1//===-- Type.cpp - Implement the Type class -------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Type class for the IR library.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Type.h"
15#include "LLVMContextImpl.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/IR/Module.h"
18#include <algorithm>
19#include <cstdarg>
20using namespace llvm;
21
22//===----------------------------------------------------------------------===//
23//                         Type Class Implementation
24//===----------------------------------------------------------------------===//
25
26Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
27  switch (IDNumber) {
28  case VoidTyID      : return getVoidTy(C);
29  case HalfTyID      : return getHalfTy(C);
30  case FloatTyID     : return getFloatTy(C);
31  case DoubleTyID    : return getDoubleTy(C);
32  case X86_FP80TyID  : return getX86_FP80Ty(C);
33  case FP128TyID     : return getFP128Ty(C);
34  case PPC_FP128TyID : return getPPC_FP128Ty(C);
35  case LabelTyID     : return getLabelTy(C);
36  case MetadataTyID  : return getMetadataTy(C);
37  case X86_MMXTyID   : return getX86_MMXTy(C);
38  default:
39    return 0;
40  }
41}
42
43/// getScalarType - If this is a vector type, return the element type,
44/// otherwise return this.
45Type *Type::getScalarType() {
46  if (VectorType *VTy = dyn_cast<VectorType>(this))
47    return VTy->getElementType();
48  return this;
49}
50
51const Type *Type::getScalarType() const {
52  if (const VectorType *VTy = dyn_cast<VectorType>(this))
53    return VTy->getElementType();
54  return this;
55}
56
57/// isIntegerTy - Return true if this is an IntegerType of the specified width.
58bool Type::isIntegerTy(unsigned Bitwidth) const {
59  return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
60}
61
62// canLosslesslyBitCastTo - Return true if this type can be converted to
63// 'Ty' without any reinterpretation of bits.  For example, i8* to i32*.
64//
65bool Type::canLosslesslyBitCastTo(Type *Ty) const {
66  // Identity cast means no change so return true
67  if (this == Ty)
68    return true;
69
70  // They are not convertible unless they are at least first class types
71  if (!this->isFirstClassType() || !Ty->isFirstClassType())
72    return false;
73
74  // Vector -> Vector conversions are always lossless if the two vector types
75  // have the same size, otherwise not.  Also, 64-bit vector types can be
76  // converted to x86mmx.
77  if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
78    if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
79      return thisPTy->getBitWidth() == thatPTy->getBitWidth();
80    if (Ty->getTypeID() == Type::X86_MMXTyID &&
81        thisPTy->getBitWidth() == 64)
82      return true;
83  }
84
85  if (this->getTypeID() == Type::X86_MMXTyID)
86    if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
87      if (thatPTy->getBitWidth() == 64)
88        return true;
89
90  // At this point we have only various mismatches of the first class types
91  // remaining and ptr->ptr. Just select the lossless conversions. Everything
92  // else is not lossless.
93  if (this->isPointerTy())
94    return Ty->isPointerTy();
95  return false;  // Other types have no identity values
96}
97
98bool Type::isEmptyTy() const {
99  const ArrayType *ATy = dyn_cast<ArrayType>(this);
100  if (ATy) {
101    unsigned NumElements = ATy->getNumElements();
102    return NumElements == 0 || ATy->getElementType()->isEmptyTy();
103  }
104
105  const StructType *STy = dyn_cast<StructType>(this);
106  if (STy) {
107    unsigned NumElements = STy->getNumElements();
108    for (unsigned i = 0; i < NumElements; ++i)
109      if (!STy->getElementType(i)->isEmptyTy())
110        return false;
111    return true;
112  }
113
114  return false;
115}
116
117unsigned Type::getPrimitiveSizeInBits() const {
118  switch (getTypeID()) {
119  case Type::HalfTyID: return 16;
120  case Type::FloatTyID: return 32;
121  case Type::DoubleTyID: return 64;
122  case Type::X86_FP80TyID: return 80;
123  case Type::FP128TyID: return 128;
124  case Type::PPC_FP128TyID: return 128;
125  case Type::X86_MMXTyID: return 64;
126  case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
127  case Type::VectorTyID:  return cast<VectorType>(this)->getBitWidth();
128  default: return 0;
129  }
130}
131
132/// getScalarSizeInBits - If this is a vector type, return the
133/// getPrimitiveSizeInBits value for the element type. Otherwise return the
134/// getPrimitiveSizeInBits value for this type.
135unsigned Type::getScalarSizeInBits() {
136  return getScalarType()->getPrimitiveSizeInBits();
137}
138
139/// getFPMantissaWidth - Return the width of the mantissa of this type.  This
140/// is only valid on floating point types.  If the FP type does not
141/// have a stable mantissa (e.g. ppc long double), this method returns -1.
142int Type::getFPMantissaWidth() const {
143  if (const VectorType *VTy = dyn_cast<VectorType>(this))
144    return VTy->getElementType()->getFPMantissaWidth();
145  assert(isFloatingPointTy() && "Not a floating point type!");
146  if (getTypeID() == HalfTyID) return 11;
147  if (getTypeID() == FloatTyID) return 24;
148  if (getTypeID() == DoubleTyID) return 53;
149  if (getTypeID() == X86_FP80TyID) return 64;
150  if (getTypeID() == FP128TyID) return 113;
151  assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
152  return -1;
153}
154
155/// isSizedDerivedType - Derived types like structures and arrays are sized
156/// iff all of the members of the type are sized as well.  Since asking for
157/// their size is relatively uncommon, move this operation out of line.
158bool Type::isSizedDerivedType() const {
159  if (this->isIntegerTy())
160    return true;
161
162  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
163    return ATy->getElementType()->isSized();
164
165  if (const VectorType *VTy = dyn_cast<VectorType>(this))
166    return VTy->getElementType()->isSized();
167
168  if (!this->isStructTy())
169    return false;
170
171  return cast<StructType>(this)->isSized();
172}
173
174//===----------------------------------------------------------------------===//
175//                         Subclass Helper Methods
176//===----------------------------------------------------------------------===//
177
178unsigned Type::getIntegerBitWidth() const {
179  return cast<IntegerType>(this)->getBitWidth();
180}
181
182bool Type::isFunctionVarArg() const {
183  return cast<FunctionType>(this)->isVarArg();
184}
185
186Type *Type::getFunctionParamType(unsigned i) const {
187  return cast<FunctionType>(this)->getParamType(i);
188}
189
190unsigned Type::getFunctionNumParams() const {
191  return cast<FunctionType>(this)->getNumParams();
192}
193
194StringRef Type::getStructName() const {
195  return cast<StructType>(this)->getName();
196}
197
198unsigned Type::getStructNumElements() const {
199  return cast<StructType>(this)->getNumElements();
200}
201
202Type *Type::getStructElementType(unsigned N) const {
203  return cast<StructType>(this)->getElementType(N);
204}
205
206Type *Type::getSequentialElementType() const {
207  return cast<SequentialType>(this)->getElementType();
208}
209
210uint64_t Type::getArrayNumElements() const {
211  return cast<ArrayType>(this)->getNumElements();
212}
213
214unsigned Type::getVectorNumElements() const {
215  return cast<VectorType>(this)->getNumElements();
216}
217
218unsigned Type::getPointerAddressSpace() const {
219  return cast<PointerType>(getScalarType())->getAddressSpace();
220}
221
222
223//===----------------------------------------------------------------------===//
224//                          Primitive 'Type' data
225//===----------------------------------------------------------------------===//
226
227Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
228Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
229Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
230Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
231Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
232Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
233Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
234Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
235Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
236Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
237
238IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
239IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
240IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
241IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
242IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
243
244IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
245  return IntegerType::get(C, N);
246}
247
248PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
249  return getHalfTy(C)->getPointerTo(AS);
250}
251
252PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
253  return getFloatTy(C)->getPointerTo(AS);
254}
255
256PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
257  return getDoubleTy(C)->getPointerTo(AS);
258}
259
260PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
261  return getX86_FP80Ty(C)->getPointerTo(AS);
262}
263
264PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
265  return getFP128Ty(C)->getPointerTo(AS);
266}
267
268PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
269  return getPPC_FP128Ty(C)->getPointerTo(AS);
270}
271
272PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
273  return getX86_MMXTy(C)->getPointerTo(AS);
274}
275
276PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
277  return getIntNTy(C, N)->getPointerTo(AS);
278}
279
280PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
281  return getInt1Ty(C)->getPointerTo(AS);
282}
283
284PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
285  return getInt8Ty(C)->getPointerTo(AS);
286}
287
288PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
289  return getInt16Ty(C)->getPointerTo(AS);
290}
291
292PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
293  return getInt32Ty(C)->getPointerTo(AS);
294}
295
296PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
297  return getInt64Ty(C)->getPointerTo(AS);
298}
299
300
301//===----------------------------------------------------------------------===//
302//                       IntegerType Implementation
303//===----------------------------------------------------------------------===//
304
305IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
306  assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
307  assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
308
309  // Check for the built-in integer types
310  switch (NumBits) {
311  case  1: return cast<IntegerType>(Type::getInt1Ty(C));
312  case  8: return cast<IntegerType>(Type::getInt8Ty(C));
313  case 16: return cast<IntegerType>(Type::getInt16Ty(C));
314  case 32: return cast<IntegerType>(Type::getInt32Ty(C));
315  case 64: return cast<IntegerType>(Type::getInt64Ty(C));
316  default:
317    break;
318  }
319
320  IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
321
322  if (Entry == 0)
323    Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
324
325  return Entry;
326}
327
328bool IntegerType::isPowerOf2ByteWidth() const {
329  unsigned BitWidth = getBitWidth();
330  return (BitWidth > 7) && isPowerOf2_32(BitWidth);
331}
332
333APInt IntegerType::getMask() const {
334  return APInt::getAllOnesValue(getBitWidth());
335}
336
337//===----------------------------------------------------------------------===//
338//                       FunctionType Implementation
339//===----------------------------------------------------------------------===//
340
341FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
342                           bool IsVarArgs)
343  : Type(Result->getContext(), FunctionTyID) {
344  Type **SubTys = reinterpret_cast<Type**>(this+1);
345  assert(isValidReturnType(Result) && "invalid return type for function");
346  setSubclassData(IsVarArgs);
347
348  SubTys[0] = const_cast<Type*>(Result);
349
350  for (unsigned i = 0, e = Params.size(); i != e; ++i) {
351    assert(isValidArgumentType(Params[i]) &&
352           "Not a valid type for function argument!");
353    SubTys[i+1] = Params[i];
354  }
355
356  ContainedTys = SubTys;
357  NumContainedTys = Params.size() + 1; // + 1 for result type
358}
359
360// FunctionType::get - The factory function for the FunctionType class.
361FunctionType *FunctionType::get(Type *ReturnType,
362                                ArrayRef<Type*> Params, bool isVarArg) {
363  LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
364  FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
365  LLVMContextImpl::FunctionTypeMap::iterator I =
366    pImpl->FunctionTypes.find_as(Key);
367  FunctionType *FT;
368
369  if (I == pImpl->FunctionTypes.end()) {
370    FT = (FunctionType*) pImpl->TypeAllocator.
371      Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
372               AlignOf<FunctionType>::Alignment);
373    new (FT) FunctionType(ReturnType, Params, isVarArg);
374    pImpl->FunctionTypes[FT] = true;
375  } else {
376    FT = I->first;
377  }
378
379  return FT;
380}
381
382FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
383  return get(Result, None, isVarArg);
384}
385
386/// isValidReturnType - Return true if the specified type is valid as a return
387/// type.
388bool FunctionType::isValidReturnType(Type *RetTy) {
389  return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
390  !RetTy->isMetadataTy();
391}
392
393/// isValidArgumentType - Return true if the specified type is valid as an
394/// argument type.
395bool FunctionType::isValidArgumentType(Type *ArgTy) {
396  return ArgTy->isFirstClassType();
397}
398
399//===----------------------------------------------------------------------===//
400//                       StructType Implementation
401//===----------------------------------------------------------------------===//
402
403// Primitive Constructors.
404
405StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
406                            bool isPacked) {
407  LLVMContextImpl *pImpl = Context.pImpl;
408  AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
409  LLVMContextImpl::StructTypeMap::iterator I =
410    pImpl->AnonStructTypes.find_as(Key);
411  StructType *ST;
412
413  if (I == pImpl->AnonStructTypes.end()) {
414    // Value not found.  Create a new type!
415    ST = new (Context.pImpl->TypeAllocator) StructType(Context);
416    ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
417    ST->setBody(ETypes, isPacked);
418    Context.pImpl->AnonStructTypes[ST] = true;
419  } else {
420    ST = I->first;
421  }
422
423  return ST;
424}
425
426void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
427  assert(isOpaque() && "Struct body already set!");
428
429  setSubclassData(getSubclassData() | SCDB_HasBody);
430  if (isPacked)
431    setSubclassData(getSubclassData() | SCDB_Packed);
432
433  unsigned NumElements = Elements.size();
434  Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
435  memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
436
437  ContainedTys = Elts;
438  NumContainedTys = NumElements;
439}
440
441void StructType::setName(StringRef Name) {
442  if (Name == getName()) return;
443
444  StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
445  typedef StringMap<StructType *>::MapEntryTy EntryTy;
446
447  // If this struct already had a name, remove its symbol table entry. Don't
448  // delete the data yet because it may be part of the new name.
449  if (SymbolTableEntry)
450    SymbolTable.remove((EntryTy *)SymbolTableEntry);
451
452  // If this is just removing the name, we're done.
453  if (Name.empty()) {
454    if (SymbolTableEntry) {
455      // Delete the old string data.
456      ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
457      SymbolTableEntry = 0;
458    }
459    return;
460  }
461
462  // Look up the entry for the name.
463  EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
464
465  // While we have a name collision, try a random rename.
466  if (Entry->getValue()) {
467    SmallString<64> TempStr(Name);
468    TempStr.push_back('.');
469    raw_svector_ostream TmpStream(TempStr);
470    unsigned NameSize = Name.size();
471
472    do {
473      TempStr.resize(NameSize + 1);
474      TmpStream.resync();
475      TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
476
477      Entry = &getContext().pImpl->
478                 NamedStructTypes.GetOrCreateValue(TmpStream.str());
479    } while (Entry->getValue());
480  }
481
482  // Okay, we found an entry that isn't used.  It's us!
483  Entry->setValue(this);
484
485  // Delete the old string data.
486  if (SymbolTableEntry)
487    ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
488  SymbolTableEntry = Entry;
489}
490
491//===----------------------------------------------------------------------===//
492// StructType Helper functions.
493
494StructType *StructType::create(LLVMContext &Context, StringRef Name) {
495  StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
496  if (!Name.empty())
497    ST->setName(Name);
498  return ST;
499}
500
501StructType *StructType::get(LLVMContext &Context, bool isPacked) {
502  return get(Context, None, isPacked);
503}
504
505StructType *StructType::get(Type *type, ...) {
506  assert(type != 0 && "Cannot create a struct type with no elements with this");
507  LLVMContext &Ctx = type->getContext();
508  va_list ap;
509  SmallVector<llvm::Type*, 8> StructFields;
510  va_start(ap, type);
511  while (type) {
512    StructFields.push_back(type);
513    type = va_arg(ap, llvm::Type*);
514  }
515  return llvm::StructType::get(Ctx, StructFields);
516}
517
518StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
519                               StringRef Name, bool isPacked) {
520  StructType *ST = create(Context, Name);
521  ST->setBody(Elements, isPacked);
522  return ST;
523}
524
525StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
526  return create(Context, Elements, StringRef());
527}
528
529StructType *StructType::create(LLVMContext &Context) {
530  return create(Context, StringRef());
531}
532
533StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
534                               bool isPacked) {
535  assert(!Elements.empty() &&
536         "This method may not be invoked with an empty list");
537  return create(Elements[0]->getContext(), Elements, Name, isPacked);
538}
539
540StructType *StructType::create(ArrayRef<Type*> Elements) {
541  assert(!Elements.empty() &&
542         "This method may not be invoked with an empty list");
543  return create(Elements[0]->getContext(), Elements, StringRef());
544}
545
546StructType *StructType::create(StringRef Name, Type *type, ...) {
547  assert(type != 0 && "Cannot create a struct type with no elements with this");
548  LLVMContext &Ctx = type->getContext();
549  va_list ap;
550  SmallVector<llvm::Type*, 8> StructFields;
551  va_start(ap, type);
552  while (type) {
553    StructFields.push_back(type);
554    type = va_arg(ap, llvm::Type*);
555  }
556  return llvm::StructType::create(Ctx, StructFields, Name);
557}
558
559bool StructType::isSized() const {
560  if ((getSubclassData() & SCDB_IsSized) != 0)
561    return true;
562  if (isOpaque())
563    return false;
564
565  // Okay, our struct is sized if all of the elements are, but if one of the
566  // elements is opaque, the struct isn't sized *yet*, but may become sized in
567  // the future, so just bail out without caching.
568  for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
569    if (!(*I)->isSized())
570      return false;
571
572  // Here we cheat a bit and cast away const-ness. The goal is to memoize when
573  // we find a sized type, as types can only move from opaque to sized, not the
574  // other way.
575  const_cast<StructType*>(this)->setSubclassData(
576    getSubclassData() | SCDB_IsSized);
577  return true;
578}
579
580StringRef StructType::getName() const {
581  assert(!isLiteral() && "Literal structs never have names");
582  if (SymbolTableEntry == 0) return StringRef();
583
584  return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
585}
586
587void StructType::setBody(Type *type, ...) {
588  assert(type != 0 && "Cannot create a struct type with no elements with this");
589  va_list ap;
590  SmallVector<llvm::Type*, 8> StructFields;
591  va_start(ap, type);
592  while (type) {
593    StructFields.push_back(type);
594    type = va_arg(ap, llvm::Type*);
595  }
596  setBody(StructFields);
597}
598
599bool StructType::isValidElementType(Type *ElemTy) {
600  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
601         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
602}
603
604/// isLayoutIdentical - Return true if this is layout identical to the
605/// specified struct.
606bool StructType::isLayoutIdentical(StructType *Other) const {
607  if (this == Other) return true;
608
609  if (isPacked() != Other->isPacked() ||
610      getNumElements() != Other->getNumElements())
611    return false;
612
613  return std::equal(element_begin(), element_end(), Other->element_begin());
614}
615
616/// getTypeByName - Return the type with the specified name, or null if there
617/// is none by that name.
618StructType *Module::getTypeByName(StringRef Name) const {
619  StringMap<StructType*>::iterator I =
620    getContext().pImpl->NamedStructTypes.find(Name);
621  if (I != getContext().pImpl->NamedStructTypes.end())
622    return I->second;
623  return 0;
624}
625
626
627//===----------------------------------------------------------------------===//
628//                       CompositeType Implementation
629//===----------------------------------------------------------------------===//
630
631Type *CompositeType::getTypeAtIndex(const Value *V) {
632  if (StructType *STy = dyn_cast<StructType>(this)) {
633    unsigned Idx =
634      (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
635    assert(indexValid(Idx) && "Invalid structure index!");
636    return STy->getElementType(Idx);
637  }
638
639  return cast<SequentialType>(this)->getElementType();
640}
641Type *CompositeType::getTypeAtIndex(unsigned Idx) {
642  if (StructType *STy = dyn_cast<StructType>(this)) {
643    assert(indexValid(Idx) && "Invalid structure index!");
644    return STy->getElementType(Idx);
645  }
646
647  return cast<SequentialType>(this)->getElementType();
648}
649bool CompositeType::indexValid(const Value *V) const {
650  if (const StructType *STy = dyn_cast<StructType>(this)) {
651    // Structure indexes require (vectors of) 32-bit integer constants.  In the
652    // vector case all of the indices must be equal.
653    if (!V->getType()->getScalarType()->isIntegerTy(32))
654      return false;
655    const Constant *C = dyn_cast<Constant>(V);
656    if (C && V->getType()->isVectorTy())
657      C = C->getSplatValue();
658    const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
659    return CU && CU->getZExtValue() < STy->getNumElements();
660  }
661
662  // Sequential types can be indexed by any integer.
663  return V->getType()->isIntOrIntVectorTy();
664}
665
666bool CompositeType::indexValid(unsigned Idx) const {
667  if (const StructType *STy = dyn_cast<StructType>(this))
668    return Idx < STy->getNumElements();
669  // Sequential types can be indexed by any integer.
670  return true;
671}
672
673
674//===----------------------------------------------------------------------===//
675//                           ArrayType Implementation
676//===----------------------------------------------------------------------===//
677
678ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
679  : SequentialType(ArrayTyID, ElType) {
680  NumElements = NumEl;
681}
682
683ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
684  Type *ElementType = const_cast<Type*>(elementType);
685  assert(isValidElementType(ElementType) && "Invalid type for array element!");
686
687  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
688  ArrayType *&Entry =
689    pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
690
691  if (Entry == 0)
692    Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
693  return Entry;
694}
695
696bool ArrayType::isValidElementType(Type *ElemTy) {
697  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
698         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
699}
700
701//===----------------------------------------------------------------------===//
702//                          VectorType Implementation
703//===----------------------------------------------------------------------===//
704
705VectorType::VectorType(Type *ElType, unsigned NumEl)
706  : SequentialType(VectorTyID, ElType) {
707  NumElements = NumEl;
708}
709
710VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
711  Type *ElementType = const_cast<Type*>(elementType);
712  assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
713  assert(isValidElementType(ElementType) &&
714         "Elements of a VectorType must be a primitive type");
715
716  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
717  VectorType *&Entry = ElementType->getContext().pImpl
718    ->VectorTypes[std::make_pair(ElementType, NumElements)];
719
720  if (Entry == 0)
721    Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
722  return Entry;
723}
724
725bool VectorType::isValidElementType(Type *ElemTy) {
726  return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
727    ElemTy->isPointerTy();
728}
729
730//===----------------------------------------------------------------------===//
731//                         PointerType Implementation
732//===----------------------------------------------------------------------===//
733
734PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
735  assert(EltTy && "Can't get a pointer to <null> type!");
736  assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
737
738  LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
739
740  // Since AddressSpace #0 is the common case, we special case it.
741  PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
742     : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
743
744  if (Entry == 0)
745    Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
746  return Entry;
747}
748
749
750PointerType::PointerType(Type *E, unsigned AddrSpace)
751  : SequentialType(PointerTyID, E) {
752#ifndef NDEBUG
753  const unsigned oldNCT = NumContainedTys;
754#endif
755  setSubclassData(AddrSpace);
756  // Check for miscompile. PR11652.
757  assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
758}
759
760PointerType *Type::getPointerTo(unsigned addrs) {
761  return PointerType::get(this, addrs);
762}
763
764bool PointerType::isValidElementType(Type *ElemTy) {
765  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
766         !ElemTy->isMetadataTy();
767}
768