1193323Sed//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This pass transforms simple global variables that never have their address
11193323Sed// taken.  If obviously true, it marks read/write globals as constant, deletes
12193323Sed// variables only stored to, etc.
13193323Sed//
14193323Sed//===----------------------------------------------------------------------===//
15193323Sed
16193323Sed#define DEBUG_TYPE "globalopt"
17193323Sed#include "llvm/Transforms/IPO.h"
18249423Sdim#include "llvm/ADT/DenseMap.h"
19249423Sdim#include "llvm/ADT/STLExtras.h"
20249423Sdim#include "llvm/ADT/SmallPtrSet.h"
21249423Sdim#include "llvm/ADT/SmallVector.h"
22249423Sdim#include "llvm/ADT/Statistic.h"
23193323Sed#include "llvm/Analysis/ConstantFolding.h"
24198892Srdivacky#include "llvm/Analysis/MemoryBuiltins.h"
25249423Sdim#include "llvm/IR/CallingConv.h"
26249423Sdim#include "llvm/IR/Constants.h"
27249423Sdim#include "llvm/IR/DataLayout.h"
28249423Sdim#include "llvm/IR/DerivedTypes.h"
29249423Sdim#include "llvm/IR/Instructions.h"
30249423Sdim#include "llvm/IR/IntrinsicInst.h"
31249423Sdim#include "llvm/IR/Module.h"
32249423Sdim#include "llvm/IR/Operator.h"
33249423Sdim#include "llvm/Pass.h"
34193323Sed#include "llvm/Support/CallSite.h"
35193323Sed#include "llvm/Support/Debug.h"
36198090Srdivacky#include "llvm/Support/ErrorHandling.h"
37193323Sed#include "llvm/Support/GetElementPtrTypeIterator.h"
38193323Sed#include "llvm/Support/MathExtras.h"
39198090Srdivacky#include "llvm/Support/raw_ostream.h"
40249423Sdim#include "llvm/Target/TargetLibraryInfo.h"
41193323Sed#include <algorithm>
42193323Sedusing namespace llvm;
43193323Sed
44193323SedSTATISTIC(NumMarked    , "Number of globals marked constant");
45218893SdimSTATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
46193323SedSTATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
47193323SedSTATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
48193323SedSTATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
49193323SedSTATISTIC(NumDeleted   , "Number of globals deleted");
50193323SedSTATISTIC(NumFnDeleted , "Number of functions deleted");
51193323SedSTATISTIC(NumGlobUses  , "Number of global uses devirtualized");
52193323SedSTATISTIC(NumLocalized , "Number of globals localized");
53193323SedSTATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
54193323SedSTATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
55193323SedSTATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
56193323SedSTATISTIC(NumNestRemoved   , "Number of nest attributes removed");
57193323SedSTATISTIC(NumAliasesResolved, "Number of global aliases resolved");
58193323SedSTATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
59221345SdimSTATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
60193323Sed
61193323Sednamespace {
62218893Sdim  struct GlobalStatus;
63198892Srdivacky  struct GlobalOpt : public ModulePass {
64193323Sed    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
65234353Sdim      AU.addRequired<TargetLibraryInfo>();
66193323Sed    }
67193323Sed    static char ID; // Pass identification, replacement for typeid
68218893Sdim    GlobalOpt() : ModulePass(ID) {
69218893Sdim      initializeGlobalOptPass(*PassRegistry::getPassRegistry());
70218893Sdim    }
71193323Sed
72193323Sed    bool runOnModule(Module &M);
73193323Sed
74193323Sed  private:
75193323Sed    GlobalVariable *FindGlobalCtors(Module &M);
76193323Sed    bool OptimizeFunctions(Module &M);
77193323Sed    bool OptimizeGlobalVars(Module &M);
78193323Sed    bool OptimizeGlobalAliases(Module &M);
79193323Sed    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
80218893Sdim    bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
81218893Sdim    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
82218893Sdim                               const SmallPtrSet<const PHINode*, 16> &PHIUsers,
83218893Sdim                               const GlobalStatus &GS);
84221345Sdim    bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
85234353Sdim
86243830Sdim    DataLayout *TD;
87234353Sdim    TargetLibraryInfo *TLI;
88193323Sed  };
89193323Sed}
90193323Sed
91193323Sedchar GlobalOpt::ID = 0;
92234353SdimINITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
93218893Sdim                "Global Variable Optimizer", false, false)
94234353SdimINITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
95234353SdimINITIALIZE_PASS_END(GlobalOpt, "globalopt",
96234353Sdim                "Global Variable Optimizer", false, false)
97193323Sed
98193323SedModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
99193323Sed
100193323Sednamespace {
101193323Sed
102193323Sed/// GlobalStatus - As we analyze each global, keep track of some information
103193323Sed/// about it.  If we find out that the address of the global is taken, none of
104193323Sed/// this info will be accurate.
105198892Srdivackystruct GlobalStatus {
106218893Sdim  /// isCompared - True if the global's address is used in a comparison.
107218893Sdim  bool isCompared;
108218893Sdim
109193323Sed  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
110193323Sed  /// loaded it can be deleted.
111193323Sed  bool isLoaded;
112193323Sed
113193323Sed  /// StoredType - Keep track of what stores to the global look like.
114193323Sed  ///
115193323Sed  enum StoredType {
116193323Sed    /// NotStored - There is no store to this global.  It can thus be marked
117193323Sed    /// constant.
118193323Sed    NotStored,
119193323Sed
120193323Sed    /// isInitializerStored - This global is stored to, but the only thing
121193323Sed    /// stored is the constant it was initialized with.  This is only tracked
122193323Sed    /// for scalar globals.
123193323Sed    isInitializerStored,
124193323Sed
125193323Sed    /// isStoredOnce - This global is stored to, but only its initializer and
126193323Sed    /// one other value is ever stored to it.  If this global isStoredOnce, we
127193323Sed    /// track the value stored to it in StoredOnceValue below.  This is only
128193323Sed    /// tracked for scalar globals.
129193323Sed    isStoredOnce,
130193323Sed
131193323Sed    /// isStored - This global is stored to by multiple values or something else
132193323Sed    /// that we cannot track.
133193323Sed    isStored
134193323Sed  } StoredType;
135193323Sed
136193323Sed  /// StoredOnceValue - If only one value (besides the initializer constant) is
137193323Sed  /// ever stored to this global, keep track of what value it is.
138193323Sed  Value *StoredOnceValue;
139193323Sed
140193323Sed  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
141193323Sed  /// null/false.  When the first accessing function is noticed, it is recorded.
142193323Sed  /// When a second different accessing function is noticed,
143193323Sed  /// HasMultipleAccessingFunctions is set to true.
144206083Srdivacky  const Function *AccessingFunction;
145193323Sed  bool HasMultipleAccessingFunctions;
146193323Sed
147193323Sed  /// HasNonInstructionUser - Set to true if this global has a user that is not
148193323Sed  /// an instruction (e.g. a constant expr or GV initializer).
149193323Sed  bool HasNonInstructionUser;
150193323Sed
151234353Sdim  /// AtomicOrdering - Set to the strongest atomic ordering requirement.
152234353Sdim  AtomicOrdering Ordering;
153234353Sdim
154218893Sdim  GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
155218893Sdim                   StoredOnceValue(0), AccessingFunction(0),
156234353Sdim                   HasMultipleAccessingFunctions(false),
157249423Sdim                   HasNonInstructionUser(false), Ordering(NotAtomic) {}
158193323Sed};
159193323Sed
160193323Sed}
161193323Sed
162234353Sdim/// StrongerOrdering - Return the stronger of the two ordering. If the two
163234353Sdim/// orderings are acquire and release, then return AcquireRelease.
164234353Sdim///
165234353Sdimstatic AtomicOrdering StrongerOrdering(AtomicOrdering X, AtomicOrdering Y) {
166234353Sdim  if (X == Acquire && Y == Release) return AcquireRelease;
167234353Sdim  if (Y == Acquire && X == Release) return AcquireRelease;
168234353Sdim  return (AtomicOrdering)std::max(X, Y);
169234353Sdim}
170234353Sdim
171234353Sdim/// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
172234353Sdim/// by constants itself.  Note that constants cannot be cyclic, so this test is
173234353Sdim/// pretty easy to implement recursively.
174234353Sdim///
175206083Srdivackystatic bool SafeToDestroyConstant(const Constant *C) {
176193323Sed  if (isa<GlobalValue>(C)) return false;
177193323Sed
178207618Srdivacky  for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
179207618Srdivacky       ++UI)
180206083Srdivacky    if (const Constant *CU = dyn_cast<Constant>(*UI)) {
181194178Sed      if (!SafeToDestroyConstant(CU)) return false;
182193323Sed    } else
183193323Sed      return false;
184193323Sed  return true;
185193323Sed}
186193323Sed
187193323Sed
188193323Sed/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
189193323Sed/// structure.  If the global has its address taken, return true to indicate we
190193323Sed/// can't do anything with it.
191193323Sed///
192206083Srdivackystatic bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
193206083Srdivacky                          SmallPtrSet<const PHINode*, 16> &PHIUsers) {
194207618Srdivacky  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
195210299Sed       ++UI) {
196210299Sed    const User *U = *UI;
197210299Sed    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
198193323Sed      GS.HasNonInstructionUser = true;
199249423Sdim
200218893Sdim      // If the result of the constantexpr isn't pointer type, then we won't
201218893Sdim      // know to expect it in various places.  Just reject early.
202218893Sdim      if (!isa<PointerType>(CE->getType())) return true;
203249423Sdim
204193323Sed      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
205210299Sed    } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
206193323Sed      if (!GS.HasMultipleAccessingFunctions) {
207206083Srdivacky        const Function *F = I->getParent()->getParent();
208193323Sed        if (GS.AccessingFunction == 0)
209193323Sed          GS.AccessingFunction = F;
210193323Sed        else if (GS.AccessingFunction != F)
211193323Sed          GS.HasMultipleAccessingFunctions = true;
212193323Sed      }
213206083Srdivacky      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
214193323Sed        GS.isLoaded = true;
215234353Sdim        // Don't hack on volatile loads.
216234353Sdim        if (LI->isVolatile()) return true;
217234353Sdim        GS.Ordering = StrongerOrdering(GS.Ordering, LI->getOrdering());
218206083Srdivacky      } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
219193323Sed        // Don't allow a store OF the address, only stores TO the address.
220193323Sed        if (SI->getOperand(0) == V) return true;
221193323Sed
222234353Sdim        // Don't hack on volatile stores.
223234353Sdim        if (SI->isVolatile()) return true;
224243830Sdim
225234353Sdim        GS.Ordering = StrongerOrdering(GS.Ordering, SI->getOrdering());
226193323Sed
227193323Sed        // If this is a direct store to the global (i.e., the global is a scalar
228193323Sed        // value, not an aggregate), keep more specific information about
229193323Sed        // stores.
230193323Sed        if (GS.StoredType != GlobalStatus::isStored) {
231207618Srdivacky          if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
232207618Srdivacky                                                           SI->getOperand(1))) {
233193323Sed            Value *StoredVal = SI->getOperand(0);
234243830Sdim
235243830Sdim            if (Constant *C = dyn_cast<Constant>(StoredVal)) {
236243830Sdim              if (C->isThreadDependent()) {
237243830Sdim                // The stored value changes between threads; don't track it.
238243830Sdim                return true;
239243830Sdim              }
240243830Sdim            }
241243830Sdim
242193323Sed            if (StoredVal == GV->getInitializer()) {
243193323Sed              if (GS.StoredType < GlobalStatus::isInitializerStored)
244193323Sed                GS.StoredType = GlobalStatus::isInitializerStored;
245193323Sed            } else if (isa<LoadInst>(StoredVal) &&
246193323Sed                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
247193323Sed              if (GS.StoredType < GlobalStatus::isInitializerStored)
248193323Sed                GS.StoredType = GlobalStatus::isInitializerStored;
249193323Sed            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
250193323Sed              GS.StoredType = GlobalStatus::isStoredOnce;
251193323Sed              GS.StoredOnceValue = StoredVal;
252193323Sed            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
253193323Sed                       GS.StoredOnceValue == StoredVal) {
254193323Sed              // noop.
255193323Sed            } else {
256193323Sed              GS.StoredType = GlobalStatus::isStored;
257193323Sed            }
258193323Sed          } else {
259193323Sed            GS.StoredType = GlobalStatus::isStored;
260193323Sed          }
261193323Sed        }
262239462Sdim      } else if (isa<BitCastInst>(I)) {
263239462Sdim        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
264193323Sed      } else if (isa<GetElementPtrInst>(I)) {
265193323Sed        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
266193323Sed      } else if (isa<SelectInst>(I)) {
267193323Sed        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
268206083Srdivacky      } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
269193323Sed        // PHI nodes we can check just like select or GEP instructions, but we
270193323Sed        // have to be careful about infinite recursion.
271193323Sed        if (PHIUsers.insert(PN))  // Not already visited.
272193323Sed          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
273193323Sed      } else if (isa<CmpInst>(I)) {
274218893Sdim        GS.isCompared = true;
275223017Sdim      } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
276223017Sdim        if (MTI->isVolatile()) return true;
277210299Sed        if (MTI->getArgOperand(0) == V)
278193323Sed          GS.StoredType = GlobalStatus::isStored;
279210299Sed        if (MTI->getArgOperand(1) == V)
280193323Sed          GS.isLoaded = true;
281223017Sdim      } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) {
282223017Sdim        assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!");
283223017Sdim        if (MSI->isVolatile()) return true;
284193323Sed        GS.StoredType = GlobalStatus::isStored;
285193323Sed      } else {
286193323Sed        return true;  // Any other non-load instruction might take address!
287193323Sed      }
288210299Sed    } else if (const Constant *C = dyn_cast<Constant>(U)) {
289193323Sed      GS.HasNonInstructionUser = true;
290193323Sed      // We might have a dead and dangling constant hanging off of here.
291194178Sed      if (!SafeToDestroyConstant(C))
292193323Sed        return true;
293193323Sed    } else {
294193323Sed      GS.HasNonInstructionUser = true;
295193323Sed      // Otherwise must be some other user.
296193323Sed      return true;
297193323Sed    }
298210299Sed  }
299193323Sed
300193323Sed  return false;
301193323Sed}
302193323Sed
303239462Sdim/// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
304239462Sdim/// as a root?  If so, we might not really want to eliminate the stores to it.
305239462Sdimstatic bool isLeakCheckerRoot(GlobalVariable *GV) {
306239462Sdim  // A global variable is a root if it is a pointer, or could plausibly contain
307239462Sdim  // a pointer.  There are two challenges; one is that we could have a struct
308239462Sdim  // the has an inner member which is a pointer.  We recurse through the type to
309239462Sdim  // detect these (up to a point).  The other is that we may actually be a union
310239462Sdim  // of a pointer and another type, and so our LLVM type is an integer which
311239462Sdim  // gets converted into a pointer, or our type is an [i8 x #] with a pointer
312239462Sdim  // potentially contained here.
313239462Sdim
314239462Sdim  if (GV->hasPrivateLinkage())
315239462Sdim    return false;
316239462Sdim
317239462Sdim  SmallVector<Type *, 4> Types;
318239462Sdim  Types.push_back(cast<PointerType>(GV->getType())->getElementType());
319239462Sdim
320239462Sdim  unsigned Limit = 20;
321239462Sdim  do {
322239462Sdim    Type *Ty = Types.pop_back_val();
323239462Sdim    switch (Ty->getTypeID()) {
324239462Sdim      default: break;
325239462Sdim      case Type::PointerTyID: return true;
326239462Sdim      case Type::ArrayTyID:
327239462Sdim      case Type::VectorTyID: {
328239462Sdim        SequentialType *STy = cast<SequentialType>(Ty);
329239462Sdim        Types.push_back(STy->getElementType());
330239462Sdim        break;
331239462Sdim      }
332239462Sdim      case Type::StructTyID: {
333239462Sdim        StructType *STy = cast<StructType>(Ty);
334239462Sdim        if (STy->isOpaque()) return true;
335239462Sdim        for (StructType::element_iterator I = STy->element_begin(),
336239462Sdim                 E = STy->element_end(); I != E; ++I) {
337239462Sdim          Type *InnerTy = *I;
338239462Sdim          if (isa<PointerType>(InnerTy)) return true;
339239462Sdim          if (isa<CompositeType>(InnerTy))
340239462Sdim            Types.push_back(InnerTy);
341239462Sdim        }
342239462Sdim        break;
343239462Sdim      }
344239462Sdim    }
345239462Sdim    if (--Limit == 0) return true;
346239462Sdim  } while (!Types.empty());
347239462Sdim  return false;
348239462Sdim}
349239462Sdim
350239462Sdim/// Given a value that is stored to a global but never read, determine whether
351239462Sdim/// it's safe to remove the store and the chain of computation that feeds the
352239462Sdim/// store.
353243830Sdimstatic bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
354239462Sdim  do {
355239462Sdim    if (isa<Constant>(V))
356239462Sdim      return true;
357239462Sdim    if (!V->hasOneUse())
358239462Sdim      return false;
359239462Sdim    if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
360239462Sdim        isa<GlobalValue>(V))
361239462Sdim      return false;
362243830Sdim    if (isAllocationFn(V, TLI))
363239462Sdim      return true;
364239462Sdim
365239462Sdim    Instruction *I = cast<Instruction>(V);
366239462Sdim    if (I->mayHaveSideEffects())
367239462Sdim      return false;
368239462Sdim    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
369239462Sdim      if (!GEP->hasAllConstantIndices())
370239462Sdim        return false;
371239462Sdim    } else if (I->getNumOperands() != 1) {
372239462Sdim      return false;
373239462Sdim    }
374239462Sdim
375239462Sdim    V = I->getOperand(0);
376239462Sdim  } while (1);
377239462Sdim}
378239462Sdim
379239462Sdim/// CleanupPointerRootUsers - This GV is a pointer root.  Loop over all users
380239462Sdim/// of the global and clean up any that obviously don't assign the global a
381239462Sdim/// value that isn't dynamically allocated.
382239462Sdim///
383243830Sdimstatic bool CleanupPointerRootUsers(GlobalVariable *GV,
384243830Sdim                                    const TargetLibraryInfo *TLI) {
385239462Sdim  // A brief explanation of leak checkers.  The goal is to find bugs where
386239462Sdim  // pointers are forgotten, causing an accumulating growth in memory
387239462Sdim  // usage over time.  The common strategy for leak checkers is to whitelist the
388239462Sdim  // memory pointed to by globals at exit.  This is popular because it also
389239462Sdim  // solves another problem where the main thread of a C++ program may shut down
390239462Sdim  // before other threads that are still expecting to use those globals.  To
391239462Sdim  // handle that case, we expect the program may create a singleton and never
392239462Sdim  // destroy it.
393239462Sdim
394239462Sdim  bool Changed = false;
395239462Sdim
396239462Sdim  // If Dead[n].first is the only use of a malloc result, we can delete its
397239462Sdim  // chain of computation and the store to the global in Dead[n].second.
398239462Sdim  SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
399239462Sdim
400239462Sdim  // Constants can't be pointers to dynamically allocated memory.
401239462Sdim  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
402239462Sdim       UI != E;) {
403239462Sdim    User *U = *UI++;
404239462Sdim    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
405239462Sdim      Value *V = SI->getValueOperand();
406239462Sdim      if (isa<Constant>(V)) {
407239462Sdim        Changed = true;
408239462Sdim        SI->eraseFromParent();
409239462Sdim      } else if (Instruction *I = dyn_cast<Instruction>(V)) {
410239462Sdim        if (I->hasOneUse())
411239462Sdim          Dead.push_back(std::make_pair(I, SI));
412239462Sdim      }
413239462Sdim    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
414239462Sdim      if (isa<Constant>(MSI->getValue())) {
415239462Sdim        Changed = true;
416239462Sdim        MSI->eraseFromParent();
417239462Sdim      } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
418239462Sdim        if (I->hasOneUse())
419239462Sdim          Dead.push_back(std::make_pair(I, MSI));
420239462Sdim      }
421239462Sdim    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
422239462Sdim      GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
423239462Sdim      if (MemSrc && MemSrc->isConstant()) {
424239462Sdim        Changed = true;
425239462Sdim        MTI->eraseFromParent();
426239462Sdim      } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
427239462Sdim        if (I->hasOneUse())
428239462Sdim          Dead.push_back(std::make_pair(I, MTI));
429239462Sdim      }
430239462Sdim    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
431239462Sdim      if (CE->use_empty()) {
432239462Sdim        CE->destroyConstant();
433239462Sdim        Changed = true;
434239462Sdim      }
435239462Sdim    } else if (Constant *C = dyn_cast<Constant>(U)) {
436239462Sdim      if (SafeToDestroyConstant(C)) {
437239462Sdim        C->destroyConstant();
438239462Sdim        // This could have invalidated UI, start over from scratch.
439239462Sdim        Dead.clear();
440243830Sdim        CleanupPointerRootUsers(GV, TLI);
441239462Sdim        return true;
442239462Sdim      }
443239462Sdim    }
444239462Sdim  }
445239462Sdim
446239462Sdim  for (int i = 0, e = Dead.size(); i != e; ++i) {
447243830Sdim    if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
448239462Sdim      Dead[i].second->eraseFromParent();
449239462Sdim      Instruction *I = Dead[i].first;
450239462Sdim      do {
451249423Sdim        if (isAllocationFn(I, TLI))
452249423Sdim          break;
453239462Sdim        Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
454239462Sdim        if (!J)
455239462Sdim          break;
456239462Sdim        I->eraseFromParent();
457239462Sdim        I = J;
458239462Sdim      } while (1);
459239462Sdim      I->eraseFromParent();
460239462Sdim    }
461239462Sdim  }
462239462Sdim
463239462Sdim  return Changed;
464239462Sdim}
465239462Sdim
466193323Sed/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
467193323Sed/// users of the global, cleaning up the obvious ones.  This is largely just a
468193323Sed/// quick scan over the use list to clean up the easy and obvious cruft.  This
469193323Sed/// returns true if it made a change.
470234353Sdimstatic bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
471243830Sdim                                       DataLayout *TD, TargetLibraryInfo *TLI) {
472193323Sed  bool Changed = false;
473249423Sdim  SmallVector<User*, 8> WorkList(V->use_begin(), V->use_end());
474249423Sdim  while (!WorkList.empty()) {
475249423Sdim    User *U = WorkList.pop_back_val();
476193323Sed
477193323Sed    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
478193323Sed      if (Init) {
479193323Sed        // Replace the load with the initializer.
480193323Sed        LI->replaceAllUsesWith(Init);
481193323Sed        LI->eraseFromParent();
482193323Sed        Changed = true;
483193323Sed      }
484193323Sed    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
485193323Sed      // Store must be unreachable or storing Init into the global.
486193323Sed      SI->eraseFromParent();
487193323Sed      Changed = true;
488193323Sed    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
489193323Sed      if (CE->getOpcode() == Instruction::GetElementPtr) {
490193323Sed        Constant *SubInit = 0;
491193323Sed        if (Init)
492193323Sed          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
493234353Sdim        Changed |= CleanupConstantGlobalUsers(CE, SubInit, TD, TLI);
494218893Sdim      } else if (CE->getOpcode() == Instruction::BitCast &&
495204642Srdivacky                 CE->getType()->isPointerTy()) {
496193323Sed        // Pointer cast, delete any stores and memsets to the global.
497234353Sdim        Changed |= CleanupConstantGlobalUsers(CE, 0, TD, TLI);
498193323Sed      }
499193323Sed
500193323Sed      if (CE->use_empty()) {
501193323Sed        CE->destroyConstant();
502193323Sed        Changed = true;
503193323Sed      }
504193323Sed    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
505193323Sed      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
506193323Sed      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
507193323Sed      // and will invalidate our notion of what Init is.
508193323Sed      Constant *SubInit = 0;
509193323Sed      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
510218893Sdim        ConstantExpr *CE =
511234353Sdim          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, TD, TLI));
512193323Sed        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
513193323Sed          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
514234353Sdim
515234353Sdim        // If the initializer is an all-null value and we have an inbounds GEP,
516234353Sdim        // we already know what the result of any load from that GEP is.
517234353Sdim        // TODO: Handle splats.
518234353Sdim        if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
519234353Sdim          SubInit = Constant::getNullValue(GEP->getType()->getElementType());
520193323Sed      }
521234353Sdim      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, TD, TLI);
522193323Sed
523193323Sed      if (GEP->use_empty()) {
524193323Sed        GEP->eraseFromParent();
525193323Sed        Changed = true;
526193323Sed      }
527193323Sed    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
528193323Sed      if (MI->getRawDest() == V) {
529193323Sed        MI->eraseFromParent();
530193323Sed        Changed = true;
531193323Sed      }
532193323Sed
533193323Sed    } else if (Constant *C = dyn_cast<Constant>(U)) {
534193323Sed      // If we have a chain of dead constantexprs or other things dangling from
535193323Sed      // us, and if they are all dead, nuke them without remorse.
536194178Sed      if (SafeToDestroyConstant(C)) {
537193323Sed        C->destroyConstant();
538234353Sdim        CleanupConstantGlobalUsers(V, Init, TD, TLI);
539193323Sed        return true;
540193323Sed      }
541193323Sed    }
542193323Sed  }
543193323Sed  return Changed;
544193323Sed}
545193323Sed
546193323Sed/// isSafeSROAElementUse - Return true if the specified instruction is a safe
547193323Sed/// user of a derived expression from a global that we want to SROA.
548193323Sedstatic bool isSafeSROAElementUse(Value *V) {
549193323Sed  // We might have a dead and dangling constant hanging off of here.
550193323Sed  if (Constant *C = dyn_cast<Constant>(V))
551194178Sed    return SafeToDestroyConstant(C);
552218893Sdim
553193323Sed  Instruction *I = dyn_cast<Instruction>(V);
554193323Sed  if (!I) return false;
555193323Sed
556193323Sed  // Loads are ok.
557193323Sed  if (isa<LoadInst>(I)) return true;
558193323Sed
559193323Sed  // Stores *to* the pointer are ok.
560193323Sed  if (StoreInst *SI = dyn_cast<StoreInst>(I))
561193323Sed    return SI->getOperand(0) != V;
562218893Sdim
563193323Sed  // Otherwise, it must be a GEP.
564193323Sed  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
565193323Sed  if (GEPI == 0) return false;
566218893Sdim
567193323Sed  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
568193323Sed      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
569193323Sed    return false;
570218893Sdim
571193323Sed  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
572193323Sed       I != E; ++I)
573193323Sed    if (!isSafeSROAElementUse(*I))
574193323Sed      return false;
575193323Sed  return true;
576193323Sed}
577193323Sed
578193323Sed
579193323Sed/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
580193323Sed/// Look at it and its uses and decide whether it is safe to SROA this global.
581193323Sed///
582193323Sedstatic bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
583193323Sed  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
584218893Sdim  if (!isa<GetElementPtrInst>(U) &&
585218893Sdim      (!isa<ConstantExpr>(U) ||
586193323Sed       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
587193323Sed    return false;
588218893Sdim
589193323Sed  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
590193323Sed  // don't like < 3 operand CE's, and we don't like non-constant integer
591193323Sed  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
592193323Sed  // value of C.
593193323Sed  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
594193323Sed      !cast<Constant>(U->getOperand(1))->isNullValue() ||
595193323Sed      !isa<ConstantInt>(U->getOperand(2)))
596193323Sed    return false;
597193323Sed
598193323Sed  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
599193323Sed  ++GEPI;  // Skip over the pointer index.
600218893Sdim
601193323Sed  // If this is a use of an array allocation, do a bit more checking for sanity.
602226633Sdim  if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
603193323Sed    uint64_t NumElements = AT->getNumElements();
604193323Sed    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
605218893Sdim
606193323Sed    // Check to make sure that index falls within the array.  If not,
607193323Sed    // something funny is going on, so we won't do the optimization.
608193323Sed    //
609193323Sed    if (Idx->getZExtValue() >= NumElements)
610193323Sed      return false;
611218893Sdim
612193323Sed    // We cannot scalar repl this level of the array unless any array
613193323Sed    // sub-indices are in-range constants.  In particular, consider:
614193323Sed    // A[0][i].  We cannot know that the user isn't doing invalid things like
615193323Sed    // allowing i to index an out-of-range subscript that accesses A[1].
616193323Sed    //
617193323Sed    // Scalar replacing *just* the outer index of the array is probably not
618193323Sed    // going to be a win anyway, so just give up.
619193323Sed    for (++GEPI; // Skip array index.
620198090Srdivacky         GEPI != E;
621193323Sed         ++GEPI) {
622193323Sed      uint64_t NumElements;
623226633Sdim      if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
624193323Sed        NumElements = SubArrayTy->getNumElements();
625226633Sdim      else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
626198090Srdivacky        NumElements = SubVectorTy->getNumElements();
627198090Srdivacky      else {
628204642Srdivacky        assert((*GEPI)->isStructTy() &&
629198090Srdivacky               "Indexed GEP type is not array, vector, or struct!");
630198090Srdivacky        continue;
631198090Srdivacky      }
632218893Sdim
633193323Sed      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
634193323Sed      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
635193323Sed        return false;
636193323Sed    }
637193323Sed  }
638193323Sed
639193323Sed  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
640193323Sed    if (!isSafeSROAElementUse(*I))
641193323Sed      return false;
642193323Sed  return true;
643193323Sed}
644193323Sed
645193323Sed/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
646193323Sed/// is safe for us to perform this transformation.
647193323Sed///
648193323Sedstatic bool GlobalUsersSafeToSRA(GlobalValue *GV) {
649193323Sed  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
650193323Sed       UI != E; ++UI) {
651193323Sed    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
652193323Sed      return false;
653193323Sed  }
654193323Sed  return true;
655193323Sed}
656193323Sed
657218893Sdim
658193323Sed/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
659193323Sed/// variable.  This opens the door for other optimizations by exposing the
660193323Sed/// behavior of the program in a more fine-grained way.  We have determined that
661193323Sed/// this transformation is safe already.  We return the first global variable we
662193323Sed/// insert so that the caller can reprocess it.
663243830Sdimstatic GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &TD) {
664193323Sed  // Make sure this global only has simple uses that we can SRA.
665193323Sed  if (!GlobalUsersSafeToSRA(GV))
666193323Sed    return 0;
667218893Sdim
668193323Sed  assert(GV->hasLocalLinkage() && !GV->isConstant());
669193323Sed  Constant *Init = GV->getInitializer();
670226633Sdim  Type *Ty = Init->getType();
671193323Sed
672193323Sed  std::vector<GlobalVariable*> NewGlobals;
673193323Sed  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
674193323Sed
675193323Sed  // Get the alignment of the global, either explicit or target-specific.
676193323Sed  unsigned StartAlignment = GV->getAlignment();
677193323Sed  if (StartAlignment == 0)
678193323Sed    StartAlignment = TD.getABITypeAlignment(GV->getType());
679218893Sdim
680226633Sdim  if (StructType *STy = dyn_cast<StructType>(Ty)) {
681193323Sed    NewGlobals.reserve(STy->getNumElements());
682193323Sed    const StructLayout &Layout = *TD.getStructLayout(STy);
683193323Sed    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
684234353Sdim      Constant *In = Init->getAggregateElement(i);
685193323Sed      assert(In && "Couldn't get element of initializer?");
686199481Srdivacky      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
687193323Sed                                               GlobalVariable::InternalLinkage,
688198090Srdivacky                                               In, GV->getName()+"."+Twine(i),
689239462Sdim                                               GV->getThreadLocalMode(),
690198090Srdivacky                                              GV->getType()->getAddressSpace());
691193323Sed      Globals.insert(GV, NGV);
692193323Sed      NewGlobals.push_back(NGV);
693218893Sdim
694193323Sed      // Calculate the known alignment of the field.  If the original aggregate
695193323Sed      // had 256 byte alignment for example, something might depend on that:
696193323Sed      // propagate info to each field.
697193323Sed      uint64_t FieldOffset = Layout.getElementOffset(i);
698193323Sed      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
699193323Sed      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
700193323Sed        NGV->setAlignment(NewAlign);
701193323Sed    }
702226633Sdim  } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
703193323Sed    unsigned NumElements = 0;
704226633Sdim    if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
705193323Sed      NumElements = ATy->getNumElements();
706193323Sed    else
707193323Sed      NumElements = cast<VectorType>(STy)->getNumElements();
708193323Sed
709193323Sed    if (NumElements > 16 && GV->hasNUsesOrMore(16))
710193323Sed      return 0; // It's not worth it.
711193323Sed    NewGlobals.reserve(NumElements);
712218893Sdim
713193323Sed    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
714193323Sed    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
715193323Sed    for (unsigned i = 0, e = NumElements; i != e; ++i) {
716234353Sdim      Constant *In = Init->getAggregateElement(i);
717193323Sed      assert(In && "Couldn't get element of initializer?");
718193323Sed
719199481Srdivacky      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
720193323Sed                                               GlobalVariable::InternalLinkage,
721198090Srdivacky                                               In, GV->getName()+"."+Twine(i),
722239462Sdim                                               GV->getThreadLocalMode(),
723198090Srdivacky                                              GV->getType()->getAddressSpace());
724193323Sed      Globals.insert(GV, NGV);
725193323Sed      NewGlobals.push_back(NGV);
726218893Sdim
727193323Sed      // Calculate the known alignment of the field.  If the original aggregate
728193323Sed      // had 256 byte alignment for example, something might depend on that:
729193323Sed      // propagate info to each field.
730193323Sed      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
731193323Sed      if (NewAlign > EltAlign)
732193323Sed        NGV->setAlignment(NewAlign);
733193323Sed    }
734193323Sed  }
735193323Sed
736193323Sed  if (NewGlobals.empty())
737193323Sed    return 0;
738218893Sdim
739202375Srdivacky  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
740193323Sed
741199481Srdivacky  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
742193323Sed
743193323Sed  // Loop over all of the uses of the global, replacing the constantexpr geps,
744193323Sed  // with smaller constantexpr geps or direct references.
745193323Sed  while (!GV->use_empty()) {
746193323Sed    User *GEP = GV->use_back();
747193323Sed    assert(((isa<ConstantExpr>(GEP) &&
748193323Sed             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
749193323Sed            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
750193323Sed
751193323Sed    // Ignore the 1th operand, which has to be zero or else the program is quite
752193323Sed    // broken (undefined).  Get the 2nd operand, which is the structure or array
753193323Sed    // index.
754193323Sed    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
755193323Sed    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
756193323Sed
757193323Sed    Value *NewPtr = NewGlobals[Val];
758193323Sed
759193323Sed    // Form a shorter GEP if needed.
760193323Sed    if (GEP->getNumOperands() > 3) {
761193323Sed      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
762193323Sed        SmallVector<Constant*, 8> Idxs;
763193323Sed        Idxs.push_back(NullInt);
764193323Sed        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
765193323Sed          Idxs.push_back(CE->getOperand(i));
766226633Sdim        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
767193323Sed      } else {
768193323Sed        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
769193323Sed        SmallVector<Value*, 8> Idxs;
770193323Sed        Idxs.push_back(NullInt);
771193323Sed        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
772193323Sed          Idxs.push_back(GEPI->getOperand(i));
773226633Sdim        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
774198090Srdivacky                                           GEPI->getName()+"."+Twine(Val),GEPI);
775193323Sed      }
776193323Sed    }
777193323Sed    GEP->replaceAllUsesWith(NewPtr);
778193323Sed
779193323Sed    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
780193323Sed      GEPI->eraseFromParent();
781193323Sed    else
782193323Sed      cast<ConstantExpr>(GEP)->destroyConstant();
783193323Sed  }
784193323Sed
785193323Sed  // Delete the old global, now that it is dead.
786193323Sed  Globals.erase(GV);
787193323Sed  ++NumSRA;
788193323Sed
789193323Sed  // Loop over the new globals array deleting any globals that are obviously
790193323Sed  // dead.  This can arise due to scalarization of a structure or an array that
791193323Sed  // has elements that are dead.
792193323Sed  unsigned FirstGlobal = 0;
793193323Sed  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
794193323Sed    if (NewGlobals[i]->use_empty()) {
795193323Sed      Globals.erase(NewGlobals[i]);
796193323Sed      if (FirstGlobal == i) ++FirstGlobal;
797193323Sed    }
798193323Sed
799193323Sed  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
800193323Sed}
801193323Sed
802193323Sed/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
803218893Sdim/// value will trap if the value is dynamically null.  PHIs keeps track of any
804193323Sed/// phi nodes we've seen to avoid reprocessing them.
805207618Srdivackystatic bool AllUsesOfValueWillTrapIfNull(const Value *V,
806207618Srdivacky                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
807207618Srdivacky  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
808207618Srdivacky       ++UI) {
809207618Srdivacky    const User *U = *UI;
810207618Srdivacky
811207618Srdivacky    if (isa<LoadInst>(U)) {
812193323Sed      // Will trap.
813207618Srdivacky    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
814193323Sed      if (SI->getOperand(0) == V) {
815207618Srdivacky        //cerr << "NONTRAPPING USE: " << *U;
816193323Sed        return false;  // Storing the value.
817193323Sed      }
818207618Srdivacky    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
819205407Srdivacky      if (CI->getCalledValue() != V) {
820207618Srdivacky        //cerr << "NONTRAPPING USE: " << *U;
821193323Sed        return false;  // Not calling the ptr
822193323Sed      }
823207618Srdivacky    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
824205407Srdivacky      if (II->getCalledValue() != V) {
825207618Srdivacky        //cerr << "NONTRAPPING USE: " << *U;
826193323Sed        return false;  // Not calling the ptr
827193323Sed      }
828207618Srdivacky    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
829193323Sed      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
830207618Srdivacky    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
831193323Sed      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
832207618Srdivacky    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
833193323Sed      // If we've already seen this phi node, ignore it, it has already been
834193323Sed      // checked.
835203954Srdivacky      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
836203954Srdivacky        return false;
837207618Srdivacky    } else if (isa<ICmpInst>(U) &&
838193323Sed               isa<ConstantPointerNull>(UI->getOperand(1))) {
839204642Srdivacky      // Ignore icmp X, null
840193323Sed    } else {
841207618Srdivacky      //cerr << "NONTRAPPING USE: " << *U;
842193323Sed      return false;
843193323Sed    }
844207618Srdivacky  }
845193323Sed  return true;
846193323Sed}
847193323Sed
848193323Sed/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
849193323Sed/// from GV will trap if the loaded value is null.  Note that this also permits
850193323Sed/// comparisons of the loaded value against null, as a special case.
851207618Srdivackystatic bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
852207618Srdivacky  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
853207618Srdivacky       UI != E; ++UI) {
854207618Srdivacky    const User *U = *UI;
855207618Srdivacky
856207618Srdivacky    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
857207618Srdivacky      SmallPtrSet<const PHINode*, 8> PHIs;
858193323Sed      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
859193323Sed        return false;
860207618Srdivacky    } else if (isa<StoreInst>(U)) {
861193323Sed      // Ignore stores to the global.
862193323Sed    } else {
863193323Sed      // We don't know or understand this user, bail out.
864207618Srdivacky      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
865193323Sed      return false;
866193323Sed    }
867207618Srdivacky  }
868193323Sed  return true;
869193323Sed}
870193323Sed
871199481Srdivackystatic bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
872193323Sed  bool Changed = false;
873193323Sed  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
874193323Sed    Instruction *I = cast<Instruction>(*UI++);
875193323Sed    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
876193323Sed      LI->setOperand(0, NewV);
877193323Sed      Changed = true;
878193323Sed    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
879193323Sed      if (SI->getOperand(1) == V) {
880193323Sed        SI->setOperand(1, NewV);
881193323Sed        Changed = true;
882193323Sed      }
883193323Sed    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
884207618Srdivacky      CallSite CS(I);
885207618Srdivacky      if (CS.getCalledValue() == V) {
886193323Sed        // Calling through the pointer!  Turn into a direct call, but be careful
887193323Sed        // that the pointer is not also being passed as an argument.
888207618Srdivacky        CS.setCalledFunction(NewV);
889193323Sed        Changed = true;
890193323Sed        bool PassedAsArg = false;
891207618Srdivacky        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
892207618Srdivacky          if (CS.getArgument(i) == V) {
893193323Sed            PassedAsArg = true;
894207618Srdivacky            CS.setArgument(i, NewV);
895193323Sed          }
896193323Sed
897193323Sed        if (PassedAsArg) {
898193323Sed          // Being passed as an argument also.  Be careful to not invalidate UI!
899193323Sed          UI = V->use_begin();
900193323Sed        }
901193323Sed      }
902193323Sed    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
903193323Sed      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
904193323Sed                                ConstantExpr::getCast(CI->getOpcode(),
905199481Srdivacky                                                      NewV, CI->getType()));
906193323Sed      if (CI->use_empty()) {
907193323Sed        Changed = true;
908193323Sed        CI->eraseFromParent();
909193323Sed      }
910193323Sed    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
911193323Sed      // Should handle GEP here.
912193323Sed      SmallVector<Constant*, 8> Idxs;
913193323Sed      Idxs.reserve(GEPI->getNumOperands()-1);
914193323Sed      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
915193323Sed           i != e; ++i)
916193323Sed        if (Constant *C = dyn_cast<Constant>(*i))
917193323Sed          Idxs.push_back(C);
918193323Sed        else
919193323Sed          break;
920193323Sed      if (Idxs.size() == GEPI->getNumOperands()-1)
921193323Sed        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
922226633Sdim                          ConstantExpr::getGetElementPtr(NewV, Idxs));
923193323Sed      if (GEPI->use_empty()) {
924193323Sed        Changed = true;
925193323Sed        GEPI->eraseFromParent();
926193323Sed      }
927193323Sed    }
928193323Sed  }
929193323Sed
930193323Sed  return Changed;
931193323Sed}
932193323Sed
933193323Sed
934193323Sed/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
935193323Sed/// value stored into it.  If there are uses of the loaded value that would trap
936193323Sed/// if the loaded value is dynamically null, then we know that they cannot be
937193323Sed/// reachable with a null optimize away the load.
938234353Sdimstatic bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
939243830Sdim                                            DataLayout *TD,
940234353Sdim                                            TargetLibraryInfo *TLI) {
941193323Sed  bool Changed = false;
942193323Sed
943193323Sed  // Keep track of whether we are able to remove all the uses of the global
944193323Sed  // other than the store that defines it.
945193323Sed  bool AllNonStoreUsesGone = true;
946218893Sdim
947193323Sed  // Replace all uses of loads with uses of uses of the stored value.
948193323Sed  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
949193323Sed    User *GlobalUser = *GUI++;
950193323Sed    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
951199481Srdivacky      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
952193323Sed      // If we were able to delete all uses of the loads
953193323Sed      if (LI->use_empty()) {
954193323Sed        LI->eraseFromParent();
955193323Sed        Changed = true;
956193323Sed      } else {
957193323Sed        AllNonStoreUsesGone = false;
958193323Sed      }
959193323Sed    } else if (isa<StoreInst>(GlobalUser)) {
960193323Sed      // Ignore the store that stores "LV" to the global.
961193323Sed      assert(GlobalUser->getOperand(1) == GV &&
962193323Sed             "Must be storing *to* the global");
963193323Sed    } else {
964193323Sed      AllNonStoreUsesGone = false;
965193323Sed
966193323Sed      // If we get here we could have other crazy uses that are transitively
967193323Sed      // loaded.
968193323Sed      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
969243830Sdim              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
970243830Sdim              isa<BitCastInst>(GlobalUser) ||
971243830Sdim              isa<GetElementPtrInst>(GlobalUser)) &&
972223017Sdim             "Only expect load and stores!");
973193323Sed    }
974193323Sed  }
975193323Sed
976193323Sed  if (Changed) {
977202375Srdivacky    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
978193323Sed    ++NumGlobUses;
979193323Sed  }
980193323Sed
981193323Sed  // If we nuked all of the loads, then none of the stores are needed either,
982193323Sed  // nor is the global.
983193323Sed  if (AllNonStoreUsesGone) {
984239462Sdim    if (isLeakCheckerRoot(GV)) {
985243830Sdim      Changed |= CleanupPointerRootUsers(GV, TLI);
986239462Sdim    } else {
987239462Sdim      Changed = true;
988239462Sdim      CleanupConstantGlobalUsers(GV, 0, TD, TLI);
989239462Sdim    }
990193323Sed    if (GV->use_empty()) {
991239462Sdim      DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
992239462Sdim      Changed = true;
993193323Sed      GV->eraseFromParent();
994193323Sed      ++NumDeleted;
995193323Sed    }
996193323Sed  }
997193323Sed  return Changed;
998193323Sed}
999193323Sed
1000193323Sed/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
1001193323Sed/// instructions that are foldable.
1002234353Sdimstatic void ConstantPropUsersOf(Value *V,
1003243830Sdim                                DataLayout *TD, TargetLibraryInfo *TLI) {
1004193323Sed  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
1005193323Sed    if (Instruction *I = dyn_cast<Instruction>(*UI++))
1006234353Sdim      if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) {
1007193323Sed        I->replaceAllUsesWith(NewC);
1008193323Sed
1009193323Sed        // Advance UI to the next non-I use to avoid invalidating it!
1010193323Sed        // Instructions could multiply use V.
1011193323Sed        while (UI != E && *UI == I)
1012193323Sed          ++UI;
1013193323Sed        I->eraseFromParent();
1014193323Sed      }
1015193323Sed}
1016193323Sed
1017193323Sed/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
1018193323Sed/// variable, and transforms the program as if it always contained the result of
1019193323Sed/// the specified malloc.  Because it is always the result of the specified
1020193323Sed/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
1021193323Sed/// malloc into a global, and any loads of GV as uses of the new global.
1022193323Sedstatic GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
1023198090Srdivacky                                                     CallInst *CI,
1024226633Sdim                                                     Type *AllocTy,
1025204642Srdivacky                                                     ConstantInt *NElements,
1026243830Sdim                                                     DataLayout *TD,
1027234353Sdim                                                     TargetLibraryInfo *TLI) {
1028204642Srdivacky  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
1029218893Sdim
1030226633Sdim  Type *GlobalType;
1031204642Srdivacky  if (NElements->getZExtValue() == 1)
1032204642Srdivacky    GlobalType = AllocTy;
1033204642Srdivacky  else
1034204642Srdivacky    // If we have an array allocation, the global variable is of an array.
1035204642Srdivacky    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
1036198953Srdivacky
1037198090Srdivacky  // Create the new global variable.  The contents of the malloc'd memory is
1038198090Srdivacky  // undefined, so initialize with an undef value.
1039218893Sdim  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
1040204642Srdivacky                                             GlobalType, false,
1041204642Srdivacky                                             GlobalValue::InternalLinkage,
1042204642Srdivacky                                             UndefValue::get(GlobalType),
1043198090Srdivacky                                             GV->getName()+".body",
1044198090Srdivacky                                             GV,
1045239462Sdim                                             GV->getThreadLocalMode());
1046218893Sdim
1047204642Srdivacky  // If there are bitcast users of the malloc (which is typical, usually we have
1048204642Srdivacky  // a malloc + bitcast) then replace them with uses of the new global.  Update
1049204642Srdivacky  // other users to use the global as well.
1050204642Srdivacky  BitCastInst *TheBC = 0;
1051204642Srdivacky  while (!CI->use_empty()) {
1052204642Srdivacky    Instruction *User = cast<Instruction>(CI->use_back());
1053204642Srdivacky    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1054204642Srdivacky      if (BCI->getType() == NewGV->getType()) {
1055204642Srdivacky        BCI->replaceAllUsesWith(NewGV);
1056204642Srdivacky        BCI->eraseFromParent();
1057204642Srdivacky      } else {
1058204642Srdivacky        BCI->setOperand(0, NewGV);
1059204642Srdivacky      }
1060204642Srdivacky    } else {
1061204642Srdivacky      if (TheBC == 0)
1062204642Srdivacky        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
1063204642Srdivacky      User->replaceUsesOfWith(CI, TheBC);
1064204642Srdivacky    }
1065204642Srdivacky  }
1066218893Sdim
1067198090Srdivacky  Constant *RepValue = NewGV;
1068198090Srdivacky  if (NewGV->getType() != GV->getType()->getElementType())
1069218893Sdim    RepValue = ConstantExpr::getBitCast(RepValue,
1070198090Srdivacky                                        GV->getType()->getElementType());
1071198090Srdivacky
1072198090Srdivacky  // If there is a comparison against null, we will insert a global bool to
1073198090Srdivacky  // keep track of whether the global was initialized yet or not.
1074198090Srdivacky  GlobalVariable *InitBool =
1075199481Srdivacky    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
1076198090Srdivacky                       GlobalValue::InternalLinkage,
1077199481Srdivacky                       ConstantInt::getFalse(GV->getContext()),
1078239462Sdim                       GV->getName()+".init", GV->getThreadLocalMode());
1079198090Srdivacky  bool InitBoolUsed = false;
1080198090Srdivacky
1081198090Srdivacky  // Loop over all uses of GV, processing them in turn.
1082204642Srdivacky  while (!GV->use_empty()) {
1083204642Srdivacky    if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
1084198090Srdivacky      // The global is initialized when the store to it occurs.
1085234353Sdim      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
1086234353Sdim                    SI->getOrdering(), SI->getSynchScope(), SI);
1087198090Srdivacky      SI->eraseFromParent();
1088204642Srdivacky      continue;
1089198090Srdivacky    }
1090218893Sdim
1091204642Srdivacky    LoadInst *LI = cast<LoadInst>(GV->use_back());
1092204642Srdivacky    while (!LI->use_empty()) {
1093204642Srdivacky      Use &LoadUse = LI->use_begin().getUse();
1094204642Srdivacky      if (!isa<ICmpInst>(LoadUse.getUser())) {
1095204642Srdivacky        LoadUse = RepValue;
1096204642Srdivacky        continue;
1097204642Srdivacky      }
1098218893Sdim
1099204642Srdivacky      ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
1100204642Srdivacky      // Replace the cmp X, 0 with a use of the bool value.
1101234353Sdim      // Sink the load to where the compare was, if atomic rules allow us to.
1102234353Sdim      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
1103234353Sdim                               LI->getOrdering(), LI->getSynchScope(),
1104234353Sdim                               LI->isUnordered() ? (Instruction*)ICI : LI);
1105204642Srdivacky      InitBoolUsed = true;
1106204642Srdivacky      switch (ICI->getPredicate()) {
1107204642Srdivacky      default: llvm_unreachable("Unknown ICmp Predicate!");
1108204642Srdivacky      case ICmpInst::ICMP_ULT:
1109204642Srdivacky      case ICmpInst::ICMP_SLT:   // X < null -> always false
1110204642Srdivacky        LV = ConstantInt::getFalse(GV->getContext());
1111204642Srdivacky        break;
1112204642Srdivacky      case ICmpInst::ICMP_ULE:
1113204642Srdivacky      case ICmpInst::ICMP_SLE:
1114204642Srdivacky      case ICmpInst::ICMP_EQ:
1115204642Srdivacky        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
1116204642Srdivacky        break;
1117204642Srdivacky      case ICmpInst::ICMP_NE:
1118204642Srdivacky      case ICmpInst::ICMP_UGE:
1119204642Srdivacky      case ICmpInst::ICMP_SGE:
1120204642Srdivacky      case ICmpInst::ICMP_UGT:
1121204642Srdivacky      case ICmpInst::ICMP_SGT:
1122204642Srdivacky        break;  // no change.
1123204642Srdivacky      }
1124204642Srdivacky      ICI->replaceAllUsesWith(LV);
1125204642Srdivacky      ICI->eraseFromParent();
1126204642Srdivacky    }
1127204642Srdivacky    LI->eraseFromParent();
1128204642Srdivacky  }
1129198090Srdivacky
1130198090Srdivacky  // If the initialization boolean was used, insert it, otherwise delete it.
1131198090Srdivacky  if (!InitBoolUsed) {
1132198090Srdivacky    while (!InitBool->use_empty())  // Delete initializations
1133204642Srdivacky      cast<StoreInst>(InitBool->use_back())->eraseFromParent();
1134198090Srdivacky    delete InitBool;
1135198090Srdivacky  } else
1136198090Srdivacky    GV->getParent()->getGlobalList().insert(GV, InitBool);
1137198090Srdivacky
1138204642Srdivacky  // Now the GV is dead, nuke it and the malloc..
1139198090Srdivacky  GV->eraseFromParent();
1140198090Srdivacky  CI->eraseFromParent();
1141198090Srdivacky
1142198090Srdivacky  // To further other optimizations, loop over all users of NewGV and try to
1143198090Srdivacky  // constant prop them.  This will promote GEP instructions with constant
1144198090Srdivacky  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1145234353Sdim  ConstantPropUsersOf(NewGV, TD, TLI);
1146198090Srdivacky  if (RepValue != NewGV)
1147234353Sdim    ConstantPropUsersOf(RepValue, TD, TLI);
1148198090Srdivacky
1149198090Srdivacky  return NewGV;
1150198090Srdivacky}
1151198090Srdivacky
1152193323Sed/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
1153193323Sed/// to make sure that there are no complex uses of V.  We permit simple things
1154193323Sed/// like dereferencing the pointer, but not storing through the address, unless
1155193323Sed/// it is to the specified global.
1156207618Srdivackystatic bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
1157207618Srdivacky                                                      const GlobalVariable *GV,
1158207618Srdivacky                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
1159207618Srdivacky  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
1160207618Srdivacky       UI != E; ++UI) {
1161207618Srdivacky    const Instruction *Inst = cast<Instruction>(*UI);
1162207618Srdivacky
1163193323Sed    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
1164193323Sed      continue; // Fine, ignore.
1165193323Sed    }
1166218893Sdim
1167207618Srdivacky    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1168193323Sed      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
1169193323Sed        return false;  // Storing the pointer itself... bad.
1170193323Sed      continue; // Otherwise, storing through it, or storing into GV... fine.
1171193323Sed    }
1172218893Sdim
1173207618Srdivacky    // Must index into the array and into the struct.
1174207618Srdivacky    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
1175193323Sed      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
1176193323Sed        return false;
1177193323Sed      continue;
1178193323Sed    }
1179218893Sdim
1180207618Srdivacky    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1181193323Sed      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1182193323Sed      // cycles.
1183193323Sed      if (PHIs.insert(PN))
1184193323Sed        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1185193323Sed          return false;
1186193323Sed      continue;
1187193323Sed    }
1188218893Sdim
1189207618Srdivacky    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1190193323Sed      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1191193323Sed        return false;
1192193323Sed      continue;
1193193323Sed    }
1194218893Sdim
1195193323Sed    return false;
1196193323Sed  }
1197193323Sed  return true;
1198193323Sed}
1199193323Sed
1200193323Sed/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1201193323Sed/// somewhere.  Transform all uses of the allocation into loads from the
1202193323Sed/// global and uses of the resultant pointer.  Further, delete the store into
1203218893Sdim/// GV.  This assumes that these value pass the
1204193323Sed/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1205218893Sdimstatic void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1206193323Sed                                          GlobalVariable *GV) {
1207193323Sed  while (!Alloc->use_empty()) {
1208193323Sed    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1209193323Sed    Instruction *InsertPt = U;
1210193323Sed    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1211193323Sed      // If this is the store of the allocation into the global, remove it.
1212193323Sed      if (SI->getOperand(1) == GV) {
1213193323Sed        SI->eraseFromParent();
1214193323Sed        continue;
1215193323Sed      }
1216193323Sed    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1217193323Sed      // Insert the load in the corresponding predecessor, not right before the
1218193323Sed      // PHI.
1219193323Sed      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1220193323Sed    } else if (isa<BitCastInst>(U)) {
1221193323Sed      // Must be bitcast between the malloc and store to initialize the global.
1222193323Sed      ReplaceUsesOfMallocWithGlobal(U, GV);
1223193323Sed      U->eraseFromParent();
1224193323Sed      continue;
1225193323Sed    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1226193323Sed      // If this is a "GEP bitcast" and the user is a store to the global, then
1227193323Sed      // just process it as a bitcast.
1228193323Sed      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1229193323Sed        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1230193323Sed          if (SI->getOperand(1) == GV) {
1231193323Sed            // Must be bitcast GEP between the malloc and store to initialize
1232193323Sed            // the global.
1233193323Sed            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1234193323Sed            GEPI->eraseFromParent();
1235193323Sed            continue;
1236193323Sed          }
1237193323Sed    }
1238218893Sdim
1239193323Sed    // Insert a load from the global, and use it instead of the malloc.
1240193323Sed    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1241193323Sed    U->replaceUsesOfWith(Alloc, NL);
1242193323Sed  }
1243193323Sed}
1244193323Sed
1245193323Sed/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1246193323Sed/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1247193323Sed/// that index through the array and struct field, icmps of null, and PHIs.
1248206083Srdivackystatic bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1249207618Srdivacky                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1250207618Srdivacky                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1251193323Sed  // We permit two users of the load: setcc comparing against the null
1252193323Sed  // pointer, and a getelementptr of a specific form.
1253207618Srdivacky  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1254207618Srdivacky       ++UI) {
1255206083Srdivacky    const Instruction *User = cast<Instruction>(*UI);
1256218893Sdim
1257193323Sed    // Comparison against null is ok.
1258206083Srdivacky    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1259193323Sed      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1260193323Sed        return false;
1261193323Sed      continue;
1262193323Sed    }
1263218893Sdim
1264193323Sed    // getelementptr is also ok, but only a simple form.
1265206083Srdivacky    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1266193323Sed      // Must index into the array and into the struct.
1267193323Sed      if (GEPI->getNumOperands() < 3)
1268193323Sed        return false;
1269218893Sdim
1270193323Sed      // Otherwise the GEP is ok.
1271193323Sed      continue;
1272193323Sed    }
1273218893Sdim
1274206083Srdivacky    if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1275193323Sed      if (!LoadUsingPHIsPerLoad.insert(PN))
1276193323Sed        // This means some phi nodes are dependent on each other.
1277193323Sed        // Avoid infinite looping!
1278193323Sed        return false;
1279193323Sed      if (!LoadUsingPHIs.insert(PN))
1280193323Sed        // If we have already analyzed this PHI, then it is safe.
1281193323Sed        continue;
1282218893Sdim
1283193323Sed      // Make sure all uses of the PHI are simple enough to transform.
1284193323Sed      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1285193323Sed                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1286193323Sed        return false;
1287218893Sdim
1288193323Sed      continue;
1289193323Sed    }
1290218893Sdim
1291193323Sed    // Otherwise we don't know what this is, not ok.
1292193323Sed    return false;
1293193323Sed  }
1294218893Sdim
1295193323Sed  return true;
1296193323Sed}
1297193323Sed
1298193323Sed
1299193323Sed/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1300193323Sed/// GV are simple enough to perform HeapSRA, return true.
1301206083Srdivackystatic bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1302198090Srdivacky                                                    Instruction *StoredVal) {
1303206083Srdivacky  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1304206083Srdivacky  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1305207618Srdivacky  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1306207618Srdivacky       UI != E; ++UI)
1307206083Srdivacky    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1308193323Sed      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1309193323Sed                                          LoadUsingPHIsPerLoad))
1310193323Sed        return false;
1311193323Sed      LoadUsingPHIsPerLoad.clear();
1312193323Sed    }
1313218893Sdim
1314193323Sed  // If we reach here, we know that all uses of the loads and transitive uses
1315193323Sed  // (through PHI nodes) are simple enough to transform.  However, we don't know
1316218893Sdim  // that all inputs the to the PHI nodes are in the same equivalence sets.
1317193323Sed  // Check to verify that all operands of the PHIs are either PHIS that can be
1318193323Sed  // transformed, loads from GV, or MI itself.
1319207618Srdivacky  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1320207618Srdivacky       , E = LoadUsingPHIs.end(); I != E; ++I) {
1321206083Srdivacky    const PHINode *PN = *I;
1322193323Sed    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1323193323Sed      Value *InVal = PN->getIncomingValue(op);
1324218893Sdim
1325193323Sed      // PHI of the stored value itself is ok.
1326198090Srdivacky      if (InVal == StoredVal) continue;
1327218893Sdim
1328206083Srdivacky      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1329193323Sed        // One of the PHIs in our set is (optimistically) ok.
1330193323Sed        if (LoadUsingPHIs.count(InPN))
1331193323Sed          continue;
1332193323Sed        return false;
1333193323Sed      }
1334218893Sdim
1335193323Sed      // Load from GV is ok.
1336206083Srdivacky      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1337193323Sed        if (LI->getOperand(0) == GV)
1338193323Sed          continue;
1339218893Sdim
1340193323Sed      // UNDEF? NULL?
1341218893Sdim
1342193323Sed      // Anything else is rejected.
1343193323Sed      return false;
1344193323Sed    }
1345193323Sed  }
1346218893Sdim
1347193323Sed  return true;
1348193323Sed}
1349193323Sed
1350193323Sedstatic Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1351193323Sed               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1352199481Srdivacky                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1353193323Sed  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1354218893Sdim
1355193323Sed  if (FieldNo >= FieldVals.size())
1356193323Sed    FieldVals.resize(FieldNo+1);
1357218893Sdim
1358193323Sed  // If we already have this value, just reuse the previously scalarized
1359193323Sed  // version.
1360193323Sed  if (Value *FieldVal = FieldVals[FieldNo])
1361193323Sed    return FieldVal;
1362218893Sdim
1363193323Sed  // Depending on what instruction this is, we have several cases.
1364193323Sed  Value *Result;
1365193323Sed  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1366193323Sed    // This is a scalarized version of the load from the global.  Just create
1367193323Sed    // a new Load of the scalarized global.
1368193323Sed    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1369193323Sed                                           InsertedScalarizedValues,
1370199481Srdivacky                                           PHIsToRewrite),
1371198090Srdivacky                          LI->getName()+".f"+Twine(FieldNo), LI);
1372193323Sed  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1373193323Sed    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1374193323Sed    // field.
1375226633Sdim    StructType *ST =
1376193323Sed      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1377218893Sdim
1378221345Sdim    PHINode *NewPN =
1379198090Srdivacky     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1380221345Sdim                     PN->getNumIncomingValues(),
1381198090Srdivacky                     PN->getName()+".f"+Twine(FieldNo), PN);
1382221345Sdim    Result = NewPN;
1383193323Sed    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1384193323Sed  } else {
1385198090Srdivacky    llvm_unreachable("Unknown usable value");
1386193323Sed  }
1387218893Sdim
1388193323Sed  return FieldVals[FieldNo] = Result;
1389193323Sed}
1390193323Sed
1391193323Sed/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1392193323Sed/// the load, rewrite the derived value to use the HeapSRoA'd load.
1393218893Sdimstatic void RewriteHeapSROALoadUser(Instruction *LoadUser,
1394193323Sed             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1395199481Srdivacky                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1396193323Sed  // If this is a comparison against null, handle it.
1397193323Sed  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1398193323Sed    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1399193323Sed    // If we have a setcc of the loaded pointer, we can use a setcc of any
1400193323Sed    // field.
1401193323Sed    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1402199481Srdivacky                                   InsertedScalarizedValues, PHIsToRewrite);
1403218893Sdim
1404198090Srdivacky    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1405218893Sdim                              Constant::getNullValue(NPtr->getType()),
1406198090Srdivacky                              SCI->getName());
1407193323Sed    SCI->replaceAllUsesWith(New);
1408193323Sed    SCI->eraseFromParent();
1409193323Sed    return;
1410193323Sed  }
1411218893Sdim
1412193323Sed  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1413193323Sed  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1414193323Sed    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1415193323Sed           && "Unexpected GEPI!");
1416218893Sdim
1417193323Sed    // Load the pointer for this field.
1418193323Sed    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1419193323Sed    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1420199481Srdivacky                                     InsertedScalarizedValues, PHIsToRewrite);
1421218893Sdim
1422193323Sed    // Create the new GEP idx vector.
1423193323Sed    SmallVector<Value*, 8> GEPIdx;
1424193323Sed    GEPIdx.push_back(GEPI->getOperand(1));
1425193323Sed    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1426218893Sdim
1427226633Sdim    Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
1428193323Sed                                             GEPI->getName(), GEPI);
1429193323Sed    GEPI->replaceAllUsesWith(NGEPI);
1430193323Sed    GEPI->eraseFromParent();
1431193323Sed    return;
1432193323Sed  }
1433193323Sed
1434193323Sed  // Recursively transform the users of PHI nodes.  This will lazily create the
1435193323Sed  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1436193323Sed  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1437193323Sed  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1438193323Sed  // already been seen first by another load, so its uses have already been
1439193323Sed  // processed.
1440193323Sed  PHINode *PN = cast<PHINode>(LoadUser);
1441226633Sdim  if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1442226633Sdim                                              std::vector<Value*>())).second)
1443226633Sdim    return;
1444218893Sdim
1445193323Sed  // If this is the first time we've seen this PHI, recursively process all
1446193323Sed  // users.
1447193323Sed  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1448193323Sed    Instruction *User = cast<Instruction>(*UI++);
1449199481Srdivacky    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1450193323Sed  }
1451193323Sed}
1452193323Sed
1453193323Sed/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1454193323Sed/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1455193323Sed/// use FieldGlobals instead.  All uses of loaded values satisfy
1456193323Sed/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1457218893Sdimstatic void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1458193323Sed               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1459199481Srdivacky                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1460193323Sed  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1461193323Sed       UI != E; ) {
1462193323Sed    Instruction *User = cast<Instruction>(*UI++);
1463199481Srdivacky    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1464193323Sed  }
1465218893Sdim
1466193323Sed  if (Load->use_empty()) {
1467193323Sed    Load->eraseFromParent();
1468193323Sed    InsertedScalarizedValues.erase(Load);
1469193323Sed  }
1470193323Sed}
1471193323Sed
1472198090Srdivacky/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1473198090Srdivacky/// it up into multiple allocations of arrays of the fields.
1474198953Srdivackystatic GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1475243830Sdim                                            Value *NElems, DataLayout *TD,
1476243830Sdim                                            const TargetLibraryInfo *TLI) {
1477202375Srdivacky  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1478243830Sdim  Type *MAT = getMallocAllocatedType(CI, TLI);
1479226633Sdim  StructType *STy = cast<StructType>(MAT);
1480198090Srdivacky
1481198090Srdivacky  // There is guaranteed to be at least one use of the malloc (storing
1482198090Srdivacky  // it into GV).  If there are other uses, change them to be uses of
1483198090Srdivacky  // the global to simplify later code.  This also deletes the store
1484198090Srdivacky  // into GV.
1485198953Srdivacky  ReplaceUsesOfMallocWithGlobal(CI, GV);
1486198953Srdivacky
1487198090Srdivacky  // Okay, at this point, there are no users of the malloc.  Insert N
1488198090Srdivacky  // new mallocs at the same place as CI, and N globals.
1489198090Srdivacky  std::vector<Value*> FieldGlobals;
1490198090Srdivacky  std::vector<Value*> FieldMallocs;
1491218893Sdim
1492198090Srdivacky  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1493226633Sdim    Type *FieldTy = STy->getElementType(FieldNo);
1494226633Sdim    PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1495218893Sdim
1496198090Srdivacky    GlobalVariable *NGV =
1497198090Srdivacky      new GlobalVariable(*GV->getParent(),
1498198090Srdivacky                         PFieldTy, false, GlobalValue::InternalLinkage,
1499198090Srdivacky                         Constant::getNullValue(PFieldTy),
1500198090Srdivacky                         GV->getName() + ".f" + Twine(FieldNo), GV,
1501239462Sdim                         GV->getThreadLocalMode());
1502198090Srdivacky    FieldGlobals.push_back(NGV);
1503218893Sdim
1504198953Srdivacky    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1505226633Sdim    if (StructType *ST = dyn_cast<StructType>(FieldTy))
1506198953Srdivacky      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1507226633Sdim    Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1508198953Srdivacky    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1509198953Srdivacky                                        ConstantInt::get(IntPtrTy, TypeSize),
1510210299Sed                                        NElems, 0,
1511198953Srdivacky                                        CI->getName() + ".f" + Twine(FieldNo));
1512204642Srdivacky    FieldMallocs.push_back(NMI);
1513198953Srdivacky    new StoreInst(NMI, NGV, CI);
1514198090Srdivacky  }
1515218893Sdim
1516198090Srdivacky  // The tricky aspect of this transformation is handling the case when malloc
1517198090Srdivacky  // fails.  In the original code, malloc failing would set the result pointer
1518198090Srdivacky  // of malloc to null.  In this case, some mallocs could succeed and others
1519198090Srdivacky  // could fail.  As such, we emit code that looks like this:
1520198090Srdivacky  //    F0 = malloc(field0)
1521198090Srdivacky  //    F1 = malloc(field1)
1522198090Srdivacky  //    F2 = malloc(field2)
1523198090Srdivacky  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1524198090Srdivacky  //      if (F0) { free(F0); F0 = 0; }
1525198090Srdivacky  //      if (F1) { free(F1); F1 = 0; }
1526198090Srdivacky  //      if (F2) { free(F2); F2 = 0; }
1527198090Srdivacky  //    }
1528199481Srdivacky  // The malloc can also fail if its argument is too large.
1529210299Sed  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1530210299Sed  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1531199481Srdivacky                                  ConstantZero, "isneg");
1532198090Srdivacky  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1533198953Srdivacky    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1534198953Srdivacky                             Constant::getNullValue(FieldMallocs[i]->getType()),
1535198953Srdivacky                               "isnull");
1536199481Srdivacky    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1537198090Srdivacky  }
1538198090Srdivacky
1539198090Srdivacky  // Split the basic block at the old malloc.
1540198953Srdivacky  BasicBlock *OrigBB = CI->getParent();
1541198953Srdivacky  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1542218893Sdim
1543198090Srdivacky  // Create the block to check the first condition.  Put all these blocks at the
1544198090Srdivacky  // end of the function as they are unlikely to be executed.
1545199481Srdivacky  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1546199481Srdivacky                                                "malloc_ret_null",
1547198090Srdivacky                                                OrigBB->getParent());
1548218893Sdim
1549198090Srdivacky  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1550198090Srdivacky  // branch on RunningOr.
1551198090Srdivacky  OrigBB->getTerminator()->eraseFromParent();
1552198090Srdivacky  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1553218893Sdim
1554198090Srdivacky  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1555198090Srdivacky  // pointer, because some may be null while others are not.
1556198090Srdivacky  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1557198090Srdivacky    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1558218893Sdim    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1559226633Sdim                              Constant::getNullValue(GVVal->getType()));
1560199481Srdivacky    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1561198090Srdivacky                                               OrigBB->getParent());
1562199481Srdivacky    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1563198090Srdivacky                                               OrigBB->getParent());
1564198892Srdivacky    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1565198892Srdivacky                                         Cmp, NullPtrBlock);
1566198090Srdivacky
1567198090Srdivacky    // Fill in FreeBlock.
1568198892Srdivacky    CallInst::CreateFree(GVVal, BI);
1569198090Srdivacky    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1570198090Srdivacky                  FreeBlock);
1571198090Srdivacky    BranchInst::Create(NextBlock, FreeBlock);
1572218893Sdim
1573198090Srdivacky    NullPtrBlock = NextBlock;
1574198090Srdivacky  }
1575218893Sdim
1576198090Srdivacky  BranchInst::Create(ContBB, NullPtrBlock);
1577198953Srdivacky
1578198953Srdivacky  // CI is no longer needed, remove it.
1579198090Srdivacky  CI->eraseFromParent();
1580198090Srdivacky
1581198090Srdivacky  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1582198090Srdivacky  /// update all uses of the load, keep track of what scalarized loads are
1583198090Srdivacky  /// inserted for a given load.
1584198090Srdivacky  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1585198090Srdivacky  InsertedScalarizedValues[GV] = FieldGlobals;
1586218893Sdim
1587198090Srdivacky  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1588218893Sdim
1589198090Srdivacky  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1590198090Srdivacky  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1591198090Srdivacky  // of the per-field globals instead.
1592198090Srdivacky  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1593198090Srdivacky    Instruction *User = cast<Instruction>(*UI++);
1594218893Sdim
1595198090Srdivacky    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1596199481Srdivacky      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1597198090Srdivacky      continue;
1598198090Srdivacky    }
1599218893Sdim
1600198090Srdivacky    // Must be a store of null.
1601198090Srdivacky    StoreInst *SI = cast<StoreInst>(User);
1602198090Srdivacky    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1603198090Srdivacky           "Unexpected heap-sra user!");
1604218893Sdim
1605198090Srdivacky    // Insert a store of null into each global.
1606198090Srdivacky    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1607226633Sdim      PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1608198090Srdivacky      Constant *Null = Constant::getNullValue(PT->getElementType());
1609198090Srdivacky      new StoreInst(Null, FieldGlobals[i], SI);
1610198090Srdivacky    }
1611198090Srdivacky    // Erase the original store.
1612198090Srdivacky    SI->eraseFromParent();
1613198090Srdivacky  }
1614198090Srdivacky
1615198090Srdivacky  // While we have PHIs that are interesting to rewrite, do it.
1616198090Srdivacky  while (!PHIsToRewrite.empty()) {
1617198090Srdivacky    PHINode *PN = PHIsToRewrite.back().first;
1618198090Srdivacky    unsigned FieldNo = PHIsToRewrite.back().second;
1619198090Srdivacky    PHIsToRewrite.pop_back();
1620198090Srdivacky    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1621198090Srdivacky    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1622198090Srdivacky
1623198090Srdivacky    // Add all the incoming values.  This can materialize more phis.
1624198090Srdivacky    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1625198090Srdivacky      Value *InVal = PN->getIncomingValue(i);
1626198090Srdivacky      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1627199481Srdivacky                               PHIsToRewrite);
1628198090Srdivacky      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1629198090Srdivacky    }
1630198090Srdivacky  }
1631218893Sdim
1632198090Srdivacky  // Drop all inter-phi links and any loads that made it this far.
1633198090Srdivacky  for (DenseMap<Value*, std::vector<Value*> >::iterator
1634198090Srdivacky       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1635198090Srdivacky       I != E; ++I) {
1636198090Srdivacky    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1637198090Srdivacky      PN->dropAllReferences();
1638198090Srdivacky    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1639198090Srdivacky      LI->dropAllReferences();
1640198090Srdivacky  }
1641218893Sdim
1642198090Srdivacky  // Delete all the phis and loads now that inter-references are dead.
1643198090Srdivacky  for (DenseMap<Value*, std::vector<Value*> >::iterator
1644198090Srdivacky       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1645198090Srdivacky       I != E; ++I) {
1646198090Srdivacky    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1647198090Srdivacky      PN->eraseFromParent();
1648198090Srdivacky    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1649198090Srdivacky      LI->eraseFromParent();
1650198090Srdivacky  }
1651218893Sdim
1652198090Srdivacky  // The old global is now dead, remove it.
1653198090Srdivacky  GV->eraseFromParent();
1654198090Srdivacky
1655198090Srdivacky  ++NumHeapSRA;
1656198090Srdivacky  return cast<GlobalVariable>(FieldGlobals[0]);
1657198090Srdivacky}
1658198090Srdivacky
1659193323Sed/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1660193323Sed/// pointer global variable with a single value stored it that is a malloc or
1661193323Sed/// cast of malloc.
1662193323Sedstatic bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1663198090Srdivacky                                               CallInst *CI,
1664226633Sdim                                               Type *AllocTy,
1665234353Sdim                                               AtomicOrdering Ordering,
1666198090Srdivacky                                               Module::global_iterator &GVI,
1667243830Sdim                                               DataLayout *TD,
1668234353Sdim                                               TargetLibraryInfo *TLI) {
1669207618Srdivacky  if (!TD)
1670207618Srdivacky    return false;
1671218893Sdim
1672198090Srdivacky  // If this is a malloc of an abstract type, don't touch it.
1673198090Srdivacky  if (!AllocTy->isSized())
1674198090Srdivacky    return false;
1675198090Srdivacky
1676198090Srdivacky  // We can't optimize this global unless all uses of it are *known* to be
1677198090Srdivacky  // of the malloc value, not of the null initializer value (consider a use
1678198090Srdivacky  // that compares the global's value against zero to see if the malloc has
1679198090Srdivacky  // been reached).  To do this, we check to see if all uses of the global
1680198090Srdivacky  // would trap if the global were null: this proves that they must all
1681198090Srdivacky  // happen after the malloc.
1682198090Srdivacky  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1683198090Srdivacky    return false;
1684198090Srdivacky
1685198090Srdivacky  // We can't optimize this if the malloc itself is used in a complex way,
1686198090Srdivacky  // for example, being stored into multiple globals.  This allows the
1687234353Sdim  // malloc to be stored into the specified global, loaded icmp'd, and
1688198090Srdivacky  // GEP'd.  These are all things we could transform to using the global
1689198090Srdivacky  // for.
1690207618Srdivacky  SmallPtrSet<const PHINode*, 8> PHIs;
1691207618Srdivacky  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1692207618Srdivacky    return false;
1693198090Srdivacky
1694198090Srdivacky  // If we have a global that is only initialized with a fixed size malloc,
1695198090Srdivacky  // transform the program to use global memory instead of malloc'd memory.
1696198090Srdivacky  // This eliminates dynamic allocation, avoids an indirection accessing the
1697198090Srdivacky  // data, and exposes the resultant global to further GlobalOpt.
1698198396Srdivacky  // We cannot optimize the malloc if we cannot determine malloc array size.
1699243830Sdim  Value *NElems = getMallocArraySize(CI, TD, TLI, true);
1700207618Srdivacky  if (!NElems)
1701207618Srdivacky    return false;
1702207618Srdivacky
1703207618Srdivacky  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1704207618Srdivacky    // Restrict this transformation to only working on small allocations
1705207618Srdivacky    // (2048 bytes currently), as we don't want to introduce a 16M global or
1706207618Srdivacky    // something.
1707207618Srdivacky    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1708234353Sdim      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD, TLI);
1709207618Srdivacky      return true;
1710207618Srdivacky    }
1711218893Sdim
1712207618Srdivacky  // If the allocation is an array of structures, consider transforming this
1713207618Srdivacky  // into multiple malloc'd arrays, one for each field.  This is basically
1714207618Srdivacky  // SRoA for malloc'd memory.
1715198090Srdivacky
1716234353Sdim  if (Ordering != NotAtomic)
1717234353Sdim    return false;
1718234353Sdim
1719207618Srdivacky  // If this is an allocation of a fixed size array of structs, analyze as a
1720207618Srdivacky  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1721210299Sed  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1722226633Sdim    if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1723207618Srdivacky      AllocTy = AT->getElementType();
1724210299Sed
1725226633Sdim  StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1726207618Srdivacky  if (!AllocSTy)
1727207618Srdivacky    return false;
1728198090Srdivacky
1729207618Srdivacky  // This the structure has an unreasonable number of fields, leave it
1730207618Srdivacky  // alone.
1731207618Srdivacky  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1732207618Srdivacky      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1733207618Srdivacky
1734207618Srdivacky    // If this is a fixed size array, transform the Malloc to be an alloc of
1735207618Srdivacky    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1736243830Sdim    if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1737226633Sdim      Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1738207618Srdivacky      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1739207618Srdivacky      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1740207618Srdivacky      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1741207618Srdivacky      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1742207618Srdivacky                                                   AllocSize, NumElements,
1743210299Sed                                                   0, CI->getName());
1744207618Srdivacky      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1745207618Srdivacky      CI->replaceAllUsesWith(Cast);
1746207618Srdivacky      CI->eraseFromParent();
1747239462Sdim      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1748239462Sdim        CI = cast<CallInst>(BCI->getOperand(0));
1749239462Sdim      else
1750239462Sdim        CI = cast<CallInst>(Malloc);
1751207618Srdivacky    }
1752218893Sdim
1753243830Sdim    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, TLI, true),
1754243830Sdim                               TD, TLI);
1755207618Srdivacky    return true;
1756198090Srdivacky  }
1757218893Sdim
1758198090Srdivacky  return false;
1759218893Sdim}
1760198090Srdivacky
1761193323Sed// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1762193323Sed// that only one value (besides its initializer) is ever stored to the global.
1763193323Sedstatic bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1764234353Sdim                                     AtomicOrdering Ordering,
1765193323Sed                                     Module::global_iterator &GVI,
1766243830Sdim                                     DataLayout *TD, TargetLibraryInfo *TLI) {
1767193323Sed  // Ignore no-op GEPs and bitcasts.
1768193323Sed  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1769193323Sed
1770193323Sed  // If we are dealing with a pointer global that is initialized to null and
1771193323Sed  // only has one (non-null) value stored into it, then we can optimize any
1772193323Sed  // users of the loaded value (often calls and loads) that would trap if the
1773193323Sed  // value was null.
1774204642Srdivacky  if (GV->getInitializer()->getType()->isPointerTy() &&
1775193323Sed      GV->getInitializer()->isNullValue()) {
1776193323Sed    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1777193323Sed      if (GV->getInitializer()->getType() != SOVC->getType())
1778223017Sdim        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1779193323Sed
1780193323Sed      // Optimize away any trapping uses of the loaded value.
1781234353Sdim      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, TD, TLI))
1782193323Sed        return true;
1783243830Sdim    } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1784243830Sdim      Type *MallocType = getMallocAllocatedType(CI, TLI);
1785234353Sdim      if (MallocType &&
1786234353Sdim          TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
1787234353Sdim                                             TD, TLI))
1788198953Srdivacky        return true;
1789193323Sed    }
1790193323Sed  }
1791193323Sed
1792193323Sed  return false;
1793193323Sed}
1794193323Sed
1795193323Sed/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1796193323Sed/// two values ever stored into GV are its initializer and OtherVal.  See if we
1797193323Sed/// can shrink the global into a boolean and select between the two values
1798193323Sed/// whenever it is used.  This exposes the values to other scalar optimizations.
1799199481Srdivackystatic bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1800226633Sdim  Type *GVElType = GV->getType()->getElementType();
1801218893Sdim
1802193323Sed  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1803193323Sed  // an FP value, pointer or vector, don't do this optimization because a select
1804193323Sed  // between them is very expensive and unlikely to lead to later
1805193323Sed  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1806193323Sed  // where v1 and v2 both require constant pool loads, a big loss.
1807199481Srdivacky  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1808203954Srdivacky      GVElType->isFloatingPointTy() ||
1809204642Srdivacky      GVElType->isPointerTy() || GVElType->isVectorTy())
1810193323Sed    return false;
1811210299Sed
1812193323Sed  // Walk the use list of the global seeing if all the uses are load or store.
1813193323Sed  // If there is anything else, bail out.
1814210299Sed  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1815210299Sed    User *U = *I;
1816210299Sed    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1817193323Sed      return false;
1818210299Sed  }
1819210299Sed
1820202375Srdivacky  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1821218893Sdim
1822193323Sed  // Create the new global, initializing it to false.
1823199481Srdivacky  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1824199481Srdivacky                                             false,
1825218893Sdim                                             GlobalValue::InternalLinkage,
1826199481Srdivacky                                        ConstantInt::getFalse(GV->getContext()),
1827193323Sed                                             GV->getName()+".b",
1828249423Sdim                                             GV->getThreadLocalMode(),
1829249423Sdim                                             GV->getType()->getAddressSpace());
1830193323Sed  GV->getParent()->getGlobalList().insert(GV, NewGV);
1831193323Sed
1832193323Sed  Constant *InitVal = GV->getInitializer();
1833199481Srdivacky  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1834198090Srdivacky         "No reason to shrink to bool!");
1835193323Sed
1836193323Sed  // If initialized to zero and storing one into the global, we can use a cast
1837193323Sed  // instead of a select to synthesize the desired value.
1838193323Sed  bool IsOneZero = false;
1839193323Sed  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1840193323Sed    IsOneZero = InitVal->isNullValue() && CI->isOne();
1841193323Sed
1842193323Sed  while (!GV->use_empty()) {
1843193323Sed    Instruction *UI = cast<Instruction>(GV->use_back());
1844193323Sed    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1845193323Sed      // Change the store into a boolean store.
1846193323Sed      bool StoringOther = SI->getOperand(0) == OtherVal;
1847193323Sed      // Only do this if we weren't storing a loaded value.
1848193323Sed      Value *StoreVal;
1849249423Sdim      if (StoringOther || SI->getOperand(0) == InitVal) {
1850199481Srdivacky        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1851199481Srdivacky                                    StoringOther);
1852249423Sdim      } else {
1853193323Sed        // Otherwise, we are storing a previously loaded copy.  To do this,
1854193323Sed        // change the copy from copying the original value to just copying the
1855193323Sed        // bool.
1856193323Sed        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1857193323Sed
1858210299Sed        // If we've already replaced the input, StoredVal will be a cast or
1859193323Sed        // select instruction.  If not, it will be a load of the original
1860193323Sed        // global.
1861193323Sed        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1862193323Sed          assert(LI->getOperand(0) == GV && "Not a copy!");
1863193323Sed          // Insert a new load, to preserve the saved value.
1864234353Sdim          StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1865234353Sdim                                  LI->getOrdering(), LI->getSynchScope(), LI);
1866193323Sed        } else {
1867193323Sed          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1868193323Sed                 "This is not a form that we understand!");
1869193323Sed          StoreVal = StoredVal->getOperand(0);
1870193323Sed          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1871193323Sed        }
1872193323Sed      }
1873234353Sdim      new StoreInst(StoreVal, NewGV, false, 0,
1874234353Sdim                    SI->getOrdering(), SI->getSynchScope(), SI);
1875193323Sed    } else {
1876193323Sed      // Change the load into a load of bool then a select.
1877193323Sed      LoadInst *LI = cast<LoadInst>(UI);
1878234353Sdim      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1879234353Sdim                                   LI->getOrdering(), LI->getSynchScope(), LI);
1880193323Sed      Value *NSI;
1881193323Sed      if (IsOneZero)
1882193323Sed        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1883193323Sed      else
1884193323Sed        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1885193323Sed      NSI->takeName(LI);
1886193323Sed      LI->replaceAllUsesWith(NSI);
1887193323Sed    }
1888193323Sed    UI->eraseFromParent();
1889193323Sed  }
1890193323Sed
1891249423Sdim  // Retain the name of the old global variable. People who are debugging their
1892249423Sdim  // programs may expect these variables to be named the same.
1893249423Sdim  NewGV->takeName(GV);
1894193323Sed  GV->eraseFromParent();
1895193323Sed  return true;
1896193323Sed}
1897193323Sed
1898193323Sed
1899234353Sdim/// ProcessGlobal - Analyze the specified global variable and optimize it if
1900234353Sdim/// possible.  If we make a change, return true.
1901218893Sdimbool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1902218893Sdim                              Module::global_iterator &GVI) {
1903239462Sdim  if (!GV->isDiscardableIfUnused())
1904218893Sdim    return false;
1905218893Sdim
1906218893Sdim  // Do more involved optimizations if the global is internal.
1907193323Sed  GV->removeDeadConstantUsers();
1908193323Sed
1909193323Sed  if (GV->use_empty()) {
1910202375Srdivacky    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1911193323Sed    GV->eraseFromParent();
1912193323Sed    ++NumDeleted;
1913193323Sed    return true;
1914193323Sed  }
1915193323Sed
1916239462Sdim  if (!GV->hasLocalLinkage())
1917239462Sdim    return false;
1918239462Sdim
1919218893Sdim  SmallPtrSet<const PHINode*, 16> PHIUsers;
1920218893Sdim  GlobalStatus GS;
1921218893Sdim
1922218893Sdim  if (AnalyzeGlobal(GV, GS, PHIUsers))
1923218893Sdim    return false;
1924218893Sdim
1925218893Sdim  if (!GS.isCompared && !GV->hasUnnamedAddr()) {
1926218893Sdim    GV->setUnnamedAddr(true);
1927218893Sdim    NumUnnamed++;
1928218893Sdim  }
1929218893Sdim
1930218893Sdim  if (GV->isConstant() || !GV->hasInitializer())
1931218893Sdim    return false;
1932218893Sdim
1933218893Sdim  return ProcessInternalGlobal(GV, GVI, PHIUsers, GS);
1934218893Sdim}
1935218893Sdim
1936218893Sdim/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1937218893Sdim/// it if possible.  If we make a change, return true.
1938218893Sdimbool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1939218893Sdim                                      Module::global_iterator &GVI,
1940234353Sdim                                const SmallPtrSet<const PHINode*, 16> &PHIUsers,
1941218893Sdim                                      const GlobalStatus &GS) {
1942218893Sdim  // If this is a first class global and has only one accessing function
1943218893Sdim  // and this function is main (which we know is not recursive we can make
1944218893Sdim  // this global a local variable) we replace the global with a local alloca
1945218893Sdim  // in this function.
1946218893Sdim  //
1947218893Sdim  // NOTE: It doesn't make sense to promote non single-value types since we
1948218893Sdim  // are just replacing static memory to stack memory.
1949218893Sdim  //
1950218893Sdim  // If the global is in different address space, don't bring it to stack.
1951218893Sdim  if (!GS.HasMultipleAccessingFunctions &&
1952218893Sdim      GS.AccessingFunction && !GS.HasNonInstructionUser &&
1953218893Sdim      GV->getType()->getElementType()->isSingleValueType() &&
1954218893Sdim      GS.AccessingFunction->getName() == "main" &&
1955218893Sdim      GS.AccessingFunction->hasExternalLinkage() &&
1956218893Sdim      GV->getType()->getAddressSpace() == 0) {
1957218893Sdim    DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1958234353Sdim    Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1959218893Sdim                                                   ->getEntryBlock().begin());
1960234353Sdim    Type *ElemTy = GV->getType()->getElementType();
1961218893Sdim    // FIXME: Pass Global's alignment when globals have alignment
1962234353Sdim    AllocaInst *Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1963218893Sdim    if (!isa<UndefValue>(GV->getInitializer()))
1964218893Sdim      new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1965218893Sdim
1966218893Sdim    GV->replaceAllUsesWith(Alloca);
1967218893Sdim    GV->eraseFromParent();
1968218893Sdim    ++NumLocalized;
1969218893Sdim    return true;
1970218893Sdim  }
1971218893Sdim
1972218893Sdim  // If the global is never loaded (but may be stored to), it is dead.
1973218893Sdim  // Delete it now.
1974218893Sdim  if (!GS.isLoaded) {
1975218893Sdim    DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1976218893Sdim
1977239462Sdim    bool Changed;
1978239462Sdim    if (isLeakCheckerRoot(GV)) {
1979239462Sdim      // Delete any constant stores to the global.
1980243830Sdim      Changed = CleanupPointerRootUsers(GV, TLI);
1981239462Sdim    } else {
1982239462Sdim      // Delete any stores we can find to the global.  We may not be able to
1983239462Sdim      // make it completely dead though.
1984239462Sdim      Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
1985239462Sdim    }
1986218893Sdim
1987218893Sdim    // If the global is dead now, delete it.
1988218893Sdim    if (GV->use_empty()) {
1989218893Sdim      GV->eraseFromParent();
1990218893Sdim      ++NumDeleted;
1991218893Sdim      Changed = true;
1992193323Sed    }
1993218893Sdim    return Changed;
1994193323Sed
1995218893Sdim  } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1996249423Sdim    DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1997218893Sdim    GV->setConstant(true);
1998218893Sdim
1999218893Sdim    // Clean up any obviously simplifiable users now.
2000234353Sdim    CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
2001218893Sdim
2002218893Sdim    // If the global is dead now, just nuke it.
2003218893Sdim    if (GV->use_empty()) {
2004218893Sdim      DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2005218893Sdim            << "all users and delete global!\n");
2006193323Sed      GV->eraseFromParent();
2007218893Sdim      ++NumDeleted;
2008193323Sed    }
2009193323Sed
2010218893Sdim    ++NumMarked;
2011218893Sdim    return true;
2012218893Sdim  } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
2013243830Sdim    if (DataLayout *TD = getAnalysisIfAvailable<DataLayout>())
2014218893Sdim      if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
2015218893Sdim        GVI = FirstNewGV;  // Don't skip the newly produced globals!
2016218893Sdim        return true;
2017193323Sed      }
2018218893Sdim  } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
2019218893Sdim    // If the initial value for the global was an undef value, and if only
2020218893Sdim    // one other value was stored into it, we can just change the
2021218893Sdim    // initializer to be the stored value, then delete all stores to the
2022218893Sdim    // global.  This allows us to mark it constant.
2023218893Sdim    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2024218893Sdim      if (isa<UndefValue>(GV->getInitializer())) {
2025218893Sdim        // Change the initial value here.
2026218893Sdim        GV->setInitializer(SOVConstant);
2027193323Sed
2028218893Sdim        // Clean up any obviously simplifiable users now.
2029234353Sdim        CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
2030193323Sed
2031218893Sdim        if (GV->use_empty()) {
2032218893Sdim          DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2033239462Sdim                       << "simplify all users and delete global!\n");
2034218893Sdim          GV->eraseFromParent();
2035218893Sdim          ++NumDeleted;
2036218893Sdim        } else {
2037218893Sdim          GVI = GV;
2038218893Sdim        }
2039218893Sdim        ++NumSubstitute;
2040218893Sdim        return true;
2041193323Sed      }
2042193323Sed
2043218893Sdim    // Try to optimize globals based on the knowledge that only one value
2044218893Sdim    // (besides its initializer) is ever stored to the global.
2045234353Sdim    if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
2046234353Sdim                                 TD, TLI))
2047193323Sed      return true;
2048193323Sed
2049218893Sdim    // Otherwise, if the global was not a boolean, we can shrink it to be a
2050218893Sdim    // boolean.
2051218893Sdim    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2052218893Sdim      if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2053218893Sdim        ++NumShrunkToBool;
2054193323Sed        return true;
2055218893Sdim      }
2056218893Sdim  }
2057193323Sed
2058193323Sed  return false;
2059193323Sed}
2060193323Sed
2061193323Sed/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
2062193323Sed/// function, changing them to FastCC.
2063193323Sedstatic void ChangeCalleesToFastCall(Function *F) {
2064193323Sed  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
2065239462Sdim    if (isa<BlockAddress>(*UI))
2066239462Sdim      continue;
2067193323Sed    CallSite User(cast<Instruction>(*UI));
2068193323Sed    User.setCallingConv(CallingConv::Fast);
2069193323Sed  }
2070193323Sed}
2071193323Sed
2072249423Sdimstatic AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
2073193323Sed  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
2074249423Sdim    unsigned Index = Attrs.getSlotIndex(i);
2075249423Sdim    if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
2076193323Sed      continue;
2077193323Sed
2078193323Sed    // There can be only one.
2079249423Sdim    return Attrs.removeAttribute(C, Index, Attribute::Nest);
2080193323Sed  }
2081193323Sed
2082193323Sed  return Attrs;
2083193323Sed}
2084193323Sed
2085193323Sedstatic void RemoveNestAttribute(Function *F) {
2086243830Sdim  F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2087193323Sed  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
2088239462Sdim    if (isa<BlockAddress>(*UI))
2089239462Sdim      continue;
2090193323Sed    CallSite User(cast<Instruction>(*UI));
2091243830Sdim    User.setAttributes(StripNest(F->getContext(), User.getAttributes()));
2092193323Sed  }
2093193323Sed}
2094193323Sed
2095193323Sedbool GlobalOpt::OptimizeFunctions(Module &M) {
2096193323Sed  bool Changed = false;
2097193323Sed  // Optimize functions.
2098193323Sed  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2099193323Sed    Function *F = FI++;
2100193323Sed    // Functions without names cannot be referenced outside this module.
2101193323Sed    if (!F->hasName() && !F->isDeclaration())
2102193323Sed      F->setLinkage(GlobalValue::InternalLinkage);
2103193323Sed    F->removeDeadConstantUsers();
2104234353Sdim    if (F->isDefTriviallyDead()) {
2105198892Srdivacky      F->eraseFromParent();
2106193323Sed      Changed = true;
2107193323Sed      ++NumFnDeleted;
2108193323Sed    } else if (F->hasLocalLinkage()) {
2109193323Sed      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
2110194178Sed          !F->hasAddressTaken()) {
2111193323Sed        // If this function has C calling conventions, is not a varargs
2112193323Sed        // function, and is only called directly, promote it to use the Fast
2113193323Sed        // calling convention.
2114193323Sed        F->setCallingConv(CallingConv::Fast);
2115193323Sed        ChangeCalleesToFastCall(F);
2116193323Sed        ++NumFastCallFns;
2117193323Sed        Changed = true;
2118193323Sed      }
2119193323Sed
2120249423Sdim      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2121194178Sed          !F->hasAddressTaken()) {
2122193323Sed        // The function is not used by a trampoline intrinsic, so it is safe
2123193323Sed        // to remove the 'nest' attribute.
2124193323Sed        RemoveNestAttribute(F);
2125193323Sed        ++NumNestRemoved;
2126193323Sed        Changed = true;
2127193323Sed      }
2128193323Sed    }
2129193323Sed  }
2130193323Sed  return Changed;
2131193323Sed}
2132193323Sed
2133193323Sedbool GlobalOpt::OptimizeGlobalVars(Module &M) {
2134193323Sed  bool Changed = false;
2135193323Sed  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2136193323Sed       GVI != E; ) {
2137193323Sed    GlobalVariable *GV = GVI++;
2138193323Sed    // Global variables without names cannot be referenced outside this module.
2139193323Sed    if (!GV->hasName() && !GV->isDeclaration())
2140193323Sed      GV->setLinkage(GlobalValue::InternalLinkage);
2141199989Srdivacky    // Simplify the initializer.
2142199989Srdivacky    if (GV->hasInitializer())
2143199989Srdivacky      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
2144234353Sdim        Constant *New = ConstantFoldConstantExpression(CE, TD, TLI);
2145199989Srdivacky        if (New && New != CE)
2146199989Srdivacky          GV->setInitializer(New);
2147199989Srdivacky      }
2148218893Sdim
2149218893Sdim    Changed |= ProcessGlobal(GV, GVI);
2150193323Sed  }
2151193323Sed  return Changed;
2152193323Sed}
2153193323Sed
2154221345Sdim/// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
2155193323Sed/// initializers have an init priority of 65535.
2156193323SedGlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
2157218893Sdim  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
2158218893Sdim  if (GV == 0) return 0;
2159249423Sdim
2160218893Sdim  // Verify that the initializer is simple enough for us to handle. We are
2161218893Sdim  // only allowed to optimize the initializer if it is unique.
2162218893Sdim  if (!GV->hasUniqueInitializer()) return 0;
2163221345Sdim
2164221345Sdim  if (isa<ConstantAggregateZero>(GV->getInitializer()))
2165221345Sdim    return GV;
2166221345Sdim  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
2167221345Sdim
2168218893Sdim  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
2169221345Sdim    if (isa<ConstantAggregateZero>(*i))
2170221345Sdim      continue;
2171221345Sdim    ConstantStruct *CS = cast<ConstantStruct>(*i);
2172218893Sdim    if (isa<ConstantPointerNull>(CS->getOperand(1)))
2173218893Sdim      continue;
2174218893Sdim
2175218893Sdim    // Must have a function or null ptr.
2176218893Sdim    if (!isa<Function>(CS->getOperand(1)))
2177218893Sdim      return 0;
2178218893Sdim
2179218893Sdim    // Init priority must be standard.
2180221345Sdim    ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
2181221345Sdim    if (CI->getZExtValue() != 65535)
2182218893Sdim      return 0;
2183218893Sdim  }
2184218893Sdim
2185218893Sdim  return GV;
2186193323Sed}
2187193323Sed
2188193323Sed/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
2189193323Sed/// return a list of the functions and null terminator as a vector.
2190193323Sedstatic std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
2191221345Sdim  if (GV->getInitializer()->isNullValue())
2192221345Sdim    return std::vector<Function*>();
2193193323Sed  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
2194193323Sed  std::vector<Function*> Result;
2195193323Sed  Result.reserve(CA->getNumOperands());
2196193323Sed  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
2197193323Sed    ConstantStruct *CS = cast<ConstantStruct>(*i);
2198193323Sed    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
2199193323Sed  }
2200193323Sed  return Result;
2201193323Sed}
2202193323Sed
2203193323Sed/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
2204193323Sed/// specified array, returning the new global to use.
2205218893Sdimstatic GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
2206199481Srdivacky                                          const std::vector<Function*> &Ctors) {
2207193323Sed  // If we made a change, reassemble the initializer list.
2208224145Sdim  Constant *CSVals[2];
2209224145Sdim  CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
2210224145Sdim  CSVals[1] = 0;
2211218893Sdim
2212226633Sdim  StructType *StructTy =
2213224145Sdim    cast <StructType>(
2214224145Sdim    cast<ArrayType>(GCL->getType()->getElementType())->getElementType());
2215224145Sdim
2216193323Sed  // Create the new init list.
2217193323Sed  std::vector<Constant*> CAList;
2218193323Sed  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
2219193323Sed    if (Ctors[i]) {
2220193323Sed      CSVals[1] = Ctors[i];
2221193323Sed    } else {
2222226633Sdim      Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2223199481Srdivacky                                          false);
2224226633Sdim      PointerType *PFTy = PointerType::getUnqual(FTy);
2225193323Sed      CSVals[1] = Constant::getNullValue(PFTy);
2226199481Srdivacky      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2227221345Sdim                                   0x7fffffff);
2228193323Sed    }
2229224145Sdim    CAList.push_back(ConstantStruct::get(StructTy, CSVals));
2230193323Sed  }
2231218893Sdim
2232193323Sed  // Create the array initializer.
2233218893Sdim  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2234198090Srdivacky                                                   CAList.size()), CAList);
2235218893Sdim
2236193323Sed  // If we didn't change the number of elements, don't create a new GV.
2237193323Sed  if (CA->getType() == GCL->getInitializer()->getType()) {
2238193323Sed    GCL->setInitializer(CA);
2239193323Sed    return GCL;
2240193323Sed  }
2241218893Sdim
2242193323Sed  // Create the new global and insert it next to the existing list.
2243199481Srdivacky  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2244193323Sed                                           GCL->getLinkage(), CA, "",
2245239462Sdim                                           GCL->getThreadLocalMode());
2246193323Sed  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2247193323Sed  NGV->takeName(GCL);
2248218893Sdim
2249193323Sed  // Nuke the old list, replacing any uses with the new one.
2250193323Sed  if (!GCL->use_empty()) {
2251193323Sed    Constant *V = NGV;
2252193323Sed    if (V->getType() != GCL->getType())
2253193323Sed      V = ConstantExpr::getBitCast(V, GCL->getType());
2254193323Sed    GCL->replaceAllUsesWith(V);
2255193323Sed  }
2256193323Sed  GCL->eraseFromParent();
2257218893Sdim
2258193323Sed  if (Ctors.size())
2259193323Sed    return NGV;
2260193323Sed  else
2261193323Sed    return 0;
2262193323Sed}
2263193323Sed
2264193323Sed
2265249423Sdimstatic inline bool
2266218893SdimisSimpleEnoughValueToCommit(Constant *C,
2267234353Sdim                            SmallPtrSet<Constant*, 8> &SimpleConstants,
2268243830Sdim                            const DataLayout *TD);
2269218893Sdim
2270218893Sdim
2271218893Sdim/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
2272218893Sdim/// handled by the code generator.  We don't want to generate something like:
2273218893Sdim///   void *X = &X/42;
2274218893Sdim/// because the code generator doesn't have a relocation that can handle that.
2275218893Sdim///
2276218893Sdim/// This function should be called if C was not found (but just got inserted)
2277218893Sdim/// in SimpleConstants to avoid having to rescan the same constants all the
2278218893Sdim/// time.
2279218893Sdimstatic bool isSimpleEnoughValueToCommitHelper(Constant *C,
2280234353Sdim                                   SmallPtrSet<Constant*, 8> &SimpleConstants,
2281243830Sdim                                   const DataLayout *TD) {
2282218893Sdim  // Simple integer, undef, constant aggregate zero, global addresses, etc are
2283218893Sdim  // all supported.
2284218893Sdim  if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
2285218893Sdim      isa<GlobalValue>(C))
2286218893Sdim    return true;
2287249423Sdim
2288218893Sdim  // Aggregate values are safe if all their elements are.
2289218893Sdim  if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2290218893Sdim      isa<ConstantVector>(C)) {
2291218893Sdim    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2292218893Sdim      Constant *Op = cast<Constant>(C->getOperand(i));
2293234353Sdim      if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, TD))
2294218893Sdim        return false;
2295218893Sdim    }
2296218893Sdim    return true;
2297218893Sdim  }
2298249423Sdim
2299218893Sdim  // We don't know exactly what relocations are allowed in constant expressions,
2300218893Sdim  // so we allow &global+constantoffset, which is safe and uniformly supported
2301218893Sdim  // across targets.
2302218893Sdim  ConstantExpr *CE = cast<ConstantExpr>(C);
2303218893Sdim  switch (CE->getOpcode()) {
2304218893Sdim  case Instruction::BitCast:
2305234353Sdim    // Bitcast is fine if the casted value is fine.
2306234353Sdim    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2307234353Sdim
2308218893Sdim  case Instruction::IntToPtr:
2309218893Sdim  case Instruction::PtrToInt:
2310234353Sdim    // int <=> ptr is fine if the int type is the same size as the
2311234353Sdim    // pointer type.
2312234353Sdim    if (!TD || TD->getTypeSizeInBits(CE->getType()) !=
2313234353Sdim               TD->getTypeSizeInBits(CE->getOperand(0)->getType()))
2314234353Sdim      return false;
2315234353Sdim    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2316249423Sdim
2317218893Sdim  // GEP is fine if it is simple + constant offset.
2318218893Sdim  case Instruction::GetElementPtr:
2319218893Sdim    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2320218893Sdim      if (!isa<ConstantInt>(CE->getOperand(i)))
2321218893Sdim        return false;
2322234353Sdim    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2323249423Sdim
2324218893Sdim  case Instruction::Add:
2325218893Sdim    // We allow simple+cst.
2326218893Sdim    if (!isa<ConstantInt>(CE->getOperand(1)))
2327218893Sdim      return false;
2328234353Sdim    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2329218893Sdim  }
2330218893Sdim  return false;
2331218893Sdim}
2332218893Sdim
2333249423Sdimstatic inline bool
2334218893SdimisSimpleEnoughValueToCommit(Constant *C,
2335234353Sdim                            SmallPtrSet<Constant*, 8> &SimpleConstants,
2336243830Sdim                            const DataLayout *TD) {
2337218893Sdim  // If we already checked this constant, we win.
2338218893Sdim  if (!SimpleConstants.insert(C)) return true;
2339218893Sdim  // Check the constant.
2340234353Sdim  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, TD);
2341218893Sdim}
2342218893Sdim
2343218893Sdim
2344193323Sed/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2345218893Sdim/// enough for us to understand.  In particular, if it is a cast to anything
2346218893Sdim/// other than from one pointer type to another pointer type, we punt.
2347218893Sdim/// We basically just support direct accesses to globals and GEP's of
2348193323Sed/// globals.  This should be kept up to date with CommitValueTo.
2349199481Srdivackystatic bool isSimpleEnoughPointerToCommit(Constant *C) {
2350198090Srdivacky  // Conservatively, avoid aggregate types. This is because we don't
2351198090Srdivacky  // want to worry about them partially overlapping other stores.
2352198090Srdivacky  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2353198090Srdivacky    return false;
2354198090Srdivacky
2355198090Srdivacky  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2356218893Sdim    // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2357198090Srdivacky    // external globals.
2358218893Sdim    return GV->hasUniqueInitializer();
2359198090Srdivacky
2360218893Sdim  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2361193323Sed    // Handle a constantexpr gep.
2362193323Sed    if (CE->getOpcode() == Instruction::GetElementPtr &&
2363198090Srdivacky        isa<GlobalVariable>(CE->getOperand(0)) &&
2364198090Srdivacky        cast<GEPOperator>(CE)->isInBounds()) {
2365193323Sed      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2366218893Sdim      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2367198090Srdivacky      // external globals.
2368218893Sdim      if (!GV->hasUniqueInitializer())
2369198090Srdivacky        return false;
2370198090Srdivacky
2371198090Srdivacky      // The first index must be zero.
2372212904Sdim      ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
2373198090Srdivacky      if (!CI || !CI->isZero()) return false;
2374198090Srdivacky
2375198090Srdivacky      // The remaining indices must be compile-time known integers within the
2376198090Srdivacky      // notional bounds of the corresponding static array types.
2377198090Srdivacky      if (!CE->isGEPWithNoNotionalOverIndexing())
2378198090Srdivacky        return false;
2379198090Srdivacky
2380198090Srdivacky      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2381249423Sdim
2382218893Sdim    // A constantexpr bitcast from a pointer to another pointer is a no-op,
2383218893Sdim    // and we know how to evaluate it by moving the bitcast from the pointer
2384218893Sdim    // operand to the value operand.
2385218893Sdim    } else if (CE->getOpcode() == Instruction::BitCast &&
2386218893Sdim               isa<GlobalVariable>(CE->getOperand(0))) {
2387218893Sdim      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2388218893Sdim      // external globals.
2389218893Sdim      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2390193323Sed    }
2391218893Sdim  }
2392249423Sdim
2393193323Sed  return false;
2394193323Sed}
2395193323Sed
2396193323Sed/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2397193323Sed/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2398193323Sed/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2399193323Sedstatic Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2400199481Srdivacky                                   ConstantExpr *Addr, unsigned OpNo) {
2401193323Sed  // Base case of the recursion.
2402193323Sed  if (OpNo == Addr->getNumOperands()) {
2403193323Sed    assert(Val->getType() == Init->getType() && "Type mismatch!");
2404193323Sed    return Val;
2405193323Sed  }
2406218893Sdim
2407234353Sdim  SmallVector<Constant*, 32> Elts;
2408226633Sdim  if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2409193323Sed    // Break up the constant into its elements.
2410234353Sdim    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2411234353Sdim      Elts.push_back(Init->getAggregateElement(i));
2412218893Sdim
2413193323Sed    // Replace the element that we are supposed to.
2414193323Sed    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2415193323Sed    unsigned Idx = CU->getZExtValue();
2416193323Sed    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2417199481Srdivacky    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2418218893Sdim
2419193323Sed    // Return the modified struct.
2420224145Sdim    return ConstantStruct::get(STy, Elts);
2421224145Sdim  }
2422249423Sdim
2423224145Sdim  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2424226633Sdim  SequentialType *InitTy = cast<SequentialType>(Init->getType());
2425193323Sed
2426224145Sdim  uint64_t NumElts;
2427226633Sdim  if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2428224145Sdim    NumElts = ATy->getNumElements();
2429224145Sdim  else
2430234353Sdim    NumElts = InitTy->getVectorNumElements();
2431218893Sdim
2432224145Sdim  // Break up the array into elements.
2433234353Sdim  for (uint64_t i = 0, e = NumElts; i != e; ++i)
2434234353Sdim    Elts.push_back(Init->getAggregateElement(i));
2435218893Sdim
2436224145Sdim  assert(CI->getZExtValue() < NumElts);
2437224145Sdim  Elts[CI->getZExtValue()] =
2438224145Sdim    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2439218893Sdim
2440224145Sdim  if (Init->getType()->isArrayTy())
2441224145Sdim    return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2442224145Sdim  return ConstantVector::get(Elts);
2443193323Sed}
2444193323Sed
2445193323Sed/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2446193323Sed/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2447199481Srdivackystatic void CommitValueTo(Constant *Val, Constant *Addr) {
2448193323Sed  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2449193323Sed    assert(GV->hasInitializer());
2450193323Sed    GV->setInitializer(Val);
2451193323Sed    return;
2452193323Sed  }
2453202375Srdivacky
2454193323Sed  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2455193323Sed  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2456202375Srdivacky  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2457193323Sed}
2458193323Sed
2459234353Sdimnamespace {
2460234353Sdim
2461234353Sdim/// Evaluator - This class evaluates LLVM IR, producing the Constant
2462234353Sdim/// representing each SSA instruction.  Changes to global variables are stored
2463234353Sdim/// in a mapping that can be iterated over after the evaluation is complete.
2464234353Sdim/// Once an evaluation call fails, the evaluation object should not be reused.
2465234353Sdimclass Evaluator {
2466234353Sdimpublic:
2467243830Sdim  Evaluator(const DataLayout *TD, const TargetLibraryInfo *TLI)
2468234353Sdim    : TD(TD), TLI(TLI) {
2469234353Sdim    ValueStack.push_back(new DenseMap<Value*, Constant*>);
2470234353Sdim  }
2471234353Sdim
2472234353Sdim  ~Evaluator() {
2473234353Sdim    DeleteContainerPointers(ValueStack);
2474234353Sdim    while (!AllocaTmps.empty()) {
2475234353Sdim      GlobalVariable *Tmp = AllocaTmps.back();
2476234353Sdim      AllocaTmps.pop_back();
2477234353Sdim
2478234353Sdim      // If there are still users of the alloca, the program is doing something
2479234353Sdim      // silly, e.g. storing the address of the alloca somewhere and using it
2480234353Sdim      // later.  Since this is undefined, we'll just make it be null.
2481234353Sdim      if (!Tmp->use_empty())
2482234353Sdim        Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2483234353Sdim      delete Tmp;
2484234353Sdim    }
2485234353Sdim  }
2486234353Sdim
2487234353Sdim  /// EvaluateFunction - Evaluate a call to function F, returning true if
2488234353Sdim  /// successful, false if we can't evaluate it.  ActualArgs contains the formal
2489234353Sdim  /// arguments for the function.
2490234353Sdim  bool EvaluateFunction(Function *F, Constant *&RetVal,
2491234353Sdim                        const SmallVectorImpl<Constant*> &ActualArgs);
2492234353Sdim
2493234353Sdim  /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2494234353Sdim  /// successful, false if we can't evaluate it.  NewBB returns the next BB that
2495234353Sdim  /// control flows into, or null upon return.
2496234353Sdim  bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
2497234353Sdim
2498234353Sdim  Constant *getVal(Value *V) {
2499234353Sdim    if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2500234353Sdim    Constant *R = ValueStack.back()->lookup(V);
2501234353Sdim    assert(R && "Reference to an uncomputed value!");
2502234353Sdim    return R;
2503234353Sdim  }
2504234353Sdim
2505234353Sdim  void setVal(Value *V, Constant *C) {
2506234353Sdim    ValueStack.back()->operator[](V) = C;
2507234353Sdim  }
2508234353Sdim
2509234353Sdim  const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
2510234353Sdim    return MutatedMemory;
2511234353Sdim  }
2512234353Sdim
2513234353Sdim  const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const {
2514234353Sdim    return Invariants;
2515234353Sdim  }
2516234353Sdim
2517234353Sdimprivate:
2518234353Sdim  Constant *ComputeLoadResult(Constant *P);
2519234353Sdim
2520234353Sdim  /// ValueStack - As we compute SSA register values, we store their contents
2521234353Sdim  /// here. The back of the vector contains the current function and the stack
2522234353Sdim  /// contains the values in the calling frames.
2523234353Sdim  SmallVector<DenseMap<Value*, Constant*>*, 4> ValueStack;
2524234353Sdim
2525234353Sdim  /// CallStack - This is used to detect recursion.  In pathological situations
2526234353Sdim  /// we could hit exponential behavior, but at least there is nothing
2527234353Sdim  /// unbounded.
2528234353Sdim  SmallVector<Function*, 4> CallStack;
2529234353Sdim
2530234353Sdim  /// MutatedMemory - For each store we execute, we update this map.  Loads
2531234353Sdim  /// check this to get the most up-to-date value.  If evaluation is successful,
2532234353Sdim  /// this state is committed to the process.
2533234353Sdim  DenseMap<Constant*, Constant*> MutatedMemory;
2534234353Sdim
2535234353Sdim  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2536234353Sdim  /// to represent its body.  This vector is needed so we can delete the
2537234353Sdim  /// temporary globals when we are done.
2538234353Sdim  SmallVector<GlobalVariable*, 32> AllocaTmps;
2539234353Sdim
2540234353Sdim  /// Invariants - These global variables have been marked invariant by the
2541234353Sdim  /// static constructor.
2542234353Sdim  SmallPtrSet<GlobalVariable*, 8> Invariants;
2543234353Sdim
2544234353Sdim  /// SimpleConstants - These are constants we have checked and know to be
2545234353Sdim  /// simple enough to live in a static initializer of a global.
2546234353Sdim  SmallPtrSet<Constant*, 8> SimpleConstants;
2547234353Sdim
2548243830Sdim  const DataLayout *TD;
2549234353Sdim  const TargetLibraryInfo *TLI;
2550234353Sdim};
2551234353Sdim
2552234353Sdim}  // anonymous namespace
2553234353Sdim
2554193323Sed/// ComputeLoadResult - Return the value that would be computed by a load from
2555193323Sed/// P after the stores reflected by 'memory' have been performed.  If we can't
2556193323Sed/// decide, return null.
2557234353SdimConstant *Evaluator::ComputeLoadResult(Constant *P) {
2558193323Sed  // If this memory location has been recently stored, use the stored value: it
2559193323Sed  // is the most up-to-date.
2560234353Sdim  DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
2561234353Sdim  if (I != MutatedMemory.end()) return I->second;
2562218893Sdim
2563193323Sed  // Access it.
2564193323Sed  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2565198090Srdivacky    if (GV->hasDefinitiveInitializer())
2566193323Sed      return GV->getInitializer();
2567193323Sed    return 0;
2568193323Sed  }
2569218893Sdim
2570193323Sed  // Handle a constantexpr getelementptr.
2571193323Sed  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2572193323Sed    if (CE->getOpcode() == Instruction::GetElementPtr &&
2573193323Sed        isa<GlobalVariable>(CE->getOperand(0))) {
2574193323Sed      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2575198090Srdivacky      if (GV->hasDefinitiveInitializer())
2576193323Sed        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2577193323Sed    }
2578193323Sed
2579193323Sed  return 0;  // don't know how to evaluate.
2580193323Sed}
2581193323Sed
2582234353Sdim/// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2583234353Sdim/// successful, false if we can't evaluate it.  NewBB returns the next BB that
2584234353Sdim/// control flows into, or null upon return.
2585234353Sdimbool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
2586234353Sdim                              BasicBlock *&NextBB) {
2587193323Sed  // This is the main evaluation loop.
2588193323Sed  while (1) {
2589193323Sed    Constant *InstResult = 0;
2590218893Sdim
2591249423Sdim    DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
2592249423Sdim
2593193323Sed    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2594249423Sdim      if (!SI->isSimple()) {
2595249423Sdim        DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
2596249423Sdim        return false;  // no volatile/atomic accesses.
2597249423Sdim      }
2598234353Sdim      Constant *Ptr = getVal(SI->getOperand(1));
2599249423Sdim      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2600249423Sdim        DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
2601234353Sdim        Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2602249423Sdim        DEBUG(dbgs() << "; To: " << *Ptr << "\n");
2603249423Sdim      }
2604249423Sdim      if (!isSimpleEnoughPointerToCommit(Ptr)) {
2605193323Sed        // If this is too complex for us to commit, reject it.
2606249423Sdim        DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
2607193323Sed        return false;
2608249423Sdim      }
2609249423Sdim
2610234353Sdim      Constant *Val = getVal(SI->getOperand(0));
2611218893Sdim
2612218893Sdim      // If this might be too difficult for the backend to handle (e.g. the addr
2613218893Sdim      // of one global variable divided by another) then we can't commit it.
2614249423Sdim      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD)) {
2615249423Sdim        DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
2616249423Sdim              << "\n");
2617218893Sdim        return false;
2618249423Sdim      }
2619249423Sdim
2620249423Sdim      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2621218893Sdim        if (CE->getOpcode() == Instruction::BitCast) {
2622249423Sdim          DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
2623218893Sdim          // If we're evaluating a store through a bitcast, then we need
2624218893Sdim          // to pull the bitcast off the pointer type and push it onto the
2625218893Sdim          // stored value.
2626218893Sdim          Ptr = CE->getOperand(0);
2627249423Sdim
2628234353Sdim          Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
2629249423Sdim
2630218893Sdim          // In order to push the bitcast onto the stored value, a bitcast
2631218893Sdim          // from NewTy to Val's type must be legal.  If it's not, we can try
2632218893Sdim          // introspecting NewTy to find a legal conversion.
2633218893Sdim          while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2634218893Sdim            // If NewTy is a struct, we can convert the pointer to the struct
2635218893Sdim            // into a pointer to its first member.
2636218893Sdim            // FIXME: This could be extended to support arrays as well.
2637226633Sdim            if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2638218893Sdim              NewTy = STy->getTypeAtIndex(0U);
2639218893Sdim
2640234353Sdim              IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
2641218893Sdim              Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2642218893Sdim              Constant * const IdxList[] = {IdxZero, IdxZero};
2643218893Sdim
2644226633Sdim              Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
2645234353Sdim              if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2646234353Sdim                Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2647234353Sdim
2648218893Sdim            // If we can't improve the situation by introspecting NewTy,
2649218893Sdim            // we have to give up.
2650218893Sdim            } else {
2651249423Sdim              DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
2652249423Sdim                    "evaluate.\n");
2653234353Sdim              return false;
2654218893Sdim            }
2655218893Sdim          }
2656249423Sdim
2657218893Sdim          // If we found compatible types, go ahead and push the bitcast
2658218893Sdim          // onto the stored value.
2659218893Sdim          Val = ConstantExpr::getBitCast(Val, NewTy);
2660249423Sdim
2661249423Sdim          DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
2662218893Sdim        }
2663249423Sdim      }
2664249423Sdim
2665193323Sed      MutatedMemory[Ptr] = Val;
2666193323Sed    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2667193323Sed      InstResult = ConstantExpr::get(BO->getOpcode(),
2668234353Sdim                                     getVal(BO->getOperand(0)),
2669234353Sdim                                     getVal(BO->getOperand(1)));
2670249423Sdim      DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
2671249423Sdim            << "\n");
2672193323Sed    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2673193323Sed      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2674234353Sdim                                            getVal(CI->getOperand(0)),
2675234353Sdim                                            getVal(CI->getOperand(1)));
2676249423Sdim      DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
2677249423Sdim            << "\n");
2678193323Sed    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2679193323Sed      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2680234353Sdim                                         getVal(CI->getOperand(0)),
2681193323Sed                                         CI->getType());
2682249423Sdim      DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
2683249423Sdim            << "\n");
2684193323Sed    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2685234353Sdim      InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
2686234353Sdim                                           getVal(SI->getOperand(1)),
2687234353Sdim                                           getVal(SI->getOperand(2)));
2688249423Sdim      DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
2689249423Sdim            << "\n");
2690193323Sed    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2691234353Sdim      Constant *P = getVal(GEP->getOperand(0));
2692193323Sed      SmallVector<Constant*, 8> GEPOps;
2693193323Sed      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2694193323Sed           i != e; ++i)
2695234353Sdim        GEPOps.push_back(getVal(*i));
2696226633Sdim      InstResult =
2697226633Sdim        ConstantExpr::getGetElementPtr(P, GEPOps,
2698226633Sdim                                       cast<GEPOperator>(GEP)->isInBounds());
2699249423Sdim      DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
2700249423Sdim            << "\n");
2701193323Sed    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2702249423Sdim
2703249423Sdim      if (!LI->isSimple()) {
2704249423Sdim        DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
2705249423Sdim        return false;  // no volatile/atomic accesses.
2706249423Sdim      }
2707249423Sdim
2708234353Sdim      Constant *Ptr = getVal(LI->getOperand(0));
2709249423Sdim      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2710234353Sdim        Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2711249423Sdim        DEBUG(dbgs() << "Found a constant pointer expression, constant "
2712249423Sdim              "folding: " << *Ptr << "\n");
2713249423Sdim      }
2714234353Sdim      InstResult = ComputeLoadResult(Ptr);
2715249423Sdim      if (InstResult == 0) {
2716249423Sdim        DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
2717249423Sdim              "\n");
2718249423Sdim        return false; // Could not evaluate load.
2719249423Sdim      }
2720249423Sdim
2721249423Sdim      DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
2722193323Sed    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2723249423Sdim      if (AI->isArrayAllocation()) {
2724249423Sdim        DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
2725249423Sdim        return false;  // Cannot handle array allocs.
2726249423Sdim      }
2727226633Sdim      Type *Ty = AI->getType()->getElementType();
2728199481Srdivacky      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2729193323Sed                                              GlobalValue::InternalLinkage,
2730193323Sed                                              UndefValue::get(Ty),
2731193323Sed                                              AI->getName()));
2732218893Sdim      InstResult = AllocaTmps.back();
2733249423Sdim      DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
2734234353Sdim    } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
2735234353Sdim      CallSite CS(CurInst);
2736193323Sed
2737193323Sed      // Debug info can safely be ignored here.
2738234353Sdim      if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
2739249423Sdim        DEBUG(dbgs() << "Ignoring debug info.\n");
2740193323Sed        ++CurInst;
2741193323Sed        continue;
2742193323Sed      }
2743193323Sed
2744193323Sed      // Cannot handle inline asm.
2745249423Sdim      if (isa<InlineAsm>(CS.getCalledValue())) {
2746249423Sdim        DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
2747249423Sdim        return false;
2748249423Sdim      }
2749193323Sed
2750234353Sdim      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
2751234353Sdim        if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
2752249423Sdim          if (MSI->isVolatile()) {
2753249423Sdim            DEBUG(dbgs() << "Can not optimize a volatile memset " <<
2754249423Sdim                  "intrinsic.\n");
2755249423Sdim            return false;
2756249423Sdim          }
2757234353Sdim          Constant *Ptr = getVal(MSI->getDest());
2758234353Sdim          Constant *Val = getVal(MSI->getValue());
2759234353Sdim          Constant *DestVal = ComputeLoadResult(getVal(Ptr));
2760234353Sdim          if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2761234353Sdim            // This memset is a no-op.
2762249423Sdim            DEBUG(dbgs() << "Ignoring no-op memset.\n");
2763234353Sdim            ++CurInst;
2764234353Sdim            continue;
2765234353Sdim          }
2766234353Sdim        }
2767234353Sdim
2768234353Sdim        if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2769234353Sdim            II->getIntrinsicID() == Intrinsic::lifetime_end) {
2770249423Sdim          DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
2771223017Sdim          ++CurInst;
2772223017Sdim          continue;
2773223017Sdim        }
2774234353Sdim
2775234353Sdim        if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2776234353Sdim          // We don't insert an entry into Values, as it doesn't have a
2777234353Sdim          // meaningful return value.
2778249423Sdim          if (!II->use_empty()) {
2779249423Sdim            DEBUG(dbgs() << "Found unused invariant_start. Cant evaluate.\n");
2780234353Sdim            return false;
2781249423Sdim          }
2782234353Sdim          ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
2783234353Sdim          Value *PtrArg = getVal(II->getArgOperand(1));
2784234353Sdim          Value *Ptr = PtrArg->stripPointerCasts();
2785234353Sdim          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
2786234353Sdim            Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
2787234353Sdim            if (!Size->isAllOnesValue() &&
2788234353Sdim                Size->getValue().getLimitedValue() >=
2789249423Sdim                TD->getTypeStoreSize(ElemTy)) {
2790234353Sdim              Invariants.insert(GV);
2791249423Sdim              DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
2792249423Sdim                    << "\n");
2793249423Sdim            } else {
2794249423Sdim              DEBUG(dbgs() << "Found a global var, but can not treat it as an "
2795249423Sdim                    "invariant.\n");
2796249423Sdim            }
2797234353Sdim          }
2798234353Sdim          // Continue even if we do nothing.
2799234353Sdim          ++CurInst;
2800234353Sdim          continue;
2801234353Sdim        }
2802249423Sdim
2803249423Sdim        DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
2804223017Sdim        return false;
2805223017Sdim      }
2806223017Sdim
2807193323Sed      // Resolve function pointers.
2808234353Sdim      Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
2809249423Sdim      if (!Callee || Callee->mayBeOverridden()) {
2810249423Sdim        DEBUG(dbgs() << "Can not resolve function pointer.\n");
2811234353Sdim        return false;  // Cannot resolve.
2812249423Sdim      }
2813193323Sed
2814198090Srdivacky      SmallVector<Constant*, 8> Formals;
2815234353Sdim      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
2816234353Sdim        Formals.push_back(getVal(*i));
2817198090Srdivacky
2818193323Sed      if (Callee->isDeclaration()) {
2819193323Sed        // If this is a function we can constant fold, do it.
2820234353Sdim        if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
2821193323Sed          InstResult = C;
2822249423Sdim          DEBUG(dbgs() << "Constant folded function call. Result: " <<
2823249423Sdim                *InstResult << "\n");
2824193323Sed        } else {
2825249423Sdim          DEBUG(dbgs() << "Can not constant fold function call.\n");
2826193323Sed          return false;
2827193323Sed        }
2828193323Sed      } else {
2829249423Sdim        if (Callee->getFunctionType()->isVarArg()) {
2830249423Sdim          DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
2831193323Sed          return false;
2832249423Sdim        }
2833218893Sdim
2834249423Sdim        Constant *RetVal = 0;
2835193323Sed        // Execute the call, if successful, use the return value.
2836234353Sdim        ValueStack.push_back(new DenseMap<Value*, Constant*>);
2837249423Sdim        if (!EvaluateFunction(Callee, RetVal, Formals)) {
2838249423Sdim          DEBUG(dbgs() << "Failed to evaluate function.\n");
2839193323Sed          return false;
2840249423Sdim        }
2841234353Sdim        delete ValueStack.pop_back_val();
2842193323Sed        InstResult = RetVal;
2843249423Sdim
2844249423Sdim        if (InstResult != NULL) {
2845249423Sdim          DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
2846249423Sdim                InstResult << "\n\n");
2847249423Sdim        } else {
2848249423Sdim          DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
2849249423Sdim        }
2850193323Sed      }
2851193323Sed    } else if (isa<TerminatorInst>(CurInst)) {
2852249423Sdim      DEBUG(dbgs() << "Found a terminator instruction.\n");
2853249423Sdim
2854193323Sed      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2855193323Sed        if (BI->isUnconditional()) {
2856234353Sdim          NextBB = BI->getSuccessor(0);
2857193323Sed        } else {
2858193323Sed          ConstantInt *Cond =
2859234353Sdim            dyn_cast<ConstantInt>(getVal(BI->getCondition()));
2860193323Sed          if (!Cond) return false;  // Cannot determine.
2861193323Sed
2862234353Sdim          NextBB = BI->getSuccessor(!Cond->getZExtValue());
2863193323Sed        }
2864193323Sed      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2865193323Sed        ConstantInt *Val =
2866234353Sdim          dyn_cast<ConstantInt>(getVal(SI->getCondition()));
2867193323Sed        if (!Val) return false;  // Cannot determine.
2868234353Sdim        NextBB = SI->findCaseValue(Val).getCaseSuccessor();
2869198892Srdivacky      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2870234353Sdim        Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
2871198892Srdivacky        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2872234353Sdim          NextBB = BA->getBasicBlock();
2873198892Srdivacky        else
2874198892Srdivacky          return false;  // Cannot determine.
2875234353Sdim      } else if (isa<ReturnInst>(CurInst)) {
2876234353Sdim        NextBB = 0;
2877193323Sed      } else {
2878226633Sdim        // invoke, unwind, resume, unreachable.
2879249423Sdim        DEBUG(dbgs() << "Can not handle terminator.");
2880193323Sed        return false;  // Cannot handle this terminator.
2881193323Sed      }
2882218893Sdim
2883234353Sdim      // We succeeded at evaluating this block!
2884249423Sdim      DEBUG(dbgs() << "Successfully evaluated block.\n");
2885234353Sdim      return true;
2886193323Sed    } else {
2887193323Sed      // Did not know how to evaluate this!
2888249423Sdim      DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
2889249423Sdim            "\n");
2890193323Sed      return false;
2891193323Sed    }
2892218893Sdim
2893218893Sdim    if (!CurInst->use_empty()) {
2894218893Sdim      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2895234353Sdim        InstResult = ConstantFoldConstantExpression(CE, TD, TLI);
2896249423Sdim
2897234353Sdim      setVal(CurInst, InstResult);
2898218893Sdim    }
2899218893Sdim
2900234353Sdim    // If we just processed an invoke, we finished evaluating the block.
2901234353Sdim    if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
2902234353Sdim      NextBB = II->getNormalDest();
2903249423Sdim      DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
2904234353Sdim      return true;
2905234353Sdim    }
2906234353Sdim
2907193323Sed    // Advance program counter.
2908193323Sed    ++CurInst;
2909193323Sed  }
2910193323Sed}
2911193323Sed
2912234353Sdim/// EvaluateFunction - Evaluate a call to function F, returning true if
2913234353Sdim/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2914234353Sdim/// arguments for the function.
2915234353Sdimbool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
2916234353Sdim                                 const SmallVectorImpl<Constant*> &ActualArgs) {
2917234353Sdim  // Check to see if this function is already executing (recursion).  If so,
2918234353Sdim  // bail out.  TODO: we might want to accept limited recursion.
2919234353Sdim  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2920234353Sdim    return false;
2921193323Sed
2922234353Sdim  CallStack.push_back(F);
2923218893Sdim
2924234353Sdim  // Initialize arguments to the incoming values specified.
2925234353Sdim  unsigned ArgNo = 0;
2926234353Sdim  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2927234353Sdim       ++AI, ++ArgNo)
2928234353Sdim    setVal(AI, ActualArgs[ArgNo]);
2929193323Sed
2930234353Sdim  // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2931234353Sdim  // we can only evaluate any one basic block at most once.  This set keeps
2932234353Sdim  // track of what we have executed so we can detect recursive cases etc.
2933234353Sdim  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2934234353Sdim
2935234353Sdim  // CurBB - The current basic block we're evaluating.
2936234353Sdim  BasicBlock *CurBB = F->begin();
2937234353Sdim
2938234353Sdim  BasicBlock::iterator CurInst = CurBB->begin();
2939234353Sdim
2940234353Sdim  while (1) {
2941234353Sdim    BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings.
2942249423Sdim    DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
2943249423Sdim
2944234353Sdim    if (!EvaluateBlock(CurInst, NextBB))
2945234353Sdim      return false;
2946234353Sdim
2947234353Sdim    if (NextBB == 0) {
2948234353Sdim      // Successfully running until there's no next block means that we found
2949234353Sdim      // the return.  Fill it the return value and pop the call stack.
2950234353Sdim      ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
2951234353Sdim      if (RI->getNumOperands())
2952234353Sdim        RetVal = getVal(RI->getOperand(0));
2953234353Sdim      CallStack.pop_back();
2954234353Sdim      return true;
2955234353Sdim    }
2956234353Sdim
2957234353Sdim    // Okay, we succeeded in evaluating this control flow.  See if we have
2958234353Sdim    // executed the new block before.  If so, we have a looping function,
2959234353Sdim    // which we cannot evaluate in reasonable time.
2960234353Sdim    if (!ExecutedBlocks.insert(NextBB))
2961234353Sdim      return false;  // looped!
2962234353Sdim
2963234353Sdim    // Okay, we have never been in this block before.  Check to see if there
2964234353Sdim    // are any PHI nodes.  If so, evaluate them with information about where
2965234353Sdim    // we came from.
2966234353Sdim    PHINode *PN = 0;
2967234353Sdim    for (CurInst = NextBB->begin();
2968234353Sdim         (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2969234353Sdim      setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
2970234353Sdim
2971234353Sdim    // Advance to the next block.
2972234353Sdim    CurBB = NextBB;
2973234353Sdim  }
2974234353Sdim}
2975234353Sdim
2976234353Sdim/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2977234353Sdim/// we can.  Return true if we can, false otherwise.
2978243830Sdimstatic bool EvaluateStaticConstructor(Function *F, const DataLayout *TD,
2979234353Sdim                                      const TargetLibraryInfo *TLI) {
2980193323Sed  // Call the function.
2981234353Sdim  Evaluator Eval(TD, TLI);
2982193323Sed  Constant *RetValDummy;
2983234353Sdim  bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2984234353Sdim                                           SmallVector<Constant*, 0>());
2985249423Sdim
2986193323Sed  if (EvalSuccess) {
2987193323Sed    // We succeeded at evaluation: commit the result.
2988202375Srdivacky    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2989234353Sdim          << F->getName() << "' to " << Eval.getMutatedMemory().size()
2990198090Srdivacky          << " stores.\n");
2991234353Sdim    for (DenseMap<Constant*, Constant*>::const_iterator I =
2992234353Sdim           Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2993239462Sdim         I != E; ++I)
2994199481Srdivacky      CommitValueTo(I->second, I->first);
2995234353Sdim    for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I =
2996234353Sdim           Eval.getInvariants().begin(), E = Eval.getInvariants().end();
2997234353Sdim         I != E; ++I)
2998234353Sdim      (*I)->setConstant(true);
2999193323Sed  }
3000218893Sdim
3001193323Sed  return EvalSuccess;
3002193323Sed}
3003193323Sed
3004193323Sed/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
3005193323Sed/// Return true if anything changed.
3006193323Sedbool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
3007193323Sed  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
3008193323Sed  bool MadeChange = false;
3009193323Sed  if (Ctors.empty()) return false;
3010218893Sdim
3011193323Sed  // Loop over global ctors, optimizing them when we can.
3012193323Sed  for (unsigned i = 0; i != Ctors.size(); ++i) {
3013193323Sed    Function *F = Ctors[i];
3014193323Sed    // Found a null terminator in the middle of the list, prune off the rest of
3015193323Sed    // the list.
3016193323Sed    if (F == 0) {
3017193323Sed      if (i != Ctors.size()-1) {
3018193323Sed        Ctors.resize(i+1);
3019193323Sed        MadeChange = true;
3020193323Sed      }
3021193323Sed      break;
3022193323Sed    }
3023249423Sdim    DEBUG(dbgs() << "Optimizing Global Constructor: " << *F << "\n");
3024218893Sdim
3025193323Sed    // We cannot simplify external ctor functions.
3026193323Sed    if (F->empty()) continue;
3027218893Sdim
3028193323Sed    // If we can evaluate the ctor at compile time, do.
3029234353Sdim    if (EvaluateStaticConstructor(F, TD, TLI)) {
3030193323Sed      Ctors.erase(Ctors.begin()+i);
3031193323Sed      MadeChange = true;
3032193323Sed      --i;
3033193323Sed      ++NumCtorsEvaluated;
3034193323Sed      continue;
3035193323Sed    }
3036193323Sed  }
3037218893Sdim
3038193323Sed  if (!MadeChange) return false;
3039218893Sdim
3040199481Srdivacky  GCL = InstallGlobalCtors(GCL, Ctors);
3041193323Sed  return true;
3042193323Sed}
3043193323Sed
3044251662Sdimstatic Value::use_iterator getFirst(Value *V, SmallPtrSet<Use*, 8> &Tried) {
3045251662Sdim  for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) {
3046251662Sdim    Use *U = &I.getUse();
3047251662Sdim    if (Tried.count(U))
3048251662Sdim      continue;
3049251662Sdim
3050251662Sdim    User *Usr = *I;
3051251662Sdim    GlobalVariable *GV = dyn_cast<GlobalVariable>(Usr);
3052251662Sdim    if (!GV || !GV->hasName()) {
3053251662Sdim      Tried.insert(U);
3054251662Sdim      return I;
3055251662Sdim    }
3056251662Sdim
3057251662Sdim    StringRef Name = GV->getName();
3058251662Sdim    if (Name != "llvm.used" && Name != "llvm.compiler_used") {
3059251662Sdim      Tried.insert(U);
3060251662Sdim      return I;
3061251662Sdim    }
3062251662Sdim  }
3063251662Sdim  return V->use_end();
3064251662Sdim}
3065251662Sdim
3066251662Sdimstatic bool replaceAllNonLLVMUsedUsesWith(Constant *Old, Constant *New);
3067251662Sdim
3068251662Sdimstatic bool replaceUsesOfWithOnConstant(ConstantArray *CA, Value *From,
3069251662Sdim                                        Value *ToV, Use *U) {
3070251662Sdim  Constant *To = cast<Constant>(ToV);
3071251662Sdim
3072251662Sdim  SmallVector<Constant*, 8> NewOps;
3073251662Sdim  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
3074251662Sdim    Constant *Op = CA->getOperand(i);
3075251662Sdim    NewOps.push_back(Op == From ? To : Op);
3076251662Sdim  }
3077251662Sdim
3078251662Sdim  Constant *Replacement = ConstantArray::get(CA->getType(), NewOps);
3079251662Sdim  assert(Replacement != CA && "CA didn't contain From!");
3080251662Sdim
3081251662Sdim  bool Ret = replaceAllNonLLVMUsedUsesWith(CA, Replacement);
3082251662Sdim  if (Replacement->use_empty())
3083251662Sdim    Replacement->destroyConstant();
3084251662Sdim  if (CA->use_empty())
3085251662Sdim    CA->destroyConstant();
3086251662Sdim  return Ret;
3087251662Sdim}
3088251662Sdim
3089251662Sdimstatic bool replaceUsesOfWithOnConstant(ConstantExpr *CE, Value *From,
3090251662Sdim                                        Value *ToV, Use *U) {
3091251662Sdim  Constant *To = cast<Constant>(ToV);
3092251662Sdim  SmallVector<Constant*, 8> NewOps;
3093251662Sdim  for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
3094251662Sdim    Constant *Op = CE->getOperand(i);
3095251662Sdim    NewOps.push_back(Op == From ? To : Op);
3096251662Sdim  }
3097251662Sdim
3098251662Sdim  Constant *Replacement = CE->getWithOperands(NewOps);
3099251662Sdim  assert(Replacement != CE && "CE didn't contain From!");
3100251662Sdim
3101251662Sdim  bool Ret = replaceAllNonLLVMUsedUsesWith(CE, Replacement);
3102251662Sdim  if (Replacement->use_empty())
3103251662Sdim    Replacement->destroyConstant();
3104251662Sdim  if (CE->use_empty())
3105251662Sdim    CE->destroyConstant();
3106251662Sdim  return Ret;
3107251662Sdim}
3108251662Sdim
3109251662Sdimstatic bool replaceUsesOfWithOnConstant(Constant *C, Value *From, Value *To,
3110251662Sdim                                        Use *U) {
3111251662Sdim  if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
3112251662Sdim    return replaceUsesOfWithOnConstant(CA, From, To, U);
3113251662Sdim  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3114251662Sdim    return replaceUsesOfWithOnConstant(CE, From, To, U);
3115251662Sdim  C->replaceUsesOfWithOnConstant(From, To, U);
3116251662Sdim  return true;
3117251662Sdim}
3118251662Sdim
3119251662Sdimstatic bool replaceAllNonLLVMUsedUsesWith(Constant *Old, Constant *New) {
3120251662Sdim  SmallPtrSet<Use*, 8> Tried;
3121251662Sdim  bool Ret = false;
3122251662Sdim  for (;;) {
3123251662Sdim    Value::use_iterator I = getFirst(Old, Tried);
3124251662Sdim    if (I == Old->use_end())
3125251662Sdim      break;
3126251662Sdim    Use &U = I.getUse();
3127251662Sdim
3128251662Sdim    // Must handle Constants specially, we cannot call replaceUsesOfWith on a
3129251662Sdim    // constant because they are uniqued.
3130251662Sdim    if (Constant *C = dyn_cast<Constant>(U.getUser())) {
3131251662Sdim      if (!isa<GlobalValue>(C)) {
3132251662Sdim        Ret |= replaceUsesOfWithOnConstant(C, Old, New, &U);
3133251662Sdim        continue;
3134251662Sdim      }
3135251662Sdim    }
3136251662Sdim
3137251662Sdim    U.set(New);
3138251662Sdim    Ret = true;
3139251662Sdim  }
3140251662Sdim  return Ret;
3141251662Sdim}
3142251662Sdim
3143193323Sedbool GlobalOpt::OptimizeGlobalAliases(Module &M) {
3144193323Sed  bool Changed = false;
3145193323Sed
3146193323Sed  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
3147193323Sed       I != E;) {
3148193323Sed    Module::alias_iterator J = I++;
3149193323Sed    // Aliases without names cannot be referenced outside this module.
3150193323Sed    if (!J->hasName() && !J->isDeclaration())
3151193323Sed      J->setLinkage(GlobalValue::InternalLinkage);
3152193323Sed    // If the aliasee may change at link time, nothing can be done - bail out.
3153193323Sed    if (J->mayBeOverridden())
3154193323Sed      continue;
3155193323Sed
3156193323Sed    Constant *Aliasee = J->getAliasee();
3157193323Sed    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
3158193323Sed    Target->removeDeadConstantUsers();
3159193323Sed    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
3160193323Sed
3161193323Sed    // Make all users of the alias use the aliasee instead.
3162251662Sdim    if (replaceAllNonLLVMUsedUsesWith(J, Aliasee)) {
3163193323Sed      ++NumAliasesResolved;
3164193323Sed      Changed = true;
3165193323Sed    }
3166251662Sdim    if (!J->use_empty())
3167251662Sdim      continue;
3168193323Sed
3169200581Srdivacky    // If the alias is externally visible, we may still be able to simplify it.
3170200581Srdivacky    if (!J->hasLocalLinkage()) {
3171200581Srdivacky      // If the aliasee has internal linkage, give it the name and linkage
3172200581Srdivacky      // of the alias, and delete the alias.  This turns:
3173200581Srdivacky      //   define internal ... @f(...)
3174200581Srdivacky      //   @a = alias ... @f
3175200581Srdivacky      // into:
3176200581Srdivacky      //   define ... @a(...)
3177200581Srdivacky      if (!Target->hasLocalLinkage())
3178200581Srdivacky        continue;
3179193323Sed
3180200581Srdivacky      // Do not perform the transform if multiple aliases potentially target the
3181207618Srdivacky      // aliasee. This check also ensures that it is safe to replace the section
3182200581Srdivacky      // and other attributes of the aliasee with those of the alias.
3183200581Srdivacky      if (!hasOneUse)
3184200581Srdivacky        continue;
3185193323Sed
3186200581Srdivacky      // Give the aliasee the name, linkage and other attributes of the alias.
3187200581Srdivacky      Target->takeName(J);
3188200581Srdivacky      Target->setLinkage(J->getLinkage());
3189200581Srdivacky      Target->GlobalValue::copyAttributesFrom(J);
3190200581Srdivacky    }
3191193323Sed
3192193323Sed    // Delete the alias.
3193193323Sed    M.getAliasList().erase(J);
3194193323Sed    ++NumAliasesRemoved;
3195193323Sed    Changed = true;
3196193323Sed  }
3197193323Sed
3198193323Sed  return Changed;
3199193323Sed}
3200193323Sed
3201234353Sdimstatic Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
3202234353Sdim  if (!TLI->has(LibFunc::cxa_atexit))
3203234353Sdim    return 0;
3204234353Sdim
3205234353Sdim  Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
3206249423Sdim
3207221345Sdim  if (!Fn)
3208221345Sdim    return 0;
3209234353Sdim
3210226633Sdim  FunctionType *FTy = Fn->getFunctionType();
3211249423Sdim
3212249423Sdim  // Checking that the function has the right return type, the right number of
3213221345Sdim  // parameters and that they all have pointer types should be enough.
3214221345Sdim  if (!FTy->getReturnType()->isIntegerTy() ||
3215221345Sdim      FTy->getNumParams() != 3 ||
3216221345Sdim      !FTy->getParamType(0)->isPointerTy() ||
3217221345Sdim      !FTy->getParamType(1)->isPointerTy() ||
3218221345Sdim      !FTy->getParamType(2)->isPointerTy())
3219221345Sdim    return 0;
3220221345Sdim
3221221345Sdim  return Fn;
3222221345Sdim}
3223221345Sdim
3224221345Sdim/// cxxDtorIsEmpty - Returns whether the given function is an empty C++
3225221345Sdim/// destructor and can therefore be eliminated.
3226221345Sdim/// Note that we assume that other optimization passes have already simplified
3227221345Sdim/// the code so we only look for a function with a single basic block, where
3228234353Sdim/// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
3229234353Sdim/// other side-effect free instructions.
3230221345Sdimstatic bool cxxDtorIsEmpty(const Function &Fn,
3231221345Sdim                           SmallPtrSet<const Function *, 8> &CalledFunctions) {
3232221345Sdim  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
3233221345Sdim  // nounwind, but that doesn't seem worth doing.
3234221345Sdim  if (Fn.isDeclaration())
3235221345Sdim    return false;
3236221345Sdim
3237221345Sdim  if (++Fn.begin() != Fn.end())
3238221345Sdim    return false;
3239221345Sdim
3240221345Sdim  const BasicBlock &EntryBlock = Fn.getEntryBlock();
3241221345Sdim  for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
3242221345Sdim       I != E; ++I) {
3243221345Sdim    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
3244221345Sdim      // Ignore debug intrinsics.
3245221345Sdim      if (isa<DbgInfoIntrinsic>(CI))
3246221345Sdim        continue;
3247221345Sdim
3248221345Sdim      const Function *CalledFn = CI->getCalledFunction();
3249221345Sdim
3250221345Sdim      if (!CalledFn)
3251221345Sdim        return false;
3252221345Sdim
3253221345Sdim      SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
3254221345Sdim
3255221345Sdim      // Don't treat recursive functions as empty.
3256221345Sdim      if (!NewCalledFunctions.insert(CalledFn))
3257221345Sdim        return false;
3258221345Sdim
3259221345Sdim      if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
3260221345Sdim        return false;
3261221345Sdim    } else if (isa<ReturnInst>(*I))
3262234353Sdim      return true; // We're done.
3263234353Sdim    else if (I->mayHaveSideEffects())
3264234353Sdim      return false; // Destructor with side effects, bail.
3265221345Sdim  }
3266221345Sdim
3267221345Sdim  return false;
3268221345Sdim}
3269221345Sdim
3270221345Sdimbool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
3271221345Sdim  /// Itanium C++ ABI p3.3.5:
3272221345Sdim  ///
3273221345Sdim  ///   After constructing a global (or local static) object, that will require
3274221345Sdim  ///   destruction on exit, a termination function is registered as follows:
3275221345Sdim  ///
3276221345Sdim  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3277221345Sdim  ///
3278221345Sdim  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3279221345Sdim  ///   call f(p) when DSO d is unloaded, before all such termination calls
3280221345Sdim  ///   registered before this one. It returns zero if registration is
3281221345Sdim  ///   successful, nonzero on failure.
3282221345Sdim
3283221345Sdim  // This pass will look for calls to __cxa_atexit where the function is trivial
3284221345Sdim  // and remove them.
3285221345Sdim  bool Changed = false;
3286221345Sdim
3287249423Sdim  for (Function::use_iterator I = CXAAtExitFn->use_begin(),
3288221345Sdim       E = CXAAtExitFn->use_end(); I != E;) {
3289221345Sdim    // We're only interested in calls. Theoretically, we could handle invoke
3290221345Sdim    // instructions as well, but neither llvm-gcc nor clang generate invokes
3291221345Sdim    // to __cxa_atexit.
3292221345Sdim    CallInst *CI = dyn_cast<CallInst>(*I++);
3293221345Sdim    if (!CI)
3294221345Sdim      continue;
3295221345Sdim
3296249423Sdim    Function *DtorFn =
3297221345Sdim      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3298221345Sdim    if (!DtorFn)
3299221345Sdim      continue;
3300221345Sdim
3301221345Sdim    SmallPtrSet<const Function *, 8> CalledFunctions;
3302221345Sdim    if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
3303221345Sdim      continue;
3304221345Sdim
3305221345Sdim    // Just remove the call.
3306221345Sdim    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3307221345Sdim    CI->eraseFromParent();
3308221345Sdim
3309221345Sdim    ++NumCXXDtorsRemoved;
3310221345Sdim
3311221345Sdim    Changed |= true;
3312221345Sdim  }
3313221345Sdim
3314221345Sdim  return Changed;
3315221345Sdim}
3316221345Sdim
3317193323Sedbool GlobalOpt::runOnModule(Module &M) {
3318193323Sed  bool Changed = false;
3319218893Sdim
3320243830Sdim  TD = getAnalysisIfAvailable<DataLayout>();
3321234353Sdim  TLI = &getAnalysis<TargetLibraryInfo>();
3322234353Sdim
3323193323Sed  // Try to find the llvm.globalctors list.
3324193323Sed  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
3325193323Sed
3326234353Sdim  Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
3327221345Sdim
3328193323Sed  bool LocalChange = true;
3329193323Sed  while (LocalChange) {
3330193323Sed    LocalChange = false;
3331218893Sdim
3332193323Sed    // Delete functions that are trivially dead, ccc -> fastcc
3333193323Sed    LocalChange |= OptimizeFunctions(M);
3334218893Sdim
3335193323Sed    // Optimize global_ctors list.
3336193323Sed    if (GlobalCtors)
3337193323Sed      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
3338218893Sdim
3339193323Sed    // Optimize non-address-taken globals.
3340193323Sed    LocalChange |= OptimizeGlobalVars(M);
3341193323Sed
3342193323Sed    // Resolve aliases, when possible.
3343193323Sed    LocalChange |= OptimizeGlobalAliases(M);
3344221345Sdim
3345221345Sdim    // Try to remove trivial global destructors.
3346221345Sdim    if (CXAAtExitFn)
3347221345Sdim      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3348221345Sdim
3349193323Sed    Changed |= LocalChange;
3350193323Sed  }
3351218893Sdim
3352193323Sed  // TODO: Move all global ctors functions to the end of the module for code
3353193323Sed  // layout.
3354218893Sdim
3355193323Sed  return Changed;
3356193323Sed}
3357