
762    : hadUse(numBlocks, false), hadAnyUse(false),
763      currentBlock(0) {}
764
765  virtual ~PruneBlocksHandler() {}
766
767  /// Records if a CFGBlock had a potential use of an uninitialized variable.
768  llvm::BitVector hadUse;
769
770  /// Records if any CFGBlock had a potential use of an uninitialized variable.
771  bool hadAnyUse;
772
773  /// The current block to scribble use information.
774  unsigned currentBlock;
775
776  virtual void handleUseOfUninitVariable(const VarDecl *vd,
777                                         const UninitUse &use) {
778    hadUse[currentBlock] = true;
779    hadAnyUse = true;
780  }
781
782  /// Called when the uninitialized variable analysis detects the
783  /// idiom 'int x = x'.  All other uses of 'x' within the initializer
784  /// are handled by handleUseOfUninitVariable.
785  virtual void handleSelfInit(const VarDecl *vd) {
786    hadUse[currentBlock] = true;
787    hadAnyUse = true;
788  }
789};
790}
791
792void clang::runUninitializedVariablesAnalysis(
793    const DeclContext &dc,
794    const CFG &cfg,
795    AnalysisDeclContext &ac,
796    UninitVariablesHandler &handler,
797    UninitVariablesAnalysisStats &stats) {
798  CFGBlockValues vals(cfg);
799  vals.computeSetOfDeclarations(dc);
800  if (vals.hasNoDeclarations())
801    return;
802
803  stats.NumVariablesAnalyzed = vals.getNumEntries();
804
805  // Precompute which expressions are uses and which are initializations.
806  ClassifyRefs classification(ac);
807  cfg.VisitBlockStmts(classification);
808
809  // Mark all variables uninitialized at the entry.
810  const CFGBlock &entry = cfg.getEntry();
811  ValueVector &vec = vals.getValueVector(&entry);
812  const unsigned n = vals.getNumEntries();
813  for (unsigned j = 0; j < n ; ++j) {
814    vec[j] = Uninitialized;
815  }
816
817  // Proceed with the workist.
818  DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>());
819  llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
820  worklist.enqueueSuccessors(&cfg.getEntry());
821  llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
822  wasAnalyzed[cfg.getEntry().getBlockID()] = true;
823  PruneBlocksHandler PBH(cfg.getNumBlockIDs());
824
825  while (const CFGBlock *block = worklist.dequeue()) {
826    PBH.currentBlock = block->getBlockID();
827
828    // Did the block change?
829    bool changed = runOnBlock(block, cfg, ac, vals,
830                              classification, wasAnalyzed, PBH);
831    ++stats.NumBlockVisits;
832    if (changed || !previouslyVisited[block->getBlockID()])
833      worklist.enqueueSuccessors(block);
834    previouslyVisited[block->getBlockID()] = true;
835  }
836
837  if (!PBH.hadAnyUse)
838    return;
839
840  // Run through the blocks one more time, and report uninitialized variables.
841  for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
842    const CFGBlock *block = *BI;
843    if (PBH.hadUse[block->getBlockID()]) {
844      runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
845      ++stats.NumBlockVisits;
846    }
847  }
848}
849
850UninitVariablesHandler::~UninitVariablesHandler() {}
851