SelectionDAG.cpp revision 202375
1193323Sed//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This implements the SelectionDAG class.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13201360Srdivacky
14193323Sed#include "llvm/CodeGen/SelectionDAG.h"
15201360Srdivacky#include "SDNodeOrdering.h"
16193323Sed#include "llvm/Constants.h"
17193323Sed#include "llvm/Analysis/ValueTracking.h"
18198090Srdivacky#include "llvm/Function.h"
19193323Sed#include "llvm/GlobalAlias.h"
20193323Sed#include "llvm/GlobalVariable.h"
21193323Sed#include "llvm/Intrinsics.h"
22193323Sed#include "llvm/DerivedTypes.h"
23193323Sed#include "llvm/Assembly/Writer.h"
24193323Sed#include "llvm/CallingConv.h"
25193323Sed#include "llvm/CodeGen/MachineBasicBlock.h"
26193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
27193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
28193323Sed#include "llvm/CodeGen/MachineModuleInfo.h"
29193323Sed#include "llvm/CodeGen/PseudoSourceValue.h"
30193323Sed#include "llvm/Target/TargetRegisterInfo.h"
31193323Sed#include "llvm/Target/TargetData.h"
32200581Srdivacky#include "llvm/Target/TargetFrameInfo.h"
33193323Sed#include "llvm/Target/TargetLowering.h"
34193323Sed#include "llvm/Target/TargetOptions.h"
35193323Sed#include "llvm/Target/TargetInstrInfo.h"
36198396Srdivacky#include "llvm/Target/TargetIntrinsicInfo.h"
37193323Sed#include "llvm/Target/TargetMachine.h"
38193323Sed#include "llvm/Support/CommandLine.h"
39202375Srdivacky#include "llvm/Support/Debug.h"
40198090Srdivacky#include "llvm/Support/ErrorHandling.h"
41195098Sed#include "llvm/Support/ManagedStatic.h"
42193323Sed#include "llvm/Support/MathExtras.h"
43193323Sed#include "llvm/Support/raw_ostream.h"
44195098Sed#include "llvm/System/Mutex.h"
45193323Sed#include "llvm/ADT/SetVector.h"
46193323Sed#include "llvm/ADT/SmallPtrSet.h"
47193323Sed#include "llvm/ADT/SmallSet.h"
48193323Sed#include "llvm/ADT/SmallVector.h"
49193323Sed#include "llvm/ADT/StringExtras.h"
50193323Sed#include <algorithm>
51193323Sed#include <cmath>
52193323Sedusing namespace llvm;
53193323Sed
54193323Sed/// makeVTList - Return an instance of the SDVTList struct initialized with the
55193323Sed/// specified members.
56198090Srdivackystatic SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
57193323Sed  SDVTList Res = {VTs, NumVTs};
58193323Sed  return Res;
59193323Sed}
60193323Sed
61198090Srdivackystatic const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
62198090Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
63198090Srdivacky  default: llvm_unreachable("Unknown FP format");
64193323Sed  case MVT::f32:     return &APFloat::IEEEsingle;
65193323Sed  case MVT::f64:     return &APFloat::IEEEdouble;
66193323Sed  case MVT::f80:     return &APFloat::x87DoubleExtended;
67193323Sed  case MVT::f128:    return &APFloat::IEEEquad;
68193323Sed  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
69193323Sed  }
70193323Sed}
71193323Sed
72193323SedSelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
73193323Sed
74193323Sed//===----------------------------------------------------------------------===//
75193323Sed//                              ConstantFPSDNode Class
76193323Sed//===----------------------------------------------------------------------===//
77193323Sed
78193323Sed/// isExactlyValue - We don't rely on operator== working on double values, as
79193323Sed/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
80193323Sed/// As such, this method can be used to do an exact bit-for-bit comparison of
81193323Sed/// two floating point values.
82193323Sedbool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
83193323Sed  return getValueAPF().bitwiseIsEqual(V);
84193323Sed}
85193323Sed
86198090Srdivackybool ConstantFPSDNode::isValueValidForType(EVT VT,
87193323Sed                                           const APFloat& Val) {
88193323Sed  assert(VT.isFloatingPoint() && "Can only convert between FP types");
89193323Sed
90193323Sed  // PPC long double cannot be converted to any other type.
91193323Sed  if (VT == MVT::ppcf128 ||
92193323Sed      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
93193323Sed    return false;
94193323Sed
95193323Sed  // convert modifies in place, so make a copy.
96193323Sed  APFloat Val2 = APFloat(Val);
97193323Sed  bool losesInfo;
98198090Srdivacky  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
99193323Sed                      &losesInfo);
100193323Sed  return !losesInfo;
101193323Sed}
102193323Sed
103193323Sed//===----------------------------------------------------------------------===//
104193323Sed//                              ISD Namespace
105193323Sed//===----------------------------------------------------------------------===//
106193323Sed
107193323Sed/// isBuildVectorAllOnes - Return true if the specified node is a
108193323Sed/// BUILD_VECTOR where all of the elements are ~0 or undef.
109193323Sedbool ISD::isBuildVectorAllOnes(const SDNode *N) {
110193323Sed  // Look through a bit convert.
111193323Sed  if (N->getOpcode() == ISD::BIT_CONVERT)
112193323Sed    N = N->getOperand(0).getNode();
113193323Sed
114193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115193323Sed
116193323Sed  unsigned i = 0, e = N->getNumOperands();
117193323Sed
118193323Sed  // Skip over all of the undef values.
119193323Sed  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120193323Sed    ++i;
121193323Sed
122193323Sed  // Do not accept an all-undef vector.
123193323Sed  if (i == e) return false;
124193323Sed
125193323Sed  // Do not accept build_vectors that aren't all constants or which have non-~0
126193323Sed  // elements.
127193323Sed  SDValue NotZero = N->getOperand(i);
128193323Sed  if (isa<ConstantSDNode>(NotZero)) {
129193323Sed    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
130193323Sed      return false;
131193323Sed  } else if (isa<ConstantFPSDNode>(NotZero)) {
132193323Sed    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
133193323Sed                bitcastToAPInt().isAllOnesValue())
134193323Sed      return false;
135193323Sed  } else
136193323Sed    return false;
137193323Sed
138193323Sed  // Okay, we have at least one ~0 value, check to see if the rest match or are
139193323Sed  // undefs.
140193323Sed  for (++i; i != e; ++i)
141193323Sed    if (N->getOperand(i) != NotZero &&
142193323Sed        N->getOperand(i).getOpcode() != ISD::UNDEF)
143193323Sed      return false;
144193323Sed  return true;
145193323Sed}
146193323Sed
147193323Sed
148193323Sed/// isBuildVectorAllZeros - Return true if the specified node is a
149193323Sed/// BUILD_VECTOR where all of the elements are 0 or undef.
150193323Sedbool ISD::isBuildVectorAllZeros(const SDNode *N) {
151193323Sed  // Look through a bit convert.
152193323Sed  if (N->getOpcode() == ISD::BIT_CONVERT)
153193323Sed    N = N->getOperand(0).getNode();
154193323Sed
155193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156193323Sed
157193323Sed  unsigned i = 0, e = N->getNumOperands();
158193323Sed
159193323Sed  // Skip over all of the undef values.
160193323Sed  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
161193323Sed    ++i;
162193323Sed
163193323Sed  // Do not accept an all-undef vector.
164193323Sed  if (i == e) return false;
165193323Sed
166193574Sed  // Do not accept build_vectors that aren't all constants or which have non-0
167193323Sed  // elements.
168193323Sed  SDValue Zero = N->getOperand(i);
169193323Sed  if (isa<ConstantSDNode>(Zero)) {
170193323Sed    if (!cast<ConstantSDNode>(Zero)->isNullValue())
171193323Sed      return false;
172193323Sed  } else if (isa<ConstantFPSDNode>(Zero)) {
173193323Sed    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
174193323Sed      return false;
175193323Sed  } else
176193323Sed    return false;
177193323Sed
178193574Sed  // Okay, we have at least one 0 value, check to see if the rest match or are
179193323Sed  // undefs.
180193323Sed  for (++i; i != e; ++i)
181193323Sed    if (N->getOperand(i) != Zero &&
182193323Sed        N->getOperand(i).getOpcode() != ISD::UNDEF)
183193323Sed      return false;
184193323Sed  return true;
185193323Sed}
186193323Sed
187193323Sed/// isScalarToVector - Return true if the specified node is a
188193323Sed/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
189193323Sed/// element is not an undef.
190193323Sedbool ISD::isScalarToVector(const SDNode *N) {
191193323Sed  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
192193323Sed    return true;
193193323Sed
194193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR)
195193323Sed    return false;
196193323Sed  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
197193323Sed    return false;
198193323Sed  unsigned NumElems = N->getNumOperands();
199193323Sed  for (unsigned i = 1; i < NumElems; ++i) {
200193323Sed    SDValue V = N->getOperand(i);
201193323Sed    if (V.getOpcode() != ISD::UNDEF)
202193323Sed      return false;
203193323Sed  }
204193323Sed  return true;
205193323Sed}
206193323Sed
207193323Sed/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208193323Sed/// when given the operation for (X op Y).
209193323SedISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210193323Sed  // To perform this operation, we just need to swap the L and G bits of the
211193323Sed  // operation.
212193323Sed  unsigned OldL = (Operation >> 2) & 1;
213193323Sed  unsigned OldG = (Operation >> 1) & 1;
214193323Sed  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215193323Sed                       (OldL << 1) |       // New G bit
216193323Sed                       (OldG << 2));       // New L bit.
217193323Sed}
218193323Sed
219193323Sed/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220193323Sed/// 'op' is a valid SetCC operation.
221193323SedISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222193323Sed  unsigned Operation = Op;
223193323Sed  if (isInteger)
224193323Sed    Operation ^= 7;   // Flip L, G, E bits, but not U.
225193323Sed  else
226193323Sed    Operation ^= 15;  // Flip all of the condition bits.
227193323Sed
228193323Sed  if (Operation > ISD::SETTRUE2)
229193323Sed    Operation &= ~8;  // Don't let N and U bits get set.
230193323Sed
231193323Sed  return ISD::CondCode(Operation);
232193323Sed}
233193323Sed
234193323Sed
235193323Sed/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236193323Sed/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237193323Sed/// if the operation does not depend on the sign of the input (setne and seteq).
238193323Sedstatic int isSignedOp(ISD::CondCode Opcode) {
239193323Sed  switch (Opcode) {
240198090Srdivacky  default: llvm_unreachable("Illegal integer setcc operation!");
241193323Sed  case ISD::SETEQ:
242193323Sed  case ISD::SETNE: return 0;
243193323Sed  case ISD::SETLT:
244193323Sed  case ISD::SETLE:
245193323Sed  case ISD::SETGT:
246193323Sed  case ISD::SETGE: return 1;
247193323Sed  case ISD::SETULT:
248193323Sed  case ISD::SETULE:
249193323Sed  case ISD::SETUGT:
250193323Sed  case ISD::SETUGE: return 2;
251193323Sed  }
252193323Sed}
253193323Sed
254193323Sed/// getSetCCOrOperation - Return the result of a logical OR between different
255193323Sed/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256193323Sed/// returns SETCC_INVALID if it is not possible to represent the resultant
257193323Sed/// comparison.
258193323SedISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259193323Sed                                       bool isInteger) {
260193323Sed  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261193323Sed    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262193323Sed    return ISD::SETCC_INVALID;
263193323Sed
264193323Sed  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265193323Sed
266193323Sed  // If the N and U bits get set then the resultant comparison DOES suddenly
267193323Sed  // care about orderedness, and is true when ordered.
268193323Sed  if (Op > ISD::SETTRUE2)
269193323Sed    Op &= ~16;     // Clear the U bit if the N bit is set.
270193323Sed
271193323Sed  // Canonicalize illegal integer setcc's.
272193323Sed  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273193323Sed    Op = ISD::SETNE;
274193323Sed
275193323Sed  return ISD::CondCode(Op);
276193323Sed}
277193323Sed
278193323Sed/// getSetCCAndOperation - Return the result of a logical AND between different
279193323Sed/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280193323Sed/// function returns zero if it is not possible to represent the resultant
281193323Sed/// comparison.
282193323SedISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283193323Sed                                        bool isInteger) {
284193323Sed  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285193323Sed    // Cannot fold a signed setcc with an unsigned setcc.
286193323Sed    return ISD::SETCC_INVALID;
287193323Sed
288193323Sed  // Combine all of the condition bits.
289193323Sed  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290193323Sed
291193323Sed  // Canonicalize illegal integer setcc's.
292193323Sed  if (isInteger) {
293193323Sed    switch (Result) {
294193323Sed    default: break;
295193323Sed    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296193323Sed    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
297193323Sed    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
298193323Sed    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
299193323Sed    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
300193323Sed    }
301193323Sed  }
302193323Sed
303193323Sed  return Result;
304193323Sed}
305193323Sed
306193323Sedconst TargetMachine &SelectionDAG::getTarget() const {
307193323Sed  return MF->getTarget();
308193323Sed}
309193323Sed
310193323Sed//===----------------------------------------------------------------------===//
311193323Sed//                           SDNode Profile Support
312193323Sed//===----------------------------------------------------------------------===//
313193323Sed
314193323Sed/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315193323Sed///
316193323Sedstatic void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317193323Sed  ID.AddInteger(OpC);
318193323Sed}
319193323Sed
320193323Sed/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321193323Sed/// solely with their pointer.
322193323Sedstatic void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323193323Sed  ID.AddPointer(VTList.VTs);
324193323Sed}
325193323Sed
326193323Sed/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327193323Sed///
328193323Sedstatic void AddNodeIDOperands(FoldingSetNodeID &ID,
329193323Sed                              const SDValue *Ops, unsigned NumOps) {
330193323Sed  for (; NumOps; --NumOps, ++Ops) {
331193323Sed    ID.AddPointer(Ops->getNode());
332193323Sed    ID.AddInteger(Ops->getResNo());
333193323Sed  }
334193323Sed}
335193323Sed
336193323Sed/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337193323Sed///
338193323Sedstatic void AddNodeIDOperands(FoldingSetNodeID &ID,
339193323Sed                              const SDUse *Ops, unsigned NumOps) {
340193323Sed  for (; NumOps; --NumOps, ++Ops) {
341193323Sed    ID.AddPointer(Ops->getNode());
342193323Sed    ID.AddInteger(Ops->getResNo());
343193323Sed  }
344193323Sed}
345193323Sed
346193323Sedstatic void AddNodeIDNode(FoldingSetNodeID &ID,
347193323Sed                          unsigned short OpC, SDVTList VTList,
348193323Sed                          const SDValue *OpList, unsigned N) {
349193323Sed  AddNodeIDOpcode(ID, OpC);
350193323Sed  AddNodeIDValueTypes(ID, VTList);
351193323Sed  AddNodeIDOperands(ID, OpList, N);
352193323Sed}
353193323Sed
354193323Sed/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355193323Sed/// the NodeID data.
356193323Sedstatic void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357193323Sed  switch (N->getOpcode()) {
358195098Sed  case ISD::TargetExternalSymbol:
359195098Sed  case ISD::ExternalSymbol:
360198090Srdivacky    llvm_unreachable("Should only be used on nodes with operands");
361193323Sed  default: break;  // Normal nodes don't need extra info.
362193323Sed  case ISD::TargetConstant:
363193323Sed  case ISD::Constant:
364193323Sed    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365193323Sed    break;
366193323Sed  case ISD::TargetConstantFP:
367193323Sed  case ISD::ConstantFP: {
368193323Sed    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369193323Sed    break;
370193323Sed  }
371193323Sed  case ISD::TargetGlobalAddress:
372193323Sed  case ISD::GlobalAddress:
373193323Sed  case ISD::TargetGlobalTLSAddress:
374193323Sed  case ISD::GlobalTLSAddress: {
375193323Sed    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376193323Sed    ID.AddPointer(GA->getGlobal());
377193323Sed    ID.AddInteger(GA->getOffset());
378195098Sed    ID.AddInteger(GA->getTargetFlags());
379193323Sed    break;
380193323Sed  }
381193323Sed  case ISD::BasicBlock:
382193323Sed    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383193323Sed    break;
384193323Sed  case ISD::Register:
385193323Sed    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386193323Sed    break;
387199989Srdivacky
388193323Sed  case ISD::SRCVALUE:
389193323Sed    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390193323Sed    break;
391193323Sed  case ISD::FrameIndex:
392193323Sed  case ISD::TargetFrameIndex:
393193323Sed    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394193323Sed    break;
395193323Sed  case ISD::JumpTable:
396193323Sed  case ISD::TargetJumpTable:
397193323Sed    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398195098Sed    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399193323Sed    break;
400193323Sed  case ISD::ConstantPool:
401193323Sed  case ISD::TargetConstantPool: {
402193323Sed    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403193323Sed    ID.AddInteger(CP->getAlignment());
404193323Sed    ID.AddInteger(CP->getOffset());
405193323Sed    if (CP->isMachineConstantPoolEntry())
406193323Sed      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407193323Sed    else
408193323Sed      ID.AddPointer(CP->getConstVal());
409195098Sed    ID.AddInteger(CP->getTargetFlags());
410193323Sed    break;
411193323Sed  }
412193323Sed  case ISD::LOAD: {
413193323Sed    const LoadSDNode *LD = cast<LoadSDNode>(N);
414193323Sed    ID.AddInteger(LD->getMemoryVT().getRawBits());
415193323Sed    ID.AddInteger(LD->getRawSubclassData());
416193323Sed    break;
417193323Sed  }
418193323Sed  case ISD::STORE: {
419193323Sed    const StoreSDNode *ST = cast<StoreSDNode>(N);
420193323Sed    ID.AddInteger(ST->getMemoryVT().getRawBits());
421193323Sed    ID.AddInteger(ST->getRawSubclassData());
422193323Sed    break;
423193323Sed  }
424193323Sed  case ISD::ATOMIC_CMP_SWAP:
425193323Sed  case ISD::ATOMIC_SWAP:
426193323Sed  case ISD::ATOMIC_LOAD_ADD:
427193323Sed  case ISD::ATOMIC_LOAD_SUB:
428193323Sed  case ISD::ATOMIC_LOAD_AND:
429193323Sed  case ISD::ATOMIC_LOAD_OR:
430193323Sed  case ISD::ATOMIC_LOAD_XOR:
431193323Sed  case ISD::ATOMIC_LOAD_NAND:
432193323Sed  case ISD::ATOMIC_LOAD_MIN:
433193323Sed  case ISD::ATOMIC_LOAD_MAX:
434193323Sed  case ISD::ATOMIC_LOAD_UMIN:
435193323Sed  case ISD::ATOMIC_LOAD_UMAX: {
436193323Sed    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437193323Sed    ID.AddInteger(AT->getMemoryVT().getRawBits());
438193323Sed    ID.AddInteger(AT->getRawSubclassData());
439193323Sed    break;
440193323Sed  }
441193323Sed  case ISD::VECTOR_SHUFFLE: {
442193323Sed    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443198090Srdivacky    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444193323Sed         i != e; ++i)
445193323Sed      ID.AddInteger(SVN->getMaskElt(i));
446193323Sed    break;
447193323Sed  }
448198892Srdivacky  case ISD::TargetBlockAddress:
449198892Srdivacky  case ISD::BlockAddress: {
450199989Srdivacky    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451199989Srdivacky    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452198892Srdivacky    break;
453198892Srdivacky  }
454193323Sed  } // end switch (N->getOpcode())
455193323Sed}
456193323Sed
457193323Sed/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458193323Sed/// data.
459193323Sedstatic void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460193323Sed  AddNodeIDOpcode(ID, N->getOpcode());
461193323Sed  // Add the return value info.
462193323Sed  AddNodeIDValueTypes(ID, N->getVTList());
463193323Sed  // Add the operand info.
464193323Sed  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465193323Sed
466193323Sed  // Handle SDNode leafs with special info.
467193323Sed  AddNodeIDCustom(ID, N);
468193323Sed}
469193323Sed
470193323Sed/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471198090Srdivacky/// the CSE map that carries volatility, indexing mode, and
472193323Sed/// extension/truncation information.
473193323Sed///
474193323Sedstatic inline unsigned
475198090SrdivackyencodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
476193323Sed  assert((ConvType & 3) == ConvType &&
477193323Sed         "ConvType may not require more than 2 bits!");
478193323Sed  assert((AM & 7) == AM &&
479193323Sed         "AM may not require more than 3 bits!");
480193323Sed  return ConvType |
481193323Sed         (AM << 2) |
482198090Srdivacky         (isVolatile << 5);
483193323Sed}
484193323Sed
485193323Sed//===----------------------------------------------------------------------===//
486193323Sed//                              SelectionDAG Class
487193323Sed//===----------------------------------------------------------------------===//
488193323Sed
489193323Sed/// doNotCSE - Return true if CSE should not be performed for this node.
490193323Sedstatic bool doNotCSE(SDNode *N) {
491193323Sed  if (N->getValueType(0) == MVT::Flag)
492193323Sed    return true; // Never CSE anything that produces a flag.
493193323Sed
494193323Sed  switch (N->getOpcode()) {
495193323Sed  default: break;
496193323Sed  case ISD::HANDLENODE:
497193323Sed  case ISD::EH_LABEL:
498193323Sed    return true;   // Never CSE these nodes.
499193323Sed  }
500193323Sed
501193323Sed  // Check that remaining values produced are not flags.
502193323Sed  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
503193323Sed    if (N->getValueType(i) == MVT::Flag)
504193323Sed      return true; // Never CSE anything that produces a flag.
505193323Sed
506193323Sed  return false;
507193323Sed}
508193323Sed
509193323Sed/// RemoveDeadNodes - This method deletes all unreachable nodes in the
510193323Sed/// SelectionDAG.
511193323Sedvoid SelectionDAG::RemoveDeadNodes() {
512193323Sed  // Create a dummy node (which is not added to allnodes), that adds a reference
513193323Sed  // to the root node, preventing it from being deleted.
514193323Sed  HandleSDNode Dummy(getRoot());
515193323Sed
516193323Sed  SmallVector<SDNode*, 128> DeadNodes;
517193323Sed
518193323Sed  // Add all obviously-dead nodes to the DeadNodes worklist.
519193323Sed  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
520193323Sed    if (I->use_empty())
521193323Sed      DeadNodes.push_back(I);
522193323Sed
523193323Sed  RemoveDeadNodes(DeadNodes);
524193323Sed
525193323Sed  // If the root changed (e.g. it was a dead load, update the root).
526193323Sed  setRoot(Dummy.getValue());
527193323Sed}
528193323Sed
529193323Sed/// RemoveDeadNodes - This method deletes the unreachable nodes in the
530193323Sed/// given list, and any nodes that become unreachable as a result.
531193323Sedvoid SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
532193323Sed                                   DAGUpdateListener *UpdateListener) {
533193323Sed
534193323Sed  // Process the worklist, deleting the nodes and adding their uses to the
535193323Sed  // worklist.
536193323Sed  while (!DeadNodes.empty()) {
537193323Sed    SDNode *N = DeadNodes.pop_back_val();
538193323Sed
539193323Sed    if (UpdateListener)
540193323Sed      UpdateListener->NodeDeleted(N, 0);
541193323Sed
542193323Sed    // Take the node out of the appropriate CSE map.
543193323Sed    RemoveNodeFromCSEMaps(N);
544193323Sed
545193323Sed    // Next, brutally remove the operand list.  This is safe to do, as there are
546193323Sed    // no cycles in the graph.
547193323Sed    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
548193323Sed      SDUse &Use = *I++;
549193323Sed      SDNode *Operand = Use.getNode();
550193323Sed      Use.set(SDValue());
551193323Sed
552193323Sed      // Now that we removed this operand, see if there are no uses of it left.
553193323Sed      if (Operand->use_empty())
554193323Sed        DeadNodes.push_back(Operand);
555193323Sed    }
556193323Sed
557193323Sed    DeallocateNode(N);
558193323Sed  }
559193323Sed}
560193323Sed
561193323Sedvoid SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
562193323Sed  SmallVector<SDNode*, 16> DeadNodes(1, N);
563193323Sed  RemoveDeadNodes(DeadNodes, UpdateListener);
564193323Sed}
565193323Sed
566193323Sedvoid SelectionDAG::DeleteNode(SDNode *N) {
567193323Sed  // First take this out of the appropriate CSE map.
568193323Sed  RemoveNodeFromCSEMaps(N);
569193323Sed
570193323Sed  // Finally, remove uses due to operands of this node, remove from the
571193323Sed  // AllNodes list, and delete the node.
572193323Sed  DeleteNodeNotInCSEMaps(N);
573193323Sed}
574193323Sed
575193323Sedvoid SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
576193323Sed  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
577193323Sed  assert(N->use_empty() && "Cannot delete a node that is not dead!");
578193323Sed
579193323Sed  // Drop all of the operands and decrement used node's use counts.
580193323Sed  N->DropOperands();
581193323Sed
582193323Sed  DeallocateNode(N);
583193323Sed}
584193323Sed
585193323Sedvoid SelectionDAG::DeallocateNode(SDNode *N) {
586193323Sed  if (N->OperandsNeedDelete)
587193323Sed    delete[] N->OperandList;
588193323Sed
589193323Sed  // Set the opcode to DELETED_NODE to help catch bugs when node
590193323Sed  // memory is reallocated.
591193323Sed  N->NodeType = ISD::DELETED_NODE;
592193323Sed
593193323Sed  NodeAllocator.Deallocate(AllNodes.remove(N));
594200581Srdivacky
595200581Srdivacky  // Remove the ordering of this node.
596200581Srdivacky  if (Ordering) Ordering->remove(N);
597193323Sed}
598193323Sed
599193323Sed/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
600193323Sed/// correspond to it.  This is useful when we're about to delete or repurpose
601193323Sed/// the node.  We don't want future request for structurally identical nodes
602193323Sed/// to return N anymore.
603193323Sedbool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
604193323Sed  bool Erased = false;
605193323Sed  switch (N->getOpcode()) {
606193323Sed  case ISD::EntryToken:
607198090Srdivacky    llvm_unreachable("EntryToken should not be in CSEMaps!");
608193323Sed    return false;
609193323Sed  case ISD::HANDLENODE: return false;  // noop.
610193323Sed  case ISD::CONDCODE:
611193323Sed    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
612193323Sed           "Cond code doesn't exist!");
613193323Sed    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
614193323Sed    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
615193323Sed    break;
616193323Sed  case ISD::ExternalSymbol:
617193323Sed    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
618193323Sed    break;
619195098Sed  case ISD::TargetExternalSymbol: {
620195098Sed    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
621195098Sed    Erased = TargetExternalSymbols.erase(
622195098Sed               std::pair<std::string,unsigned char>(ESN->getSymbol(),
623195098Sed                                                    ESN->getTargetFlags()));
624193323Sed    break;
625195098Sed  }
626193323Sed  case ISD::VALUETYPE: {
627198090Srdivacky    EVT VT = cast<VTSDNode>(N)->getVT();
628193323Sed    if (VT.isExtended()) {
629193323Sed      Erased = ExtendedValueTypeNodes.erase(VT);
630193323Sed    } else {
631198090Srdivacky      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
632198090Srdivacky      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
633193323Sed    }
634193323Sed    break;
635193323Sed  }
636193323Sed  default:
637193323Sed    // Remove it from the CSE Map.
638193323Sed    Erased = CSEMap.RemoveNode(N);
639193323Sed    break;
640193323Sed  }
641193323Sed#ifndef NDEBUG
642193323Sed  // Verify that the node was actually in one of the CSE maps, unless it has a
643193323Sed  // flag result (which cannot be CSE'd) or is one of the special cases that are
644193323Sed  // not subject to CSE.
645193323Sed  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
646193323Sed      !N->isMachineOpcode() && !doNotCSE(N)) {
647193323Sed    N->dump(this);
648202375Srdivacky    dbgs() << "\n";
649198090Srdivacky    llvm_unreachable("Node is not in map!");
650193323Sed  }
651193323Sed#endif
652193323Sed  return Erased;
653193323Sed}
654193323Sed
655193323Sed/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
656193323Sed/// maps and modified in place. Add it back to the CSE maps, unless an identical
657193323Sed/// node already exists, in which case transfer all its users to the existing
658193323Sed/// node. This transfer can potentially trigger recursive merging.
659193323Sed///
660193323Sedvoid
661193323SedSelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
662193323Sed                                       DAGUpdateListener *UpdateListener) {
663193323Sed  // For node types that aren't CSE'd, just act as if no identical node
664193323Sed  // already exists.
665193323Sed  if (!doNotCSE(N)) {
666193323Sed    SDNode *Existing = CSEMap.GetOrInsertNode(N);
667193323Sed    if (Existing != N) {
668193323Sed      // If there was already an existing matching node, use ReplaceAllUsesWith
669193323Sed      // to replace the dead one with the existing one.  This can cause
670193323Sed      // recursive merging of other unrelated nodes down the line.
671193323Sed      ReplaceAllUsesWith(N, Existing, UpdateListener);
672193323Sed
673193323Sed      // N is now dead.  Inform the listener if it exists and delete it.
674193323Sed      if (UpdateListener)
675193323Sed        UpdateListener->NodeDeleted(N, Existing);
676193323Sed      DeleteNodeNotInCSEMaps(N);
677193323Sed      return;
678193323Sed    }
679193323Sed  }
680193323Sed
681193323Sed  // If the node doesn't already exist, we updated it.  Inform a listener if
682193323Sed  // it exists.
683193323Sed  if (UpdateListener)
684193323Sed    UpdateListener->NodeUpdated(N);
685193323Sed}
686193323Sed
687193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
688193323Sed/// were replaced with those specified.  If this node is never memoized,
689193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
690193323Sed/// node already exists with these operands, the slot will be non-null.
691193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
692193323Sed                                           void *&InsertPos) {
693193323Sed  if (doNotCSE(N))
694193323Sed    return 0;
695193323Sed
696193323Sed  SDValue Ops[] = { Op };
697193323Sed  FoldingSetNodeID ID;
698193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
699193323Sed  AddNodeIDCustom(ID, N);
700200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
701200581Srdivacky  return Node;
702193323Sed}
703193323Sed
704193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
705193323Sed/// were replaced with those specified.  If this node is never memoized,
706193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
707193323Sed/// node already exists with these operands, the slot will be non-null.
708193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
709193323Sed                                           SDValue Op1, SDValue Op2,
710193323Sed                                           void *&InsertPos) {
711193323Sed  if (doNotCSE(N))
712193323Sed    return 0;
713193323Sed
714193323Sed  SDValue Ops[] = { Op1, Op2 };
715193323Sed  FoldingSetNodeID ID;
716193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
717193323Sed  AddNodeIDCustom(ID, N);
718200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
719200581Srdivacky  return Node;
720193323Sed}
721193323Sed
722193323Sed
723193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
724193323Sed/// were replaced with those specified.  If this node is never memoized,
725193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
726193323Sed/// node already exists with these operands, the slot will be non-null.
727193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
728193323Sed                                           const SDValue *Ops,unsigned NumOps,
729193323Sed                                           void *&InsertPos) {
730193323Sed  if (doNotCSE(N))
731193323Sed    return 0;
732193323Sed
733193323Sed  FoldingSetNodeID ID;
734193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
735193323Sed  AddNodeIDCustom(ID, N);
736200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737200581Srdivacky  return Node;
738193323Sed}
739193323Sed
740193323Sed/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
741193323Sedvoid SelectionDAG::VerifyNode(SDNode *N) {
742193323Sed  switch (N->getOpcode()) {
743193323Sed  default:
744193323Sed    break;
745193323Sed  case ISD::BUILD_PAIR: {
746198090Srdivacky    EVT VT = N->getValueType(0);
747193323Sed    assert(N->getNumValues() == 1 && "Too many results!");
748193323Sed    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
749193323Sed           "Wrong return type!");
750193323Sed    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
751193323Sed    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
752193323Sed           "Mismatched operand types!");
753193323Sed    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
754193323Sed           "Wrong operand type!");
755193323Sed    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
756193323Sed           "Wrong return type size");
757193323Sed    break;
758193323Sed  }
759193323Sed  case ISD::BUILD_VECTOR: {
760193323Sed    assert(N->getNumValues() == 1 && "Too many results!");
761193323Sed    assert(N->getValueType(0).isVector() && "Wrong return type!");
762193323Sed    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
763193323Sed           "Wrong number of operands!");
764198090Srdivacky    EVT EltVT = N->getValueType(0).getVectorElementType();
765193323Sed    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
766193323Sed      assert((I->getValueType() == EltVT ||
767193323Sed             (EltVT.isInteger() && I->getValueType().isInteger() &&
768193323Sed              EltVT.bitsLE(I->getValueType()))) &&
769193323Sed            "Wrong operand type!");
770193323Sed    break;
771193323Sed  }
772193323Sed  }
773193323Sed}
774193323Sed
775198090Srdivacky/// getEVTAlignment - Compute the default alignment value for the
776193323Sed/// given type.
777193323Sed///
778198090Srdivackyunsigned SelectionDAG::getEVTAlignment(EVT VT) const {
779193323Sed  const Type *Ty = VT == MVT::iPTR ?
780198090Srdivacky                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
781198090Srdivacky                   VT.getTypeForEVT(*getContext());
782193323Sed
783193323Sed  return TLI.getTargetData()->getABITypeAlignment(Ty);
784193323Sed}
785193323Sed
786193323Sed// EntryNode could meaningfully have debug info if we can find it...
787193323SedSelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
788193323Sed  : TLI(tli), FLI(fli), DW(0),
789193323Sed    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
790200581Srdivacky              getVTList(MVT::Other)),
791200581Srdivacky    Root(getEntryNode()), Ordering(0) {
792193323Sed  AllNodes.push_back(&EntryNode);
793201360Srdivacky  if (DisableScheduling)
794201360Srdivacky    Ordering = new SDNodeOrdering();
795193323Sed}
796193323Sed
797193323Sedvoid SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
798193323Sed                        DwarfWriter *dw) {
799193323Sed  MF = &mf;
800193323Sed  MMI = mmi;
801193323Sed  DW = dw;
802198090Srdivacky  Context = &mf.getFunction()->getContext();
803193323Sed}
804193323Sed
805193323SedSelectionDAG::~SelectionDAG() {
806193323Sed  allnodes_clear();
807200581Srdivacky  delete Ordering;
808193323Sed}
809193323Sed
810193323Sedvoid SelectionDAG::allnodes_clear() {
811193323Sed  assert(&*AllNodes.begin() == &EntryNode);
812193323Sed  AllNodes.remove(AllNodes.begin());
813193323Sed  while (!AllNodes.empty())
814193323Sed    DeallocateNode(AllNodes.begin());
815193323Sed}
816193323Sed
817193323Sedvoid SelectionDAG::clear() {
818193323Sed  allnodes_clear();
819193323Sed  OperandAllocator.Reset();
820193323Sed  CSEMap.clear();
821193323Sed
822193323Sed  ExtendedValueTypeNodes.clear();
823193323Sed  ExternalSymbols.clear();
824193323Sed  TargetExternalSymbols.clear();
825193323Sed  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
826193323Sed            static_cast<CondCodeSDNode*>(0));
827193323Sed  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
828193323Sed            static_cast<SDNode*>(0));
829193323Sed
830193323Sed  EntryNode.UseList = 0;
831193323Sed  AllNodes.push_back(&EntryNode);
832193323Sed  Root = getEntryNode();
833201360Srdivacky  if (DisableScheduling)
834201360Srdivacky    Ordering = new SDNodeOrdering();
835193323Sed}
836193323Sed
837198090SrdivackySDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
838198090Srdivacky  return VT.bitsGT(Op.getValueType()) ?
839198090Srdivacky    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
840198090Srdivacky    getNode(ISD::TRUNCATE, DL, VT, Op);
841198090Srdivacky}
842198090Srdivacky
843198090SrdivackySDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
844198090Srdivacky  return VT.bitsGT(Op.getValueType()) ?
845198090Srdivacky    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
846198090Srdivacky    getNode(ISD::TRUNCATE, DL, VT, Op);
847198090Srdivacky}
848198090Srdivacky
849198090SrdivackySDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
850200581Srdivacky  assert(!VT.isVector() &&
851200581Srdivacky         "getZeroExtendInReg should use the vector element type instead of "
852200581Srdivacky         "the vector type!");
853193323Sed  if (Op.getValueType() == VT) return Op;
854200581Srdivacky  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
855200581Srdivacky  APInt Imm = APInt::getLowBitsSet(BitWidth,
856193323Sed                                   VT.getSizeInBits());
857193323Sed  return getNode(ISD::AND, DL, Op.getValueType(), Op,
858193323Sed                 getConstant(Imm, Op.getValueType()));
859193323Sed}
860193323Sed
861193323Sed/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
862193323Sed///
863198090SrdivackySDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
864198090Srdivacky  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
865193323Sed  SDValue NegOne =
866193323Sed    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
867193323Sed  return getNode(ISD::XOR, DL, VT, Val, NegOne);
868193323Sed}
869193323Sed
870198090SrdivackySDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
871198090Srdivacky  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
872193323Sed  assert((EltVT.getSizeInBits() >= 64 ||
873193323Sed         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
874193323Sed         "getConstant with a uint64_t value that doesn't fit in the type!");
875193323Sed  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
876193323Sed}
877193323Sed
878198090SrdivackySDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
879198090Srdivacky  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
880193323Sed}
881193323Sed
882198090SrdivackySDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
883193323Sed  assert(VT.isInteger() && "Cannot create FP integer constant!");
884193323Sed
885198090Srdivacky  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
886193323Sed  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
887193323Sed         "APInt size does not match type size!");
888193323Sed
889193323Sed  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
890193323Sed  FoldingSetNodeID ID;
891193323Sed  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
892193323Sed  ID.AddPointer(&Val);
893193323Sed  void *IP = 0;
894193323Sed  SDNode *N = NULL;
895201360Srdivacky  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
896193323Sed    if (!VT.isVector())
897193323Sed      return SDValue(N, 0);
898201360Srdivacky
899193323Sed  if (!N) {
900193323Sed    N = NodeAllocator.Allocate<ConstantSDNode>();
901193323Sed    new (N) ConstantSDNode(isT, &Val, EltVT);
902193323Sed    CSEMap.InsertNode(N, IP);
903193323Sed    AllNodes.push_back(N);
904193323Sed  }
905193323Sed
906193323Sed  SDValue Result(N, 0);
907193323Sed  if (VT.isVector()) {
908193323Sed    SmallVector<SDValue, 8> Ops;
909193323Sed    Ops.assign(VT.getVectorNumElements(), Result);
910193323Sed    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
911193323Sed                     VT, &Ops[0], Ops.size());
912193323Sed  }
913193323Sed  return Result;
914193323Sed}
915193323Sed
916193323SedSDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
917193323Sed  return getConstant(Val, TLI.getPointerTy(), isTarget);
918193323Sed}
919193323Sed
920193323Sed
921198090SrdivackySDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
922198090Srdivacky  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
923193323Sed}
924193323Sed
925198090SrdivackySDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
926193323Sed  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
927193323Sed
928198090Srdivacky  EVT EltVT =
929193323Sed    VT.isVector() ? VT.getVectorElementType() : VT;
930193323Sed
931193323Sed  // Do the map lookup using the actual bit pattern for the floating point
932193323Sed  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
933193323Sed  // we don't have issues with SNANs.
934193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
935193323Sed  FoldingSetNodeID ID;
936193323Sed  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
937193323Sed  ID.AddPointer(&V);
938193323Sed  void *IP = 0;
939193323Sed  SDNode *N = NULL;
940201360Srdivacky  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
941193323Sed    if (!VT.isVector())
942193323Sed      return SDValue(N, 0);
943201360Srdivacky
944193323Sed  if (!N) {
945193323Sed    N = NodeAllocator.Allocate<ConstantFPSDNode>();
946193323Sed    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
947193323Sed    CSEMap.InsertNode(N, IP);
948193323Sed    AllNodes.push_back(N);
949193323Sed  }
950193323Sed
951193323Sed  SDValue Result(N, 0);
952193323Sed  if (VT.isVector()) {
953193323Sed    SmallVector<SDValue, 8> Ops;
954193323Sed    Ops.assign(VT.getVectorNumElements(), Result);
955193323Sed    // FIXME DebugLoc info might be appropriate here
956193323Sed    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
957193323Sed                     VT, &Ops[0], Ops.size());
958193323Sed  }
959193323Sed  return Result;
960193323Sed}
961193323Sed
962198090SrdivackySDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
963198090Srdivacky  EVT EltVT =
964193323Sed    VT.isVector() ? VT.getVectorElementType() : VT;
965193323Sed  if (EltVT==MVT::f32)
966193323Sed    return getConstantFP(APFloat((float)Val), VT, isTarget);
967193323Sed  else
968193323Sed    return getConstantFP(APFloat(Val), VT, isTarget);
969193323Sed}
970193323Sed
971193323SedSDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
972198090Srdivacky                                       EVT VT, int64_t Offset,
973195098Sed                                       bool isTargetGA,
974195098Sed                                       unsigned char TargetFlags) {
975195098Sed  assert((TargetFlags == 0 || isTargetGA) &&
976195098Sed         "Cannot set target flags on target-independent globals");
977198090Srdivacky
978193323Sed  // Truncate (with sign-extension) the offset value to the pointer size.
979198090Srdivacky  EVT PTy = TLI.getPointerTy();
980198090Srdivacky  unsigned BitWidth = PTy.getSizeInBits();
981193323Sed  if (BitWidth < 64)
982193323Sed    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
983193323Sed
984193323Sed  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
985193323Sed  if (!GVar) {
986193323Sed    // If GV is an alias then use the aliasee for determining thread-localness.
987193323Sed    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
988193323Sed      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
989193323Sed  }
990193323Sed
991195098Sed  unsigned Opc;
992193323Sed  if (GVar && GVar->isThreadLocal())
993193323Sed    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
994193323Sed  else
995193323Sed    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
996193323Sed
997193323Sed  FoldingSetNodeID ID;
998193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
999193323Sed  ID.AddPointer(GV);
1000193323Sed  ID.AddInteger(Offset);
1001195098Sed  ID.AddInteger(TargetFlags);
1002193323Sed  void *IP = 0;
1003201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1004193323Sed    return SDValue(E, 0);
1005201360Srdivacky
1006193323Sed  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1007195098Sed  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1008193323Sed  CSEMap.InsertNode(N, IP);
1009193323Sed  AllNodes.push_back(N);
1010193323Sed  return SDValue(N, 0);
1011193323Sed}
1012193323Sed
1013198090SrdivackySDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1014193323Sed  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1015193323Sed  FoldingSetNodeID ID;
1016193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1017193323Sed  ID.AddInteger(FI);
1018193323Sed  void *IP = 0;
1019201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1020193323Sed    return SDValue(E, 0);
1021201360Srdivacky
1022193323Sed  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1023193323Sed  new (N) FrameIndexSDNode(FI, VT, isTarget);
1024193323Sed  CSEMap.InsertNode(N, IP);
1025193323Sed  AllNodes.push_back(N);
1026193323Sed  return SDValue(N, 0);
1027193323Sed}
1028193323Sed
1029198090SrdivackySDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1030195098Sed                                   unsigned char TargetFlags) {
1031195098Sed  assert((TargetFlags == 0 || isTarget) &&
1032195098Sed         "Cannot set target flags on target-independent jump tables");
1033193323Sed  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1034193323Sed  FoldingSetNodeID ID;
1035193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1036193323Sed  ID.AddInteger(JTI);
1037195098Sed  ID.AddInteger(TargetFlags);
1038193323Sed  void *IP = 0;
1039201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1040193323Sed    return SDValue(E, 0);
1041201360Srdivacky
1042193323Sed  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1043195098Sed  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1044193323Sed  CSEMap.InsertNode(N, IP);
1045193323Sed  AllNodes.push_back(N);
1046193323Sed  return SDValue(N, 0);
1047193323Sed}
1048193323Sed
1049198090SrdivackySDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1050193323Sed                                      unsigned Alignment, int Offset,
1051198090Srdivacky                                      bool isTarget,
1052195098Sed                                      unsigned char TargetFlags) {
1053195098Sed  assert((TargetFlags == 0 || isTarget) &&
1054195098Sed         "Cannot set target flags on target-independent globals");
1055193323Sed  if (Alignment == 0)
1056193323Sed    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1057193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1058193323Sed  FoldingSetNodeID ID;
1059193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1060193323Sed  ID.AddInteger(Alignment);
1061193323Sed  ID.AddInteger(Offset);
1062193323Sed  ID.AddPointer(C);
1063195098Sed  ID.AddInteger(TargetFlags);
1064193323Sed  void *IP = 0;
1065201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066193323Sed    return SDValue(E, 0);
1067201360Srdivacky
1068193323Sed  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1069195098Sed  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1070193323Sed  CSEMap.InsertNode(N, IP);
1071193323Sed  AllNodes.push_back(N);
1072193323Sed  return SDValue(N, 0);
1073193323Sed}
1074193323Sed
1075193323Sed
1076198090SrdivackySDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1077193323Sed                                      unsigned Alignment, int Offset,
1078195098Sed                                      bool isTarget,
1079195098Sed                                      unsigned char TargetFlags) {
1080195098Sed  assert((TargetFlags == 0 || isTarget) &&
1081195098Sed         "Cannot set target flags on target-independent globals");
1082193323Sed  if (Alignment == 0)
1083193323Sed    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1084193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1085193323Sed  FoldingSetNodeID ID;
1086193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1087193323Sed  ID.AddInteger(Alignment);
1088193323Sed  ID.AddInteger(Offset);
1089193323Sed  C->AddSelectionDAGCSEId(ID);
1090195098Sed  ID.AddInteger(TargetFlags);
1091193323Sed  void *IP = 0;
1092201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1093193323Sed    return SDValue(E, 0);
1094201360Srdivacky
1095193323Sed  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1096195098Sed  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1097193323Sed  CSEMap.InsertNode(N, IP);
1098193323Sed  AllNodes.push_back(N);
1099193323Sed  return SDValue(N, 0);
1100193323Sed}
1101193323Sed
1102193323SedSDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1103193323Sed  FoldingSetNodeID ID;
1104193323Sed  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1105193323Sed  ID.AddPointer(MBB);
1106193323Sed  void *IP = 0;
1107201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1108193323Sed    return SDValue(E, 0);
1109201360Srdivacky
1110193323Sed  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1111193323Sed  new (N) BasicBlockSDNode(MBB);
1112193323Sed  CSEMap.InsertNode(N, IP);
1113193323Sed  AllNodes.push_back(N);
1114193323Sed  return SDValue(N, 0);
1115193323Sed}
1116193323Sed
1117198090SrdivackySDValue SelectionDAG::getValueType(EVT VT) {
1118198090Srdivacky  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1119198090Srdivacky      ValueTypeNodes.size())
1120198090Srdivacky    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1121193323Sed
1122193323Sed  SDNode *&N = VT.isExtended() ?
1123198090Srdivacky    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1124193323Sed
1125193323Sed  if (N) return SDValue(N, 0);
1126193323Sed  N = NodeAllocator.Allocate<VTSDNode>();
1127193323Sed  new (N) VTSDNode(VT);
1128193323Sed  AllNodes.push_back(N);
1129193323Sed  return SDValue(N, 0);
1130193323Sed}
1131193323Sed
1132198090SrdivackySDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1133193323Sed  SDNode *&N = ExternalSymbols[Sym];
1134193323Sed  if (N) return SDValue(N, 0);
1135193323Sed  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1136195098Sed  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1137193323Sed  AllNodes.push_back(N);
1138193323Sed  return SDValue(N, 0);
1139193323Sed}
1140193323Sed
1141198090SrdivackySDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1142195098Sed                                              unsigned char TargetFlags) {
1143195098Sed  SDNode *&N =
1144195098Sed    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1145195098Sed                                                               TargetFlags)];
1146193323Sed  if (N) return SDValue(N, 0);
1147193323Sed  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1148195098Sed  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1149193323Sed  AllNodes.push_back(N);
1150193323Sed  return SDValue(N, 0);
1151193323Sed}
1152193323Sed
1153193323SedSDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1154193323Sed  if ((unsigned)Cond >= CondCodeNodes.size())
1155193323Sed    CondCodeNodes.resize(Cond+1);
1156193323Sed
1157193323Sed  if (CondCodeNodes[Cond] == 0) {
1158193323Sed    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1159193323Sed    new (N) CondCodeSDNode(Cond);
1160193323Sed    CondCodeNodes[Cond] = N;
1161193323Sed    AllNodes.push_back(N);
1162193323Sed  }
1163201360Srdivacky
1164193323Sed  return SDValue(CondCodeNodes[Cond], 0);
1165193323Sed}
1166193323Sed
1167193323Sed// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1168193323Sed// the shuffle mask M that point at N1 to point at N2, and indices that point
1169193323Sed// N2 to point at N1.
1170193323Sedstatic void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1171193323Sed  std::swap(N1, N2);
1172193323Sed  int NElts = M.size();
1173193323Sed  for (int i = 0; i != NElts; ++i) {
1174193323Sed    if (M[i] >= NElts)
1175193323Sed      M[i] -= NElts;
1176193323Sed    else if (M[i] >= 0)
1177193323Sed      M[i] += NElts;
1178193323Sed  }
1179193323Sed}
1180193323Sed
1181198090SrdivackySDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1182193323Sed                                       SDValue N2, const int *Mask) {
1183193323Sed  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1184198090Srdivacky  assert(VT.isVector() && N1.getValueType().isVector() &&
1185193323Sed         "Vector Shuffle VTs must be a vectors");
1186193323Sed  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1187193323Sed         && "Vector Shuffle VTs must have same element type");
1188193323Sed
1189193323Sed  // Canonicalize shuffle undef, undef -> undef
1190193323Sed  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1191198090Srdivacky    return getUNDEF(VT);
1192193323Sed
1193198090Srdivacky  // Validate that all indices in Mask are within the range of the elements
1194193323Sed  // input to the shuffle.
1195193323Sed  unsigned NElts = VT.getVectorNumElements();
1196193323Sed  SmallVector<int, 8> MaskVec;
1197193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1198193323Sed    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1199193323Sed    MaskVec.push_back(Mask[i]);
1200193323Sed  }
1201198090Srdivacky
1202193323Sed  // Canonicalize shuffle v, v -> v, undef
1203193323Sed  if (N1 == N2) {
1204193323Sed    N2 = getUNDEF(VT);
1205193323Sed    for (unsigned i = 0; i != NElts; ++i)
1206193323Sed      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1207193323Sed  }
1208198090Srdivacky
1209193323Sed  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1210193323Sed  if (N1.getOpcode() == ISD::UNDEF)
1211193323Sed    commuteShuffle(N1, N2, MaskVec);
1212198090Srdivacky
1213193323Sed  // Canonicalize all index into lhs, -> shuffle lhs, undef
1214193323Sed  // Canonicalize all index into rhs, -> shuffle rhs, undef
1215193323Sed  bool AllLHS = true, AllRHS = true;
1216193323Sed  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1217193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1218193323Sed    if (MaskVec[i] >= (int)NElts) {
1219193323Sed      if (N2Undef)
1220193323Sed        MaskVec[i] = -1;
1221193323Sed      else
1222193323Sed        AllLHS = false;
1223193323Sed    } else if (MaskVec[i] >= 0) {
1224193323Sed      AllRHS = false;
1225193323Sed    }
1226193323Sed  }
1227193323Sed  if (AllLHS && AllRHS)
1228193323Sed    return getUNDEF(VT);
1229193323Sed  if (AllLHS && !N2Undef)
1230193323Sed    N2 = getUNDEF(VT);
1231193323Sed  if (AllRHS) {
1232193323Sed    N1 = getUNDEF(VT);
1233193323Sed    commuteShuffle(N1, N2, MaskVec);
1234193323Sed  }
1235198090Srdivacky
1236193323Sed  // If Identity shuffle, or all shuffle in to undef, return that node.
1237193323Sed  bool AllUndef = true;
1238193323Sed  bool Identity = true;
1239193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1240193323Sed    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1241193323Sed    if (MaskVec[i] >= 0) AllUndef = false;
1242193323Sed  }
1243198090Srdivacky  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1244193323Sed    return N1;
1245193323Sed  if (AllUndef)
1246193323Sed    return getUNDEF(VT);
1247193323Sed
1248193323Sed  FoldingSetNodeID ID;
1249193323Sed  SDValue Ops[2] = { N1, N2 };
1250193323Sed  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1251193323Sed  for (unsigned i = 0; i != NElts; ++i)
1252193323Sed    ID.AddInteger(MaskVec[i]);
1253198090Srdivacky
1254193323Sed  void* IP = 0;
1255201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1256193323Sed    return SDValue(E, 0);
1257198090Srdivacky
1258193323Sed  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1259193323Sed  // SDNode doesn't have access to it.  This memory will be "leaked" when
1260193323Sed  // the node is deallocated, but recovered when the NodeAllocator is released.
1261193323Sed  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1262193323Sed  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1263198090Srdivacky
1264193323Sed  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1265193323Sed  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1266193323Sed  CSEMap.InsertNode(N, IP);
1267193323Sed  AllNodes.push_back(N);
1268193323Sed  return SDValue(N, 0);
1269193323Sed}
1270193323Sed
1271198090SrdivackySDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1272193323Sed                                       SDValue Val, SDValue DTy,
1273193323Sed                                       SDValue STy, SDValue Rnd, SDValue Sat,
1274193323Sed                                       ISD::CvtCode Code) {
1275193323Sed  // If the src and dest types are the same and the conversion is between
1276193323Sed  // integer types of the same sign or two floats, no conversion is necessary.
1277193323Sed  if (DTy == STy &&
1278193323Sed      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1279193323Sed    return Val;
1280193323Sed
1281193323Sed  FoldingSetNodeID ID;
1282199481Srdivacky  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1283199481Srdivacky  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1284193323Sed  void* IP = 0;
1285201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1286193323Sed    return SDValue(E, 0);
1287201360Srdivacky
1288193323Sed  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1289193323Sed  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1290193323Sed  CSEMap.InsertNode(N, IP);
1291193323Sed  AllNodes.push_back(N);
1292193323Sed  return SDValue(N, 0);
1293193323Sed}
1294193323Sed
1295198090SrdivackySDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1296193323Sed  FoldingSetNodeID ID;
1297193323Sed  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1298193323Sed  ID.AddInteger(RegNo);
1299193323Sed  void *IP = 0;
1300201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1301193323Sed    return SDValue(E, 0);
1302201360Srdivacky
1303193323Sed  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1304193323Sed  new (N) RegisterSDNode(RegNo, VT);
1305193323Sed  CSEMap.InsertNode(N, IP);
1306193323Sed  AllNodes.push_back(N);
1307193323Sed  return SDValue(N, 0);
1308193323Sed}
1309193323Sed
1310193323SedSDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1311193323Sed                               SDValue Root,
1312193323Sed                               unsigned LabelID) {
1313193323Sed  FoldingSetNodeID ID;
1314193323Sed  SDValue Ops[] = { Root };
1315193323Sed  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1316193323Sed  ID.AddInteger(LabelID);
1317193323Sed  void *IP = 0;
1318201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1319193323Sed    return SDValue(E, 0);
1320201360Srdivacky
1321193323Sed  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1322193323Sed  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1323193323Sed  CSEMap.InsertNode(N, IP);
1324193323Sed  AllNodes.push_back(N);
1325193323Sed  return SDValue(N, 0);
1326193323Sed}
1327193323Sed
1328199989SrdivackySDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1329199989Srdivacky                                      bool isTarget,
1330199989Srdivacky                                      unsigned char TargetFlags) {
1331198892Srdivacky  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1332198892Srdivacky
1333198892Srdivacky  FoldingSetNodeID ID;
1334199989Srdivacky  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1335198892Srdivacky  ID.AddPointer(BA);
1336199989Srdivacky  ID.AddInteger(TargetFlags);
1337198892Srdivacky  void *IP = 0;
1338201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1339198892Srdivacky    return SDValue(E, 0);
1340201360Srdivacky
1341198892Srdivacky  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1342199989Srdivacky  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1343198892Srdivacky  CSEMap.InsertNode(N, IP);
1344198892Srdivacky  AllNodes.push_back(N);
1345198892Srdivacky  return SDValue(N, 0);
1346198892Srdivacky}
1347198892Srdivacky
1348193323SedSDValue SelectionDAG::getSrcValue(const Value *V) {
1349193323Sed  assert((!V || isa<PointerType>(V->getType())) &&
1350193323Sed         "SrcValue is not a pointer?");
1351193323Sed
1352193323Sed  FoldingSetNodeID ID;
1353193323Sed  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1354193323Sed  ID.AddPointer(V);
1355193323Sed
1356193323Sed  void *IP = 0;
1357201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1358193323Sed    return SDValue(E, 0);
1359193323Sed
1360193323Sed  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1361193323Sed  new (N) SrcValueSDNode(V);
1362193323Sed  CSEMap.InsertNode(N, IP);
1363193323Sed  AllNodes.push_back(N);
1364193323Sed  return SDValue(N, 0);
1365193323Sed}
1366193323Sed
1367193323Sed/// getShiftAmountOperand - Return the specified value casted to
1368193323Sed/// the target's desired shift amount type.
1369193323SedSDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1370198090Srdivacky  EVT OpTy = Op.getValueType();
1371193323Sed  MVT ShTy = TLI.getShiftAmountTy();
1372193323Sed  if (OpTy == ShTy || OpTy.isVector()) return Op;
1373193323Sed
1374193323Sed  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1375193323Sed  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1376193323Sed}
1377193323Sed
1378193323Sed/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1379193323Sed/// specified value type.
1380198090SrdivackySDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1381193323Sed  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1382198090Srdivacky  unsigned ByteSize = VT.getStoreSize();
1383198090Srdivacky  const Type *Ty = VT.getTypeForEVT(*getContext());
1384193323Sed  unsigned StackAlign =
1385193323Sed  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1386193323Sed
1387199481Srdivacky  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1388193323Sed  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1389193323Sed}
1390193323Sed
1391193323Sed/// CreateStackTemporary - Create a stack temporary suitable for holding
1392193323Sed/// either of the specified value types.
1393198090SrdivackySDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1394193323Sed  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1395193323Sed                            VT2.getStoreSizeInBits())/8;
1396198090Srdivacky  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1397198090Srdivacky  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1398193323Sed  const TargetData *TD = TLI.getTargetData();
1399193323Sed  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1400193323Sed                            TD->getPrefTypeAlignment(Ty2));
1401193323Sed
1402193323Sed  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1403199481Srdivacky  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1404193323Sed  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1405193323Sed}
1406193323Sed
1407198090SrdivackySDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1408193323Sed                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1409193323Sed  // These setcc operations always fold.
1410193323Sed  switch (Cond) {
1411193323Sed  default: break;
1412193323Sed  case ISD::SETFALSE:
1413193323Sed  case ISD::SETFALSE2: return getConstant(0, VT);
1414193323Sed  case ISD::SETTRUE:
1415193323Sed  case ISD::SETTRUE2:  return getConstant(1, VT);
1416193323Sed
1417193323Sed  case ISD::SETOEQ:
1418193323Sed  case ISD::SETOGT:
1419193323Sed  case ISD::SETOGE:
1420193323Sed  case ISD::SETOLT:
1421193323Sed  case ISD::SETOLE:
1422193323Sed  case ISD::SETONE:
1423193323Sed  case ISD::SETO:
1424193323Sed  case ISD::SETUO:
1425193323Sed  case ISD::SETUEQ:
1426193323Sed  case ISD::SETUNE:
1427193323Sed    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1428193323Sed    break;
1429193323Sed  }
1430193323Sed
1431193323Sed  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1432193323Sed    const APInt &C2 = N2C->getAPIntValue();
1433193323Sed    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1434193323Sed      const APInt &C1 = N1C->getAPIntValue();
1435193323Sed
1436193323Sed      switch (Cond) {
1437198090Srdivacky      default: llvm_unreachable("Unknown integer setcc!");
1438193323Sed      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1439193323Sed      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1440193323Sed      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1441193323Sed      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1442193323Sed      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1443193323Sed      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1444193323Sed      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1445193323Sed      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1446193323Sed      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1447193323Sed      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1448193323Sed      }
1449193323Sed    }
1450193323Sed  }
1451193323Sed  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1452193323Sed    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1453193323Sed      // No compile time operations on this type yet.
1454193323Sed      if (N1C->getValueType(0) == MVT::ppcf128)
1455193323Sed        return SDValue();
1456193323Sed
1457193323Sed      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1458193323Sed      switch (Cond) {
1459193323Sed      default: break;
1460193323Sed      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1461193323Sed                          return getUNDEF(VT);
1462193323Sed                        // fall through
1463193323Sed      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1464193323Sed      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1465193323Sed                          return getUNDEF(VT);
1466193323Sed                        // fall through
1467193323Sed      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1468193323Sed                                           R==APFloat::cmpLessThan, VT);
1469193323Sed      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1470193323Sed                          return getUNDEF(VT);
1471193323Sed                        // fall through
1472193323Sed      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1473193323Sed      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1474193323Sed                          return getUNDEF(VT);
1475193323Sed                        // fall through
1476193323Sed      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1477193323Sed      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1478193323Sed                          return getUNDEF(VT);
1479193323Sed                        // fall through
1480193323Sed      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1481193323Sed                                           R==APFloat::cmpEqual, VT);
1482193323Sed      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1483193323Sed                          return getUNDEF(VT);
1484193323Sed                        // fall through
1485193323Sed      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1486193323Sed                                           R==APFloat::cmpEqual, VT);
1487193323Sed      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1488193323Sed      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1489193323Sed      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1490193323Sed                                           R==APFloat::cmpEqual, VT);
1491193323Sed      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1492193323Sed      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1493193323Sed                                           R==APFloat::cmpLessThan, VT);
1494193323Sed      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1495193323Sed                                           R==APFloat::cmpUnordered, VT);
1496193323Sed      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1497193323Sed      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1498193323Sed      }
1499193323Sed    } else {
1500193323Sed      // Ensure that the constant occurs on the RHS.
1501193323Sed      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1502193323Sed    }
1503193323Sed  }
1504193323Sed
1505193323Sed  // Could not fold it.
1506193323Sed  return SDValue();
1507193323Sed}
1508193323Sed
1509193323Sed/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1510193323Sed/// use this predicate to simplify operations downstream.
1511193323Sedbool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1512198090Srdivacky  // This predicate is not safe for vector operations.
1513198090Srdivacky  if (Op.getValueType().isVector())
1514198090Srdivacky    return false;
1515198090Srdivacky
1516200581Srdivacky  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1517193323Sed  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1518193323Sed}
1519193323Sed
1520193323Sed/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1521193323Sed/// this predicate to simplify operations downstream.  Mask is known to be zero
1522193323Sed/// for bits that V cannot have.
1523193323Sedbool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1524193323Sed                                     unsigned Depth) const {
1525193323Sed  APInt KnownZero, KnownOne;
1526193323Sed  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1527193323Sed  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1528193323Sed  return (KnownZero & Mask) == Mask;
1529193323Sed}
1530193323Sed
1531193323Sed/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1532193323Sed/// known to be either zero or one and return them in the KnownZero/KnownOne
1533193323Sed/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1534193323Sed/// processing.
1535193323Sedvoid SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1536193323Sed                                     APInt &KnownZero, APInt &KnownOne,
1537193323Sed                                     unsigned Depth) const {
1538193323Sed  unsigned BitWidth = Mask.getBitWidth();
1539200581Srdivacky  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1540193323Sed         "Mask size mismatches value type size!");
1541193323Sed
1542193323Sed  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1543193323Sed  if (Depth == 6 || Mask == 0)
1544193323Sed    return;  // Limit search depth.
1545193323Sed
1546193323Sed  APInt KnownZero2, KnownOne2;
1547193323Sed
1548193323Sed  switch (Op.getOpcode()) {
1549193323Sed  case ISD::Constant:
1550193323Sed    // We know all of the bits for a constant!
1551193323Sed    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1552193323Sed    KnownZero = ~KnownOne & Mask;
1553193323Sed    return;
1554193323Sed  case ISD::AND:
1555193323Sed    // If either the LHS or the RHS are Zero, the result is zero.
1556193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1557193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1558193323Sed                      KnownZero2, KnownOne2, Depth+1);
1559193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1560193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1561193323Sed
1562193323Sed    // Output known-1 bits are only known if set in both the LHS & RHS.
1563193323Sed    KnownOne &= KnownOne2;
1564193323Sed    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1565193323Sed    KnownZero |= KnownZero2;
1566193323Sed    return;
1567193323Sed  case ISD::OR:
1568193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1569193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1570193323Sed                      KnownZero2, KnownOne2, Depth+1);
1571193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1572193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1573193323Sed
1574193323Sed    // Output known-0 bits are only known if clear in both the LHS & RHS.
1575193323Sed    KnownZero &= KnownZero2;
1576193323Sed    // Output known-1 are known to be set if set in either the LHS | RHS.
1577193323Sed    KnownOne |= KnownOne2;
1578193323Sed    return;
1579193323Sed  case ISD::XOR: {
1580193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1581193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1582193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1583193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1584193323Sed
1585193323Sed    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1586193323Sed    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1587193323Sed    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1588193323Sed    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1589193323Sed    KnownZero = KnownZeroOut;
1590193323Sed    return;
1591193323Sed  }
1592193323Sed  case ISD::MUL: {
1593193323Sed    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1594193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1595193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1596193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1597193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1598193323Sed
1599193323Sed    // If low bits are zero in either operand, output low known-0 bits.
1600193323Sed    // Also compute a conserative estimate for high known-0 bits.
1601193323Sed    // More trickiness is possible, but this is sufficient for the
1602193323Sed    // interesting case of alignment computation.
1603193323Sed    KnownOne.clear();
1604193323Sed    unsigned TrailZ = KnownZero.countTrailingOnes() +
1605193323Sed                      KnownZero2.countTrailingOnes();
1606193323Sed    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1607193323Sed                               KnownZero2.countLeadingOnes(),
1608193323Sed                               BitWidth) - BitWidth;
1609193323Sed
1610193323Sed    TrailZ = std::min(TrailZ, BitWidth);
1611193323Sed    LeadZ = std::min(LeadZ, BitWidth);
1612193323Sed    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1613193323Sed                APInt::getHighBitsSet(BitWidth, LeadZ);
1614193323Sed    KnownZero &= Mask;
1615193323Sed    return;
1616193323Sed  }
1617193323Sed  case ISD::UDIV: {
1618193323Sed    // For the purposes of computing leading zeros we can conservatively
1619193323Sed    // treat a udiv as a logical right shift by the power of 2 known to
1620193323Sed    // be less than the denominator.
1621193323Sed    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1622193323Sed    ComputeMaskedBits(Op.getOperand(0),
1623193323Sed                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1624193323Sed    unsigned LeadZ = KnownZero2.countLeadingOnes();
1625193323Sed
1626193323Sed    KnownOne2.clear();
1627193323Sed    KnownZero2.clear();
1628193323Sed    ComputeMaskedBits(Op.getOperand(1),
1629193323Sed                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1630193323Sed    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1631193323Sed    if (RHSUnknownLeadingOnes != BitWidth)
1632193323Sed      LeadZ = std::min(BitWidth,
1633193323Sed                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1634193323Sed
1635193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1636193323Sed    return;
1637193323Sed  }
1638193323Sed  case ISD::SELECT:
1639193323Sed    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1640193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1641193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1642193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1643193323Sed
1644193323Sed    // Only known if known in both the LHS and RHS.
1645193323Sed    KnownOne &= KnownOne2;
1646193323Sed    KnownZero &= KnownZero2;
1647193323Sed    return;
1648193323Sed  case ISD::SELECT_CC:
1649193323Sed    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1650193323Sed    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1651193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1652193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1653193323Sed
1654193323Sed    // Only known if known in both the LHS and RHS.
1655193323Sed    KnownOne &= KnownOne2;
1656193323Sed    KnownZero &= KnownZero2;
1657193323Sed    return;
1658193323Sed  case ISD::SADDO:
1659193323Sed  case ISD::UADDO:
1660193323Sed  case ISD::SSUBO:
1661193323Sed  case ISD::USUBO:
1662193323Sed  case ISD::SMULO:
1663193323Sed  case ISD::UMULO:
1664193323Sed    if (Op.getResNo() != 1)
1665193323Sed      return;
1666193323Sed    // The boolean result conforms to getBooleanContents.  Fall through.
1667193323Sed  case ISD::SETCC:
1668193323Sed    // If we know the result of a setcc has the top bits zero, use this info.
1669193323Sed    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1670193323Sed        BitWidth > 1)
1671193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1672193323Sed    return;
1673193323Sed  case ISD::SHL:
1674193323Sed    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1675193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1676193323Sed      unsigned ShAmt = SA->getZExtValue();
1677193323Sed
1678193323Sed      // If the shift count is an invalid immediate, don't do anything.
1679193323Sed      if (ShAmt >= BitWidth)
1680193323Sed        return;
1681193323Sed
1682193323Sed      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1683193323Sed                        KnownZero, KnownOne, Depth+1);
1684193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1685193323Sed      KnownZero <<= ShAmt;
1686193323Sed      KnownOne  <<= ShAmt;
1687193323Sed      // low bits known zero.
1688193323Sed      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1689193323Sed    }
1690193323Sed    return;
1691193323Sed  case ISD::SRL:
1692193323Sed    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1693193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1694193323Sed      unsigned ShAmt = SA->getZExtValue();
1695193323Sed
1696193323Sed      // If the shift count is an invalid immediate, don't do anything.
1697193323Sed      if (ShAmt >= BitWidth)
1698193323Sed        return;
1699193323Sed
1700193323Sed      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1701193323Sed                        KnownZero, KnownOne, Depth+1);
1702193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1703193323Sed      KnownZero = KnownZero.lshr(ShAmt);
1704193323Sed      KnownOne  = KnownOne.lshr(ShAmt);
1705193323Sed
1706193323Sed      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1707193323Sed      KnownZero |= HighBits;  // High bits known zero.
1708193323Sed    }
1709193323Sed    return;
1710193323Sed  case ISD::SRA:
1711193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1712193323Sed      unsigned ShAmt = SA->getZExtValue();
1713193323Sed
1714193323Sed      // If the shift count is an invalid immediate, don't do anything.
1715193323Sed      if (ShAmt >= BitWidth)
1716193323Sed        return;
1717193323Sed
1718193323Sed      APInt InDemandedMask = (Mask << ShAmt);
1719193323Sed      // If any of the demanded bits are produced by the sign extension, we also
1720193323Sed      // demand the input sign bit.
1721193323Sed      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1722193323Sed      if (HighBits.getBoolValue())
1723193323Sed        InDemandedMask |= APInt::getSignBit(BitWidth);
1724193323Sed
1725193323Sed      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1726193323Sed                        Depth+1);
1727193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1728193323Sed      KnownZero = KnownZero.lshr(ShAmt);
1729193323Sed      KnownOne  = KnownOne.lshr(ShAmt);
1730193323Sed
1731193323Sed      // Handle the sign bits.
1732193323Sed      APInt SignBit = APInt::getSignBit(BitWidth);
1733193323Sed      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1734193323Sed
1735193323Sed      if (KnownZero.intersects(SignBit)) {
1736193323Sed        KnownZero |= HighBits;  // New bits are known zero.
1737193323Sed      } else if (KnownOne.intersects(SignBit)) {
1738193323Sed        KnownOne  |= HighBits;  // New bits are known one.
1739193323Sed      }
1740193323Sed    }
1741193323Sed    return;
1742193323Sed  case ISD::SIGN_EXTEND_INREG: {
1743198090Srdivacky    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1744202375Srdivacky    unsigned EBits = EVT.getScalarType().getSizeInBits();
1745193323Sed
1746193323Sed    // Sign extension.  Compute the demanded bits in the result that are not
1747193323Sed    // present in the input.
1748193323Sed    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1749193323Sed
1750193323Sed    APInt InSignBit = APInt::getSignBit(EBits);
1751193323Sed    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1752193323Sed
1753193323Sed    // If the sign extended bits are demanded, we know that the sign
1754193323Sed    // bit is demanded.
1755193323Sed    InSignBit.zext(BitWidth);
1756193323Sed    if (NewBits.getBoolValue())
1757193323Sed      InputDemandedBits |= InSignBit;
1758193323Sed
1759193323Sed    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1760193323Sed                      KnownZero, KnownOne, Depth+1);
1761193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1762193323Sed
1763193323Sed    // If the sign bit of the input is known set or clear, then we know the
1764193323Sed    // top bits of the result.
1765193323Sed    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1766193323Sed      KnownZero |= NewBits;
1767193323Sed      KnownOne  &= ~NewBits;
1768193323Sed    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1769193323Sed      KnownOne  |= NewBits;
1770193323Sed      KnownZero &= ~NewBits;
1771193323Sed    } else {                              // Input sign bit unknown
1772193323Sed      KnownZero &= ~NewBits;
1773193323Sed      KnownOne  &= ~NewBits;
1774193323Sed    }
1775193323Sed    return;
1776193323Sed  }
1777193323Sed  case ISD::CTTZ:
1778193323Sed  case ISD::CTLZ:
1779193323Sed  case ISD::CTPOP: {
1780193323Sed    unsigned LowBits = Log2_32(BitWidth)+1;
1781193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1782193323Sed    KnownOne.clear();
1783193323Sed    return;
1784193323Sed  }
1785193323Sed  case ISD::LOAD: {
1786193323Sed    if (ISD::isZEXTLoad(Op.getNode())) {
1787193323Sed      LoadSDNode *LD = cast<LoadSDNode>(Op);
1788198090Srdivacky      EVT VT = LD->getMemoryVT();
1789202375Srdivacky      unsigned MemBits = VT.getScalarType().getSizeInBits();
1790193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1791193323Sed    }
1792193323Sed    return;
1793193323Sed  }
1794193323Sed  case ISD::ZERO_EXTEND: {
1795198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1796200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1797193323Sed    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1798193323Sed    APInt InMask    = Mask;
1799193323Sed    InMask.trunc(InBits);
1800193323Sed    KnownZero.trunc(InBits);
1801193323Sed    KnownOne.trunc(InBits);
1802193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1803193323Sed    KnownZero.zext(BitWidth);
1804193323Sed    KnownOne.zext(BitWidth);
1805193323Sed    KnownZero |= NewBits;
1806193323Sed    return;
1807193323Sed  }
1808193323Sed  case ISD::SIGN_EXTEND: {
1809198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1810200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1811193323Sed    APInt InSignBit = APInt::getSignBit(InBits);
1812193323Sed    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1813193323Sed    APInt InMask = Mask;
1814193323Sed    InMask.trunc(InBits);
1815193323Sed
1816193323Sed    // If any of the sign extended bits are demanded, we know that the sign
1817193323Sed    // bit is demanded. Temporarily set this bit in the mask for our callee.
1818193323Sed    if (NewBits.getBoolValue())
1819193323Sed      InMask |= InSignBit;
1820193323Sed
1821193323Sed    KnownZero.trunc(InBits);
1822193323Sed    KnownOne.trunc(InBits);
1823193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1824193323Sed
1825193323Sed    // Note if the sign bit is known to be zero or one.
1826193323Sed    bool SignBitKnownZero = KnownZero.isNegative();
1827193323Sed    bool SignBitKnownOne  = KnownOne.isNegative();
1828193323Sed    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1829193323Sed           "Sign bit can't be known to be both zero and one!");
1830193323Sed
1831193323Sed    // If the sign bit wasn't actually demanded by our caller, we don't
1832193323Sed    // want it set in the KnownZero and KnownOne result values. Reset the
1833193323Sed    // mask and reapply it to the result values.
1834193323Sed    InMask = Mask;
1835193323Sed    InMask.trunc(InBits);
1836193323Sed    KnownZero &= InMask;
1837193323Sed    KnownOne  &= InMask;
1838193323Sed
1839193323Sed    KnownZero.zext(BitWidth);
1840193323Sed    KnownOne.zext(BitWidth);
1841193323Sed
1842193323Sed    // If the sign bit is known zero or one, the top bits match.
1843193323Sed    if (SignBitKnownZero)
1844193323Sed      KnownZero |= NewBits;
1845193323Sed    else if (SignBitKnownOne)
1846193323Sed      KnownOne  |= NewBits;
1847193323Sed    return;
1848193323Sed  }
1849193323Sed  case ISD::ANY_EXTEND: {
1850198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1851200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1852193323Sed    APInt InMask = Mask;
1853193323Sed    InMask.trunc(InBits);
1854193323Sed    KnownZero.trunc(InBits);
1855193323Sed    KnownOne.trunc(InBits);
1856193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1857193323Sed    KnownZero.zext(BitWidth);
1858193323Sed    KnownOne.zext(BitWidth);
1859193323Sed    return;
1860193323Sed  }
1861193323Sed  case ISD::TRUNCATE: {
1862198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1863200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1864193323Sed    APInt InMask = Mask;
1865193323Sed    InMask.zext(InBits);
1866193323Sed    KnownZero.zext(InBits);
1867193323Sed    KnownOne.zext(InBits);
1868193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1869193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1870193323Sed    KnownZero.trunc(BitWidth);
1871193323Sed    KnownOne.trunc(BitWidth);
1872193323Sed    break;
1873193323Sed  }
1874193323Sed  case ISD::AssertZext: {
1875198090Srdivacky    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1876193323Sed    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1877193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1878193323Sed                      KnownOne, Depth+1);
1879193323Sed    KnownZero |= (~InMask) & Mask;
1880193323Sed    return;
1881193323Sed  }
1882193323Sed  case ISD::FGETSIGN:
1883193323Sed    // All bits are zero except the low bit.
1884193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1885193323Sed    return;
1886193323Sed
1887193323Sed  case ISD::SUB: {
1888193323Sed    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1889193323Sed      // We know that the top bits of C-X are clear if X contains less bits
1890193323Sed      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1891193323Sed      // positive if we can prove that X is >= 0 and < 16.
1892193323Sed      if (CLHS->getAPIntValue().isNonNegative()) {
1893193323Sed        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1894193323Sed        // NLZ can't be BitWidth with no sign bit
1895193323Sed        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1896193323Sed        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1897193323Sed                          Depth+1);
1898193323Sed
1899193323Sed        // If all of the MaskV bits are known to be zero, then we know the
1900193323Sed        // output top bits are zero, because we now know that the output is
1901193323Sed        // from [0-C].
1902193323Sed        if ((KnownZero2 & MaskV) == MaskV) {
1903193323Sed          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1904193323Sed          // Top bits known zero.
1905193323Sed          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1906193323Sed        }
1907193323Sed      }
1908193323Sed    }
1909193323Sed  }
1910193323Sed  // fall through
1911193323Sed  case ISD::ADD: {
1912193323Sed    // Output known-0 bits are known if clear or set in both the low clear bits
1913193323Sed    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1914193323Sed    // low 3 bits clear.
1915193323Sed    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1916193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1917193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1918193323Sed    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1919193323Sed
1920193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1921193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1922193323Sed    KnownZeroOut = std::min(KnownZeroOut,
1923193323Sed                            KnownZero2.countTrailingOnes());
1924193323Sed
1925193323Sed    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1926193323Sed    return;
1927193323Sed  }
1928193323Sed  case ISD::SREM:
1929193323Sed    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1930193323Sed      const APInt &RA = Rem->getAPIntValue();
1931193323Sed      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1932193323Sed        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1933193323Sed        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1934193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1935193323Sed
1936193323Sed        // If the sign bit of the first operand is zero, the sign bit of
1937193323Sed        // the result is zero. If the first operand has no one bits below
1938193323Sed        // the second operand's single 1 bit, its sign will be zero.
1939193323Sed        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1940193323Sed          KnownZero2 |= ~LowBits;
1941193323Sed
1942193323Sed        KnownZero |= KnownZero2 & Mask;
1943193323Sed
1944193323Sed        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1945193323Sed      }
1946193323Sed    }
1947193323Sed    return;
1948193323Sed  case ISD::UREM: {
1949193323Sed    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1950193323Sed      const APInt &RA = Rem->getAPIntValue();
1951193323Sed      if (RA.isPowerOf2()) {
1952193323Sed        APInt LowBits = (RA - 1);
1953193323Sed        APInt Mask2 = LowBits & Mask;
1954193323Sed        KnownZero |= ~LowBits & Mask;
1955193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1956193323Sed        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1957193323Sed        break;
1958193323Sed      }
1959193323Sed    }
1960193323Sed
1961193323Sed    // Since the result is less than or equal to either operand, any leading
1962193323Sed    // zero bits in either operand must also exist in the result.
1963193323Sed    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1964193323Sed    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1965193323Sed                      Depth+1);
1966193323Sed    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1967193323Sed                      Depth+1);
1968193323Sed
1969193323Sed    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1970193323Sed                                KnownZero2.countLeadingOnes());
1971193323Sed    KnownOne.clear();
1972193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1973193323Sed    return;
1974193323Sed  }
1975193323Sed  default:
1976193323Sed    // Allow the target to implement this method for its nodes.
1977193323Sed    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1978193323Sed  case ISD::INTRINSIC_WO_CHAIN:
1979193323Sed  case ISD::INTRINSIC_W_CHAIN:
1980193323Sed  case ISD::INTRINSIC_VOID:
1981198090Srdivacky      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1982198090Srdivacky                                         Depth);
1983193323Sed    }
1984193323Sed    return;
1985193323Sed  }
1986193323Sed}
1987193323Sed
1988193323Sed/// ComputeNumSignBits - Return the number of times the sign bit of the
1989193323Sed/// register is replicated into the other bits.  We know that at least 1 bit
1990193323Sed/// is always equal to the sign bit (itself), but other cases can give us
1991193323Sed/// information.  For example, immediately after an "SRA X, 2", we know that
1992193323Sed/// the top 3 bits are all equal to each other, so we return 3.
1993193323Sedunsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1994198090Srdivacky  EVT VT = Op.getValueType();
1995193323Sed  assert(VT.isInteger() && "Invalid VT!");
1996200581Srdivacky  unsigned VTBits = VT.getScalarType().getSizeInBits();
1997193323Sed  unsigned Tmp, Tmp2;
1998193323Sed  unsigned FirstAnswer = 1;
1999193323Sed
2000193323Sed  if (Depth == 6)
2001193323Sed    return 1;  // Limit search depth.
2002193323Sed
2003193323Sed  switch (Op.getOpcode()) {
2004193323Sed  default: break;
2005193323Sed  case ISD::AssertSext:
2006193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2007193323Sed    return VTBits-Tmp+1;
2008193323Sed  case ISD::AssertZext:
2009193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2010193323Sed    return VTBits-Tmp;
2011193323Sed
2012193323Sed  case ISD::Constant: {
2013193323Sed    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2014193323Sed    // If negative, return # leading ones.
2015193323Sed    if (Val.isNegative())
2016193323Sed      return Val.countLeadingOnes();
2017193323Sed
2018193323Sed    // Return # leading zeros.
2019193323Sed    return Val.countLeadingZeros();
2020193323Sed  }
2021193323Sed
2022193323Sed  case ISD::SIGN_EXTEND:
2023200581Srdivacky    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2024193323Sed    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2025193323Sed
2026193323Sed  case ISD::SIGN_EXTEND_INREG:
2027193323Sed    // Max of the input and what this extends.
2028202375Srdivacky    Tmp =
2029202375Srdivacky      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2030193323Sed    Tmp = VTBits-Tmp+1;
2031193323Sed
2032193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2033193323Sed    return std::max(Tmp, Tmp2);
2034193323Sed
2035193323Sed  case ISD::SRA:
2036193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2037193323Sed    // SRA X, C   -> adds C sign bits.
2038193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2039193323Sed      Tmp += C->getZExtValue();
2040193323Sed      if (Tmp > VTBits) Tmp = VTBits;
2041193323Sed    }
2042193323Sed    return Tmp;
2043193323Sed  case ISD::SHL:
2044193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2045193323Sed      // shl destroys sign bits.
2046193323Sed      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2047193323Sed      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2048193323Sed          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2049193323Sed      return Tmp - C->getZExtValue();
2050193323Sed    }
2051193323Sed    break;
2052193323Sed  case ISD::AND:
2053193323Sed  case ISD::OR:
2054193323Sed  case ISD::XOR:    // NOT is handled here.
2055193323Sed    // Logical binary ops preserve the number of sign bits at the worst.
2056193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2057193323Sed    if (Tmp != 1) {
2058193323Sed      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2059193323Sed      FirstAnswer = std::min(Tmp, Tmp2);
2060193323Sed      // We computed what we know about the sign bits as our first
2061193323Sed      // answer. Now proceed to the generic code that uses
2062193323Sed      // ComputeMaskedBits, and pick whichever answer is better.
2063193323Sed    }
2064193323Sed    break;
2065193323Sed
2066193323Sed  case ISD::SELECT:
2067193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2068193323Sed    if (Tmp == 1) return 1;  // Early out.
2069193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2070193323Sed    return std::min(Tmp, Tmp2);
2071193323Sed
2072193323Sed  case ISD::SADDO:
2073193323Sed  case ISD::UADDO:
2074193323Sed  case ISD::SSUBO:
2075193323Sed  case ISD::USUBO:
2076193323Sed  case ISD::SMULO:
2077193323Sed  case ISD::UMULO:
2078193323Sed    if (Op.getResNo() != 1)
2079193323Sed      break;
2080193323Sed    // The boolean result conforms to getBooleanContents.  Fall through.
2081193323Sed  case ISD::SETCC:
2082193323Sed    // If setcc returns 0/-1, all bits are sign bits.
2083193323Sed    if (TLI.getBooleanContents() ==
2084193323Sed        TargetLowering::ZeroOrNegativeOneBooleanContent)
2085193323Sed      return VTBits;
2086193323Sed    break;
2087193323Sed  case ISD::ROTL:
2088193323Sed  case ISD::ROTR:
2089193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2090193323Sed      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2091193323Sed
2092193323Sed      // Handle rotate right by N like a rotate left by 32-N.
2093193323Sed      if (Op.getOpcode() == ISD::ROTR)
2094193323Sed        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2095193323Sed
2096193323Sed      // If we aren't rotating out all of the known-in sign bits, return the
2097193323Sed      // number that are left.  This handles rotl(sext(x), 1) for example.
2098193323Sed      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2099193323Sed      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2100193323Sed    }
2101193323Sed    break;
2102193323Sed  case ISD::ADD:
2103193323Sed    // Add can have at most one carry bit.  Thus we know that the output
2104193323Sed    // is, at worst, one more bit than the inputs.
2105193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2106193323Sed    if (Tmp == 1) return 1;  // Early out.
2107193323Sed
2108193323Sed    // Special case decrementing a value (ADD X, -1):
2109193323Sed    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2110193323Sed      if (CRHS->isAllOnesValue()) {
2111193323Sed        APInt KnownZero, KnownOne;
2112193323Sed        APInt Mask = APInt::getAllOnesValue(VTBits);
2113193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2114193323Sed
2115193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2116193323Sed        // sign bits set.
2117193323Sed        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2118193323Sed          return VTBits;
2119193323Sed
2120193323Sed        // If we are subtracting one from a positive number, there is no carry
2121193323Sed        // out of the result.
2122193323Sed        if (KnownZero.isNegative())
2123193323Sed          return Tmp;
2124193323Sed      }
2125193323Sed
2126193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2127193323Sed    if (Tmp2 == 1) return 1;
2128193323Sed      return std::min(Tmp, Tmp2)-1;
2129193323Sed    break;
2130193323Sed
2131193323Sed  case ISD::SUB:
2132193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2133193323Sed    if (Tmp2 == 1) return 1;
2134193323Sed
2135193323Sed    // Handle NEG.
2136193323Sed    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2137193323Sed      if (CLHS->isNullValue()) {
2138193323Sed        APInt KnownZero, KnownOne;
2139193323Sed        APInt Mask = APInt::getAllOnesValue(VTBits);
2140193323Sed        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2141193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2142193323Sed        // sign bits set.
2143193323Sed        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2144193323Sed          return VTBits;
2145193323Sed
2146193323Sed        // If the input is known to be positive (the sign bit is known clear),
2147193323Sed        // the output of the NEG has the same number of sign bits as the input.
2148193323Sed        if (KnownZero.isNegative())
2149193323Sed          return Tmp2;
2150193323Sed
2151193323Sed        // Otherwise, we treat this like a SUB.
2152193323Sed      }
2153193323Sed
2154193323Sed    // Sub can have at most one carry bit.  Thus we know that the output
2155193323Sed    // is, at worst, one more bit than the inputs.
2156193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2157193323Sed    if (Tmp == 1) return 1;  // Early out.
2158193323Sed      return std::min(Tmp, Tmp2)-1;
2159193323Sed    break;
2160193323Sed  case ISD::TRUNCATE:
2161193323Sed    // FIXME: it's tricky to do anything useful for this, but it is an important
2162193323Sed    // case for targets like X86.
2163193323Sed    break;
2164193323Sed  }
2165193323Sed
2166193323Sed  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2167193323Sed  if (Op.getOpcode() == ISD::LOAD) {
2168193323Sed    LoadSDNode *LD = cast<LoadSDNode>(Op);
2169193323Sed    unsigned ExtType = LD->getExtensionType();
2170193323Sed    switch (ExtType) {
2171193323Sed    default: break;
2172193323Sed    case ISD::SEXTLOAD:    // '17' bits known
2173202375Srdivacky      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2174193323Sed      return VTBits-Tmp+1;
2175193323Sed    case ISD::ZEXTLOAD:    // '16' bits known
2176202375Srdivacky      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2177193323Sed      return VTBits-Tmp;
2178193323Sed    }
2179193323Sed  }
2180193323Sed
2181193323Sed  // Allow the target to implement this method for its nodes.
2182193323Sed  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2183193323Sed      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2184193323Sed      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2185193323Sed      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2186193323Sed    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2187193323Sed    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2188193323Sed  }
2189193323Sed
2190193323Sed  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2191193323Sed  // use this information.
2192193323Sed  APInt KnownZero, KnownOne;
2193193323Sed  APInt Mask = APInt::getAllOnesValue(VTBits);
2194193323Sed  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2195193323Sed
2196193323Sed  if (KnownZero.isNegative()) {        // sign bit is 0
2197193323Sed    Mask = KnownZero;
2198193323Sed  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2199193323Sed    Mask = KnownOne;
2200193323Sed  } else {
2201193323Sed    // Nothing known.
2202193323Sed    return FirstAnswer;
2203193323Sed  }
2204193323Sed
2205193323Sed  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2206193323Sed  // the number of identical bits in the top of the input value.
2207193323Sed  Mask = ~Mask;
2208193323Sed  Mask <<= Mask.getBitWidth()-VTBits;
2209193323Sed  // Return # leading zeros.  We use 'min' here in case Val was zero before
2210193323Sed  // shifting.  We don't want to return '64' as for an i32 "0".
2211193323Sed  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2212193323Sed}
2213193323Sed
2214198090Srdivackybool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2215198090Srdivacky  // If we're told that NaNs won't happen, assume they won't.
2216198090Srdivacky  if (FiniteOnlyFPMath())
2217198090Srdivacky    return true;
2218193323Sed
2219198090Srdivacky  // If the value is a constant, we can obviously see if it is a NaN or not.
2220198090Srdivacky  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2221198090Srdivacky    return !C->getValueAPF().isNaN();
2222198090Srdivacky
2223198090Srdivacky  // TODO: Recognize more cases here.
2224198090Srdivacky
2225198090Srdivacky  return false;
2226198090Srdivacky}
2227198090Srdivacky
2228193323Sedbool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2229193323Sed  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2230193323Sed  if (!GA) return false;
2231193323Sed  if (GA->getOffset() != 0) return false;
2232193323Sed  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2233193323Sed  if (!GV) return false;
2234193323Sed  MachineModuleInfo *MMI = getMachineModuleInfo();
2235193323Sed  return MMI && MMI->hasDebugInfo();
2236193323Sed}
2237193323Sed
2238193323Sed
2239193323Sed/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2240193323Sed/// element of the result of the vector shuffle.
2241193323SedSDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2242193323Sed                                          unsigned i) {
2243198090Srdivacky  EVT VT = N->getValueType(0);
2244193323Sed  DebugLoc dl = N->getDebugLoc();
2245193323Sed  if (N->getMaskElt(i) < 0)
2246193323Sed    return getUNDEF(VT.getVectorElementType());
2247193323Sed  unsigned Index = N->getMaskElt(i);
2248193323Sed  unsigned NumElems = VT.getVectorNumElements();
2249193323Sed  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2250193323Sed  Index %= NumElems;
2251193323Sed
2252193323Sed  if (V.getOpcode() == ISD::BIT_CONVERT) {
2253193323Sed    V = V.getOperand(0);
2254198090Srdivacky    EVT VVT = V.getValueType();
2255193323Sed    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2256193323Sed      return SDValue();
2257193323Sed  }
2258193323Sed  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2259193323Sed    return (Index == 0) ? V.getOperand(0)
2260193323Sed                      : getUNDEF(VT.getVectorElementType());
2261193323Sed  if (V.getOpcode() == ISD::BUILD_VECTOR)
2262193323Sed    return V.getOperand(Index);
2263193323Sed  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2264193323Sed    return getShuffleScalarElt(SVN, Index);
2265193323Sed  return SDValue();
2266193323Sed}
2267193323Sed
2268193323Sed
2269193323Sed/// getNode - Gets or creates the specified node.
2270193323Sed///
2271198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2272193323Sed  FoldingSetNodeID ID;
2273193323Sed  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2274193323Sed  void *IP = 0;
2275201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2276193323Sed    return SDValue(E, 0);
2277201360Srdivacky
2278193323Sed  SDNode *N = NodeAllocator.Allocate<SDNode>();
2279193323Sed  new (N) SDNode(Opcode, DL, getVTList(VT));
2280193323Sed  CSEMap.InsertNode(N, IP);
2281193323Sed
2282193323Sed  AllNodes.push_back(N);
2283193323Sed#ifndef NDEBUG
2284193323Sed  VerifyNode(N);
2285193323Sed#endif
2286193323Sed  return SDValue(N, 0);
2287193323Sed}
2288193323Sed
2289193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2290198090Srdivacky                              EVT VT, SDValue Operand) {
2291193323Sed  // Constant fold unary operations with an integer constant operand.
2292193323Sed  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2293193323Sed    const APInt &Val = C->getAPIntValue();
2294193323Sed    unsigned BitWidth = VT.getSizeInBits();
2295193323Sed    switch (Opcode) {
2296193323Sed    default: break;
2297193323Sed    case ISD::SIGN_EXTEND:
2298193323Sed      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2299193323Sed    case ISD::ANY_EXTEND:
2300193323Sed    case ISD::ZERO_EXTEND:
2301193323Sed    case ISD::TRUNCATE:
2302193323Sed      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2303193323Sed    case ISD::UINT_TO_FP:
2304193323Sed    case ISD::SINT_TO_FP: {
2305193323Sed      const uint64_t zero[] = {0, 0};
2306193323Sed      // No compile time operations on this type.
2307193323Sed      if (VT==MVT::ppcf128)
2308193323Sed        break;
2309193323Sed      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2310193323Sed      (void)apf.convertFromAPInt(Val,
2311193323Sed                                 Opcode==ISD::SINT_TO_FP,
2312193323Sed                                 APFloat::rmNearestTiesToEven);
2313193323Sed      return getConstantFP(apf, VT);
2314193323Sed    }
2315193323Sed    case ISD::BIT_CONVERT:
2316193323Sed      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2317193323Sed        return getConstantFP(Val.bitsToFloat(), VT);
2318193323Sed      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2319193323Sed        return getConstantFP(Val.bitsToDouble(), VT);
2320193323Sed      break;
2321193323Sed    case ISD::BSWAP:
2322193323Sed      return getConstant(Val.byteSwap(), VT);
2323193323Sed    case ISD::CTPOP:
2324193323Sed      return getConstant(Val.countPopulation(), VT);
2325193323Sed    case ISD::CTLZ:
2326193323Sed      return getConstant(Val.countLeadingZeros(), VT);
2327193323Sed    case ISD::CTTZ:
2328193323Sed      return getConstant(Val.countTrailingZeros(), VT);
2329193323Sed    }
2330193323Sed  }
2331193323Sed
2332193323Sed  // Constant fold unary operations with a floating point constant operand.
2333193323Sed  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2334193323Sed    APFloat V = C->getValueAPF();    // make copy
2335193323Sed    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2336193323Sed      switch (Opcode) {
2337193323Sed      case ISD::FNEG:
2338193323Sed        V.changeSign();
2339193323Sed        return getConstantFP(V, VT);
2340193323Sed      case ISD::FABS:
2341193323Sed        V.clearSign();
2342193323Sed        return getConstantFP(V, VT);
2343193323Sed      case ISD::FP_ROUND:
2344193323Sed      case ISD::FP_EXTEND: {
2345193323Sed        bool ignored;
2346193323Sed        // This can return overflow, underflow, or inexact; we don't care.
2347193323Sed        // FIXME need to be more flexible about rounding mode.
2348198090Srdivacky        (void)V.convert(*EVTToAPFloatSemantics(VT),
2349193323Sed                        APFloat::rmNearestTiesToEven, &ignored);
2350193323Sed        return getConstantFP(V, VT);
2351193323Sed      }
2352193323Sed      case ISD::FP_TO_SINT:
2353193323Sed      case ISD::FP_TO_UINT: {
2354193323Sed        integerPart x[2];
2355193323Sed        bool ignored;
2356193323Sed        assert(integerPartWidth >= 64);
2357193323Sed        // FIXME need to be more flexible about rounding mode.
2358193323Sed        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2359193323Sed                              Opcode==ISD::FP_TO_SINT,
2360193323Sed                              APFloat::rmTowardZero, &ignored);
2361193323Sed        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2362193323Sed          break;
2363193323Sed        APInt api(VT.getSizeInBits(), 2, x);
2364193323Sed        return getConstant(api, VT);
2365193323Sed      }
2366193323Sed      case ISD::BIT_CONVERT:
2367193323Sed        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2368193323Sed          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2369193323Sed        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2370193323Sed          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2371193323Sed        break;
2372193323Sed      }
2373193323Sed    }
2374193323Sed  }
2375193323Sed
2376193323Sed  unsigned OpOpcode = Operand.getNode()->getOpcode();
2377193323Sed  switch (Opcode) {
2378193323Sed  case ISD::TokenFactor:
2379193323Sed  case ISD::MERGE_VALUES:
2380193323Sed  case ISD::CONCAT_VECTORS:
2381193323Sed    return Operand;         // Factor, merge or concat of one node?  No need.
2382198090Srdivacky  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2383193323Sed  case ISD::FP_EXTEND:
2384193323Sed    assert(VT.isFloatingPoint() &&
2385193323Sed           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2386193323Sed    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2387200581Srdivacky    assert((!VT.isVector() ||
2388200581Srdivacky            VT.getVectorNumElements() ==
2389200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2390200581Srdivacky           "Vector element count mismatch!");
2391193323Sed    if (Operand.getOpcode() == ISD::UNDEF)
2392193323Sed      return getUNDEF(VT);
2393193323Sed    break;
2394193323Sed  case ISD::SIGN_EXTEND:
2395193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2396193323Sed           "Invalid SIGN_EXTEND!");
2397193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2398200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2399200581Srdivacky           "Invalid sext node, dst < src!");
2400200581Srdivacky    assert((!VT.isVector() ||
2401200581Srdivacky            VT.getVectorNumElements() ==
2402200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2403200581Srdivacky           "Vector element count mismatch!");
2404193323Sed    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2405193323Sed      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2406193323Sed    break;
2407193323Sed  case ISD::ZERO_EXTEND:
2408193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2409193323Sed           "Invalid ZERO_EXTEND!");
2410193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2411200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2412200581Srdivacky           "Invalid zext node, dst < src!");
2413200581Srdivacky    assert((!VT.isVector() ||
2414200581Srdivacky            VT.getVectorNumElements() ==
2415200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2416200581Srdivacky           "Vector element count mismatch!");
2417193323Sed    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2418193323Sed      return getNode(ISD::ZERO_EXTEND, DL, VT,
2419193323Sed                     Operand.getNode()->getOperand(0));
2420193323Sed    break;
2421193323Sed  case ISD::ANY_EXTEND:
2422193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2423193323Sed           "Invalid ANY_EXTEND!");
2424193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2425200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2426200581Srdivacky           "Invalid anyext node, dst < src!");
2427200581Srdivacky    assert((!VT.isVector() ||
2428200581Srdivacky            VT.getVectorNumElements() ==
2429200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2430200581Srdivacky           "Vector element count mismatch!");
2431193323Sed    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2432193323Sed      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2433193323Sed      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2434193323Sed    break;
2435193323Sed  case ISD::TRUNCATE:
2436193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2437193323Sed           "Invalid TRUNCATE!");
2438193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2439200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2440200581Srdivacky           "Invalid truncate node, src < dst!");
2441200581Srdivacky    assert((!VT.isVector() ||
2442200581Srdivacky            VT.getVectorNumElements() ==
2443200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2444200581Srdivacky           "Vector element count mismatch!");
2445193323Sed    if (OpOpcode == ISD::TRUNCATE)
2446193323Sed      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2447193323Sed    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2448193323Sed             OpOpcode == ISD::ANY_EXTEND) {
2449193323Sed      // If the source is smaller than the dest, we still need an extend.
2450200581Srdivacky      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2451200581Srdivacky            .bitsLT(VT.getScalarType()))
2452193323Sed        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2453193323Sed      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2454193323Sed        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2455193323Sed      else
2456193323Sed        return Operand.getNode()->getOperand(0);
2457193323Sed    }
2458193323Sed    break;
2459193323Sed  case ISD::BIT_CONVERT:
2460193323Sed    // Basic sanity checking.
2461193323Sed    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2462193323Sed           && "Cannot BIT_CONVERT between types of different sizes!");
2463193323Sed    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2464193323Sed    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2465193323Sed      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2466193323Sed    if (OpOpcode == ISD::UNDEF)
2467193323Sed      return getUNDEF(VT);
2468193323Sed    break;
2469193323Sed  case ISD::SCALAR_TO_VECTOR:
2470193323Sed    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2471193323Sed           (VT.getVectorElementType() == Operand.getValueType() ||
2472193323Sed            (VT.getVectorElementType().isInteger() &&
2473193323Sed             Operand.getValueType().isInteger() &&
2474193323Sed             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2475193323Sed           "Illegal SCALAR_TO_VECTOR node!");
2476193323Sed    if (OpOpcode == ISD::UNDEF)
2477193323Sed      return getUNDEF(VT);
2478193323Sed    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2479193323Sed    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2480193323Sed        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2481193323Sed        Operand.getConstantOperandVal(1) == 0 &&
2482193323Sed        Operand.getOperand(0).getValueType() == VT)
2483193323Sed      return Operand.getOperand(0);
2484193323Sed    break;
2485193323Sed  case ISD::FNEG:
2486193323Sed    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2487193323Sed    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2488193323Sed      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2489193323Sed                     Operand.getNode()->getOperand(0));
2490193323Sed    if (OpOpcode == ISD::FNEG)  // --X -> X
2491193323Sed      return Operand.getNode()->getOperand(0);
2492193323Sed    break;
2493193323Sed  case ISD::FABS:
2494193323Sed    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2495193323Sed      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2496193323Sed    break;
2497193323Sed  }
2498193323Sed
2499193323Sed  SDNode *N;
2500193323Sed  SDVTList VTs = getVTList(VT);
2501193323Sed  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2502193323Sed    FoldingSetNodeID ID;
2503193323Sed    SDValue Ops[1] = { Operand };
2504193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2505193323Sed    void *IP = 0;
2506201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2507193323Sed      return SDValue(E, 0);
2508201360Srdivacky
2509193323Sed    N = NodeAllocator.Allocate<UnarySDNode>();
2510193323Sed    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2511193323Sed    CSEMap.InsertNode(N, IP);
2512193323Sed  } else {
2513193323Sed    N = NodeAllocator.Allocate<UnarySDNode>();
2514193323Sed    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2515193323Sed  }
2516193323Sed
2517193323Sed  AllNodes.push_back(N);
2518193323Sed#ifndef NDEBUG
2519193323Sed  VerifyNode(N);
2520193323Sed#endif
2521193323Sed  return SDValue(N, 0);
2522193323Sed}
2523193323Sed
2524193323SedSDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2525198090Srdivacky                                             EVT VT,
2526193323Sed                                             ConstantSDNode *Cst1,
2527193323Sed                                             ConstantSDNode *Cst2) {
2528193323Sed  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2529193323Sed
2530193323Sed  switch (Opcode) {
2531193323Sed  case ISD::ADD:  return getConstant(C1 + C2, VT);
2532193323Sed  case ISD::SUB:  return getConstant(C1 - C2, VT);
2533193323Sed  case ISD::MUL:  return getConstant(C1 * C2, VT);
2534193323Sed  case ISD::UDIV:
2535193323Sed    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2536193323Sed    break;
2537193323Sed  case ISD::UREM:
2538193323Sed    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2539193323Sed    break;
2540193323Sed  case ISD::SDIV:
2541193323Sed    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2542193323Sed    break;
2543193323Sed  case ISD::SREM:
2544193323Sed    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2545193323Sed    break;
2546193323Sed  case ISD::AND:  return getConstant(C1 & C2, VT);
2547193323Sed  case ISD::OR:   return getConstant(C1 | C2, VT);
2548193323Sed  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2549193323Sed  case ISD::SHL:  return getConstant(C1 << C2, VT);
2550193323Sed  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2551193323Sed  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2552193323Sed  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2553193323Sed  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2554193323Sed  default: break;
2555193323Sed  }
2556193323Sed
2557193323Sed  return SDValue();
2558193323Sed}
2559193323Sed
2560198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2561193323Sed                              SDValue N1, SDValue N2) {
2562193323Sed  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2563193323Sed  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2564193323Sed  switch (Opcode) {
2565193323Sed  default: break;
2566193323Sed  case ISD::TokenFactor:
2567193323Sed    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2568193323Sed           N2.getValueType() == MVT::Other && "Invalid token factor!");
2569193323Sed    // Fold trivial token factors.
2570193323Sed    if (N1.getOpcode() == ISD::EntryToken) return N2;
2571193323Sed    if (N2.getOpcode() == ISD::EntryToken) return N1;
2572193323Sed    if (N1 == N2) return N1;
2573193323Sed    break;
2574193323Sed  case ISD::CONCAT_VECTORS:
2575193323Sed    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2576193323Sed    // one big BUILD_VECTOR.
2577193323Sed    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2578193323Sed        N2.getOpcode() == ISD::BUILD_VECTOR) {
2579193323Sed      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2580193323Sed      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2581193323Sed      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2582193323Sed    }
2583193323Sed    break;
2584193323Sed  case ISD::AND:
2585193323Sed    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2586193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2587193323Sed    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2588193323Sed    // worth handling here.
2589193323Sed    if (N2C && N2C->isNullValue())
2590193323Sed      return N2;
2591193323Sed    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2592193323Sed      return N1;
2593193323Sed    break;
2594193323Sed  case ISD::OR:
2595193323Sed  case ISD::XOR:
2596193323Sed  case ISD::ADD:
2597193323Sed  case ISD::SUB:
2598193323Sed    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2599193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2600193323Sed    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2601193323Sed    // it's worth handling here.
2602193323Sed    if (N2C && N2C->isNullValue())
2603193323Sed      return N1;
2604193323Sed    break;
2605193323Sed  case ISD::UDIV:
2606193323Sed  case ISD::UREM:
2607193323Sed  case ISD::MULHU:
2608193323Sed  case ISD::MULHS:
2609193323Sed  case ISD::MUL:
2610193323Sed  case ISD::SDIV:
2611193323Sed  case ISD::SREM:
2612193323Sed    assert(VT.isInteger() && "This operator does not apply to FP types!");
2613193323Sed    // fall through
2614193323Sed  case ISD::FADD:
2615193323Sed  case ISD::FSUB:
2616193323Sed  case ISD::FMUL:
2617193323Sed  case ISD::FDIV:
2618193323Sed  case ISD::FREM:
2619193323Sed    if (UnsafeFPMath) {
2620193323Sed      if (Opcode == ISD::FADD) {
2621193323Sed        // 0+x --> x
2622193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2623193323Sed          if (CFP->getValueAPF().isZero())
2624193323Sed            return N2;
2625193323Sed        // x+0 --> x
2626193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2627193323Sed          if (CFP->getValueAPF().isZero())
2628193323Sed            return N1;
2629193323Sed      } else if (Opcode == ISD::FSUB) {
2630193323Sed        // x-0 --> x
2631193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2632193323Sed          if (CFP->getValueAPF().isZero())
2633193323Sed            return N1;
2634193323Sed      }
2635193323Sed    }
2636193323Sed    assert(N1.getValueType() == N2.getValueType() &&
2637193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2638193323Sed    break;
2639193323Sed  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2640193323Sed    assert(N1.getValueType() == VT &&
2641193323Sed           N1.getValueType().isFloatingPoint() &&
2642193323Sed           N2.getValueType().isFloatingPoint() &&
2643193323Sed           "Invalid FCOPYSIGN!");
2644193323Sed    break;
2645193323Sed  case ISD::SHL:
2646193323Sed  case ISD::SRA:
2647193323Sed  case ISD::SRL:
2648193323Sed  case ISD::ROTL:
2649193323Sed  case ISD::ROTR:
2650193323Sed    assert(VT == N1.getValueType() &&
2651193323Sed           "Shift operators return type must be the same as their first arg");
2652193323Sed    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2653193323Sed           "Shifts only work on integers");
2654193323Sed
2655193323Sed    // Always fold shifts of i1 values so the code generator doesn't need to
2656193323Sed    // handle them.  Since we know the size of the shift has to be less than the
2657193323Sed    // size of the value, the shift/rotate count is guaranteed to be zero.
2658193323Sed    if (VT == MVT::i1)
2659193323Sed      return N1;
2660202375Srdivacky    if (N2C && N2C->isNullValue())
2661202375Srdivacky      return N1;
2662193323Sed    break;
2663193323Sed  case ISD::FP_ROUND_INREG: {
2664198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2665193323Sed    assert(VT == N1.getValueType() && "Not an inreg round!");
2666193323Sed    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2667193323Sed           "Cannot FP_ROUND_INREG integer types");
2668202375Srdivacky    assert(EVT.isVector() == VT.isVector() &&
2669202375Srdivacky           "FP_ROUND_INREG type should be vector iff the operand "
2670202375Srdivacky           "type is vector!");
2671202375Srdivacky    assert((!EVT.isVector() ||
2672202375Srdivacky            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2673202375Srdivacky           "Vector element counts must match in FP_ROUND_INREG");
2674193323Sed    assert(EVT.bitsLE(VT) && "Not rounding down!");
2675193323Sed    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2676193323Sed    break;
2677193323Sed  }
2678193323Sed  case ISD::FP_ROUND:
2679193323Sed    assert(VT.isFloatingPoint() &&
2680193323Sed           N1.getValueType().isFloatingPoint() &&
2681193323Sed           VT.bitsLE(N1.getValueType()) &&
2682193323Sed           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2683193323Sed    if (N1.getValueType() == VT) return N1;  // noop conversion.
2684193323Sed    break;
2685193323Sed  case ISD::AssertSext:
2686193323Sed  case ISD::AssertZext: {
2687198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2688193323Sed    assert(VT == N1.getValueType() && "Not an inreg extend!");
2689193323Sed    assert(VT.isInteger() && EVT.isInteger() &&
2690193323Sed           "Cannot *_EXTEND_INREG FP types");
2691200581Srdivacky    assert(!EVT.isVector() &&
2692200581Srdivacky           "AssertSExt/AssertZExt type should be the vector element type "
2693200581Srdivacky           "rather than the vector type!");
2694193323Sed    assert(EVT.bitsLE(VT) && "Not extending!");
2695193323Sed    if (VT == EVT) return N1; // noop assertion.
2696193323Sed    break;
2697193323Sed  }
2698193323Sed  case ISD::SIGN_EXTEND_INREG: {
2699198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2700193323Sed    assert(VT == N1.getValueType() && "Not an inreg extend!");
2701193323Sed    assert(VT.isInteger() && EVT.isInteger() &&
2702193323Sed           "Cannot *_EXTEND_INREG FP types");
2703202375Srdivacky    assert(EVT.isVector() == VT.isVector() &&
2704202375Srdivacky           "SIGN_EXTEND_INREG type should be vector iff the operand "
2705202375Srdivacky           "type is vector!");
2706202375Srdivacky    assert((!EVT.isVector() ||
2707202375Srdivacky            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2708202375Srdivacky           "Vector element counts must match in SIGN_EXTEND_INREG");
2709202375Srdivacky    assert(EVT.bitsLE(VT) && "Not extending!");
2710193323Sed    if (EVT == VT) return N1;  // Not actually extending
2711193323Sed
2712193323Sed    if (N1C) {
2713193323Sed      APInt Val = N1C->getAPIntValue();
2714202375Srdivacky      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2715193323Sed      Val <<= Val.getBitWidth()-FromBits;
2716193323Sed      Val = Val.ashr(Val.getBitWidth()-FromBits);
2717193323Sed      return getConstant(Val, VT);
2718193323Sed    }
2719193323Sed    break;
2720193323Sed  }
2721193323Sed  case ISD::EXTRACT_VECTOR_ELT:
2722193323Sed    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2723193323Sed    if (N1.getOpcode() == ISD::UNDEF)
2724193323Sed      return getUNDEF(VT);
2725193323Sed
2726193323Sed    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2727193323Sed    // expanding copies of large vectors from registers.
2728193323Sed    if (N2C &&
2729193323Sed        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2730193323Sed        N1.getNumOperands() > 0) {
2731193323Sed      unsigned Factor =
2732193323Sed        N1.getOperand(0).getValueType().getVectorNumElements();
2733193323Sed      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2734193323Sed                     N1.getOperand(N2C->getZExtValue() / Factor),
2735193323Sed                     getConstant(N2C->getZExtValue() % Factor,
2736193323Sed                                 N2.getValueType()));
2737193323Sed    }
2738193323Sed
2739193323Sed    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2740193323Sed    // expanding large vector constants.
2741193323Sed    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2742193323Sed      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2743198090Srdivacky      EVT VEltTy = N1.getValueType().getVectorElementType();
2744198090Srdivacky      if (Elt.getValueType() != VEltTy) {
2745193323Sed        // If the vector element type is not legal, the BUILD_VECTOR operands
2746193323Sed        // are promoted and implicitly truncated.  Make that explicit here.
2747198090Srdivacky        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2748193323Sed      }
2749198090Srdivacky      if (VT != VEltTy) {
2750198090Srdivacky        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2751198090Srdivacky        // result is implicitly extended.
2752198090Srdivacky        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2753198090Srdivacky      }
2754193323Sed      return Elt;
2755193323Sed    }
2756193323Sed
2757193323Sed    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2758193323Sed    // operations are lowered to scalars.
2759193323Sed    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2760193323Sed      // If the indices are the same, return the inserted element.
2761193323Sed      if (N1.getOperand(2) == N2)
2762193323Sed        return N1.getOperand(1);
2763193323Sed      // If the indices are known different, extract the element from
2764193323Sed      // the original vector.
2765193323Sed      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2766193323Sed               isa<ConstantSDNode>(N2))
2767193323Sed        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2768193323Sed    }
2769193323Sed    break;
2770193323Sed  case ISD::EXTRACT_ELEMENT:
2771193323Sed    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2772193323Sed    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2773193323Sed           (N1.getValueType().isInteger() == VT.isInteger()) &&
2774193323Sed           "Wrong types for EXTRACT_ELEMENT!");
2775193323Sed
2776193323Sed    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2777193323Sed    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2778193323Sed    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2779193323Sed    if (N1.getOpcode() == ISD::BUILD_PAIR)
2780193323Sed      return N1.getOperand(N2C->getZExtValue());
2781193323Sed
2782193323Sed    // EXTRACT_ELEMENT of a constant int is also very common.
2783193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2784193323Sed      unsigned ElementSize = VT.getSizeInBits();
2785193323Sed      unsigned Shift = ElementSize * N2C->getZExtValue();
2786193323Sed      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2787193323Sed      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2788193323Sed    }
2789193323Sed    break;
2790193323Sed  case ISD::EXTRACT_SUBVECTOR:
2791193323Sed    if (N1.getValueType() == VT) // Trivial extraction.
2792193323Sed      return N1;
2793193323Sed    break;
2794193323Sed  }
2795193323Sed
2796193323Sed  if (N1C) {
2797193323Sed    if (N2C) {
2798193323Sed      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2799193323Sed      if (SV.getNode()) return SV;
2800193323Sed    } else {      // Cannonicalize constant to RHS if commutative
2801193323Sed      if (isCommutativeBinOp(Opcode)) {
2802193323Sed        std::swap(N1C, N2C);
2803193323Sed        std::swap(N1, N2);
2804193323Sed      }
2805193323Sed    }
2806193323Sed  }
2807193323Sed
2808193323Sed  // Constant fold FP operations.
2809193323Sed  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2810193323Sed  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2811193323Sed  if (N1CFP) {
2812193323Sed    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2813193323Sed      // Cannonicalize constant to RHS if commutative
2814193323Sed      std::swap(N1CFP, N2CFP);
2815193323Sed      std::swap(N1, N2);
2816193323Sed    } else if (N2CFP && VT != MVT::ppcf128) {
2817193323Sed      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2818193323Sed      APFloat::opStatus s;
2819193323Sed      switch (Opcode) {
2820193323Sed      case ISD::FADD:
2821193323Sed        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2822193323Sed        if (s != APFloat::opInvalidOp)
2823193323Sed          return getConstantFP(V1, VT);
2824193323Sed        break;
2825193323Sed      case ISD::FSUB:
2826193323Sed        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2827193323Sed        if (s!=APFloat::opInvalidOp)
2828193323Sed          return getConstantFP(V1, VT);
2829193323Sed        break;
2830193323Sed      case ISD::FMUL:
2831193323Sed        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2832193323Sed        if (s!=APFloat::opInvalidOp)
2833193323Sed          return getConstantFP(V1, VT);
2834193323Sed        break;
2835193323Sed      case ISD::FDIV:
2836193323Sed        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2837193323Sed        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2838193323Sed          return getConstantFP(V1, VT);
2839193323Sed        break;
2840193323Sed      case ISD::FREM :
2841193323Sed        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2842193323Sed        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2843193323Sed          return getConstantFP(V1, VT);
2844193323Sed        break;
2845193323Sed      case ISD::FCOPYSIGN:
2846193323Sed        V1.copySign(V2);
2847193323Sed        return getConstantFP(V1, VT);
2848193323Sed      default: break;
2849193323Sed      }
2850193323Sed    }
2851193323Sed  }
2852193323Sed
2853193323Sed  // Canonicalize an UNDEF to the RHS, even over a constant.
2854193323Sed  if (N1.getOpcode() == ISD::UNDEF) {
2855193323Sed    if (isCommutativeBinOp(Opcode)) {
2856193323Sed      std::swap(N1, N2);
2857193323Sed    } else {
2858193323Sed      switch (Opcode) {
2859193323Sed      case ISD::FP_ROUND_INREG:
2860193323Sed      case ISD::SIGN_EXTEND_INREG:
2861193323Sed      case ISD::SUB:
2862193323Sed      case ISD::FSUB:
2863193323Sed      case ISD::FDIV:
2864193323Sed      case ISD::FREM:
2865193323Sed      case ISD::SRA:
2866193323Sed        return N1;     // fold op(undef, arg2) -> undef
2867193323Sed      case ISD::UDIV:
2868193323Sed      case ISD::SDIV:
2869193323Sed      case ISD::UREM:
2870193323Sed      case ISD::SREM:
2871193323Sed      case ISD::SRL:
2872193323Sed      case ISD::SHL:
2873193323Sed        if (!VT.isVector())
2874193323Sed          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2875193323Sed        // For vectors, we can't easily build an all zero vector, just return
2876193323Sed        // the LHS.
2877193323Sed        return N2;
2878193323Sed      }
2879193323Sed    }
2880193323Sed  }
2881193323Sed
2882193323Sed  // Fold a bunch of operators when the RHS is undef.
2883193323Sed  if (N2.getOpcode() == ISD::UNDEF) {
2884193323Sed    switch (Opcode) {
2885193323Sed    case ISD::XOR:
2886193323Sed      if (N1.getOpcode() == ISD::UNDEF)
2887193323Sed        // Handle undef ^ undef -> 0 special case. This is a common
2888193323Sed        // idiom (misuse).
2889193323Sed        return getConstant(0, VT);
2890193323Sed      // fallthrough
2891193323Sed    case ISD::ADD:
2892193323Sed    case ISD::ADDC:
2893193323Sed    case ISD::ADDE:
2894193323Sed    case ISD::SUB:
2895193574Sed    case ISD::UDIV:
2896193574Sed    case ISD::SDIV:
2897193574Sed    case ISD::UREM:
2898193574Sed    case ISD::SREM:
2899193574Sed      return N2;       // fold op(arg1, undef) -> undef
2900193323Sed    case ISD::FADD:
2901193323Sed    case ISD::FSUB:
2902193323Sed    case ISD::FMUL:
2903193323Sed    case ISD::FDIV:
2904193323Sed    case ISD::FREM:
2905193574Sed      if (UnsafeFPMath)
2906193574Sed        return N2;
2907193574Sed      break;
2908193323Sed    case ISD::MUL:
2909193323Sed    case ISD::AND:
2910193323Sed    case ISD::SRL:
2911193323Sed    case ISD::SHL:
2912193323Sed      if (!VT.isVector())
2913193323Sed        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2914193323Sed      // For vectors, we can't easily build an all zero vector, just return
2915193323Sed      // the LHS.
2916193323Sed      return N1;
2917193323Sed    case ISD::OR:
2918193323Sed      if (!VT.isVector())
2919193323Sed        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2920193323Sed      // For vectors, we can't easily build an all one vector, just return
2921193323Sed      // the LHS.
2922193323Sed      return N1;
2923193323Sed    case ISD::SRA:
2924193323Sed      return N1;
2925193323Sed    }
2926193323Sed  }
2927193323Sed
2928193323Sed  // Memoize this node if possible.
2929193323Sed  SDNode *N;
2930193323Sed  SDVTList VTs = getVTList(VT);
2931193323Sed  if (VT != MVT::Flag) {
2932193323Sed    SDValue Ops[] = { N1, N2 };
2933193323Sed    FoldingSetNodeID ID;
2934193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2935193323Sed    void *IP = 0;
2936201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2937193323Sed      return SDValue(E, 0);
2938201360Srdivacky
2939193323Sed    N = NodeAllocator.Allocate<BinarySDNode>();
2940193323Sed    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2941193323Sed    CSEMap.InsertNode(N, IP);
2942193323Sed  } else {
2943193323Sed    N = NodeAllocator.Allocate<BinarySDNode>();
2944193323Sed    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2945193323Sed  }
2946193323Sed
2947193323Sed  AllNodes.push_back(N);
2948193323Sed#ifndef NDEBUG
2949193323Sed  VerifyNode(N);
2950193323Sed#endif
2951193323Sed  return SDValue(N, 0);
2952193323Sed}
2953193323Sed
2954198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2955193323Sed                              SDValue N1, SDValue N2, SDValue N3) {
2956193323Sed  // Perform various simplifications.
2957193323Sed  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2958193323Sed  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2959193323Sed  switch (Opcode) {
2960193323Sed  case ISD::CONCAT_VECTORS:
2961193323Sed    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2962193323Sed    // one big BUILD_VECTOR.
2963193323Sed    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2964193323Sed        N2.getOpcode() == ISD::BUILD_VECTOR &&
2965193323Sed        N3.getOpcode() == ISD::BUILD_VECTOR) {
2966193323Sed      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2967193323Sed      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2968193323Sed      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2969193323Sed      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2970193323Sed    }
2971193323Sed    break;
2972193323Sed  case ISD::SETCC: {
2973193323Sed    // Use FoldSetCC to simplify SETCC's.
2974193323Sed    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2975193323Sed    if (Simp.getNode()) return Simp;
2976193323Sed    break;
2977193323Sed  }
2978193323Sed  case ISD::SELECT:
2979193323Sed    if (N1C) {
2980193323Sed     if (N1C->getZExtValue())
2981193323Sed        return N2;             // select true, X, Y -> X
2982193323Sed      else
2983193323Sed        return N3;             // select false, X, Y -> Y
2984193323Sed    }
2985193323Sed
2986193323Sed    if (N2 == N3) return N2;   // select C, X, X -> X
2987193323Sed    break;
2988193323Sed  case ISD::BRCOND:
2989193323Sed    if (N2C) {
2990193323Sed      if (N2C->getZExtValue()) // Unconditional branch
2991193323Sed        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2992193323Sed      else
2993193323Sed        return N1;         // Never-taken branch
2994193323Sed    }
2995193323Sed    break;
2996193323Sed  case ISD::VECTOR_SHUFFLE:
2997198090Srdivacky    llvm_unreachable("should use getVectorShuffle constructor!");
2998193323Sed    break;
2999193323Sed  case ISD::BIT_CONVERT:
3000193323Sed    // Fold bit_convert nodes from a type to themselves.
3001193323Sed    if (N1.getValueType() == VT)
3002193323Sed      return N1;
3003193323Sed    break;
3004193323Sed  }
3005193323Sed
3006193323Sed  // Memoize node if it doesn't produce a flag.
3007193323Sed  SDNode *N;
3008193323Sed  SDVTList VTs = getVTList(VT);
3009193323Sed  if (VT != MVT::Flag) {
3010193323Sed    SDValue Ops[] = { N1, N2, N3 };
3011193323Sed    FoldingSetNodeID ID;
3012193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3013193323Sed    void *IP = 0;
3014201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3015193323Sed      return SDValue(E, 0);
3016201360Srdivacky
3017193323Sed    N = NodeAllocator.Allocate<TernarySDNode>();
3018193323Sed    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3019193323Sed    CSEMap.InsertNode(N, IP);
3020193323Sed  } else {
3021193323Sed    N = NodeAllocator.Allocate<TernarySDNode>();
3022193323Sed    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3023193323Sed  }
3024200581Srdivacky
3025193323Sed  AllNodes.push_back(N);
3026193323Sed#ifndef NDEBUG
3027193323Sed  VerifyNode(N);
3028193323Sed#endif
3029193323Sed  return SDValue(N, 0);
3030193323Sed}
3031193323Sed
3032198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3033193323Sed                              SDValue N1, SDValue N2, SDValue N3,
3034193323Sed                              SDValue N4) {
3035193323Sed  SDValue Ops[] = { N1, N2, N3, N4 };
3036193323Sed  return getNode(Opcode, DL, VT, Ops, 4);
3037193323Sed}
3038193323Sed
3039198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3040193323Sed                              SDValue N1, SDValue N2, SDValue N3,
3041193323Sed                              SDValue N4, SDValue N5) {
3042193323Sed  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3043193323Sed  return getNode(Opcode, DL, VT, Ops, 5);
3044193323Sed}
3045193323Sed
3046198090Srdivacky/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3047198090Srdivacky/// the incoming stack arguments to be loaded from the stack.
3048198090SrdivackySDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3049198090Srdivacky  SmallVector<SDValue, 8> ArgChains;
3050198090Srdivacky
3051198090Srdivacky  // Include the original chain at the beginning of the list. When this is
3052198090Srdivacky  // used by target LowerCall hooks, this helps legalize find the
3053198090Srdivacky  // CALLSEQ_BEGIN node.
3054198090Srdivacky  ArgChains.push_back(Chain);
3055198090Srdivacky
3056198090Srdivacky  // Add a chain value for each stack argument.
3057198090Srdivacky  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3058198090Srdivacky       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3059198090Srdivacky    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3060198090Srdivacky      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3061198090Srdivacky        if (FI->getIndex() < 0)
3062198090Srdivacky          ArgChains.push_back(SDValue(L, 1));
3063198090Srdivacky
3064198090Srdivacky  // Build a tokenfactor for all the chains.
3065198090Srdivacky  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3066198090Srdivacky                 &ArgChains[0], ArgChains.size());
3067198090Srdivacky}
3068198090Srdivacky
3069193323Sed/// getMemsetValue - Vectorized representation of the memset value
3070193323Sed/// operand.
3071198090Srdivackystatic SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3072193323Sed                              DebugLoc dl) {
3073193323Sed  unsigned NumBits = VT.isVector() ?
3074193323Sed    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3075193323Sed  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3076193323Sed    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3077193323Sed    unsigned Shift = 8;
3078193323Sed    for (unsigned i = NumBits; i > 8; i >>= 1) {
3079193323Sed      Val = (Val << Shift) | Val;
3080193323Sed      Shift <<= 1;
3081193323Sed    }
3082193323Sed    if (VT.isInteger())
3083193323Sed      return DAG.getConstant(Val, VT);
3084193323Sed    return DAG.getConstantFP(APFloat(Val), VT);
3085193323Sed  }
3086193323Sed
3087193323Sed  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3088193323Sed  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3089193323Sed  unsigned Shift = 8;
3090193323Sed  for (unsigned i = NumBits; i > 8; i >>= 1) {
3091193323Sed    Value = DAG.getNode(ISD::OR, dl, VT,
3092193323Sed                        DAG.getNode(ISD::SHL, dl, VT, Value,
3093193323Sed                                    DAG.getConstant(Shift,
3094193323Sed                                                    TLI.getShiftAmountTy())),
3095193323Sed                        Value);
3096193323Sed    Shift <<= 1;
3097193323Sed  }
3098193323Sed
3099193323Sed  return Value;
3100193323Sed}
3101193323Sed
3102193323Sed/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3103193323Sed/// used when a memcpy is turned into a memset when the source is a constant
3104193323Sed/// string ptr.
3105198090Srdivackystatic SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3106198090Srdivacky                                  const TargetLowering &TLI,
3107198090Srdivacky                                  std::string &Str, unsigned Offset) {
3108193323Sed  // Handle vector with all elements zero.
3109193323Sed  if (Str.empty()) {
3110193323Sed    if (VT.isInteger())
3111193323Sed      return DAG.getConstant(0, VT);
3112193323Sed    unsigned NumElts = VT.getVectorNumElements();
3113193323Sed    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3114193323Sed    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3115198090Srdivacky                       DAG.getConstant(0,
3116198090Srdivacky                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3117193323Sed  }
3118193323Sed
3119193323Sed  assert(!VT.isVector() && "Can't handle vector type here!");
3120193323Sed  unsigned NumBits = VT.getSizeInBits();
3121193323Sed  unsigned MSB = NumBits / 8;
3122193323Sed  uint64_t Val = 0;
3123193323Sed  if (TLI.isLittleEndian())
3124193323Sed    Offset = Offset + MSB - 1;
3125193323Sed  for (unsigned i = 0; i != MSB; ++i) {
3126193323Sed    Val = (Val << 8) | (unsigned char)Str[Offset];
3127193323Sed    Offset += TLI.isLittleEndian() ? -1 : 1;
3128193323Sed  }
3129193323Sed  return DAG.getConstant(Val, VT);
3130193323Sed}
3131193323Sed
3132193323Sed/// getMemBasePlusOffset - Returns base and offset node for the
3133193323Sed///
3134193323Sedstatic SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3135193323Sed                                      SelectionDAG &DAG) {
3136198090Srdivacky  EVT VT = Base.getValueType();
3137193323Sed  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3138193323Sed                     VT, Base, DAG.getConstant(Offset, VT));
3139193323Sed}
3140193323Sed
3141193323Sed/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3142193323Sed///
3143193323Sedstatic bool isMemSrcFromString(SDValue Src, std::string &Str) {
3144193323Sed  unsigned SrcDelta = 0;
3145193323Sed  GlobalAddressSDNode *G = NULL;
3146193323Sed  if (Src.getOpcode() == ISD::GlobalAddress)
3147193323Sed    G = cast<GlobalAddressSDNode>(Src);
3148193323Sed  else if (Src.getOpcode() == ISD::ADD &&
3149193323Sed           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3150193323Sed           Src.getOperand(1).getOpcode() == ISD::Constant) {
3151193323Sed    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3152193323Sed    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3153193323Sed  }
3154193323Sed  if (!G)
3155193323Sed    return false;
3156193323Sed
3157193323Sed  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3158193323Sed  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3159193323Sed    return true;
3160193323Sed
3161193323Sed  return false;
3162193323Sed}
3163193323Sed
3164193323Sed/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3165193323Sed/// to replace the memset / memcpy is below the threshold. It also returns the
3166193323Sed/// types of the sequence of memory ops to perform memset / memcpy.
3167193323Sedstatic
3168198090Srdivackybool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3169193323Sed                              SDValue Dst, SDValue Src,
3170193323Sed                              unsigned Limit, uint64_t Size, unsigned &Align,
3171193323Sed                              std::string &Str, bool &isSrcStr,
3172193323Sed                              SelectionDAG &DAG,
3173193323Sed                              const TargetLowering &TLI) {
3174193323Sed  isSrcStr = isMemSrcFromString(Src, Str);
3175193323Sed  bool isSrcConst = isa<ConstantSDNode>(Src);
3176198090Srdivacky  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3177198090Srdivacky  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3178193323Sed  if (VT != MVT::iAny) {
3179198090Srdivacky    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3180198090Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3181193323Sed    // If source is a string constant, this will require an unaligned load.
3182193323Sed    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3183193323Sed      if (Dst.getOpcode() != ISD::FrameIndex) {
3184193323Sed        // Can't change destination alignment. It requires a unaligned store.
3185193323Sed        if (AllowUnalign)
3186193323Sed          VT = MVT::iAny;
3187193323Sed      } else {
3188193323Sed        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3189193323Sed        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3190193323Sed        if (MFI->isFixedObjectIndex(FI)) {
3191193323Sed          // Can't change destination alignment. It requires a unaligned store.
3192193323Sed          if (AllowUnalign)
3193193323Sed            VT = MVT::iAny;
3194193323Sed        } else {
3195193323Sed          // Give the stack frame object a larger alignment if needed.
3196193323Sed          if (MFI->getObjectAlignment(FI) < NewAlign)
3197193323Sed            MFI->setObjectAlignment(FI, NewAlign);
3198193323Sed          Align = NewAlign;
3199193323Sed        }
3200193323Sed      }
3201193323Sed    }
3202193323Sed  }
3203193323Sed
3204193323Sed  if (VT == MVT::iAny) {
3205198090Srdivacky    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3206193323Sed      VT = MVT::i64;
3207193323Sed    } else {
3208193323Sed      switch (Align & 7) {
3209193323Sed      case 0:  VT = MVT::i64; break;
3210193323Sed      case 4:  VT = MVT::i32; break;
3211193323Sed      case 2:  VT = MVT::i16; break;
3212193323Sed      default: VT = MVT::i8;  break;
3213193323Sed      }
3214193323Sed    }
3215193323Sed
3216193323Sed    MVT LVT = MVT::i64;
3217193323Sed    while (!TLI.isTypeLegal(LVT))
3218198090Srdivacky      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3219193323Sed    assert(LVT.isInteger());
3220193323Sed
3221193323Sed    if (VT.bitsGT(LVT))
3222193323Sed      VT = LVT;
3223193323Sed  }
3224193323Sed
3225193323Sed  unsigned NumMemOps = 0;
3226193323Sed  while (Size != 0) {
3227193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3228193323Sed    while (VTSize > Size) {
3229193323Sed      // For now, only use non-vector load / store's for the left-over pieces.
3230193323Sed      if (VT.isVector()) {
3231193323Sed        VT = MVT::i64;
3232193323Sed        while (!TLI.isTypeLegal(VT))
3233198090Srdivacky          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3234193323Sed        VTSize = VT.getSizeInBits() / 8;
3235193323Sed      } else {
3236194710Sed        // This can result in a type that is not legal on the target, e.g.
3237194710Sed        // 1 or 2 bytes on PPC.
3238198090Srdivacky        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3239193323Sed        VTSize >>= 1;
3240193323Sed      }
3241193323Sed    }
3242193323Sed
3243193323Sed    if (++NumMemOps > Limit)
3244193323Sed      return false;
3245193323Sed    MemOps.push_back(VT);
3246193323Sed    Size -= VTSize;
3247193323Sed  }
3248193323Sed
3249193323Sed  return true;
3250193323Sed}
3251193323Sed
3252193323Sedstatic SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3253193323Sed                                         SDValue Chain, SDValue Dst,
3254193323Sed                                         SDValue Src, uint64_t Size,
3255193323Sed                                         unsigned Align, bool AlwaysInline,
3256193323Sed                                         const Value *DstSV, uint64_t DstSVOff,
3257193323Sed                                         const Value *SrcSV, uint64_t SrcSVOff){
3258193323Sed  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3259193323Sed
3260193323Sed  // Expand memcpy to a series of load and store ops if the size operand falls
3261193323Sed  // below a certain threshold.
3262198090Srdivacky  std::vector<EVT> MemOps;
3263193323Sed  uint64_t Limit = -1ULL;
3264193323Sed  if (!AlwaysInline)
3265193323Sed    Limit = TLI.getMaxStoresPerMemcpy();
3266193323Sed  unsigned DstAlign = Align;  // Destination alignment can change.
3267193323Sed  std::string Str;
3268193323Sed  bool CopyFromStr;
3269193323Sed  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3270193323Sed                                Str, CopyFromStr, DAG, TLI))
3271193323Sed    return SDValue();
3272193323Sed
3273193323Sed
3274193323Sed  bool isZeroStr = CopyFromStr && Str.empty();
3275193323Sed  SmallVector<SDValue, 8> OutChains;
3276193323Sed  unsigned NumMemOps = MemOps.size();
3277193323Sed  uint64_t SrcOff = 0, DstOff = 0;
3278198090Srdivacky  for (unsigned i = 0; i != NumMemOps; ++i) {
3279198090Srdivacky    EVT VT = MemOps[i];
3280193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3281193323Sed    SDValue Value, Store;
3282193323Sed
3283193323Sed    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3284193323Sed      // It's unlikely a store of a vector immediate can be done in a single
3285193323Sed      // instruction. It would require a load from a constantpool first.
3286193323Sed      // We also handle store a vector with all zero's.
3287193323Sed      // FIXME: Handle other cases where store of vector immediate is done in
3288193323Sed      // a single instruction.
3289193323Sed      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3290193323Sed      Store = DAG.getStore(Chain, dl, Value,
3291193323Sed                           getMemBasePlusOffset(Dst, DstOff, DAG),
3292193323Sed                           DstSV, DstSVOff + DstOff, false, DstAlign);
3293193323Sed    } else {
3294194710Sed      // The type might not be legal for the target.  This should only happen
3295194710Sed      // if the type is smaller than a legal type, as on PPC, so the right
3296195098Sed      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3297195098Sed      // to Load/Store if NVT==VT.
3298194710Sed      // FIXME does the case above also need this?
3299198090Srdivacky      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3300195098Sed      assert(NVT.bitsGE(VT));
3301195098Sed      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3302195098Sed                             getMemBasePlusOffset(Src, SrcOff, DAG),
3303195098Sed                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3304195098Sed      Store = DAG.getTruncStore(Chain, dl, Value,
3305194710Sed                             getMemBasePlusOffset(Dst, DstOff, DAG),
3306195098Sed                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3307193323Sed    }
3308193323Sed    OutChains.push_back(Store);
3309193323Sed    SrcOff += VTSize;
3310193323Sed    DstOff += VTSize;
3311193323Sed  }
3312193323Sed
3313193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3314193323Sed                     &OutChains[0], OutChains.size());
3315193323Sed}
3316193323Sed
3317193323Sedstatic SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3318193323Sed                                          SDValue Chain, SDValue Dst,
3319193323Sed                                          SDValue Src, uint64_t Size,
3320193323Sed                                          unsigned Align, bool AlwaysInline,
3321193323Sed                                          const Value *DstSV, uint64_t DstSVOff,
3322193323Sed                                          const Value *SrcSV, uint64_t SrcSVOff){
3323193323Sed  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3324193323Sed
3325193323Sed  // Expand memmove to a series of load and store ops if the size operand falls
3326193323Sed  // below a certain threshold.
3327198090Srdivacky  std::vector<EVT> MemOps;
3328193323Sed  uint64_t Limit = -1ULL;
3329193323Sed  if (!AlwaysInline)
3330193323Sed    Limit = TLI.getMaxStoresPerMemmove();
3331193323Sed  unsigned DstAlign = Align;  // Destination alignment can change.
3332193323Sed  std::string Str;
3333193323Sed  bool CopyFromStr;
3334193323Sed  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3335193323Sed                                Str, CopyFromStr, DAG, TLI))
3336193323Sed    return SDValue();
3337193323Sed
3338193323Sed  uint64_t SrcOff = 0, DstOff = 0;
3339193323Sed
3340193323Sed  SmallVector<SDValue, 8> LoadValues;
3341193323Sed  SmallVector<SDValue, 8> LoadChains;
3342193323Sed  SmallVector<SDValue, 8> OutChains;
3343193323Sed  unsigned NumMemOps = MemOps.size();
3344193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3345198090Srdivacky    EVT VT = MemOps[i];
3346193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3347193323Sed    SDValue Value, Store;
3348193323Sed
3349193323Sed    Value = DAG.getLoad(VT, dl, Chain,
3350193323Sed                        getMemBasePlusOffset(Src, SrcOff, DAG),
3351193323Sed                        SrcSV, SrcSVOff + SrcOff, false, Align);
3352193323Sed    LoadValues.push_back(Value);
3353193323Sed    LoadChains.push_back(Value.getValue(1));
3354193323Sed    SrcOff += VTSize;
3355193323Sed  }
3356193323Sed  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3357193323Sed                      &LoadChains[0], LoadChains.size());
3358193323Sed  OutChains.clear();
3359193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3360198090Srdivacky    EVT VT = MemOps[i];
3361193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3362193323Sed    SDValue Value, Store;
3363193323Sed
3364193323Sed    Store = DAG.getStore(Chain, dl, LoadValues[i],
3365193323Sed                         getMemBasePlusOffset(Dst, DstOff, DAG),
3366193323Sed                         DstSV, DstSVOff + DstOff, false, DstAlign);
3367193323Sed    OutChains.push_back(Store);
3368193323Sed    DstOff += VTSize;
3369193323Sed  }
3370193323Sed
3371193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3372193323Sed                     &OutChains[0], OutChains.size());
3373193323Sed}
3374193323Sed
3375193323Sedstatic SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3376193323Sed                                 SDValue Chain, SDValue Dst,
3377193323Sed                                 SDValue Src, uint64_t Size,
3378193323Sed                                 unsigned Align,
3379193323Sed                                 const Value *DstSV, uint64_t DstSVOff) {
3380193323Sed  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3381193323Sed
3382193323Sed  // Expand memset to a series of load/store ops if the size operand
3383193323Sed  // falls below a certain threshold.
3384198090Srdivacky  std::vector<EVT> MemOps;
3385193323Sed  std::string Str;
3386193323Sed  bool CopyFromStr;
3387193323Sed  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3388193323Sed                                Size, Align, Str, CopyFromStr, DAG, TLI))
3389193323Sed    return SDValue();
3390193323Sed
3391193323Sed  SmallVector<SDValue, 8> OutChains;
3392193323Sed  uint64_t DstOff = 0;
3393193323Sed
3394193323Sed  unsigned NumMemOps = MemOps.size();
3395193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3396198090Srdivacky    EVT VT = MemOps[i];
3397193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3398193323Sed    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3399193323Sed    SDValue Store = DAG.getStore(Chain, dl, Value,
3400193323Sed                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3401193323Sed                                 DstSV, DstSVOff + DstOff);
3402193323Sed    OutChains.push_back(Store);
3403193323Sed    DstOff += VTSize;
3404193323Sed  }
3405193323Sed
3406193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3407193323Sed                     &OutChains[0], OutChains.size());
3408193323Sed}
3409193323Sed
3410193323SedSDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3411193323Sed                                SDValue Src, SDValue Size,
3412193323Sed                                unsigned Align, bool AlwaysInline,
3413193323Sed                                const Value *DstSV, uint64_t DstSVOff,
3414193323Sed                                const Value *SrcSV, uint64_t SrcSVOff) {
3415193323Sed
3416193323Sed  // Check to see if we should lower the memcpy to loads and stores first.
3417193323Sed  // For cases within the target-specified limits, this is the best choice.
3418193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3419193323Sed  if (ConstantSize) {
3420193323Sed    // Memcpy with size zero? Just return the original chain.
3421193323Sed    if (ConstantSize->isNullValue())
3422193323Sed      return Chain;
3423193323Sed
3424193323Sed    SDValue Result =
3425193323Sed      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3426193323Sed                              ConstantSize->getZExtValue(),
3427193323Sed                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3428193323Sed    if (Result.getNode())
3429193323Sed      return Result;
3430193323Sed  }
3431193323Sed
3432193323Sed  // Then check to see if we should lower the memcpy with target-specific
3433193323Sed  // code. If the target chooses to do this, this is the next best.
3434193323Sed  SDValue Result =
3435193323Sed    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3436193323Sed                                AlwaysInline,
3437193323Sed                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3438193323Sed  if (Result.getNode())
3439193323Sed    return Result;
3440193323Sed
3441193323Sed  // If we really need inline code and the target declined to provide it,
3442193323Sed  // use a (potentially long) sequence of loads and stores.
3443193323Sed  if (AlwaysInline) {
3444193323Sed    assert(ConstantSize && "AlwaysInline requires a constant size!");
3445193323Sed    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3446193323Sed                                   ConstantSize->getZExtValue(), Align, true,
3447193323Sed                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3448193323Sed  }
3449193323Sed
3450193323Sed  // Emit a library call.
3451193323Sed  TargetLowering::ArgListTy Args;
3452193323Sed  TargetLowering::ArgListEntry Entry;
3453198090Srdivacky  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3454193323Sed  Entry.Node = Dst; Args.push_back(Entry);
3455193323Sed  Entry.Node = Src; Args.push_back(Entry);
3456193323Sed  Entry.Node = Size; Args.push_back(Entry);
3457193323Sed  // FIXME: pass in DebugLoc
3458193323Sed  std::pair<SDValue,SDValue> CallResult =
3459198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3460198090Srdivacky                    false, false, false, false, 0,
3461198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3462198090Srdivacky                    /*isReturnValueUsed=*/false,
3463198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3464198090Srdivacky                                      TLI.getPointerTy()),
3465201360Srdivacky                    Args, *this, dl, GetOrdering(Chain.getNode()));
3466193323Sed  return CallResult.second;
3467193323Sed}
3468193323Sed
3469193323SedSDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3470193323Sed                                 SDValue Src, SDValue Size,
3471193323Sed                                 unsigned Align,
3472193323Sed                                 const Value *DstSV, uint64_t DstSVOff,
3473193323Sed                                 const Value *SrcSV, uint64_t SrcSVOff) {
3474193323Sed
3475193323Sed  // Check to see if we should lower the memmove to loads and stores first.
3476193323Sed  // For cases within the target-specified limits, this is the best choice.
3477193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3478193323Sed  if (ConstantSize) {
3479193323Sed    // Memmove with size zero? Just return the original chain.
3480193323Sed    if (ConstantSize->isNullValue())
3481193323Sed      return Chain;
3482193323Sed
3483193323Sed    SDValue Result =
3484193323Sed      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3485193323Sed                               ConstantSize->getZExtValue(),
3486193323Sed                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3487193323Sed    if (Result.getNode())
3488193323Sed      return Result;
3489193323Sed  }
3490193323Sed
3491193323Sed  // Then check to see if we should lower the memmove with target-specific
3492193323Sed  // code. If the target chooses to do this, this is the next best.
3493193323Sed  SDValue Result =
3494193323Sed    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3495193323Sed                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3496193323Sed  if (Result.getNode())
3497193323Sed    return Result;
3498193323Sed
3499193323Sed  // Emit a library call.
3500193323Sed  TargetLowering::ArgListTy Args;
3501193323Sed  TargetLowering::ArgListEntry Entry;
3502198090Srdivacky  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3503193323Sed  Entry.Node = Dst; Args.push_back(Entry);
3504193323Sed  Entry.Node = Src; Args.push_back(Entry);
3505193323Sed  Entry.Node = Size; Args.push_back(Entry);
3506193323Sed  // FIXME:  pass in DebugLoc
3507193323Sed  std::pair<SDValue,SDValue> CallResult =
3508198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3509198090Srdivacky                    false, false, false, false, 0,
3510198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3511198090Srdivacky                    /*isReturnValueUsed=*/false,
3512198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3513198090Srdivacky                                      TLI.getPointerTy()),
3514201360Srdivacky                    Args, *this, dl, GetOrdering(Chain.getNode()));
3515193323Sed  return CallResult.second;
3516193323Sed}
3517193323Sed
3518193323SedSDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3519193323Sed                                SDValue Src, SDValue Size,
3520193323Sed                                unsigned Align,
3521193323Sed                                const Value *DstSV, uint64_t DstSVOff) {
3522193323Sed
3523193323Sed  // Check to see if we should lower the memset to stores first.
3524193323Sed  // For cases within the target-specified limits, this is the best choice.
3525193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3526193323Sed  if (ConstantSize) {
3527193323Sed    // Memset with size zero? Just return the original chain.
3528193323Sed    if (ConstantSize->isNullValue())
3529193323Sed      return Chain;
3530193323Sed
3531193323Sed    SDValue Result =
3532193323Sed      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3533193323Sed                      Align, DstSV, DstSVOff);
3534193323Sed    if (Result.getNode())
3535193323Sed      return Result;
3536193323Sed  }
3537193323Sed
3538193323Sed  // Then check to see if we should lower the memset with target-specific
3539193323Sed  // code. If the target chooses to do this, this is the next best.
3540193323Sed  SDValue Result =
3541193323Sed    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3542193323Sed                                DstSV, DstSVOff);
3543193323Sed  if (Result.getNode())
3544193323Sed    return Result;
3545193323Sed
3546193323Sed  // Emit a library call.
3547198090Srdivacky  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3548193323Sed  TargetLowering::ArgListTy Args;
3549193323Sed  TargetLowering::ArgListEntry Entry;
3550193323Sed  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3551193323Sed  Args.push_back(Entry);
3552193323Sed  // Extend or truncate the argument to be an i32 value for the call.
3553193323Sed  if (Src.getValueType().bitsGT(MVT::i32))
3554193323Sed    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3555193323Sed  else
3556193323Sed    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3557198090Srdivacky  Entry.Node = Src;
3558198090Srdivacky  Entry.Ty = Type::getInt32Ty(*getContext());
3559198090Srdivacky  Entry.isSExt = true;
3560193323Sed  Args.push_back(Entry);
3561198090Srdivacky  Entry.Node = Size;
3562198090Srdivacky  Entry.Ty = IntPtrTy;
3563198090Srdivacky  Entry.isSExt = false;
3564193323Sed  Args.push_back(Entry);
3565193323Sed  // FIXME: pass in DebugLoc
3566193323Sed  std::pair<SDValue,SDValue> CallResult =
3567198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3568198090Srdivacky                    false, false, false, false, 0,
3569198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3570198090Srdivacky                    /*isReturnValueUsed=*/false,
3571198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3572198090Srdivacky                                      TLI.getPointerTy()),
3573201360Srdivacky                    Args, *this, dl, GetOrdering(Chain.getNode()));
3574193323Sed  return CallResult.second;
3575193323Sed}
3576193323Sed
3577198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3578193323Sed                                SDValue Chain,
3579193323Sed                                SDValue Ptr, SDValue Cmp,
3580193323Sed                                SDValue Swp, const Value* PtrVal,
3581193323Sed                                unsigned Alignment) {
3582198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3583198090Srdivacky    Alignment = getEVTAlignment(MemVT);
3584198090Srdivacky
3585198090Srdivacky  // Check if the memory reference references a frame index
3586198090Srdivacky  if (!PtrVal)
3587198090Srdivacky    if (const FrameIndexSDNode *FI =
3588198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3589198090Srdivacky      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3590198090Srdivacky
3591198090Srdivacky  MachineFunction &MF = getMachineFunction();
3592198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3593198090Srdivacky
3594198090Srdivacky  // For now, atomics are considered to be volatile always.
3595198090Srdivacky  Flags |= MachineMemOperand::MOVolatile;
3596198090Srdivacky
3597198090Srdivacky  MachineMemOperand *MMO =
3598198090Srdivacky    MF.getMachineMemOperand(PtrVal, Flags, 0,
3599198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3600198090Srdivacky
3601198090Srdivacky  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3602198090Srdivacky}
3603198090Srdivacky
3604198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3605198090Srdivacky                                SDValue Chain,
3606198090Srdivacky                                SDValue Ptr, SDValue Cmp,
3607198090Srdivacky                                SDValue Swp, MachineMemOperand *MMO) {
3608193323Sed  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3609193323Sed  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3610193323Sed
3611198090Srdivacky  EVT VT = Cmp.getValueType();
3612193323Sed
3613193323Sed  SDVTList VTs = getVTList(VT, MVT::Other);
3614193323Sed  FoldingSetNodeID ID;
3615193323Sed  ID.AddInteger(MemVT.getRawBits());
3616193323Sed  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3617193323Sed  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3618193323Sed  void* IP = 0;
3619198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3620198090Srdivacky    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3621193323Sed    return SDValue(E, 0);
3622198090Srdivacky  }
3623193323Sed  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3624198090Srdivacky  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3625193323Sed  CSEMap.InsertNode(N, IP);
3626193323Sed  AllNodes.push_back(N);
3627193323Sed  return SDValue(N, 0);
3628193323Sed}
3629193323Sed
3630198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3631193323Sed                                SDValue Chain,
3632193323Sed                                SDValue Ptr, SDValue Val,
3633193323Sed                                const Value* PtrVal,
3634193323Sed                                unsigned Alignment) {
3635198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3636198090Srdivacky    Alignment = getEVTAlignment(MemVT);
3637198090Srdivacky
3638198090Srdivacky  // Check if the memory reference references a frame index
3639198090Srdivacky  if (!PtrVal)
3640198090Srdivacky    if (const FrameIndexSDNode *FI =
3641198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3642198090Srdivacky      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3643198090Srdivacky
3644198090Srdivacky  MachineFunction &MF = getMachineFunction();
3645198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3646198090Srdivacky
3647198090Srdivacky  // For now, atomics are considered to be volatile always.
3648198090Srdivacky  Flags |= MachineMemOperand::MOVolatile;
3649198090Srdivacky
3650198090Srdivacky  MachineMemOperand *MMO =
3651198090Srdivacky    MF.getMachineMemOperand(PtrVal, Flags, 0,
3652198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3653198090Srdivacky
3654198090Srdivacky  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3655198090Srdivacky}
3656198090Srdivacky
3657198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3658198090Srdivacky                                SDValue Chain,
3659198090Srdivacky                                SDValue Ptr, SDValue Val,
3660198090Srdivacky                                MachineMemOperand *MMO) {
3661193323Sed  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3662193323Sed          Opcode == ISD::ATOMIC_LOAD_SUB ||
3663193323Sed          Opcode == ISD::ATOMIC_LOAD_AND ||
3664193323Sed          Opcode == ISD::ATOMIC_LOAD_OR ||
3665193323Sed          Opcode == ISD::ATOMIC_LOAD_XOR ||
3666193323Sed          Opcode == ISD::ATOMIC_LOAD_NAND ||
3667193323Sed          Opcode == ISD::ATOMIC_LOAD_MIN ||
3668193323Sed          Opcode == ISD::ATOMIC_LOAD_MAX ||
3669193323Sed          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3670193323Sed          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3671193323Sed          Opcode == ISD::ATOMIC_SWAP) &&
3672193323Sed         "Invalid Atomic Op");
3673193323Sed
3674198090Srdivacky  EVT VT = Val.getValueType();
3675193323Sed
3676193323Sed  SDVTList VTs = getVTList(VT, MVT::Other);
3677193323Sed  FoldingSetNodeID ID;
3678193323Sed  ID.AddInteger(MemVT.getRawBits());
3679193323Sed  SDValue Ops[] = {Chain, Ptr, Val};
3680193323Sed  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3681193323Sed  void* IP = 0;
3682198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3683198090Srdivacky    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3684193323Sed    return SDValue(E, 0);
3685198090Srdivacky  }
3686193323Sed  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3687198090Srdivacky  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3688193323Sed  CSEMap.InsertNode(N, IP);
3689193323Sed  AllNodes.push_back(N);
3690193323Sed  return SDValue(N, 0);
3691193323Sed}
3692193323Sed
3693193323Sed/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3694193323Sed/// Allowed to return something different (and simpler) if Simplify is true.
3695193323SedSDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3696193323Sed                                     DebugLoc dl) {
3697193323Sed  if (NumOps == 1)
3698193323Sed    return Ops[0];
3699193323Sed
3700198090Srdivacky  SmallVector<EVT, 4> VTs;
3701193323Sed  VTs.reserve(NumOps);
3702193323Sed  for (unsigned i = 0; i < NumOps; ++i)
3703193323Sed    VTs.push_back(Ops[i].getValueType());
3704193323Sed  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3705193323Sed                 Ops, NumOps);
3706193323Sed}
3707193323Sed
3708193323SedSDValue
3709193323SedSelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3710198090Srdivacky                                  const EVT *VTs, unsigned NumVTs,
3711193323Sed                                  const SDValue *Ops, unsigned NumOps,
3712198090Srdivacky                                  EVT MemVT, const Value *srcValue, int SVOff,
3713193323Sed                                  unsigned Align, bool Vol,
3714193323Sed                                  bool ReadMem, bool WriteMem) {
3715193323Sed  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3716193323Sed                             MemVT, srcValue, SVOff, Align, Vol,
3717193323Sed                             ReadMem, WriteMem);
3718193323Sed}
3719193323Sed
3720193323SedSDValue
3721193323SedSelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3722193323Sed                                  const SDValue *Ops, unsigned NumOps,
3723198090Srdivacky                                  EVT MemVT, const Value *srcValue, int SVOff,
3724193323Sed                                  unsigned Align, bool Vol,
3725193323Sed                                  bool ReadMem, bool WriteMem) {
3726198090Srdivacky  if (Align == 0)  // Ensure that codegen never sees alignment 0
3727198090Srdivacky    Align = getEVTAlignment(MemVT);
3728198090Srdivacky
3729198090Srdivacky  MachineFunction &MF = getMachineFunction();
3730198090Srdivacky  unsigned Flags = 0;
3731198090Srdivacky  if (WriteMem)
3732198090Srdivacky    Flags |= MachineMemOperand::MOStore;
3733198090Srdivacky  if (ReadMem)
3734198090Srdivacky    Flags |= MachineMemOperand::MOLoad;
3735198090Srdivacky  if (Vol)
3736198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3737198090Srdivacky  MachineMemOperand *MMO =
3738198090Srdivacky    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3739198090Srdivacky                            MemVT.getStoreSize(), Align);
3740198090Srdivacky
3741198090Srdivacky  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3742198090Srdivacky}
3743198090Srdivacky
3744198090SrdivackySDValue
3745198090SrdivackySelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3746198090Srdivacky                                  const SDValue *Ops, unsigned NumOps,
3747198090Srdivacky                                  EVT MemVT, MachineMemOperand *MMO) {
3748198090Srdivacky  assert((Opcode == ISD::INTRINSIC_VOID ||
3749198090Srdivacky          Opcode == ISD::INTRINSIC_W_CHAIN ||
3750198090Srdivacky          (Opcode <= INT_MAX &&
3751198090Srdivacky           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3752198090Srdivacky         "Opcode is not a memory-accessing opcode!");
3753198090Srdivacky
3754193323Sed  // Memoize the node unless it returns a flag.
3755193323Sed  MemIntrinsicSDNode *N;
3756193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3757193323Sed    FoldingSetNodeID ID;
3758193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3759193323Sed    void *IP = 0;
3760198090Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3761198090Srdivacky      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3762193323Sed      return SDValue(E, 0);
3763198090Srdivacky    }
3764193323Sed
3765193323Sed    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3766198090Srdivacky    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3767193323Sed    CSEMap.InsertNode(N, IP);
3768193323Sed  } else {
3769193323Sed    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3770198090Srdivacky    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3771193323Sed  }
3772193323Sed  AllNodes.push_back(N);
3773193323Sed  return SDValue(N, 0);
3774193323Sed}
3775193323Sed
3776193323SedSDValue
3777193323SedSelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3778198090Srdivacky                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3779193323Sed                      SDValue Ptr, SDValue Offset,
3780198090Srdivacky                      const Value *SV, int SVOffset, EVT MemVT,
3781193323Sed                      bool isVolatile, unsigned Alignment) {
3782193323Sed  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3783198090Srdivacky    Alignment = getEVTAlignment(VT);
3784193323Sed
3785198090Srdivacky  // Check if the memory reference references a frame index
3786198090Srdivacky  if (!SV)
3787198090Srdivacky    if (const FrameIndexSDNode *FI =
3788198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3789198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3790198090Srdivacky
3791198090Srdivacky  MachineFunction &MF = getMachineFunction();
3792198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad;
3793198090Srdivacky  if (isVolatile)
3794198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3795198090Srdivacky  MachineMemOperand *MMO =
3796198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset,
3797198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3798198090Srdivacky  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3799198090Srdivacky}
3800198090Srdivacky
3801198090SrdivackySDValue
3802198090SrdivackySelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3803198090Srdivacky                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3804198090Srdivacky                      SDValue Ptr, SDValue Offset, EVT MemVT,
3805198090Srdivacky                      MachineMemOperand *MMO) {
3806198090Srdivacky  if (VT == MemVT) {
3807193323Sed    ExtType = ISD::NON_EXTLOAD;
3808193323Sed  } else if (ExtType == ISD::NON_EXTLOAD) {
3809198090Srdivacky    assert(VT == MemVT && "Non-extending load from different memory type!");
3810193323Sed  } else {
3811193323Sed    // Extending load.
3812200581Srdivacky    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3813200581Srdivacky           "Should only be an extending load, not truncating!");
3814198090Srdivacky    assert(VT.isInteger() == MemVT.isInteger() &&
3815193323Sed           "Cannot convert from FP to Int or Int -> FP!");
3816200581Srdivacky    assert(VT.isVector() == MemVT.isVector() &&
3817200581Srdivacky           "Cannot use trunc store to convert to or from a vector!");
3818200581Srdivacky    assert((!VT.isVector() ||
3819200581Srdivacky            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3820200581Srdivacky           "Cannot use trunc store to change the number of vector elements!");
3821193323Sed  }
3822193323Sed
3823193323Sed  bool Indexed = AM != ISD::UNINDEXED;
3824193323Sed  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3825193323Sed         "Unindexed load with an offset!");
3826193323Sed
3827193323Sed  SDVTList VTs = Indexed ?
3828193323Sed    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3829193323Sed  SDValue Ops[] = { Chain, Ptr, Offset };
3830193323Sed  FoldingSetNodeID ID;
3831193323Sed  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3832198090Srdivacky  ID.AddInteger(MemVT.getRawBits());
3833198090Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3834193323Sed  void *IP = 0;
3835198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3836198090Srdivacky    cast<LoadSDNode>(E)->refineAlignment(MMO);
3837193323Sed    return SDValue(E, 0);
3838198090Srdivacky  }
3839193323Sed  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3840198090Srdivacky  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3841193323Sed  CSEMap.InsertNode(N, IP);
3842193323Sed  AllNodes.push_back(N);
3843193323Sed  return SDValue(N, 0);
3844193323Sed}
3845193323Sed
3846198090SrdivackySDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3847193323Sed                              SDValue Chain, SDValue Ptr,
3848193323Sed                              const Value *SV, int SVOffset,
3849193323Sed                              bool isVolatile, unsigned Alignment) {
3850193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3851193323Sed  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3852193323Sed                 SV, SVOffset, VT, isVolatile, Alignment);
3853193323Sed}
3854193323Sed
3855198090SrdivackySDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3856193323Sed                                 SDValue Chain, SDValue Ptr,
3857193323Sed                                 const Value *SV,
3858198090Srdivacky                                 int SVOffset, EVT MemVT,
3859193323Sed                                 bool isVolatile, unsigned Alignment) {
3860193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3861193323Sed  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3862198090Srdivacky                 SV, SVOffset, MemVT, isVolatile, Alignment);
3863193323Sed}
3864193323Sed
3865193323SedSDValue
3866193323SedSelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3867193323Sed                             SDValue Offset, ISD::MemIndexedMode AM) {
3868193323Sed  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3869193323Sed  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3870193323Sed         "Load is already a indexed load!");
3871193323Sed  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3872193323Sed                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3873193323Sed                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3874193323Sed                 LD->isVolatile(), LD->getAlignment());
3875193323Sed}
3876193323Sed
3877193323SedSDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3878193323Sed                               SDValue Ptr, const Value *SV, int SVOffset,
3879193323Sed                               bool isVolatile, unsigned Alignment) {
3880193323Sed  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3881198090Srdivacky    Alignment = getEVTAlignment(Val.getValueType());
3882193323Sed
3883198090Srdivacky  // Check if the memory reference references a frame index
3884198090Srdivacky  if (!SV)
3885198090Srdivacky    if (const FrameIndexSDNode *FI =
3886198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3887198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3888198090Srdivacky
3889198090Srdivacky  MachineFunction &MF = getMachineFunction();
3890198090Srdivacky  unsigned Flags = MachineMemOperand::MOStore;
3891198090Srdivacky  if (isVolatile)
3892198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3893198090Srdivacky  MachineMemOperand *MMO =
3894198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset,
3895198090Srdivacky                            Val.getValueType().getStoreSize(), Alignment);
3896198090Srdivacky
3897198090Srdivacky  return getStore(Chain, dl, Val, Ptr, MMO);
3898198090Srdivacky}
3899198090Srdivacky
3900198090SrdivackySDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3901198090Srdivacky                               SDValue Ptr, MachineMemOperand *MMO) {
3902198090Srdivacky  EVT VT = Val.getValueType();
3903193323Sed  SDVTList VTs = getVTList(MVT::Other);
3904193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3905193323Sed  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3906193323Sed  FoldingSetNodeID ID;
3907193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3908193323Sed  ID.AddInteger(VT.getRawBits());
3909198090Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3910193323Sed  void *IP = 0;
3911198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3912198090Srdivacky    cast<StoreSDNode>(E)->refineAlignment(MMO);
3913193323Sed    return SDValue(E, 0);
3914198090Srdivacky  }
3915193323Sed  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3916198090Srdivacky  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3917193323Sed  CSEMap.InsertNode(N, IP);
3918193323Sed  AllNodes.push_back(N);
3919193323Sed  return SDValue(N, 0);
3920193323Sed}
3921193323Sed
3922193323SedSDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3923193323Sed                                    SDValue Ptr, const Value *SV,
3924198090Srdivacky                                    int SVOffset, EVT SVT,
3925193323Sed                                    bool isVolatile, unsigned Alignment) {
3926198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3927198090Srdivacky    Alignment = getEVTAlignment(SVT);
3928193323Sed
3929198090Srdivacky  // Check if the memory reference references a frame index
3930198090Srdivacky  if (!SV)
3931198090Srdivacky    if (const FrameIndexSDNode *FI =
3932198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3933198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3934198090Srdivacky
3935198090Srdivacky  MachineFunction &MF = getMachineFunction();
3936198090Srdivacky  unsigned Flags = MachineMemOperand::MOStore;
3937198090Srdivacky  if (isVolatile)
3938198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3939198090Srdivacky  MachineMemOperand *MMO =
3940198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3941198090Srdivacky
3942198090Srdivacky  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3943198090Srdivacky}
3944198090Srdivacky
3945198090SrdivackySDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3946198090Srdivacky                                    SDValue Ptr, EVT SVT,
3947198090Srdivacky                                    MachineMemOperand *MMO) {
3948198090Srdivacky  EVT VT = Val.getValueType();
3949198090Srdivacky
3950193323Sed  if (VT == SVT)
3951198090Srdivacky    return getStore(Chain, dl, Val, Ptr, MMO);
3952193323Sed
3953200581Srdivacky  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
3954200581Srdivacky         "Should only be a truncating store, not extending!");
3955193323Sed  assert(VT.isInteger() == SVT.isInteger() &&
3956193323Sed         "Can't do FP-INT conversion!");
3957200581Srdivacky  assert(VT.isVector() == SVT.isVector() &&
3958200581Srdivacky         "Cannot use trunc store to convert to or from a vector!");
3959200581Srdivacky  assert((!VT.isVector() ||
3960200581Srdivacky          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
3961200581Srdivacky         "Cannot use trunc store to change the number of vector elements!");
3962193323Sed
3963193323Sed  SDVTList VTs = getVTList(MVT::Other);
3964193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3965193323Sed  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3966193323Sed  FoldingSetNodeID ID;
3967193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3968193323Sed  ID.AddInteger(SVT.getRawBits());
3969198090Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3970193323Sed  void *IP = 0;
3971198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3972198090Srdivacky    cast<StoreSDNode>(E)->refineAlignment(MMO);
3973193323Sed    return SDValue(E, 0);
3974198090Srdivacky  }
3975193323Sed  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3976198090Srdivacky  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3977193323Sed  CSEMap.InsertNode(N, IP);
3978193323Sed  AllNodes.push_back(N);
3979193323Sed  return SDValue(N, 0);
3980193323Sed}
3981193323Sed
3982193323SedSDValue
3983193323SedSelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3984193323Sed                              SDValue Offset, ISD::MemIndexedMode AM) {
3985193323Sed  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3986193323Sed  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3987193323Sed         "Store is already a indexed store!");
3988193323Sed  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3989193323Sed  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3990193323Sed  FoldingSetNodeID ID;
3991193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3992193323Sed  ID.AddInteger(ST->getMemoryVT().getRawBits());
3993193323Sed  ID.AddInteger(ST->getRawSubclassData());
3994193323Sed  void *IP = 0;
3995201360Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3996193323Sed    return SDValue(E, 0);
3997201360Srdivacky
3998193323Sed  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3999193323Sed  new (N) StoreSDNode(Ops, dl, VTs, AM,
4000193323Sed                      ST->isTruncatingStore(), ST->getMemoryVT(),
4001198090Srdivacky                      ST->getMemOperand());
4002193323Sed  CSEMap.InsertNode(N, IP);
4003193323Sed  AllNodes.push_back(N);
4004193323Sed  return SDValue(N, 0);
4005193323Sed}
4006193323Sed
4007198090SrdivackySDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4008193323Sed                               SDValue Chain, SDValue Ptr,
4009193323Sed                               SDValue SV) {
4010193323Sed  SDValue Ops[] = { Chain, Ptr, SV };
4011193323Sed  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4012193323Sed}
4013193323Sed
4014198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4015193323Sed                              const SDUse *Ops, unsigned NumOps) {
4016193323Sed  switch (NumOps) {
4017193323Sed  case 0: return getNode(Opcode, DL, VT);
4018193323Sed  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4019193323Sed  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4020193323Sed  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4021193323Sed  default: break;
4022193323Sed  }
4023193323Sed
4024193323Sed  // Copy from an SDUse array into an SDValue array for use with
4025193323Sed  // the regular getNode logic.
4026193323Sed  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4027193323Sed  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4028193323Sed}
4029193323Sed
4030198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4031193323Sed                              const SDValue *Ops, unsigned NumOps) {
4032193323Sed  switch (NumOps) {
4033193323Sed  case 0: return getNode(Opcode, DL, VT);
4034193323Sed  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4035193323Sed  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4036193323Sed  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4037193323Sed  default: break;
4038193323Sed  }
4039193323Sed
4040193323Sed  switch (Opcode) {
4041193323Sed  default: break;
4042193323Sed  case ISD::SELECT_CC: {
4043193323Sed    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4044193323Sed    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4045193323Sed           "LHS and RHS of condition must have same type!");
4046193323Sed    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4047193323Sed           "True and False arms of SelectCC must have same type!");
4048193323Sed    assert(Ops[2].getValueType() == VT &&
4049193323Sed           "select_cc node must be of same type as true and false value!");
4050193323Sed    break;
4051193323Sed  }
4052193323Sed  case ISD::BR_CC: {
4053193323Sed    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4054193323Sed    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4055193323Sed           "LHS/RHS of comparison should match types!");
4056193323Sed    break;
4057193323Sed  }
4058193323Sed  }
4059193323Sed
4060193323Sed  // Memoize nodes.
4061193323Sed  SDNode *N;
4062193323Sed  SDVTList VTs = getVTList(VT);
4063193323Sed
4064193323Sed  if (VT != MVT::Flag) {
4065193323Sed    FoldingSetNodeID ID;
4066193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4067193323Sed    void *IP = 0;
4068193323Sed
4069201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4070193323Sed      return SDValue(E, 0);
4071193323Sed
4072193323Sed    N = NodeAllocator.Allocate<SDNode>();
4073193323Sed    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4074193323Sed    CSEMap.InsertNode(N, IP);
4075193323Sed  } else {
4076193323Sed    N = NodeAllocator.Allocate<SDNode>();
4077193323Sed    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4078193323Sed  }
4079193323Sed
4080193323Sed  AllNodes.push_back(N);
4081193323Sed#ifndef NDEBUG
4082193323Sed  VerifyNode(N);
4083193323Sed#endif
4084193323Sed  return SDValue(N, 0);
4085193323Sed}
4086193323Sed
4087193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4088198090Srdivacky                              const std::vector<EVT> &ResultTys,
4089193323Sed                              const SDValue *Ops, unsigned NumOps) {
4090193323Sed  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4091193323Sed                 Ops, NumOps);
4092193323Sed}
4093193323Sed
4094193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4095198090Srdivacky                              const EVT *VTs, unsigned NumVTs,
4096193323Sed                              const SDValue *Ops, unsigned NumOps) {
4097193323Sed  if (NumVTs == 1)
4098193323Sed    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4099193323Sed  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4100193323Sed}
4101193323Sed
4102193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4103193323Sed                              const SDValue *Ops, unsigned NumOps) {
4104193323Sed  if (VTList.NumVTs == 1)
4105193323Sed    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4106193323Sed
4107198090Srdivacky#if 0
4108193323Sed  switch (Opcode) {
4109193323Sed  // FIXME: figure out how to safely handle things like
4110193323Sed  // int foo(int x) { return 1 << (x & 255); }
4111193323Sed  // int bar() { return foo(256); }
4112193323Sed  case ISD::SRA_PARTS:
4113193323Sed  case ISD::SRL_PARTS:
4114193323Sed  case ISD::SHL_PARTS:
4115193323Sed    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4116193323Sed        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4117193323Sed      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4118193323Sed    else if (N3.getOpcode() == ISD::AND)
4119193323Sed      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4120193323Sed        // If the and is only masking out bits that cannot effect the shift,
4121193323Sed        // eliminate the and.
4122202375Srdivacky        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4123193323Sed        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4124193323Sed          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4125193323Sed      }
4126193323Sed    break;
4127198090Srdivacky  }
4128193323Sed#endif
4129193323Sed
4130193323Sed  // Memoize the node unless it returns a flag.
4131193323Sed  SDNode *N;
4132193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4133193323Sed    FoldingSetNodeID ID;
4134193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4135193323Sed    void *IP = 0;
4136201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4137193323Sed      return SDValue(E, 0);
4138201360Srdivacky
4139193323Sed    if (NumOps == 1) {
4140193323Sed      N = NodeAllocator.Allocate<UnarySDNode>();
4141193323Sed      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4142193323Sed    } else if (NumOps == 2) {
4143193323Sed      N = NodeAllocator.Allocate<BinarySDNode>();
4144193323Sed      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4145193323Sed    } else if (NumOps == 3) {
4146193323Sed      N = NodeAllocator.Allocate<TernarySDNode>();
4147193323Sed      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4148193323Sed    } else {
4149193323Sed      N = NodeAllocator.Allocate<SDNode>();
4150193323Sed      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4151193323Sed    }
4152193323Sed    CSEMap.InsertNode(N, IP);
4153193323Sed  } else {
4154193323Sed    if (NumOps == 1) {
4155193323Sed      N = NodeAllocator.Allocate<UnarySDNode>();
4156193323Sed      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4157193323Sed    } else if (NumOps == 2) {
4158193323Sed      N = NodeAllocator.Allocate<BinarySDNode>();
4159193323Sed      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4160193323Sed    } else if (NumOps == 3) {
4161193323Sed      N = NodeAllocator.Allocate<TernarySDNode>();
4162193323Sed      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4163193323Sed    } else {
4164193323Sed      N = NodeAllocator.Allocate<SDNode>();
4165193323Sed      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4166193323Sed    }
4167193323Sed  }
4168193323Sed  AllNodes.push_back(N);
4169193323Sed#ifndef NDEBUG
4170193323Sed  VerifyNode(N);
4171193323Sed#endif
4172193323Sed  return SDValue(N, 0);
4173193323Sed}
4174193323Sed
4175193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4176193323Sed  return getNode(Opcode, DL, VTList, 0, 0);
4177193323Sed}
4178193323Sed
4179193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4180193323Sed                              SDValue N1) {
4181193323Sed  SDValue Ops[] = { N1 };
4182193323Sed  return getNode(Opcode, DL, VTList, Ops, 1);
4183193323Sed}
4184193323Sed
4185193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4186193323Sed                              SDValue N1, SDValue N2) {
4187193323Sed  SDValue Ops[] = { N1, N2 };
4188193323Sed  return getNode(Opcode, DL, VTList, Ops, 2);
4189193323Sed}
4190193323Sed
4191193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4192193323Sed                              SDValue N1, SDValue N2, SDValue N3) {
4193193323Sed  SDValue Ops[] = { N1, N2, N3 };
4194193323Sed  return getNode(Opcode, DL, VTList, Ops, 3);
4195193323Sed}
4196193323Sed
4197193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4198193323Sed                              SDValue N1, SDValue N2, SDValue N3,
4199193323Sed                              SDValue N4) {
4200193323Sed  SDValue Ops[] = { N1, N2, N3, N4 };
4201193323Sed  return getNode(Opcode, DL, VTList, Ops, 4);
4202193323Sed}
4203193323Sed
4204193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4205193323Sed                              SDValue N1, SDValue N2, SDValue N3,
4206193323Sed                              SDValue N4, SDValue N5) {
4207193323Sed  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4208193323Sed  return getNode(Opcode, DL, VTList, Ops, 5);
4209193323Sed}
4210193323Sed
4211198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT) {
4212193323Sed  return makeVTList(SDNode::getValueTypeList(VT), 1);
4213193323Sed}
4214193323Sed
4215198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4216193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4217193323Sed       E = VTList.rend(); I != E; ++I)
4218193323Sed    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4219193323Sed      return *I;
4220193323Sed
4221198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(2);
4222193323Sed  Array[0] = VT1;
4223193323Sed  Array[1] = VT2;
4224193323Sed  SDVTList Result = makeVTList(Array, 2);
4225193323Sed  VTList.push_back(Result);
4226193323Sed  return Result;
4227193323Sed}
4228193323Sed
4229198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4230193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4231193323Sed       E = VTList.rend(); I != E; ++I)
4232193323Sed    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4233193323Sed                          I->VTs[2] == VT3)
4234193323Sed      return *I;
4235193323Sed
4236198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(3);
4237193323Sed  Array[0] = VT1;
4238193323Sed  Array[1] = VT2;
4239193323Sed  Array[2] = VT3;
4240193323Sed  SDVTList Result = makeVTList(Array, 3);
4241193323Sed  VTList.push_back(Result);
4242193323Sed  return Result;
4243193323Sed}
4244193323Sed
4245198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4246193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4247193323Sed       E = VTList.rend(); I != E; ++I)
4248193323Sed    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4249193323Sed                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4250193323Sed      return *I;
4251193323Sed
4252200581Srdivacky  EVT *Array = Allocator.Allocate<EVT>(4);
4253193323Sed  Array[0] = VT1;
4254193323Sed  Array[1] = VT2;
4255193323Sed  Array[2] = VT3;
4256193323Sed  Array[3] = VT4;
4257193323Sed  SDVTList Result = makeVTList(Array, 4);
4258193323Sed  VTList.push_back(Result);
4259193323Sed  return Result;
4260193323Sed}
4261193323Sed
4262198090SrdivackySDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4263193323Sed  switch (NumVTs) {
4264198090Srdivacky    case 0: llvm_unreachable("Cannot have nodes without results!");
4265193323Sed    case 1: return getVTList(VTs[0]);
4266193323Sed    case 2: return getVTList(VTs[0], VTs[1]);
4267193323Sed    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4268201360Srdivacky    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4269193323Sed    default: break;
4270193323Sed  }
4271193323Sed
4272193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4273193323Sed       E = VTList.rend(); I != E; ++I) {
4274193323Sed    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4275193323Sed      continue;
4276193323Sed
4277193323Sed    bool NoMatch = false;
4278193323Sed    for (unsigned i = 2; i != NumVTs; ++i)
4279193323Sed      if (VTs[i] != I->VTs[i]) {
4280193323Sed        NoMatch = true;
4281193323Sed        break;
4282193323Sed      }
4283193323Sed    if (!NoMatch)
4284193323Sed      return *I;
4285193323Sed  }
4286193323Sed
4287198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4288193323Sed  std::copy(VTs, VTs+NumVTs, Array);
4289193323Sed  SDVTList Result = makeVTList(Array, NumVTs);
4290193323Sed  VTList.push_back(Result);
4291193323Sed  return Result;
4292193323Sed}
4293193323Sed
4294193323Sed
4295193323Sed/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4296193323Sed/// specified operands.  If the resultant node already exists in the DAG,
4297193323Sed/// this does not modify the specified node, instead it returns the node that
4298193323Sed/// already exists.  If the resultant node does not exist in the DAG, the
4299193323Sed/// input node is returned.  As a degenerate case, if you specify the same
4300193323Sed/// input operands as the node already has, the input node is returned.
4301193323SedSDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4302193323Sed  SDNode *N = InN.getNode();
4303193323Sed  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4304193323Sed
4305193323Sed  // Check to see if there is no change.
4306193323Sed  if (Op == N->getOperand(0)) return InN;
4307193323Sed
4308193323Sed  // See if the modified node already exists.
4309193323Sed  void *InsertPos = 0;
4310193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4311193323Sed    return SDValue(Existing, InN.getResNo());
4312193323Sed
4313193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4314193323Sed  if (InsertPos)
4315193323Sed    if (!RemoveNodeFromCSEMaps(N))
4316193323Sed      InsertPos = 0;
4317193323Sed
4318193323Sed  // Now we update the operands.
4319193323Sed  N->OperandList[0].set(Op);
4320193323Sed
4321193323Sed  // If this gets put into a CSE map, add it.
4322193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4323193323Sed  return InN;
4324193323Sed}
4325193323Sed
4326193323SedSDValue SelectionDAG::
4327193323SedUpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4328193323Sed  SDNode *N = InN.getNode();
4329193323Sed  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4330193323Sed
4331193323Sed  // Check to see if there is no change.
4332193323Sed  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4333193323Sed    return InN;   // No operands changed, just return the input node.
4334193323Sed
4335193323Sed  // See if the modified node already exists.
4336193323Sed  void *InsertPos = 0;
4337193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4338193323Sed    return SDValue(Existing, InN.getResNo());
4339193323Sed
4340193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4341193323Sed  if (InsertPos)
4342193323Sed    if (!RemoveNodeFromCSEMaps(N))
4343193323Sed      InsertPos = 0;
4344193323Sed
4345193323Sed  // Now we update the operands.
4346193323Sed  if (N->OperandList[0] != Op1)
4347193323Sed    N->OperandList[0].set(Op1);
4348193323Sed  if (N->OperandList[1] != Op2)
4349193323Sed    N->OperandList[1].set(Op2);
4350193323Sed
4351193323Sed  // If this gets put into a CSE map, add it.
4352193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4353193323Sed  return InN;
4354193323Sed}
4355193323Sed
4356193323SedSDValue SelectionDAG::
4357193323SedUpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4358193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4359193323Sed  return UpdateNodeOperands(N, Ops, 3);
4360193323Sed}
4361193323Sed
4362193323SedSDValue SelectionDAG::
4363193323SedUpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4364193323Sed                   SDValue Op3, SDValue Op4) {
4365193323Sed  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4366193323Sed  return UpdateNodeOperands(N, Ops, 4);
4367193323Sed}
4368193323Sed
4369193323SedSDValue SelectionDAG::
4370193323SedUpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4371193323Sed                   SDValue Op3, SDValue Op4, SDValue Op5) {
4372193323Sed  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4373193323Sed  return UpdateNodeOperands(N, Ops, 5);
4374193323Sed}
4375193323Sed
4376193323SedSDValue SelectionDAG::
4377193323SedUpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4378193323Sed  SDNode *N = InN.getNode();
4379193323Sed  assert(N->getNumOperands() == NumOps &&
4380193323Sed         "Update with wrong number of operands");
4381193323Sed
4382193323Sed  // Check to see if there is no change.
4383193323Sed  bool AnyChange = false;
4384193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
4385193323Sed    if (Ops[i] != N->getOperand(i)) {
4386193323Sed      AnyChange = true;
4387193323Sed      break;
4388193323Sed    }
4389193323Sed  }
4390193323Sed
4391193323Sed  // No operands changed, just return the input node.
4392193323Sed  if (!AnyChange) return InN;
4393193323Sed
4394193323Sed  // See if the modified node already exists.
4395193323Sed  void *InsertPos = 0;
4396193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4397193323Sed    return SDValue(Existing, InN.getResNo());
4398193323Sed
4399193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4400193323Sed  if (InsertPos)
4401193323Sed    if (!RemoveNodeFromCSEMaps(N))
4402193323Sed      InsertPos = 0;
4403193323Sed
4404193323Sed  // Now we update the operands.
4405193323Sed  for (unsigned i = 0; i != NumOps; ++i)
4406193323Sed    if (N->OperandList[i] != Ops[i])
4407193323Sed      N->OperandList[i].set(Ops[i]);
4408193323Sed
4409193323Sed  // If this gets put into a CSE map, add it.
4410193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4411193323Sed  return InN;
4412193323Sed}
4413193323Sed
4414193323Sed/// DropOperands - Release the operands and set this node to have
4415193323Sed/// zero operands.
4416193323Sedvoid SDNode::DropOperands() {
4417193323Sed  // Unlike the code in MorphNodeTo that does this, we don't need to
4418193323Sed  // watch for dead nodes here.
4419193323Sed  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4420193323Sed    SDUse &Use = *I++;
4421193323Sed    Use.set(SDValue());
4422193323Sed  }
4423193323Sed}
4424193323Sed
4425193323Sed/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4426193323Sed/// machine opcode.
4427193323Sed///
4428193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4429198090Srdivacky                                   EVT VT) {
4430193323Sed  SDVTList VTs = getVTList(VT);
4431193323Sed  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4432193323Sed}
4433193323Sed
4434193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4435198090Srdivacky                                   EVT VT, SDValue Op1) {
4436193323Sed  SDVTList VTs = getVTList(VT);
4437193323Sed  SDValue Ops[] = { Op1 };
4438193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4439193323Sed}
4440193323Sed
4441193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4442198090Srdivacky                                   EVT VT, SDValue Op1,
4443193323Sed                                   SDValue Op2) {
4444193323Sed  SDVTList VTs = getVTList(VT);
4445193323Sed  SDValue Ops[] = { Op1, Op2 };
4446193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4447193323Sed}
4448193323Sed
4449193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4450198090Srdivacky                                   EVT VT, SDValue Op1,
4451193323Sed                                   SDValue Op2, SDValue Op3) {
4452193323Sed  SDVTList VTs = getVTList(VT);
4453193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4454193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4455193323Sed}
4456193323Sed
4457193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4458198090Srdivacky                                   EVT VT, const SDValue *Ops,
4459193323Sed                                   unsigned NumOps) {
4460193323Sed  SDVTList VTs = getVTList(VT);
4461193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4462193323Sed}
4463193323Sed
4464193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4465198090Srdivacky                                   EVT VT1, EVT VT2, const SDValue *Ops,
4466193323Sed                                   unsigned NumOps) {
4467193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4468193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4469193323Sed}
4470193323Sed
4471193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4472198090Srdivacky                                   EVT VT1, EVT VT2) {
4473193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4474193323Sed  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4475193323Sed}
4476193323Sed
4477193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4478198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3,
4479193323Sed                                   const SDValue *Ops, unsigned NumOps) {
4480193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4481193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4482193323Sed}
4483193323Sed
4484193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4485198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4486193323Sed                                   const SDValue *Ops, unsigned NumOps) {
4487193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4488193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4489193323Sed}
4490193323Sed
4491193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4492198090Srdivacky                                   EVT VT1, EVT VT2,
4493193323Sed                                   SDValue Op1) {
4494193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4495193323Sed  SDValue Ops[] = { Op1 };
4496193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4497193323Sed}
4498193323Sed
4499193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4500198090Srdivacky                                   EVT VT1, EVT VT2,
4501193323Sed                                   SDValue Op1, SDValue Op2) {
4502193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4503193323Sed  SDValue Ops[] = { Op1, Op2 };
4504193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4505193323Sed}
4506193323Sed
4507193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4508198090Srdivacky                                   EVT VT1, EVT VT2,
4509193323Sed                                   SDValue Op1, SDValue Op2,
4510193323Sed                                   SDValue Op3) {
4511193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4512193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4513193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4514193323Sed}
4515193323Sed
4516193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4517198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3,
4518193323Sed                                   SDValue Op1, SDValue Op2,
4519193323Sed                                   SDValue Op3) {
4520193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4521193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4522193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4523193323Sed}
4524193323Sed
4525193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4526193323Sed                                   SDVTList VTs, const SDValue *Ops,
4527193323Sed                                   unsigned NumOps) {
4528193323Sed  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4529193323Sed}
4530193323Sed
4531193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4532198090Srdivacky                                  EVT VT) {
4533193323Sed  SDVTList VTs = getVTList(VT);
4534193323Sed  return MorphNodeTo(N, Opc, VTs, 0, 0);
4535193323Sed}
4536193323Sed
4537193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4538198090Srdivacky                                  EVT VT, SDValue Op1) {
4539193323Sed  SDVTList VTs = getVTList(VT);
4540193323Sed  SDValue Ops[] = { Op1 };
4541193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4542193323Sed}
4543193323Sed
4544193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4545198090Srdivacky                                  EVT VT, SDValue Op1,
4546193323Sed                                  SDValue Op2) {
4547193323Sed  SDVTList VTs = getVTList(VT);
4548193323Sed  SDValue Ops[] = { Op1, Op2 };
4549193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4550193323Sed}
4551193323Sed
4552193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4553198090Srdivacky                                  EVT VT, SDValue Op1,
4554193323Sed                                  SDValue Op2, SDValue Op3) {
4555193323Sed  SDVTList VTs = getVTList(VT);
4556193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4557193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4558193323Sed}
4559193323Sed
4560193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4561198090Srdivacky                                  EVT VT, const SDValue *Ops,
4562193323Sed                                  unsigned NumOps) {
4563193323Sed  SDVTList VTs = getVTList(VT);
4564193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4565193323Sed}
4566193323Sed
4567193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4568198090Srdivacky                                  EVT VT1, EVT VT2, const SDValue *Ops,
4569193323Sed                                  unsigned NumOps) {
4570193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4571193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4572193323Sed}
4573193323Sed
4574193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4575198090Srdivacky                                  EVT VT1, EVT VT2) {
4576193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4577193323Sed  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4578193323Sed}
4579193323Sed
4580193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4581198090Srdivacky                                  EVT VT1, EVT VT2, EVT VT3,
4582193323Sed                                  const SDValue *Ops, unsigned NumOps) {
4583193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4584193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4585193323Sed}
4586193323Sed
4587193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4588198090Srdivacky                                  EVT VT1, EVT VT2,
4589193323Sed                                  SDValue Op1) {
4590193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4591193323Sed  SDValue Ops[] = { Op1 };
4592193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4593193323Sed}
4594193323Sed
4595193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4596198090Srdivacky                                  EVT VT1, EVT VT2,
4597193323Sed                                  SDValue Op1, SDValue Op2) {
4598193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4599193323Sed  SDValue Ops[] = { Op1, Op2 };
4600193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4601193323Sed}
4602193323Sed
4603193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4604198090Srdivacky                                  EVT VT1, EVT VT2,
4605193323Sed                                  SDValue Op1, SDValue Op2,
4606193323Sed                                  SDValue Op3) {
4607193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4608193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4609193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4610193323Sed}
4611193323Sed
4612193323Sed/// MorphNodeTo - These *mutate* the specified node to have the specified
4613193323Sed/// return type, opcode, and operands.
4614193323Sed///
4615193323Sed/// Note that MorphNodeTo returns the resultant node.  If there is already a
4616193323Sed/// node of the specified opcode and operands, it returns that node instead of
4617193323Sed/// the current one.  Note that the DebugLoc need not be the same.
4618193323Sed///
4619193323Sed/// Using MorphNodeTo is faster than creating a new node and swapping it in
4620193323Sed/// with ReplaceAllUsesWith both because it often avoids allocating a new
4621193323Sed/// node, and because it doesn't require CSE recalculation for any of
4622193323Sed/// the node's users.
4623193323Sed///
4624193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4625193323Sed                                  SDVTList VTs, const SDValue *Ops,
4626193323Sed                                  unsigned NumOps) {
4627193323Sed  // If an identical node already exists, use it.
4628193323Sed  void *IP = 0;
4629193323Sed  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4630193323Sed    FoldingSetNodeID ID;
4631193323Sed    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4632201360Srdivacky    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4633193323Sed      return ON;
4634193323Sed  }
4635193323Sed
4636193323Sed  if (!RemoveNodeFromCSEMaps(N))
4637193323Sed    IP = 0;
4638193323Sed
4639193323Sed  // Start the morphing.
4640193323Sed  N->NodeType = Opc;
4641193323Sed  N->ValueList = VTs.VTs;
4642193323Sed  N->NumValues = VTs.NumVTs;
4643193323Sed
4644193323Sed  // Clear the operands list, updating used nodes to remove this from their
4645193323Sed  // use list.  Keep track of any operands that become dead as a result.
4646193323Sed  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4647193323Sed  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4648193323Sed    SDUse &Use = *I++;
4649193323Sed    SDNode *Used = Use.getNode();
4650193323Sed    Use.set(SDValue());
4651193323Sed    if (Used->use_empty())
4652193323Sed      DeadNodeSet.insert(Used);
4653193323Sed  }
4654193323Sed
4655198090Srdivacky  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4656198090Srdivacky    // Initialize the memory references information.
4657198090Srdivacky    MN->setMemRefs(0, 0);
4658198090Srdivacky    // If NumOps is larger than the # of operands we can have in a
4659198090Srdivacky    // MachineSDNode, reallocate the operand list.
4660198090Srdivacky    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4661198090Srdivacky      if (MN->OperandsNeedDelete)
4662198090Srdivacky        delete[] MN->OperandList;
4663198090Srdivacky      if (NumOps > array_lengthof(MN->LocalOperands))
4664198090Srdivacky        // We're creating a final node that will live unmorphed for the
4665198090Srdivacky        // remainder of the current SelectionDAG iteration, so we can allocate
4666198090Srdivacky        // the operands directly out of a pool with no recycling metadata.
4667198090Srdivacky        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4668198090Srdivacky                        Ops, NumOps);
4669198090Srdivacky      else
4670198090Srdivacky        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4671198090Srdivacky      MN->OperandsNeedDelete = false;
4672198090Srdivacky    } else
4673198090Srdivacky      MN->InitOperands(MN->OperandList, Ops, NumOps);
4674198090Srdivacky  } else {
4675198090Srdivacky    // If NumOps is larger than the # of operands we currently have, reallocate
4676198090Srdivacky    // the operand list.
4677198090Srdivacky    if (NumOps > N->NumOperands) {
4678198090Srdivacky      if (N->OperandsNeedDelete)
4679198090Srdivacky        delete[] N->OperandList;
4680198090Srdivacky      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4681193323Sed      N->OperandsNeedDelete = true;
4682198090Srdivacky    } else
4683198396Srdivacky      N->InitOperands(N->OperandList, Ops, NumOps);
4684193323Sed  }
4685193323Sed
4686193323Sed  // Delete any nodes that are still dead after adding the uses for the
4687193323Sed  // new operands.
4688193323Sed  SmallVector<SDNode *, 16> DeadNodes;
4689193323Sed  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4690193323Sed       E = DeadNodeSet.end(); I != E; ++I)
4691193323Sed    if ((*I)->use_empty())
4692193323Sed      DeadNodes.push_back(*I);
4693193323Sed  RemoveDeadNodes(DeadNodes);
4694193323Sed
4695193323Sed  if (IP)
4696193323Sed    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4697193323Sed  return N;
4698193323Sed}
4699193323Sed
4700193323Sed
4701198090Srdivacky/// getMachineNode - These are used for target selectors to create a new node
4702198090Srdivacky/// with specified return type(s), MachineInstr opcode, and operands.
4703193323Sed///
4704198090Srdivacky/// Note that getMachineNode returns the resultant node.  If there is already a
4705193323Sed/// node of the specified opcode and operands, it returns that node instead of
4706193323Sed/// the current one.
4707198090SrdivackyMachineSDNode *
4708198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4709198090Srdivacky  SDVTList VTs = getVTList(VT);
4710198090Srdivacky  return getMachineNode(Opcode, dl, VTs, 0, 0);
4711193323Sed}
4712193323Sed
4713198090SrdivackyMachineSDNode *
4714198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4715198090Srdivacky  SDVTList VTs = getVTList(VT);
4716198090Srdivacky  SDValue Ops[] = { Op1 };
4717198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4718193323Sed}
4719193323Sed
4720198090SrdivackyMachineSDNode *
4721198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4722198090Srdivacky                             SDValue Op1, SDValue Op2) {
4723198090Srdivacky  SDVTList VTs = getVTList(VT);
4724198090Srdivacky  SDValue Ops[] = { Op1, Op2 };
4725198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4726193323Sed}
4727193323Sed
4728198090SrdivackyMachineSDNode *
4729198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4730198090Srdivacky                             SDValue Op1, SDValue Op2, SDValue Op3) {
4731198090Srdivacky  SDVTList VTs = getVTList(VT);
4732198090Srdivacky  SDValue Ops[] = { Op1, Op2, Op3 };
4733198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4734193323Sed}
4735193323Sed
4736198090SrdivackyMachineSDNode *
4737198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4738198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4739198090Srdivacky  SDVTList VTs = getVTList(VT);
4740198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4741193323Sed}
4742193323Sed
4743198090SrdivackyMachineSDNode *
4744198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4745193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4746198090Srdivacky  return getMachineNode(Opcode, dl, VTs, 0, 0);
4747193323Sed}
4748193323Sed
4749198090SrdivackyMachineSDNode *
4750198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4751198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1) {
4752193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4753198090Srdivacky  SDValue Ops[] = { Op1 };
4754198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4755193323Sed}
4756193323Sed
4757198090SrdivackyMachineSDNode *
4758198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4759198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4760193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4761193323Sed  SDValue Ops[] = { Op1, Op2 };
4762198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4763193323Sed}
4764193323Sed
4765198090SrdivackyMachineSDNode *
4766198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4767198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1,
4768198090Srdivacky                             SDValue Op2, SDValue Op3) {
4769193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4770193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4771198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4772193323Sed}
4773193323Sed
4774198090SrdivackyMachineSDNode *
4775198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4776198090Srdivacky                             EVT VT1, EVT VT2,
4777198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4778193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4779198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4780193323Sed}
4781193323Sed
4782198090SrdivackyMachineSDNode *
4783198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4784198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4785198090Srdivacky                             SDValue Op1, SDValue Op2) {
4786193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4787193323Sed  SDValue Ops[] = { Op1, Op2 };
4788198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4789193323Sed}
4790193323Sed
4791198090SrdivackyMachineSDNode *
4792198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4793198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4794198090Srdivacky                             SDValue Op1, SDValue Op2, SDValue Op3) {
4795193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4796193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4797198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4798193323Sed}
4799193323Sed
4800198090SrdivackyMachineSDNode *
4801198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4802198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4803198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4804193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4805198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4806193323Sed}
4807193323Sed
4808198090SrdivackyMachineSDNode *
4809198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4810198090Srdivacky                             EVT VT2, EVT VT3, EVT VT4,
4811198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4812193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4813198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4814193323Sed}
4815193323Sed
4816198090SrdivackyMachineSDNode *
4817198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4818198090Srdivacky                             const std::vector<EVT> &ResultTys,
4819198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4820198090Srdivacky  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4821198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4822193323Sed}
4823193323Sed
4824198090SrdivackyMachineSDNode *
4825198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4826198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4827198090Srdivacky  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4828198090Srdivacky  MachineSDNode *N;
4829198090Srdivacky  void *IP;
4830198090Srdivacky
4831198090Srdivacky  if (DoCSE) {
4832198090Srdivacky    FoldingSetNodeID ID;
4833198090Srdivacky    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4834198090Srdivacky    IP = 0;
4835201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4836198090Srdivacky      return cast<MachineSDNode>(E);
4837198090Srdivacky  }
4838198090Srdivacky
4839198090Srdivacky  // Allocate a new MachineSDNode.
4840198090Srdivacky  N = NodeAllocator.Allocate<MachineSDNode>();
4841198090Srdivacky  new (N) MachineSDNode(~Opcode, DL, VTs);
4842198090Srdivacky
4843198090Srdivacky  // Initialize the operands list.
4844198090Srdivacky  if (NumOps > array_lengthof(N->LocalOperands))
4845198090Srdivacky    // We're creating a final node that will live unmorphed for the
4846198090Srdivacky    // remainder of the current SelectionDAG iteration, so we can allocate
4847198090Srdivacky    // the operands directly out of a pool with no recycling metadata.
4848198090Srdivacky    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4849198090Srdivacky                    Ops, NumOps);
4850198090Srdivacky  else
4851198090Srdivacky    N->InitOperands(N->LocalOperands, Ops, NumOps);
4852198090Srdivacky  N->OperandsNeedDelete = false;
4853198090Srdivacky
4854198090Srdivacky  if (DoCSE)
4855198090Srdivacky    CSEMap.InsertNode(N, IP);
4856198090Srdivacky
4857198090Srdivacky  AllNodes.push_back(N);
4858198090Srdivacky#ifndef NDEBUG
4859198090Srdivacky  VerifyNode(N);
4860198090Srdivacky#endif
4861198090Srdivacky  return N;
4862198090Srdivacky}
4863198090Srdivacky
4864198090Srdivacky/// getTargetExtractSubreg - A convenience function for creating
4865198090Srdivacky/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4866198090SrdivackySDValue
4867198090SrdivackySelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4868198090Srdivacky                                     SDValue Operand) {
4869198090Srdivacky  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4870198090Srdivacky  SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4871198090Srdivacky                                  VT, Operand, SRIdxVal);
4872198090Srdivacky  return SDValue(Subreg, 0);
4873198090Srdivacky}
4874198090Srdivacky
4875198090Srdivacky/// getTargetInsertSubreg - A convenience function for creating
4876198090Srdivacky/// TargetInstrInfo::INSERT_SUBREG nodes.
4877198090SrdivackySDValue
4878198090SrdivackySelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4879198090Srdivacky                                    SDValue Operand, SDValue Subreg) {
4880198090Srdivacky  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4881198090Srdivacky  SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
4882198090Srdivacky                                  VT, Operand, Subreg, SRIdxVal);
4883198090Srdivacky  return SDValue(Result, 0);
4884198090Srdivacky}
4885198090Srdivacky
4886193323Sed/// getNodeIfExists - Get the specified node if it's already available, or
4887193323Sed/// else return NULL.
4888193323SedSDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4889193323Sed                                      const SDValue *Ops, unsigned NumOps) {
4890193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4891193323Sed    FoldingSetNodeID ID;
4892193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4893193323Sed    void *IP = 0;
4894201360Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4895193323Sed      return E;
4896193323Sed  }
4897193323Sed  return NULL;
4898193323Sed}
4899193323Sed
4900193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4901193323Sed/// This can cause recursive merging of nodes in the DAG.
4902193323Sed///
4903193323Sed/// This version assumes From has a single result value.
4904193323Sed///
4905193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4906193323Sed                                      DAGUpdateListener *UpdateListener) {
4907193323Sed  SDNode *From = FromN.getNode();
4908193323Sed  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4909193323Sed         "Cannot replace with this method!");
4910193323Sed  assert(From != To.getNode() && "Cannot replace uses of with self");
4911193323Sed
4912193323Sed  // Iterate over all the existing uses of From. New uses will be added
4913193323Sed  // to the beginning of the use list, which we avoid visiting.
4914193323Sed  // This specifically avoids visiting uses of From that arise while the
4915193323Sed  // replacement is happening, because any such uses would be the result
4916193323Sed  // of CSE: If an existing node looks like From after one of its operands
4917193323Sed  // is replaced by To, we don't want to replace of all its users with To
4918193323Sed  // too. See PR3018 for more info.
4919193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4920193323Sed  while (UI != UE) {
4921193323Sed    SDNode *User = *UI;
4922193323Sed
4923193323Sed    // This node is about to morph, remove its old self from the CSE maps.
4924193323Sed    RemoveNodeFromCSEMaps(User);
4925193323Sed
4926193323Sed    // A user can appear in a use list multiple times, and when this
4927193323Sed    // happens the uses are usually next to each other in the list.
4928193323Sed    // To help reduce the number of CSE recomputations, process all
4929193323Sed    // the uses of this user that we can find this way.
4930193323Sed    do {
4931193323Sed      SDUse &Use = UI.getUse();
4932193323Sed      ++UI;
4933193323Sed      Use.set(To);
4934193323Sed    } while (UI != UE && *UI == User);
4935193323Sed
4936193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
4937193323Sed    // already exists there, recursively merge the results together.
4938193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
4939193323Sed  }
4940193323Sed}
4941193323Sed
4942193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4943193323Sed/// This can cause recursive merging of nodes in the DAG.
4944193323Sed///
4945193323Sed/// This version assumes that for each value of From, there is a
4946193323Sed/// corresponding value in To in the same position with the same type.
4947193323Sed///
4948193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4949193323Sed                                      DAGUpdateListener *UpdateListener) {
4950193323Sed#ifndef NDEBUG
4951193323Sed  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4952193323Sed    assert((!From->hasAnyUseOfValue(i) ||
4953193323Sed            From->getValueType(i) == To->getValueType(i)) &&
4954193323Sed           "Cannot use this version of ReplaceAllUsesWith!");
4955193323Sed#endif
4956193323Sed
4957193323Sed  // Handle the trivial case.
4958193323Sed  if (From == To)
4959193323Sed    return;
4960193323Sed
4961193323Sed  // Iterate over just the existing users of From. See the comments in
4962193323Sed  // the ReplaceAllUsesWith above.
4963193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4964193323Sed  while (UI != UE) {
4965193323Sed    SDNode *User = *UI;
4966193323Sed
4967193323Sed    // This node is about to morph, remove its old self from the CSE maps.
4968193323Sed    RemoveNodeFromCSEMaps(User);
4969193323Sed
4970193323Sed    // A user can appear in a use list multiple times, and when this
4971193323Sed    // happens the uses are usually next to each other in the list.
4972193323Sed    // To help reduce the number of CSE recomputations, process all
4973193323Sed    // the uses of this user that we can find this way.
4974193323Sed    do {
4975193323Sed      SDUse &Use = UI.getUse();
4976193323Sed      ++UI;
4977193323Sed      Use.setNode(To);
4978193323Sed    } while (UI != UE && *UI == User);
4979193323Sed
4980193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
4981193323Sed    // already exists there, recursively merge the results together.
4982193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
4983193323Sed  }
4984193323Sed}
4985193323Sed
4986193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4987193323Sed/// This can cause recursive merging of nodes in the DAG.
4988193323Sed///
4989193323Sed/// This version can replace From with any result values.  To must match the
4990193323Sed/// number and types of values returned by From.
4991193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4992193323Sed                                      const SDValue *To,
4993193323Sed                                      DAGUpdateListener *UpdateListener) {
4994193323Sed  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4995193323Sed    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4996193323Sed
4997193323Sed  // Iterate over just the existing users of From. See the comments in
4998193323Sed  // the ReplaceAllUsesWith above.
4999193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5000193323Sed  while (UI != UE) {
5001193323Sed    SDNode *User = *UI;
5002193323Sed
5003193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5004193323Sed    RemoveNodeFromCSEMaps(User);
5005193323Sed
5006193323Sed    // A user can appear in a use list multiple times, and when this
5007193323Sed    // happens the uses are usually next to each other in the list.
5008193323Sed    // To help reduce the number of CSE recomputations, process all
5009193323Sed    // the uses of this user that we can find this way.
5010193323Sed    do {
5011193323Sed      SDUse &Use = UI.getUse();
5012193323Sed      const SDValue &ToOp = To[Use.getResNo()];
5013193323Sed      ++UI;
5014193323Sed      Use.set(ToOp);
5015193323Sed    } while (UI != UE && *UI == User);
5016193323Sed
5017193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5018193323Sed    // already exists there, recursively merge the results together.
5019193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
5020193323Sed  }
5021193323Sed}
5022193323Sed
5023193323Sed/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5024193323Sed/// uses of other values produced by From.getNode() alone.  The Deleted
5025193323Sed/// vector is handled the same way as for ReplaceAllUsesWith.
5026193323Sedvoid SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5027193323Sed                                             DAGUpdateListener *UpdateListener){
5028193323Sed  // Handle the really simple, really trivial case efficiently.
5029193323Sed  if (From == To) return;
5030193323Sed
5031193323Sed  // Handle the simple, trivial, case efficiently.
5032193323Sed  if (From.getNode()->getNumValues() == 1) {
5033193323Sed    ReplaceAllUsesWith(From, To, UpdateListener);
5034193323Sed    return;
5035193323Sed  }
5036193323Sed
5037193323Sed  // Iterate over just the existing users of From. See the comments in
5038193323Sed  // the ReplaceAllUsesWith above.
5039193323Sed  SDNode::use_iterator UI = From.getNode()->use_begin(),
5040193323Sed                       UE = From.getNode()->use_end();
5041193323Sed  while (UI != UE) {
5042193323Sed    SDNode *User = *UI;
5043193323Sed    bool UserRemovedFromCSEMaps = false;
5044193323Sed
5045193323Sed    // A user can appear in a use list multiple times, and when this
5046193323Sed    // happens the uses are usually next to each other in the list.
5047193323Sed    // To help reduce the number of CSE recomputations, process all
5048193323Sed    // the uses of this user that we can find this way.
5049193323Sed    do {
5050193323Sed      SDUse &Use = UI.getUse();
5051193323Sed
5052193323Sed      // Skip uses of different values from the same node.
5053193323Sed      if (Use.getResNo() != From.getResNo()) {
5054193323Sed        ++UI;
5055193323Sed        continue;
5056193323Sed      }
5057193323Sed
5058193323Sed      // If this node hasn't been modified yet, it's still in the CSE maps,
5059193323Sed      // so remove its old self from the CSE maps.
5060193323Sed      if (!UserRemovedFromCSEMaps) {
5061193323Sed        RemoveNodeFromCSEMaps(User);
5062193323Sed        UserRemovedFromCSEMaps = true;
5063193323Sed      }
5064193323Sed
5065193323Sed      ++UI;
5066193323Sed      Use.set(To);
5067193323Sed    } while (UI != UE && *UI == User);
5068193323Sed
5069193323Sed    // We are iterating over all uses of the From node, so if a use
5070193323Sed    // doesn't use the specific value, no changes are made.
5071193323Sed    if (!UserRemovedFromCSEMaps)
5072193323Sed      continue;
5073193323Sed
5074193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5075193323Sed    // already exists there, recursively merge the results together.
5076193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
5077193323Sed  }
5078193323Sed}
5079193323Sed
5080193323Sednamespace {
5081193323Sed  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5082193323Sed  /// to record information about a use.
5083193323Sed  struct UseMemo {
5084193323Sed    SDNode *User;
5085193323Sed    unsigned Index;
5086193323Sed    SDUse *Use;
5087193323Sed  };
5088193323Sed
5089193323Sed  /// operator< - Sort Memos by User.
5090193323Sed  bool operator<(const UseMemo &L, const UseMemo &R) {
5091193323Sed    return (intptr_t)L.User < (intptr_t)R.User;
5092193323Sed  }
5093193323Sed}
5094193323Sed
5095193323Sed/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5096193323Sed/// uses of other values produced by From.getNode() alone.  The same value
5097193323Sed/// may appear in both the From and To list.  The Deleted vector is
5098193323Sed/// handled the same way as for ReplaceAllUsesWith.
5099193323Sedvoid SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5100193323Sed                                              const SDValue *To,
5101193323Sed                                              unsigned Num,
5102193323Sed                                              DAGUpdateListener *UpdateListener){
5103193323Sed  // Handle the simple, trivial case efficiently.
5104193323Sed  if (Num == 1)
5105193323Sed    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5106193323Sed
5107193323Sed  // Read up all the uses and make records of them. This helps
5108193323Sed  // processing new uses that are introduced during the
5109193323Sed  // replacement process.
5110193323Sed  SmallVector<UseMemo, 4> Uses;
5111193323Sed  for (unsigned i = 0; i != Num; ++i) {
5112193323Sed    unsigned FromResNo = From[i].getResNo();
5113193323Sed    SDNode *FromNode = From[i].getNode();
5114193323Sed    for (SDNode::use_iterator UI = FromNode->use_begin(),
5115193323Sed         E = FromNode->use_end(); UI != E; ++UI) {
5116193323Sed      SDUse &Use = UI.getUse();
5117193323Sed      if (Use.getResNo() == FromResNo) {
5118193323Sed        UseMemo Memo = { *UI, i, &Use };
5119193323Sed        Uses.push_back(Memo);
5120193323Sed      }
5121193323Sed    }
5122193323Sed  }
5123193323Sed
5124193323Sed  // Sort the uses, so that all the uses from a given User are together.
5125193323Sed  std::sort(Uses.begin(), Uses.end());
5126193323Sed
5127193323Sed  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5128193323Sed       UseIndex != UseIndexEnd; ) {
5129193323Sed    // We know that this user uses some value of From.  If it is the right
5130193323Sed    // value, update it.
5131193323Sed    SDNode *User = Uses[UseIndex].User;
5132193323Sed
5133193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5134193323Sed    RemoveNodeFromCSEMaps(User);
5135193323Sed
5136193323Sed    // The Uses array is sorted, so all the uses for a given User
5137193323Sed    // are next to each other in the list.
5138193323Sed    // To help reduce the number of CSE recomputations, process all
5139193323Sed    // the uses of this user that we can find this way.
5140193323Sed    do {
5141193323Sed      unsigned i = Uses[UseIndex].Index;
5142193323Sed      SDUse &Use = *Uses[UseIndex].Use;
5143193323Sed      ++UseIndex;
5144193323Sed
5145193323Sed      Use.set(To[i]);
5146193323Sed    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5147193323Sed
5148193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5149193323Sed    // already exists there, recursively merge the results together.
5150193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
5151193323Sed  }
5152193323Sed}
5153193323Sed
5154193323Sed/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5155193323Sed/// based on their topological order. It returns the maximum id and a vector
5156193323Sed/// of the SDNodes* in assigned order by reference.
5157193323Sedunsigned SelectionDAG::AssignTopologicalOrder() {
5158193323Sed
5159193323Sed  unsigned DAGSize = 0;
5160193323Sed
5161193323Sed  // SortedPos tracks the progress of the algorithm. Nodes before it are
5162193323Sed  // sorted, nodes after it are unsorted. When the algorithm completes
5163193323Sed  // it is at the end of the list.
5164193323Sed  allnodes_iterator SortedPos = allnodes_begin();
5165193323Sed
5166193323Sed  // Visit all the nodes. Move nodes with no operands to the front of
5167193323Sed  // the list immediately. Annotate nodes that do have operands with their
5168193323Sed  // operand count. Before we do this, the Node Id fields of the nodes
5169193323Sed  // may contain arbitrary values. After, the Node Id fields for nodes
5170193323Sed  // before SortedPos will contain the topological sort index, and the
5171193323Sed  // Node Id fields for nodes At SortedPos and after will contain the
5172193323Sed  // count of outstanding operands.
5173193323Sed  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5174193323Sed    SDNode *N = I++;
5175193323Sed    unsigned Degree = N->getNumOperands();
5176193323Sed    if (Degree == 0) {
5177193323Sed      // A node with no uses, add it to the result array immediately.
5178193323Sed      N->setNodeId(DAGSize++);
5179193323Sed      allnodes_iterator Q = N;
5180193323Sed      if (Q != SortedPos)
5181193323Sed        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5182193323Sed      ++SortedPos;
5183193323Sed    } else {
5184193323Sed      // Temporarily use the Node Id as scratch space for the degree count.
5185193323Sed      N->setNodeId(Degree);
5186193323Sed    }
5187193323Sed  }
5188193323Sed
5189193323Sed  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5190193323Sed  // such that by the time the end is reached all nodes will be sorted.
5191193323Sed  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5192193323Sed    SDNode *N = I;
5193193323Sed    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5194193323Sed         UI != UE; ++UI) {
5195193323Sed      SDNode *P = *UI;
5196193323Sed      unsigned Degree = P->getNodeId();
5197193323Sed      --Degree;
5198193323Sed      if (Degree == 0) {
5199193323Sed        // All of P's operands are sorted, so P may sorted now.
5200193323Sed        P->setNodeId(DAGSize++);
5201193323Sed        if (P != SortedPos)
5202193323Sed          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5203193323Sed        ++SortedPos;
5204193323Sed      } else {
5205193323Sed        // Update P's outstanding operand count.
5206193323Sed        P->setNodeId(Degree);
5207193323Sed      }
5208193323Sed    }
5209193323Sed  }
5210193323Sed
5211193323Sed  assert(SortedPos == AllNodes.end() &&
5212193323Sed         "Topological sort incomplete!");
5213193323Sed  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5214193323Sed         "First node in topological sort is not the entry token!");
5215193323Sed  assert(AllNodes.front().getNodeId() == 0 &&
5216193323Sed         "First node in topological sort has non-zero id!");
5217193323Sed  assert(AllNodes.front().getNumOperands() == 0 &&
5218193323Sed         "First node in topological sort has operands!");
5219193323Sed  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5220193323Sed         "Last node in topologic sort has unexpected id!");
5221193323Sed  assert(AllNodes.back().use_empty() &&
5222193323Sed         "Last node in topologic sort has users!");
5223193323Sed  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5224193323Sed  return DAGSize;
5225193323Sed}
5226193323Sed
5227201360Srdivacky/// AssignOrdering - Assign an order to the SDNode.
5228201360Srdivackyvoid SelectionDAG::AssignOrdering(SDNode *SD, unsigned Order) {
5229201360Srdivacky  assert(SD && "Trying to assign an order to a null node!");
5230201360Srdivacky  if (Ordering)
5231201360Srdivacky    Ordering->add(SD, Order);
5232201360Srdivacky}
5233193323Sed
5234201360Srdivacky/// GetOrdering - Get the order for the SDNode.
5235201360Srdivackyunsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5236201360Srdivacky  assert(SD && "Trying to get the order of a null node!");
5237201360Srdivacky  return Ordering ? Ordering->getOrder(SD) : 0;
5238201360Srdivacky}
5239193323Sed
5240201360Srdivacky
5241193323Sed//===----------------------------------------------------------------------===//
5242193323Sed//                              SDNode Class
5243193323Sed//===----------------------------------------------------------------------===//
5244193323Sed
5245193323SedHandleSDNode::~HandleSDNode() {
5246193323Sed  DropOperands();
5247193323Sed}
5248193323Sed
5249195098SedGlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5250198090Srdivacky                                         EVT VT, int64_t o, unsigned char TF)
5251195098Sed  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5252195098Sed    Offset(o), TargetFlags(TF) {
5253193323Sed  TheGlobal = const_cast<GlobalValue*>(GA);
5254193323Sed}
5255193323Sed
5256198090SrdivackyMemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5257198090Srdivacky                     MachineMemOperand *mmo)
5258198090Srdivacky : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5259198090Srdivacky  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5260198090Srdivacky  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5261198090Srdivacky  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5262193323Sed}
5263193323Sed
5264193323SedMemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5265198090Srdivacky                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5266198090Srdivacky                     MachineMemOperand *mmo)
5267193323Sed   : SDNode(Opc, dl, VTs, Ops, NumOps),
5268198090Srdivacky     MemoryVT(memvt), MMO(mmo) {
5269198090Srdivacky  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5270198090Srdivacky  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5271198090Srdivacky  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5272193323Sed}
5273193323Sed
5274193323Sed/// Profile - Gather unique data for the node.
5275193323Sed///
5276193323Sedvoid SDNode::Profile(FoldingSetNodeID &ID) const {
5277193323Sed  AddNodeIDNode(ID, this);
5278193323Sed}
5279193323Sed
5280198090Srdivackynamespace {
5281198090Srdivacky  struct EVTArray {
5282198090Srdivacky    std::vector<EVT> VTs;
5283198090Srdivacky
5284198090Srdivacky    EVTArray() {
5285198090Srdivacky      VTs.reserve(MVT::LAST_VALUETYPE);
5286198090Srdivacky      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5287198090Srdivacky        VTs.push_back(MVT((MVT::SimpleValueType)i));
5288198090Srdivacky    }
5289198090Srdivacky  };
5290198090Srdivacky}
5291198090Srdivacky
5292198090Srdivackystatic ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5293198090Srdivackystatic ManagedStatic<EVTArray> SimpleVTArray;
5294195098Sedstatic ManagedStatic<sys::SmartMutex<true> > VTMutex;
5295195098Sed
5296193323Sed/// getValueTypeList - Return a pointer to the specified value type.
5297193323Sed///
5298198090Srdivackyconst EVT *SDNode::getValueTypeList(EVT VT) {
5299193323Sed  if (VT.isExtended()) {
5300198090Srdivacky    sys::SmartScopedLock<true> Lock(*VTMutex);
5301195098Sed    return &(*EVTs->insert(VT).first);
5302193323Sed  } else {
5303198090Srdivacky    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5304193323Sed  }
5305193323Sed}
5306193323Sed
5307193323Sed/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5308193323Sed/// indicated value.  This method ignores uses of other values defined by this
5309193323Sed/// operation.
5310193323Sedbool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5311193323Sed  assert(Value < getNumValues() && "Bad value!");
5312193323Sed
5313193323Sed  // TODO: Only iterate over uses of a given value of the node
5314193323Sed  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5315193323Sed    if (UI.getUse().getResNo() == Value) {
5316193323Sed      if (NUses == 0)
5317193323Sed        return false;
5318193323Sed      --NUses;
5319193323Sed    }
5320193323Sed  }
5321193323Sed
5322193323Sed  // Found exactly the right number of uses?
5323193323Sed  return NUses == 0;
5324193323Sed}
5325193323Sed
5326193323Sed
5327193323Sed/// hasAnyUseOfValue - Return true if there are any use of the indicated
5328193323Sed/// value. This method ignores uses of other values defined by this operation.
5329193323Sedbool SDNode::hasAnyUseOfValue(unsigned Value) const {
5330193323Sed  assert(Value < getNumValues() && "Bad value!");
5331193323Sed
5332193323Sed  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5333193323Sed    if (UI.getUse().getResNo() == Value)
5334193323Sed      return true;
5335193323Sed
5336193323Sed  return false;
5337193323Sed}
5338193323Sed
5339193323Sed
5340193323Sed/// isOnlyUserOf - Return true if this node is the only use of N.
5341193323Sed///
5342193323Sedbool SDNode::isOnlyUserOf(SDNode *N) const {
5343193323Sed  bool Seen = false;
5344193323Sed  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5345193323Sed    SDNode *User = *I;
5346193323Sed    if (User == this)
5347193323Sed      Seen = true;
5348193323Sed    else
5349193323Sed      return false;
5350193323Sed  }
5351193323Sed
5352193323Sed  return Seen;
5353193323Sed}
5354193323Sed
5355193323Sed/// isOperand - Return true if this node is an operand of N.
5356193323Sed///
5357193323Sedbool SDValue::isOperandOf(SDNode *N) const {
5358193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5359193323Sed    if (*this == N->getOperand(i))
5360193323Sed      return true;
5361193323Sed  return false;
5362193323Sed}
5363193323Sed
5364193323Sedbool SDNode::isOperandOf(SDNode *N) const {
5365193323Sed  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5366193323Sed    if (this == N->OperandList[i].getNode())
5367193323Sed      return true;
5368193323Sed  return false;
5369193323Sed}
5370193323Sed
5371193323Sed/// reachesChainWithoutSideEffects - Return true if this operand (which must
5372193323Sed/// be a chain) reaches the specified operand without crossing any
5373193323Sed/// side-effecting instructions.  In practice, this looks through token
5374193323Sed/// factors and non-volatile loads.  In order to remain efficient, this only
5375193323Sed/// looks a couple of nodes in, it does not do an exhaustive search.
5376193323Sedbool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5377193323Sed                                               unsigned Depth) const {
5378193323Sed  if (*this == Dest) return true;
5379193323Sed
5380193323Sed  // Don't search too deeply, we just want to be able to see through
5381193323Sed  // TokenFactor's etc.
5382193323Sed  if (Depth == 0) return false;
5383193323Sed
5384193323Sed  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5385193323Sed  // of the operands of the TF reach dest, then we can do the xform.
5386193323Sed  if (getOpcode() == ISD::TokenFactor) {
5387193323Sed    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5388193323Sed      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5389193323Sed        return true;
5390193323Sed    return false;
5391193323Sed  }
5392193323Sed
5393193323Sed  // Loads don't have side effects, look through them.
5394193323Sed  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5395193323Sed    if (!Ld->isVolatile())
5396193323Sed      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5397193323Sed  }
5398193323Sed  return false;
5399193323Sed}
5400193323Sed
5401193323Sed/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5402198892Srdivacky/// is either an operand of N or it can be reached by traversing up the operands.
5403193323Sed/// NOTE: this is an expensive method. Use it carefully.
5404193323Sedbool SDNode::isPredecessorOf(SDNode *N) const {
5405193323Sed  SmallPtrSet<SDNode *, 32> Visited;
5406198892Srdivacky  SmallVector<SDNode *, 16> Worklist;
5407198892Srdivacky  Worklist.push_back(N);
5408198892Srdivacky
5409198892Srdivacky  do {
5410198892Srdivacky    N = Worklist.pop_back_val();
5411198892Srdivacky    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5412198892Srdivacky      SDNode *Op = N->getOperand(i).getNode();
5413198892Srdivacky      if (Op == this)
5414198892Srdivacky        return true;
5415198892Srdivacky      if (Visited.insert(Op))
5416198892Srdivacky        Worklist.push_back(Op);
5417198892Srdivacky    }
5418198892Srdivacky  } while (!Worklist.empty());
5419198892Srdivacky
5420198892Srdivacky  return false;
5421193323Sed}
5422193323Sed
5423193323Seduint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5424193323Sed  assert(Num < NumOperands && "Invalid child # of SDNode!");
5425193323Sed  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5426193323Sed}
5427193323Sed
5428193323Sedstd::string SDNode::getOperationName(const SelectionDAG *G) const {
5429193323Sed  switch (getOpcode()) {
5430193323Sed  default:
5431193323Sed    if (getOpcode() < ISD::BUILTIN_OP_END)
5432193323Sed      return "<<Unknown DAG Node>>";
5433193323Sed    if (isMachineOpcode()) {
5434193323Sed      if (G)
5435193323Sed        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5436193323Sed          if (getMachineOpcode() < TII->getNumOpcodes())
5437193323Sed            return TII->get(getMachineOpcode()).getName();
5438193323Sed      return "<<Unknown Machine Node>>";
5439193323Sed    }
5440193323Sed    if (G) {
5441193323Sed      const TargetLowering &TLI = G->getTargetLoweringInfo();
5442193323Sed      const char *Name = TLI.getTargetNodeName(getOpcode());
5443193323Sed      if (Name) return Name;
5444193323Sed      return "<<Unknown Target Node>>";
5445193323Sed    }
5446193323Sed    return "<<Unknown Node>>";
5447193323Sed
5448193323Sed#ifndef NDEBUG
5449193323Sed  case ISD::DELETED_NODE:
5450193323Sed    return "<<Deleted Node!>>";
5451193323Sed#endif
5452193323Sed  case ISD::PREFETCH:      return "Prefetch";
5453193323Sed  case ISD::MEMBARRIER:    return "MemBarrier";
5454193323Sed  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5455193323Sed  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5456193323Sed  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5457193323Sed  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5458193323Sed  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5459193323Sed  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5460193323Sed  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5461193323Sed  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5462193323Sed  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5463193323Sed  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5464193323Sed  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5465193323Sed  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5466193323Sed  case ISD::PCMARKER:      return "PCMarker";
5467193323Sed  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5468193323Sed  case ISD::SRCVALUE:      return "SrcValue";
5469193323Sed  case ISD::EntryToken:    return "EntryToken";
5470193323Sed  case ISD::TokenFactor:   return "TokenFactor";
5471193323Sed  case ISD::AssertSext:    return "AssertSext";
5472193323Sed  case ISD::AssertZext:    return "AssertZext";
5473193323Sed
5474193323Sed  case ISD::BasicBlock:    return "BasicBlock";
5475193323Sed  case ISD::VALUETYPE:     return "ValueType";
5476193323Sed  case ISD::Register:      return "Register";
5477193323Sed
5478193323Sed  case ISD::Constant:      return "Constant";
5479193323Sed  case ISD::ConstantFP:    return "ConstantFP";
5480193323Sed  case ISD::GlobalAddress: return "GlobalAddress";
5481193323Sed  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5482193323Sed  case ISD::FrameIndex:    return "FrameIndex";
5483193323Sed  case ISD::JumpTable:     return "JumpTable";
5484193323Sed  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5485193323Sed  case ISD::RETURNADDR: return "RETURNADDR";
5486193323Sed  case ISD::FRAMEADDR: return "FRAMEADDR";
5487193323Sed  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5488193323Sed  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5489198090Srdivacky  case ISD::LSDAADDR: return "LSDAADDR";
5490193323Sed  case ISD::EHSELECTION: return "EHSELECTION";
5491193323Sed  case ISD::EH_RETURN: return "EH_RETURN";
5492193323Sed  case ISD::ConstantPool:  return "ConstantPool";
5493193323Sed  case ISD::ExternalSymbol: return "ExternalSymbol";
5494198892Srdivacky  case ISD::BlockAddress:  return "BlockAddress";
5495198396Srdivacky  case ISD::INTRINSIC_WO_CHAIN:
5496193323Sed  case ISD::INTRINSIC_VOID:
5497193323Sed  case ISD::INTRINSIC_W_CHAIN: {
5498198396Srdivacky    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5499198396Srdivacky    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5500198396Srdivacky    if (IID < Intrinsic::num_intrinsics)
5501198396Srdivacky      return Intrinsic::getName((Intrinsic::ID)IID);
5502198396Srdivacky    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5503198396Srdivacky      return TII->getName(IID);
5504198396Srdivacky    llvm_unreachable("Invalid intrinsic ID");
5505193323Sed  }
5506193323Sed
5507193323Sed  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5508193323Sed  case ISD::TargetConstant: return "TargetConstant";
5509193323Sed  case ISD::TargetConstantFP:return "TargetConstantFP";
5510193323Sed  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5511193323Sed  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5512193323Sed  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5513193323Sed  case ISD::TargetJumpTable:  return "TargetJumpTable";
5514193323Sed  case ISD::TargetConstantPool:  return "TargetConstantPool";
5515193323Sed  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5516198892Srdivacky  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5517193323Sed
5518193323Sed  case ISD::CopyToReg:     return "CopyToReg";
5519193323Sed  case ISD::CopyFromReg:   return "CopyFromReg";
5520193323Sed  case ISD::UNDEF:         return "undef";
5521193323Sed  case ISD::MERGE_VALUES:  return "merge_values";
5522193323Sed  case ISD::INLINEASM:     return "inlineasm";
5523193323Sed  case ISD::EH_LABEL:      return "eh_label";
5524193323Sed  case ISD::HANDLENODE:    return "handlenode";
5525193323Sed
5526193323Sed  // Unary operators
5527193323Sed  case ISD::FABS:   return "fabs";
5528193323Sed  case ISD::FNEG:   return "fneg";
5529193323Sed  case ISD::FSQRT:  return "fsqrt";
5530193323Sed  case ISD::FSIN:   return "fsin";
5531193323Sed  case ISD::FCOS:   return "fcos";
5532193323Sed  case ISD::FPOWI:  return "fpowi";
5533193323Sed  case ISD::FPOW:   return "fpow";
5534193323Sed  case ISD::FTRUNC: return "ftrunc";
5535193323Sed  case ISD::FFLOOR: return "ffloor";
5536193323Sed  case ISD::FCEIL:  return "fceil";
5537193323Sed  case ISD::FRINT:  return "frint";
5538193323Sed  case ISD::FNEARBYINT: return "fnearbyint";
5539193323Sed
5540193323Sed  // Binary operators
5541193323Sed  case ISD::ADD:    return "add";
5542193323Sed  case ISD::SUB:    return "sub";
5543193323Sed  case ISD::MUL:    return "mul";
5544193323Sed  case ISD::MULHU:  return "mulhu";
5545193323Sed  case ISD::MULHS:  return "mulhs";
5546193323Sed  case ISD::SDIV:   return "sdiv";
5547193323Sed  case ISD::UDIV:   return "udiv";
5548193323Sed  case ISD::SREM:   return "srem";
5549193323Sed  case ISD::UREM:   return "urem";
5550193323Sed  case ISD::SMUL_LOHI:  return "smul_lohi";
5551193323Sed  case ISD::UMUL_LOHI:  return "umul_lohi";
5552193323Sed  case ISD::SDIVREM:    return "sdivrem";
5553193323Sed  case ISD::UDIVREM:    return "udivrem";
5554193323Sed  case ISD::AND:    return "and";
5555193323Sed  case ISD::OR:     return "or";
5556193323Sed  case ISD::XOR:    return "xor";
5557193323Sed  case ISD::SHL:    return "shl";
5558193323Sed  case ISD::SRA:    return "sra";
5559193323Sed  case ISD::SRL:    return "srl";
5560193323Sed  case ISD::ROTL:   return "rotl";
5561193323Sed  case ISD::ROTR:   return "rotr";
5562193323Sed  case ISD::FADD:   return "fadd";
5563193323Sed  case ISD::FSUB:   return "fsub";
5564193323Sed  case ISD::FMUL:   return "fmul";
5565193323Sed  case ISD::FDIV:   return "fdiv";
5566193323Sed  case ISD::FREM:   return "frem";
5567193323Sed  case ISD::FCOPYSIGN: return "fcopysign";
5568193323Sed  case ISD::FGETSIGN:  return "fgetsign";
5569193323Sed
5570193323Sed  case ISD::SETCC:       return "setcc";
5571193323Sed  case ISD::VSETCC:      return "vsetcc";
5572193323Sed  case ISD::SELECT:      return "select";
5573193323Sed  case ISD::SELECT_CC:   return "select_cc";
5574193323Sed  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5575193323Sed  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5576193323Sed  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5577193323Sed  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5578193323Sed  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5579193323Sed  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5580193323Sed  case ISD::CARRY_FALSE:         return "carry_false";
5581193323Sed  case ISD::ADDC:        return "addc";
5582193323Sed  case ISD::ADDE:        return "adde";
5583193323Sed  case ISD::SADDO:       return "saddo";
5584193323Sed  case ISD::UADDO:       return "uaddo";
5585193323Sed  case ISD::SSUBO:       return "ssubo";
5586193323Sed  case ISD::USUBO:       return "usubo";
5587193323Sed  case ISD::SMULO:       return "smulo";
5588193323Sed  case ISD::UMULO:       return "umulo";
5589193323Sed  case ISD::SUBC:        return "subc";
5590193323Sed  case ISD::SUBE:        return "sube";
5591193323Sed  case ISD::SHL_PARTS:   return "shl_parts";
5592193323Sed  case ISD::SRA_PARTS:   return "sra_parts";
5593193323Sed  case ISD::SRL_PARTS:   return "srl_parts";
5594193323Sed
5595193323Sed  // Conversion operators.
5596193323Sed  case ISD::SIGN_EXTEND: return "sign_extend";
5597193323Sed  case ISD::ZERO_EXTEND: return "zero_extend";
5598193323Sed  case ISD::ANY_EXTEND:  return "any_extend";
5599193323Sed  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5600193323Sed  case ISD::TRUNCATE:    return "truncate";
5601193323Sed  case ISD::FP_ROUND:    return "fp_round";
5602193323Sed  case ISD::FLT_ROUNDS_: return "flt_rounds";
5603193323Sed  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5604193323Sed  case ISD::FP_EXTEND:   return "fp_extend";
5605193323Sed
5606193323Sed  case ISD::SINT_TO_FP:  return "sint_to_fp";
5607193323Sed  case ISD::UINT_TO_FP:  return "uint_to_fp";
5608193323Sed  case ISD::FP_TO_SINT:  return "fp_to_sint";
5609193323Sed  case ISD::FP_TO_UINT:  return "fp_to_uint";
5610193323Sed  case ISD::BIT_CONVERT: return "bit_convert";
5611193323Sed
5612193323Sed  case ISD::CONVERT_RNDSAT: {
5613193323Sed    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5614198090Srdivacky    default: llvm_unreachable("Unknown cvt code!");
5615193323Sed    case ISD::CVT_FF:  return "cvt_ff";
5616193323Sed    case ISD::CVT_FS:  return "cvt_fs";
5617193323Sed    case ISD::CVT_FU:  return "cvt_fu";
5618193323Sed    case ISD::CVT_SF:  return "cvt_sf";
5619193323Sed    case ISD::CVT_UF:  return "cvt_uf";
5620193323Sed    case ISD::CVT_SS:  return "cvt_ss";
5621193323Sed    case ISD::CVT_SU:  return "cvt_su";
5622193323Sed    case ISD::CVT_US:  return "cvt_us";
5623193323Sed    case ISD::CVT_UU:  return "cvt_uu";
5624193323Sed    }
5625193323Sed  }
5626193323Sed
5627193323Sed    // Control flow instructions
5628193323Sed  case ISD::BR:      return "br";
5629193323Sed  case ISD::BRIND:   return "brind";
5630193323Sed  case ISD::BR_JT:   return "br_jt";
5631193323Sed  case ISD::BRCOND:  return "brcond";
5632193323Sed  case ISD::BR_CC:   return "br_cc";
5633193323Sed  case ISD::CALLSEQ_START:  return "callseq_start";
5634193323Sed  case ISD::CALLSEQ_END:    return "callseq_end";
5635193323Sed
5636193323Sed    // Other operators
5637193323Sed  case ISD::LOAD:               return "load";
5638193323Sed  case ISD::STORE:              return "store";
5639193323Sed  case ISD::VAARG:              return "vaarg";
5640193323Sed  case ISD::VACOPY:             return "vacopy";
5641193323Sed  case ISD::VAEND:              return "vaend";
5642193323Sed  case ISD::VASTART:            return "vastart";
5643193323Sed  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5644193323Sed  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5645193323Sed  case ISD::BUILD_PAIR:         return "build_pair";
5646193323Sed  case ISD::STACKSAVE:          return "stacksave";
5647193323Sed  case ISD::STACKRESTORE:       return "stackrestore";
5648193323Sed  case ISD::TRAP:               return "trap";
5649193323Sed
5650193323Sed  // Bit manipulation
5651193323Sed  case ISD::BSWAP:   return "bswap";
5652193323Sed  case ISD::CTPOP:   return "ctpop";
5653193323Sed  case ISD::CTTZ:    return "cttz";
5654193323Sed  case ISD::CTLZ:    return "ctlz";
5655193323Sed
5656193323Sed  // Trampolines
5657193323Sed  case ISD::TRAMPOLINE: return "trampoline";
5658193323Sed
5659193323Sed  case ISD::CONDCODE:
5660193323Sed    switch (cast<CondCodeSDNode>(this)->get()) {
5661198090Srdivacky    default: llvm_unreachable("Unknown setcc condition!");
5662193323Sed    case ISD::SETOEQ:  return "setoeq";
5663193323Sed    case ISD::SETOGT:  return "setogt";
5664193323Sed    case ISD::SETOGE:  return "setoge";
5665193323Sed    case ISD::SETOLT:  return "setolt";
5666193323Sed    case ISD::SETOLE:  return "setole";
5667193323Sed    case ISD::SETONE:  return "setone";
5668193323Sed
5669193323Sed    case ISD::SETO:    return "seto";
5670193323Sed    case ISD::SETUO:   return "setuo";
5671193323Sed    case ISD::SETUEQ:  return "setue";
5672193323Sed    case ISD::SETUGT:  return "setugt";
5673193323Sed    case ISD::SETUGE:  return "setuge";
5674193323Sed    case ISD::SETULT:  return "setult";
5675193323Sed    case ISD::SETULE:  return "setule";
5676193323Sed    case ISD::SETUNE:  return "setune";
5677193323Sed
5678193323Sed    case ISD::SETEQ:   return "seteq";
5679193323Sed    case ISD::SETGT:   return "setgt";
5680193323Sed    case ISD::SETGE:   return "setge";
5681193323Sed    case ISD::SETLT:   return "setlt";
5682193323Sed    case ISD::SETLE:   return "setle";
5683193323Sed    case ISD::SETNE:   return "setne";
5684193323Sed    }
5685193323Sed  }
5686193323Sed}
5687193323Sed
5688193323Sedconst char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5689193323Sed  switch (AM) {
5690193323Sed  default:
5691193323Sed    return "";
5692193323Sed  case ISD::PRE_INC:
5693193323Sed    return "<pre-inc>";
5694193323Sed  case ISD::PRE_DEC:
5695193323Sed    return "<pre-dec>";
5696193323Sed  case ISD::POST_INC:
5697193323Sed    return "<post-inc>";
5698193323Sed  case ISD::POST_DEC:
5699193323Sed    return "<post-dec>";
5700193323Sed  }
5701193323Sed}
5702193323Sed
5703193323Sedstd::string ISD::ArgFlagsTy::getArgFlagsString() {
5704193323Sed  std::string S = "< ";
5705193323Sed
5706193323Sed  if (isZExt())
5707193323Sed    S += "zext ";
5708193323Sed  if (isSExt())
5709193323Sed    S += "sext ";
5710193323Sed  if (isInReg())
5711193323Sed    S += "inreg ";
5712193323Sed  if (isSRet())
5713193323Sed    S += "sret ";
5714193323Sed  if (isByVal())
5715193323Sed    S += "byval ";
5716193323Sed  if (isNest())
5717193323Sed    S += "nest ";
5718193323Sed  if (getByValAlign())
5719193323Sed    S += "byval-align:" + utostr(getByValAlign()) + " ";
5720193323Sed  if (getOrigAlign())
5721193323Sed    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5722193323Sed  if (getByValSize())
5723193323Sed    S += "byval-size:" + utostr(getByValSize()) + " ";
5724193323Sed  return S + ">";
5725193323Sed}
5726193323Sed
5727193323Sedvoid SDNode::dump() const { dump(0); }
5728193323Sedvoid SDNode::dump(const SelectionDAG *G) const {
5729202375Srdivacky  print(dbgs(), G);
5730193323Sed}
5731193323Sed
5732193323Sedvoid SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5733193323Sed  OS << (void*)this << ": ";
5734193323Sed
5735193323Sed  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5736193323Sed    if (i) OS << ",";
5737193323Sed    if (getValueType(i) == MVT::Other)
5738193323Sed      OS << "ch";
5739193323Sed    else
5740198090Srdivacky      OS << getValueType(i).getEVTString();
5741193323Sed  }
5742193323Sed  OS << " = " << getOperationName(G);
5743193323Sed}
5744193323Sed
5745193323Sedvoid SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5746198090Srdivacky  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5747198090Srdivacky    if (!MN->memoperands_empty()) {
5748198090Srdivacky      OS << "<";
5749198090Srdivacky      OS << "Mem:";
5750198090Srdivacky      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5751198090Srdivacky           e = MN->memoperands_end(); i != e; ++i) {
5752198090Srdivacky        OS << **i;
5753198090Srdivacky        if (next(i) != e)
5754198090Srdivacky          OS << " ";
5755198090Srdivacky      }
5756198090Srdivacky      OS << ">";
5757198090Srdivacky    }
5758198090Srdivacky  } else if (const ShuffleVectorSDNode *SVN =
5759198090Srdivacky               dyn_cast<ShuffleVectorSDNode>(this)) {
5760193323Sed    OS << "<";
5761193323Sed    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5762193323Sed      int Idx = SVN->getMaskElt(i);
5763193323Sed      if (i) OS << ",";
5764193323Sed      if (Idx < 0)
5765193323Sed        OS << "u";
5766193323Sed      else
5767193323Sed        OS << Idx;
5768193323Sed    }
5769193323Sed    OS << ">";
5770198090Srdivacky  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5771193323Sed    OS << '<' << CSDN->getAPIntValue() << '>';
5772193323Sed  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5773193323Sed    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5774193323Sed      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5775193323Sed    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5776193323Sed      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5777193323Sed    else {
5778193323Sed      OS << "<APFloat(";
5779193323Sed      CSDN->getValueAPF().bitcastToAPInt().dump();
5780193323Sed      OS << ")>";
5781193323Sed    }
5782193323Sed  } else if (const GlobalAddressSDNode *GADN =
5783193323Sed             dyn_cast<GlobalAddressSDNode>(this)) {
5784193323Sed    int64_t offset = GADN->getOffset();
5785193323Sed    OS << '<';
5786193323Sed    WriteAsOperand(OS, GADN->getGlobal());
5787193323Sed    OS << '>';
5788193323Sed    if (offset > 0)
5789193323Sed      OS << " + " << offset;
5790193323Sed    else
5791193323Sed      OS << " " << offset;
5792198090Srdivacky    if (unsigned int TF = GADN->getTargetFlags())
5793195098Sed      OS << " [TF=" << TF << ']';
5794193323Sed  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5795193323Sed    OS << "<" << FIDN->getIndex() << ">";
5796193323Sed  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5797193323Sed    OS << "<" << JTDN->getIndex() << ">";
5798198090Srdivacky    if (unsigned int TF = JTDN->getTargetFlags())
5799195098Sed      OS << " [TF=" << TF << ']';
5800193323Sed  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5801193323Sed    int offset = CP->getOffset();
5802193323Sed    if (CP->isMachineConstantPoolEntry())
5803193323Sed      OS << "<" << *CP->getMachineCPVal() << ">";
5804193323Sed    else
5805193323Sed      OS << "<" << *CP->getConstVal() << ">";
5806193323Sed    if (offset > 0)
5807193323Sed      OS << " + " << offset;
5808193323Sed    else
5809193323Sed      OS << " " << offset;
5810198090Srdivacky    if (unsigned int TF = CP->getTargetFlags())
5811195098Sed      OS << " [TF=" << TF << ']';
5812193323Sed  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5813193323Sed    OS << "<";
5814193323Sed    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5815193323Sed    if (LBB)
5816193323Sed      OS << LBB->getName() << " ";
5817193323Sed    OS << (const void*)BBDN->getBasicBlock() << ">";
5818193323Sed  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5819193323Sed    if (G && R->getReg() &&
5820193323Sed        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5821198892Srdivacky      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5822193323Sed    } else {
5823198892Srdivacky      OS << " %reg" << R->getReg();
5824193323Sed    }
5825193323Sed  } else if (const ExternalSymbolSDNode *ES =
5826193323Sed             dyn_cast<ExternalSymbolSDNode>(this)) {
5827193323Sed    OS << "'" << ES->getSymbol() << "'";
5828198090Srdivacky    if (unsigned int TF = ES->getTargetFlags())
5829195098Sed      OS << " [TF=" << TF << ']';
5830193323Sed  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5831193323Sed    if (M->getValue())
5832193323Sed      OS << "<" << M->getValue() << ">";
5833193323Sed    else
5834193323Sed      OS << "<null>";
5835193323Sed  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5836198090Srdivacky    OS << ":" << N->getVT().getEVTString();
5837193323Sed  }
5838193323Sed  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5839198892Srdivacky    OS << "<" << *LD->getMemOperand();
5840193323Sed
5841193323Sed    bool doExt = true;
5842193323Sed    switch (LD->getExtensionType()) {
5843193323Sed    default: doExt = false; break;
5844198090Srdivacky    case ISD::EXTLOAD: OS << ", anyext"; break;
5845198090Srdivacky    case ISD::SEXTLOAD: OS << ", sext"; break;
5846198090Srdivacky    case ISD::ZEXTLOAD: OS << ", zext"; break;
5847193323Sed    }
5848193323Sed    if (doExt)
5849198090Srdivacky      OS << " from " << LD->getMemoryVT().getEVTString();
5850193323Sed
5851193323Sed    const char *AM = getIndexedModeName(LD->getAddressingMode());
5852193323Sed    if (*AM)
5853198090Srdivacky      OS << ", " << AM;
5854198090Srdivacky
5855198090Srdivacky    OS << ">";
5856193323Sed  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5857198892Srdivacky    OS << "<" << *ST->getMemOperand();
5858193323Sed
5859193323Sed    if (ST->isTruncatingStore())
5860198090Srdivacky      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5861193323Sed
5862193323Sed    const char *AM = getIndexedModeName(ST->getAddressingMode());
5863193323Sed    if (*AM)
5864198090Srdivacky      OS << ", " << AM;
5865198090Srdivacky
5866198090Srdivacky    OS << ">";
5867198090Srdivacky  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5868198892Srdivacky    OS << "<" << *M->getMemOperand() << ">";
5869198892Srdivacky  } else if (const BlockAddressSDNode *BA =
5870198892Srdivacky               dyn_cast<BlockAddressSDNode>(this)) {
5871198892Srdivacky    OS << "<";
5872198892Srdivacky    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5873198892Srdivacky    OS << ", ";
5874198892Srdivacky    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5875198892Srdivacky    OS << ">";
5876199989Srdivacky    if (unsigned int TF = BA->getTargetFlags())
5877199989Srdivacky      OS << " [TF=" << TF << ']';
5878193323Sed  }
5879201360Srdivacky
5880201360Srdivacky  if (G)
5881201360Srdivacky    if (unsigned Order = G->GetOrdering(this))
5882201360Srdivacky      OS << " [ORD=" << Order << ']';
5883193323Sed}
5884193323Sed
5885193323Sedvoid SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5886193323Sed  print_types(OS, G);
5887193323Sed  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5888199481Srdivacky    if (i) OS << ", "; else OS << " ";
5889193323Sed    OS << (void*)getOperand(i).getNode();
5890193323Sed    if (unsigned RN = getOperand(i).getResNo())
5891193323Sed      OS << ":" << RN;
5892193323Sed  }
5893193323Sed  print_details(OS, G);
5894193323Sed}
5895193323Sed
5896193323Sedstatic void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5897193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5898193323Sed    if (N->getOperand(i).getNode()->hasOneUse())
5899193323Sed      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5900193323Sed    else
5901202375Srdivacky      dbgs() << "\n" << std::string(indent+2, ' ')
5902202375Srdivacky           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5903193323Sed
5904193323Sed
5905202375Srdivacky  dbgs() << "\n";
5906202375Srdivacky  dbgs().indent(indent);
5907193323Sed  N->dump(G);
5908193323Sed}
5909193323Sed
5910199989SrdivackySDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5911199989Srdivacky  assert(N->getNumValues() == 1 &&
5912199989Srdivacky         "Can't unroll a vector with multiple results!");
5913199989Srdivacky
5914199989Srdivacky  EVT VT = N->getValueType(0);
5915199989Srdivacky  unsigned NE = VT.getVectorNumElements();
5916199989Srdivacky  EVT EltVT = VT.getVectorElementType();
5917199989Srdivacky  DebugLoc dl = N->getDebugLoc();
5918199989Srdivacky
5919199989Srdivacky  SmallVector<SDValue, 8> Scalars;
5920199989Srdivacky  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5921199989Srdivacky
5922199989Srdivacky  // If ResNE is 0, fully unroll the vector op.
5923199989Srdivacky  if (ResNE == 0)
5924199989Srdivacky    ResNE = NE;
5925199989Srdivacky  else if (NE > ResNE)
5926199989Srdivacky    NE = ResNE;
5927199989Srdivacky
5928199989Srdivacky  unsigned i;
5929199989Srdivacky  for (i= 0; i != NE; ++i) {
5930199989Srdivacky    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
5931199989Srdivacky      SDValue Operand = N->getOperand(j);
5932199989Srdivacky      EVT OperandVT = Operand.getValueType();
5933199989Srdivacky      if (OperandVT.isVector()) {
5934199989Srdivacky        // A vector operand; extract a single element.
5935199989Srdivacky        EVT OperandEltVT = OperandVT.getVectorElementType();
5936199989Srdivacky        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
5937199989Srdivacky                              OperandEltVT,
5938199989Srdivacky                              Operand,
5939199989Srdivacky                              getConstant(i, MVT::i32));
5940199989Srdivacky      } else {
5941199989Srdivacky        // A scalar operand; just use it as is.
5942199989Srdivacky        Operands[j] = Operand;
5943199989Srdivacky      }
5944199989Srdivacky    }
5945199989Srdivacky
5946199989Srdivacky    switch (N->getOpcode()) {
5947199989Srdivacky    default:
5948199989Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
5949199989Srdivacky                                &Operands[0], Operands.size()));
5950199989Srdivacky      break;
5951199989Srdivacky    case ISD::SHL:
5952199989Srdivacky    case ISD::SRA:
5953199989Srdivacky    case ISD::SRL:
5954199989Srdivacky    case ISD::ROTL:
5955199989Srdivacky    case ISD::ROTR:
5956199989Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
5957199989Srdivacky                                getShiftAmountOperand(Operands[1])));
5958199989Srdivacky      break;
5959202375Srdivacky    case ISD::SIGN_EXTEND_INREG:
5960202375Srdivacky    case ISD::FP_ROUND_INREG: {
5961202375Srdivacky      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
5962202375Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
5963202375Srdivacky                                Operands[0],
5964202375Srdivacky                                getValueType(ExtVT)));
5965199989Srdivacky    }
5966202375Srdivacky    }
5967199989Srdivacky  }
5968199989Srdivacky
5969199989Srdivacky  for (; i < ResNE; ++i)
5970199989Srdivacky    Scalars.push_back(getUNDEF(EltVT));
5971199989Srdivacky
5972199989Srdivacky  return getNode(ISD::BUILD_VECTOR, dl,
5973199989Srdivacky                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
5974199989Srdivacky                 &Scalars[0], Scalars.size());
5975199989Srdivacky}
5976199989Srdivacky
5977200581Srdivacky
5978200581Srdivacky/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
5979200581Srdivacky/// location that is 'Dist' units away from the location that the 'Base' load
5980200581Srdivacky/// is loading from.
5981200581Srdivackybool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
5982200581Srdivacky                                     unsigned Bytes, int Dist) const {
5983200581Srdivacky  if (LD->getChain() != Base->getChain())
5984200581Srdivacky    return false;
5985200581Srdivacky  EVT VT = LD->getValueType(0);
5986200581Srdivacky  if (VT.getSizeInBits() / 8 != Bytes)
5987200581Srdivacky    return false;
5988200581Srdivacky
5989200581Srdivacky  SDValue Loc = LD->getOperand(1);
5990200581Srdivacky  SDValue BaseLoc = Base->getOperand(1);
5991200581Srdivacky  if (Loc.getOpcode() == ISD::FrameIndex) {
5992200581Srdivacky    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5993200581Srdivacky      return false;
5994200581Srdivacky    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
5995200581Srdivacky    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5996200581Srdivacky    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5997200581Srdivacky    int FS  = MFI->getObjectSize(FI);
5998200581Srdivacky    int BFS = MFI->getObjectSize(BFI);
5999200581Srdivacky    if (FS != BFS || FS != (int)Bytes) return false;
6000200581Srdivacky    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6001200581Srdivacky  }
6002200581Srdivacky  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6003200581Srdivacky    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6004200581Srdivacky    if (V && (V->getSExtValue() == Dist*Bytes))
6005200581Srdivacky      return true;
6006200581Srdivacky  }
6007200581Srdivacky
6008200581Srdivacky  GlobalValue *GV1 = NULL;
6009200581Srdivacky  GlobalValue *GV2 = NULL;
6010200581Srdivacky  int64_t Offset1 = 0;
6011200581Srdivacky  int64_t Offset2 = 0;
6012200581Srdivacky  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6013200581Srdivacky  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6014200581Srdivacky  if (isGA1 && isGA2 && GV1 == GV2)
6015200581Srdivacky    return Offset1 == (Offset2 + Dist*Bytes);
6016200581Srdivacky  return false;
6017200581Srdivacky}
6018200581Srdivacky
6019200581Srdivacky
6020200581Srdivacky/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6021200581Srdivacky/// it cannot be inferred.
6022200581Srdivackyunsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6023200581Srdivacky  // If this is a GlobalAddress + cst, return the alignment.
6024200581Srdivacky  GlobalValue *GV;
6025200581Srdivacky  int64_t GVOffset = 0;
6026200581Srdivacky  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6027200581Srdivacky    return MinAlign(GV->getAlignment(), GVOffset);
6028200581Srdivacky
6029200581Srdivacky  // If this is a direct reference to a stack slot, use information about the
6030200581Srdivacky  // stack slot's alignment.
6031200581Srdivacky  int FrameIdx = 1 << 31;
6032200581Srdivacky  int64_t FrameOffset = 0;
6033200581Srdivacky  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6034200581Srdivacky    FrameIdx = FI->getIndex();
6035200581Srdivacky  } else if (Ptr.getOpcode() == ISD::ADD &&
6036200581Srdivacky             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6037200581Srdivacky             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6038200581Srdivacky    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6039200581Srdivacky    FrameOffset = Ptr.getConstantOperandVal(1);
6040200581Srdivacky  }
6041200581Srdivacky
6042200581Srdivacky  if (FrameIdx != (1 << 31)) {
6043200581Srdivacky    // FIXME: Handle FI+CST.
6044200581Srdivacky    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6045200581Srdivacky    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6046200581Srdivacky                                    FrameOffset);
6047200581Srdivacky    if (MFI.isFixedObjectIndex(FrameIdx)) {
6048200581Srdivacky      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6049200581Srdivacky
6050200581Srdivacky      // The alignment of the frame index can be determined from its offset from
6051200581Srdivacky      // the incoming frame position.  If the frame object is at offset 32 and
6052200581Srdivacky      // the stack is guaranteed to be 16-byte aligned, then we know that the
6053200581Srdivacky      // object is 16-byte aligned.
6054200581Srdivacky      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6055200581Srdivacky      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6056200581Srdivacky
6057200581Srdivacky      // Finally, the frame object itself may have a known alignment.  Factor
6058200581Srdivacky      // the alignment + offset into a new alignment.  For example, if we know
6059200581Srdivacky      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6060200581Srdivacky      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6061200581Srdivacky      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6062200581Srdivacky      return std::max(Align, FIInfoAlign);
6063200581Srdivacky    }
6064200581Srdivacky    return FIInfoAlign;
6065200581Srdivacky  }
6066200581Srdivacky
6067200581Srdivacky  return 0;
6068200581Srdivacky}
6069200581Srdivacky
6070193323Sedvoid SelectionDAG::dump() const {
6071202375Srdivacky  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6072193323Sed
6073193323Sed  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6074193323Sed       I != E; ++I) {
6075193323Sed    const SDNode *N = I;
6076193323Sed    if (!N->hasOneUse() && N != getRoot().getNode())
6077193323Sed      DumpNodes(N, 2, this);
6078193323Sed  }
6079193323Sed
6080193323Sed  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6081193323Sed
6082202375Srdivacky  dbgs() << "\n\n";
6083193323Sed}
6084193323Sed
6085193323Sedvoid SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6086193323Sed  print_types(OS, G);
6087193323Sed  print_details(OS, G);
6088193323Sed}
6089193323Sed
6090193323Sedtypedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6091193323Sedstatic void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6092193323Sed                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6093193323Sed  if (!once.insert(N))          // If we've been here before, return now.
6094193323Sed    return;
6095201360Srdivacky
6096193323Sed  // Dump the current SDNode, but don't end the line yet.
6097193323Sed  OS << std::string(indent, ' ');
6098193323Sed  N->printr(OS, G);
6099201360Srdivacky
6100193323Sed  // Having printed this SDNode, walk the children:
6101193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6102193323Sed    const SDNode *child = N->getOperand(i).getNode();
6103201360Srdivacky
6104193323Sed    if (i) OS << ",";
6105193323Sed    OS << " ";
6106201360Srdivacky
6107193323Sed    if (child->getNumOperands() == 0) {
6108193323Sed      // This child has no grandchildren; print it inline right here.
6109193323Sed      child->printr(OS, G);
6110193323Sed      once.insert(child);
6111201360Srdivacky    } else {         // Just the address. FIXME: also print the child's opcode.
6112193323Sed      OS << (void*)child;
6113193323Sed      if (unsigned RN = N->getOperand(i).getResNo())
6114193323Sed        OS << ":" << RN;
6115193323Sed    }
6116193323Sed  }
6117201360Srdivacky
6118193323Sed  OS << "\n";
6119201360Srdivacky
6120193323Sed  // Dump children that have grandchildren on their own line(s).
6121193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6122193323Sed    const SDNode *child = N->getOperand(i).getNode();
6123193323Sed    DumpNodesr(OS, child, indent+2, G, once);
6124193323Sed  }
6125193323Sed}
6126193323Sed
6127193323Sedvoid SDNode::dumpr() const {
6128193323Sed  VisitedSDNodeSet once;
6129202375Srdivacky  DumpNodesr(dbgs(), this, 0, 0, once);
6130193323Sed}
6131193323Sed
6132198090Srdivackyvoid SDNode::dumpr(const SelectionDAG *G) const {
6133198090Srdivacky  VisitedSDNodeSet once;
6134202375Srdivacky  DumpNodesr(dbgs(), this, 0, G, once);
6135198090Srdivacky}
6136193323Sed
6137198090Srdivacky
6138193323Sed// getAddressSpace - Return the address space this GlobalAddress belongs to.
6139193323Sedunsigned GlobalAddressSDNode::getAddressSpace() const {
6140193323Sed  return getGlobal()->getType()->getAddressSpace();
6141193323Sed}
6142193323Sed
6143193323Sed
6144193323Sedconst Type *ConstantPoolSDNode::getType() const {
6145193323Sed  if (isMachineConstantPoolEntry())
6146193323Sed    return Val.MachineCPVal->getType();
6147193323Sed  return Val.ConstVal->getType();
6148193323Sed}
6149193323Sed
6150193323Sedbool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6151193323Sed                                        APInt &SplatUndef,
6152193323Sed                                        unsigned &SplatBitSize,
6153193323Sed                                        bool &HasAnyUndefs,
6154199481Srdivacky                                        unsigned MinSplatBits,
6155199481Srdivacky                                        bool isBigEndian) {
6156198090Srdivacky  EVT VT = getValueType(0);
6157193323Sed  assert(VT.isVector() && "Expected a vector type");
6158193323Sed  unsigned sz = VT.getSizeInBits();
6159193323Sed  if (MinSplatBits > sz)
6160193323Sed    return false;
6161193323Sed
6162193323Sed  SplatValue = APInt(sz, 0);
6163193323Sed  SplatUndef = APInt(sz, 0);
6164193323Sed
6165193323Sed  // Get the bits.  Bits with undefined values (when the corresponding element
6166193323Sed  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6167193323Sed  // in SplatValue.  If any of the values are not constant, give up and return
6168193323Sed  // false.
6169193323Sed  unsigned int nOps = getNumOperands();
6170193323Sed  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6171193323Sed  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6172199481Srdivacky
6173199481Srdivacky  for (unsigned j = 0; j < nOps; ++j) {
6174199481Srdivacky    unsigned i = isBigEndian ? nOps-1-j : j;
6175193323Sed    SDValue OpVal = getOperand(i);
6176199481Srdivacky    unsigned BitPos = j * EltBitSize;
6177193323Sed
6178193323Sed    if (OpVal.getOpcode() == ISD::UNDEF)
6179199481Srdivacky      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6180193323Sed    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6181193323Sed      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6182193323Sed                     zextOrTrunc(sz) << BitPos);
6183193323Sed    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6184193323Sed      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6185193323Sed     else
6186193323Sed      return false;
6187193323Sed  }
6188193323Sed
6189193323Sed  // The build_vector is all constants or undefs.  Find the smallest element
6190193323Sed  // size that splats the vector.
6191193323Sed
6192193323Sed  HasAnyUndefs = (SplatUndef != 0);
6193193323Sed  while (sz > 8) {
6194193323Sed
6195193323Sed    unsigned HalfSize = sz / 2;
6196193323Sed    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6197193323Sed    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6198193323Sed    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6199193323Sed    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6200193323Sed
6201193323Sed    // If the two halves do not match (ignoring undef bits), stop here.
6202193323Sed    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6203193323Sed        MinSplatBits > HalfSize)
6204193323Sed      break;
6205193323Sed
6206193323Sed    SplatValue = HighValue | LowValue;
6207193323Sed    SplatUndef = HighUndef & LowUndef;
6208198090Srdivacky
6209193323Sed    sz = HalfSize;
6210193323Sed  }
6211193323Sed
6212193323Sed  SplatBitSize = sz;
6213193323Sed  return true;
6214193323Sed}
6215193323Sed
6216198090Srdivackybool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6217193323Sed  // Find the first non-undef value in the shuffle mask.
6218193323Sed  unsigned i, e;
6219193323Sed  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6220193323Sed    /* search */;
6221193323Sed
6222193323Sed  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6223198090Srdivacky
6224193323Sed  // Make sure all remaining elements are either undef or the same as the first
6225193323Sed  // non-undef value.
6226193323Sed  for (int Idx = Mask[i]; i != e; ++i)
6227193323Sed    if (Mask[i] >= 0 && Mask[i] != Idx)
6228193323Sed      return false;
6229193323Sed  return true;
6230193323Sed}
6231