SelectionDAG.cpp revision 212904
1193323Sed//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This implements the SelectionDAG class.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13201360Srdivacky
14193323Sed#include "llvm/CodeGen/SelectionDAG.h"
15201360Srdivacky#include "SDNodeOrdering.h"
16205218Srdivacky#include "SDNodeDbgValue.h"
17193323Sed#include "llvm/Constants.h"
18208599Srdivacky#include "llvm/Analysis/DebugInfo.h"
19193323Sed#include "llvm/Analysis/ValueTracking.h"
20198090Srdivacky#include "llvm/Function.h"
21193323Sed#include "llvm/GlobalAlias.h"
22193323Sed#include "llvm/GlobalVariable.h"
23193323Sed#include "llvm/Intrinsics.h"
24193323Sed#include "llvm/DerivedTypes.h"
25193323Sed#include "llvm/Assembly/Writer.h"
26193323Sed#include "llvm/CallingConv.h"
27193323Sed#include "llvm/CodeGen/MachineBasicBlock.h"
28193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
29193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
30193323Sed#include "llvm/CodeGen/MachineModuleInfo.h"
31193323Sed#include "llvm/CodeGen/PseudoSourceValue.h"
32193323Sed#include "llvm/Target/TargetRegisterInfo.h"
33193323Sed#include "llvm/Target/TargetData.h"
34200581Srdivacky#include "llvm/Target/TargetFrameInfo.h"
35193323Sed#include "llvm/Target/TargetLowering.h"
36208599Srdivacky#include "llvm/Target/TargetSelectionDAGInfo.h"
37193323Sed#include "llvm/Target/TargetOptions.h"
38193323Sed#include "llvm/Target/TargetInstrInfo.h"
39198396Srdivacky#include "llvm/Target/TargetIntrinsicInfo.h"
40193323Sed#include "llvm/Target/TargetMachine.h"
41193323Sed#include "llvm/Support/CommandLine.h"
42202375Srdivacky#include "llvm/Support/Debug.h"
43198090Srdivacky#include "llvm/Support/ErrorHandling.h"
44195098Sed#include "llvm/Support/ManagedStatic.h"
45193323Sed#include "llvm/Support/MathExtras.h"
46193323Sed#include "llvm/Support/raw_ostream.h"
47195098Sed#include "llvm/System/Mutex.h"
48193323Sed#include "llvm/ADT/SetVector.h"
49193323Sed#include "llvm/ADT/SmallPtrSet.h"
50193323Sed#include "llvm/ADT/SmallSet.h"
51193323Sed#include "llvm/ADT/SmallVector.h"
52193323Sed#include "llvm/ADT/StringExtras.h"
53193323Sed#include <algorithm>
54193323Sed#include <cmath>
55193323Sedusing namespace llvm;
56193323Sed
57193323Sed/// makeVTList - Return an instance of the SDVTList struct initialized with the
58193323Sed/// specified members.
59198090Srdivackystatic SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60193323Sed  SDVTList Res = {VTs, NumVTs};
61193323Sed  return Res;
62193323Sed}
63193323Sed
64198090Srdivackystatic const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65198090Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
66198090Srdivacky  default: llvm_unreachable("Unknown FP format");
67193323Sed  case MVT::f32:     return &APFloat::IEEEsingle;
68193323Sed  case MVT::f64:     return &APFloat::IEEEdouble;
69193323Sed  case MVT::f80:     return &APFloat::x87DoubleExtended;
70193323Sed  case MVT::f128:    return &APFloat::IEEEquad;
71193323Sed  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72193323Sed  }
73193323Sed}
74193323Sed
75193323SedSelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76193323Sed
77193323Sed//===----------------------------------------------------------------------===//
78193323Sed//                              ConstantFPSDNode Class
79193323Sed//===----------------------------------------------------------------------===//
80193323Sed
81193323Sed/// isExactlyValue - We don't rely on operator== working on double values, as
82193323Sed/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83193323Sed/// As such, this method can be used to do an exact bit-for-bit comparison of
84193323Sed/// two floating point values.
85193323Sedbool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86193323Sed  return getValueAPF().bitwiseIsEqual(V);
87193323Sed}
88193323Sed
89198090Srdivackybool ConstantFPSDNode::isValueValidForType(EVT VT,
90193323Sed                                           const APFloat& Val) {
91193323Sed  assert(VT.isFloatingPoint() && "Can only convert between FP types");
92193323Sed
93193323Sed  // PPC long double cannot be converted to any other type.
94193323Sed  if (VT == MVT::ppcf128 ||
95193323Sed      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96193323Sed    return false;
97193323Sed
98193323Sed  // convert modifies in place, so make a copy.
99193323Sed  APFloat Val2 = APFloat(Val);
100193323Sed  bool losesInfo;
101198090Srdivacky  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102193323Sed                      &losesInfo);
103193323Sed  return !losesInfo;
104193323Sed}
105193323Sed
106193323Sed//===----------------------------------------------------------------------===//
107193323Sed//                              ISD Namespace
108193323Sed//===----------------------------------------------------------------------===//
109193323Sed
110193323Sed/// isBuildVectorAllOnes - Return true if the specified node is a
111193323Sed/// BUILD_VECTOR where all of the elements are ~0 or undef.
112193323Sedbool ISD::isBuildVectorAllOnes(const SDNode *N) {
113193323Sed  // Look through a bit convert.
114193323Sed  if (N->getOpcode() == ISD::BIT_CONVERT)
115193323Sed    N = N->getOperand(0).getNode();
116193323Sed
117193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118193323Sed
119193323Sed  unsigned i = 0, e = N->getNumOperands();
120193323Sed
121193323Sed  // Skip over all of the undef values.
122193323Sed  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123193323Sed    ++i;
124193323Sed
125193323Sed  // Do not accept an all-undef vector.
126193323Sed  if (i == e) return false;
127193323Sed
128193323Sed  // Do not accept build_vectors that aren't all constants or which have non-~0
129193323Sed  // elements.
130193323Sed  SDValue NotZero = N->getOperand(i);
131193323Sed  if (isa<ConstantSDNode>(NotZero)) {
132193323Sed    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133193323Sed      return false;
134193323Sed  } else if (isa<ConstantFPSDNode>(NotZero)) {
135193323Sed    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136193323Sed                bitcastToAPInt().isAllOnesValue())
137193323Sed      return false;
138193323Sed  } else
139193323Sed    return false;
140193323Sed
141193323Sed  // Okay, we have at least one ~0 value, check to see if the rest match or are
142193323Sed  // undefs.
143193323Sed  for (++i; i != e; ++i)
144193323Sed    if (N->getOperand(i) != NotZero &&
145193323Sed        N->getOperand(i).getOpcode() != ISD::UNDEF)
146193323Sed      return false;
147193323Sed  return true;
148193323Sed}
149193323Sed
150193323Sed
151193323Sed/// isBuildVectorAllZeros - Return true if the specified node is a
152193323Sed/// BUILD_VECTOR where all of the elements are 0 or undef.
153193323Sedbool ISD::isBuildVectorAllZeros(const SDNode *N) {
154193323Sed  // Look through a bit convert.
155193323Sed  if (N->getOpcode() == ISD::BIT_CONVERT)
156193323Sed    N = N->getOperand(0).getNode();
157193323Sed
158193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159193323Sed
160193323Sed  unsigned i = 0, e = N->getNumOperands();
161193323Sed
162193323Sed  // Skip over all of the undef values.
163193323Sed  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164193323Sed    ++i;
165193323Sed
166193323Sed  // Do not accept an all-undef vector.
167193323Sed  if (i == e) return false;
168193323Sed
169193574Sed  // Do not accept build_vectors that aren't all constants or which have non-0
170193323Sed  // elements.
171193323Sed  SDValue Zero = N->getOperand(i);
172193323Sed  if (isa<ConstantSDNode>(Zero)) {
173193323Sed    if (!cast<ConstantSDNode>(Zero)->isNullValue())
174193323Sed      return false;
175193323Sed  } else if (isa<ConstantFPSDNode>(Zero)) {
176193323Sed    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177193323Sed      return false;
178193323Sed  } else
179193323Sed    return false;
180193323Sed
181193574Sed  // Okay, we have at least one 0 value, check to see if the rest match or are
182193323Sed  // undefs.
183193323Sed  for (++i; i != e; ++i)
184193323Sed    if (N->getOperand(i) != Zero &&
185193323Sed        N->getOperand(i).getOpcode() != ISD::UNDEF)
186193323Sed      return false;
187193323Sed  return true;
188193323Sed}
189193323Sed
190193323Sed/// isScalarToVector - Return true if the specified node is a
191193323Sed/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192193323Sed/// element is not an undef.
193193323Sedbool ISD::isScalarToVector(const SDNode *N) {
194193323Sed  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195193323Sed    return true;
196193323Sed
197193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR)
198193323Sed    return false;
199193323Sed  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200193323Sed    return false;
201193323Sed  unsigned NumElems = N->getNumOperands();
202193323Sed  for (unsigned i = 1; i < NumElems; ++i) {
203193323Sed    SDValue V = N->getOperand(i);
204193323Sed    if (V.getOpcode() != ISD::UNDEF)
205193323Sed      return false;
206193323Sed  }
207193323Sed  return true;
208193323Sed}
209193323Sed
210193323Sed/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211193323Sed/// when given the operation for (X op Y).
212193323SedISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213193323Sed  // To perform this operation, we just need to swap the L and G bits of the
214193323Sed  // operation.
215193323Sed  unsigned OldL = (Operation >> 2) & 1;
216193323Sed  unsigned OldG = (Operation >> 1) & 1;
217193323Sed  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218193323Sed                       (OldL << 1) |       // New G bit
219193323Sed                       (OldG << 2));       // New L bit.
220193323Sed}
221193323Sed
222193323Sed/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223193323Sed/// 'op' is a valid SetCC operation.
224193323SedISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225193323Sed  unsigned Operation = Op;
226193323Sed  if (isInteger)
227193323Sed    Operation ^= 7;   // Flip L, G, E bits, but not U.
228193323Sed  else
229193323Sed    Operation ^= 15;  // Flip all of the condition bits.
230193323Sed
231193323Sed  if (Operation > ISD::SETTRUE2)
232193323Sed    Operation &= ~8;  // Don't let N and U bits get set.
233193323Sed
234193323Sed  return ISD::CondCode(Operation);
235193323Sed}
236193323Sed
237193323Sed
238193323Sed/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239193323Sed/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240193323Sed/// if the operation does not depend on the sign of the input (setne and seteq).
241193323Sedstatic int isSignedOp(ISD::CondCode Opcode) {
242193323Sed  switch (Opcode) {
243198090Srdivacky  default: llvm_unreachable("Illegal integer setcc operation!");
244193323Sed  case ISD::SETEQ:
245193323Sed  case ISD::SETNE: return 0;
246193323Sed  case ISD::SETLT:
247193323Sed  case ISD::SETLE:
248193323Sed  case ISD::SETGT:
249193323Sed  case ISD::SETGE: return 1;
250193323Sed  case ISD::SETULT:
251193323Sed  case ISD::SETULE:
252193323Sed  case ISD::SETUGT:
253193323Sed  case ISD::SETUGE: return 2;
254193323Sed  }
255193323Sed}
256193323Sed
257193323Sed/// getSetCCOrOperation - Return the result of a logical OR between different
258193323Sed/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259193323Sed/// returns SETCC_INVALID if it is not possible to represent the resultant
260193323Sed/// comparison.
261193323SedISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262193323Sed                                       bool isInteger) {
263193323Sed  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264193323Sed    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265193323Sed    return ISD::SETCC_INVALID;
266193323Sed
267193323Sed  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268193323Sed
269193323Sed  // If the N and U bits get set then the resultant comparison DOES suddenly
270193323Sed  // care about orderedness, and is true when ordered.
271193323Sed  if (Op > ISD::SETTRUE2)
272193323Sed    Op &= ~16;     // Clear the U bit if the N bit is set.
273193323Sed
274193323Sed  // Canonicalize illegal integer setcc's.
275193323Sed  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276193323Sed    Op = ISD::SETNE;
277193323Sed
278193323Sed  return ISD::CondCode(Op);
279193323Sed}
280193323Sed
281193323Sed/// getSetCCAndOperation - Return the result of a logical AND between different
282193323Sed/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283193323Sed/// function returns zero if it is not possible to represent the resultant
284193323Sed/// comparison.
285193323SedISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286193323Sed                                        bool isInteger) {
287193323Sed  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288193323Sed    // Cannot fold a signed setcc with an unsigned setcc.
289193323Sed    return ISD::SETCC_INVALID;
290193323Sed
291193323Sed  // Combine all of the condition bits.
292193323Sed  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293193323Sed
294193323Sed  // Canonicalize illegal integer setcc's.
295193323Sed  if (isInteger) {
296193323Sed    switch (Result) {
297193323Sed    default: break;
298193323Sed    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299193323Sed    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300193323Sed    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301193323Sed    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302193323Sed    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303193323Sed    }
304193323Sed  }
305193323Sed
306193323Sed  return Result;
307193323Sed}
308193323Sed
309193323Sed//===----------------------------------------------------------------------===//
310193323Sed//                           SDNode Profile Support
311193323Sed//===----------------------------------------------------------------------===//
312193323Sed
313193323Sed/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314193323Sed///
315193323Sedstatic void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316193323Sed  ID.AddInteger(OpC);
317193323Sed}
318193323Sed
319193323Sed/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320193323Sed/// solely with their pointer.
321193323Sedstatic void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322193323Sed  ID.AddPointer(VTList.VTs);
323193323Sed}
324193323Sed
325193323Sed/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326193323Sed///
327193323Sedstatic void AddNodeIDOperands(FoldingSetNodeID &ID,
328193323Sed                              const SDValue *Ops, unsigned NumOps) {
329193323Sed  for (; NumOps; --NumOps, ++Ops) {
330193323Sed    ID.AddPointer(Ops->getNode());
331193323Sed    ID.AddInteger(Ops->getResNo());
332193323Sed  }
333193323Sed}
334193323Sed
335193323Sed/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336193323Sed///
337193323Sedstatic void AddNodeIDOperands(FoldingSetNodeID &ID,
338193323Sed                              const SDUse *Ops, unsigned NumOps) {
339193323Sed  for (; NumOps; --NumOps, ++Ops) {
340193323Sed    ID.AddPointer(Ops->getNode());
341193323Sed    ID.AddInteger(Ops->getResNo());
342193323Sed  }
343193323Sed}
344193323Sed
345193323Sedstatic void AddNodeIDNode(FoldingSetNodeID &ID,
346193323Sed                          unsigned short OpC, SDVTList VTList,
347193323Sed                          const SDValue *OpList, unsigned N) {
348193323Sed  AddNodeIDOpcode(ID, OpC);
349193323Sed  AddNodeIDValueTypes(ID, VTList);
350193323Sed  AddNodeIDOperands(ID, OpList, N);
351193323Sed}
352193323Sed
353193323Sed/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
354193323Sed/// the NodeID data.
355193323Sedstatic void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
356193323Sed  switch (N->getOpcode()) {
357195098Sed  case ISD::TargetExternalSymbol:
358195098Sed  case ISD::ExternalSymbol:
359198090Srdivacky    llvm_unreachable("Should only be used on nodes with operands");
360193323Sed  default: break;  // Normal nodes don't need extra info.
361193323Sed  case ISD::TargetConstant:
362193323Sed  case ISD::Constant:
363193323Sed    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
364193323Sed    break;
365193323Sed  case ISD::TargetConstantFP:
366193323Sed  case ISD::ConstantFP: {
367193323Sed    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
368193323Sed    break;
369193323Sed  }
370193323Sed  case ISD::TargetGlobalAddress:
371193323Sed  case ISD::GlobalAddress:
372193323Sed  case ISD::TargetGlobalTLSAddress:
373193323Sed  case ISD::GlobalTLSAddress: {
374193323Sed    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375193323Sed    ID.AddPointer(GA->getGlobal());
376193323Sed    ID.AddInteger(GA->getOffset());
377195098Sed    ID.AddInteger(GA->getTargetFlags());
378193323Sed    break;
379193323Sed  }
380193323Sed  case ISD::BasicBlock:
381193323Sed    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382193323Sed    break;
383193323Sed  case ISD::Register:
384193323Sed    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385193323Sed    break;
386199989Srdivacky
387193323Sed  case ISD::SRCVALUE:
388193323Sed    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
389193323Sed    break;
390193323Sed  case ISD::FrameIndex:
391193323Sed  case ISD::TargetFrameIndex:
392193323Sed    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
393193323Sed    break;
394193323Sed  case ISD::JumpTable:
395193323Sed  case ISD::TargetJumpTable:
396193323Sed    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
397195098Sed    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
398193323Sed    break;
399193323Sed  case ISD::ConstantPool:
400193323Sed  case ISD::TargetConstantPool: {
401193323Sed    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
402193323Sed    ID.AddInteger(CP->getAlignment());
403193323Sed    ID.AddInteger(CP->getOffset());
404193323Sed    if (CP->isMachineConstantPoolEntry())
405193323Sed      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
406193323Sed    else
407193323Sed      ID.AddPointer(CP->getConstVal());
408195098Sed    ID.AddInteger(CP->getTargetFlags());
409193323Sed    break;
410193323Sed  }
411193323Sed  case ISD::LOAD: {
412193323Sed    const LoadSDNode *LD = cast<LoadSDNode>(N);
413193323Sed    ID.AddInteger(LD->getMemoryVT().getRawBits());
414193323Sed    ID.AddInteger(LD->getRawSubclassData());
415193323Sed    break;
416193323Sed  }
417193323Sed  case ISD::STORE: {
418193323Sed    const StoreSDNode *ST = cast<StoreSDNode>(N);
419193323Sed    ID.AddInteger(ST->getMemoryVT().getRawBits());
420193323Sed    ID.AddInteger(ST->getRawSubclassData());
421193323Sed    break;
422193323Sed  }
423193323Sed  case ISD::ATOMIC_CMP_SWAP:
424193323Sed  case ISD::ATOMIC_SWAP:
425193323Sed  case ISD::ATOMIC_LOAD_ADD:
426193323Sed  case ISD::ATOMIC_LOAD_SUB:
427193323Sed  case ISD::ATOMIC_LOAD_AND:
428193323Sed  case ISD::ATOMIC_LOAD_OR:
429193323Sed  case ISD::ATOMIC_LOAD_XOR:
430193323Sed  case ISD::ATOMIC_LOAD_NAND:
431193323Sed  case ISD::ATOMIC_LOAD_MIN:
432193323Sed  case ISD::ATOMIC_LOAD_MAX:
433193323Sed  case ISD::ATOMIC_LOAD_UMIN:
434193323Sed  case ISD::ATOMIC_LOAD_UMAX: {
435193323Sed    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
436193323Sed    ID.AddInteger(AT->getMemoryVT().getRawBits());
437193323Sed    ID.AddInteger(AT->getRawSubclassData());
438193323Sed    break;
439193323Sed  }
440193323Sed  case ISD::VECTOR_SHUFFLE: {
441193323Sed    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
442198090Srdivacky    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
443193323Sed         i != e; ++i)
444193323Sed      ID.AddInteger(SVN->getMaskElt(i));
445193323Sed    break;
446193323Sed  }
447198892Srdivacky  case ISD::TargetBlockAddress:
448198892Srdivacky  case ISD::BlockAddress: {
449199989Srdivacky    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
450199989Srdivacky    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
451198892Srdivacky    break;
452198892Srdivacky  }
453193323Sed  } // end switch (N->getOpcode())
454193323Sed}
455193323Sed
456193323Sed/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
457193323Sed/// data.
458193323Sedstatic void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
459193323Sed  AddNodeIDOpcode(ID, N->getOpcode());
460193323Sed  // Add the return value info.
461193323Sed  AddNodeIDValueTypes(ID, N->getVTList());
462193323Sed  // Add the operand info.
463193323Sed  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
464193323Sed
465193323Sed  // Handle SDNode leafs with special info.
466193323Sed  AddNodeIDCustom(ID, N);
467193323Sed}
468193323Sed
469193323Sed/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470204642Srdivacky/// the CSE map that carries volatility, temporalness, indexing mode, and
471193323Sed/// extension/truncation information.
472193323Sed///
473193323Sedstatic inline unsigned
474204642SrdivackyencodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
475204642Srdivacky                     bool isNonTemporal) {
476193323Sed  assert((ConvType & 3) == ConvType &&
477193323Sed         "ConvType may not require more than 2 bits!");
478193323Sed  assert((AM & 7) == AM &&
479193323Sed         "AM may not require more than 3 bits!");
480193323Sed  return ConvType |
481193323Sed         (AM << 2) |
482204642Srdivacky         (isVolatile << 5) |
483204642Srdivacky         (isNonTemporal << 6);
484193323Sed}
485193323Sed
486193323Sed//===----------------------------------------------------------------------===//
487193323Sed//                              SelectionDAG Class
488193323Sed//===----------------------------------------------------------------------===//
489193323Sed
490193323Sed/// doNotCSE - Return true if CSE should not be performed for this node.
491193323Sedstatic bool doNotCSE(SDNode *N) {
492193323Sed  if (N->getValueType(0) == MVT::Flag)
493193323Sed    return true; // Never CSE anything that produces a flag.
494193323Sed
495193323Sed  switch (N->getOpcode()) {
496193323Sed  default: break;
497193323Sed  case ISD::HANDLENODE:
498193323Sed  case ISD::EH_LABEL:
499193323Sed    return true;   // Never CSE these nodes.
500193323Sed  }
501193323Sed
502193323Sed  // Check that remaining values produced are not flags.
503193323Sed  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
504193323Sed    if (N->getValueType(i) == MVT::Flag)
505193323Sed      return true; // Never CSE anything that produces a flag.
506193323Sed
507193323Sed  return false;
508193323Sed}
509193323Sed
510193323Sed/// RemoveDeadNodes - This method deletes all unreachable nodes in the
511193323Sed/// SelectionDAG.
512193323Sedvoid SelectionDAG::RemoveDeadNodes() {
513193323Sed  // Create a dummy node (which is not added to allnodes), that adds a reference
514193323Sed  // to the root node, preventing it from being deleted.
515193323Sed  HandleSDNode Dummy(getRoot());
516193323Sed
517193323Sed  SmallVector<SDNode*, 128> DeadNodes;
518193323Sed
519193323Sed  // Add all obviously-dead nodes to the DeadNodes worklist.
520193323Sed  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
521193323Sed    if (I->use_empty())
522193323Sed      DeadNodes.push_back(I);
523193323Sed
524193323Sed  RemoveDeadNodes(DeadNodes);
525193323Sed
526193323Sed  // If the root changed (e.g. it was a dead load, update the root).
527193323Sed  setRoot(Dummy.getValue());
528193323Sed}
529193323Sed
530193323Sed/// RemoveDeadNodes - This method deletes the unreachable nodes in the
531193323Sed/// given list, and any nodes that become unreachable as a result.
532193323Sedvoid SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
533193323Sed                                   DAGUpdateListener *UpdateListener) {
534193323Sed
535193323Sed  // Process the worklist, deleting the nodes and adding their uses to the
536193323Sed  // worklist.
537193323Sed  while (!DeadNodes.empty()) {
538193323Sed    SDNode *N = DeadNodes.pop_back_val();
539193323Sed
540193323Sed    if (UpdateListener)
541193323Sed      UpdateListener->NodeDeleted(N, 0);
542193323Sed
543193323Sed    // Take the node out of the appropriate CSE map.
544193323Sed    RemoveNodeFromCSEMaps(N);
545193323Sed
546193323Sed    // Next, brutally remove the operand list.  This is safe to do, as there are
547193323Sed    // no cycles in the graph.
548193323Sed    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
549193323Sed      SDUse &Use = *I++;
550193323Sed      SDNode *Operand = Use.getNode();
551193323Sed      Use.set(SDValue());
552193323Sed
553193323Sed      // Now that we removed this operand, see if there are no uses of it left.
554193323Sed      if (Operand->use_empty())
555193323Sed        DeadNodes.push_back(Operand);
556193323Sed    }
557193323Sed
558193323Sed    DeallocateNode(N);
559193323Sed  }
560193323Sed}
561193323Sed
562193323Sedvoid SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
563193323Sed  SmallVector<SDNode*, 16> DeadNodes(1, N);
564193323Sed  RemoveDeadNodes(DeadNodes, UpdateListener);
565193323Sed}
566193323Sed
567193323Sedvoid SelectionDAG::DeleteNode(SDNode *N) {
568193323Sed  // First take this out of the appropriate CSE map.
569193323Sed  RemoveNodeFromCSEMaps(N);
570193323Sed
571193323Sed  // Finally, remove uses due to operands of this node, remove from the
572193323Sed  // AllNodes list, and delete the node.
573193323Sed  DeleteNodeNotInCSEMaps(N);
574193323Sed}
575193323Sed
576193323Sedvoid SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
577193323Sed  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
578193323Sed  assert(N->use_empty() && "Cannot delete a node that is not dead!");
579193323Sed
580193323Sed  // Drop all of the operands and decrement used node's use counts.
581193323Sed  N->DropOperands();
582193323Sed
583193323Sed  DeallocateNode(N);
584193323Sed}
585193323Sed
586193323Sedvoid SelectionDAG::DeallocateNode(SDNode *N) {
587193323Sed  if (N->OperandsNeedDelete)
588193323Sed    delete[] N->OperandList;
589193323Sed
590193323Sed  // Set the opcode to DELETED_NODE to help catch bugs when node
591193323Sed  // memory is reallocated.
592193323Sed  N->NodeType = ISD::DELETED_NODE;
593193323Sed
594193323Sed  NodeAllocator.Deallocate(AllNodes.remove(N));
595200581Srdivacky
596200581Srdivacky  // Remove the ordering of this node.
597202878Srdivacky  Ordering->remove(N);
598205218Srdivacky
599206083Srdivacky  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
600206083Srdivacky  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
601206083Srdivacky  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
602206083Srdivacky    DbgVals[i]->setIsInvalidated();
603193323Sed}
604193323Sed
605193323Sed/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606193323Sed/// correspond to it.  This is useful when we're about to delete or repurpose
607193323Sed/// the node.  We don't want future request for structurally identical nodes
608193323Sed/// to return N anymore.
609193323Sedbool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610193323Sed  bool Erased = false;
611193323Sed  switch (N->getOpcode()) {
612193323Sed  case ISD::EntryToken:
613198090Srdivacky    llvm_unreachable("EntryToken should not be in CSEMaps!");
614193323Sed    return false;
615193323Sed  case ISD::HANDLENODE: return false;  // noop.
616193323Sed  case ISD::CONDCODE:
617193323Sed    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618193323Sed           "Cond code doesn't exist!");
619193323Sed    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620193323Sed    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621193323Sed    break;
622193323Sed  case ISD::ExternalSymbol:
623193323Sed    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624193323Sed    break;
625195098Sed  case ISD::TargetExternalSymbol: {
626195098Sed    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627195098Sed    Erased = TargetExternalSymbols.erase(
628195098Sed               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629195098Sed                                                    ESN->getTargetFlags()));
630193323Sed    break;
631195098Sed  }
632193323Sed  case ISD::VALUETYPE: {
633198090Srdivacky    EVT VT = cast<VTSDNode>(N)->getVT();
634193323Sed    if (VT.isExtended()) {
635193323Sed      Erased = ExtendedValueTypeNodes.erase(VT);
636193323Sed    } else {
637198090Srdivacky      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638198090Srdivacky      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639193323Sed    }
640193323Sed    break;
641193323Sed  }
642193323Sed  default:
643193323Sed    // Remove it from the CSE Map.
644193323Sed    Erased = CSEMap.RemoveNode(N);
645193323Sed    break;
646193323Sed  }
647193323Sed#ifndef NDEBUG
648193323Sed  // Verify that the node was actually in one of the CSE maps, unless it has a
649193323Sed  // flag result (which cannot be CSE'd) or is one of the special cases that are
650193323Sed  // not subject to CSE.
651193323Sed  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652193323Sed      !N->isMachineOpcode() && !doNotCSE(N)) {
653193323Sed    N->dump(this);
654202375Srdivacky    dbgs() << "\n";
655198090Srdivacky    llvm_unreachable("Node is not in map!");
656193323Sed  }
657193323Sed#endif
658193323Sed  return Erased;
659193323Sed}
660193323Sed
661193323Sed/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662193323Sed/// maps and modified in place. Add it back to the CSE maps, unless an identical
663193323Sed/// node already exists, in which case transfer all its users to the existing
664193323Sed/// node. This transfer can potentially trigger recursive merging.
665193323Sed///
666193323Sedvoid
667193323SedSelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668193323Sed                                       DAGUpdateListener *UpdateListener) {
669193323Sed  // For node types that aren't CSE'd, just act as if no identical node
670193323Sed  // already exists.
671193323Sed  if (!doNotCSE(N)) {
672193323Sed    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673193323Sed    if (Existing != N) {
674193323Sed      // If there was already an existing matching node, use ReplaceAllUsesWith
675193323Sed      // to replace the dead one with the existing one.  This can cause
676193323Sed      // recursive merging of other unrelated nodes down the line.
677193323Sed      ReplaceAllUsesWith(N, Existing, UpdateListener);
678193323Sed
679193323Sed      // N is now dead.  Inform the listener if it exists and delete it.
680193323Sed      if (UpdateListener)
681193323Sed        UpdateListener->NodeDeleted(N, Existing);
682193323Sed      DeleteNodeNotInCSEMaps(N);
683193323Sed      return;
684193323Sed    }
685193323Sed  }
686193323Sed
687193323Sed  // If the node doesn't already exist, we updated it.  Inform a listener if
688193323Sed  // it exists.
689193323Sed  if (UpdateListener)
690193323Sed    UpdateListener->NodeUpdated(N);
691193323Sed}
692193323Sed
693193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694193323Sed/// were replaced with those specified.  If this node is never memoized,
695193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
696193323Sed/// node already exists with these operands, the slot will be non-null.
697193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698193323Sed                                           void *&InsertPos) {
699193323Sed  if (doNotCSE(N))
700193323Sed    return 0;
701193323Sed
702193323Sed  SDValue Ops[] = { Op };
703193323Sed  FoldingSetNodeID ID;
704193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705193323Sed  AddNodeIDCustom(ID, N);
706200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707200581Srdivacky  return Node;
708193323Sed}
709193323Sed
710193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711193323Sed/// were replaced with those specified.  If this node is never memoized,
712193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
713193323Sed/// node already exists with these operands, the slot will be non-null.
714193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715193323Sed                                           SDValue Op1, SDValue Op2,
716193323Sed                                           void *&InsertPos) {
717193323Sed  if (doNotCSE(N))
718193323Sed    return 0;
719193323Sed
720193323Sed  SDValue Ops[] = { Op1, Op2 };
721193323Sed  FoldingSetNodeID ID;
722193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723193323Sed  AddNodeIDCustom(ID, N);
724200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725200581Srdivacky  return Node;
726193323Sed}
727193323Sed
728193323Sed
729193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730193323Sed/// were replaced with those specified.  If this node is never memoized,
731193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
732193323Sed/// node already exists with these operands, the slot will be non-null.
733193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734193323Sed                                           const SDValue *Ops,unsigned NumOps,
735193323Sed                                           void *&InsertPos) {
736193323Sed  if (doNotCSE(N))
737193323Sed    return 0;
738193323Sed
739193323Sed  FoldingSetNodeID ID;
740193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741193323Sed  AddNodeIDCustom(ID, N);
742200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743200581Srdivacky  return Node;
744193323Sed}
745193323Sed
746193323Sed/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
747193323Sedvoid SelectionDAG::VerifyNode(SDNode *N) {
748193323Sed  switch (N->getOpcode()) {
749193323Sed  default:
750193323Sed    break;
751193323Sed  case ISD::BUILD_PAIR: {
752198090Srdivacky    EVT VT = N->getValueType(0);
753193323Sed    assert(N->getNumValues() == 1 && "Too many results!");
754193323Sed    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755193323Sed           "Wrong return type!");
756193323Sed    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757193323Sed    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758193323Sed           "Mismatched operand types!");
759193323Sed    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760193323Sed           "Wrong operand type!");
761193323Sed    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762193323Sed           "Wrong return type size");
763193323Sed    break;
764193323Sed  }
765193323Sed  case ISD::BUILD_VECTOR: {
766193323Sed    assert(N->getNumValues() == 1 && "Too many results!");
767193323Sed    assert(N->getValueType(0).isVector() && "Wrong return type!");
768193323Sed    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769193323Sed           "Wrong number of operands!");
770198090Srdivacky    EVT EltVT = N->getValueType(0).getVectorElementType();
771193323Sed    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772193323Sed      assert((I->getValueType() == EltVT ||
773193323Sed             (EltVT.isInteger() && I->getValueType().isInteger() &&
774193323Sed              EltVT.bitsLE(I->getValueType()))) &&
775193323Sed            "Wrong operand type!");
776193323Sed    break;
777193323Sed  }
778193323Sed  }
779193323Sed}
780193323Sed
781198090Srdivacky/// getEVTAlignment - Compute the default alignment value for the
782193323Sed/// given type.
783193323Sed///
784198090Srdivackyunsigned SelectionDAG::getEVTAlignment(EVT VT) const {
785193323Sed  const Type *Ty = VT == MVT::iPTR ?
786198090Srdivacky                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787198090Srdivacky                   VT.getTypeForEVT(*getContext());
788193323Sed
789193323Sed  return TLI.getTargetData()->getABITypeAlignment(Ty);
790193323Sed}
791193323Sed
792193323Sed// EntryNode could meaningfully have debug info if we can find it...
793210299SedSelectionDAG::SelectionDAG(const TargetMachine &tm)
794208599Srdivacky  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
795206124Srdivacky    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
796200581Srdivacky    Root(getEntryNode()), Ordering(0) {
797193323Sed  AllNodes.push_back(&EntryNode);
798202878Srdivacky  Ordering = new SDNodeOrdering();
799205218Srdivacky  DbgInfo = new SDDbgInfo();
800193323Sed}
801193323Sed
802206274Srdivackyvoid SelectionDAG::init(MachineFunction &mf) {
803193323Sed  MF = &mf;
804198090Srdivacky  Context = &mf.getFunction()->getContext();
805193323Sed}
806193323Sed
807193323SedSelectionDAG::~SelectionDAG() {
808193323Sed  allnodes_clear();
809200581Srdivacky  delete Ordering;
810205218Srdivacky  delete DbgInfo;
811193323Sed}
812193323Sed
813193323Sedvoid SelectionDAG::allnodes_clear() {
814193323Sed  assert(&*AllNodes.begin() == &EntryNode);
815193323Sed  AllNodes.remove(AllNodes.begin());
816193323Sed  while (!AllNodes.empty())
817193323Sed    DeallocateNode(AllNodes.begin());
818193323Sed}
819193323Sed
820193323Sedvoid SelectionDAG::clear() {
821193323Sed  allnodes_clear();
822193323Sed  OperandAllocator.Reset();
823193323Sed  CSEMap.clear();
824193323Sed
825193323Sed  ExtendedValueTypeNodes.clear();
826193323Sed  ExternalSymbols.clear();
827193323Sed  TargetExternalSymbols.clear();
828193323Sed  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
829193323Sed            static_cast<CondCodeSDNode*>(0));
830193323Sed  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
831193323Sed            static_cast<SDNode*>(0));
832193323Sed
833193323Sed  EntryNode.UseList = 0;
834193323Sed  AllNodes.push_back(&EntryNode);
835193323Sed  Root = getEntryNode();
836210299Sed  Ordering->clear();
837206083Srdivacky  DbgInfo->clear();
838193323Sed}
839193323Sed
840198090SrdivackySDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
841198090Srdivacky  return VT.bitsGT(Op.getValueType()) ?
842198090Srdivacky    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
843198090Srdivacky    getNode(ISD::TRUNCATE, DL, VT, Op);
844198090Srdivacky}
845198090Srdivacky
846198090SrdivackySDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
847198090Srdivacky  return VT.bitsGT(Op.getValueType()) ?
848198090Srdivacky    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
849198090Srdivacky    getNode(ISD::TRUNCATE, DL, VT, Op);
850198090Srdivacky}
851198090Srdivacky
852198090SrdivackySDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
853200581Srdivacky  assert(!VT.isVector() &&
854200581Srdivacky         "getZeroExtendInReg should use the vector element type instead of "
855200581Srdivacky         "the vector type!");
856193323Sed  if (Op.getValueType() == VT) return Op;
857200581Srdivacky  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
858200581Srdivacky  APInt Imm = APInt::getLowBitsSet(BitWidth,
859193323Sed                                   VT.getSizeInBits());
860193323Sed  return getNode(ISD::AND, DL, Op.getValueType(), Op,
861193323Sed                 getConstant(Imm, Op.getValueType()));
862193323Sed}
863193323Sed
864193323Sed/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
865193323Sed///
866198090SrdivackySDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
867204642Srdivacky  EVT EltVT = VT.getScalarType();
868193323Sed  SDValue NegOne =
869193323Sed    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
870193323Sed  return getNode(ISD::XOR, DL, VT, Val, NegOne);
871193323Sed}
872193323Sed
873198090SrdivackySDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
874204642Srdivacky  EVT EltVT = VT.getScalarType();
875193323Sed  assert((EltVT.getSizeInBits() >= 64 ||
876193323Sed         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
877193323Sed         "getConstant with a uint64_t value that doesn't fit in the type!");
878193323Sed  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
879193323Sed}
880193323Sed
881198090SrdivackySDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
882198090Srdivacky  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
883193323Sed}
884193323Sed
885198090SrdivackySDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
886193323Sed  assert(VT.isInteger() && "Cannot create FP integer constant!");
887193323Sed
888204642Srdivacky  EVT EltVT = VT.getScalarType();
889193323Sed  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
890193323Sed         "APInt size does not match type size!");
891193323Sed
892193323Sed  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
893193323Sed  FoldingSetNodeID ID;
894193323Sed  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
895193323Sed  ID.AddPointer(&Val);
896193323Sed  void *IP = 0;
897193323Sed  SDNode *N = NULL;
898201360Srdivacky  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
899193323Sed    if (!VT.isVector())
900193323Sed      return SDValue(N, 0);
901201360Srdivacky
902193323Sed  if (!N) {
903205407Srdivacky    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
904193323Sed    CSEMap.InsertNode(N, IP);
905193323Sed    AllNodes.push_back(N);
906193323Sed  }
907193323Sed
908193323Sed  SDValue Result(N, 0);
909193323Sed  if (VT.isVector()) {
910193323Sed    SmallVector<SDValue, 8> Ops;
911193323Sed    Ops.assign(VT.getVectorNumElements(), Result);
912206124Srdivacky    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
913193323Sed  }
914193323Sed  return Result;
915193323Sed}
916193323Sed
917193323SedSDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
918193323Sed  return getConstant(Val, TLI.getPointerTy(), isTarget);
919193323Sed}
920193323Sed
921193323Sed
922198090SrdivackySDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
923198090Srdivacky  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
924193323Sed}
925193323Sed
926198090SrdivackySDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
927193323Sed  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
928193323Sed
929204642Srdivacky  EVT EltVT = VT.getScalarType();
930193323Sed
931193323Sed  // Do the map lookup using the actual bit pattern for the floating point
932193323Sed  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
933193323Sed  // we don't have issues with SNANs.
934193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
935193323Sed  FoldingSetNodeID ID;
936193323Sed  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
937193323Sed  ID.AddPointer(&V);
938193323Sed  void *IP = 0;
939193323Sed  SDNode *N = NULL;
940201360Srdivacky  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
941193323Sed    if (!VT.isVector())
942193323Sed      return SDValue(N, 0);
943201360Srdivacky
944193323Sed  if (!N) {
945205407Srdivacky    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
946193323Sed    CSEMap.InsertNode(N, IP);
947193323Sed    AllNodes.push_back(N);
948193323Sed  }
949193323Sed
950193323Sed  SDValue Result(N, 0);
951193323Sed  if (VT.isVector()) {
952193323Sed    SmallVector<SDValue, 8> Ops;
953193323Sed    Ops.assign(VT.getVectorNumElements(), Result);
954193323Sed    // FIXME DebugLoc info might be appropriate here
955206124Srdivacky    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
956193323Sed  }
957193323Sed  return Result;
958193323Sed}
959193323Sed
960198090SrdivackySDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
961204642Srdivacky  EVT EltVT = VT.getScalarType();
962193323Sed  if (EltVT==MVT::f32)
963193323Sed    return getConstantFP(APFloat((float)Val), VT, isTarget);
964208599Srdivacky  else if (EltVT==MVT::f64)
965193323Sed    return getConstantFP(APFloat(Val), VT, isTarget);
966208599Srdivacky  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
967208599Srdivacky    bool ignored;
968208599Srdivacky    APFloat apf = APFloat(Val);
969208599Srdivacky    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
970208599Srdivacky                &ignored);
971208599Srdivacky    return getConstantFP(apf, VT, isTarget);
972208599Srdivacky  } else {
973208599Srdivacky    assert(0 && "Unsupported type in getConstantFP");
974208599Srdivacky    return SDValue();
975208599Srdivacky  }
976193323Sed}
977193323Sed
978210299SedSDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
979198090Srdivacky                                       EVT VT, int64_t Offset,
980195098Sed                                       bool isTargetGA,
981195098Sed                                       unsigned char TargetFlags) {
982195098Sed  assert((TargetFlags == 0 || isTargetGA) &&
983195098Sed         "Cannot set target flags on target-independent globals");
984198090Srdivacky
985193323Sed  // Truncate (with sign-extension) the offset value to the pointer size.
986198090Srdivacky  EVT PTy = TLI.getPointerTy();
987198090Srdivacky  unsigned BitWidth = PTy.getSizeInBits();
988193323Sed  if (BitWidth < 64)
989193323Sed    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
990193323Sed
991193323Sed  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
992193323Sed  if (!GVar) {
993193323Sed    // If GV is an alias then use the aliasee for determining thread-localness.
994193323Sed    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
995193323Sed      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
996193323Sed  }
997193323Sed
998195098Sed  unsigned Opc;
999193323Sed  if (GVar && GVar->isThreadLocal())
1000193323Sed    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1001193323Sed  else
1002193323Sed    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1003193323Sed
1004193323Sed  FoldingSetNodeID ID;
1005193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1006193323Sed  ID.AddPointer(GV);
1007193323Sed  ID.AddInteger(Offset);
1008195098Sed  ID.AddInteger(TargetFlags);
1009193323Sed  void *IP = 0;
1010201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1011193323Sed    return SDValue(E, 0);
1012201360Srdivacky
1013210299Sed  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1014205407Srdivacky                                                      Offset, TargetFlags);
1015193323Sed  CSEMap.InsertNode(N, IP);
1016193323Sed  AllNodes.push_back(N);
1017193323Sed  return SDValue(N, 0);
1018193323Sed}
1019193323Sed
1020198090SrdivackySDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1021193323Sed  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1022193323Sed  FoldingSetNodeID ID;
1023193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1024193323Sed  ID.AddInteger(FI);
1025193323Sed  void *IP = 0;
1026201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1027193323Sed    return SDValue(E, 0);
1028201360Srdivacky
1029205407Srdivacky  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1030193323Sed  CSEMap.InsertNode(N, IP);
1031193323Sed  AllNodes.push_back(N);
1032193323Sed  return SDValue(N, 0);
1033193323Sed}
1034193323Sed
1035198090SrdivackySDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1036195098Sed                                   unsigned char TargetFlags) {
1037195098Sed  assert((TargetFlags == 0 || isTarget) &&
1038195098Sed         "Cannot set target flags on target-independent jump tables");
1039193323Sed  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1040193323Sed  FoldingSetNodeID ID;
1041193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1042193323Sed  ID.AddInteger(JTI);
1043195098Sed  ID.AddInteger(TargetFlags);
1044193323Sed  void *IP = 0;
1045201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1046193323Sed    return SDValue(E, 0);
1047201360Srdivacky
1048205407Srdivacky  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1049205407Srdivacky                                                  TargetFlags);
1050193323Sed  CSEMap.InsertNode(N, IP);
1051193323Sed  AllNodes.push_back(N);
1052193323Sed  return SDValue(N, 0);
1053193323Sed}
1054193323Sed
1055207618SrdivackySDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1056193323Sed                                      unsigned Alignment, int Offset,
1057198090Srdivacky                                      bool isTarget,
1058195098Sed                                      unsigned char TargetFlags) {
1059195098Sed  assert((TargetFlags == 0 || isTarget) &&
1060195098Sed         "Cannot set target flags on target-independent globals");
1061193323Sed  if (Alignment == 0)
1062193323Sed    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1063193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1064193323Sed  FoldingSetNodeID ID;
1065193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1066193323Sed  ID.AddInteger(Alignment);
1067193323Sed  ID.AddInteger(Offset);
1068193323Sed  ID.AddPointer(C);
1069195098Sed  ID.AddInteger(TargetFlags);
1070193323Sed  void *IP = 0;
1071201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1072193323Sed    return SDValue(E, 0);
1073201360Srdivacky
1074205407Srdivacky  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1075205407Srdivacky                                                     Alignment, TargetFlags);
1076193323Sed  CSEMap.InsertNode(N, IP);
1077193323Sed  AllNodes.push_back(N);
1078193323Sed  return SDValue(N, 0);
1079193323Sed}
1080193323Sed
1081193323Sed
1082198090SrdivackySDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1083193323Sed                                      unsigned Alignment, int Offset,
1084195098Sed                                      bool isTarget,
1085195098Sed                                      unsigned char TargetFlags) {
1086195098Sed  assert((TargetFlags == 0 || isTarget) &&
1087195098Sed         "Cannot set target flags on target-independent globals");
1088193323Sed  if (Alignment == 0)
1089193323Sed    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1090193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1091193323Sed  FoldingSetNodeID ID;
1092193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1093193323Sed  ID.AddInteger(Alignment);
1094193323Sed  ID.AddInteger(Offset);
1095193323Sed  C->AddSelectionDAGCSEId(ID);
1096195098Sed  ID.AddInteger(TargetFlags);
1097193323Sed  void *IP = 0;
1098201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1099193323Sed    return SDValue(E, 0);
1100201360Srdivacky
1101205407Srdivacky  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1102205407Srdivacky                                                     Alignment, TargetFlags);
1103193323Sed  CSEMap.InsertNode(N, IP);
1104193323Sed  AllNodes.push_back(N);
1105193323Sed  return SDValue(N, 0);
1106193323Sed}
1107193323Sed
1108193323SedSDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1109193323Sed  FoldingSetNodeID ID;
1110193323Sed  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1111193323Sed  ID.AddPointer(MBB);
1112193323Sed  void *IP = 0;
1113201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1114193323Sed    return SDValue(E, 0);
1115201360Srdivacky
1116205407Srdivacky  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1117193323Sed  CSEMap.InsertNode(N, IP);
1118193323Sed  AllNodes.push_back(N);
1119193323Sed  return SDValue(N, 0);
1120193323Sed}
1121193323Sed
1122198090SrdivackySDValue SelectionDAG::getValueType(EVT VT) {
1123198090Srdivacky  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1124198090Srdivacky      ValueTypeNodes.size())
1125198090Srdivacky    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1126193323Sed
1127193323Sed  SDNode *&N = VT.isExtended() ?
1128198090Srdivacky    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1129193323Sed
1130193323Sed  if (N) return SDValue(N, 0);
1131205407Srdivacky  N = new (NodeAllocator) VTSDNode(VT);
1132193323Sed  AllNodes.push_back(N);
1133193323Sed  return SDValue(N, 0);
1134193323Sed}
1135193323Sed
1136198090SrdivackySDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1137193323Sed  SDNode *&N = ExternalSymbols[Sym];
1138193323Sed  if (N) return SDValue(N, 0);
1139205407Srdivacky  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1140193323Sed  AllNodes.push_back(N);
1141193323Sed  return SDValue(N, 0);
1142193323Sed}
1143193323Sed
1144198090SrdivackySDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1145195098Sed                                              unsigned char TargetFlags) {
1146195098Sed  SDNode *&N =
1147195098Sed    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1148195098Sed                                                               TargetFlags)];
1149193323Sed  if (N) return SDValue(N, 0);
1150205407Srdivacky  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1151193323Sed  AllNodes.push_back(N);
1152193323Sed  return SDValue(N, 0);
1153193323Sed}
1154193323Sed
1155193323SedSDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1156193323Sed  if ((unsigned)Cond >= CondCodeNodes.size())
1157193323Sed    CondCodeNodes.resize(Cond+1);
1158193323Sed
1159193323Sed  if (CondCodeNodes[Cond] == 0) {
1160205407Srdivacky    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1161193323Sed    CondCodeNodes[Cond] = N;
1162193323Sed    AllNodes.push_back(N);
1163193323Sed  }
1164201360Srdivacky
1165193323Sed  return SDValue(CondCodeNodes[Cond], 0);
1166193323Sed}
1167193323Sed
1168193323Sed// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1169193323Sed// the shuffle mask M that point at N1 to point at N2, and indices that point
1170193323Sed// N2 to point at N1.
1171193323Sedstatic void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1172193323Sed  std::swap(N1, N2);
1173193323Sed  int NElts = M.size();
1174193323Sed  for (int i = 0; i != NElts; ++i) {
1175193323Sed    if (M[i] >= NElts)
1176193323Sed      M[i] -= NElts;
1177193323Sed    else if (M[i] >= 0)
1178193323Sed      M[i] += NElts;
1179193323Sed  }
1180193323Sed}
1181193323Sed
1182198090SrdivackySDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1183193323Sed                                       SDValue N2, const int *Mask) {
1184193323Sed  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1185198090Srdivacky  assert(VT.isVector() && N1.getValueType().isVector() &&
1186193323Sed         "Vector Shuffle VTs must be a vectors");
1187193323Sed  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1188193323Sed         && "Vector Shuffle VTs must have same element type");
1189193323Sed
1190193323Sed  // Canonicalize shuffle undef, undef -> undef
1191193323Sed  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1192198090Srdivacky    return getUNDEF(VT);
1193193323Sed
1194198090Srdivacky  // Validate that all indices in Mask are within the range of the elements
1195193323Sed  // input to the shuffle.
1196193323Sed  unsigned NElts = VT.getVectorNumElements();
1197193323Sed  SmallVector<int, 8> MaskVec;
1198193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1199193323Sed    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1200193323Sed    MaskVec.push_back(Mask[i]);
1201193323Sed  }
1202198090Srdivacky
1203193323Sed  // Canonicalize shuffle v, v -> v, undef
1204193323Sed  if (N1 == N2) {
1205193323Sed    N2 = getUNDEF(VT);
1206193323Sed    for (unsigned i = 0; i != NElts; ++i)
1207193323Sed      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1208193323Sed  }
1209198090Srdivacky
1210193323Sed  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1211193323Sed  if (N1.getOpcode() == ISD::UNDEF)
1212193323Sed    commuteShuffle(N1, N2, MaskVec);
1213198090Srdivacky
1214193323Sed  // Canonicalize all index into lhs, -> shuffle lhs, undef
1215193323Sed  // Canonicalize all index into rhs, -> shuffle rhs, undef
1216193323Sed  bool AllLHS = true, AllRHS = true;
1217193323Sed  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1218193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1219193323Sed    if (MaskVec[i] >= (int)NElts) {
1220193323Sed      if (N2Undef)
1221193323Sed        MaskVec[i] = -1;
1222193323Sed      else
1223193323Sed        AllLHS = false;
1224193323Sed    } else if (MaskVec[i] >= 0) {
1225193323Sed      AllRHS = false;
1226193323Sed    }
1227193323Sed  }
1228193323Sed  if (AllLHS && AllRHS)
1229193323Sed    return getUNDEF(VT);
1230193323Sed  if (AllLHS && !N2Undef)
1231193323Sed    N2 = getUNDEF(VT);
1232193323Sed  if (AllRHS) {
1233193323Sed    N1 = getUNDEF(VT);
1234193323Sed    commuteShuffle(N1, N2, MaskVec);
1235193323Sed  }
1236198090Srdivacky
1237193323Sed  // If Identity shuffle, or all shuffle in to undef, return that node.
1238193323Sed  bool AllUndef = true;
1239193323Sed  bool Identity = true;
1240193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1241193323Sed    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1242193323Sed    if (MaskVec[i] >= 0) AllUndef = false;
1243193323Sed  }
1244198090Srdivacky  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1245193323Sed    return N1;
1246193323Sed  if (AllUndef)
1247193323Sed    return getUNDEF(VT);
1248193323Sed
1249193323Sed  FoldingSetNodeID ID;
1250193323Sed  SDValue Ops[2] = { N1, N2 };
1251193323Sed  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1252193323Sed  for (unsigned i = 0; i != NElts; ++i)
1253193323Sed    ID.AddInteger(MaskVec[i]);
1254198090Srdivacky
1255193323Sed  void* IP = 0;
1256201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1257193323Sed    return SDValue(E, 0);
1258198090Srdivacky
1259193323Sed  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1260193323Sed  // SDNode doesn't have access to it.  This memory will be "leaked" when
1261193323Sed  // the node is deallocated, but recovered when the NodeAllocator is released.
1262193323Sed  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1263193323Sed  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1264198090Srdivacky
1265205407Srdivacky  ShuffleVectorSDNode *N =
1266205407Srdivacky    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1267193323Sed  CSEMap.InsertNode(N, IP);
1268193323Sed  AllNodes.push_back(N);
1269193323Sed  return SDValue(N, 0);
1270193323Sed}
1271193323Sed
1272198090SrdivackySDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1273193323Sed                                       SDValue Val, SDValue DTy,
1274193323Sed                                       SDValue STy, SDValue Rnd, SDValue Sat,
1275193323Sed                                       ISD::CvtCode Code) {
1276193323Sed  // If the src and dest types are the same and the conversion is between
1277193323Sed  // integer types of the same sign or two floats, no conversion is necessary.
1278193323Sed  if (DTy == STy &&
1279193323Sed      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1280193323Sed    return Val;
1281193323Sed
1282193323Sed  FoldingSetNodeID ID;
1283199481Srdivacky  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1284199481Srdivacky  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1285193323Sed  void* IP = 0;
1286201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1287193323Sed    return SDValue(E, 0);
1288201360Srdivacky
1289205407Srdivacky  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1290205407Srdivacky                                                           Code);
1291193323Sed  CSEMap.InsertNode(N, IP);
1292193323Sed  AllNodes.push_back(N);
1293193323Sed  return SDValue(N, 0);
1294193323Sed}
1295193323Sed
1296198090SrdivackySDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1297193323Sed  FoldingSetNodeID ID;
1298193323Sed  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1299193323Sed  ID.AddInteger(RegNo);
1300193323Sed  void *IP = 0;
1301201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1302193323Sed    return SDValue(E, 0);
1303201360Srdivacky
1304205407Srdivacky  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1305193323Sed  CSEMap.InsertNode(N, IP);
1306193323Sed  AllNodes.push_back(N);
1307193323Sed  return SDValue(N, 0);
1308193323Sed}
1309193323Sed
1310205218SrdivackySDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1311193323Sed  FoldingSetNodeID ID;
1312193323Sed  SDValue Ops[] = { Root };
1313205218Srdivacky  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1314205218Srdivacky  ID.AddPointer(Label);
1315193323Sed  void *IP = 0;
1316201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1317193323Sed    return SDValue(E, 0);
1318205218Srdivacky
1319205407Srdivacky  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1320193323Sed  CSEMap.InsertNode(N, IP);
1321193323Sed  AllNodes.push_back(N);
1322193323Sed  return SDValue(N, 0);
1323193323Sed}
1324193323Sed
1325205218Srdivacky
1326207618SrdivackySDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1327199989Srdivacky                                      bool isTarget,
1328199989Srdivacky                                      unsigned char TargetFlags) {
1329198892Srdivacky  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1330198892Srdivacky
1331198892Srdivacky  FoldingSetNodeID ID;
1332199989Srdivacky  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1333198892Srdivacky  ID.AddPointer(BA);
1334199989Srdivacky  ID.AddInteger(TargetFlags);
1335198892Srdivacky  void *IP = 0;
1336201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1337198892Srdivacky    return SDValue(E, 0);
1338201360Srdivacky
1339205407Srdivacky  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1340198892Srdivacky  CSEMap.InsertNode(N, IP);
1341198892Srdivacky  AllNodes.push_back(N);
1342198892Srdivacky  return SDValue(N, 0);
1343198892Srdivacky}
1344198892Srdivacky
1345193323SedSDValue SelectionDAG::getSrcValue(const Value *V) {
1346204642Srdivacky  assert((!V || V->getType()->isPointerTy()) &&
1347193323Sed         "SrcValue is not a pointer?");
1348193323Sed
1349193323Sed  FoldingSetNodeID ID;
1350193323Sed  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1351193323Sed  ID.AddPointer(V);
1352193323Sed
1353193323Sed  void *IP = 0;
1354201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1355193323Sed    return SDValue(E, 0);
1356193323Sed
1357205407Srdivacky  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1358193323Sed  CSEMap.InsertNode(N, IP);
1359193323Sed  AllNodes.push_back(N);
1360193323Sed  return SDValue(N, 0);
1361193323Sed}
1362193323Sed
1363207618Srdivacky/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1364207618SrdivackySDValue SelectionDAG::getMDNode(const MDNode *MD) {
1365207618Srdivacky  FoldingSetNodeID ID;
1366207618Srdivacky  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1367207618Srdivacky  ID.AddPointer(MD);
1368207618Srdivacky
1369207618Srdivacky  void *IP = 0;
1370207618Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1371207618Srdivacky    return SDValue(E, 0);
1372207618Srdivacky
1373207618Srdivacky  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1374207618Srdivacky  CSEMap.InsertNode(N, IP);
1375207618Srdivacky  AllNodes.push_back(N);
1376207618Srdivacky  return SDValue(N, 0);
1377207618Srdivacky}
1378207618Srdivacky
1379207618Srdivacky
1380193323Sed/// getShiftAmountOperand - Return the specified value casted to
1381193323Sed/// the target's desired shift amount type.
1382193323SedSDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1383198090Srdivacky  EVT OpTy = Op.getValueType();
1384193323Sed  MVT ShTy = TLI.getShiftAmountTy();
1385193323Sed  if (OpTy == ShTy || OpTy.isVector()) return Op;
1386193323Sed
1387193323Sed  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1388193323Sed  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1389193323Sed}
1390193323Sed
1391193323Sed/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1392193323Sed/// specified value type.
1393198090SrdivackySDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1394193323Sed  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1395198090Srdivacky  unsigned ByteSize = VT.getStoreSize();
1396198090Srdivacky  const Type *Ty = VT.getTypeForEVT(*getContext());
1397193323Sed  unsigned StackAlign =
1398193323Sed  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1399193323Sed
1400199481Srdivacky  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1401193323Sed  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1402193323Sed}
1403193323Sed
1404193323Sed/// CreateStackTemporary - Create a stack temporary suitable for holding
1405193323Sed/// either of the specified value types.
1406198090SrdivackySDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1407193323Sed  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1408193323Sed                            VT2.getStoreSizeInBits())/8;
1409198090Srdivacky  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1410198090Srdivacky  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1411193323Sed  const TargetData *TD = TLI.getTargetData();
1412193323Sed  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1413193323Sed                            TD->getPrefTypeAlignment(Ty2));
1414193323Sed
1415193323Sed  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1416199481Srdivacky  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1417193323Sed  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1418193323Sed}
1419193323Sed
1420198090SrdivackySDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1421193323Sed                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1422193323Sed  // These setcc operations always fold.
1423193323Sed  switch (Cond) {
1424193323Sed  default: break;
1425193323Sed  case ISD::SETFALSE:
1426193323Sed  case ISD::SETFALSE2: return getConstant(0, VT);
1427193323Sed  case ISD::SETTRUE:
1428193323Sed  case ISD::SETTRUE2:  return getConstant(1, VT);
1429193323Sed
1430193323Sed  case ISD::SETOEQ:
1431193323Sed  case ISD::SETOGT:
1432193323Sed  case ISD::SETOGE:
1433193323Sed  case ISD::SETOLT:
1434193323Sed  case ISD::SETOLE:
1435193323Sed  case ISD::SETONE:
1436193323Sed  case ISD::SETO:
1437193323Sed  case ISD::SETUO:
1438193323Sed  case ISD::SETUEQ:
1439193323Sed  case ISD::SETUNE:
1440193323Sed    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1441193323Sed    break;
1442193323Sed  }
1443193323Sed
1444193323Sed  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1445193323Sed    const APInt &C2 = N2C->getAPIntValue();
1446193323Sed    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1447193323Sed      const APInt &C1 = N1C->getAPIntValue();
1448193323Sed
1449193323Sed      switch (Cond) {
1450198090Srdivacky      default: llvm_unreachable("Unknown integer setcc!");
1451193323Sed      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1452193323Sed      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1453193323Sed      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1454193323Sed      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1455193323Sed      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1456193323Sed      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1457193323Sed      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1458193323Sed      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1459193323Sed      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1460193323Sed      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1461193323Sed      }
1462193323Sed    }
1463193323Sed  }
1464193323Sed  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1465193323Sed    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1466193323Sed      // No compile time operations on this type yet.
1467193323Sed      if (N1C->getValueType(0) == MVT::ppcf128)
1468193323Sed        return SDValue();
1469193323Sed
1470193323Sed      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1471193323Sed      switch (Cond) {
1472193323Sed      default: break;
1473193323Sed      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1474193323Sed                          return getUNDEF(VT);
1475193323Sed                        // fall through
1476193323Sed      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1477193323Sed      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1478193323Sed                          return getUNDEF(VT);
1479193323Sed                        // fall through
1480193323Sed      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1481193323Sed                                           R==APFloat::cmpLessThan, VT);
1482193323Sed      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1483193323Sed                          return getUNDEF(VT);
1484193323Sed                        // fall through
1485193323Sed      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1486193323Sed      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1487193323Sed                          return getUNDEF(VT);
1488193323Sed                        // fall through
1489193323Sed      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1490193323Sed      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1491193323Sed                          return getUNDEF(VT);
1492193323Sed                        // fall through
1493193323Sed      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1494193323Sed                                           R==APFloat::cmpEqual, VT);
1495193323Sed      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1496193323Sed                          return getUNDEF(VT);
1497193323Sed                        // fall through
1498193323Sed      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1499193323Sed                                           R==APFloat::cmpEqual, VT);
1500193323Sed      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1501193323Sed      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1502193323Sed      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1503193323Sed                                           R==APFloat::cmpEqual, VT);
1504193323Sed      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1505193323Sed      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1506193323Sed                                           R==APFloat::cmpLessThan, VT);
1507193323Sed      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1508193323Sed                                           R==APFloat::cmpUnordered, VT);
1509193323Sed      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1510193323Sed      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1511193323Sed      }
1512193323Sed    } else {
1513193323Sed      // Ensure that the constant occurs on the RHS.
1514193323Sed      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1515193323Sed    }
1516193323Sed  }
1517193323Sed
1518193323Sed  // Could not fold it.
1519193323Sed  return SDValue();
1520193323Sed}
1521193323Sed
1522193323Sed/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1523193323Sed/// use this predicate to simplify operations downstream.
1524193323Sedbool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1525198090Srdivacky  // This predicate is not safe for vector operations.
1526198090Srdivacky  if (Op.getValueType().isVector())
1527198090Srdivacky    return false;
1528198090Srdivacky
1529200581Srdivacky  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1530193323Sed  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1531193323Sed}
1532193323Sed
1533193323Sed/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1534193323Sed/// this predicate to simplify operations downstream.  Mask is known to be zero
1535193323Sed/// for bits that V cannot have.
1536193323Sedbool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1537193323Sed                                     unsigned Depth) const {
1538193323Sed  APInt KnownZero, KnownOne;
1539193323Sed  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1540193323Sed  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1541193323Sed  return (KnownZero & Mask) == Mask;
1542193323Sed}
1543193323Sed
1544193323Sed/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1545193323Sed/// known to be either zero or one and return them in the KnownZero/KnownOne
1546193323Sed/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1547193323Sed/// processing.
1548193323Sedvoid SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1549193323Sed                                     APInt &KnownZero, APInt &KnownOne,
1550193323Sed                                     unsigned Depth) const {
1551193323Sed  unsigned BitWidth = Mask.getBitWidth();
1552200581Srdivacky  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1553193323Sed         "Mask size mismatches value type size!");
1554193323Sed
1555193323Sed  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1556193323Sed  if (Depth == 6 || Mask == 0)
1557193323Sed    return;  // Limit search depth.
1558193323Sed
1559193323Sed  APInt KnownZero2, KnownOne2;
1560193323Sed
1561193323Sed  switch (Op.getOpcode()) {
1562193323Sed  case ISD::Constant:
1563193323Sed    // We know all of the bits for a constant!
1564193323Sed    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1565193323Sed    KnownZero = ~KnownOne & Mask;
1566193323Sed    return;
1567193323Sed  case ISD::AND:
1568193323Sed    // If either the LHS or the RHS are Zero, the result is zero.
1569193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1570193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1571193323Sed                      KnownZero2, KnownOne2, Depth+1);
1572193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1574193323Sed
1575193323Sed    // Output known-1 bits are only known if set in both the LHS & RHS.
1576193323Sed    KnownOne &= KnownOne2;
1577193323Sed    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1578193323Sed    KnownZero |= KnownZero2;
1579193323Sed    return;
1580193323Sed  case ISD::OR:
1581193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1582193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1583193323Sed                      KnownZero2, KnownOne2, Depth+1);
1584193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1585193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1586193323Sed
1587193323Sed    // Output known-0 bits are only known if clear in both the LHS & RHS.
1588193323Sed    KnownZero &= KnownZero2;
1589193323Sed    // Output known-1 are known to be set if set in either the LHS | RHS.
1590193323Sed    KnownOne |= KnownOne2;
1591193323Sed    return;
1592193323Sed  case ISD::XOR: {
1593193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1594193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1595193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1596193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1597193323Sed
1598193323Sed    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1599193323Sed    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1600193323Sed    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1601193323Sed    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1602193323Sed    KnownZero = KnownZeroOut;
1603193323Sed    return;
1604193323Sed  }
1605193323Sed  case ISD::MUL: {
1606193323Sed    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1607193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1608193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1609193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1610193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1611193323Sed
1612193323Sed    // If low bits are zero in either operand, output low known-0 bits.
1613193323Sed    // Also compute a conserative estimate for high known-0 bits.
1614193323Sed    // More trickiness is possible, but this is sufficient for the
1615193323Sed    // interesting case of alignment computation.
1616193323Sed    KnownOne.clear();
1617193323Sed    unsigned TrailZ = KnownZero.countTrailingOnes() +
1618193323Sed                      KnownZero2.countTrailingOnes();
1619193323Sed    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1620193323Sed                               KnownZero2.countLeadingOnes(),
1621193323Sed                               BitWidth) - BitWidth;
1622193323Sed
1623193323Sed    TrailZ = std::min(TrailZ, BitWidth);
1624193323Sed    LeadZ = std::min(LeadZ, BitWidth);
1625193323Sed    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1626193323Sed                APInt::getHighBitsSet(BitWidth, LeadZ);
1627193323Sed    KnownZero &= Mask;
1628193323Sed    return;
1629193323Sed  }
1630193323Sed  case ISD::UDIV: {
1631193323Sed    // For the purposes of computing leading zeros we can conservatively
1632193323Sed    // treat a udiv as a logical right shift by the power of 2 known to
1633193323Sed    // be less than the denominator.
1634193323Sed    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1635193323Sed    ComputeMaskedBits(Op.getOperand(0),
1636193323Sed                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1637193323Sed    unsigned LeadZ = KnownZero2.countLeadingOnes();
1638193323Sed
1639193323Sed    KnownOne2.clear();
1640193323Sed    KnownZero2.clear();
1641193323Sed    ComputeMaskedBits(Op.getOperand(1),
1642193323Sed                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1643193323Sed    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1644193323Sed    if (RHSUnknownLeadingOnes != BitWidth)
1645193323Sed      LeadZ = std::min(BitWidth,
1646193323Sed                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1647193323Sed
1648193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1649193323Sed    return;
1650193323Sed  }
1651193323Sed  case ISD::SELECT:
1652193323Sed    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1653193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1654193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1655193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1656193323Sed
1657193323Sed    // Only known if known in both the LHS and RHS.
1658193323Sed    KnownOne &= KnownOne2;
1659193323Sed    KnownZero &= KnownZero2;
1660193323Sed    return;
1661193323Sed  case ISD::SELECT_CC:
1662193323Sed    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1663193323Sed    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1664193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1665193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1666193323Sed
1667193323Sed    // Only known if known in both the LHS and RHS.
1668193323Sed    KnownOne &= KnownOne2;
1669193323Sed    KnownZero &= KnownZero2;
1670193323Sed    return;
1671193323Sed  case ISD::SADDO:
1672193323Sed  case ISD::UADDO:
1673193323Sed  case ISD::SSUBO:
1674193323Sed  case ISD::USUBO:
1675193323Sed  case ISD::SMULO:
1676193323Sed  case ISD::UMULO:
1677193323Sed    if (Op.getResNo() != 1)
1678193323Sed      return;
1679193323Sed    // The boolean result conforms to getBooleanContents.  Fall through.
1680193323Sed  case ISD::SETCC:
1681193323Sed    // If we know the result of a setcc has the top bits zero, use this info.
1682193323Sed    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1683193323Sed        BitWidth > 1)
1684193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1685193323Sed    return;
1686193323Sed  case ISD::SHL:
1687193323Sed    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1688193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1689193323Sed      unsigned ShAmt = SA->getZExtValue();
1690193323Sed
1691193323Sed      // If the shift count is an invalid immediate, don't do anything.
1692193323Sed      if (ShAmt >= BitWidth)
1693193323Sed        return;
1694193323Sed
1695193323Sed      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1696193323Sed                        KnownZero, KnownOne, Depth+1);
1697193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1698193323Sed      KnownZero <<= ShAmt;
1699193323Sed      KnownOne  <<= ShAmt;
1700193323Sed      // low bits known zero.
1701193323Sed      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1702193323Sed    }
1703193323Sed    return;
1704193323Sed  case ISD::SRL:
1705193323Sed    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1706193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1707193323Sed      unsigned ShAmt = SA->getZExtValue();
1708193323Sed
1709193323Sed      // If the shift count is an invalid immediate, don't do anything.
1710193323Sed      if (ShAmt >= BitWidth)
1711193323Sed        return;
1712193323Sed
1713193323Sed      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1714193323Sed                        KnownZero, KnownOne, Depth+1);
1715193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1716193323Sed      KnownZero = KnownZero.lshr(ShAmt);
1717193323Sed      KnownOne  = KnownOne.lshr(ShAmt);
1718193323Sed
1719193323Sed      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1720193323Sed      KnownZero |= HighBits;  // High bits known zero.
1721193323Sed    }
1722193323Sed    return;
1723193323Sed  case ISD::SRA:
1724193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1725193323Sed      unsigned ShAmt = SA->getZExtValue();
1726193323Sed
1727193323Sed      // If the shift count is an invalid immediate, don't do anything.
1728193323Sed      if (ShAmt >= BitWidth)
1729193323Sed        return;
1730193323Sed
1731193323Sed      APInt InDemandedMask = (Mask << ShAmt);
1732193323Sed      // If any of the demanded bits are produced by the sign extension, we also
1733193323Sed      // demand the input sign bit.
1734193323Sed      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1735193323Sed      if (HighBits.getBoolValue())
1736193323Sed        InDemandedMask |= APInt::getSignBit(BitWidth);
1737193323Sed
1738193323Sed      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1739193323Sed                        Depth+1);
1740193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1741193323Sed      KnownZero = KnownZero.lshr(ShAmt);
1742193323Sed      KnownOne  = KnownOne.lshr(ShAmt);
1743193323Sed
1744193323Sed      // Handle the sign bits.
1745193323Sed      APInt SignBit = APInt::getSignBit(BitWidth);
1746193323Sed      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1747193323Sed
1748193323Sed      if (KnownZero.intersects(SignBit)) {
1749193323Sed        KnownZero |= HighBits;  // New bits are known zero.
1750193323Sed      } else if (KnownOne.intersects(SignBit)) {
1751193323Sed        KnownOne  |= HighBits;  // New bits are known one.
1752193323Sed      }
1753193323Sed    }
1754193323Sed    return;
1755193323Sed  case ISD::SIGN_EXTEND_INREG: {
1756198090Srdivacky    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1757202375Srdivacky    unsigned EBits = EVT.getScalarType().getSizeInBits();
1758193323Sed
1759193323Sed    // Sign extension.  Compute the demanded bits in the result that are not
1760193323Sed    // present in the input.
1761193323Sed    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1762193323Sed
1763193323Sed    APInt InSignBit = APInt::getSignBit(EBits);
1764193323Sed    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1765193323Sed
1766193323Sed    // If the sign extended bits are demanded, we know that the sign
1767193323Sed    // bit is demanded.
1768193323Sed    InSignBit.zext(BitWidth);
1769193323Sed    if (NewBits.getBoolValue())
1770193323Sed      InputDemandedBits |= InSignBit;
1771193323Sed
1772193323Sed    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1773193323Sed                      KnownZero, KnownOne, Depth+1);
1774193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1775193323Sed
1776193323Sed    // If the sign bit of the input is known set or clear, then we know the
1777193323Sed    // top bits of the result.
1778193323Sed    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1779193323Sed      KnownZero |= NewBits;
1780193323Sed      KnownOne  &= ~NewBits;
1781193323Sed    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1782193323Sed      KnownOne  |= NewBits;
1783193323Sed      KnownZero &= ~NewBits;
1784193323Sed    } else {                              // Input sign bit unknown
1785193323Sed      KnownZero &= ~NewBits;
1786193323Sed      KnownOne  &= ~NewBits;
1787193323Sed    }
1788193323Sed    return;
1789193323Sed  }
1790193323Sed  case ISD::CTTZ:
1791193323Sed  case ISD::CTLZ:
1792193323Sed  case ISD::CTPOP: {
1793193323Sed    unsigned LowBits = Log2_32(BitWidth)+1;
1794193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1795193323Sed    KnownOne.clear();
1796193323Sed    return;
1797193323Sed  }
1798193323Sed  case ISD::LOAD: {
1799193323Sed    if (ISD::isZEXTLoad(Op.getNode())) {
1800193323Sed      LoadSDNode *LD = cast<LoadSDNode>(Op);
1801198090Srdivacky      EVT VT = LD->getMemoryVT();
1802202375Srdivacky      unsigned MemBits = VT.getScalarType().getSizeInBits();
1803193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1804193323Sed    }
1805193323Sed    return;
1806193323Sed  }
1807193323Sed  case ISD::ZERO_EXTEND: {
1808198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1809200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1810193323Sed    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1811193323Sed    APInt InMask    = Mask;
1812193323Sed    InMask.trunc(InBits);
1813193323Sed    KnownZero.trunc(InBits);
1814193323Sed    KnownOne.trunc(InBits);
1815193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1816193323Sed    KnownZero.zext(BitWidth);
1817193323Sed    KnownOne.zext(BitWidth);
1818193323Sed    KnownZero |= NewBits;
1819193323Sed    return;
1820193323Sed  }
1821193323Sed  case ISD::SIGN_EXTEND: {
1822198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1823200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1824193323Sed    APInt InSignBit = APInt::getSignBit(InBits);
1825193323Sed    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1826193323Sed    APInt InMask = Mask;
1827193323Sed    InMask.trunc(InBits);
1828193323Sed
1829193323Sed    // If any of the sign extended bits are demanded, we know that the sign
1830193323Sed    // bit is demanded. Temporarily set this bit in the mask for our callee.
1831193323Sed    if (NewBits.getBoolValue())
1832193323Sed      InMask |= InSignBit;
1833193323Sed
1834193323Sed    KnownZero.trunc(InBits);
1835193323Sed    KnownOne.trunc(InBits);
1836193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1837193323Sed
1838193323Sed    // Note if the sign bit is known to be zero or one.
1839193323Sed    bool SignBitKnownZero = KnownZero.isNegative();
1840193323Sed    bool SignBitKnownOne  = KnownOne.isNegative();
1841193323Sed    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1842193323Sed           "Sign bit can't be known to be both zero and one!");
1843193323Sed
1844193323Sed    // If the sign bit wasn't actually demanded by our caller, we don't
1845193323Sed    // want it set in the KnownZero and KnownOne result values. Reset the
1846193323Sed    // mask and reapply it to the result values.
1847193323Sed    InMask = Mask;
1848193323Sed    InMask.trunc(InBits);
1849193323Sed    KnownZero &= InMask;
1850193323Sed    KnownOne  &= InMask;
1851193323Sed
1852193323Sed    KnownZero.zext(BitWidth);
1853193323Sed    KnownOne.zext(BitWidth);
1854193323Sed
1855193323Sed    // If the sign bit is known zero or one, the top bits match.
1856193323Sed    if (SignBitKnownZero)
1857193323Sed      KnownZero |= NewBits;
1858193323Sed    else if (SignBitKnownOne)
1859193323Sed      KnownOne  |= NewBits;
1860193323Sed    return;
1861193323Sed  }
1862193323Sed  case ISD::ANY_EXTEND: {
1863198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1864200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1865193323Sed    APInt InMask = Mask;
1866193323Sed    InMask.trunc(InBits);
1867193323Sed    KnownZero.trunc(InBits);
1868193323Sed    KnownOne.trunc(InBits);
1869193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1870193323Sed    KnownZero.zext(BitWidth);
1871193323Sed    KnownOne.zext(BitWidth);
1872193323Sed    return;
1873193323Sed  }
1874193323Sed  case ISD::TRUNCATE: {
1875198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1876200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1877193323Sed    APInt InMask = Mask;
1878193323Sed    InMask.zext(InBits);
1879193323Sed    KnownZero.zext(InBits);
1880193323Sed    KnownOne.zext(InBits);
1881193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1882193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1883193323Sed    KnownZero.trunc(BitWidth);
1884193323Sed    KnownOne.trunc(BitWidth);
1885193323Sed    break;
1886193323Sed  }
1887193323Sed  case ISD::AssertZext: {
1888198090Srdivacky    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1889193323Sed    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1890193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1891193323Sed                      KnownOne, Depth+1);
1892193323Sed    KnownZero |= (~InMask) & Mask;
1893193323Sed    return;
1894193323Sed  }
1895193323Sed  case ISD::FGETSIGN:
1896193323Sed    // All bits are zero except the low bit.
1897193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1898193323Sed    return;
1899193323Sed
1900193323Sed  case ISD::SUB: {
1901193323Sed    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1902193323Sed      // We know that the top bits of C-X are clear if X contains less bits
1903193323Sed      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1904193323Sed      // positive if we can prove that X is >= 0 and < 16.
1905193323Sed      if (CLHS->getAPIntValue().isNonNegative()) {
1906193323Sed        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1907193323Sed        // NLZ can't be BitWidth with no sign bit
1908193323Sed        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1909193323Sed        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1910193323Sed                          Depth+1);
1911193323Sed
1912193323Sed        // If all of the MaskV bits are known to be zero, then we know the
1913193323Sed        // output top bits are zero, because we now know that the output is
1914193323Sed        // from [0-C].
1915193323Sed        if ((KnownZero2 & MaskV) == MaskV) {
1916193323Sed          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1917193323Sed          // Top bits known zero.
1918193323Sed          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1919193323Sed        }
1920193323Sed      }
1921193323Sed    }
1922193323Sed  }
1923193323Sed  // fall through
1924193323Sed  case ISD::ADD: {
1925193323Sed    // Output known-0 bits are known if clear or set in both the low clear bits
1926193323Sed    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1927193323Sed    // low 3 bits clear.
1928207618Srdivacky    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1929207618Srdivacky                                       BitWidth - Mask.countLeadingZeros());
1930193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1931193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1932193323Sed    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1933193323Sed
1934193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1935193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1936193323Sed    KnownZeroOut = std::min(KnownZeroOut,
1937193323Sed                            KnownZero2.countTrailingOnes());
1938193323Sed
1939193323Sed    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1940193323Sed    return;
1941193323Sed  }
1942193323Sed  case ISD::SREM:
1943193323Sed    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1944203954Srdivacky      const APInt &RA = Rem->getAPIntValue().abs();
1945203954Srdivacky      if (RA.isPowerOf2()) {
1946203954Srdivacky        APInt LowBits = RA - 1;
1947193323Sed        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1948193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1949193323Sed
1950203954Srdivacky        // The low bits of the first operand are unchanged by the srem.
1951203954Srdivacky        KnownZero = KnownZero2 & LowBits;
1952203954Srdivacky        KnownOne = KnownOne2 & LowBits;
1953203954Srdivacky
1954203954Srdivacky        // If the first operand is non-negative or has all low bits zero, then
1955203954Srdivacky        // the upper bits are all zero.
1956193323Sed        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1957203954Srdivacky          KnownZero |= ~LowBits;
1958193323Sed
1959203954Srdivacky        // If the first operand is negative and not all low bits are zero, then
1960203954Srdivacky        // the upper bits are all one.
1961203954Srdivacky        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1962203954Srdivacky          KnownOne |= ~LowBits;
1963193323Sed
1964203954Srdivacky        KnownZero &= Mask;
1965203954Srdivacky        KnownOne &= Mask;
1966203954Srdivacky
1967193323Sed        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1968193323Sed      }
1969193323Sed    }
1970193323Sed    return;
1971193323Sed  case ISD::UREM: {
1972193323Sed    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1973193323Sed      const APInt &RA = Rem->getAPIntValue();
1974193323Sed      if (RA.isPowerOf2()) {
1975193323Sed        APInt LowBits = (RA - 1);
1976193323Sed        APInt Mask2 = LowBits & Mask;
1977193323Sed        KnownZero |= ~LowBits & Mask;
1978193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1979193323Sed        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1980193323Sed        break;
1981193323Sed      }
1982193323Sed    }
1983193323Sed
1984193323Sed    // Since the result is less than or equal to either operand, any leading
1985193323Sed    // zero bits in either operand must also exist in the result.
1986193323Sed    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1987193323Sed    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1988193323Sed                      Depth+1);
1989193323Sed    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1990193323Sed                      Depth+1);
1991193323Sed
1992193323Sed    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1993193323Sed                                KnownZero2.countLeadingOnes());
1994193323Sed    KnownOne.clear();
1995193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1996193323Sed    return;
1997193323Sed  }
1998193323Sed  default:
1999193323Sed    // Allow the target to implement this method for its nodes.
2000193323Sed    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2001193323Sed  case ISD::INTRINSIC_WO_CHAIN:
2002193323Sed  case ISD::INTRINSIC_W_CHAIN:
2003193323Sed  case ISD::INTRINSIC_VOID:
2004198090Srdivacky      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2005198090Srdivacky                                         Depth);
2006193323Sed    }
2007193323Sed    return;
2008193323Sed  }
2009193323Sed}
2010193323Sed
2011193323Sed/// ComputeNumSignBits - Return the number of times the sign bit of the
2012193323Sed/// register is replicated into the other bits.  We know that at least 1 bit
2013193323Sed/// is always equal to the sign bit (itself), but other cases can give us
2014193323Sed/// information.  For example, immediately after an "SRA X, 2", we know that
2015193323Sed/// the top 3 bits are all equal to each other, so we return 3.
2016193323Sedunsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2017198090Srdivacky  EVT VT = Op.getValueType();
2018193323Sed  assert(VT.isInteger() && "Invalid VT!");
2019200581Srdivacky  unsigned VTBits = VT.getScalarType().getSizeInBits();
2020193323Sed  unsigned Tmp, Tmp2;
2021193323Sed  unsigned FirstAnswer = 1;
2022193323Sed
2023193323Sed  if (Depth == 6)
2024193323Sed    return 1;  // Limit search depth.
2025193323Sed
2026193323Sed  switch (Op.getOpcode()) {
2027193323Sed  default: break;
2028193323Sed  case ISD::AssertSext:
2029193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2030193323Sed    return VTBits-Tmp+1;
2031193323Sed  case ISD::AssertZext:
2032193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2033193323Sed    return VTBits-Tmp;
2034193323Sed
2035193323Sed  case ISD::Constant: {
2036193323Sed    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2037193323Sed    // If negative, return # leading ones.
2038193323Sed    if (Val.isNegative())
2039193323Sed      return Val.countLeadingOnes();
2040193323Sed
2041193323Sed    // Return # leading zeros.
2042193323Sed    return Val.countLeadingZeros();
2043193323Sed  }
2044193323Sed
2045193323Sed  case ISD::SIGN_EXTEND:
2046200581Srdivacky    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2047193323Sed    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2048193323Sed
2049193323Sed  case ISD::SIGN_EXTEND_INREG:
2050193323Sed    // Max of the input and what this extends.
2051202375Srdivacky    Tmp =
2052202375Srdivacky      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2053193323Sed    Tmp = VTBits-Tmp+1;
2054193323Sed
2055193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2056193323Sed    return std::max(Tmp, Tmp2);
2057193323Sed
2058193323Sed  case ISD::SRA:
2059193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2060193323Sed    // SRA X, C   -> adds C sign bits.
2061193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2062193323Sed      Tmp += C->getZExtValue();
2063193323Sed      if (Tmp > VTBits) Tmp = VTBits;
2064193323Sed    }
2065193323Sed    return Tmp;
2066193323Sed  case ISD::SHL:
2067193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2068193323Sed      // shl destroys sign bits.
2069193323Sed      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2070193323Sed      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2071193323Sed          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2072193323Sed      return Tmp - C->getZExtValue();
2073193323Sed    }
2074193323Sed    break;
2075193323Sed  case ISD::AND:
2076193323Sed  case ISD::OR:
2077193323Sed  case ISD::XOR:    // NOT is handled here.
2078193323Sed    // Logical binary ops preserve the number of sign bits at the worst.
2079193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2080193323Sed    if (Tmp != 1) {
2081193323Sed      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2082193323Sed      FirstAnswer = std::min(Tmp, Tmp2);
2083193323Sed      // We computed what we know about the sign bits as our first
2084193323Sed      // answer. Now proceed to the generic code that uses
2085193323Sed      // ComputeMaskedBits, and pick whichever answer is better.
2086193323Sed    }
2087193323Sed    break;
2088193323Sed
2089193323Sed  case ISD::SELECT:
2090193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2091193323Sed    if (Tmp == 1) return 1;  // Early out.
2092193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2093193323Sed    return std::min(Tmp, Tmp2);
2094193323Sed
2095193323Sed  case ISD::SADDO:
2096193323Sed  case ISD::UADDO:
2097193323Sed  case ISD::SSUBO:
2098193323Sed  case ISD::USUBO:
2099193323Sed  case ISD::SMULO:
2100193323Sed  case ISD::UMULO:
2101193323Sed    if (Op.getResNo() != 1)
2102193323Sed      break;
2103193323Sed    // The boolean result conforms to getBooleanContents.  Fall through.
2104193323Sed  case ISD::SETCC:
2105193323Sed    // If setcc returns 0/-1, all bits are sign bits.
2106193323Sed    if (TLI.getBooleanContents() ==
2107193323Sed        TargetLowering::ZeroOrNegativeOneBooleanContent)
2108193323Sed      return VTBits;
2109193323Sed    break;
2110193323Sed  case ISD::ROTL:
2111193323Sed  case ISD::ROTR:
2112193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2113193323Sed      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2114193323Sed
2115193323Sed      // Handle rotate right by N like a rotate left by 32-N.
2116193323Sed      if (Op.getOpcode() == ISD::ROTR)
2117193323Sed        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2118193323Sed
2119193323Sed      // If we aren't rotating out all of the known-in sign bits, return the
2120193323Sed      // number that are left.  This handles rotl(sext(x), 1) for example.
2121193323Sed      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2122193323Sed      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2123193323Sed    }
2124193323Sed    break;
2125193323Sed  case ISD::ADD:
2126193323Sed    // Add can have at most one carry bit.  Thus we know that the output
2127193323Sed    // is, at worst, one more bit than the inputs.
2128193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2129193323Sed    if (Tmp == 1) return 1;  // Early out.
2130193323Sed
2131193323Sed    // Special case decrementing a value (ADD X, -1):
2132193323Sed    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2133193323Sed      if (CRHS->isAllOnesValue()) {
2134193323Sed        APInt KnownZero, KnownOne;
2135193323Sed        APInt Mask = APInt::getAllOnesValue(VTBits);
2136193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2137193323Sed
2138193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2139193323Sed        // sign bits set.
2140193323Sed        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2141193323Sed          return VTBits;
2142193323Sed
2143193323Sed        // If we are subtracting one from a positive number, there is no carry
2144193323Sed        // out of the result.
2145193323Sed        if (KnownZero.isNegative())
2146193323Sed          return Tmp;
2147193323Sed      }
2148193323Sed
2149193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2150193323Sed    if (Tmp2 == 1) return 1;
2151193323Sed      return std::min(Tmp, Tmp2)-1;
2152193323Sed    break;
2153193323Sed
2154193323Sed  case ISD::SUB:
2155193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2156193323Sed    if (Tmp2 == 1) return 1;
2157193323Sed
2158193323Sed    // Handle NEG.
2159193323Sed    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2160193323Sed      if (CLHS->isNullValue()) {
2161193323Sed        APInt KnownZero, KnownOne;
2162193323Sed        APInt Mask = APInt::getAllOnesValue(VTBits);
2163193323Sed        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2164193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2165193323Sed        // sign bits set.
2166193323Sed        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2167193323Sed          return VTBits;
2168193323Sed
2169193323Sed        // If the input is known to be positive (the sign bit is known clear),
2170193323Sed        // the output of the NEG has the same number of sign bits as the input.
2171193323Sed        if (KnownZero.isNegative())
2172193323Sed          return Tmp2;
2173193323Sed
2174193323Sed        // Otherwise, we treat this like a SUB.
2175193323Sed      }
2176193323Sed
2177193323Sed    // Sub can have at most one carry bit.  Thus we know that the output
2178193323Sed    // is, at worst, one more bit than the inputs.
2179193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2180193323Sed    if (Tmp == 1) return 1;  // Early out.
2181193323Sed      return std::min(Tmp, Tmp2)-1;
2182193323Sed    break;
2183193323Sed  case ISD::TRUNCATE:
2184193323Sed    // FIXME: it's tricky to do anything useful for this, but it is an important
2185193323Sed    // case for targets like X86.
2186193323Sed    break;
2187193323Sed  }
2188193323Sed
2189193323Sed  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2190193323Sed  if (Op.getOpcode() == ISD::LOAD) {
2191193323Sed    LoadSDNode *LD = cast<LoadSDNode>(Op);
2192193323Sed    unsigned ExtType = LD->getExtensionType();
2193193323Sed    switch (ExtType) {
2194193323Sed    default: break;
2195193323Sed    case ISD::SEXTLOAD:    // '17' bits known
2196202375Srdivacky      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2197193323Sed      return VTBits-Tmp+1;
2198193323Sed    case ISD::ZEXTLOAD:    // '16' bits known
2199202375Srdivacky      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2200193323Sed      return VTBits-Tmp;
2201193323Sed    }
2202193323Sed  }
2203193323Sed
2204193323Sed  // Allow the target to implement this method for its nodes.
2205193323Sed  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2206193323Sed      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2207193323Sed      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2208193323Sed      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2209193323Sed    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2210193323Sed    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2211193323Sed  }
2212193323Sed
2213193323Sed  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2214193323Sed  // use this information.
2215193323Sed  APInt KnownZero, KnownOne;
2216193323Sed  APInt Mask = APInt::getAllOnesValue(VTBits);
2217193323Sed  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2218193323Sed
2219193323Sed  if (KnownZero.isNegative()) {        // sign bit is 0
2220193323Sed    Mask = KnownZero;
2221193323Sed  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2222193323Sed    Mask = KnownOne;
2223193323Sed  } else {
2224193323Sed    // Nothing known.
2225193323Sed    return FirstAnswer;
2226193323Sed  }
2227193323Sed
2228193323Sed  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2229193323Sed  // the number of identical bits in the top of the input value.
2230193323Sed  Mask = ~Mask;
2231193323Sed  Mask <<= Mask.getBitWidth()-VTBits;
2232193323Sed  // Return # leading zeros.  We use 'min' here in case Val was zero before
2233193323Sed  // shifting.  We don't want to return '64' as for an i32 "0".
2234193323Sed  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2235193323Sed}
2236193323Sed
2237198090Srdivackybool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2238198090Srdivacky  // If we're told that NaNs won't happen, assume they won't.
2239212904Sdim  if (NoNaNsFPMath)
2240198090Srdivacky    return true;
2241193323Sed
2242198090Srdivacky  // If the value is a constant, we can obviously see if it is a NaN or not.
2243198090Srdivacky  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2244198090Srdivacky    return !C->getValueAPF().isNaN();
2245198090Srdivacky
2246198090Srdivacky  // TODO: Recognize more cases here.
2247198090Srdivacky
2248198090Srdivacky  return false;
2249198090Srdivacky}
2250198090Srdivacky
2251204642Srdivackybool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2252204642Srdivacky  // If the value is a constant, we can obviously see if it is a zero or not.
2253204642Srdivacky  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2254204642Srdivacky    return !C->isZero();
2255204642Srdivacky
2256204642Srdivacky  // TODO: Recognize more cases here.
2257204642Srdivacky
2258204642Srdivacky  return false;
2259204642Srdivacky}
2260204642Srdivacky
2261204642Srdivackybool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2262204642Srdivacky  // Check the obvious case.
2263204642Srdivacky  if (A == B) return true;
2264204642Srdivacky
2265204642Srdivacky  // For for negative and positive zero.
2266204642Srdivacky  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2267204642Srdivacky    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2268204642Srdivacky      if (CA->isZero() && CB->isZero()) return true;
2269204642Srdivacky
2270204642Srdivacky  // Otherwise they may not be equal.
2271204642Srdivacky  return false;
2272204642Srdivacky}
2273204642Srdivacky
2274193323Sedbool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2275193323Sed  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2276193323Sed  if (!GA) return false;
2277193323Sed  if (GA->getOffset() != 0) return false;
2278207618Srdivacky  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2279193323Sed  if (!GV) return false;
2280206274Srdivacky  return MF->getMMI().hasDebugInfo();
2281193323Sed}
2282193323Sed
2283193323Sed
2284193323Sed/// getNode - Gets or creates the specified node.
2285193323Sed///
2286198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2287193323Sed  FoldingSetNodeID ID;
2288193323Sed  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2289193323Sed  void *IP = 0;
2290201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2291193323Sed    return SDValue(E, 0);
2292201360Srdivacky
2293205407Srdivacky  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2294193323Sed  CSEMap.InsertNode(N, IP);
2295193323Sed
2296193323Sed  AllNodes.push_back(N);
2297193323Sed#ifndef NDEBUG
2298193323Sed  VerifyNode(N);
2299193323Sed#endif
2300193323Sed  return SDValue(N, 0);
2301193323Sed}
2302193323Sed
2303193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2304198090Srdivacky                              EVT VT, SDValue Operand) {
2305193323Sed  // Constant fold unary operations with an integer constant operand.
2306193323Sed  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2307193323Sed    const APInt &Val = C->getAPIntValue();
2308193323Sed    switch (Opcode) {
2309193323Sed    default: break;
2310193323Sed    case ISD::SIGN_EXTEND:
2311205218Srdivacky      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2312193323Sed    case ISD::ANY_EXTEND:
2313193323Sed    case ISD::ZERO_EXTEND:
2314193323Sed    case ISD::TRUNCATE:
2315205218Srdivacky      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2316193323Sed    case ISD::UINT_TO_FP:
2317193323Sed    case ISD::SINT_TO_FP: {
2318193323Sed      const uint64_t zero[] = {0, 0};
2319205218Srdivacky      // No compile time operations on ppcf128.
2320205218Srdivacky      if (VT == MVT::ppcf128) break;
2321205218Srdivacky      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2322193323Sed      (void)apf.convertFromAPInt(Val,
2323193323Sed                                 Opcode==ISD::SINT_TO_FP,
2324193323Sed                                 APFloat::rmNearestTiesToEven);
2325193323Sed      return getConstantFP(apf, VT);
2326193323Sed    }
2327193323Sed    case ISD::BIT_CONVERT:
2328193323Sed      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2329193323Sed        return getConstantFP(Val.bitsToFloat(), VT);
2330193323Sed      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2331193323Sed        return getConstantFP(Val.bitsToDouble(), VT);
2332193323Sed      break;
2333193323Sed    case ISD::BSWAP:
2334193323Sed      return getConstant(Val.byteSwap(), VT);
2335193323Sed    case ISD::CTPOP:
2336193323Sed      return getConstant(Val.countPopulation(), VT);
2337193323Sed    case ISD::CTLZ:
2338193323Sed      return getConstant(Val.countLeadingZeros(), VT);
2339193323Sed    case ISD::CTTZ:
2340193323Sed      return getConstant(Val.countTrailingZeros(), VT);
2341193323Sed    }
2342193323Sed  }
2343193323Sed
2344193323Sed  // Constant fold unary operations with a floating point constant operand.
2345193323Sed  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2346193323Sed    APFloat V = C->getValueAPF();    // make copy
2347193323Sed    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2348193323Sed      switch (Opcode) {
2349193323Sed      case ISD::FNEG:
2350193323Sed        V.changeSign();
2351193323Sed        return getConstantFP(V, VT);
2352193323Sed      case ISD::FABS:
2353193323Sed        V.clearSign();
2354193323Sed        return getConstantFP(V, VT);
2355193323Sed      case ISD::FP_ROUND:
2356193323Sed      case ISD::FP_EXTEND: {
2357193323Sed        bool ignored;
2358193323Sed        // This can return overflow, underflow, or inexact; we don't care.
2359193323Sed        // FIXME need to be more flexible about rounding mode.
2360198090Srdivacky        (void)V.convert(*EVTToAPFloatSemantics(VT),
2361193323Sed                        APFloat::rmNearestTiesToEven, &ignored);
2362193323Sed        return getConstantFP(V, VT);
2363193323Sed      }
2364193323Sed      case ISD::FP_TO_SINT:
2365193323Sed      case ISD::FP_TO_UINT: {
2366193323Sed        integerPart x[2];
2367193323Sed        bool ignored;
2368193323Sed        assert(integerPartWidth >= 64);
2369193323Sed        // FIXME need to be more flexible about rounding mode.
2370193323Sed        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2371193323Sed                              Opcode==ISD::FP_TO_SINT,
2372193323Sed                              APFloat::rmTowardZero, &ignored);
2373193323Sed        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2374193323Sed          break;
2375193323Sed        APInt api(VT.getSizeInBits(), 2, x);
2376193323Sed        return getConstant(api, VT);
2377193323Sed      }
2378193323Sed      case ISD::BIT_CONVERT:
2379193323Sed        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2380193323Sed          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2381193323Sed        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2382193323Sed          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2383193323Sed        break;
2384193323Sed      }
2385193323Sed    }
2386193323Sed  }
2387193323Sed
2388193323Sed  unsigned OpOpcode = Operand.getNode()->getOpcode();
2389193323Sed  switch (Opcode) {
2390193323Sed  case ISD::TokenFactor:
2391193323Sed  case ISD::MERGE_VALUES:
2392193323Sed  case ISD::CONCAT_VECTORS:
2393193323Sed    return Operand;         // Factor, merge or concat of one node?  No need.
2394198090Srdivacky  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2395193323Sed  case ISD::FP_EXTEND:
2396193323Sed    assert(VT.isFloatingPoint() &&
2397193323Sed           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2398193323Sed    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2399200581Srdivacky    assert((!VT.isVector() ||
2400200581Srdivacky            VT.getVectorNumElements() ==
2401200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2402200581Srdivacky           "Vector element count mismatch!");
2403193323Sed    if (Operand.getOpcode() == ISD::UNDEF)
2404193323Sed      return getUNDEF(VT);
2405193323Sed    break;
2406193323Sed  case ISD::SIGN_EXTEND:
2407193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2408193323Sed           "Invalid SIGN_EXTEND!");
2409193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2410200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2411200581Srdivacky           "Invalid sext node, dst < src!");
2412200581Srdivacky    assert((!VT.isVector() ||
2413200581Srdivacky            VT.getVectorNumElements() ==
2414200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2415200581Srdivacky           "Vector element count mismatch!");
2416193323Sed    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2417193323Sed      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2418193323Sed    break;
2419193323Sed  case ISD::ZERO_EXTEND:
2420193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2421193323Sed           "Invalid ZERO_EXTEND!");
2422193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2423200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2424200581Srdivacky           "Invalid zext node, dst < src!");
2425200581Srdivacky    assert((!VT.isVector() ||
2426200581Srdivacky            VT.getVectorNumElements() ==
2427200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2428200581Srdivacky           "Vector element count mismatch!");
2429193323Sed    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2430193323Sed      return getNode(ISD::ZERO_EXTEND, DL, VT,
2431193323Sed                     Operand.getNode()->getOperand(0));
2432193323Sed    break;
2433193323Sed  case ISD::ANY_EXTEND:
2434193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2435193323Sed           "Invalid ANY_EXTEND!");
2436193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2437200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2438200581Srdivacky           "Invalid anyext node, dst < src!");
2439200581Srdivacky    assert((!VT.isVector() ||
2440200581Srdivacky            VT.getVectorNumElements() ==
2441200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2442200581Srdivacky           "Vector element count mismatch!");
2443210299Sed
2444210299Sed    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2445210299Sed        OpOpcode == ISD::ANY_EXTEND)
2446193323Sed      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2447193323Sed      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2448210299Sed
2449210299Sed    // (ext (trunx x)) -> x
2450210299Sed    if (OpOpcode == ISD::TRUNCATE) {
2451210299Sed      SDValue OpOp = Operand.getNode()->getOperand(0);
2452210299Sed      if (OpOp.getValueType() == VT)
2453210299Sed        return OpOp;
2454210299Sed    }
2455193323Sed    break;
2456193323Sed  case ISD::TRUNCATE:
2457193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2458193323Sed           "Invalid TRUNCATE!");
2459193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2460200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2461200581Srdivacky           "Invalid truncate node, src < dst!");
2462200581Srdivacky    assert((!VT.isVector() ||
2463200581Srdivacky            VT.getVectorNumElements() ==
2464200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2465200581Srdivacky           "Vector element count mismatch!");
2466193323Sed    if (OpOpcode == ISD::TRUNCATE)
2467193323Sed      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2468193323Sed    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2469193323Sed             OpOpcode == ISD::ANY_EXTEND) {
2470193323Sed      // If the source is smaller than the dest, we still need an extend.
2471200581Srdivacky      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2472200581Srdivacky            .bitsLT(VT.getScalarType()))
2473193323Sed        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2474193323Sed      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2475193323Sed        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2476193323Sed      else
2477193323Sed        return Operand.getNode()->getOperand(0);
2478193323Sed    }
2479193323Sed    break;
2480193323Sed  case ISD::BIT_CONVERT:
2481193323Sed    // Basic sanity checking.
2482193323Sed    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2483193323Sed           && "Cannot BIT_CONVERT between types of different sizes!");
2484193323Sed    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2485193323Sed    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2486193323Sed      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2487193323Sed    if (OpOpcode == ISD::UNDEF)
2488193323Sed      return getUNDEF(VT);
2489193323Sed    break;
2490193323Sed  case ISD::SCALAR_TO_VECTOR:
2491193323Sed    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2492193323Sed           (VT.getVectorElementType() == Operand.getValueType() ||
2493193323Sed            (VT.getVectorElementType().isInteger() &&
2494193323Sed             Operand.getValueType().isInteger() &&
2495193323Sed             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2496193323Sed           "Illegal SCALAR_TO_VECTOR node!");
2497193323Sed    if (OpOpcode == ISD::UNDEF)
2498193323Sed      return getUNDEF(VT);
2499193323Sed    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2500193323Sed    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2501193323Sed        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2502193323Sed        Operand.getConstantOperandVal(1) == 0 &&
2503193323Sed        Operand.getOperand(0).getValueType() == VT)
2504193323Sed      return Operand.getOperand(0);
2505193323Sed    break;
2506193323Sed  case ISD::FNEG:
2507193323Sed    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2508193323Sed    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2509193323Sed      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2510193323Sed                     Operand.getNode()->getOperand(0));
2511193323Sed    if (OpOpcode == ISD::FNEG)  // --X -> X
2512193323Sed      return Operand.getNode()->getOperand(0);
2513193323Sed    break;
2514193323Sed  case ISD::FABS:
2515193323Sed    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2516193323Sed      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2517193323Sed    break;
2518193323Sed  }
2519193323Sed
2520193323Sed  SDNode *N;
2521193323Sed  SDVTList VTs = getVTList(VT);
2522193323Sed  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2523193323Sed    FoldingSetNodeID ID;
2524193323Sed    SDValue Ops[1] = { Operand };
2525193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2526193323Sed    void *IP = 0;
2527201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2528193323Sed      return SDValue(E, 0);
2529201360Srdivacky
2530205407Srdivacky    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2531193323Sed    CSEMap.InsertNode(N, IP);
2532193323Sed  } else {
2533205407Srdivacky    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2534193323Sed  }
2535193323Sed
2536193323Sed  AllNodes.push_back(N);
2537193323Sed#ifndef NDEBUG
2538193323Sed  VerifyNode(N);
2539193323Sed#endif
2540193323Sed  return SDValue(N, 0);
2541193323Sed}
2542193323Sed
2543193323SedSDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2544198090Srdivacky                                             EVT VT,
2545193323Sed                                             ConstantSDNode *Cst1,
2546193323Sed                                             ConstantSDNode *Cst2) {
2547193323Sed  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2548193323Sed
2549193323Sed  switch (Opcode) {
2550193323Sed  case ISD::ADD:  return getConstant(C1 + C2, VT);
2551193323Sed  case ISD::SUB:  return getConstant(C1 - C2, VT);
2552193323Sed  case ISD::MUL:  return getConstant(C1 * C2, VT);
2553193323Sed  case ISD::UDIV:
2554193323Sed    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2555193323Sed    break;
2556193323Sed  case ISD::UREM:
2557193323Sed    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2558193323Sed    break;
2559193323Sed  case ISD::SDIV:
2560193323Sed    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2561193323Sed    break;
2562193323Sed  case ISD::SREM:
2563193323Sed    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2564193323Sed    break;
2565193323Sed  case ISD::AND:  return getConstant(C1 & C2, VT);
2566193323Sed  case ISD::OR:   return getConstant(C1 | C2, VT);
2567193323Sed  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2568193323Sed  case ISD::SHL:  return getConstant(C1 << C2, VT);
2569193323Sed  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2570193323Sed  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2571193323Sed  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2572193323Sed  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2573193323Sed  default: break;
2574193323Sed  }
2575193323Sed
2576193323Sed  return SDValue();
2577193323Sed}
2578193323Sed
2579198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2580193323Sed                              SDValue N1, SDValue N2) {
2581193323Sed  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2582193323Sed  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2583193323Sed  switch (Opcode) {
2584193323Sed  default: break;
2585193323Sed  case ISD::TokenFactor:
2586193323Sed    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2587193323Sed           N2.getValueType() == MVT::Other && "Invalid token factor!");
2588193323Sed    // Fold trivial token factors.
2589193323Sed    if (N1.getOpcode() == ISD::EntryToken) return N2;
2590193323Sed    if (N2.getOpcode() == ISD::EntryToken) return N1;
2591193323Sed    if (N1 == N2) return N1;
2592193323Sed    break;
2593193323Sed  case ISD::CONCAT_VECTORS:
2594193323Sed    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2595193323Sed    // one big BUILD_VECTOR.
2596193323Sed    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2597193323Sed        N2.getOpcode() == ISD::BUILD_VECTOR) {
2598212904Sdim      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2599212904Sdim                                    N1.getNode()->op_end());
2600210299Sed      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2601193323Sed      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2602193323Sed    }
2603193323Sed    break;
2604193323Sed  case ISD::AND:
2605208599Srdivacky    assert(VT.isInteger() && "This operator does not apply to FP types!");
2606208599Srdivacky    assert(N1.getValueType() == N2.getValueType() &&
2607193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2608193323Sed    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2609193323Sed    // worth handling here.
2610193323Sed    if (N2C && N2C->isNullValue())
2611193323Sed      return N2;
2612193323Sed    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2613193323Sed      return N1;
2614193323Sed    break;
2615193323Sed  case ISD::OR:
2616193323Sed  case ISD::XOR:
2617193323Sed  case ISD::ADD:
2618193323Sed  case ISD::SUB:
2619208599Srdivacky    assert(VT.isInteger() && "This operator does not apply to FP types!");
2620208599Srdivacky    assert(N1.getValueType() == N2.getValueType() &&
2621193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2622193323Sed    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2623193323Sed    // it's worth handling here.
2624193323Sed    if (N2C && N2C->isNullValue())
2625193323Sed      return N1;
2626193323Sed    break;
2627193323Sed  case ISD::UDIV:
2628193323Sed  case ISD::UREM:
2629193323Sed  case ISD::MULHU:
2630193323Sed  case ISD::MULHS:
2631193323Sed  case ISD::MUL:
2632193323Sed  case ISD::SDIV:
2633193323Sed  case ISD::SREM:
2634193323Sed    assert(VT.isInteger() && "This operator does not apply to FP types!");
2635208599Srdivacky    assert(N1.getValueType() == N2.getValueType() &&
2636208599Srdivacky           N1.getValueType() == VT && "Binary operator types must match!");
2637208599Srdivacky    break;
2638193323Sed  case ISD::FADD:
2639193323Sed  case ISD::FSUB:
2640193323Sed  case ISD::FMUL:
2641193323Sed  case ISD::FDIV:
2642193323Sed  case ISD::FREM:
2643193323Sed    if (UnsafeFPMath) {
2644193323Sed      if (Opcode == ISD::FADD) {
2645193323Sed        // 0+x --> x
2646193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2647193323Sed          if (CFP->getValueAPF().isZero())
2648193323Sed            return N2;
2649193323Sed        // x+0 --> x
2650193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2651193323Sed          if (CFP->getValueAPF().isZero())
2652193323Sed            return N1;
2653193323Sed      } else if (Opcode == ISD::FSUB) {
2654193323Sed        // x-0 --> x
2655193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2656193323Sed          if (CFP->getValueAPF().isZero())
2657193323Sed            return N1;
2658193323Sed      }
2659193323Sed    }
2660208599Srdivacky    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2661193323Sed    assert(N1.getValueType() == N2.getValueType() &&
2662193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2663193323Sed    break;
2664193323Sed  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2665193323Sed    assert(N1.getValueType() == VT &&
2666193323Sed           N1.getValueType().isFloatingPoint() &&
2667193323Sed           N2.getValueType().isFloatingPoint() &&
2668193323Sed           "Invalid FCOPYSIGN!");
2669193323Sed    break;
2670193323Sed  case ISD::SHL:
2671193323Sed  case ISD::SRA:
2672193323Sed  case ISD::SRL:
2673193323Sed  case ISD::ROTL:
2674193323Sed  case ISD::ROTR:
2675193323Sed    assert(VT == N1.getValueType() &&
2676193323Sed           "Shift operators return type must be the same as their first arg");
2677193323Sed    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2678193323Sed           "Shifts only work on integers");
2679193323Sed
2680193323Sed    // Always fold shifts of i1 values so the code generator doesn't need to
2681193323Sed    // handle them.  Since we know the size of the shift has to be less than the
2682193323Sed    // size of the value, the shift/rotate count is guaranteed to be zero.
2683193323Sed    if (VT == MVT::i1)
2684193323Sed      return N1;
2685202375Srdivacky    if (N2C && N2C->isNullValue())
2686202375Srdivacky      return N1;
2687193323Sed    break;
2688193323Sed  case ISD::FP_ROUND_INREG: {
2689198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2690193323Sed    assert(VT == N1.getValueType() && "Not an inreg round!");
2691193323Sed    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2692193323Sed           "Cannot FP_ROUND_INREG integer types");
2693202375Srdivacky    assert(EVT.isVector() == VT.isVector() &&
2694202375Srdivacky           "FP_ROUND_INREG type should be vector iff the operand "
2695202375Srdivacky           "type is vector!");
2696202375Srdivacky    assert((!EVT.isVector() ||
2697202375Srdivacky            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2698202375Srdivacky           "Vector element counts must match in FP_ROUND_INREG");
2699193323Sed    assert(EVT.bitsLE(VT) && "Not rounding down!");
2700193323Sed    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2701193323Sed    break;
2702193323Sed  }
2703193323Sed  case ISD::FP_ROUND:
2704193323Sed    assert(VT.isFloatingPoint() &&
2705193323Sed           N1.getValueType().isFloatingPoint() &&
2706193323Sed           VT.bitsLE(N1.getValueType()) &&
2707193323Sed           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2708193323Sed    if (N1.getValueType() == VT) return N1;  // noop conversion.
2709193323Sed    break;
2710193323Sed  case ISD::AssertSext:
2711193323Sed  case ISD::AssertZext: {
2712198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2713193323Sed    assert(VT == N1.getValueType() && "Not an inreg extend!");
2714193323Sed    assert(VT.isInteger() && EVT.isInteger() &&
2715193323Sed           "Cannot *_EXTEND_INREG FP types");
2716200581Srdivacky    assert(!EVT.isVector() &&
2717200581Srdivacky           "AssertSExt/AssertZExt type should be the vector element type "
2718200581Srdivacky           "rather than the vector type!");
2719193323Sed    assert(EVT.bitsLE(VT) && "Not extending!");
2720193323Sed    if (VT == EVT) return N1; // noop assertion.
2721193323Sed    break;
2722193323Sed  }
2723193323Sed  case ISD::SIGN_EXTEND_INREG: {
2724198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2725193323Sed    assert(VT == N1.getValueType() && "Not an inreg extend!");
2726193323Sed    assert(VT.isInteger() && EVT.isInteger() &&
2727193323Sed           "Cannot *_EXTEND_INREG FP types");
2728202375Srdivacky    assert(EVT.isVector() == VT.isVector() &&
2729202375Srdivacky           "SIGN_EXTEND_INREG type should be vector iff the operand "
2730202375Srdivacky           "type is vector!");
2731202375Srdivacky    assert((!EVT.isVector() ||
2732202375Srdivacky            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2733202375Srdivacky           "Vector element counts must match in SIGN_EXTEND_INREG");
2734202375Srdivacky    assert(EVT.bitsLE(VT) && "Not extending!");
2735193323Sed    if (EVT == VT) return N1;  // Not actually extending
2736193323Sed
2737193323Sed    if (N1C) {
2738193323Sed      APInt Val = N1C->getAPIntValue();
2739202375Srdivacky      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2740193323Sed      Val <<= Val.getBitWidth()-FromBits;
2741193323Sed      Val = Val.ashr(Val.getBitWidth()-FromBits);
2742193323Sed      return getConstant(Val, VT);
2743193323Sed    }
2744193323Sed    break;
2745193323Sed  }
2746193323Sed  case ISD::EXTRACT_VECTOR_ELT:
2747193323Sed    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2748193323Sed    if (N1.getOpcode() == ISD::UNDEF)
2749193323Sed      return getUNDEF(VT);
2750193323Sed
2751193323Sed    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2752193323Sed    // expanding copies of large vectors from registers.
2753193323Sed    if (N2C &&
2754193323Sed        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2755193323Sed        N1.getNumOperands() > 0) {
2756193323Sed      unsigned Factor =
2757193323Sed        N1.getOperand(0).getValueType().getVectorNumElements();
2758193323Sed      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2759193323Sed                     N1.getOperand(N2C->getZExtValue() / Factor),
2760193323Sed                     getConstant(N2C->getZExtValue() % Factor,
2761193323Sed                                 N2.getValueType()));
2762193323Sed    }
2763193323Sed
2764193323Sed    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2765193323Sed    // expanding large vector constants.
2766193323Sed    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2767193323Sed      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2768198090Srdivacky      EVT VEltTy = N1.getValueType().getVectorElementType();
2769198090Srdivacky      if (Elt.getValueType() != VEltTy) {
2770193323Sed        // If the vector element type is not legal, the BUILD_VECTOR operands
2771193323Sed        // are promoted and implicitly truncated.  Make that explicit here.
2772198090Srdivacky        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2773193323Sed      }
2774198090Srdivacky      if (VT != VEltTy) {
2775198090Srdivacky        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2776198090Srdivacky        // result is implicitly extended.
2777198090Srdivacky        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2778198090Srdivacky      }
2779193323Sed      return Elt;
2780193323Sed    }
2781193323Sed
2782193323Sed    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2783193323Sed    // operations are lowered to scalars.
2784193323Sed    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2785203954Srdivacky      // If the indices are the same, return the inserted element else
2786203954Srdivacky      // if the indices are known different, extract the element from
2787193323Sed      // the original vector.
2788207618Srdivacky      SDValue N1Op2 = N1.getOperand(2);
2789207618Srdivacky      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2790207618Srdivacky
2791207618Srdivacky      if (N1Op2C && N2C) {
2792207618Srdivacky        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2793207618Srdivacky          if (VT == N1.getOperand(1).getValueType())
2794207618Srdivacky            return N1.getOperand(1);
2795207618Srdivacky          else
2796207618Srdivacky            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2797207618Srdivacky        }
2798207618Srdivacky
2799193323Sed        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2800207618Srdivacky      }
2801193323Sed    }
2802193323Sed    break;
2803193323Sed  case ISD::EXTRACT_ELEMENT:
2804193323Sed    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2805193323Sed    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2806193323Sed           (N1.getValueType().isInteger() == VT.isInteger()) &&
2807193323Sed           "Wrong types for EXTRACT_ELEMENT!");
2808193323Sed
2809193323Sed    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2810193323Sed    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2811193323Sed    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2812193323Sed    if (N1.getOpcode() == ISD::BUILD_PAIR)
2813193323Sed      return N1.getOperand(N2C->getZExtValue());
2814193323Sed
2815193323Sed    // EXTRACT_ELEMENT of a constant int is also very common.
2816193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2817193323Sed      unsigned ElementSize = VT.getSizeInBits();
2818193323Sed      unsigned Shift = ElementSize * N2C->getZExtValue();
2819193323Sed      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2820193323Sed      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2821193323Sed    }
2822193323Sed    break;
2823193323Sed  case ISD::EXTRACT_SUBVECTOR:
2824193323Sed    if (N1.getValueType() == VT) // Trivial extraction.
2825193323Sed      return N1;
2826193323Sed    break;
2827193323Sed  }
2828193323Sed
2829193323Sed  if (N1C) {
2830193323Sed    if (N2C) {
2831193323Sed      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2832193323Sed      if (SV.getNode()) return SV;
2833193323Sed    } else {      // Cannonicalize constant to RHS if commutative
2834193323Sed      if (isCommutativeBinOp(Opcode)) {
2835193323Sed        std::swap(N1C, N2C);
2836193323Sed        std::swap(N1, N2);
2837193323Sed      }
2838193323Sed    }
2839193323Sed  }
2840193323Sed
2841193323Sed  // Constant fold FP operations.
2842193323Sed  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2843193323Sed  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2844193323Sed  if (N1CFP) {
2845193323Sed    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2846193323Sed      // Cannonicalize constant to RHS if commutative
2847193323Sed      std::swap(N1CFP, N2CFP);
2848193323Sed      std::swap(N1, N2);
2849193323Sed    } else if (N2CFP && VT != MVT::ppcf128) {
2850193323Sed      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2851193323Sed      APFloat::opStatus s;
2852193323Sed      switch (Opcode) {
2853193323Sed      case ISD::FADD:
2854193323Sed        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2855193323Sed        if (s != APFloat::opInvalidOp)
2856193323Sed          return getConstantFP(V1, VT);
2857193323Sed        break;
2858193323Sed      case ISD::FSUB:
2859193323Sed        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2860193323Sed        if (s!=APFloat::opInvalidOp)
2861193323Sed          return getConstantFP(V1, VT);
2862193323Sed        break;
2863193323Sed      case ISD::FMUL:
2864193323Sed        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2865193323Sed        if (s!=APFloat::opInvalidOp)
2866193323Sed          return getConstantFP(V1, VT);
2867193323Sed        break;
2868193323Sed      case ISD::FDIV:
2869193323Sed        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2870193323Sed        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2871193323Sed          return getConstantFP(V1, VT);
2872193323Sed        break;
2873193323Sed      case ISD::FREM :
2874193323Sed        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2875193323Sed        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2876193323Sed          return getConstantFP(V1, VT);
2877193323Sed        break;
2878193323Sed      case ISD::FCOPYSIGN:
2879193323Sed        V1.copySign(V2);
2880193323Sed        return getConstantFP(V1, VT);
2881193323Sed      default: break;
2882193323Sed      }
2883193323Sed    }
2884193323Sed  }
2885193323Sed
2886193323Sed  // Canonicalize an UNDEF to the RHS, even over a constant.
2887193323Sed  if (N1.getOpcode() == ISD::UNDEF) {
2888193323Sed    if (isCommutativeBinOp(Opcode)) {
2889193323Sed      std::swap(N1, N2);
2890193323Sed    } else {
2891193323Sed      switch (Opcode) {
2892193323Sed      case ISD::FP_ROUND_INREG:
2893193323Sed      case ISD::SIGN_EXTEND_INREG:
2894193323Sed      case ISD::SUB:
2895193323Sed      case ISD::FSUB:
2896193323Sed      case ISD::FDIV:
2897193323Sed      case ISD::FREM:
2898193323Sed      case ISD::SRA:
2899193323Sed        return N1;     // fold op(undef, arg2) -> undef
2900193323Sed      case ISD::UDIV:
2901193323Sed      case ISD::SDIV:
2902193323Sed      case ISD::UREM:
2903193323Sed      case ISD::SREM:
2904193323Sed      case ISD::SRL:
2905193323Sed      case ISD::SHL:
2906193323Sed        if (!VT.isVector())
2907193323Sed          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2908193323Sed        // For vectors, we can't easily build an all zero vector, just return
2909193323Sed        // the LHS.
2910193323Sed        return N2;
2911193323Sed      }
2912193323Sed    }
2913193323Sed  }
2914193323Sed
2915193323Sed  // Fold a bunch of operators when the RHS is undef.
2916193323Sed  if (N2.getOpcode() == ISD::UNDEF) {
2917193323Sed    switch (Opcode) {
2918193323Sed    case ISD::XOR:
2919193323Sed      if (N1.getOpcode() == ISD::UNDEF)
2920193323Sed        // Handle undef ^ undef -> 0 special case. This is a common
2921193323Sed        // idiom (misuse).
2922193323Sed        return getConstant(0, VT);
2923193323Sed      // fallthrough
2924193323Sed    case ISD::ADD:
2925193323Sed    case ISD::ADDC:
2926193323Sed    case ISD::ADDE:
2927193323Sed    case ISD::SUB:
2928193574Sed    case ISD::UDIV:
2929193574Sed    case ISD::SDIV:
2930193574Sed    case ISD::UREM:
2931193574Sed    case ISD::SREM:
2932193574Sed      return N2;       // fold op(arg1, undef) -> undef
2933193323Sed    case ISD::FADD:
2934193323Sed    case ISD::FSUB:
2935193323Sed    case ISD::FMUL:
2936193323Sed    case ISD::FDIV:
2937193323Sed    case ISD::FREM:
2938193574Sed      if (UnsafeFPMath)
2939193574Sed        return N2;
2940193574Sed      break;
2941193323Sed    case ISD::MUL:
2942193323Sed    case ISD::AND:
2943193323Sed    case ISD::SRL:
2944193323Sed    case ISD::SHL:
2945193323Sed      if (!VT.isVector())
2946193323Sed        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2947193323Sed      // For vectors, we can't easily build an all zero vector, just return
2948193323Sed      // the LHS.
2949193323Sed      return N1;
2950193323Sed    case ISD::OR:
2951193323Sed      if (!VT.isVector())
2952193323Sed        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2953193323Sed      // For vectors, we can't easily build an all one vector, just return
2954193323Sed      // the LHS.
2955193323Sed      return N1;
2956193323Sed    case ISD::SRA:
2957193323Sed      return N1;
2958193323Sed    }
2959193323Sed  }
2960193323Sed
2961193323Sed  // Memoize this node if possible.
2962193323Sed  SDNode *N;
2963193323Sed  SDVTList VTs = getVTList(VT);
2964193323Sed  if (VT != MVT::Flag) {
2965193323Sed    SDValue Ops[] = { N1, N2 };
2966193323Sed    FoldingSetNodeID ID;
2967193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2968193323Sed    void *IP = 0;
2969201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2970193323Sed      return SDValue(E, 0);
2971201360Srdivacky
2972205407Srdivacky    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2973193323Sed    CSEMap.InsertNode(N, IP);
2974193323Sed  } else {
2975205407Srdivacky    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2976193323Sed  }
2977193323Sed
2978193323Sed  AllNodes.push_back(N);
2979193323Sed#ifndef NDEBUG
2980193323Sed  VerifyNode(N);
2981193323Sed#endif
2982193323Sed  return SDValue(N, 0);
2983193323Sed}
2984193323Sed
2985198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2986193323Sed                              SDValue N1, SDValue N2, SDValue N3) {
2987193323Sed  // Perform various simplifications.
2988193323Sed  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2989193323Sed  switch (Opcode) {
2990193323Sed  case ISD::CONCAT_VECTORS:
2991193323Sed    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2992193323Sed    // one big BUILD_VECTOR.
2993193323Sed    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2994193323Sed        N2.getOpcode() == ISD::BUILD_VECTOR &&
2995193323Sed        N3.getOpcode() == ISD::BUILD_VECTOR) {
2996212904Sdim      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2997212904Sdim                                    N1.getNode()->op_end());
2998210299Sed      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2999210299Sed      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3000193323Sed      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3001193323Sed    }
3002193323Sed    break;
3003193323Sed  case ISD::SETCC: {
3004193323Sed    // Use FoldSetCC to simplify SETCC's.
3005193323Sed    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3006193323Sed    if (Simp.getNode()) return Simp;
3007193323Sed    break;
3008193323Sed  }
3009193323Sed  case ISD::SELECT:
3010193323Sed    if (N1C) {
3011193323Sed     if (N1C->getZExtValue())
3012193323Sed        return N2;             // select true, X, Y -> X
3013193323Sed      else
3014193323Sed        return N3;             // select false, X, Y -> Y
3015193323Sed    }
3016193323Sed
3017193323Sed    if (N2 == N3) return N2;   // select C, X, X -> X
3018193323Sed    break;
3019193323Sed  case ISD::VECTOR_SHUFFLE:
3020198090Srdivacky    llvm_unreachable("should use getVectorShuffle constructor!");
3021193323Sed    break;
3022193323Sed  case ISD::BIT_CONVERT:
3023193323Sed    // Fold bit_convert nodes from a type to themselves.
3024193323Sed    if (N1.getValueType() == VT)
3025193323Sed      return N1;
3026193323Sed    break;
3027193323Sed  }
3028193323Sed
3029193323Sed  // Memoize node if it doesn't produce a flag.
3030193323Sed  SDNode *N;
3031193323Sed  SDVTList VTs = getVTList(VT);
3032193323Sed  if (VT != MVT::Flag) {
3033193323Sed    SDValue Ops[] = { N1, N2, N3 };
3034193323Sed    FoldingSetNodeID ID;
3035193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3036193323Sed    void *IP = 0;
3037201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3038193323Sed      return SDValue(E, 0);
3039201360Srdivacky
3040205407Srdivacky    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3041193323Sed    CSEMap.InsertNode(N, IP);
3042193323Sed  } else {
3043205407Srdivacky    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3044193323Sed  }
3045200581Srdivacky
3046193323Sed  AllNodes.push_back(N);
3047193323Sed#ifndef NDEBUG
3048193323Sed  VerifyNode(N);
3049193323Sed#endif
3050193323Sed  return SDValue(N, 0);
3051193323Sed}
3052193323Sed
3053198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3054193323Sed                              SDValue N1, SDValue N2, SDValue N3,
3055193323Sed                              SDValue N4) {
3056193323Sed  SDValue Ops[] = { N1, N2, N3, N4 };
3057193323Sed  return getNode(Opcode, DL, VT, Ops, 4);
3058193323Sed}
3059193323Sed
3060198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3061193323Sed                              SDValue N1, SDValue N2, SDValue N3,
3062193323Sed                              SDValue N4, SDValue N5) {
3063193323Sed  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3064193323Sed  return getNode(Opcode, DL, VT, Ops, 5);
3065193323Sed}
3066193323Sed
3067198090Srdivacky/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3068198090Srdivacky/// the incoming stack arguments to be loaded from the stack.
3069198090SrdivackySDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3070198090Srdivacky  SmallVector<SDValue, 8> ArgChains;
3071198090Srdivacky
3072198090Srdivacky  // Include the original chain at the beginning of the list. When this is
3073198090Srdivacky  // used by target LowerCall hooks, this helps legalize find the
3074198090Srdivacky  // CALLSEQ_BEGIN node.
3075198090Srdivacky  ArgChains.push_back(Chain);
3076198090Srdivacky
3077198090Srdivacky  // Add a chain value for each stack argument.
3078198090Srdivacky  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3079198090Srdivacky       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3080198090Srdivacky    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3081198090Srdivacky      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3082198090Srdivacky        if (FI->getIndex() < 0)
3083198090Srdivacky          ArgChains.push_back(SDValue(L, 1));
3084198090Srdivacky
3085198090Srdivacky  // Build a tokenfactor for all the chains.
3086198090Srdivacky  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3087198090Srdivacky                 &ArgChains[0], ArgChains.size());
3088198090Srdivacky}
3089198090Srdivacky
3090193323Sed/// getMemsetValue - Vectorized representation of the memset value
3091193323Sed/// operand.
3092198090Srdivackystatic SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3093193323Sed                              DebugLoc dl) {
3094206124Srdivacky  assert(Value.getOpcode() != ISD::UNDEF);
3095206124Srdivacky
3096204642Srdivacky  unsigned NumBits = VT.getScalarType().getSizeInBits();
3097193323Sed  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3098193323Sed    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3099193323Sed    unsigned Shift = 8;
3100193323Sed    for (unsigned i = NumBits; i > 8; i >>= 1) {
3101193323Sed      Val = (Val << Shift) | Val;
3102193323Sed      Shift <<= 1;
3103193323Sed    }
3104193323Sed    if (VT.isInteger())
3105193323Sed      return DAG.getConstant(Val, VT);
3106193323Sed    return DAG.getConstantFP(APFloat(Val), VT);
3107193323Sed  }
3108193323Sed
3109193323Sed  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3110193323Sed  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3111193323Sed  unsigned Shift = 8;
3112193323Sed  for (unsigned i = NumBits; i > 8; i >>= 1) {
3113193323Sed    Value = DAG.getNode(ISD::OR, dl, VT,
3114193323Sed                        DAG.getNode(ISD::SHL, dl, VT, Value,
3115193323Sed                                    DAG.getConstant(Shift,
3116193323Sed                                                    TLI.getShiftAmountTy())),
3117193323Sed                        Value);
3118193323Sed    Shift <<= 1;
3119193323Sed  }
3120193323Sed
3121193323Sed  return Value;
3122193323Sed}
3123193323Sed
3124193323Sed/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3125193323Sed/// used when a memcpy is turned into a memset when the source is a constant
3126193323Sed/// string ptr.
3127198090Srdivackystatic SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3128198090Srdivacky                                  const TargetLowering &TLI,
3129198090Srdivacky                                  std::string &Str, unsigned Offset) {
3130193323Sed  // Handle vector with all elements zero.
3131193323Sed  if (Str.empty()) {
3132193323Sed    if (VT.isInteger())
3133193323Sed      return DAG.getConstant(0, VT);
3134206083Srdivacky    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3135206083Srdivacky             VT.getSimpleVT().SimpleTy == MVT::f64)
3136206083Srdivacky      return DAG.getConstantFP(0.0, VT);
3137206083Srdivacky    else if (VT.isVector()) {
3138206083Srdivacky      unsigned NumElts = VT.getVectorNumElements();
3139206083Srdivacky      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3140206083Srdivacky      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3141206083Srdivacky                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3142206083Srdivacky                                                             EltVT, NumElts)));
3143206083Srdivacky    } else
3144206083Srdivacky      llvm_unreachable("Expected type!");
3145193323Sed  }
3146193323Sed
3147193323Sed  assert(!VT.isVector() && "Can't handle vector type here!");
3148193323Sed  unsigned NumBits = VT.getSizeInBits();
3149193323Sed  unsigned MSB = NumBits / 8;
3150193323Sed  uint64_t Val = 0;
3151193323Sed  if (TLI.isLittleEndian())
3152193323Sed    Offset = Offset + MSB - 1;
3153193323Sed  for (unsigned i = 0; i != MSB; ++i) {
3154193323Sed    Val = (Val << 8) | (unsigned char)Str[Offset];
3155193323Sed    Offset += TLI.isLittleEndian() ? -1 : 1;
3156193323Sed  }
3157193323Sed  return DAG.getConstant(Val, VT);
3158193323Sed}
3159193323Sed
3160193323Sed/// getMemBasePlusOffset - Returns base and offset node for the
3161193323Sed///
3162193323Sedstatic SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3163193323Sed                                      SelectionDAG &DAG) {
3164198090Srdivacky  EVT VT = Base.getValueType();
3165193323Sed  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3166193323Sed                     VT, Base, DAG.getConstant(Offset, VT));
3167193323Sed}
3168193323Sed
3169193323Sed/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3170193323Sed///
3171193323Sedstatic bool isMemSrcFromString(SDValue Src, std::string &Str) {
3172193323Sed  unsigned SrcDelta = 0;
3173193323Sed  GlobalAddressSDNode *G = NULL;
3174193323Sed  if (Src.getOpcode() == ISD::GlobalAddress)
3175193323Sed    G = cast<GlobalAddressSDNode>(Src);
3176193323Sed  else if (Src.getOpcode() == ISD::ADD &&
3177193323Sed           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3178193323Sed           Src.getOperand(1).getOpcode() == ISD::Constant) {
3179193323Sed    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3180193323Sed    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3181193323Sed  }
3182193323Sed  if (!G)
3183193323Sed    return false;
3184193323Sed
3185207618Srdivacky  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3186193323Sed  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3187193323Sed    return true;
3188193323Sed
3189193323Sed  return false;
3190193323Sed}
3191193323Sed
3192206083Srdivacky/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3193206083Srdivacky/// to replace the memset / memcpy. Return true if the number of memory ops
3194206083Srdivacky/// is below the threshold. It returns the types of the sequence of
3195206083Srdivacky/// memory ops to perform memset / memcpy by reference.
3196206083Srdivackystatic bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3197206083Srdivacky                                     unsigned Limit, uint64_t Size,
3198206083Srdivacky                                     unsigned DstAlign, unsigned SrcAlign,
3199206124Srdivacky                                     bool NonScalarIntSafe,
3200207618Srdivacky                                     bool MemcpyStrSrc,
3201206083Srdivacky                                     SelectionDAG &DAG,
3202206083Srdivacky                                     const TargetLowering &TLI) {
3203206083Srdivacky  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3204206083Srdivacky         "Expecting memcpy / memset source to meet alignment requirement!");
3205206083Srdivacky  // If 'SrcAlign' is zero, that means the memory operation does not need load
3206206083Srdivacky  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3207206083Srdivacky  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3208206083Srdivacky  // specified alignment of the memory operation. If it is zero, that means
3209207618Srdivacky  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3210207618Srdivacky  // indicates whether the memcpy source is constant so it does not need to be
3211207618Srdivacky  // loaded.
3212206124Srdivacky  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3213207618Srdivacky                                   NonScalarIntSafe, MemcpyStrSrc,
3214207618Srdivacky                                   DAG.getMachineFunction());
3215193323Sed
3216204961Srdivacky  if (VT == MVT::Other) {
3217206274Srdivacky    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3218206083Srdivacky        TLI.allowsUnalignedMemoryAccesses(VT)) {
3219206274Srdivacky      VT = TLI.getPointerTy();
3220193323Sed    } else {
3221206083Srdivacky      switch (DstAlign & 7) {
3222193323Sed      case 0:  VT = MVT::i64; break;
3223193323Sed      case 4:  VT = MVT::i32; break;
3224193323Sed      case 2:  VT = MVT::i16; break;
3225193323Sed      default: VT = MVT::i8;  break;
3226193323Sed      }
3227193323Sed    }
3228193323Sed
3229193323Sed    MVT LVT = MVT::i64;
3230193323Sed    while (!TLI.isTypeLegal(LVT))
3231198090Srdivacky      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3232193323Sed    assert(LVT.isInteger());
3233193323Sed
3234193323Sed    if (VT.bitsGT(LVT))
3235193323Sed      VT = LVT;
3236193323Sed  }
3237210299Sed
3238210299Sed  // If we're optimizing for size, and there is a limit, bump the maximum number
3239210299Sed  // of operations inserted down to 4.  This is a wild guess that approximates
3240210299Sed  // the size of a call to memcpy or memset (3 arguments + call).
3241210299Sed  if (Limit != ~0U) {
3242210299Sed    const Function *F = DAG.getMachineFunction().getFunction();
3243210299Sed    if (F->hasFnAttr(Attribute::OptimizeForSize))
3244210299Sed      Limit = 4;
3245210299Sed  }
3246193323Sed
3247193323Sed  unsigned NumMemOps = 0;
3248193323Sed  while (Size != 0) {
3249193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3250193323Sed    while (VTSize > Size) {
3251193323Sed      // For now, only use non-vector load / store's for the left-over pieces.
3252206083Srdivacky      if (VT.isVector() || VT.isFloatingPoint()) {
3253193323Sed        VT = MVT::i64;
3254193323Sed        while (!TLI.isTypeLegal(VT))
3255198090Srdivacky          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3256193323Sed        VTSize = VT.getSizeInBits() / 8;
3257193323Sed      } else {
3258194710Sed        // This can result in a type that is not legal on the target, e.g.
3259194710Sed        // 1 or 2 bytes on PPC.
3260198090Srdivacky        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3261193323Sed        VTSize >>= 1;
3262193323Sed      }
3263193323Sed    }
3264193323Sed
3265193323Sed    if (++NumMemOps > Limit)
3266193323Sed      return false;
3267193323Sed    MemOps.push_back(VT);
3268193323Sed    Size -= VTSize;
3269193323Sed  }
3270193323Sed
3271193323Sed  return true;
3272193323Sed}
3273193323Sed
3274193323Sedstatic SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3275206083Srdivacky                                       SDValue Chain, SDValue Dst,
3276206083Srdivacky                                       SDValue Src, uint64_t Size,
3277206274Srdivacky                                       unsigned Align, bool isVol,
3278206274Srdivacky                                       bool AlwaysInline,
3279206083Srdivacky                                       const Value *DstSV, uint64_t DstSVOff,
3280206083Srdivacky                                       const Value *SrcSV, uint64_t SrcSVOff) {
3281206124Srdivacky  // Turn a memcpy of undef to nop.
3282206124Srdivacky  if (Src.getOpcode() == ISD::UNDEF)
3283206124Srdivacky    return Chain;
3284193323Sed
3285193323Sed  // Expand memcpy to a series of load and store ops if the size operand falls
3286193323Sed  // below a certain threshold.
3287206124Srdivacky  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3288198090Srdivacky  std::vector<EVT> MemOps;
3289206083Srdivacky  bool DstAlignCanChange = false;
3290206083Srdivacky  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3291206083Srdivacky  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3292206083Srdivacky  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3293206083Srdivacky    DstAlignCanChange = true;
3294206083Srdivacky  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3295206083Srdivacky  if (Align > SrcAlign)
3296206083Srdivacky    SrcAlign = Align;
3297193323Sed  std::string Str;
3298206083Srdivacky  bool CopyFromStr = isMemSrcFromString(Src, Str);
3299206083Srdivacky  bool isZeroStr = CopyFromStr && Str.empty();
3300210299Sed  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
3301210299Sed
3302206083Srdivacky  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3303206083Srdivacky                                (DstAlignCanChange ? 0 : Align),
3304207618Srdivacky                                (isZeroStr ? 0 : SrcAlign),
3305207618Srdivacky                                true, CopyFromStr, DAG, TLI))
3306193323Sed    return SDValue();
3307193323Sed
3308206083Srdivacky  if (DstAlignCanChange) {
3309206083Srdivacky    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3310206083Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3311206083Srdivacky    if (NewAlign > Align) {
3312206083Srdivacky      // Give the stack frame object a larger alignment if needed.
3313206083Srdivacky      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3314206083Srdivacky        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3315206083Srdivacky      Align = NewAlign;
3316206083Srdivacky    }
3317206083Srdivacky  }
3318193323Sed
3319193323Sed  SmallVector<SDValue, 8> OutChains;
3320193323Sed  unsigned NumMemOps = MemOps.size();
3321193323Sed  uint64_t SrcOff = 0, DstOff = 0;
3322198090Srdivacky  for (unsigned i = 0; i != NumMemOps; ++i) {
3323198090Srdivacky    EVT VT = MemOps[i];
3324193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3325193323Sed    SDValue Value, Store;
3326193323Sed
3327206083Srdivacky    if (CopyFromStr &&
3328206083Srdivacky        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3329193323Sed      // It's unlikely a store of a vector immediate can be done in a single
3330193323Sed      // instruction. It would require a load from a constantpool first.
3331206083Srdivacky      // We only handle zero vectors here.
3332193323Sed      // FIXME: Handle other cases where store of vector immediate is done in
3333193323Sed      // a single instruction.
3334193323Sed      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3335193323Sed      Store = DAG.getStore(Chain, dl, Value,
3336193323Sed                           getMemBasePlusOffset(Dst, DstOff, DAG),
3337206274Srdivacky                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3338193323Sed    } else {
3339194710Sed      // The type might not be legal for the target.  This should only happen
3340194710Sed      // if the type is smaller than a legal type, as on PPC, so the right
3341195098Sed      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3342195098Sed      // to Load/Store if NVT==VT.
3343194710Sed      // FIXME does the case above also need this?
3344198090Srdivacky      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3345195098Sed      assert(NVT.bitsGE(VT));
3346210299Sed      Value = DAG.getExtLoad(ISD::EXTLOAD, NVT, dl, Chain,
3347195098Sed                             getMemBasePlusOffset(Src, SrcOff, DAG),
3348206274Srdivacky                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3349206083Srdivacky                             MinAlign(SrcAlign, SrcOff));
3350195098Sed      Store = DAG.getTruncStore(Chain, dl, Value,
3351203954Srdivacky                                getMemBasePlusOffset(Dst, DstOff, DAG),
3352206274Srdivacky                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3353206083Srdivacky                                Align);
3354193323Sed    }
3355193323Sed    OutChains.push_back(Store);
3356193323Sed    SrcOff += VTSize;
3357193323Sed    DstOff += VTSize;
3358193323Sed  }
3359193323Sed
3360193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3361193323Sed                     &OutChains[0], OutChains.size());
3362193323Sed}
3363193323Sed
3364193323Sedstatic SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3365206083Srdivacky                                        SDValue Chain, SDValue Dst,
3366206083Srdivacky                                        SDValue Src, uint64_t Size,
3367206274Srdivacky                                        unsigned Align,  bool isVol,
3368206274Srdivacky                                        bool AlwaysInline,
3369206083Srdivacky                                        const Value *DstSV, uint64_t DstSVOff,
3370206083Srdivacky                                        const Value *SrcSV, uint64_t SrcSVOff) {
3371206124Srdivacky  // Turn a memmove of undef to nop.
3372206124Srdivacky  if (Src.getOpcode() == ISD::UNDEF)
3373206124Srdivacky    return Chain;
3374193323Sed
3375193323Sed  // Expand memmove to a series of load and store ops if the size operand falls
3376193323Sed  // below a certain threshold.
3377206124Srdivacky  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3378198090Srdivacky  std::vector<EVT> MemOps;
3379206083Srdivacky  bool DstAlignCanChange = false;
3380206083Srdivacky  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3381206083Srdivacky  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3382206083Srdivacky  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3383206083Srdivacky    DstAlignCanChange = true;
3384206083Srdivacky  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3385206083Srdivacky  if (Align > SrcAlign)
3386206083Srdivacky    SrcAlign = Align;
3387210299Sed  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove();
3388206083Srdivacky
3389206083Srdivacky  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3390206083Srdivacky                                (DstAlignCanChange ? 0 : Align),
3391207618Srdivacky                                SrcAlign, true, false, DAG, TLI))
3392193323Sed    return SDValue();
3393193323Sed
3394206083Srdivacky  if (DstAlignCanChange) {
3395206083Srdivacky    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3396206083Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3397206083Srdivacky    if (NewAlign > Align) {
3398206083Srdivacky      // Give the stack frame object a larger alignment if needed.
3399206083Srdivacky      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3400206083Srdivacky        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3401206083Srdivacky      Align = NewAlign;
3402206083Srdivacky    }
3403206083Srdivacky  }
3404206083Srdivacky
3405193323Sed  uint64_t SrcOff = 0, DstOff = 0;
3406193323Sed  SmallVector<SDValue, 8> LoadValues;
3407193323Sed  SmallVector<SDValue, 8> LoadChains;
3408193323Sed  SmallVector<SDValue, 8> OutChains;
3409193323Sed  unsigned NumMemOps = MemOps.size();
3410193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3411198090Srdivacky    EVT VT = MemOps[i];
3412193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3413193323Sed    SDValue Value, Store;
3414193323Sed
3415193323Sed    Value = DAG.getLoad(VT, dl, Chain,
3416193323Sed                        getMemBasePlusOffset(Src, SrcOff, DAG),
3417206274Srdivacky                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3418193323Sed    LoadValues.push_back(Value);
3419193323Sed    LoadChains.push_back(Value.getValue(1));
3420193323Sed    SrcOff += VTSize;
3421193323Sed  }
3422193323Sed  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3423193323Sed                      &LoadChains[0], LoadChains.size());
3424193323Sed  OutChains.clear();
3425193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3426198090Srdivacky    EVT VT = MemOps[i];
3427193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3428193323Sed    SDValue Value, Store;
3429193323Sed
3430193323Sed    Store = DAG.getStore(Chain, dl, LoadValues[i],
3431193323Sed                         getMemBasePlusOffset(Dst, DstOff, DAG),
3432206274Srdivacky                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3433193323Sed    OutChains.push_back(Store);
3434193323Sed    DstOff += VTSize;
3435193323Sed  }
3436193323Sed
3437193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3438193323Sed                     &OutChains[0], OutChains.size());
3439193323Sed}
3440193323Sed
3441193323Sedstatic SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3442206083Srdivacky                               SDValue Chain, SDValue Dst,
3443206083Srdivacky                               SDValue Src, uint64_t Size,
3444206274Srdivacky                               unsigned Align, bool isVol,
3445206083Srdivacky                               const Value *DstSV, uint64_t DstSVOff) {
3446206124Srdivacky  // Turn a memset of undef to nop.
3447206124Srdivacky  if (Src.getOpcode() == ISD::UNDEF)
3448206124Srdivacky    return Chain;
3449193323Sed
3450193323Sed  // Expand memset to a series of load/store ops if the size operand
3451193323Sed  // falls below a certain threshold.
3452206124Srdivacky  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3453198090Srdivacky  std::vector<EVT> MemOps;
3454206083Srdivacky  bool DstAlignCanChange = false;
3455206083Srdivacky  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3456206083Srdivacky  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3457206083Srdivacky  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3458206083Srdivacky    DstAlignCanChange = true;
3459206124Srdivacky  bool NonScalarIntSafe =
3460206124Srdivacky    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3461206083Srdivacky  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3462206083Srdivacky                                Size, (DstAlignCanChange ? 0 : Align), 0,
3463207618Srdivacky                                NonScalarIntSafe, false, DAG, TLI))
3464193323Sed    return SDValue();
3465193323Sed
3466206083Srdivacky  if (DstAlignCanChange) {
3467206083Srdivacky    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3468206083Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3469206083Srdivacky    if (NewAlign > Align) {
3470206083Srdivacky      // Give the stack frame object a larger alignment if needed.
3471206083Srdivacky      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3472206083Srdivacky        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3473206083Srdivacky      Align = NewAlign;
3474206083Srdivacky    }
3475206083Srdivacky  }
3476206083Srdivacky
3477193323Sed  SmallVector<SDValue, 8> OutChains;
3478193323Sed  uint64_t DstOff = 0;
3479193323Sed  unsigned NumMemOps = MemOps.size();
3480193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3481198090Srdivacky    EVT VT = MemOps[i];
3482193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3483193323Sed    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3484193323Sed    SDValue Store = DAG.getStore(Chain, dl, Value,
3485193323Sed                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3486206274Srdivacky                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3487193323Sed    OutChains.push_back(Store);
3488193323Sed    DstOff += VTSize;
3489193323Sed  }
3490193323Sed
3491193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3492193323Sed                     &OutChains[0], OutChains.size());
3493193323Sed}
3494193323Sed
3495193323SedSDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3496193323Sed                                SDValue Src, SDValue Size,
3497206274Srdivacky                                unsigned Align, bool isVol, bool AlwaysInline,
3498193323Sed                                const Value *DstSV, uint64_t DstSVOff,
3499193323Sed                                const Value *SrcSV, uint64_t SrcSVOff) {
3500193323Sed
3501193323Sed  // Check to see if we should lower the memcpy to loads and stores first.
3502193323Sed  // For cases within the target-specified limits, this is the best choice.
3503193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3504193323Sed  if (ConstantSize) {
3505193323Sed    // Memcpy with size zero? Just return the original chain.
3506193323Sed    if (ConstantSize->isNullValue())
3507193323Sed      return Chain;
3508193323Sed
3509206083Srdivacky    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3510206083Srdivacky                                             ConstantSize->getZExtValue(),Align,
3511206274Srdivacky                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3512193323Sed    if (Result.getNode())
3513193323Sed      return Result;
3514193323Sed  }
3515193323Sed
3516193323Sed  // Then check to see if we should lower the memcpy with target-specific
3517193323Sed  // code. If the target chooses to do this, this is the next best.
3518193323Sed  SDValue Result =
3519208599Srdivacky    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3520206274Srdivacky                                isVol, AlwaysInline,
3521193323Sed                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3522193323Sed  if (Result.getNode())
3523193323Sed    return Result;
3524193323Sed
3525193323Sed  // If we really need inline code and the target declined to provide it,
3526193323Sed  // use a (potentially long) sequence of loads and stores.
3527193323Sed  if (AlwaysInline) {
3528193323Sed    assert(ConstantSize && "AlwaysInline requires a constant size!");
3529193323Sed    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3530206274Srdivacky                                   ConstantSize->getZExtValue(), Align, isVol,
3531206274Srdivacky                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3532193323Sed  }
3533193323Sed
3534206274Srdivacky  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3535206274Srdivacky  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3536206274Srdivacky  // respect volatile, so they may do things like read or write memory
3537206274Srdivacky  // beyond the given memory regions. But fixing this isn't easy, and most
3538206274Srdivacky  // people don't care.
3539206274Srdivacky
3540193323Sed  // Emit a library call.
3541193323Sed  TargetLowering::ArgListTy Args;
3542193323Sed  TargetLowering::ArgListEntry Entry;
3543198090Srdivacky  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3544193323Sed  Entry.Node = Dst; Args.push_back(Entry);
3545193323Sed  Entry.Node = Src; Args.push_back(Entry);
3546193323Sed  Entry.Node = Size; Args.push_back(Entry);
3547193323Sed  // FIXME: pass in DebugLoc
3548193323Sed  std::pair<SDValue,SDValue> CallResult =
3549198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3550198090Srdivacky                    false, false, false, false, 0,
3551198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3552198090Srdivacky                    /*isReturnValueUsed=*/false,
3553198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3554198090Srdivacky                                      TLI.getPointerTy()),
3555204642Srdivacky                    Args, *this, dl);
3556193323Sed  return CallResult.second;
3557193323Sed}
3558193323Sed
3559193323SedSDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3560193323Sed                                 SDValue Src, SDValue Size,
3561206274Srdivacky                                 unsigned Align, bool isVol,
3562193323Sed                                 const Value *DstSV, uint64_t DstSVOff,
3563193323Sed                                 const Value *SrcSV, uint64_t SrcSVOff) {
3564193323Sed
3565193323Sed  // Check to see if we should lower the memmove to loads and stores first.
3566193323Sed  // For cases within the target-specified limits, this is the best choice.
3567193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3568193323Sed  if (ConstantSize) {
3569193323Sed    // Memmove with size zero? Just return the original chain.
3570193323Sed    if (ConstantSize->isNullValue())
3571193323Sed      return Chain;
3572193323Sed
3573193323Sed    SDValue Result =
3574193323Sed      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3575206274Srdivacky                               ConstantSize->getZExtValue(), Align, isVol,
3576206274Srdivacky                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3577193323Sed    if (Result.getNode())
3578193323Sed      return Result;
3579193323Sed  }
3580193323Sed
3581193323Sed  // Then check to see if we should lower the memmove with target-specific
3582193323Sed  // code. If the target chooses to do this, this is the next best.
3583193323Sed  SDValue Result =
3584208599Srdivacky    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3585193323Sed                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3586193323Sed  if (Result.getNode())
3587193323Sed    return Result;
3588193323Sed
3589207618Srdivacky  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3590207618Srdivacky  // not be safe.  See memcpy above for more details.
3591207618Srdivacky
3592193323Sed  // Emit a library call.
3593193323Sed  TargetLowering::ArgListTy Args;
3594193323Sed  TargetLowering::ArgListEntry Entry;
3595198090Srdivacky  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3596193323Sed  Entry.Node = Dst; Args.push_back(Entry);
3597193323Sed  Entry.Node = Src; Args.push_back(Entry);
3598193323Sed  Entry.Node = Size; Args.push_back(Entry);
3599193323Sed  // FIXME:  pass in DebugLoc
3600193323Sed  std::pair<SDValue,SDValue> CallResult =
3601198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3602198090Srdivacky                    false, false, false, false, 0,
3603198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3604198090Srdivacky                    /*isReturnValueUsed=*/false,
3605198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3606198090Srdivacky                                      TLI.getPointerTy()),
3607204642Srdivacky                    Args, *this, dl);
3608193323Sed  return CallResult.second;
3609193323Sed}
3610193323Sed
3611193323SedSDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3612193323Sed                                SDValue Src, SDValue Size,
3613206274Srdivacky                                unsigned Align, bool isVol,
3614193323Sed                                const Value *DstSV, uint64_t DstSVOff) {
3615193323Sed
3616193323Sed  // Check to see if we should lower the memset to stores first.
3617193323Sed  // For cases within the target-specified limits, this is the best choice.
3618193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3619193323Sed  if (ConstantSize) {
3620193323Sed    // Memset with size zero? Just return the original chain.
3621193323Sed    if (ConstantSize->isNullValue())
3622193323Sed      return Chain;
3623193323Sed
3624206274Srdivacky    SDValue Result =
3625206274Srdivacky      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3626206274Srdivacky                      Align, isVol, DstSV, DstSVOff);
3627206274Srdivacky
3628193323Sed    if (Result.getNode())
3629193323Sed      return Result;
3630193323Sed  }
3631193323Sed
3632193323Sed  // Then check to see if we should lower the memset with target-specific
3633193323Sed  // code. If the target chooses to do this, this is the next best.
3634193323Sed  SDValue Result =
3635208599Srdivacky    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3636193323Sed                                DstSV, DstSVOff);
3637193323Sed  if (Result.getNode())
3638193323Sed    return Result;
3639193323Sed
3640207618Srdivacky  // Emit a library call.
3641198090Srdivacky  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3642193323Sed  TargetLowering::ArgListTy Args;
3643193323Sed  TargetLowering::ArgListEntry Entry;
3644193323Sed  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3645193323Sed  Args.push_back(Entry);
3646193323Sed  // Extend or truncate the argument to be an i32 value for the call.
3647193323Sed  if (Src.getValueType().bitsGT(MVT::i32))
3648193323Sed    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3649193323Sed  else
3650193323Sed    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3651198090Srdivacky  Entry.Node = Src;
3652198090Srdivacky  Entry.Ty = Type::getInt32Ty(*getContext());
3653198090Srdivacky  Entry.isSExt = true;
3654193323Sed  Args.push_back(Entry);
3655198090Srdivacky  Entry.Node = Size;
3656198090Srdivacky  Entry.Ty = IntPtrTy;
3657198090Srdivacky  Entry.isSExt = false;
3658193323Sed  Args.push_back(Entry);
3659193323Sed  // FIXME: pass in DebugLoc
3660193323Sed  std::pair<SDValue,SDValue> CallResult =
3661198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3662198090Srdivacky                    false, false, false, false, 0,
3663198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3664198090Srdivacky                    /*isReturnValueUsed=*/false,
3665198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3666198090Srdivacky                                      TLI.getPointerTy()),
3667204642Srdivacky                    Args, *this, dl);
3668193323Sed  return CallResult.second;
3669193323Sed}
3670193323Sed
3671198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3672193323Sed                                SDValue Chain,
3673193323Sed                                SDValue Ptr, SDValue Cmp,
3674193323Sed                                SDValue Swp, const Value* PtrVal,
3675193323Sed                                unsigned Alignment) {
3676198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3677198090Srdivacky    Alignment = getEVTAlignment(MemVT);
3678198090Srdivacky
3679198090Srdivacky  // Check if the memory reference references a frame index
3680198090Srdivacky  if (!PtrVal)
3681198090Srdivacky    if (const FrameIndexSDNode *FI =
3682198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3683198090Srdivacky      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3684198090Srdivacky
3685198090Srdivacky  MachineFunction &MF = getMachineFunction();
3686198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3687198090Srdivacky
3688198090Srdivacky  // For now, atomics are considered to be volatile always.
3689198090Srdivacky  Flags |= MachineMemOperand::MOVolatile;
3690198090Srdivacky
3691198090Srdivacky  MachineMemOperand *MMO =
3692198090Srdivacky    MF.getMachineMemOperand(PtrVal, Flags, 0,
3693198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3694198090Srdivacky
3695198090Srdivacky  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3696198090Srdivacky}
3697198090Srdivacky
3698198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3699198090Srdivacky                                SDValue Chain,
3700198090Srdivacky                                SDValue Ptr, SDValue Cmp,
3701198090Srdivacky                                SDValue Swp, MachineMemOperand *MMO) {
3702193323Sed  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3703193323Sed  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3704193323Sed
3705198090Srdivacky  EVT VT = Cmp.getValueType();
3706193323Sed
3707193323Sed  SDVTList VTs = getVTList(VT, MVT::Other);
3708193323Sed  FoldingSetNodeID ID;
3709193323Sed  ID.AddInteger(MemVT.getRawBits());
3710193323Sed  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3711193323Sed  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3712193323Sed  void* IP = 0;
3713198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3714198090Srdivacky    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3715193323Sed    return SDValue(E, 0);
3716198090Srdivacky  }
3717205407Srdivacky  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3718205407Srdivacky                                               Ptr, Cmp, Swp, MMO);
3719193323Sed  CSEMap.InsertNode(N, IP);
3720193323Sed  AllNodes.push_back(N);
3721193323Sed  return SDValue(N, 0);
3722193323Sed}
3723193323Sed
3724198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3725193323Sed                                SDValue Chain,
3726193323Sed                                SDValue Ptr, SDValue Val,
3727193323Sed                                const Value* PtrVal,
3728193323Sed                                unsigned Alignment) {
3729198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3730198090Srdivacky    Alignment = getEVTAlignment(MemVT);
3731198090Srdivacky
3732198090Srdivacky  // Check if the memory reference references a frame index
3733198090Srdivacky  if (!PtrVal)
3734198090Srdivacky    if (const FrameIndexSDNode *FI =
3735198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3736198090Srdivacky      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3737198090Srdivacky
3738198090Srdivacky  MachineFunction &MF = getMachineFunction();
3739198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3740198090Srdivacky
3741198090Srdivacky  // For now, atomics are considered to be volatile always.
3742198090Srdivacky  Flags |= MachineMemOperand::MOVolatile;
3743198090Srdivacky
3744198090Srdivacky  MachineMemOperand *MMO =
3745198090Srdivacky    MF.getMachineMemOperand(PtrVal, Flags, 0,
3746198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3747198090Srdivacky
3748198090Srdivacky  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3749198090Srdivacky}
3750198090Srdivacky
3751198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3752198090Srdivacky                                SDValue Chain,
3753198090Srdivacky                                SDValue Ptr, SDValue Val,
3754198090Srdivacky                                MachineMemOperand *MMO) {
3755193323Sed  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3756193323Sed          Opcode == ISD::ATOMIC_LOAD_SUB ||
3757193323Sed          Opcode == ISD::ATOMIC_LOAD_AND ||
3758193323Sed          Opcode == ISD::ATOMIC_LOAD_OR ||
3759193323Sed          Opcode == ISD::ATOMIC_LOAD_XOR ||
3760193323Sed          Opcode == ISD::ATOMIC_LOAD_NAND ||
3761193323Sed          Opcode == ISD::ATOMIC_LOAD_MIN ||
3762193323Sed          Opcode == ISD::ATOMIC_LOAD_MAX ||
3763193323Sed          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3764193323Sed          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3765193323Sed          Opcode == ISD::ATOMIC_SWAP) &&
3766193323Sed         "Invalid Atomic Op");
3767193323Sed
3768198090Srdivacky  EVT VT = Val.getValueType();
3769193323Sed
3770193323Sed  SDVTList VTs = getVTList(VT, MVT::Other);
3771193323Sed  FoldingSetNodeID ID;
3772193323Sed  ID.AddInteger(MemVT.getRawBits());
3773193323Sed  SDValue Ops[] = {Chain, Ptr, Val};
3774193323Sed  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3775193323Sed  void* IP = 0;
3776198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3777198090Srdivacky    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3778193323Sed    return SDValue(E, 0);
3779198090Srdivacky  }
3780205407Srdivacky  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3781205407Srdivacky                                               Ptr, Val, MMO);
3782193323Sed  CSEMap.InsertNode(N, IP);
3783193323Sed  AllNodes.push_back(N);
3784193323Sed  return SDValue(N, 0);
3785193323Sed}
3786193323Sed
3787193323Sed/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3788193323Sed/// Allowed to return something different (and simpler) if Simplify is true.
3789193323SedSDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3790193323Sed                                     DebugLoc dl) {
3791193323Sed  if (NumOps == 1)
3792193323Sed    return Ops[0];
3793193323Sed
3794198090Srdivacky  SmallVector<EVT, 4> VTs;
3795193323Sed  VTs.reserve(NumOps);
3796193323Sed  for (unsigned i = 0; i < NumOps; ++i)
3797193323Sed    VTs.push_back(Ops[i].getValueType());
3798193323Sed  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3799193323Sed                 Ops, NumOps);
3800193323Sed}
3801193323Sed
3802193323SedSDValue
3803193323SedSelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3804198090Srdivacky                                  const EVT *VTs, unsigned NumVTs,
3805193323Sed                                  const SDValue *Ops, unsigned NumOps,
3806198090Srdivacky                                  EVT MemVT, const Value *srcValue, int SVOff,
3807193323Sed                                  unsigned Align, bool Vol,
3808193323Sed                                  bool ReadMem, bool WriteMem) {
3809193323Sed  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3810193323Sed                             MemVT, srcValue, SVOff, Align, Vol,
3811193323Sed                             ReadMem, WriteMem);
3812193323Sed}
3813193323Sed
3814193323SedSDValue
3815193323SedSelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3816193323Sed                                  const SDValue *Ops, unsigned NumOps,
3817198090Srdivacky                                  EVT MemVT, const Value *srcValue, int SVOff,
3818193323Sed                                  unsigned Align, bool Vol,
3819193323Sed                                  bool ReadMem, bool WriteMem) {
3820198090Srdivacky  if (Align == 0)  // Ensure that codegen never sees alignment 0
3821198090Srdivacky    Align = getEVTAlignment(MemVT);
3822198090Srdivacky
3823198090Srdivacky  MachineFunction &MF = getMachineFunction();
3824198090Srdivacky  unsigned Flags = 0;
3825198090Srdivacky  if (WriteMem)
3826198090Srdivacky    Flags |= MachineMemOperand::MOStore;
3827198090Srdivacky  if (ReadMem)
3828198090Srdivacky    Flags |= MachineMemOperand::MOLoad;
3829198090Srdivacky  if (Vol)
3830198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3831198090Srdivacky  MachineMemOperand *MMO =
3832198090Srdivacky    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3833198090Srdivacky                            MemVT.getStoreSize(), Align);
3834198090Srdivacky
3835198090Srdivacky  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3836198090Srdivacky}
3837198090Srdivacky
3838198090SrdivackySDValue
3839198090SrdivackySelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3840198090Srdivacky                                  const SDValue *Ops, unsigned NumOps,
3841198090Srdivacky                                  EVT MemVT, MachineMemOperand *MMO) {
3842198090Srdivacky  assert((Opcode == ISD::INTRINSIC_VOID ||
3843198090Srdivacky          Opcode == ISD::INTRINSIC_W_CHAIN ||
3844198090Srdivacky          (Opcode <= INT_MAX &&
3845198090Srdivacky           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3846198090Srdivacky         "Opcode is not a memory-accessing opcode!");
3847198090Srdivacky
3848193323Sed  // Memoize the node unless it returns a flag.
3849193323Sed  MemIntrinsicSDNode *N;
3850193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3851193323Sed    FoldingSetNodeID ID;
3852193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3853193323Sed    void *IP = 0;
3854198090Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3855198090Srdivacky      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3856193323Sed      return SDValue(E, 0);
3857198090Srdivacky    }
3858193323Sed
3859205407Srdivacky    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3860205407Srdivacky                                               MemVT, MMO);
3861193323Sed    CSEMap.InsertNode(N, IP);
3862193323Sed  } else {
3863205407Srdivacky    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3864205407Srdivacky                                               MemVT, MMO);
3865193323Sed  }
3866193323Sed  AllNodes.push_back(N);
3867193323Sed  return SDValue(N, 0);
3868193323Sed}
3869193323Sed
3870193323SedSDValue
3871210299SedSelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3872210299Sed                      EVT VT, DebugLoc dl, SDValue Chain,
3873193323Sed                      SDValue Ptr, SDValue Offset,
3874198090Srdivacky                      const Value *SV, int SVOffset, EVT MemVT,
3875203954Srdivacky                      bool isVolatile, bool isNonTemporal,
3876203954Srdivacky                      unsigned Alignment) {
3877193323Sed  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3878198090Srdivacky    Alignment = getEVTAlignment(VT);
3879193323Sed
3880198090Srdivacky  // Check if the memory reference references a frame index
3881198090Srdivacky  if (!SV)
3882198090Srdivacky    if (const FrameIndexSDNode *FI =
3883198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3884198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3885198090Srdivacky
3886198090Srdivacky  MachineFunction &MF = getMachineFunction();
3887198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad;
3888198090Srdivacky  if (isVolatile)
3889198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3890203954Srdivacky  if (isNonTemporal)
3891203954Srdivacky    Flags |= MachineMemOperand::MONonTemporal;
3892198090Srdivacky  MachineMemOperand *MMO =
3893198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset,
3894198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3895210299Sed  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
3896198090Srdivacky}
3897198090Srdivacky
3898198090SrdivackySDValue
3899210299SedSelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3900210299Sed                      EVT VT, DebugLoc dl, SDValue Chain,
3901198090Srdivacky                      SDValue Ptr, SDValue Offset, EVT MemVT,
3902198090Srdivacky                      MachineMemOperand *MMO) {
3903198090Srdivacky  if (VT == MemVT) {
3904193323Sed    ExtType = ISD::NON_EXTLOAD;
3905193323Sed  } else if (ExtType == ISD::NON_EXTLOAD) {
3906198090Srdivacky    assert(VT == MemVT && "Non-extending load from different memory type!");
3907193323Sed  } else {
3908193323Sed    // Extending load.
3909200581Srdivacky    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3910200581Srdivacky           "Should only be an extending load, not truncating!");
3911198090Srdivacky    assert(VT.isInteger() == MemVT.isInteger() &&
3912193323Sed           "Cannot convert from FP to Int or Int -> FP!");
3913200581Srdivacky    assert(VT.isVector() == MemVT.isVector() &&
3914200581Srdivacky           "Cannot use trunc store to convert to or from a vector!");
3915200581Srdivacky    assert((!VT.isVector() ||
3916200581Srdivacky            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3917200581Srdivacky           "Cannot use trunc store to change the number of vector elements!");
3918193323Sed  }
3919193323Sed
3920193323Sed  bool Indexed = AM != ISD::UNINDEXED;
3921193323Sed  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3922193323Sed         "Unindexed load with an offset!");
3923193323Sed
3924193323Sed  SDVTList VTs = Indexed ?
3925193323Sed    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3926193323Sed  SDValue Ops[] = { Chain, Ptr, Offset };
3927193323Sed  FoldingSetNodeID ID;
3928193323Sed  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3929198090Srdivacky  ID.AddInteger(MemVT.getRawBits());
3930204642Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3931204642Srdivacky                                     MMO->isNonTemporal()));
3932193323Sed  void *IP = 0;
3933198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3934198090Srdivacky    cast<LoadSDNode>(E)->refineAlignment(MMO);
3935193323Sed    return SDValue(E, 0);
3936198090Srdivacky  }
3937205407Srdivacky  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3938205407Srdivacky                                             MemVT, MMO);
3939193323Sed  CSEMap.InsertNode(N, IP);
3940193323Sed  AllNodes.push_back(N);
3941193323Sed  return SDValue(N, 0);
3942193323Sed}
3943193323Sed
3944198090SrdivackySDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3945193323Sed                              SDValue Chain, SDValue Ptr,
3946193323Sed                              const Value *SV, int SVOffset,
3947203954Srdivacky                              bool isVolatile, bool isNonTemporal,
3948203954Srdivacky                              unsigned Alignment) {
3949193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3950210299Sed  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
3951203954Srdivacky                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3952193323Sed}
3953193323Sed
3954210299SedSDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, EVT VT, DebugLoc dl,
3955193323Sed                                 SDValue Chain, SDValue Ptr,
3956193323Sed                                 const Value *SV,
3957198090Srdivacky                                 int SVOffset, EVT MemVT,
3958203954Srdivacky                                 bool isVolatile, bool isNonTemporal,
3959203954Srdivacky                                 unsigned Alignment) {
3960193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3961210299Sed  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
3962203954Srdivacky                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3963193323Sed}
3964193323Sed
3965193323SedSDValue
3966193323SedSelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3967193323Sed                             SDValue Offset, ISD::MemIndexedMode AM) {
3968193323Sed  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3969193323Sed  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3970193323Sed         "Load is already a indexed load!");
3971210299Sed  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
3972193323Sed                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3973193323Sed                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3974203954Srdivacky                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3975193323Sed}
3976193323Sed
3977193323SedSDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3978193323Sed                               SDValue Ptr, const Value *SV, int SVOffset,
3979203954Srdivacky                               bool isVolatile, bool isNonTemporal,
3980203954Srdivacky                               unsigned Alignment) {
3981193323Sed  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3982198090Srdivacky    Alignment = getEVTAlignment(Val.getValueType());
3983193323Sed
3984198090Srdivacky  // Check if the memory reference references a frame index
3985198090Srdivacky  if (!SV)
3986198090Srdivacky    if (const FrameIndexSDNode *FI =
3987198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3988198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3989198090Srdivacky
3990198090Srdivacky  MachineFunction &MF = getMachineFunction();
3991198090Srdivacky  unsigned Flags = MachineMemOperand::MOStore;
3992198090Srdivacky  if (isVolatile)
3993198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3994203954Srdivacky  if (isNonTemporal)
3995203954Srdivacky    Flags |= MachineMemOperand::MONonTemporal;
3996198090Srdivacky  MachineMemOperand *MMO =
3997198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset,
3998198090Srdivacky                            Val.getValueType().getStoreSize(), Alignment);
3999198090Srdivacky
4000198090Srdivacky  return getStore(Chain, dl, Val, Ptr, MMO);
4001198090Srdivacky}
4002198090Srdivacky
4003198090SrdivackySDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4004198090Srdivacky                               SDValue Ptr, MachineMemOperand *MMO) {
4005198090Srdivacky  EVT VT = Val.getValueType();
4006193323Sed  SDVTList VTs = getVTList(MVT::Other);
4007193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
4008193323Sed  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4009193323Sed  FoldingSetNodeID ID;
4010193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4011193323Sed  ID.AddInteger(VT.getRawBits());
4012204642Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4013204642Srdivacky                                     MMO->isNonTemporal()));
4014193323Sed  void *IP = 0;
4015198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4016198090Srdivacky    cast<StoreSDNode>(E)->refineAlignment(MMO);
4017193323Sed    return SDValue(E, 0);
4018198090Srdivacky  }
4019205407Srdivacky  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4020205407Srdivacky                                              false, VT, MMO);
4021193323Sed  CSEMap.InsertNode(N, IP);
4022193323Sed  AllNodes.push_back(N);
4023193323Sed  return SDValue(N, 0);
4024193323Sed}
4025193323Sed
4026193323SedSDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4027193323Sed                                    SDValue Ptr, const Value *SV,
4028198090Srdivacky                                    int SVOffset, EVT SVT,
4029203954Srdivacky                                    bool isVolatile, bool isNonTemporal,
4030203954Srdivacky                                    unsigned Alignment) {
4031198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4032198090Srdivacky    Alignment = getEVTAlignment(SVT);
4033193323Sed
4034198090Srdivacky  // Check if the memory reference references a frame index
4035198090Srdivacky  if (!SV)
4036198090Srdivacky    if (const FrameIndexSDNode *FI =
4037198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4038198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4039198090Srdivacky
4040198090Srdivacky  MachineFunction &MF = getMachineFunction();
4041198090Srdivacky  unsigned Flags = MachineMemOperand::MOStore;
4042198090Srdivacky  if (isVolatile)
4043198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
4044203954Srdivacky  if (isNonTemporal)
4045203954Srdivacky    Flags |= MachineMemOperand::MONonTemporal;
4046198090Srdivacky  MachineMemOperand *MMO =
4047198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4048198090Srdivacky
4049198090Srdivacky  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4050198090Srdivacky}
4051198090Srdivacky
4052198090SrdivackySDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4053198090Srdivacky                                    SDValue Ptr, EVT SVT,
4054198090Srdivacky                                    MachineMemOperand *MMO) {
4055198090Srdivacky  EVT VT = Val.getValueType();
4056198090Srdivacky
4057193323Sed  if (VT == SVT)
4058198090Srdivacky    return getStore(Chain, dl, Val, Ptr, MMO);
4059193323Sed
4060200581Srdivacky  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4061200581Srdivacky         "Should only be a truncating store, not extending!");
4062193323Sed  assert(VT.isInteger() == SVT.isInteger() &&
4063193323Sed         "Can't do FP-INT conversion!");
4064200581Srdivacky  assert(VT.isVector() == SVT.isVector() &&
4065200581Srdivacky         "Cannot use trunc store to convert to or from a vector!");
4066200581Srdivacky  assert((!VT.isVector() ||
4067200581Srdivacky          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4068200581Srdivacky         "Cannot use trunc store to change the number of vector elements!");
4069193323Sed
4070193323Sed  SDVTList VTs = getVTList(MVT::Other);
4071193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
4072193323Sed  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4073193323Sed  FoldingSetNodeID ID;
4074193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4075193323Sed  ID.AddInteger(SVT.getRawBits());
4076204642Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4077204642Srdivacky                                     MMO->isNonTemporal()));
4078193323Sed  void *IP = 0;
4079198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4080198090Srdivacky    cast<StoreSDNode>(E)->refineAlignment(MMO);
4081193323Sed    return SDValue(E, 0);
4082198090Srdivacky  }
4083205407Srdivacky  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4084205407Srdivacky                                              true, SVT, MMO);
4085193323Sed  CSEMap.InsertNode(N, IP);
4086193323Sed  AllNodes.push_back(N);
4087193323Sed  return SDValue(N, 0);
4088193323Sed}
4089193323Sed
4090193323SedSDValue
4091193323SedSelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4092193323Sed                              SDValue Offset, ISD::MemIndexedMode AM) {
4093193323Sed  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4094193323Sed  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4095193323Sed         "Store is already a indexed store!");
4096193323Sed  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4097193323Sed  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4098193323Sed  FoldingSetNodeID ID;
4099193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4100193323Sed  ID.AddInteger(ST->getMemoryVT().getRawBits());
4101193323Sed  ID.AddInteger(ST->getRawSubclassData());
4102193323Sed  void *IP = 0;
4103201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4104193323Sed    return SDValue(E, 0);
4105201360Srdivacky
4106205407Srdivacky  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4107205407Srdivacky                                              ST->isTruncatingStore(),
4108205407Srdivacky                                              ST->getMemoryVT(),
4109205407Srdivacky                                              ST->getMemOperand());
4110193323Sed  CSEMap.InsertNode(N, IP);
4111193323Sed  AllNodes.push_back(N);
4112193323Sed  return SDValue(N, 0);
4113193323Sed}
4114193323Sed
4115198090SrdivackySDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4116193323Sed                               SDValue Chain, SDValue Ptr,
4117210299Sed                               SDValue SV,
4118210299Sed                               unsigned Align) {
4119210299Sed  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4120210299Sed  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4121193323Sed}
4122193323Sed
4123198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4124193323Sed                              const SDUse *Ops, unsigned NumOps) {
4125193323Sed  switch (NumOps) {
4126193323Sed  case 0: return getNode(Opcode, DL, VT);
4127193323Sed  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4128193323Sed  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4129193323Sed  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4130193323Sed  default: break;
4131193323Sed  }
4132193323Sed
4133193323Sed  // Copy from an SDUse array into an SDValue array for use with
4134193323Sed  // the regular getNode logic.
4135193323Sed  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4136193323Sed  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4137193323Sed}
4138193323Sed
4139198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4140193323Sed                              const SDValue *Ops, unsigned NumOps) {
4141193323Sed  switch (NumOps) {
4142193323Sed  case 0: return getNode(Opcode, DL, VT);
4143193323Sed  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4144193323Sed  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4145193323Sed  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4146193323Sed  default: break;
4147193323Sed  }
4148193323Sed
4149193323Sed  switch (Opcode) {
4150193323Sed  default: break;
4151193323Sed  case ISD::SELECT_CC: {
4152193323Sed    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4153193323Sed    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4154193323Sed           "LHS and RHS of condition must have same type!");
4155193323Sed    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4156193323Sed           "True and False arms of SelectCC must have same type!");
4157193323Sed    assert(Ops[2].getValueType() == VT &&
4158193323Sed           "select_cc node must be of same type as true and false value!");
4159193323Sed    break;
4160193323Sed  }
4161193323Sed  case ISD::BR_CC: {
4162193323Sed    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4163193323Sed    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4164193323Sed           "LHS/RHS of comparison should match types!");
4165193323Sed    break;
4166193323Sed  }
4167193323Sed  }
4168193323Sed
4169193323Sed  // Memoize nodes.
4170193323Sed  SDNode *N;
4171193323Sed  SDVTList VTs = getVTList(VT);
4172193323Sed
4173193323Sed  if (VT != MVT::Flag) {
4174193323Sed    FoldingSetNodeID ID;
4175193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4176193323Sed    void *IP = 0;
4177193323Sed
4178201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4179193323Sed      return SDValue(E, 0);
4180193323Sed
4181205407Srdivacky    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4182193323Sed    CSEMap.InsertNode(N, IP);
4183193323Sed  } else {
4184205407Srdivacky    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4185193323Sed  }
4186193323Sed
4187193323Sed  AllNodes.push_back(N);
4188193323Sed#ifndef NDEBUG
4189193323Sed  VerifyNode(N);
4190193323Sed#endif
4191193323Sed  return SDValue(N, 0);
4192193323Sed}
4193193323Sed
4194193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4195198090Srdivacky                              const std::vector<EVT> &ResultTys,
4196193323Sed                              const SDValue *Ops, unsigned NumOps) {
4197193323Sed  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4198193323Sed                 Ops, NumOps);
4199193323Sed}
4200193323Sed
4201193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4202198090Srdivacky                              const EVT *VTs, unsigned NumVTs,
4203193323Sed                              const SDValue *Ops, unsigned NumOps) {
4204193323Sed  if (NumVTs == 1)
4205193323Sed    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4206193323Sed  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4207193323Sed}
4208193323Sed
4209193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4210193323Sed                              const SDValue *Ops, unsigned NumOps) {
4211193323Sed  if (VTList.NumVTs == 1)
4212193323Sed    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4213193323Sed
4214198090Srdivacky#if 0
4215193323Sed  switch (Opcode) {
4216193323Sed  // FIXME: figure out how to safely handle things like
4217193323Sed  // int foo(int x) { return 1 << (x & 255); }
4218193323Sed  // int bar() { return foo(256); }
4219193323Sed  case ISD::SRA_PARTS:
4220193323Sed  case ISD::SRL_PARTS:
4221193323Sed  case ISD::SHL_PARTS:
4222193323Sed    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4223193323Sed        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4224193323Sed      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4225193323Sed    else if (N3.getOpcode() == ISD::AND)
4226193323Sed      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4227193323Sed        // If the and is only masking out bits that cannot effect the shift,
4228193323Sed        // eliminate the and.
4229202375Srdivacky        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4230193323Sed        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4231193323Sed          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4232193323Sed      }
4233193323Sed    break;
4234198090Srdivacky  }
4235193323Sed#endif
4236193323Sed
4237193323Sed  // Memoize the node unless it returns a flag.
4238193323Sed  SDNode *N;
4239193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4240193323Sed    FoldingSetNodeID ID;
4241193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4242193323Sed    void *IP = 0;
4243201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4244193323Sed      return SDValue(E, 0);
4245201360Srdivacky
4246193323Sed    if (NumOps == 1) {
4247205407Srdivacky      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4248193323Sed    } else if (NumOps == 2) {
4249205407Srdivacky      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4250193323Sed    } else if (NumOps == 3) {
4251205407Srdivacky      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4252205407Srdivacky                                            Ops[2]);
4253193323Sed    } else {
4254205407Srdivacky      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4255193323Sed    }
4256193323Sed    CSEMap.InsertNode(N, IP);
4257193323Sed  } else {
4258193323Sed    if (NumOps == 1) {
4259205407Srdivacky      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4260193323Sed    } else if (NumOps == 2) {
4261205407Srdivacky      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4262193323Sed    } else if (NumOps == 3) {
4263205407Srdivacky      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4264205407Srdivacky                                            Ops[2]);
4265193323Sed    } else {
4266205407Srdivacky      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4267193323Sed    }
4268193323Sed  }
4269193323Sed  AllNodes.push_back(N);
4270193323Sed#ifndef NDEBUG
4271193323Sed  VerifyNode(N);
4272193323Sed#endif
4273193323Sed  return SDValue(N, 0);
4274193323Sed}
4275193323Sed
4276193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4277193323Sed  return getNode(Opcode, DL, VTList, 0, 0);
4278193323Sed}
4279193323Sed
4280193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4281193323Sed                              SDValue N1) {
4282193323Sed  SDValue Ops[] = { N1 };
4283193323Sed  return getNode(Opcode, DL, VTList, Ops, 1);
4284193323Sed}
4285193323Sed
4286193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4287193323Sed                              SDValue N1, SDValue N2) {
4288193323Sed  SDValue Ops[] = { N1, N2 };
4289193323Sed  return getNode(Opcode, DL, VTList, Ops, 2);
4290193323Sed}
4291193323Sed
4292193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4293193323Sed                              SDValue N1, SDValue N2, SDValue N3) {
4294193323Sed  SDValue Ops[] = { N1, N2, N3 };
4295193323Sed  return getNode(Opcode, DL, VTList, Ops, 3);
4296193323Sed}
4297193323Sed
4298193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4299193323Sed                              SDValue N1, SDValue N2, SDValue N3,
4300193323Sed                              SDValue N4) {
4301193323Sed  SDValue Ops[] = { N1, N2, N3, N4 };
4302193323Sed  return getNode(Opcode, DL, VTList, Ops, 4);
4303193323Sed}
4304193323Sed
4305193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4306193323Sed                              SDValue N1, SDValue N2, SDValue N3,
4307193323Sed                              SDValue N4, SDValue N5) {
4308193323Sed  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4309193323Sed  return getNode(Opcode, DL, VTList, Ops, 5);
4310193323Sed}
4311193323Sed
4312198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT) {
4313193323Sed  return makeVTList(SDNode::getValueTypeList(VT), 1);
4314193323Sed}
4315193323Sed
4316198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4317193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4318193323Sed       E = VTList.rend(); I != E; ++I)
4319193323Sed    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4320193323Sed      return *I;
4321193323Sed
4322198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(2);
4323193323Sed  Array[0] = VT1;
4324193323Sed  Array[1] = VT2;
4325193323Sed  SDVTList Result = makeVTList(Array, 2);
4326193323Sed  VTList.push_back(Result);
4327193323Sed  return Result;
4328193323Sed}
4329193323Sed
4330198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4331193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4332193323Sed       E = VTList.rend(); I != E; ++I)
4333193323Sed    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4334193323Sed                          I->VTs[2] == VT3)
4335193323Sed      return *I;
4336193323Sed
4337198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(3);
4338193323Sed  Array[0] = VT1;
4339193323Sed  Array[1] = VT2;
4340193323Sed  Array[2] = VT3;
4341193323Sed  SDVTList Result = makeVTList(Array, 3);
4342193323Sed  VTList.push_back(Result);
4343193323Sed  return Result;
4344193323Sed}
4345193323Sed
4346198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4347193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4348193323Sed       E = VTList.rend(); I != E; ++I)
4349193323Sed    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4350193323Sed                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4351193323Sed      return *I;
4352193323Sed
4353200581Srdivacky  EVT *Array = Allocator.Allocate<EVT>(4);
4354193323Sed  Array[0] = VT1;
4355193323Sed  Array[1] = VT2;
4356193323Sed  Array[2] = VT3;
4357193323Sed  Array[3] = VT4;
4358193323Sed  SDVTList Result = makeVTList(Array, 4);
4359193323Sed  VTList.push_back(Result);
4360193323Sed  return Result;
4361193323Sed}
4362193323Sed
4363198090SrdivackySDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4364193323Sed  switch (NumVTs) {
4365198090Srdivacky    case 0: llvm_unreachable("Cannot have nodes without results!");
4366193323Sed    case 1: return getVTList(VTs[0]);
4367193323Sed    case 2: return getVTList(VTs[0], VTs[1]);
4368193323Sed    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4369201360Srdivacky    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4370193323Sed    default: break;
4371193323Sed  }
4372193323Sed
4373193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4374193323Sed       E = VTList.rend(); I != E; ++I) {
4375193323Sed    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4376193323Sed      continue;
4377193323Sed
4378193323Sed    bool NoMatch = false;
4379193323Sed    for (unsigned i = 2; i != NumVTs; ++i)
4380193323Sed      if (VTs[i] != I->VTs[i]) {
4381193323Sed        NoMatch = true;
4382193323Sed        break;
4383193323Sed      }
4384193323Sed    if (!NoMatch)
4385193323Sed      return *I;
4386193323Sed  }
4387193323Sed
4388198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4389193323Sed  std::copy(VTs, VTs+NumVTs, Array);
4390193323Sed  SDVTList Result = makeVTList(Array, NumVTs);
4391193323Sed  VTList.push_back(Result);
4392193323Sed  return Result;
4393193323Sed}
4394193323Sed
4395193323Sed
4396193323Sed/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4397193323Sed/// specified operands.  If the resultant node already exists in the DAG,
4398193323Sed/// this does not modify the specified node, instead it returns the node that
4399193323Sed/// already exists.  If the resultant node does not exist in the DAG, the
4400193323Sed/// input node is returned.  As a degenerate case, if you specify the same
4401193323Sed/// input operands as the node already has, the input node is returned.
4402210299SedSDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4403193323Sed  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4404193323Sed
4405193323Sed  // Check to see if there is no change.
4406210299Sed  if (Op == N->getOperand(0)) return N;
4407193323Sed
4408193323Sed  // See if the modified node already exists.
4409193323Sed  void *InsertPos = 0;
4410193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4411210299Sed    return Existing;
4412193323Sed
4413193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4414193323Sed  if (InsertPos)
4415193323Sed    if (!RemoveNodeFromCSEMaps(N))
4416193323Sed      InsertPos = 0;
4417193323Sed
4418193323Sed  // Now we update the operands.
4419193323Sed  N->OperandList[0].set(Op);
4420193323Sed
4421193323Sed  // If this gets put into a CSE map, add it.
4422193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4423210299Sed  return N;
4424193323Sed}
4425193323Sed
4426210299SedSDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4427193323Sed  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4428193323Sed
4429193323Sed  // Check to see if there is no change.
4430193323Sed  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4431210299Sed    return N;   // No operands changed, just return the input node.
4432193323Sed
4433193323Sed  // See if the modified node already exists.
4434193323Sed  void *InsertPos = 0;
4435193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4436210299Sed    return Existing;
4437193323Sed
4438193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4439193323Sed  if (InsertPos)
4440193323Sed    if (!RemoveNodeFromCSEMaps(N))
4441193323Sed      InsertPos = 0;
4442193323Sed
4443193323Sed  // Now we update the operands.
4444193323Sed  if (N->OperandList[0] != Op1)
4445193323Sed    N->OperandList[0].set(Op1);
4446193323Sed  if (N->OperandList[1] != Op2)
4447193323Sed    N->OperandList[1].set(Op2);
4448193323Sed
4449193323Sed  // If this gets put into a CSE map, add it.
4450193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4451210299Sed  return N;
4452193323Sed}
4453193323Sed
4454210299SedSDNode *SelectionDAG::
4455210299SedUpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4456193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4457193323Sed  return UpdateNodeOperands(N, Ops, 3);
4458193323Sed}
4459193323Sed
4460210299SedSDNode *SelectionDAG::
4461210299SedUpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4462193323Sed                   SDValue Op3, SDValue Op4) {
4463193323Sed  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4464193323Sed  return UpdateNodeOperands(N, Ops, 4);
4465193323Sed}
4466193323Sed
4467210299SedSDNode *SelectionDAG::
4468210299SedUpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4469193323Sed                   SDValue Op3, SDValue Op4, SDValue Op5) {
4470193323Sed  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4471193323Sed  return UpdateNodeOperands(N, Ops, 5);
4472193323Sed}
4473193323Sed
4474210299SedSDNode *SelectionDAG::
4475210299SedUpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4476193323Sed  assert(N->getNumOperands() == NumOps &&
4477193323Sed         "Update with wrong number of operands");
4478193323Sed
4479193323Sed  // Check to see if there is no change.
4480193323Sed  bool AnyChange = false;
4481193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
4482193323Sed    if (Ops[i] != N->getOperand(i)) {
4483193323Sed      AnyChange = true;
4484193323Sed      break;
4485193323Sed    }
4486193323Sed  }
4487193323Sed
4488193323Sed  // No operands changed, just return the input node.
4489210299Sed  if (!AnyChange) return N;
4490193323Sed
4491193323Sed  // See if the modified node already exists.
4492193323Sed  void *InsertPos = 0;
4493193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4494210299Sed    return Existing;
4495193323Sed
4496193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4497193323Sed  if (InsertPos)
4498193323Sed    if (!RemoveNodeFromCSEMaps(N))
4499193323Sed      InsertPos = 0;
4500193323Sed
4501193323Sed  // Now we update the operands.
4502193323Sed  for (unsigned i = 0; i != NumOps; ++i)
4503193323Sed    if (N->OperandList[i] != Ops[i])
4504193323Sed      N->OperandList[i].set(Ops[i]);
4505193323Sed
4506193323Sed  // If this gets put into a CSE map, add it.
4507193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4508210299Sed  return N;
4509193323Sed}
4510193323Sed
4511193323Sed/// DropOperands - Release the operands and set this node to have
4512193323Sed/// zero operands.
4513193323Sedvoid SDNode::DropOperands() {
4514193323Sed  // Unlike the code in MorphNodeTo that does this, we don't need to
4515193323Sed  // watch for dead nodes here.
4516193323Sed  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4517193323Sed    SDUse &Use = *I++;
4518193323Sed    Use.set(SDValue());
4519193323Sed  }
4520193323Sed}
4521193323Sed
4522193323Sed/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4523193323Sed/// machine opcode.
4524193323Sed///
4525193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4526198090Srdivacky                                   EVT VT) {
4527193323Sed  SDVTList VTs = getVTList(VT);
4528193323Sed  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4529193323Sed}
4530193323Sed
4531193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4532198090Srdivacky                                   EVT VT, SDValue Op1) {
4533193323Sed  SDVTList VTs = getVTList(VT);
4534193323Sed  SDValue Ops[] = { Op1 };
4535193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4536193323Sed}
4537193323Sed
4538193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4539198090Srdivacky                                   EVT VT, SDValue Op1,
4540193323Sed                                   SDValue Op2) {
4541193323Sed  SDVTList VTs = getVTList(VT);
4542193323Sed  SDValue Ops[] = { Op1, Op2 };
4543193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4544193323Sed}
4545193323Sed
4546193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4547198090Srdivacky                                   EVT VT, SDValue Op1,
4548193323Sed                                   SDValue Op2, SDValue Op3) {
4549193323Sed  SDVTList VTs = getVTList(VT);
4550193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4551193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4552193323Sed}
4553193323Sed
4554193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4555198090Srdivacky                                   EVT VT, const SDValue *Ops,
4556193323Sed                                   unsigned NumOps) {
4557193323Sed  SDVTList VTs = getVTList(VT);
4558193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4559193323Sed}
4560193323Sed
4561193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4562198090Srdivacky                                   EVT VT1, EVT VT2, const SDValue *Ops,
4563193323Sed                                   unsigned NumOps) {
4564193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4565193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4566193323Sed}
4567193323Sed
4568193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4569198090Srdivacky                                   EVT VT1, EVT VT2) {
4570193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4571193323Sed  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4572193323Sed}
4573193323Sed
4574193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4575198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3,
4576193323Sed                                   const SDValue *Ops, unsigned NumOps) {
4577193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4578193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4579193323Sed}
4580193323Sed
4581193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4582198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4583193323Sed                                   const SDValue *Ops, unsigned NumOps) {
4584193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4585193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4586193323Sed}
4587193323Sed
4588193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4589198090Srdivacky                                   EVT VT1, EVT VT2,
4590193323Sed                                   SDValue Op1) {
4591193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4592193323Sed  SDValue Ops[] = { Op1 };
4593193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4594193323Sed}
4595193323Sed
4596193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4597198090Srdivacky                                   EVT VT1, EVT VT2,
4598193323Sed                                   SDValue Op1, SDValue Op2) {
4599193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4600193323Sed  SDValue Ops[] = { Op1, Op2 };
4601193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4602193323Sed}
4603193323Sed
4604193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4605198090Srdivacky                                   EVT VT1, EVT VT2,
4606193323Sed                                   SDValue Op1, SDValue Op2,
4607193323Sed                                   SDValue Op3) {
4608193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4609193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4610193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4611193323Sed}
4612193323Sed
4613193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4614198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3,
4615193323Sed                                   SDValue Op1, SDValue Op2,
4616193323Sed                                   SDValue Op3) {
4617193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4618193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4619193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4620193323Sed}
4621193323Sed
4622193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4623193323Sed                                   SDVTList VTs, const SDValue *Ops,
4624193323Sed                                   unsigned NumOps) {
4625204642Srdivacky  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4626204642Srdivacky  // Reset the NodeID to -1.
4627204642Srdivacky  N->setNodeId(-1);
4628204642Srdivacky  return N;
4629193323Sed}
4630193323Sed
4631204642Srdivacky/// MorphNodeTo - This *mutates* the specified node to have the specified
4632193323Sed/// return type, opcode, and operands.
4633193323Sed///
4634193323Sed/// Note that MorphNodeTo returns the resultant node.  If there is already a
4635193323Sed/// node of the specified opcode and operands, it returns that node instead of
4636193323Sed/// the current one.  Note that the DebugLoc need not be the same.
4637193323Sed///
4638193323Sed/// Using MorphNodeTo is faster than creating a new node and swapping it in
4639193323Sed/// with ReplaceAllUsesWith both because it often avoids allocating a new
4640193323Sed/// node, and because it doesn't require CSE recalculation for any of
4641193323Sed/// the node's users.
4642193323Sed///
4643193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4644193323Sed                                  SDVTList VTs, const SDValue *Ops,
4645193323Sed                                  unsigned NumOps) {
4646193323Sed  // If an identical node already exists, use it.
4647193323Sed  void *IP = 0;
4648193323Sed  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4649193323Sed    FoldingSetNodeID ID;
4650193323Sed    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4651201360Srdivacky    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4652193323Sed      return ON;
4653193323Sed  }
4654193323Sed
4655193323Sed  if (!RemoveNodeFromCSEMaps(N))
4656193323Sed    IP = 0;
4657193323Sed
4658193323Sed  // Start the morphing.
4659193323Sed  N->NodeType = Opc;
4660193323Sed  N->ValueList = VTs.VTs;
4661193323Sed  N->NumValues = VTs.NumVTs;
4662193323Sed
4663193323Sed  // Clear the operands list, updating used nodes to remove this from their
4664193323Sed  // use list.  Keep track of any operands that become dead as a result.
4665193323Sed  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4666193323Sed  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4667193323Sed    SDUse &Use = *I++;
4668193323Sed    SDNode *Used = Use.getNode();
4669193323Sed    Use.set(SDValue());
4670193323Sed    if (Used->use_empty())
4671193323Sed      DeadNodeSet.insert(Used);
4672193323Sed  }
4673193323Sed
4674198090Srdivacky  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4675198090Srdivacky    // Initialize the memory references information.
4676198090Srdivacky    MN->setMemRefs(0, 0);
4677198090Srdivacky    // If NumOps is larger than the # of operands we can have in a
4678198090Srdivacky    // MachineSDNode, reallocate the operand list.
4679198090Srdivacky    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4680198090Srdivacky      if (MN->OperandsNeedDelete)
4681198090Srdivacky        delete[] MN->OperandList;
4682198090Srdivacky      if (NumOps > array_lengthof(MN->LocalOperands))
4683198090Srdivacky        // We're creating a final node that will live unmorphed for the
4684198090Srdivacky        // remainder of the current SelectionDAG iteration, so we can allocate
4685198090Srdivacky        // the operands directly out of a pool with no recycling metadata.
4686198090Srdivacky        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4687205407Srdivacky                         Ops, NumOps);
4688198090Srdivacky      else
4689198090Srdivacky        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4690198090Srdivacky      MN->OperandsNeedDelete = false;
4691198090Srdivacky    } else
4692198090Srdivacky      MN->InitOperands(MN->OperandList, Ops, NumOps);
4693198090Srdivacky  } else {
4694198090Srdivacky    // If NumOps is larger than the # of operands we currently have, reallocate
4695198090Srdivacky    // the operand list.
4696198090Srdivacky    if (NumOps > N->NumOperands) {
4697198090Srdivacky      if (N->OperandsNeedDelete)
4698198090Srdivacky        delete[] N->OperandList;
4699198090Srdivacky      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4700193323Sed      N->OperandsNeedDelete = true;
4701198090Srdivacky    } else
4702198396Srdivacky      N->InitOperands(N->OperandList, Ops, NumOps);
4703193323Sed  }
4704193323Sed
4705193323Sed  // Delete any nodes that are still dead after adding the uses for the
4706193323Sed  // new operands.
4707204642Srdivacky  if (!DeadNodeSet.empty()) {
4708204642Srdivacky    SmallVector<SDNode *, 16> DeadNodes;
4709204642Srdivacky    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4710204642Srdivacky         E = DeadNodeSet.end(); I != E; ++I)
4711204642Srdivacky      if ((*I)->use_empty())
4712204642Srdivacky        DeadNodes.push_back(*I);
4713204642Srdivacky    RemoveDeadNodes(DeadNodes);
4714204642Srdivacky  }
4715193323Sed
4716193323Sed  if (IP)
4717193323Sed    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4718193323Sed  return N;
4719193323Sed}
4720193323Sed
4721193323Sed
4722198090Srdivacky/// getMachineNode - These are used for target selectors to create a new node
4723198090Srdivacky/// with specified return type(s), MachineInstr opcode, and operands.
4724193323Sed///
4725198090Srdivacky/// Note that getMachineNode returns the resultant node.  If there is already a
4726193323Sed/// node of the specified opcode and operands, it returns that node instead of
4727193323Sed/// the current one.
4728198090SrdivackyMachineSDNode *
4729198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4730198090Srdivacky  SDVTList VTs = getVTList(VT);
4731198090Srdivacky  return getMachineNode(Opcode, dl, VTs, 0, 0);
4732193323Sed}
4733193323Sed
4734198090SrdivackyMachineSDNode *
4735198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4736198090Srdivacky  SDVTList VTs = getVTList(VT);
4737198090Srdivacky  SDValue Ops[] = { Op1 };
4738198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4739193323Sed}
4740193323Sed
4741198090SrdivackyMachineSDNode *
4742198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4743198090Srdivacky                             SDValue Op1, SDValue Op2) {
4744198090Srdivacky  SDVTList VTs = getVTList(VT);
4745198090Srdivacky  SDValue Ops[] = { Op1, Op2 };
4746198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4747193323Sed}
4748193323Sed
4749198090SrdivackyMachineSDNode *
4750198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4751198090Srdivacky                             SDValue Op1, SDValue Op2, SDValue Op3) {
4752198090Srdivacky  SDVTList VTs = getVTList(VT);
4753198090Srdivacky  SDValue Ops[] = { Op1, Op2, Op3 };
4754198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4755193323Sed}
4756193323Sed
4757198090SrdivackyMachineSDNode *
4758198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4759198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4760198090Srdivacky  SDVTList VTs = getVTList(VT);
4761198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4762193323Sed}
4763193323Sed
4764198090SrdivackyMachineSDNode *
4765198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4766193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4767198090Srdivacky  return getMachineNode(Opcode, dl, VTs, 0, 0);
4768193323Sed}
4769193323Sed
4770198090SrdivackyMachineSDNode *
4771198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4772198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1) {
4773193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4774198090Srdivacky  SDValue Ops[] = { Op1 };
4775198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4776193323Sed}
4777193323Sed
4778198090SrdivackyMachineSDNode *
4779198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4780198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4781193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4782193323Sed  SDValue Ops[] = { Op1, Op2 };
4783198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4784193323Sed}
4785193323Sed
4786198090SrdivackyMachineSDNode *
4787198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4788198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1,
4789198090Srdivacky                             SDValue Op2, SDValue Op3) {
4790193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4791193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4792198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4793193323Sed}
4794193323Sed
4795198090SrdivackyMachineSDNode *
4796198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4797198090Srdivacky                             EVT VT1, EVT VT2,
4798198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4799193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4800198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4801193323Sed}
4802193323Sed
4803198090SrdivackyMachineSDNode *
4804198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4805198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4806198090Srdivacky                             SDValue Op1, SDValue Op2) {
4807193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4808193323Sed  SDValue Ops[] = { Op1, Op2 };
4809198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4810193323Sed}
4811193323Sed
4812198090SrdivackyMachineSDNode *
4813198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4814198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4815198090Srdivacky                             SDValue Op1, SDValue Op2, SDValue Op3) {
4816193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4817193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4818198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4819193323Sed}
4820193323Sed
4821198090SrdivackyMachineSDNode *
4822198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4823198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4824198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4825193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4826198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4827193323Sed}
4828193323Sed
4829198090SrdivackyMachineSDNode *
4830198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4831198090Srdivacky                             EVT VT2, EVT VT3, EVT VT4,
4832198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4833193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4834198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4835193323Sed}
4836193323Sed
4837198090SrdivackyMachineSDNode *
4838198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4839198090Srdivacky                             const std::vector<EVT> &ResultTys,
4840198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4841198090Srdivacky  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4842198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4843193323Sed}
4844193323Sed
4845198090SrdivackyMachineSDNode *
4846198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4847198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4848198090Srdivacky  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4849198090Srdivacky  MachineSDNode *N;
4850198090Srdivacky  void *IP;
4851198090Srdivacky
4852198090Srdivacky  if (DoCSE) {
4853198090Srdivacky    FoldingSetNodeID ID;
4854198090Srdivacky    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4855198090Srdivacky    IP = 0;
4856201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4857198090Srdivacky      return cast<MachineSDNode>(E);
4858198090Srdivacky  }
4859198090Srdivacky
4860198090Srdivacky  // Allocate a new MachineSDNode.
4861205407Srdivacky  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4862198090Srdivacky
4863198090Srdivacky  // Initialize the operands list.
4864198090Srdivacky  if (NumOps > array_lengthof(N->LocalOperands))
4865198090Srdivacky    // We're creating a final node that will live unmorphed for the
4866198090Srdivacky    // remainder of the current SelectionDAG iteration, so we can allocate
4867198090Srdivacky    // the operands directly out of a pool with no recycling metadata.
4868198090Srdivacky    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4869198090Srdivacky                    Ops, NumOps);
4870198090Srdivacky  else
4871198090Srdivacky    N->InitOperands(N->LocalOperands, Ops, NumOps);
4872198090Srdivacky  N->OperandsNeedDelete = false;
4873198090Srdivacky
4874198090Srdivacky  if (DoCSE)
4875198090Srdivacky    CSEMap.InsertNode(N, IP);
4876198090Srdivacky
4877198090Srdivacky  AllNodes.push_back(N);
4878198090Srdivacky#ifndef NDEBUG
4879198090Srdivacky  VerifyNode(N);
4880198090Srdivacky#endif
4881198090Srdivacky  return N;
4882198090Srdivacky}
4883198090Srdivacky
4884198090Srdivacky/// getTargetExtractSubreg - A convenience function for creating
4885203954Srdivacky/// TargetOpcode::EXTRACT_SUBREG nodes.
4886198090SrdivackySDValue
4887198090SrdivackySelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4888198090Srdivacky                                     SDValue Operand) {
4889198090Srdivacky  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4890203954Srdivacky  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4891198090Srdivacky                                  VT, Operand, SRIdxVal);
4892198090Srdivacky  return SDValue(Subreg, 0);
4893198090Srdivacky}
4894198090Srdivacky
4895198090Srdivacky/// getTargetInsertSubreg - A convenience function for creating
4896203954Srdivacky/// TargetOpcode::INSERT_SUBREG nodes.
4897198090SrdivackySDValue
4898198090SrdivackySelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4899198090Srdivacky                                    SDValue Operand, SDValue Subreg) {
4900198090Srdivacky  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4901203954Srdivacky  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4902198090Srdivacky                                  VT, Operand, Subreg, SRIdxVal);
4903198090Srdivacky  return SDValue(Result, 0);
4904198090Srdivacky}
4905198090Srdivacky
4906193323Sed/// getNodeIfExists - Get the specified node if it's already available, or
4907193323Sed/// else return NULL.
4908193323SedSDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4909193323Sed                                      const SDValue *Ops, unsigned NumOps) {
4910193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4911193323Sed    FoldingSetNodeID ID;
4912193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4913193323Sed    void *IP = 0;
4914201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4915193323Sed      return E;
4916193323Sed  }
4917193323Sed  return NULL;
4918193323Sed}
4919193323Sed
4920206083Srdivacky/// getDbgValue - Creates a SDDbgValue node.
4921206083Srdivacky///
4922206083SrdivackySDDbgValue *
4923206083SrdivackySelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4924206083Srdivacky                          DebugLoc DL, unsigned O) {
4925206083Srdivacky  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4926206083Srdivacky}
4927206083Srdivacky
4928206083SrdivackySDDbgValue *
4929207618SrdivackySelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4930206083Srdivacky                          DebugLoc DL, unsigned O) {
4931206083Srdivacky  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4932206083Srdivacky}
4933206083Srdivacky
4934206083SrdivackySDDbgValue *
4935206083SrdivackySelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4936206083Srdivacky                          DebugLoc DL, unsigned O) {
4937206083Srdivacky  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4938206083Srdivacky}
4939206083Srdivacky
4940204792Srdivackynamespace {
4941204792Srdivacky
4942204792Srdivacky/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4943204792Srdivacky/// pointed to by a use iterator is deleted, increment the use iterator
4944204792Srdivacky/// so that it doesn't dangle.
4945204792Srdivacky///
4946204792Srdivacky/// This class also manages a "downlink" DAGUpdateListener, to forward
4947204792Srdivacky/// messages to ReplaceAllUsesWith's callers.
4948204792Srdivacky///
4949204792Srdivackyclass RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4950204792Srdivacky  SelectionDAG::DAGUpdateListener *DownLink;
4951204792Srdivacky  SDNode::use_iterator &UI;
4952204792Srdivacky  SDNode::use_iterator &UE;
4953204792Srdivacky
4954204792Srdivacky  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4955204792Srdivacky    // Increment the iterator as needed.
4956204792Srdivacky    while (UI != UE && N == *UI)
4957204792Srdivacky      ++UI;
4958204792Srdivacky
4959204792Srdivacky    // Then forward the message.
4960204792Srdivacky    if (DownLink) DownLink->NodeDeleted(N, E);
4961204792Srdivacky  }
4962204792Srdivacky
4963204792Srdivacky  virtual void NodeUpdated(SDNode *N) {
4964204792Srdivacky    // Just forward the message.
4965204792Srdivacky    if (DownLink) DownLink->NodeUpdated(N);
4966204792Srdivacky  }
4967204792Srdivacky
4968204792Srdivackypublic:
4969204792Srdivacky  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4970204792Srdivacky                     SDNode::use_iterator &ui,
4971204792Srdivacky                     SDNode::use_iterator &ue)
4972204792Srdivacky    : DownLink(dl), UI(ui), UE(ue) {}
4973204792Srdivacky};
4974204792Srdivacky
4975204792Srdivacky}
4976204792Srdivacky
4977193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4978193323Sed/// This can cause recursive merging of nodes in the DAG.
4979193323Sed///
4980193323Sed/// This version assumes From has a single result value.
4981193323Sed///
4982193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4983193323Sed                                      DAGUpdateListener *UpdateListener) {
4984193323Sed  SDNode *From = FromN.getNode();
4985193323Sed  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4986193323Sed         "Cannot replace with this method!");
4987193323Sed  assert(From != To.getNode() && "Cannot replace uses of with self");
4988193323Sed
4989193323Sed  // Iterate over all the existing uses of From. New uses will be added
4990193323Sed  // to the beginning of the use list, which we avoid visiting.
4991193323Sed  // This specifically avoids visiting uses of From that arise while the
4992193323Sed  // replacement is happening, because any such uses would be the result
4993193323Sed  // of CSE: If an existing node looks like From after one of its operands
4994193323Sed  // is replaced by To, we don't want to replace of all its users with To
4995193323Sed  // too. See PR3018 for more info.
4996193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4997204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4998193323Sed  while (UI != UE) {
4999193323Sed    SDNode *User = *UI;
5000193323Sed
5001193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5002193323Sed    RemoveNodeFromCSEMaps(User);
5003193323Sed
5004193323Sed    // A user can appear in a use list multiple times, and when this
5005193323Sed    // happens the uses are usually next to each other in the list.
5006193323Sed    // To help reduce the number of CSE recomputations, process all
5007193323Sed    // the uses of this user that we can find this way.
5008193323Sed    do {
5009193323Sed      SDUse &Use = UI.getUse();
5010193323Sed      ++UI;
5011193323Sed      Use.set(To);
5012193323Sed    } while (UI != UE && *UI == User);
5013193323Sed
5014193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5015193323Sed    // already exists there, recursively merge the results together.
5016204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5017193323Sed  }
5018193323Sed}
5019193323Sed
5020193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5021193323Sed/// This can cause recursive merging of nodes in the DAG.
5022193323Sed///
5023193323Sed/// This version assumes that for each value of From, there is a
5024193323Sed/// corresponding value in To in the same position with the same type.
5025193323Sed///
5026193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5027193323Sed                                      DAGUpdateListener *UpdateListener) {
5028193323Sed#ifndef NDEBUG
5029193323Sed  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5030193323Sed    assert((!From->hasAnyUseOfValue(i) ||
5031193323Sed            From->getValueType(i) == To->getValueType(i)) &&
5032193323Sed           "Cannot use this version of ReplaceAllUsesWith!");
5033193323Sed#endif
5034193323Sed
5035193323Sed  // Handle the trivial case.
5036193323Sed  if (From == To)
5037193323Sed    return;
5038193323Sed
5039193323Sed  // Iterate over just the existing users of From. See the comments in
5040193323Sed  // the ReplaceAllUsesWith above.
5041193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5042204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5043193323Sed  while (UI != UE) {
5044193323Sed    SDNode *User = *UI;
5045193323Sed
5046193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5047193323Sed    RemoveNodeFromCSEMaps(User);
5048193323Sed
5049193323Sed    // A user can appear in a use list multiple times, and when this
5050193323Sed    // happens the uses are usually next to each other in the list.
5051193323Sed    // To help reduce the number of CSE recomputations, process all
5052193323Sed    // the uses of this user that we can find this way.
5053193323Sed    do {
5054193323Sed      SDUse &Use = UI.getUse();
5055193323Sed      ++UI;
5056193323Sed      Use.setNode(To);
5057193323Sed    } while (UI != UE && *UI == User);
5058193323Sed
5059193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5060193323Sed    // already exists there, recursively merge the results together.
5061204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5062193323Sed  }
5063193323Sed}
5064193323Sed
5065193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5066193323Sed/// This can cause recursive merging of nodes in the DAG.
5067193323Sed///
5068193323Sed/// This version can replace From with any result values.  To must match the
5069193323Sed/// number and types of values returned by From.
5070193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5071193323Sed                                      const SDValue *To,
5072193323Sed                                      DAGUpdateListener *UpdateListener) {
5073193323Sed  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5074193323Sed    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5075193323Sed
5076193323Sed  // Iterate over just the existing users of From. See the comments in
5077193323Sed  // the ReplaceAllUsesWith above.
5078193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5079204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5080193323Sed  while (UI != UE) {
5081193323Sed    SDNode *User = *UI;
5082193323Sed
5083193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5084193323Sed    RemoveNodeFromCSEMaps(User);
5085193323Sed
5086193323Sed    // A user can appear in a use list multiple times, and when this
5087193323Sed    // happens the uses are usually next to each other in the list.
5088193323Sed    // To help reduce the number of CSE recomputations, process all
5089193323Sed    // the uses of this user that we can find this way.
5090193323Sed    do {
5091193323Sed      SDUse &Use = UI.getUse();
5092193323Sed      const SDValue &ToOp = To[Use.getResNo()];
5093193323Sed      ++UI;
5094193323Sed      Use.set(ToOp);
5095193323Sed    } while (UI != UE && *UI == User);
5096193323Sed
5097193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5098193323Sed    // already exists there, recursively merge the results together.
5099204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5100193323Sed  }
5101193323Sed}
5102193323Sed
5103193323Sed/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5104193323Sed/// uses of other values produced by From.getNode() alone.  The Deleted
5105193323Sed/// vector is handled the same way as for ReplaceAllUsesWith.
5106193323Sedvoid SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5107193323Sed                                             DAGUpdateListener *UpdateListener){
5108193323Sed  // Handle the really simple, really trivial case efficiently.
5109193323Sed  if (From == To) return;
5110193323Sed
5111193323Sed  // Handle the simple, trivial, case efficiently.
5112193323Sed  if (From.getNode()->getNumValues() == 1) {
5113193323Sed    ReplaceAllUsesWith(From, To, UpdateListener);
5114193323Sed    return;
5115193323Sed  }
5116193323Sed
5117193323Sed  // Iterate over just the existing users of From. See the comments in
5118193323Sed  // the ReplaceAllUsesWith above.
5119193323Sed  SDNode::use_iterator UI = From.getNode()->use_begin(),
5120193323Sed                       UE = From.getNode()->use_end();
5121204792Srdivacky  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5122193323Sed  while (UI != UE) {
5123193323Sed    SDNode *User = *UI;
5124193323Sed    bool UserRemovedFromCSEMaps = false;
5125193323Sed
5126193323Sed    // A user can appear in a use list multiple times, and when this
5127193323Sed    // happens the uses are usually next to each other in the list.
5128193323Sed    // To help reduce the number of CSE recomputations, process all
5129193323Sed    // the uses of this user that we can find this way.
5130193323Sed    do {
5131193323Sed      SDUse &Use = UI.getUse();
5132193323Sed
5133193323Sed      // Skip uses of different values from the same node.
5134193323Sed      if (Use.getResNo() != From.getResNo()) {
5135193323Sed        ++UI;
5136193323Sed        continue;
5137193323Sed      }
5138193323Sed
5139193323Sed      // If this node hasn't been modified yet, it's still in the CSE maps,
5140193323Sed      // so remove its old self from the CSE maps.
5141193323Sed      if (!UserRemovedFromCSEMaps) {
5142193323Sed        RemoveNodeFromCSEMaps(User);
5143193323Sed        UserRemovedFromCSEMaps = true;
5144193323Sed      }
5145193323Sed
5146193323Sed      ++UI;
5147193323Sed      Use.set(To);
5148193323Sed    } while (UI != UE && *UI == User);
5149193323Sed
5150193323Sed    // We are iterating over all uses of the From node, so if a use
5151193323Sed    // doesn't use the specific value, no changes are made.
5152193323Sed    if (!UserRemovedFromCSEMaps)
5153193323Sed      continue;
5154193323Sed
5155193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5156193323Sed    // already exists there, recursively merge the results together.
5157204792Srdivacky    AddModifiedNodeToCSEMaps(User, &Listener);
5158193323Sed  }
5159193323Sed}
5160193323Sed
5161193323Sednamespace {
5162193323Sed  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5163193323Sed  /// to record information about a use.
5164193323Sed  struct UseMemo {
5165193323Sed    SDNode *User;
5166193323Sed    unsigned Index;
5167193323Sed    SDUse *Use;
5168193323Sed  };
5169193323Sed
5170193323Sed  /// operator< - Sort Memos by User.
5171193323Sed  bool operator<(const UseMemo &L, const UseMemo &R) {
5172193323Sed    return (intptr_t)L.User < (intptr_t)R.User;
5173193323Sed  }
5174193323Sed}
5175193323Sed
5176193323Sed/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5177193323Sed/// uses of other values produced by From.getNode() alone.  The same value
5178193323Sed/// may appear in both the From and To list.  The Deleted vector is
5179193323Sed/// handled the same way as for ReplaceAllUsesWith.
5180193323Sedvoid SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5181193323Sed                                              const SDValue *To,
5182193323Sed                                              unsigned Num,
5183193323Sed                                              DAGUpdateListener *UpdateListener){
5184193323Sed  // Handle the simple, trivial case efficiently.
5185193323Sed  if (Num == 1)
5186193323Sed    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5187193323Sed
5188193323Sed  // Read up all the uses and make records of them. This helps
5189193323Sed  // processing new uses that are introduced during the
5190193323Sed  // replacement process.
5191193323Sed  SmallVector<UseMemo, 4> Uses;
5192193323Sed  for (unsigned i = 0; i != Num; ++i) {
5193193323Sed    unsigned FromResNo = From[i].getResNo();
5194193323Sed    SDNode *FromNode = From[i].getNode();
5195193323Sed    for (SDNode::use_iterator UI = FromNode->use_begin(),
5196193323Sed         E = FromNode->use_end(); UI != E; ++UI) {
5197193323Sed      SDUse &Use = UI.getUse();
5198193323Sed      if (Use.getResNo() == FromResNo) {
5199193323Sed        UseMemo Memo = { *UI, i, &Use };
5200193323Sed        Uses.push_back(Memo);
5201193323Sed      }
5202193323Sed    }
5203193323Sed  }
5204193323Sed
5205193323Sed  // Sort the uses, so that all the uses from a given User are together.
5206193323Sed  std::sort(Uses.begin(), Uses.end());
5207193323Sed
5208193323Sed  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5209193323Sed       UseIndex != UseIndexEnd; ) {
5210193323Sed    // We know that this user uses some value of From.  If it is the right
5211193323Sed    // value, update it.
5212193323Sed    SDNode *User = Uses[UseIndex].User;
5213193323Sed
5214193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5215193323Sed    RemoveNodeFromCSEMaps(User);
5216193323Sed
5217193323Sed    // The Uses array is sorted, so all the uses for a given User
5218193323Sed    // are next to each other in the list.
5219193323Sed    // To help reduce the number of CSE recomputations, process all
5220193323Sed    // the uses of this user that we can find this way.
5221193323Sed    do {
5222193323Sed      unsigned i = Uses[UseIndex].Index;
5223193323Sed      SDUse &Use = *Uses[UseIndex].Use;
5224193323Sed      ++UseIndex;
5225193323Sed
5226193323Sed      Use.set(To[i]);
5227193323Sed    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5228193323Sed
5229193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5230193323Sed    // already exists there, recursively merge the results together.
5231193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
5232193323Sed  }
5233193323Sed}
5234193323Sed
5235193323Sed/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5236193323Sed/// based on their topological order. It returns the maximum id and a vector
5237193323Sed/// of the SDNodes* in assigned order by reference.
5238193323Sedunsigned SelectionDAG::AssignTopologicalOrder() {
5239193323Sed
5240193323Sed  unsigned DAGSize = 0;
5241193323Sed
5242193323Sed  // SortedPos tracks the progress of the algorithm. Nodes before it are
5243193323Sed  // sorted, nodes after it are unsorted. When the algorithm completes
5244193323Sed  // it is at the end of the list.
5245193323Sed  allnodes_iterator SortedPos = allnodes_begin();
5246193323Sed
5247193323Sed  // Visit all the nodes. Move nodes with no operands to the front of
5248193323Sed  // the list immediately. Annotate nodes that do have operands with their
5249193323Sed  // operand count. Before we do this, the Node Id fields of the nodes
5250193323Sed  // may contain arbitrary values. After, the Node Id fields for nodes
5251193323Sed  // before SortedPos will contain the topological sort index, and the
5252193323Sed  // Node Id fields for nodes At SortedPos and after will contain the
5253193323Sed  // count of outstanding operands.
5254193323Sed  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5255193323Sed    SDNode *N = I++;
5256202878Srdivacky    checkForCycles(N);
5257193323Sed    unsigned Degree = N->getNumOperands();
5258193323Sed    if (Degree == 0) {
5259193323Sed      // A node with no uses, add it to the result array immediately.
5260193323Sed      N->setNodeId(DAGSize++);
5261193323Sed      allnodes_iterator Q = N;
5262193323Sed      if (Q != SortedPos)
5263193323Sed        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5264202878Srdivacky      assert(SortedPos != AllNodes.end() && "Overran node list");
5265193323Sed      ++SortedPos;
5266193323Sed    } else {
5267193323Sed      // Temporarily use the Node Id as scratch space for the degree count.
5268193323Sed      N->setNodeId(Degree);
5269193323Sed    }
5270193323Sed  }
5271193323Sed
5272193323Sed  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5273193323Sed  // such that by the time the end is reached all nodes will be sorted.
5274193323Sed  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5275193323Sed    SDNode *N = I;
5276202878Srdivacky    checkForCycles(N);
5277202878Srdivacky    // N is in sorted position, so all its uses have one less operand
5278202878Srdivacky    // that needs to be sorted.
5279193323Sed    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5280193323Sed         UI != UE; ++UI) {
5281193323Sed      SDNode *P = *UI;
5282193323Sed      unsigned Degree = P->getNodeId();
5283202878Srdivacky      assert(Degree != 0 && "Invalid node degree");
5284193323Sed      --Degree;
5285193323Sed      if (Degree == 0) {
5286193323Sed        // All of P's operands are sorted, so P may sorted now.
5287193323Sed        P->setNodeId(DAGSize++);
5288193323Sed        if (P != SortedPos)
5289193323Sed          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5290202878Srdivacky        assert(SortedPos != AllNodes.end() && "Overran node list");
5291193323Sed        ++SortedPos;
5292193323Sed      } else {
5293193323Sed        // Update P's outstanding operand count.
5294193323Sed        P->setNodeId(Degree);
5295193323Sed      }
5296193323Sed    }
5297202878Srdivacky    if (I == SortedPos) {
5298203954Srdivacky#ifndef NDEBUG
5299203954Srdivacky      SDNode *S = ++I;
5300203954Srdivacky      dbgs() << "Overran sorted position:\n";
5301202878Srdivacky      S->dumprFull();
5302203954Srdivacky#endif
5303203954Srdivacky      llvm_unreachable(0);
5304202878Srdivacky    }
5305193323Sed  }
5306193323Sed
5307193323Sed  assert(SortedPos == AllNodes.end() &&
5308193323Sed         "Topological sort incomplete!");
5309193323Sed  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5310193323Sed         "First node in topological sort is not the entry token!");
5311193323Sed  assert(AllNodes.front().getNodeId() == 0 &&
5312193323Sed         "First node in topological sort has non-zero id!");
5313193323Sed  assert(AllNodes.front().getNumOperands() == 0 &&
5314193323Sed         "First node in topological sort has operands!");
5315193323Sed  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5316193323Sed         "Last node in topologic sort has unexpected id!");
5317193323Sed  assert(AllNodes.back().use_empty() &&
5318193323Sed         "Last node in topologic sort has users!");
5319193323Sed  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5320193323Sed  return DAGSize;
5321193323Sed}
5322193323Sed
5323201360Srdivacky/// AssignOrdering - Assign an order to the SDNode.
5324203954Srdivackyvoid SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5325201360Srdivacky  assert(SD && "Trying to assign an order to a null node!");
5326202878Srdivacky  Ordering->add(SD, Order);
5327201360Srdivacky}
5328193323Sed
5329201360Srdivacky/// GetOrdering - Get the order for the SDNode.
5330201360Srdivackyunsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5331201360Srdivacky  assert(SD && "Trying to get the order of a null node!");
5332202878Srdivacky  return Ordering->getOrder(SD);
5333201360Srdivacky}
5334193323Sed
5335206083Srdivacky/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5336206083Srdivacky/// value is produced by SD.
5337207618Srdivackyvoid SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5338207618Srdivacky  DbgInfo->add(DB, SD, isParameter);
5339206083Srdivacky  if (SD)
5340206083Srdivacky    SD->setHasDebugValue(true);
5341205218Srdivacky}
5342201360Srdivacky
5343193323Sed//===----------------------------------------------------------------------===//
5344193323Sed//                              SDNode Class
5345193323Sed//===----------------------------------------------------------------------===//
5346193323Sed
5347193323SedHandleSDNode::~HandleSDNode() {
5348193323Sed  DropOperands();
5349193323Sed}
5350193323Sed
5351210299SedGlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5352210299Sed                                         const GlobalValue *GA,
5353198090Srdivacky                                         EVT VT, int64_t o, unsigned char TF)
5354210299Sed  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5355207618Srdivacky  TheGlobal = GA;
5356193323Sed}
5357193323Sed
5358198090SrdivackyMemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5359198090Srdivacky                     MachineMemOperand *mmo)
5360198090Srdivacky : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5361204642Srdivacky  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5362204642Srdivacky                                      MMO->isNonTemporal());
5363198090Srdivacky  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5364204642Srdivacky  assert(isNonTemporal() == MMO->isNonTemporal() &&
5365204642Srdivacky         "Non-temporal encoding error!");
5366198090Srdivacky  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5367193323Sed}
5368193323Sed
5369193323SedMemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5370198090Srdivacky                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5371198090Srdivacky                     MachineMemOperand *mmo)
5372193323Sed   : SDNode(Opc, dl, VTs, Ops, NumOps),
5373198090Srdivacky     MemoryVT(memvt), MMO(mmo) {
5374204642Srdivacky  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5375204642Srdivacky                                      MMO->isNonTemporal());
5376198090Srdivacky  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5377198090Srdivacky  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5378193323Sed}
5379193323Sed
5380193323Sed/// Profile - Gather unique data for the node.
5381193323Sed///
5382193323Sedvoid SDNode::Profile(FoldingSetNodeID &ID) const {
5383193323Sed  AddNodeIDNode(ID, this);
5384193323Sed}
5385193323Sed
5386198090Srdivackynamespace {
5387198090Srdivacky  struct EVTArray {
5388198090Srdivacky    std::vector<EVT> VTs;
5389198090Srdivacky
5390198090Srdivacky    EVTArray() {
5391198090Srdivacky      VTs.reserve(MVT::LAST_VALUETYPE);
5392198090Srdivacky      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5393198090Srdivacky        VTs.push_back(MVT((MVT::SimpleValueType)i));
5394198090Srdivacky    }
5395198090Srdivacky  };
5396198090Srdivacky}
5397198090Srdivacky
5398198090Srdivackystatic ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5399198090Srdivackystatic ManagedStatic<EVTArray> SimpleVTArray;
5400195098Sedstatic ManagedStatic<sys::SmartMutex<true> > VTMutex;
5401195098Sed
5402193323Sed/// getValueTypeList - Return a pointer to the specified value type.
5403193323Sed///
5404198090Srdivackyconst EVT *SDNode::getValueTypeList(EVT VT) {
5405193323Sed  if (VT.isExtended()) {
5406198090Srdivacky    sys::SmartScopedLock<true> Lock(*VTMutex);
5407195098Sed    return &(*EVTs->insert(VT).first);
5408193323Sed  } else {
5409208599Srdivacky    assert(VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
5410208599Srdivacky           "Value type out of range!");
5411198090Srdivacky    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5412193323Sed  }
5413193323Sed}
5414193323Sed
5415193323Sed/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5416193323Sed/// indicated value.  This method ignores uses of other values defined by this
5417193323Sed/// operation.
5418193323Sedbool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5419193323Sed  assert(Value < getNumValues() && "Bad value!");
5420193323Sed
5421193323Sed  // TODO: Only iterate over uses of a given value of the node
5422193323Sed  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5423193323Sed    if (UI.getUse().getResNo() == Value) {
5424193323Sed      if (NUses == 0)
5425193323Sed        return false;
5426193323Sed      --NUses;
5427193323Sed    }
5428193323Sed  }
5429193323Sed
5430193323Sed  // Found exactly the right number of uses?
5431193323Sed  return NUses == 0;
5432193323Sed}
5433193323Sed
5434193323Sed
5435193323Sed/// hasAnyUseOfValue - Return true if there are any use of the indicated
5436193323Sed/// value. This method ignores uses of other values defined by this operation.
5437193323Sedbool SDNode::hasAnyUseOfValue(unsigned Value) const {
5438193323Sed  assert(Value < getNumValues() && "Bad value!");
5439193323Sed
5440193323Sed  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5441193323Sed    if (UI.getUse().getResNo() == Value)
5442193323Sed      return true;
5443193323Sed
5444193323Sed  return false;
5445193323Sed}
5446193323Sed
5447193323Sed
5448193323Sed/// isOnlyUserOf - Return true if this node is the only use of N.
5449193323Sed///
5450193323Sedbool SDNode::isOnlyUserOf(SDNode *N) const {
5451193323Sed  bool Seen = false;
5452193323Sed  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5453193323Sed    SDNode *User = *I;
5454193323Sed    if (User == this)
5455193323Sed      Seen = true;
5456193323Sed    else
5457193323Sed      return false;
5458193323Sed  }
5459193323Sed
5460193323Sed  return Seen;
5461193323Sed}
5462193323Sed
5463193323Sed/// isOperand - Return true if this node is an operand of N.
5464193323Sed///
5465193323Sedbool SDValue::isOperandOf(SDNode *N) const {
5466193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5467193323Sed    if (*this == N->getOperand(i))
5468193323Sed      return true;
5469193323Sed  return false;
5470193323Sed}
5471193323Sed
5472193323Sedbool SDNode::isOperandOf(SDNode *N) const {
5473193323Sed  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5474193323Sed    if (this == N->OperandList[i].getNode())
5475193323Sed      return true;
5476193323Sed  return false;
5477193323Sed}
5478193323Sed
5479193323Sed/// reachesChainWithoutSideEffects - Return true if this operand (which must
5480193323Sed/// be a chain) reaches the specified operand without crossing any
5481193323Sed/// side-effecting instructions.  In practice, this looks through token
5482193323Sed/// factors and non-volatile loads.  In order to remain efficient, this only
5483193323Sed/// looks a couple of nodes in, it does not do an exhaustive search.
5484193323Sedbool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5485193323Sed                                               unsigned Depth) const {
5486193323Sed  if (*this == Dest) return true;
5487193323Sed
5488193323Sed  // Don't search too deeply, we just want to be able to see through
5489193323Sed  // TokenFactor's etc.
5490193323Sed  if (Depth == 0) return false;
5491193323Sed
5492193323Sed  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5493193323Sed  // of the operands of the TF reach dest, then we can do the xform.
5494193323Sed  if (getOpcode() == ISD::TokenFactor) {
5495193323Sed    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5496193323Sed      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5497193323Sed        return true;
5498193323Sed    return false;
5499193323Sed  }
5500193323Sed
5501193323Sed  // Loads don't have side effects, look through them.
5502193323Sed  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5503193323Sed    if (!Ld->isVolatile())
5504193323Sed      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5505193323Sed  }
5506193323Sed  return false;
5507193323Sed}
5508193323Sed
5509193323Sed/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5510198892Srdivacky/// is either an operand of N or it can be reached by traversing up the operands.
5511193323Sed/// NOTE: this is an expensive method. Use it carefully.
5512193323Sedbool SDNode::isPredecessorOf(SDNode *N) const {
5513193323Sed  SmallPtrSet<SDNode *, 32> Visited;
5514198892Srdivacky  SmallVector<SDNode *, 16> Worklist;
5515198892Srdivacky  Worklist.push_back(N);
5516198892Srdivacky
5517198892Srdivacky  do {
5518198892Srdivacky    N = Worklist.pop_back_val();
5519198892Srdivacky    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5520198892Srdivacky      SDNode *Op = N->getOperand(i).getNode();
5521198892Srdivacky      if (Op == this)
5522198892Srdivacky        return true;
5523198892Srdivacky      if (Visited.insert(Op))
5524198892Srdivacky        Worklist.push_back(Op);
5525198892Srdivacky    }
5526198892Srdivacky  } while (!Worklist.empty());
5527198892Srdivacky
5528198892Srdivacky  return false;
5529193323Sed}
5530193323Sed
5531193323Seduint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5532193323Sed  assert(Num < NumOperands && "Invalid child # of SDNode!");
5533193323Sed  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5534193323Sed}
5535193323Sed
5536193323Sedstd::string SDNode::getOperationName(const SelectionDAG *G) const {
5537193323Sed  switch (getOpcode()) {
5538193323Sed  default:
5539193323Sed    if (getOpcode() < ISD::BUILTIN_OP_END)
5540193323Sed      return "<<Unknown DAG Node>>";
5541193323Sed    if (isMachineOpcode()) {
5542193323Sed      if (G)
5543193323Sed        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5544193323Sed          if (getMachineOpcode() < TII->getNumOpcodes())
5545193323Sed            return TII->get(getMachineOpcode()).getName();
5546204642Srdivacky      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5547193323Sed    }
5548193323Sed    if (G) {
5549193323Sed      const TargetLowering &TLI = G->getTargetLoweringInfo();
5550193323Sed      const char *Name = TLI.getTargetNodeName(getOpcode());
5551193323Sed      if (Name) return Name;
5552204642Srdivacky      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5553193323Sed    }
5554204642Srdivacky    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5555193323Sed
5556193323Sed#ifndef NDEBUG
5557193323Sed  case ISD::DELETED_NODE:
5558193323Sed    return "<<Deleted Node!>>";
5559193323Sed#endif
5560193323Sed  case ISD::PREFETCH:      return "Prefetch";
5561193323Sed  case ISD::MEMBARRIER:    return "MemBarrier";
5562193323Sed  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5563193323Sed  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5564193323Sed  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5565193323Sed  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5566193323Sed  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5567193323Sed  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5568193323Sed  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5569193323Sed  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5570193323Sed  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5571193323Sed  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5572193323Sed  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5573193323Sed  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5574193323Sed  case ISD::PCMARKER:      return "PCMarker";
5575193323Sed  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5576193323Sed  case ISD::SRCVALUE:      return "SrcValue";
5577207618Srdivacky  case ISD::MDNODE_SDNODE: return "MDNode";
5578193323Sed  case ISD::EntryToken:    return "EntryToken";
5579193323Sed  case ISD::TokenFactor:   return "TokenFactor";
5580193323Sed  case ISD::AssertSext:    return "AssertSext";
5581193323Sed  case ISD::AssertZext:    return "AssertZext";
5582193323Sed
5583193323Sed  case ISD::BasicBlock:    return "BasicBlock";
5584193323Sed  case ISD::VALUETYPE:     return "ValueType";
5585193323Sed  case ISD::Register:      return "Register";
5586193323Sed
5587193323Sed  case ISD::Constant:      return "Constant";
5588193323Sed  case ISD::ConstantFP:    return "ConstantFP";
5589193323Sed  case ISD::GlobalAddress: return "GlobalAddress";
5590193323Sed  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5591193323Sed  case ISD::FrameIndex:    return "FrameIndex";
5592193323Sed  case ISD::JumpTable:     return "JumpTable";
5593193323Sed  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5594193323Sed  case ISD::RETURNADDR: return "RETURNADDR";
5595193323Sed  case ISD::FRAMEADDR: return "FRAMEADDR";
5596193323Sed  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5597193323Sed  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5598198090Srdivacky  case ISD::LSDAADDR: return "LSDAADDR";
5599193323Sed  case ISD::EHSELECTION: return "EHSELECTION";
5600193323Sed  case ISD::EH_RETURN: return "EH_RETURN";
5601208599Srdivacky  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5602208599Srdivacky  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5603193323Sed  case ISD::ConstantPool:  return "ConstantPool";
5604193323Sed  case ISD::ExternalSymbol: return "ExternalSymbol";
5605198892Srdivacky  case ISD::BlockAddress:  return "BlockAddress";
5606198396Srdivacky  case ISD::INTRINSIC_WO_CHAIN:
5607193323Sed  case ISD::INTRINSIC_VOID:
5608193323Sed  case ISD::INTRINSIC_W_CHAIN: {
5609198396Srdivacky    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5610198396Srdivacky    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5611198396Srdivacky    if (IID < Intrinsic::num_intrinsics)
5612198396Srdivacky      return Intrinsic::getName((Intrinsic::ID)IID);
5613198396Srdivacky    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5614198396Srdivacky      return TII->getName(IID);
5615198396Srdivacky    llvm_unreachable("Invalid intrinsic ID");
5616193323Sed  }
5617193323Sed
5618193323Sed  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5619193323Sed  case ISD::TargetConstant: return "TargetConstant";
5620193323Sed  case ISD::TargetConstantFP:return "TargetConstantFP";
5621193323Sed  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5622193323Sed  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5623193323Sed  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5624193323Sed  case ISD::TargetJumpTable:  return "TargetJumpTable";
5625193323Sed  case ISD::TargetConstantPool:  return "TargetConstantPool";
5626193323Sed  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5627198892Srdivacky  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5628193323Sed
5629193323Sed  case ISD::CopyToReg:     return "CopyToReg";
5630193323Sed  case ISD::CopyFromReg:   return "CopyFromReg";
5631193323Sed  case ISD::UNDEF:         return "undef";
5632193323Sed  case ISD::MERGE_VALUES:  return "merge_values";
5633193323Sed  case ISD::INLINEASM:     return "inlineasm";
5634193323Sed  case ISD::EH_LABEL:      return "eh_label";
5635193323Sed  case ISD::HANDLENODE:    return "handlenode";
5636193323Sed
5637193323Sed  // Unary operators
5638193323Sed  case ISD::FABS:   return "fabs";
5639193323Sed  case ISD::FNEG:   return "fneg";
5640193323Sed  case ISD::FSQRT:  return "fsqrt";
5641193323Sed  case ISD::FSIN:   return "fsin";
5642193323Sed  case ISD::FCOS:   return "fcos";
5643193323Sed  case ISD::FTRUNC: return "ftrunc";
5644193323Sed  case ISD::FFLOOR: return "ffloor";
5645193323Sed  case ISD::FCEIL:  return "fceil";
5646193323Sed  case ISD::FRINT:  return "frint";
5647193323Sed  case ISD::FNEARBYINT: return "fnearbyint";
5648210299Sed  case ISD::FEXP:   return "fexp";
5649210299Sed  case ISD::FEXP2:  return "fexp2";
5650210299Sed  case ISD::FLOG:   return "flog";
5651210299Sed  case ISD::FLOG2:  return "flog2";
5652210299Sed  case ISD::FLOG10: return "flog10";
5653193323Sed
5654193323Sed  // Binary operators
5655193323Sed  case ISD::ADD:    return "add";
5656193323Sed  case ISD::SUB:    return "sub";
5657193323Sed  case ISD::MUL:    return "mul";
5658193323Sed  case ISD::MULHU:  return "mulhu";
5659193323Sed  case ISD::MULHS:  return "mulhs";
5660193323Sed  case ISD::SDIV:   return "sdiv";
5661193323Sed  case ISD::UDIV:   return "udiv";
5662193323Sed  case ISD::SREM:   return "srem";
5663193323Sed  case ISD::UREM:   return "urem";
5664193323Sed  case ISD::SMUL_LOHI:  return "smul_lohi";
5665193323Sed  case ISD::UMUL_LOHI:  return "umul_lohi";
5666193323Sed  case ISD::SDIVREM:    return "sdivrem";
5667193323Sed  case ISD::UDIVREM:    return "udivrem";
5668193323Sed  case ISD::AND:    return "and";
5669193323Sed  case ISD::OR:     return "or";
5670193323Sed  case ISD::XOR:    return "xor";
5671193323Sed  case ISD::SHL:    return "shl";
5672193323Sed  case ISD::SRA:    return "sra";
5673193323Sed  case ISD::SRL:    return "srl";
5674193323Sed  case ISD::ROTL:   return "rotl";
5675193323Sed  case ISD::ROTR:   return "rotr";
5676193323Sed  case ISD::FADD:   return "fadd";
5677193323Sed  case ISD::FSUB:   return "fsub";
5678193323Sed  case ISD::FMUL:   return "fmul";
5679193323Sed  case ISD::FDIV:   return "fdiv";
5680193323Sed  case ISD::FREM:   return "frem";
5681193323Sed  case ISD::FCOPYSIGN: return "fcopysign";
5682193323Sed  case ISD::FGETSIGN:  return "fgetsign";
5683210299Sed  case ISD::FPOW:   return "fpow";
5684193323Sed
5685210299Sed  case ISD::FPOWI:  return "fpowi";
5686193323Sed  case ISD::SETCC:       return "setcc";
5687193323Sed  case ISD::VSETCC:      return "vsetcc";
5688193323Sed  case ISD::SELECT:      return "select";
5689193323Sed  case ISD::SELECT_CC:   return "select_cc";
5690193323Sed  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5691193323Sed  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5692193323Sed  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5693193323Sed  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5694193323Sed  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5695193323Sed  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5696193323Sed  case ISD::CARRY_FALSE:         return "carry_false";
5697193323Sed  case ISD::ADDC:        return "addc";
5698193323Sed  case ISD::ADDE:        return "adde";
5699193323Sed  case ISD::SADDO:       return "saddo";
5700193323Sed  case ISD::UADDO:       return "uaddo";
5701193323Sed  case ISD::SSUBO:       return "ssubo";
5702193323Sed  case ISD::USUBO:       return "usubo";
5703193323Sed  case ISD::SMULO:       return "smulo";
5704193323Sed  case ISD::UMULO:       return "umulo";
5705193323Sed  case ISD::SUBC:        return "subc";
5706193323Sed  case ISD::SUBE:        return "sube";
5707193323Sed  case ISD::SHL_PARTS:   return "shl_parts";
5708193323Sed  case ISD::SRA_PARTS:   return "sra_parts";
5709193323Sed  case ISD::SRL_PARTS:   return "srl_parts";
5710193323Sed
5711193323Sed  // Conversion operators.
5712193323Sed  case ISD::SIGN_EXTEND: return "sign_extend";
5713193323Sed  case ISD::ZERO_EXTEND: return "zero_extend";
5714193323Sed  case ISD::ANY_EXTEND:  return "any_extend";
5715193323Sed  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5716193323Sed  case ISD::TRUNCATE:    return "truncate";
5717193323Sed  case ISD::FP_ROUND:    return "fp_round";
5718193323Sed  case ISD::FLT_ROUNDS_: return "flt_rounds";
5719193323Sed  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5720193323Sed  case ISD::FP_EXTEND:   return "fp_extend";
5721193323Sed
5722193323Sed  case ISD::SINT_TO_FP:  return "sint_to_fp";
5723193323Sed  case ISD::UINT_TO_FP:  return "uint_to_fp";
5724193323Sed  case ISD::FP_TO_SINT:  return "fp_to_sint";
5725193323Sed  case ISD::FP_TO_UINT:  return "fp_to_uint";
5726193323Sed  case ISD::BIT_CONVERT: return "bit_convert";
5727205218Srdivacky  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5728205218Srdivacky  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5729193323Sed
5730193323Sed  case ISD::CONVERT_RNDSAT: {
5731193323Sed    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5732198090Srdivacky    default: llvm_unreachable("Unknown cvt code!");
5733193323Sed    case ISD::CVT_FF:  return "cvt_ff";
5734193323Sed    case ISD::CVT_FS:  return "cvt_fs";
5735193323Sed    case ISD::CVT_FU:  return "cvt_fu";
5736193323Sed    case ISD::CVT_SF:  return "cvt_sf";
5737193323Sed    case ISD::CVT_UF:  return "cvt_uf";
5738193323Sed    case ISD::CVT_SS:  return "cvt_ss";
5739193323Sed    case ISD::CVT_SU:  return "cvt_su";
5740193323Sed    case ISD::CVT_US:  return "cvt_us";
5741193323Sed    case ISD::CVT_UU:  return "cvt_uu";
5742193323Sed    }
5743193323Sed  }
5744193323Sed
5745193323Sed    // Control flow instructions
5746193323Sed  case ISD::BR:      return "br";
5747193323Sed  case ISD::BRIND:   return "brind";
5748193323Sed  case ISD::BR_JT:   return "br_jt";
5749193323Sed  case ISD::BRCOND:  return "brcond";
5750193323Sed  case ISD::BR_CC:   return "br_cc";
5751193323Sed  case ISD::CALLSEQ_START:  return "callseq_start";
5752193323Sed  case ISD::CALLSEQ_END:    return "callseq_end";
5753193323Sed
5754193323Sed    // Other operators
5755193323Sed  case ISD::LOAD:               return "load";
5756193323Sed  case ISD::STORE:              return "store";
5757193323Sed  case ISD::VAARG:              return "vaarg";
5758193323Sed  case ISD::VACOPY:             return "vacopy";
5759193323Sed  case ISD::VAEND:              return "vaend";
5760193323Sed  case ISD::VASTART:            return "vastart";
5761193323Sed  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5762193323Sed  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5763193323Sed  case ISD::BUILD_PAIR:         return "build_pair";
5764193323Sed  case ISD::STACKSAVE:          return "stacksave";
5765193323Sed  case ISD::STACKRESTORE:       return "stackrestore";
5766193323Sed  case ISD::TRAP:               return "trap";
5767193323Sed
5768193323Sed  // Bit manipulation
5769193323Sed  case ISD::BSWAP:   return "bswap";
5770193323Sed  case ISD::CTPOP:   return "ctpop";
5771193323Sed  case ISD::CTTZ:    return "cttz";
5772193323Sed  case ISD::CTLZ:    return "ctlz";
5773193323Sed
5774193323Sed  // Trampolines
5775193323Sed  case ISD::TRAMPOLINE: return "trampoline";
5776193323Sed
5777193323Sed  case ISD::CONDCODE:
5778193323Sed    switch (cast<CondCodeSDNode>(this)->get()) {
5779198090Srdivacky    default: llvm_unreachable("Unknown setcc condition!");
5780193323Sed    case ISD::SETOEQ:  return "setoeq";
5781193323Sed    case ISD::SETOGT:  return "setogt";
5782193323Sed    case ISD::SETOGE:  return "setoge";
5783193323Sed    case ISD::SETOLT:  return "setolt";
5784193323Sed    case ISD::SETOLE:  return "setole";
5785193323Sed    case ISD::SETONE:  return "setone";
5786193323Sed
5787193323Sed    case ISD::SETO:    return "seto";
5788193323Sed    case ISD::SETUO:   return "setuo";
5789193323Sed    case ISD::SETUEQ:  return "setue";
5790193323Sed    case ISD::SETUGT:  return "setugt";
5791193323Sed    case ISD::SETUGE:  return "setuge";
5792193323Sed    case ISD::SETULT:  return "setult";
5793193323Sed    case ISD::SETULE:  return "setule";
5794193323Sed    case ISD::SETUNE:  return "setune";
5795193323Sed
5796193323Sed    case ISD::SETEQ:   return "seteq";
5797193323Sed    case ISD::SETGT:   return "setgt";
5798193323Sed    case ISD::SETGE:   return "setge";
5799193323Sed    case ISD::SETLT:   return "setlt";
5800193323Sed    case ISD::SETLE:   return "setle";
5801193323Sed    case ISD::SETNE:   return "setne";
5802193323Sed    }
5803193323Sed  }
5804193323Sed}
5805193323Sed
5806193323Sedconst char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5807193323Sed  switch (AM) {
5808193323Sed  default:
5809193323Sed    return "";
5810193323Sed  case ISD::PRE_INC:
5811193323Sed    return "<pre-inc>";
5812193323Sed  case ISD::PRE_DEC:
5813193323Sed    return "<pre-dec>";
5814193323Sed  case ISD::POST_INC:
5815193323Sed    return "<post-inc>";
5816193323Sed  case ISD::POST_DEC:
5817193323Sed    return "<post-dec>";
5818193323Sed  }
5819193323Sed}
5820193323Sed
5821193323Sedstd::string ISD::ArgFlagsTy::getArgFlagsString() {
5822193323Sed  std::string S = "< ";
5823193323Sed
5824193323Sed  if (isZExt())
5825193323Sed    S += "zext ";
5826193323Sed  if (isSExt())
5827193323Sed    S += "sext ";
5828193323Sed  if (isInReg())
5829193323Sed    S += "inreg ";
5830193323Sed  if (isSRet())
5831193323Sed    S += "sret ";
5832193323Sed  if (isByVal())
5833193323Sed    S += "byval ";
5834193323Sed  if (isNest())
5835193323Sed    S += "nest ";
5836193323Sed  if (getByValAlign())
5837193323Sed    S += "byval-align:" + utostr(getByValAlign()) + " ";
5838193323Sed  if (getOrigAlign())
5839193323Sed    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5840193323Sed  if (getByValSize())
5841193323Sed    S += "byval-size:" + utostr(getByValSize()) + " ";
5842193323Sed  return S + ">";
5843193323Sed}
5844193323Sed
5845193323Sedvoid SDNode::dump() const { dump(0); }
5846193323Sedvoid SDNode::dump(const SelectionDAG *G) const {
5847202375Srdivacky  print(dbgs(), G);
5848212904Sdim  dbgs() << '\n';
5849193323Sed}
5850193323Sed
5851193323Sedvoid SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5852193323Sed  OS << (void*)this << ": ";
5853193323Sed
5854193323Sed  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5855193323Sed    if (i) OS << ",";
5856193323Sed    if (getValueType(i) == MVT::Other)
5857193323Sed      OS << "ch";
5858193323Sed    else
5859198090Srdivacky      OS << getValueType(i).getEVTString();
5860193323Sed  }
5861193323Sed  OS << " = " << getOperationName(G);
5862193323Sed}
5863193323Sed
5864193323Sedvoid SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5865198090Srdivacky  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5866198090Srdivacky    if (!MN->memoperands_empty()) {
5867198090Srdivacky      OS << "<";
5868198090Srdivacky      OS << "Mem:";
5869198090Srdivacky      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5870198090Srdivacky           e = MN->memoperands_end(); i != e; ++i) {
5871198090Srdivacky        OS << **i;
5872212904Sdim        if (llvm::next(i) != e)
5873198090Srdivacky          OS << " ";
5874198090Srdivacky      }
5875198090Srdivacky      OS << ">";
5876198090Srdivacky    }
5877198090Srdivacky  } else if (const ShuffleVectorSDNode *SVN =
5878198090Srdivacky               dyn_cast<ShuffleVectorSDNode>(this)) {
5879193323Sed    OS << "<";
5880193323Sed    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5881193323Sed      int Idx = SVN->getMaskElt(i);
5882193323Sed      if (i) OS << ",";
5883193323Sed      if (Idx < 0)
5884193323Sed        OS << "u";
5885193323Sed      else
5886193323Sed        OS << Idx;
5887193323Sed    }
5888193323Sed    OS << ">";
5889198090Srdivacky  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5890193323Sed    OS << '<' << CSDN->getAPIntValue() << '>';
5891193323Sed  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5892193323Sed    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5893193323Sed      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5894193323Sed    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5895193323Sed      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5896193323Sed    else {
5897193323Sed      OS << "<APFloat(";
5898193323Sed      CSDN->getValueAPF().bitcastToAPInt().dump();
5899193323Sed      OS << ")>";
5900193323Sed    }
5901193323Sed  } else if (const GlobalAddressSDNode *GADN =
5902193323Sed             dyn_cast<GlobalAddressSDNode>(this)) {
5903193323Sed    int64_t offset = GADN->getOffset();
5904193323Sed    OS << '<';
5905193323Sed    WriteAsOperand(OS, GADN->getGlobal());
5906193323Sed    OS << '>';
5907193323Sed    if (offset > 0)
5908193323Sed      OS << " + " << offset;
5909193323Sed    else
5910193323Sed      OS << " " << offset;
5911198090Srdivacky    if (unsigned int TF = GADN->getTargetFlags())
5912195098Sed      OS << " [TF=" << TF << ']';
5913193323Sed  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5914193323Sed    OS << "<" << FIDN->getIndex() << ">";
5915193323Sed  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5916193323Sed    OS << "<" << JTDN->getIndex() << ">";
5917198090Srdivacky    if (unsigned int TF = JTDN->getTargetFlags())
5918195098Sed      OS << " [TF=" << TF << ']';
5919193323Sed  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5920193323Sed    int offset = CP->getOffset();
5921193323Sed    if (CP->isMachineConstantPoolEntry())
5922193323Sed      OS << "<" << *CP->getMachineCPVal() << ">";
5923193323Sed    else
5924193323Sed      OS << "<" << *CP->getConstVal() << ">";
5925193323Sed    if (offset > 0)
5926193323Sed      OS << " + " << offset;
5927193323Sed    else
5928193323Sed      OS << " " << offset;
5929198090Srdivacky    if (unsigned int TF = CP->getTargetFlags())
5930195098Sed      OS << " [TF=" << TF << ']';
5931193323Sed  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5932193323Sed    OS << "<";
5933193323Sed    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5934193323Sed    if (LBB)
5935193323Sed      OS << LBB->getName() << " ";
5936193323Sed    OS << (const void*)BBDN->getBasicBlock() << ">";
5937193323Sed  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5938193323Sed    if (G && R->getReg() &&
5939193323Sed        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5940198892Srdivacky      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5941193323Sed    } else {
5942198892Srdivacky      OS << " %reg" << R->getReg();
5943193323Sed    }
5944193323Sed  } else if (const ExternalSymbolSDNode *ES =
5945193323Sed             dyn_cast<ExternalSymbolSDNode>(this)) {
5946193323Sed    OS << "'" << ES->getSymbol() << "'";
5947198090Srdivacky    if (unsigned int TF = ES->getTargetFlags())
5948195098Sed      OS << " [TF=" << TF << ']';
5949193323Sed  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5950193323Sed    if (M->getValue())
5951193323Sed      OS << "<" << M->getValue() << ">";
5952193323Sed    else
5953193323Sed      OS << "<null>";
5954207618Srdivacky  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5955207618Srdivacky    if (MD->getMD())
5956207618Srdivacky      OS << "<" << MD->getMD() << ">";
5957207618Srdivacky    else
5958207618Srdivacky      OS << "<null>";
5959193323Sed  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5960198090Srdivacky    OS << ":" << N->getVT().getEVTString();
5961193323Sed  }
5962193323Sed  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5963198892Srdivacky    OS << "<" << *LD->getMemOperand();
5964193323Sed
5965193323Sed    bool doExt = true;
5966193323Sed    switch (LD->getExtensionType()) {
5967193323Sed    default: doExt = false; break;
5968198090Srdivacky    case ISD::EXTLOAD: OS << ", anyext"; break;
5969198090Srdivacky    case ISD::SEXTLOAD: OS << ", sext"; break;
5970198090Srdivacky    case ISD::ZEXTLOAD: OS << ", zext"; break;
5971193323Sed    }
5972193323Sed    if (doExt)
5973198090Srdivacky      OS << " from " << LD->getMemoryVT().getEVTString();
5974193323Sed
5975193323Sed    const char *AM = getIndexedModeName(LD->getAddressingMode());
5976193323Sed    if (*AM)
5977198090Srdivacky      OS << ", " << AM;
5978198090Srdivacky
5979198090Srdivacky    OS << ">";
5980193323Sed  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5981198892Srdivacky    OS << "<" << *ST->getMemOperand();
5982193323Sed
5983193323Sed    if (ST->isTruncatingStore())
5984198090Srdivacky      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5985193323Sed
5986193323Sed    const char *AM = getIndexedModeName(ST->getAddressingMode());
5987193323Sed    if (*AM)
5988198090Srdivacky      OS << ", " << AM;
5989198090Srdivacky
5990198090Srdivacky    OS << ">";
5991198090Srdivacky  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5992198892Srdivacky    OS << "<" << *M->getMemOperand() << ">";
5993198892Srdivacky  } else if (const BlockAddressSDNode *BA =
5994198892Srdivacky               dyn_cast<BlockAddressSDNode>(this)) {
5995198892Srdivacky    OS << "<";
5996198892Srdivacky    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5997198892Srdivacky    OS << ", ";
5998198892Srdivacky    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5999198892Srdivacky    OS << ">";
6000199989Srdivacky    if (unsigned int TF = BA->getTargetFlags())
6001199989Srdivacky      OS << " [TF=" << TF << ']';
6002193323Sed  }
6003201360Srdivacky
6004201360Srdivacky  if (G)
6005201360Srdivacky    if (unsigned Order = G->GetOrdering(this))
6006201360Srdivacky      OS << " [ORD=" << Order << ']';
6007205218Srdivacky
6008204642Srdivacky  if (getNodeId() != -1)
6009204642Srdivacky    OS << " [ID=" << getNodeId() << ']';
6010208599Srdivacky
6011208599Srdivacky  DebugLoc dl = getDebugLoc();
6012208599Srdivacky  if (G && !dl.isUnknown()) {
6013208599Srdivacky    DIScope
6014208599Srdivacky      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6015208599Srdivacky    OS << " dbg:";
6016208599Srdivacky    // Omit the directory, since it's usually long and uninteresting.
6017208599Srdivacky    if (Scope.Verify())
6018208599Srdivacky      OS << Scope.getFilename();
6019208599Srdivacky    else
6020208599Srdivacky      OS << "<unknown>";
6021208599Srdivacky    OS << ':' << dl.getLine();
6022208599Srdivacky    if (dl.getCol() != 0)
6023208599Srdivacky      OS << ':' << dl.getCol();
6024208599Srdivacky  }
6025193323Sed}
6026193323Sed
6027193323Sedvoid SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6028193323Sed  print_types(OS, G);
6029193323Sed  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6030199481Srdivacky    if (i) OS << ", "; else OS << " ";
6031193323Sed    OS << (void*)getOperand(i).getNode();
6032193323Sed    if (unsigned RN = getOperand(i).getResNo())
6033193323Sed      OS << ":" << RN;
6034193323Sed  }
6035193323Sed  print_details(OS, G);
6036193323Sed}
6037193323Sed
6038202878Srdivackystatic void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6039202878Srdivacky                                  const SelectionDAG *G, unsigned depth,
6040202878Srdivacky                                  unsigned indent)
6041202878Srdivacky{
6042202878Srdivacky  if (depth == 0)
6043202878Srdivacky    return;
6044202878Srdivacky
6045202878Srdivacky  OS.indent(indent);
6046202878Srdivacky
6047202878Srdivacky  N->print(OS, G);
6048202878Srdivacky
6049202878Srdivacky  if (depth < 1)
6050202878Srdivacky    return;
6051202878Srdivacky
6052202878Srdivacky  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6053202878Srdivacky    OS << '\n';
6054202878Srdivacky    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6055202878Srdivacky  }
6056202878Srdivacky}
6057202878Srdivacky
6058202878Srdivackyvoid SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6059202878Srdivacky                            unsigned depth) const {
6060202878Srdivacky  printrWithDepthHelper(OS, this, G, depth, 0);
6061202878Srdivacky}
6062202878Srdivacky
6063202878Srdivackyvoid SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6064202878Srdivacky  // Don't print impossibly deep things.
6065202878Srdivacky  printrWithDepth(OS, G, 100);
6066202878Srdivacky}
6067202878Srdivacky
6068202878Srdivackyvoid SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6069202878Srdivacky  printrWithDepth(dbgs(), G, depth);
6070202878Srdivacky}
6071202878Srdivacky
6072202878Srdivackyvoid SDNode::dumprFull(const SelectionDAG *G) const {
6073202878Srdivacky  // Don't print impossibly deep things.
6074202878Srdivacky  dumprWithDepth(G, 100);
6075202878Srdivacky}
6076202878Srdivacky
6077193323Sedstatic void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6078193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6079193323Sed    if (N->getOperand(i).getNode()->hasOneUse())
6080193323Sed      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6081193323Sed    else
6082202375Srdivacky      dbgs() << "\n" << std::string(indent+2, ' ')
6083202375Srdivacky           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6084193323Sed
6085193323Sed
6086202375Srdivacky  dbgs() << "\n";
6087202375Srdivacky  dbgs().indent(indent);
6088193323Sed  N->dump(G);
6089193323Sed}
6090193323Sed
6091199989SrdivackySDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6092199989Srdivacky  assert(N->getNumValues() == 1 &&
6093199989Srdivacky         "Can't unroll a vector with multiple results!");
6094199989Srdivacky
6095199989Srdivacky  EVT VT = N->getValueType(0);
6096199989Srdivacky  unsigned NE = VT.getVectorNumElements();
6097199989Srdivacky  EVT EltVT = VT.getVectorElementType();
6098199989Srdivacky  DebugLoc dl = N->getDebugLoc();
6099199989Srdivacky
6100199989Srdivacky  SmallVector<SDValue, 8> Scalars;
6101199989Srdivacky  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6102199989Srdivacky
6103199989Srdivacky  // If ResNE is 0, fully unroll the vector op.
6104199989Srdivacky  if (ResNE == 0)
6105199989Srdivacky    ResNE = NE;
6106199989Srdivacky  else if (NE > ResNE)
6107199989Srdivacky    NE = ResNE;
6108199989Srdivacky
6109199989Srdivacky  unsigned i;
6110199989Srdivacky  for (i= 0; i != NE; ++i) {
6111207618Srdivacky    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6112199989Srdivacky      SDValue Operand = N->getOperand(j);
6113199989Srdivacky      EVT OperandVT = Operand.getValueType();
6114199989Srdivacky      if (OperandVT.isVector()) {
6115199989Srdivacky        // A vector operand; extract a single element.
6116199989Srdivacky        EVT OperandEltVT = OperandVT.getVectorElementType();
6117199989Srdivacky        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6118199989Srdivacky                              OperandEltVT,
6119199989Srdivacky                              Operand,
6120199989Srdivacky                              getConstant(i, MVT::i32));
6121199989Srdivacky      } else {
6122199989Srdivacky        // A scalar operand; just use it as is.
6123199989Srdivacky        Operands[j] = Operand;
6124199989Srdivacky      }
6125199989Srdivacky    }
6126199989Srdivacky
6127199989Srdivacky    switch (N->getOpcode()) {
6128199989Srdivacky    default:
6129199989Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6130199989Srdivacky                                &Operands[0], Operands.size()));
6131199989Srdivacky      break;
6132199989Srdivacky    case ISD::SHL:
6133199989Srdivacky    case ISD::SRA:
6134199989Srdivacky    case ISD::SRL:
6135199989Srdivacky    case ISD::ROTL:
6136199989Srdivacky    case ISD::ROTR:
6137199989Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6138199989Srdivacky                                getShiftAmountOperand(Operands[1])));
6139199989Srdivacky      break;
6140202375Srdivacky    case ISD::SIGN_EXTEND_INREG:
6141202375Srdivacky    case ISD::FP_ROUND_INREG: {
6142202375Srdivacky      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6143202375Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6144202375Srdivacky                                Operands[0],
6145202375Srdivacky                                getValueType(ExtVT)));
6146199989Srdivacky    }
6147202375Srdivacky    }
6148199989Srdivacky  }
6149199989Srdivacky
6150199989Srdivacky  for (; i < ResNE; ++i)
6151199989Srdivacky    Scalars.push_back(getUNDEF(EltVT));
6152199989Srdivacky
6153199989Srdivacky  return getNode(ISD::BUILD_VECTOR, dl,
6154199989Srdivacky                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6155199989Srdivacky                 &Scalars[0], Scalars.size());
6156199989Srdivacky}
6157199989Srdivacky
6158200581Srdivacky
6159200581Srdivacky/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6160200581Srdivacky/// location that is 'Dist' units away from the location that the 'Base' load
6161200581Srdivacky/// is loading from.
6162200581Srdivackybool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6163200581Srdivacky                                     unsigned Bytes, int Dist) const {
6164200581Srdivacky  if (LD->getChain() != Base->getChain())
6165200581Srdivacky    return false;
6166200581Srdivacky  EVT VT = LD->getValueType(0);
6167200581Srdivacky  if (VT.getSizeInBits() / 8 != Bytes)
6168200581Srdivacky    return false;
6169200581Srdivacky
6170200581Srdivacky  SDValue Loc = LD->getOperand(1);
6171200581Srdivacky  SDValue BaseLoc = Base->getOperand(1);
6172200581Srdivacky  if (Loc.getOpcode() == ISD::FrameIndex) {
6173200581Srdivacky    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6174200581Srdivacky      return false;
6175200581Srdivacky    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6176200581Srdivacky    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6177200581Srdivacky    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6178200581Srdivacky    int FS  = MFI->getObjectSize(FI);
6179200581Srdivacky    int BFS = MFI->getObjectSize(BFI);
6180200581Srdivacky    if (FS != BFS || FS != (int)Bytes) return false;
6181200581Srdivacky    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6182200581Srdivacky  }
6183200581Srdivacky  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6184200581Srdivacky    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6185200581Srdivacky    if (V && (V->getSExtValue() == Dist*Bytes))
6186200581Srdivacky      return true;
6187200581Srdivacky  }
6188200581Srdivacky
6189207618Srdivacky  const GlobalValue *GV1 = NULL;
6190207618Srdivacky  const GlobalValue *GV2 = NULL;
6191200581Srdivacky  int64_t Offset1 = 0;
6192200581Srdivacky  int64_t Offset2 = 0;
6193200581Srdivacky  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6194200581Srdivacky  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6195200581Srdivacky  if (isGA1 && isGA2 && GV1 == GV2)
6196200581Srdivacky    return Offset1 == (Offset2 + Dist*Bytes);
6197200581Srdivacky  return false;
6198200581Srdivacky}
6199200581Srdivacky
6200200581Srdivacky
6201200581Srdivacky/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6202200581Srdivacky/// it cannot be inferred.
6203200581Srdivackyunsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6204200581Srdivacky  // If this is a GlobalAddress + cst, return the alignment.
6205207618Srdivacky  const GlobalValue *GV;
6206200581Srdivacky  int64_t GVOffset = 0;
6207206083Srdivacky  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6208206083Srdivacky    // If GV has specified alignment, then use it. Otherwise, use the preferred
6209206083Srdivacky    // alignment.
6210206083Srdivacky    unsigned Align = GV->getAlignment();
6211206083Srdivacky    if (!Align) {
6212207618Srdivacky      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6213206083Srdivacky        if (GVar->hasInitializer()) {
6214206083Srdivacky          const TargetData *TD = TLI.getTargetData();
6215206083Srdivacky          Align = TD->getPreferredAlignment(GVar);
6216206083Srdivacky        }
6217206083Srdivacky      }
6218206083Srdivacky    }
6219206083Srdivacky    return MinAlign(Align, GVOffset);
6220206083Srdivacky  }
6221200581Srdivacky
6222200581Srdivacky  // If this is a direct reference to a stack slot, use information about the
6223200581Srdivacky  // stack slot's alignment.
6224200581Srdivacky  int FrameIdx = 1 << 31;
6225200581Srdivacky  int64_t FrameOffset = 0;
6226200581Srdivacky  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6227200581Srdivacky    FrameIdx = FI->getIndex();
6228200581Srdivacky  } else if (Ptr.getOpcode() == ISD::ADD &&
6229200581Srdivacky             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6230200581Srdivacky             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6231200581Srdivacky    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6232200581Srdivacky    FrameOffset = Ptr.getConstantOperandVal(1);
6233200581Srdivacky  }
6234200581Srdivacky
6235200581Srdivacky  if (FrameIdx != (1 << 31)) {
6236200581Srdivacky    // FIXME: Handle FI+CST.
6237200581Srdivacky    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6238200581Srdivacky    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6239200581Srdivacky                                    FrameOffset);
6240200581Srdivacky    return FIInfoAlign;
6241200581Srdivacky  }
6242200581Srdivacky
6243200581Srdivacky  return 0;
6244200581Srdivacky}
6245200581Srdivacky
6246193323Sedvoid SelectionDAG::dump() const {
6247202375Srdivacky  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6248193323Sed
6249193323Sed  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6250193323Sed       I != E; ++I) {
6251193323Sed    const SDNode *N = I;
6252193323Sed    if (!N->hasOneUse() && N != getRoot().getNode())
6253193323Sed      DumpNodes(N, 2, this);
6254193323Sed  }
6255193323Sed
6256193323Sed  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6257193323Sed
6258202375Srdivacky  dbgs() << "\n\n";
6259193323Sed}
6260193323Sed
6261193323Sedvoid SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6262193323Sed  print_types(OS, G);
6263193323Sed  print_details(OS, G);
6264193323Sed}
6265193323Sed
6266193323Sedtypedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6267193323Sedstatic void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6268193323Sed                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6269193323Sed  if (!once.insert(N))          // If we've been here before, return now.
6270193323Sed    return;
6271201360Srdivacky
6272193323Sed  // Dump the current SDNode, but don't end the line yet.
6273193323Sed  OS << std::string(indent, ' ');
6274193323Sed  N->printr(OS, G);
6275201360Srdivacky
6276193323Sed  // Having printed this SDNode, walk the children:
6277193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6278193323Sed    const SDNode *child = N->getOperand(i).getNode();
6279201360Srdivacky
6280193323Sed    if (i) OS << ",";
6281193323Sed    OS << " ";
6282201360Srdivacky
6283193323Sed    if (child->getNumOperands() == 0) {
6284193323Sed      // This child has no grandchildren; print it inline right here.
6285193323Sed      child->printr(OS, G);
6286193323Sed      once.insert(child);
6287201360Srdivacky    } else {         // Just the address. FIXME: also print the child's opcode.
6288193323Sed      OS << (void*)child;
6289193323Sed      if (unsigned RN = N->getOperand(i).getResNo())
6290193323Sed        OS << ":" << RN;
6291193323Sed    }
6292193323Sed  }
6293201360Srdivacky
6294193323Sed  OS << "\n";
6295201360Srdivacky
6296193323Sed  // Dump children that have grandchildren on their own line(s).
6297193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6298193323Sed    const SDNode *child = N->getOperand(i).getNode();
6299193323Sed    DumpNodesr(OS, child, indent+2, G, once);
6300193323Sed  }
6301193323Sed}
6302193323Sed
6303193323Sedvoid SDNode::dumpr() const {
6304193323Sed  VisitedSDNodeSet once;
6305202375Srdivacky  DumpNodesr(dbgs(), this, 0, 0, once);
6306193323Sed}
6307193323Sed
6308198090Srdivackyvoid SDNode::dumpr(const SelectionDAG *G) const {
6309198090Srdivacky  VisitedSDNodeSet once;
6310202375Srdivacky  DumpNodesr(dbgs(), this, 0, G, once);
6311198090Srdivacky}
6312193323Sed
6313198090Srdivacky
6314193323Sed// getAddressSpace - Return the address space this GlobalAddress belongs to.
6315193323Sedunsigned GlobalAddressSDNode::getAddressSpace() const {
6316193323Sed  return getGlobal()->getType()->getAddressSpace();
6317193323Sed}
6318193323Sed
6319193323Sed
6320193323Sedconst Type *ConstantPoolSDNode::getType() const {
6321193323Sed  if (isMachineConstantPoolEntry())
6322193323Sed    return Val.MachineCPVal->getType();
6323193323Sed  return Val.ConstVal->getType();
6324193323Sed}
6325193323Sed
6326193323Sedbool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6327193323Sed                                        APInt &SplatUndef,
6328193323Sed                                        unsigned &SplatBitSize,
6329193323Sed                                        bool &HasAnyUndefs,
6330199481Srdivacky                                        unsigned MinSplatBits,
6331199481Srdivacky                                        bool isBigEndian) {
6332198090Srdivacky  EVT VT = getValueType(0);
6333193323Sed  assert(VT.isVector() && "Expected a vector type");
6334193323Sed  unsigned sz = VT.getSizeInBits();
6335193323Sed  if (MinSplatBits > sz)
6336193323Sed    return false;
6337193323Sed
6338193323Sed  SplatValue = APInt(sz, 0);
6339193323Sed  SplatUndef = APInt(sz, 0);
6340193323Sed
6341193323Sed  // Get the bits.  Bits with undefined values (when the corresponding element
6342193323Sed  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6343193323Sed  // in SplatValue.  If any of the values are not constant, give up and return
6344193323Sed  // false.
6345193323Sed  unsigned int nOps = getNumOperands();
6346193323Sed  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6347193323Sed  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6348199481Srdivacky
6349199481Srdivacky  for (unsigned j = 0; j < nOps; ++j) {
6350199481Srdivacky    unsigned i = isBigEndian ? nOps-1-j : j;
6351193323Sed    SDValue OpVal = getOperand(i);
6352199481Srdivacky    unsigned BitPos = j * EltBitSize;
6353193323Sed
6354193323Sed    if (OpVal.getOpcode() == ISD::UNDEF)
6355199481Srdivacky      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6356193323Sed    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6357207618Srdivacky      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6358207618Srdivacky                    zextOrTrunc(sz) << BitPos;
6359193323Sed    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6360193323Sed      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6361193323Sed     else
6362193323Sed      return false;
6363193323Sed  }
6364193323Sed
6365193323Sed  // The build_vector is all constants or undefs.  Find the smallest element
6366193323Sed  // size that splats the vector.
6367193323Sed
6368193323Sed  HasAnyUndefs = (SplatUndef != 0);
6369193323Sed  while (sz > 8) {
6370193323Sed
6371193323Sed    unsigned HalfSize = sz / 2;
6372193323Sed    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6373193323Sed    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6374193323Sed    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6375193323Sed    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6376193323Sed
6377193323Sed    // If the two halves do not match (ignoring undef bits), stop here.
6378193323Sed    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6379193323Sed        MinSplatBits > HalfSize)
6380193323Sed      break;
6381193323Sed
6382193323Sed    SplatValue = HighValue | LowValue;
6383193323Sed    SplatUndef = HighUndef & LowUndef;
6384198090Srdivacky
6385193323Sed    sz = HalfSize;
6386193323Sed  }
6387193323Sed
6388193323Sed  SplatBitSize = sz;
6389193323Sed  return true;
6390193323Sed}
6391193323Sed
6392198090Srdivackybool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6393193323Sed  // Find the first non-undef value in the shuffle mask.
6394193323Sed  unsigned i, e;
6395193323Sed  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6396193323Sed    /* search */;
6397193323Sed
6398193323Sed  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6399198090Srdivacky
6400193323Sed  // Make sure all remaining elements are either undef or the same as the first
6401193323Sed  // non-undef value.
6402193323Sed  for (int Idx = Mask[i]; i != e; ++i)
6403193323Sed    if (Mask[i] >= 0 && Mask[i] != Idx)
6404193323Sed      return false;
6405193323Sed  return true;
6406193323Sed}
6407202878Srdivacky
6408204642Srdivacky#ifdef XDEBUG
6409202878Srdivackystatic void checkForCyclesHelper(const SDNode *N,
6410204642Srdivacky                                 SmallPtrSet<const SDNode*, 32> &Visited,
6411204642Srdivacky                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6412204642Srdivacky  // If this node has already been checked, don't check it again.
6413204642Srdivacky  if (Checked.count(N))
6414204642Srdivacky    return;
6415204642Srdivacky
6416204642Srdivacky  // If a node has already been visited on this depth-first walk, reject it as
6417204642Srdivacky  // a cycle.
6418204642Srdivacky  if (!Visited.insert(N)) {
6419202878Srdivacky    dbgs() << "Offending node:\n";
6420202878Srdivacky    N->dumprFull();
6421204642Srdivacky    errs() << "Detected cycle in SelectionDAG\n";
6422204642Srdivacky    abort();
6423202878Srdivacky  }
6424204642Srdivacky
6425204642Srdivacky  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6426204642Srdivacky    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6427204642Srdivacky
6428204642Srdivacky  Checked.insert(N);
6429204642Srdivacky  Visited.erase(N);
6430202878Srdivacky}
6431204642Srdivacky#endif
6432202878Srdivacky
6433202878Srdivackyvoid llvm::checkForCycles(const llvm::SDNode *N) {
6434202878Srdivacky#ifdef XDEBUG
6435202878Srdivacky  assert(N && "Checking nonexistant SDNode");
6436204642Srdivacky  SmallPtrSet<const SDNode*, 32> visited;
6437204642Srdivacky  SmallPtrSet<const SDNode*, 32> checked;
6438204642Srdivacky  checkForCyclesHelper(N, visited, checked);
6439202878Srdivacky#endif
6440202878Srdivacky}
6441202878Srdivacky
6442202878Srdivackyvoid llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6443202878Srdivacky  checkForCycles(DAG->getRoot().getNode());
6444202878Srdivacky}
6445