SelectionDAG.cpp revision 200581
1193323Sed//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This implements the SelectionDAG class.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13193323Sed#include "llvm/CodeGen/SelectionDAG.h"
14193323Sed#include "llvm/Constants.h"
15193323Sed#include "llvm/Analysis/ValueTracking.h"
16198090Srdivacky#include "llvm/Function.h"
17193323Sed#include "llvm/GlobalAlias.h"
18193323Sed#include "llvm/GlobalVariable.h"
19193323Sed#include "llvm/Intrinsics.h"
20193323Sed#include "llvm/DerivedTypes.h"
21193323Sed#include "llvm/Assembly/Writer.h"
22193323Sed#include "llvm/CallingConv.h"
23193323Sed#include "llvm/CodeGen/MachineBasicBlock.h"
24193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
25193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
26193323Sed#include "llvm/CodeGen/MachineModuleInfo.h"
27193323Sed#include "llvm/CodeGen/PseudoSourceValue.h"
28193323Sed#include "llvm/Target/TargetRegisterInfo.h"
29193323Sed#include "llvm/Target/TargetData.h"
30200581Srdivacky#include "llvm/Target/TargetFrameInfo.h"
31193323Sed#include "llvm/Target/TargetLowering.h"
32193323Sed#include "llvm/Target/TargetOptions.h"
33193323Sed#include "llvm/Target/TargetInstrInfo.h"
34198396Srdivacky#include "llvm/Target/TargetIntrinsicInfo.h"
35193323Sed#include "llvm/Target/TargetMachine.h"
36193323Sed#include "llvm/Support/CommandLine.h"
37198090Srdivacky#include "llvm/Support/ErrorHandling.h"
38195098Sed#include "llvm/Support/ManagedStatic.h"
39193323Sed#include "llvm/Support/MathExtras.h"
40193323Sed#include "llvm/Support/raw_ostream.h"
41195098Sed#include "llvm/System/Mutex.h"
42193323Sed#include "llvm/ADT/SetVector.h"
43193323Sed#include "llvm/ADT/SmallPtrSet.h"
44193323Sed#include "llvm/ADT/SmallSet.h"
45193323Sed#include "llvm/ADT/SmallVector.h"
46193323Sed#include "llvm/ADT/StringExtras.h"
47193323Sed#include <algorithm>
48193323Sed#include <cmath>
49193323Sedusing namespace llvm;
50193323Sed
51200581Srdivackyextern cl::opt<bool> DisableInstScheduling;
52200581Srdivacky
53193323Sed/// makeVTList - Return an instance of the SDVTList struct initialized with the
54193323Sed/// specified members.
55198090Srdivackystatic SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
56193323Sed  SDVTList Res = {VTs, NumVTs};
57193323Sed  return Res;
58193323Sed}
59193323Sed
60198090Srdivackystatic const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
61198090Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
62198090Srdivacky  default: llvm_unreachable("Unknown FP format");
63193323Sed  case MVT::f32:     return &APFloat::IEEEsingle;
64193323Sed  case MVT::f64:     return &APFloat::IEEEdouble;
65193323Sed  case MVT::f80:     return &APFloat::x87DoubleExtended;
66193323Sed  case MVT::f128:    return &APFloat::IEEEquad;
67193323Sed  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
68193323Sed  }
69193323Sed}
70193323Sed
71193323SedSelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
72193323Sed
73193323Sed//===----------------------------------------------------------------------===//
74193323Sed//                              ConstantFPSDNode Class
75193323Sed//===----------------------------------------------------------------------===//
76193323Sed
77193323Sed/// isExactlyValue - We don't rely on operator== working on double values, as
78193323Sed/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
79193323Sed/// As such, this method can be used to do an exact bit-for-bit comparison of
80193323Sed/// two floating point values.
81193323Sedbool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
82193323Sed  return getValueAPF().bitwiseIsEqual(V);
83193323Sed}
84193323Sed
85198090Srdivackybool ConstantFPSDNode::isValueValidForType(EVT VT,
86193323Sed                                           const APFloat& Val) {
87193323Sed  assert(VT.isFloatingPoint() && "Can only convert between FP types");
88193323Sed
89193323Sed  // PPC long double cannot be converted to any other type.
90193323Sed  if (VT == MVT::ppcf128 ||
91193323Sed      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
92193323Sed    return false;
93193323Sed
94193323Sed  // convert modifies in place, so make a copy.
95193323Sed  APFloat Val2 = APFloat(Val);
96193323Sed  bool losesInfo;
97198090Srdivacky  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
98193323Sed                      &losesInfo);
99193323Sed  return !losesInfo;
100193323Sed}
101193323Sed
102193323Sed//===----------------------------------------------------------------------===//
103193323Sed//                              ISD Namespace
104193323Sed//===----------------------------------------------------------------------===//
105193323Sed
106193323Sed/// isBuildVectorAllOnes - Return true if the specified node is a
107193323Sed/// BUILD_VECTOR where all of the elements are ~0 or undef.
108193323Sedbool ISD::isBuildVectorAllOnes(const SDNode *N) {
109193323Sed  // Look through a bit convert.
110193323Sed  if (N->getOpcode() == ISD::BIT_CONVERT)
111193323Sed    N = N->getOperand(0).getNode();
112193323Sed
113193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
114193323Sed
115193323Sed  unsigned i = 0, e = N->getNumOperands();
116193323Sed
117193323Sed  // Skip over all of the undef values.
118193323Sed  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
119193323Sed    ++i;
120193323Sed
121193323Sed  // Do not accept an all-undef vector.
122193323Sed  if (i == e) return false;
123193323Sed
124193323Sed  // Do not accept build_vectors that aren't all constants or which have non-~0
125193323Sed  // elements.
126193323Sed  SDValue NotZero = N->getOperand(i);
127193323Sed  if (isa<ConstantSDNode>(NotZero)) {
128193323Sed    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
129193323Sed      return false;
130193323Sed  } else if (isa<ConstantFPSDNode>(NotZero)) {
131193323Sed    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
132193323Sed                bitcastToAPInt().isAllOnesValue())
133193323Sed      return false;
134193323Sed  } else
135193323Sed    return false;
136193323Sed
137193323Sed  // Okay, we have at least one ~0 value, check to see if the rest match or are
138193323Sed  // undefs.
139193323Sed  for (++i; i != e; ++i)
140193323Sed    if (N->getOperand(i) != NotZero &&
141193323Sed        N->getOperand(i).getOpcode() != ISD::UNDEF)
142193323Sed      return false;
143193323Sed  return true;
144193323Sed}
145193323Sed
146193323Sed
147193323Sed/// isBuildVectorAllZeros - Return true if the specified node is a
148193323Sed/// BUILD_VECTOR where all of the elements are 0 or undef.
149193323Sedbool ISD::isBuildVectorAllZeros(const SDNode *N) {
150193323Sed  // Look through a bit convert.
151193323Sed  if (N->getOpcode() == ISD::BIT_CONVERT)
152193323Sed    N = N->getOperand(0).getNode();
153193323Sed
154193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
155193323Sed
156193323Sed  unsigned i = 0, e = N->getNumOperands();
157193323Sed
158193323Sed  // Skip over all of the undef values.
159193323Sed  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
160193323Sed    ++i;
161193323Sed
162193323Sed  // Do not accept an all-undef vector.
163193323Sed  if (i == e) return false;
164193323Sed
165193574Sed  // Do not accept build_vectors that aren't all constants or which have non-0
166193323Sed  // elements.
167193323Sed  SDValue Zero = N->getOperand(i);
168193323Sed  if (isa<ConstantSDNode>(Zero)) {
169193323Sed    if (!cast<ConstantSDNode>(Zero)->isNullValue())
170193323Sed      return false;
171193323Sed  } else if (isa<ConstantFPSDNode>(Zero)) {
172193323Sed    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
173193323Sed      return false;
174193323Sed  } else
175193323Sed    return false;
176193323Sed
177193574Sed  // Okay, we have at least one 0 value, check to see if the rest match or are
178193323Sed  // undefs.
179193323Sed  for (++i; i != e; ++i)
180193323Sed    if (N->getOperand(i) != Zero &&
181193323Sed        N->getOperand(i).getOpcode() != ISD::UNDEF)
182193323Sed      return false;
183193323Sed  return true;
184193323Sed}
185193323Sed
186193323Sed/// isScalarToVector - Return true if the specified node is a
187193323Sed/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
188193323Sed/// element is not an undef.
189193323Sedbool ISD::isScalarToVector(const SDNode *N) {
190193323Sed  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
191193323Sed    return true;
192193323Sed
193193323Sed  if (N->getOpcode() != ISD::BUILD_VECTOR)
194193323Sed    return false;
195193323Sed  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
196193323Sed    return false;
197193323Sed  unsigned NumElems = N->getNumOperands();
198193323Sed  for (unsigned i = 1; i < NumElems; ++i) {
199193323Sed    SDValue V = N->getOperand(i);
200193323Sed    if (V.getOpcode() != ISD::UNDEF)
201193323Sed      return false;
202193323Sed  }
203193323Sed  return true;
204193323Sed}
205193323Sed
206193323Sed/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
207193323Sed/// when given the operation for (X op Y).
208193323SedISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
209193323Sed  // To perform this operation, we just need to swap the L and G bits of the
210193323Sed  // operation.
211193323Sed  unsigned OldL = (Operation >> 2) & 1;
212193323Sed  unsigned OldG = (Operation >> 1) & 1;
213193323Sed  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
214193323Sed                       (OldL << 1) |       // New G bit
215193323Sed                       (OldG << 2));       // New L bit.
216193323Sed}
217193323Sed
218193323Sed/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
219193323Sed/// 'op' is a valid SetCC operation.
220193323SedISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
221193323Sed  unsigned Operation = Op;
222193323Sed  if (isInteger)
223193323Sed    Operation ^= 7;   // Flip L, G, E bits, but not U.
224193323Sed  else
225193323Sed    Operation ^= 15;  // Flip all of the condition bits.
226193323Sed
227193323Sed  if (Operation > ISD::SETTRUE2)
228193323Sed    Operation &= ~8;  // Don't let N and U bits get set.
229193323Sed
230193323Sed  return ISD::CondCode(Operation);
231193323Sed}
232193323Sed
233193323Sed
234193323Sed/// isSignedOp - For an integer comparison, return 1 if the comparison is a
235193323Sed/// signed operation and 2 if the result is an unsigned comparison.  Return zero
236193323Sed/// if the operation does not depend on the sign of the input (setne and seteq).
237193323Sedstatic int isSignedOp(ISD::CondCode Opcode) {
238193323Sed  switch (Opcode) {
239198090Srdivacky  default: llvm_unreachable("Illegal integer setcc operation!");
240193323Sed  case ISD::SETEQ:
241193323Sed  case ISD::SETNE: return 0;
242193323Sed  case ISD::SETLT:
243193323Sed  case ISD::SETLE:
244193323Sed  case ISD::SETGT:
245193323Sed  case ISD::SETGE: return 1;
246193323Sed  case ISD::SETULT:
247193323Sed  case ISD::SETULE:
248193323Sed  case ISD::SETUGT:
249193323Sed  case ISD::SETUGE: return 2;
250193323Sed  }
251193323Sed}
252193323Sed
253193323Sed/// getSetCCOrOperation - Return the result of a logical OR between different
254193323Sed/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
255193323Sed/// returns SETCC_INVALID if it is not possible to represent the resultant
256193323Sed/// comparison.
257193323SedISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
258193323Sed                                       bool isInteger) {
259193323Sed  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
260193323Sed    // Cannot fold a signed integer setcc with an unsigned integer setcc.
261193323Sed    return ISD::SETCC_INVALID;
262193323Sed
263193323Sed  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
264193323Sed
265193323Sed  // If the N and U bits get set then the resultant comparison DOES suddenly
266193323Sed  // care about orderedness, and is true when ordered.
267193323Sed  if (Op > ISD::SETTRUE2)
268193323Sed    Op &= ~16;     // Clear the U bit if the N bit is set.
269193323Sed
270193323Sed  // Canonicalize illegal integer setcc's.
271193323Sed  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
272193323Sed    Op = ISD::SETNE;
273193323Sed
274193323Sed  return ISD::CondCode(Op);
275193323Sed}
276193323Sed
277193323Sed/// getSetCCAndOperation - Return the result of a logical AND between different
278193323Sed/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
279193323Sed/// function returns zero if it is not possible to represent the resultant
280193323Sed/// comparison.
281193323SedISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
282193323Sed                                        bool isInteger) {
283193323Sed  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
284193323Sed    // Cannot fold a signed setcc with an unsigned setcc.
285193323Sed    return ISD::SETCC_INVALID;
286193323Sed
287193323Sed  // Combine all of the condition bits.
288193323Sed  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
289193323Sed
290193323Sed  // Canonicalize illegal integer setcc's.
291193323Sed  if (isInteger) {
292193323Sed    switch (Result) {
293193323Sed    default: break;
294193323Sed    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
295193323Sed    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
296193323Sed    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
297193323Sed    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
298193323Sed    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
299193323Sed    }
300193323Sed  }
301193323Sed
302193323Sed  return Result;
303193323Sed}
304193323Sed
305193323Sedconst TargetMachine &SelectionDAG::getTarget() const {
306193323Sed  return MF->getTarget();
307193323Sed}
308193323Sed
309193323Sed//===----------------------------------------------------------------------===//
310193323Sed//                           SDNode Profile Support
311193323Sed//===----------------------------------------------------------------------===//
312193323Sed
313193323Sed/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314193323Sed///
315193323Sedstatic void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316193323Sed  ID.AddInteger(OpC);
317193323Sed}
318193323Sed
319193323Sed/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320193323Sed/// solely with their pointer.
321193323Sedstatic void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322193323Sed  ID.AddPointer(VTList.VTs);
323193323Sed}
324193323Sed
325193323Sed/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326193323Sed///
327193323Sedstatic void AddNodeIDOperands(FoldingSetNodeID &ID,
328193323Sed                              const SDValue *Ops, unsigned NumOps) {
329193323Sed  for (; NumOps; --NumOps, ++Ops) {
330193323Sed    ID.AddPointer(Ops->getNode());
331193323Sed    ID.AddInteger(Ops->getResNo());
332193323Sed  }
333193323Sed}
334193323Sed
335193323Sed/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336193323Sed///
337193323Sedstatic void AddNodeIDOperands(FoldingSetNodeID &ID,
338193323Sed                              const SDUse *Ops, unsigned NumOps) {
339193323Sed  for (; NumOps; --NumOps, ++Ops) {
340193323Sed    ID.AddPointer(Ops->getNode());
341193323Sed    ID.AddInteger(Ops->getResNo());
342193323Sed  }
343193323Sed}
344193323Sed
345193323Sedstatic void AddNodeIDNode(FoldingSetNodeID &ID,
346193323Sed                          unsigned short OpC, SDVTList VTList,
347193323Sed                          const SDValue *OpList, unsigned N) {
348193323Sed  AddNodeIDOpcode(ID, OpC);
349193323Sed  AddNodeIDValueTypes(ID, VTList);
350193323Sed  AddNodeIDOperands(ID, OpList, N);
351193323Sed}
352193323Sed
353193323Sed/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
354193323Sed/// the NodeID data.
355193323Sedstatic void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
356193323Sed  switch (N->getOpcode()) {
357195098Sed  case ISD::TargetExternalSymbol:
358195098Sed  case ISD::ExternalSymbol:
359198090Srdivacky    llvm_unreachable("Should only be used on nodes with operands");
360193323Sed  default: break;  // Normal nodes don't need extra info.
361193323Sed  case ISD::TargetConstant:
362193323Sed  case ISD::Constant:
363193323Sed    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
364193323Sed    break;
365193323Sed  case ISD::TargetConstantFP:
366193323Sed  case ISD::ConstantFP: {
367193323Sed    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
368193323Sed    break;
369193323Sed  }
370193323Sed  case ISD::TargetGlobalAddress:
371193323Sed  case ISD::GlobalAddress:
372193323Sed  case ISD::TargetGlobalTLSAddress:
373193323Sed  case ISD::GlobalTLSAddress: {
374193323Sed    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375193323Sed    ID.AddPointer(GA->getGlobal());
376193323Sed    ID.AddInteger(GA->getOffset());
377195098Sed    ID.AddInteger(GA->getTargetFlags());
378193323Sed    break;
379193323Sed  }
380193323Sed  case ISD::BasicBlock:
381193323Sed    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382193323Sed    break;
383193323Sed  case ISD::Register:
384193323Sed    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385193323Sed    break;
386199989Srdivacky
387193323Sed  case ISD::SRCVALUE:
388193323Sed    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
389193323Sed    break;
390193323Sed  case ISD::FrameIndex:
391193323Sed  case ISD::TargetFrameIndex:
392193323Sed    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
393193323Sed    break;
394193323Sed  case ISD::JumpTable:
395193323Sed  case ISD::TargetJumpTable:
396193323Sed    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
397195098Sed    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
398193323Sed    break;
399193323Sed  case ISD::ConstantPool:
400193323Sed  case ISD::TargetConstantPool: {
401193323Sed    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
402193323Sed    ID.AddInteger(CP->getAlignment());
403193323Sed    ID.AddInteger(CP->getOffset());
404193323Sed    if (CP->isMachineConstantPoolEntry())
405193323Sed      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
406193323Sed    else
407193323Sed      ID.AddPointer(CP->getConstVal());
408195098Sed    ID.AddInteger(CP->getTargetFlags());
409193323Sed    break;
410193323Sed  }
411193323Sed  case ISD::LOAD: {
412193323Sed    const LoadSDNode *LD = cast<LoadSDNode>(N);
413193323Sed    ID.AddInteger(LD->getMemoryVT().getRawBits());
414193323Sed    ID.AddInteger(LD->getRawSubclassData());
415193323Sed    break;
416193323Sed  }
417193323Sed  case ISD::STORE: {
418193323Sed    const StoreSDNode *ST = cast<StoreSDNode>(N);
419193323Sed    ID.AddInteger(ST->getMemoryVT().getRawBits());
420193323Sed    ID.AddInteger(ST->getRawSubclassData());
421193323Sed    break;
422193323Sed  }
423193323Sed  case ISD::ATOMIC_CMP_SWAP:
424193323Sed  case ISD::ATOMIC_SWAP:
425193323Sed  case ISD::ATOMIC_LOAD_ADD:
426193323Sed  case ISD::ATOMIC_LOAD_SUB:
427193323Sed  case ISD::ATOMIC_LOAD_AND:
428193323Sed  case ISD::ATOMIC_LOAD_OR:
429193323Sed  case ISD::ATOMIC_LOAD_XOR:
430193323Sed  case ISD::ATOMIC_LOAD_NAND:
431193323Sed  case ISD::ATOMIC_LOAD_MIN:
432193323Sed  case ISD::ATOMIC_LOAD_MAX:
433193323Sed  case ISD::ATOMIC_LOAD_UMIN:
434193323Sed  case ISD::ATOMIC_LOAD_UMAX: {
435193323Sed    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
436193323Sed    ID.AddInteger(AT->getMemoryVT().getRawBits());
437193323Sed    ID.AddInteger(AT->getRawSubclassData());
438193323Sed    break;
439193323Sed  }
440193323Sed  case ISD::VECTOR_SHUFFLE: {
441193323Sed    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
442198090Srdivacky    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
443193323Sed         i != e; ++i)
444193323Sed      ID.AddInteger(SVN->getMaskElt(i));
445193323Sed    break;
446193323Sed  }
447198892Srdivacky  case ISD::TargetBlockAddress:
448198892Srdivacky  case ISD::BlockAddress: {
449199989Srdivacky    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
450199989Srdivacky    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
451198892Srdivacky    break;
452198892Srdivacky  }
453193323Sed  } // end switch (N->getOpcode())
454193323Sed}
455193323Sed
456193323Sed/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
457193323Sed/// data.
458193323Sedstatic void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
459193323Sed  AddNodeIDOpcode(ID, N->getOpcode());
460193323Sed  // Add the return value info.
461193323Sed  AddNodeIDValueTypes(ID, N->getVTList());
462193323Sed  // Add the operand info.
463193323Sed  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
464193323Sed
465193323Sed  // Handle SDNode leafs with special info.
466193323Sed  AddNodeIDCustom(ID, N);
467193323Sed}
468193323Sed
469193323Sed/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470198090Srdivacky/// the CSE map that carries volatility, indexing mode, and
471193323Sed/// extension/truncation information.
472193323Sed///
473193323Sedstatic inline unsigned
474198090SrdivackyencodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
475193323Sed  assert((ConvType & 3) == ConvType &&
476193323Sed         "ConvType may not require more than 2 bits!");
477193323Sed  assert((AM & 7) == AM &&
478193323Sed         "AM may not require more than 3 bits!");
479193323Sed  return ConvType |
480193323Sed         (AM << 2) |
481198090Srdivacky         (isVolatile << 5);
482193323Sed}
483193323Sed
484193323Sed//===----------------------------------------------------------------------===//
485193323Sed//                              SelectionDAG Class
486193323Sed//===----------------------------------------------------------------------===//
487193323Sed
488193323Sed/// doNotCSE - Return true if CSE should not be performed for this node.
489193323Sedstatic bool doNotCSE(SDNode *N) {
490193323Sed  if (N->getValueType(0) == MVT::Flag)
491193323Sed    return true; // Never CSE anything that produces a flag.
492193323Sed
493193323Sed  switch (N->getOpcode()) {
494193323Sed  default: break;
495193323Sed  case ISD::HANDLENODE:
496193323Sed  case ISD::EH_LABEL:
497193323Sed    return true;   // Never CSE these nodes.
498193323Sed  }
499193323Sed
500193323Sed  // Check that remaining values produced are not flags.
501193323Sed  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
502193323Sed    if (N->getValueType(i) == MVT::Flag)
503193323Sed      return true; // Never CSE anything that produces a flag.
504193323Sed
505193323Sed  return false;
506193323Sed}
507193323Sed
508193323Sed/// RemoveDeadNodes - This method deletes all unreachable nodes in the
509193323Sed/// SelectionDAG.
510193323Sedvoid SelectionDAG::RemoveDeadNodes() {
511193323Sed  // Create a dummy node (which is not added to allnodes), that adds a reference
512193323Sed  // to the root node, preventing it from being deleted.
513193323Sed  HandleSDNode Dummy(getRoot());
514193323Sed
515193323Sed  SmallVector<SDNode*, 128> DeadNodes;
516193323Sed
517193323Sed  // Add all obviously-dead nodes to the DeadNodes worklist.
518193323Sed  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
519193323Sed    if (I->use_empty())
520193323Sed      DeadNodes.push_back(I);
521193323Sed
522193323Sed  RemoveDeadNodes(DeadNodes);
523193323Sed
524193323Sed  // If the root changed (e.g. it was a dead load, update the root).
525193323Sed  setRoot(Dummy.getValue());
526193323Sed}
527193323Sed
528193323Sed/// RemoveDeadNodes - This method deletes the unreachable nodes in the
529193323Sed/// given list, and any nodes that become unreachable as a result.
530193323Sedvoid SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
531193323Sed                                   DAGUpdateListener *UpdateListener) {
532193323Sed
533193323Sed  // Process the worklist, deleting the nodes and adding their uses to the
534193323Sed  // worklist.
535193323Sed  while (!DeadNodes.empty()) {
536193323Sed    SDNode *N = DeadNodes.pop_back_val();
537193323Sed
538193323Sed    if (UpdateListener)
539193323Sed      UpdateListener->NodeDeleted(N, 0);
540193323Sed
541193323Sed    // Take the node out of the appropriate CSE map.
542193323Sed    RemoveNodeFromCSEMaps(N);
543193323Sed
544193323Sed    // Next, brutally remove the operand list.  This is safe to do, as there are
545193323Sed    // no cycles in the graph.
546193323Sed    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
547193323Sed      SDUse &Use = *I++;
548193323Sed      SDNode *Operand = Use.getNode();
549193323Sed      Use.set(SDValue());
550193323Sed
551193323Sed      // Now that we removed this operand, see if there are no uses of it left.
552193323Sed      if (Operand->use_empty())
553193323Sed        DeadNodes.push_back(Operand);
554193323Sed    }
555193323Sed
556193323Sed    DeallocateNode(N);
557200581Srdivacky
558200581Srdivacky    // Remove the ordering of this node.
559200581Srdivacky    if (Ordering) Ordering->remove(N);
560193323Sed  }
561193323Sed}
562193323Sed
563193323Sedvoid SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564193323Sed  SmallVector<SDNode*, 16> DeadNodes(1, N);
565193323Sed  RemoveDeadNodes(DeadNodes, UpdateListener);
566193323Sed}
567193323Sed
568193323Sedvoid SelectionDAG::DeleteNode(SDNode *N) {
569193323Sed  // First take this out of the appropriate CSE map.
570193323Sed  RemoveNodeFromCSEMaps(N);
571193323Sed
572193323Sed  // Finally, remove uses due to operands of this node, remove from the
573193323Sed  // AllNodes list, and delete the node.
574193323Sed  DeleteNodeNotInCSEMaps(N);
575193323Sed}
576193323Sed
577193323Sedvoid SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578193323Sed  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579193323Sed  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580193323Sed
581193323Sed  // Drop all of the operands and decrement used node's use counts.
582193323Sed  N->DropOperands();
583193323Sed
584193323Sed  DeallocateNode(N);
585200581Srdivacky
586200581Srdivacky  // Remove the ordering of this node.
587200581Srdivacky  if (Ordering) Ordering->remove(N);
588193323Sed}
589193323Sed
590193323Sedvoid SelectionDAG::DeallocateNode(SDNode *N) {
591193323Sed  if (N->OperandsNeedDelete)
592193323Sed    delete[] N->OperandList;
593193323Sed
594193323Sed  // Set the opcode to DELETED_NODE to help catch bugs when node
595193323Sed  // memory is reallocated.
596193323Sed  N->NodeType = ISD::DELETED_NODE;
597193323Sed
598193323Sed  NodeAllocator.Deallocate(AllNodes.remove(N));
599200581Srdivacky
600200581Srdivacky  // Remove the ordering of this node.
601200581Srdivacky  if (Ordering) Ordering->remove(N);
602193323Sed}
603193323Sed
604193323Sed/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
605193323Sed/// correspond to it.  This is useful when we're about to delete or repurpose
606193323Sed/// the node.  We don't want future request for structurally identical nodes
607193323Sed/// to return N anymore.
608193323Sedbool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
609193323Sed  bool Erased = false;
610193323Sed  switch (N->getOpcode()) {
611193323Sed  case ISD::EntryToken:
612198090Srdivacky    llvm_unreachable("EntryToken should not be in CSEMaps!");
613193323Sed    return false;
614193323Sed  case ISD::HANDLENODE: return false;  // noop.
615193323Sed  case ISD::CONDCODE:
616193323Sed    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
617193323Sed           "Cond code doesn't exist!");
618193323Sed    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
619193323Sed    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
620193323Sed    break;
621193323Sed  case ISD::ExternalSymbol:
622193323Sed    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
623193323Sed    break;
624195098Sed  case ISD::TargetExternalSymbol: {
625195098Sed    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
626195098Sed    Erased = TargetExternalSymbols.erase(
627195098Sed               std::pair<std::string,unsigned char>(ESN->getSymbol(),
628195098Sed                                                    ESN->getTargetFlags()));
629193323Sed    break;
630195098Sed  }
631193323Sed  case ISD::VALUETYPE: {
632198090Srdivacky    EVT VT = cast<VTSDNode>(N)->getVT();
633193323Sed    if (VT.isExtended()) {
634193323Sed      Erased = ExtendedValueTypeNodes.erase(VT);
635193323Sed    } else {
636198090Srdivacky      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
637198090Srdivacky      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
638193323Sed    }
639193323Sed    break;
640193323Sed  }
641193323Sed  default:
642193323Sed    // Remove it from the CSE Map.
643193323Sed    Erased = CSEMap.RemoveNode(N);
644193323Sed    break;
645193323Sed  }
646193323Sed#ifndef NDEBUG
647193323Sed  // Verify that the node was actually in one of the CSE maps, unless it has a
648193323Sed  // flag result (which cannot be CSE'd) or is one of the special cases that are
649193323Sed  // not subject to CSE.
650193323Sed  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
651193323Sed      !N->isMachineOpcode() && !doNotCSE(N)) {
652193323Sed    N->dump(this);
653198090Srdivacky    errs() << "\n";
654198090Srdivacky    llvm_unreachable("Node is not in map!");
655193323Sed  }
656193323Sed#endif
657193323Sed  return Erased;
658193323Sed}
659193323Sed
660193323Sed/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
661193323Sed/// maps and modified in place. Add it back to the CSE maps, unless an identical
662193323Sed/// node already exists, in which case transfer all its users to the existing
663193323Sed/// node. This transfer can potentially trigger recursive merging.
664193323Sed///
665193323Sedvoid
666193323SedSelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
667193323Sed                                       DAGUpdateListener *UpdateListener) {
668193323Sed  // For node types that aren't CSE'd, just act as if no identical node
669193323Sed  // already exists.
670193323Sed  if (!doNotCSE(N)) {
671193323Sed    SDNode *Existing = CSEMap.GetOrInsertNode(N);
672193323Sed    if (Existing != N) {
673193323Sed      // If there was already an existing matching node, use ReplaceAllUsesWith
674193323Sed      // to replace the dead one with the existing one.  This can cause
675193323Sed      // recursive merging of other unrelated nodes down the line.
676193323Sed      ReplaceAllUsesWith(N, Existing, UpdateListener);
677193323Sed
678193323Sed      // N is now dead.  Inform the listener if it exists and delete it.
679193323Sed      if (UpdateListener)
680193323Sed        UpdateListener->NodeDeleted(N, Existing);
681193323Sed      DeleteNodeNotInCSEMaps(N);
682193323Sed      return;
683193323Sed    }
684193323Sed  }
685193323Sed
686193323Sed  // If the node doesn't already exist, we updated it.  Inform a listener if
687193323Sed  // it exists.
688193323Sed  if (UpdateListener)
689193323Sed    UpdateListener->NodeUpdated(N);
690193323Sed}
691193323Sed
692193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
693193323Sed/// were replaced with those specified.  If this node is never memoized,
694193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
695193323Sed/// node already exists with these operands, the slot will be non-null.
696193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
697193323Sed                                           void *&InsertPos) {
698193323Sed  if (doNotCSE(N))
699193323Sed    return 0;
700193323Sed
701193323Sed  SDValue Ops[] = { Op };
702193323Sed  FoldingSetNodeID ID;
703193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
704193323Sed  AddNodeIDCustom(ID, N);
705200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
706200581Srdivacky  if (Ordering) Ordering->remove(Node);
707200581Srdivacky  return Node;
708193323Sed}
709193323Sed
710193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711193323Sed/// were replaced with those specified.  If this node is never memoized,
712193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
713193323Sed/// node already exists with these operands, the slot will be non-null.
714193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715193323Sed                                           SDValue Op1, SDValue Op2,
716193323Sed                                           void *&InsertPos) {
717193323Sed  if (doNotCSE(N))
718193323Sed    return 0;
719193323Sed
720193323Sed  SDValue Ops[] = { Op1, Op2 };
721193323Sed  FoldingSetNodeID ID;
722193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723193323Sed  AddNodeIDCustom(ID, N);
724200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725200581Srdivacky  if (Ordering) Ordering->remove(Node);
726200581Srdivacky  return Node;
727193323Sed}
728193323Sed
729193323Sed
730193323Sed/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
731193323Sed/// were replaced with those specified.  If this node is never memoized,
732193323Sed/// return null, otherwise return a pointer to the slot it would take.  If a
733193323Sed/// node already exists with these operands, the slot will be non-null.
734193323SedSDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
735193323Sed                                           const SDValue *Ops,unsigned NumOps,
736193323Sed                                           void *&InsertPos) {
737193323Sed  if (doNotCSE(N))
738193323Sed    return 0;
739193323Sed
740193323Sed  FoldingSetNodeID ID;
741193323Sed  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
742193323Sed  AddNodeIDCustom(ID, N);
743200581Srdivacky  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
744200581Srdivacky  if (Ordering) Ordering->remove(Node);
745200581Srdivacky  return Node;
746193323Sed}
747193323Sed
748193323Sed/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749193323Sedvoid SelectionDAG::VerifyNode(SDNode *N) {
750193323Sed  switch (N->getOpcode()) {
751193323Sed  default:
752193323Sed    break;
753193323Sed  case ISD::BUILD_PAIR: {
754198090Srdivacky    EVT VT = N->getValueType(0);
755193323Sed    assert(N->getNumValues() == 1 && "Too many results!");
756193323Sed    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757193323Sed           "Wrong return type!");
758193323Sed    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759193323Sed    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760193323Sed           "Mismatched operand types!");
761193323Sed    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762193323Sed           "Wrong operand type!");
763193323Sed    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764193323Sed           "Wrong return type size");
765193323Sed    break;
766193323Sed  }
767193323Sed  case ISD::BUILD_VECTOR: {
768193323Sed    assert(N->getNumValues() == 1 && "Too many results!");
769193323Sed    assert(N->getValueType(0).isVector() && "Wrong return type!");
770193323Sed    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771193323Sed           "Wrong number of operands!");
772198090Srdivacky    EVT EltVT = N->getValueType(0).getVectorElementType();
773193323Sed    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774193323Sed      assert((I->getValueType() == EltVT ||
775193323Sed             (EltVT.isInteger() && I->getValueType().isInteger() &&
776193323Sed              EltVT.bitsLE(I->getValueType()))) &&
777193323Sed            "Wrong operand type!");
778193323Sed    break;
779193323Sed  }
780193323Sed  }
781193323Sed}
782193323Sed
783198090Srdivacky/// getEVTAlignment - Compute the default alignment value for the
784193323Sed/// given type.
785193323Sed///
786198090Srdivackyunsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787193323Sed  const Type *Ty = VT == MVT::iPTR ?
788198090Srdivacky                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789198090Srdivacky                   VT.getTypeForEVT(*getContext());
790193323Sed
791193323Sed  return TLI.getTargetData()->getABITypeAlignment(Ty);
792193323Sed}
793193323Sed
794193323Sed// EntryNode could meaningfully have debug info if we can find it...
795193323SedSelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796193323Sed  : TLI(tli), FLI(fli), DW(0),
797193323Sed    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
798200581Srdivacky              getVTList(MVT::Other)),
799200581Srdivacky    Root(getEntryNode()), Ordering(0) {
800193323Sed  AllNodes.push_back(&EntryNode);
801200581Srdivacky  if (DisableInstScheduling) {
802200581Srdivacky    Ordering = new NodeOrdering();
803200581Srdivacky    Ordering->add(&EntryNode);
804200581Srdivacky  }
805193323Sed}
806193323Sed
807193323Sedvoid SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
808193323Sed                        DwarfWriter *dw) {
809193323Sed  MF = &mf;
810193323Sed  MMI = mmi;
811193323Sed  DW = dw;
812198090Srdivacky  Context = &mf.getFunction()->getContext();
813193323Sed}
814193323Sed
815193323SedSelectionDAG::~SelectionDAG() {
816193323Sed  allnodes_clear();
817200581Srdivacky  delete Ordering;
818193323Sed}
819193323Sed
820193323Sedvoid SelectionDAG::allnodes_clear() {
821193323Sed  assert(&*AllNodes.begin() == &EntryNode);
822193323Sed  AllNodes.remove(AllNodes.begin());
823193323Sed  while (!AllNodes.empty())
824193323Sed    DeallocateNode(AllNodes.begin());
825193323Sed}
826193323Sed
827193323Sedvoid SelectionDAG::clear() {
828193323Sed  allnodes_clear();
829193323Sed  OperandAllocator.Reset();
830193323Sed  CSEMap.clear();
831193323Sed
832193323Sed  ExtendedValueTypeNodes.clear();
833193323Sed  ExternalSymbols.clear();
834193323Sed  TargetExternalSymbols.clear();
835193323Sed  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
836193323Sed            static_cast<CondCodeSDNode*>(0));
837193323Sed  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
838193323Sed            static_cast<SDNode*>(0));
839193323Sed
840193323Sed  EntryNode.UseList = 0;
841193323Sed  AllNodes.push_back(&EntryNode);
842193323Sed  Root = getEntryNode();
843200581Srdivacky  if (DisableInstScheduling) {
844200581Srdivacky    Ordering = new NodeOrdering();
845200581Srdivacky    Ordering->add(&EntryNode);
846200581Srdivacky  }
847193323Sed}
848193323Sed
849198090SrdivackySDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
850198090Srdivacky  return VT.bitsGT(Op.getValueType()) ?
851198090Srdivacky    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
852198090Srdivacky    getNode(ISD::TRUNCATE, DL, VT, Op);
853198090Srdivacky}
854198090Srdivacky
855198090SrdivackySDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
856198090Srdivacky  return VT.bitsGT(Op.getValueType()) ?
857198090Srdivacky    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
858198090Srdivacky    getNode(ISD::TRUNCATE, DL, VT, Op);
859198090Srdivacky}
860198090Srdivacky
861198090SrdivackySDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
862200581Srdivacky  assert(!VT.isVector() &&
863200581Srdivacky         "getZeroExtendInReg should use the vector element type instead of "
864200581Srdivacky         "the vector type!");
865193323Sed  if (Op.getValueType() == VT) return Op;
866200581Srdivacky  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
867200581Srdivacky  APInt Imm = APInt::getLowBitsSet(BitWidth,
868193323Sed                                   VT.getSizeInBits());
869193323Sed  return getNode(ISD::AND, DL, Op.getValueType(), Op,
870193323Sed                 getConstant(Imm, Op.getValueType()));
871193323Sed}
872193323Sed
873193323Sed/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
874193323Sed///
875198090SrdivackySDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
876198090Srdivacky  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
877193323Sed  SDValue NegOne =
878193323Sed    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
879193323Sed  return getNode(ISD::XOR, DL, VT, Val, NegOne);
880193323Sed}
881193323Sed
882198090SrdivackySDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
883198090Srdivacky  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
884193323Sed  assert((EltVT.getSizeInBits() >= 64 ||
885193323Sed         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
886193323Sed         "getConstant with a uint64_t value that doesn't fit in the type!");
887193323Sed  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
888193323Sed}
889193323Sed
890198090SrdivackySDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
891198090Srdivacky  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
892193323Sed}
893193323Sed
894198090SrdivackySDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
895193323Sed  assert(VT.isInteger() && "Cannot create FP integer constant!");
896193323Sed
897198090Srdivacky  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
898193323Sed  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
899193323Sed         "APInt size does not match type size!");
900193323Sed
901193323Sed  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
902193323Sed  FoldingSetNodeID ID;
903193323Sed  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
904193323Sed  ID.AddPointer(&Val);
905193323Sed  void *IP = 0;
906193323Sed  SDNode *N = NULL;
907200581Srdivacky  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP))) {
908200581Srdivacky    if (Ordering) Ordering->add(N);
909193323Sed    if (!VT.isVector())
910193323Sed      return SDValue(N, 0);
911200581Srdivacky  }
912193323Sed  if (!N) {
913193323Sed    N = NodeAllocator.Allocate<ConstantSDNode>();
914193323Sed    new (N) ConstantSDNode(isT, &Val, EltVT);
915193323Sed    CSEMap.InsertNode(N, IP);
916193323Sed    AllNodes.push_back(N);
917200581Srdivacky    if (Ordering) Ordering->add(N);
918193323Sed  }
919193323Sed
920193323Sed  SDValue Result(N, 0);
921193323Sed  if (VT.isVector()) {
922193323Sed    SmallVector<SDValue, 8> Ops;
923193323Sed    Ops.assign(VT.getVectorNumElements(), Result);
924193323Sed    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
925193323Sed                     VT, &Ops[0], Ops.size());
926193323Sed  }
927193323Sed  return Result;
928193323Sed}
929193323Sed
930193323SedSDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
931193323Sed  return getConstant(Val, TLI.getPointerTy(), isTarget);
932193323Sed}
933193323Sed
934193323Sed
935198090SrdivackySDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
936198090Srdivacky  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
937193323Sed}
938193323Sed
939198090SrdivackySDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
940193323Sed  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
941193323Sed
942198090Srdivacky  EVT EltVT =
943193323Sed    VT.isVector() ? VT.getVectorElementType() : VT;
944193323Sed
945193323Sed  // Do the map lookup using the actual bit pattern for the floating point
946193323Sed  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
947193323Sed  // we don't have issues with SNANs.
948193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
949193323Sed  FoldingSetNodeID ID;
950193323Sed  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
951193323Sed  ID.AddPointer(&V);
952193323Sed  void *IP = 0;
953193323Sed  SDNode *N = NULL;
954200581Srdivacky  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP))) {
955200581Srdivacky    if (Ordering) Ordering->add(N);
956193323Sed    if (!VT.isVector())
957193323Sed      return SDValue(N, 0);
958200581Srdivacky  }
959193323Sed  if (!N) {
960193323Sed    N = NodeAllocator.Allocate<ConstantFPSDNode>();
961193323Sed    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
962193323Sed    CSEMap.InsertNode(N, IP);
963193323Sed    AllNodes.push_back(N);
964200581Srdivacky    if (Ordering) Ordering->add(N);
965193323Sed  }
966193323Sed
967193323Sed  SDValue Result(N, 0);
968193323Sed  if (VT.isVector()) {
969193323Sed    SmallVector<SDValue, 8> Ops;
970193323Sed    Ops.assign(VT.getVectorNumElements(), Result);
971193323Sed    // FIXME DebugLoc info might be appropriate here
972193323Sed    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
973193323Sed                     VT, &Ops[0], Ops.size());
974193323Sed  }
975193323Sed  return Result;
976193323Sed}
977193323Sed
978198090SrdivackySDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
979198090Srdivacky  EVT EltVT =
980193323Sed    VT.isVector() ? VT.getVectorElementType() : VT;
981193323Sed  if (EltVT==MVT::f32)
982193323Sed    return getConstantFP(APFloat((float)Val), VT, isTarget);
983193323Sed  else
984193323Sed    return getConstantFP(APFloat(Val), VT, isTarget);
985193323Sed}
986193323Sed
987193323SedSDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
988198090Srdivacky                                       EVT VT, int64_t Offset,
989195098Sed                                       bool isTargetGA,
990195098Sed                                       unsigned char TargetFlags) {
991195098Sed  assert((TargetFlags == 0 || isTargetGA) &&
992195098Sed         "Cannot set target flags on target-independent globals");
993198090Srdivacky
994193323Sed  // Truncate (with sign-extension) the offset value to the pointer size.
995198090Srdivacky  EVT PTy = TLI.getPointerTy();
996198090Srdivacky  unsigned BitWidth = PTy.getSizeInBits();
997193323Sed  if (BitWidth < 64)
998193323Sed    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
999193323Sed
1000193323Sed  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1001193323Sed  if (!GVar) {
1002193323Sed    // If GV is an alias then use the aliasee for determining thread-localness.
1003193323Sed    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1004193323Sed      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1005193323Sed  }
1006193323Sed
1007195098Sed  unsigned Opc;
1008193323Sed  if (GVar && GVar->isThreadLocal())
1009193323Sed    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1010193323Sed  else
1011193323Sed    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1012193323Sed
1013193323Sed  FoldingSetNodeID ID;
1014193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1015193323Sed  ID.AddPointer(GV);
1016193323Sed  ID.AddInteger(Offset);
1017195098Sed  ID.AddInteger(TargetFlags);
1018193323Sed  void *IP = 0;
1019200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
1020200581Srdivacky    if (Ordering) Ordering->add(E);
1021193323Sed    return SDValue(E, 0);
1022200581Srdivacky  }
1023193323Sed  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1024195098Sed  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1025193323Sed  CSEMap.InsertNode(N, IP);
1026193323Sed  AllNodes.push_back(N);
1027200581Srdivacky  if (Ordering) Ordering->add(N);
1028193323Sed  return SDValue(N, 0);
1029193323Sed}
1030193323Sed
1031198090SrdivackySDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1032193323Sed  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1033193323Sed  FoldingSetNodeID ID;
1034193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1035193323Sed  ID.AddInteger(FI);
1036193323Sed  void *IP = 0;
1037200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
1038200581Srdivacky    if (Ordering) Ordering->add(E);
1039193323Sed    return SDValue(E, 0);
1040200581Srdivacky  }
1041193323Sed  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1042193323Sed  new (N) FrameIndexSDNode(FI, VT, isTarget);
1043193323Sed  CSEMap.InsertNode(N, IP);
1044193323Sed  AllNodes.push_back(N);
1045200581Srdivacky  if (Ordering) Ordering->add(N);
1046193323Sed  return SDValue(N, 0);
1047193323Sed}
1048193323Sed
1049198090SrdivackySDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1050195098Sed                                   unsigned char TargetFlags) {
1051195098Sed  assert((TargetFlags == 0 || isTarget) &&
1052195098Sed         "Cannot set target flags on target-independent jump tables");
1053193323Sed  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1054193323Sed  FoldingSetNodeID ID;
1055193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1056193323Sed  ID.AddInteger(JTI);
1057195098Sed  ID.AddInteger(TargetFlags);
1058193323Sed  void *IP = 0;
1059200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
1060200581Srdivacky    if (Ordering) Ordering->add(E);
1061193323Sed    return SDValue(E, 0);
1062200581Srdivacky  }
1063193323Sed  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1064195098Sed  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1065193323Sed  CSEMap.InsertNode(N, IP);
1066193323Sed  AllNodes.push_back(N);
1067200581Srdivacky  if (Ordering) Ordering->add(N);
1068193323Sed  return SDValue(N, 0);
1069193323Sed}
1070193323Sed
1071198090SrdivackySDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1072193323Sed                                      unsigned Alignment, int Offset,
1073198090Srdivacky                                      bool isTarget,
1074195098Sed                                      unsigned char TargetFlags) {
1075195098Sed  assert((TargetFlags == 0 || isTarget) &&
1076195098Sed         "Cannot set target flags on target-independent globals");
1077193323Sed  if (Alignment == 0)
1078193323Sed    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1079193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1080193323Sed  FoldingSetNodeID ID;
1081193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1082193323Sed  ID.AddInteger(Alignment);
1083193323Sed  ID.AddInteger(Offset);
1084193323Sed  ID.AddPointer(C);
1085195098Sed  ID.AddInteger(TargetFlags);
1086193323Sed  void *IP = 0;
1087200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
1088200581Srdivacky    if (Ordering) Ordering->add(E);
1089193323Sed    return SDValue(E, 0);
1090200581Srdivacky  }
1091193323Sed  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1092195098Sed  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1093193323Sed  CSEMap.InsertNode(N, IP);
1094193323Sed  AllNodes.push_back(N);
1095200581Srdivacky  if (Ordering) Ordering->add(N);
1096193323Sed  return SDValue(N, 0);
1097193323Sed}
1098193323Sed
1099193323Sed
1100198090SrdivackySDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1101193323Sed                                      unsigned Alignment, int Offset,
1102195098Sed                                      bool isTarget,
1103195098Sed                                      unsigned char TargetFlags) {
1104195098Sed  assert((TargetFlags == 0 || isTarget) &&
1105195098Sed         "Cannot set target flags on target-independent globals");
1106193323Sed  if (Alignment == 0)
1107193323Sed    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1108193323Sed  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1109193323Sed  FoldingSetNodeID ID;
1110193323Sed  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1111193323Sed  ID.AddInteger(Alignment);
1112193323Sed  ID.AddInteger(Offset);
1113193323Sed  C->AddSelectionDAGCSEId(ID);
1114195098Sed  ID.AddInteger(TargetFlags);
1115193323Sed  void *IP = 0;
1116200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
1117200581Srdivacky    if (Ordering) Ordering->add(E);
1118193323Sed    return SDValue(E, 0);
1119200581Srdivacky  }
1120193323Sed  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1121195098Sed  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1122193323Sed  CSEMap.InsertNode(N, IP);
1123193323Sed  AllNodes.push_back(N);
1124200581Srdivacky  if (Ordering) Ordering->add(N);
1125193323Sed  return SDValue(N, 0);
1126193323Sed}
1127193323Sed
1128193323SedSDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1129193323Sed  FoldingSetNodeID ID;
1130193323Sed  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1131193323Sed  ID.AddPointer(MBB);
1132193323Sed  void *IP = 0;
1133200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
1134200581Srdivacky    if (Ordering) Ordering->add(E);
1135193323Sed    return SDValue(E, 0);
1136200581Srdivacky  }
1137193323Sed  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1138193323Sed  new (N) BasicBlockSDNode(MBB);
1139193323Sed  CSEMap.InsertNode(N, IP);
1140193323Sed  AllNodes.push_back(N);
1141200581Srdivacky  if (Ordering) Ordering->add(N);
1142193323Sed  return SDValue(N, 0);
1143193323Sed}
1144193323Sed
1145198090SrdivackySDValue SelectionDAG::getValueType(EVT VT) {
1146198090Srdivacky  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1147198090Srdivacky      ValueTypeNodes.size())
1148198090Srdivacky    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1149193323Sed
1150193323Sed  SDNode *&N = VT.isExtended() ?
1151198090Srdivacky    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1152193323Sed
1153193323Sed  if (N) return SDValue(N, 0);
1154193323Sed  N = NodeAllocator.Allocate<VTSDNode>();
1155193323Sed  new (N) VTSDNode(VT);
1156193323Sed  AllNodes.push_back(N);
1157200581Srdivacky  if (Ordering) Ordering->add(N);
1158193323Sed  return SDValue(N, 0);
1159193323Sed}
1160193323Sed
1161198090SrdivackySDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1162193323Sed  SDNode *&N = ExternalSymbols[Sym];
1163193323Sed  if (N) return SDValue(N, 0);
1164193323Sed  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1165195098Sed  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1166193323Sed  AllNodes.push_back(N);
1167200581Srdivacky  if (Ordering) Ordering->add(N);
1168193323Sed  return SDValue(N, 0);
1169193323Sed}
1170193323Sed
1171198090SrdivackySDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1172195098Sed                                              unsigned char TargetFlags) {
1173195098Sed  SDNode *&N =
1174195098Sed    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1175195098Sed                                                               TargetFlags)];
1176193323Sed  if (N) return SDValue(N, 0);
1177193323Sed  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1178195098Sed  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1179193323Sed  AllNodes.push_back(N);
1180200581Srdivacky  if (Ordering) Ordering->add(N);
1181193323Sed  return SDValue(N, 0);
1182193323Sed}
1183193323Sed
1184193323SedSDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1185193323Sed  if ((unsigned)Cond >= CondCodeNodes.size())
1186193323Sed    CondCodeNodes.resize(Cond+1);
1187193323Sed
1188193323Sed  if (CondCodeNodes[Cond] == 0) {
1189193323Sed    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1190193323Sed    new (N) CondCodeSDNode(Cond);
1191193323Sed    CondCodeNodes[Cond] = N;
1192193323Sed    AllNodes.push_back(N);
1193200581Srdivacky    if (Ordering) Ordering->add(N);
1194193323Sed  }
1195193323Sed  return SDValue(CondCodeNodes[Cond], 0);
1196193323Sed}
1197193323Sed
1198193323Sed// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1199193323Sed// the shuffle mask M that point at N1 to point at N2, and indices that point
1200193323Sed// N2 to point at N1.
1201193323Sedstatic void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1202193323Sed  std::swap(N1, N2);
1203193323Sed  int NElts = M.size();
1204193323Sed  for (int i = 0; i != NElts; ++i) {
1205193323Sed    if (M[i] >= NElts)
1206193323Sed      M[i] -= NElts;
1207193323Sed    else if (M[i] >= 0)
1208193323Sed      M[i] += NElts;
1209193323Sed  }
1210193323Sed}
1211193323Sed
1212198090SrdivackySDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1213193323Sed                                       SDValue N2, const int *Mask) {
1214193323Sed  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1215198090Srdivacky  assert(VT.isVector() && N1.getValueType().isVector() &&
1216193323Sed         "Vector Shuffle VTs must be a vectors");
1217193323Sed  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1218193323Sed         && "Vector Shuffle VTs must have same element type");
1219193323Sed
1220193323Sed  // Canonicalize shuffle undef, undef -> undef
1221193323Sed  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1222198090Srdivacky    return getUNDEF(VT);
1223193323Sed
1224198090Srdivacky  // Validate that all indices in Mask are within the range of the elements
1225193323Sed  // input to the shuffle.
1226193323Sed  unsigned NElts = VT.getVectorNumElements();
1227193323Sed  SmallVector<int, 8> MaskVec;
1228193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1229193323Sed    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1230193323Sed    MaskVec.push_back(Mask[i]);
1231193323Sed  }
1232198090Srdivacky
1233193323Sed  // Canonicalize shuffle v, v -> v, undef
1234193323Sed  if (N1 == N2) {
1235193323Sed    N2 = getUNDEF(VT);
1236193323Sed    for (unsigned i = 0; i != NElts; ++i)
1237193323Sed      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1238193323Sed  }
1239198090Srdivacky
1240193323Sed  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1241193323Sed  if (N1.getOpcode() == ISD::UNDEF)
1242193323Sed    commuteShuffle(N1, N2, MaskVec);
1243198090Srdivacky
1244193323Sed  // Canonicalize all index into lhs, -> shuffle lhs, undef
1245193323Sed  // Canonicalize all index into rhs, -> shuffle rhs, undef
1246193323Sed  bool AllLHS = true, AllRHS = true;
1247193323Sed  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1248193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1249193323Sed    if (MaskVec[i] >= (int)NElts) {
1250193323Sed      if (N2Undef)
1251193323Sed        MaskVec[i] = -1;
1252193323Sed      else
1253193323Sed        AllLHS = false;
1254193323Sed    } else if (MaskVec[i] >= 0) {
1255193323Sed      AllRHS = false;
1256193323Sed    }
1257193323Sed  }
1258193323Sed  if (AllLHS && AllRHS)
1259193323Sed    return getUNDEF(VT);
1260193323Sed  if (AllLHS && !N2Undef)
1261193323Sed    N2 = getUNDEF(VT);
1262193323Sed  if (AllRHS) {
1263193323Sed    N1 = getUNDEF(VT);
1264193323Sed    commuteShuffle(N1, N2, MaskVec);
1265193323Sed  }
1266198090Srdivacky
1267193323Sed  // If Identity shuffle, or all shuffle in to undef, return that node.
1268193323Sed  bool AllUndef = true;
1269193323Sed  bool Identity = true;
1270193323Sed  for (unsigned i = 0; i != NElts; ++i) {
1271193323Sed    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1272193323Sed    if (MaskVec[i] >= 0) AllUndef = false;
1273193323Sed  }
1274198090Srdivacky  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1275193323Sed    return N1;
1276193323Sed  if (AllUndef)
1277193323Sed    return getUNDEF(VT);
1278193323Sed
1279193323Sed  FoldingSetNodeID ID;
1280193323Sed  SDValue Ops[2] = { N1, N2 };
1281193323Sed  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1282193323Sed  for (unsigned i = 0; i != NElts; ++i)
1283193323Sed    ID.AddInteger(MaskVec[i]);
1284198090Srdivacky
1285193323Sed  void* IP = 0;
1286200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
1287200581Srdivacky    if (Ordering) Ordering->add(E);
1288193323Sed    return SDValue(E, 0);
1289200581Srdivacky  }
1290198090Srdivacky
1291193323Sed  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1292193323Sed  // SDNode doesn't have access to it.  This memory will be "leaked" when
1293193323Sed  // the node is deallocated, but recovered when the NodeAllocator is released.
1294193323Sed  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1295193323Sed  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1296198090Srdivacky
1297193323Sed  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1298193323Sed  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1299193323Sed  CSEMap.InsertNode(N, IP);
1300193323Sed  AllNodes.push_back(N);
1301200581Srdivacky  if (Ordering) Ordering->add(N);
1302193323Sed  return SDValue(N, 0);
1303193323Sed}
1304193323Sed
1305198090SrdivackySDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1306193323Sed                                       SDValue Val, SDValue DTy,
1307193323Sed                                       SDValue STy, SDValue Rnd, SDValue Sat,
1308193323Sed                                       ISD::CvtCode Code) {
1309193323Sed  // If the src and dest types are the same and the conversion is between
1310193323Sed  // integer types of the same sign or two floats, no conversion is necessary.
1311193323Sed  if (DTy == STy &&
1312193323Sed      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1313193323Sed    return Val;
1314193323Sed
1315193323Sed  FoldingSetNodeID ID;
1316199481Srdivacky  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1317199481Srdivacky  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1318193323Sed  void* IP = 0;
1319200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
1320200581Srdivacky    if (Ordering) Ordering->add(E);
1321193323Sed    return SDValue(E, 0);
1322200581Srdivacky  }
1323193323Sed  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1324193323Sed  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1325193323Sed  CSEMap.InsertNode(N, IP);
1326193323Sed  AllNodes.push_back(N);
1327200581Srdivacky  if (Ordering) Ordering->add(N);
1328193323Sed  return SDValue(N, 0);
1329193323Sed}
1330193323Sed
1331198090SrdivackySDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1332193323Sed  FoldingSetNodeID ID;
1333193323Sed  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1334193323Sed  ID.AddInteger(RegNo);
1335193323Sed  void *IP = 0;
1336200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
1337200581Srdivacky    if (Ordering) Ordering->add(E);
1338193323Sed    return SDValue(E, 0);
1339200581Srdivacky  }
1340193323Sed  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1341193323Sed  new (N) RegisterSDNode(RegNo, VT);
1342193323Sed  CSEMap.InsertNode(N, IP);
1343193323Sed  AllNodes.push_back(N);
1344200581Srdivacky  if (Ordering) Ordering->add(N);
1345193323Sed  return SDValue(N, 0);
1346193323Sed}
1347193323Sed
1348193323SedSDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1349193323Sed                               SDValue Root,
1350193323Sed                               unsigned LabelID) {
1351193323Sed  FoldingSetNodeID ID;
1352193323Sed  SDValue Ops[] = { Root };
1353193323Sed  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1354193323Sed  ID.AddInteger(LabelID);
1355193323Sed  void *IP = 0;
1356200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
1357200581Srdivacky    if (Ordering) Ordering->add(E);
1358193323Sed    return SDValue(E, 0);
1359200581Srdivacky  }
1360193323Sed  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1361193323Sed  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1362193323Sed  CSEMap.InsertNode(N, IP);
1363193323Sed  AllNodes.push_back(N);
1364200581Srdivacky  if (Ordering) Ordering->add(N);
1365193323Sed  return SDValue(N, 0);
1366193323Sed}
1367193323Sed
1368199989SrdivackySDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1369199989Srdivacky                                      bool isTarget,
1370199989Srdivacky                                      unsigned char TargetFlags) {
1371198892Srdivacky  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1372198892Srdivacky
1373198892Srdivacky  FoldingSetNodeID ID;
1374199989Srdivacky  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1375198892Srdivacky  ID.AddPointer(BA);
1376199989Srdivacky  ID.AddInteger(TargetFlags);
1377198892Srdivacky  void *IP = 0;
1378200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
1379200581Srdivacky    if (Ordering) Ordering->add(E);
1380198892Srdivacky    return SDValue(E, 0);
1381200581Srdivacky  }
1382198892Srdivacky  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1383199989Srdivacky  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1384198892Srdivacky  CSEMap.InsertNode(N, IP);
1385198892Srdivacky  AllNodes.push_back(N);
1386200581Srdivacky  if (Ordering) Ordering->add(N);
1387198892Srdivacky  return SDValue(N, 0);
1388198892Srdivacky}
1389198892Srdivacky
1390193323SedSDValue SelectionDAG::getSrcValue(const Value *V) {
1391193323Sed  assert((!V || isa<PointerType>(V->getType())) &&
1392193323Sed         "SrcValue is not a pointer?");
1393193323Sed
1394193323Sed  FoldingSetNodeID ID;
1395193323Sed  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1396193323Sed  ID.AddPointer(V);
1397193323Sed
1398193323Sed  void *IP = 0;
1399200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
1400200581Srdivacky    if (Ordering) Ordering->add(E);
1401193323Sed    return SDValue(E, 0);
1402200581Srdivacky  }
1403193323Sed
1404193323Sed  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1405193323Sed  new (N) SrcValueSDNode(V);
1406193323Sed  CSEMap.InsertNode(N, IP);
1407193323Sed  AllNodes.push_back(N);
1408200581Srdivacky  if (Ordering) Ordering->add(N);
1409193323Sed  return SDValue(N, 0);
1410193323Sed}
1411193323Sed
1412193323Sed/// getShiftAmountOperand - Return the specified value casted to
1413193323Sed/// the target's desired shift amount type.
1414193323SedSDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1415198090Srdivacky  EVT OpTy = Op.getValueType();
1416193323Sed  MVT ShTy = TLI.getShiftAmountTy();
1417193323Sed  if (OpTy == ShTy || OpTy.isVector()) return Op;
1418193323Sed
1419193323Sed  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1420193323Sed  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1421193323Sed}
1422193323Sed
1423193323Sed/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1424193323Sed/// specified value type.
1425198090SrdivackySDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1426193323Sed  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1427198090Srdivacky  unsigned ByteSize = VT.getStoreSize();
1428198090Srdivacky  const Type *Ty = VT.getTypeForEVT(*getContext());
1429193323Sed  unsigned StackAlign =
1430193323Sed  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1431193323Sed
1432199481Srdivacky  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1433193323Sed  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1434193323Sed}
1435193323Sed
1436193323Sed/// CreateStackTemporary - Create a stack temporary suitable for holding
1437193323Sed/// either of the specified value types.
1438198090SrdivackySDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1439193323Sed  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1440193323Sed                            VT2.getStoreSizeInBits())/8;
1441198090Srdivacky  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1442198090Srdivacky  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1443193323Sed  const TargetData *TD = TLI.getTargetData();
1444193323Sed  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1445193323Sed                            TD->getPrefTypeAlignment(Ty2));
1446193323Sed
1447193323Sed  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1448199481Srdivacky  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1449193323Sed  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1450193323Sed}
1451193323Sed
1452198090SrdivackySDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1453193323Sed                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1454193323Sed  // These setcc operations always fold.
1455193323Sed  switch (Cond) {
1456193323Sed  default: break;
1457193323Sed  case ISD::SETFALSE:
1458193323Sed  case ISD::SETFALSE2: return getConstant(0, VT);
1459193323Sed  case ISD::SETTRUE:
1460193323Sed  case ISD::SETTRUE2:  return getConstant(1, VT);
1461193323Sed
1462193323Sed  case ISD::SETOEQ:
1463193323Sed  case ISD::SETOGT:
1464193323Sed  case ISD::SETOGE:
1465193323Sed  case ISD::SETOLT:
1466193323Sed  case ISD::SETOLE:
1467193323Sed  case ISD::SETONE:
1468193323Sed  case ISD::SETO:
1469193323Sed  case ISD::SETUO:
1470193323Sed  case ISD::SETUEQ:
1471193323Sed  case ISD::SETUNE:
1472193323Sed    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1473193323Sed    break;
1474193323Sed  }
1475193323Sed
1476193323Sed  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1477193323Sed    const APInt &C2 = N2C->getAPIntValue();
1478193323Sed    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1479193323Sed      const APInt &C1 = N1C->getAPIntValue();
1480193323Sed
1481193323Sed      switch (Cond) {
1482198090Srdivacky      default: llvm_unreachable("Unknown integer setcc!");
1483193323Sed      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1484193323Sed      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1485193323Sed      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1486193323Sed      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1487193323Sed      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1488193323Sed      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1489193323Sed      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1490193323Sed      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1491193323Sed      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1492193323Sed      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1493193323Sed      }
1494193323Sed    }
1495193323Sed  }
1496193323Sed  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1497193323Sed    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1498193323Sed      // No compile time operations on this type yet.
1499193323Sed      if (N1C->getValueType(0) == MVT::ppcf128)
1500193323Sed        return SDValue();
1501193323Sed
1502193323Sed      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1503193323Sed      switch (Cond) {
1504193323Sed      default: break;
1505193323Sed      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1506193323Sed                          return getUNDEF(VT);
1507193323Sed                        // fall through
1508193323Sed      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1509193323Sed      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1510193323Sed                          return getUNDEF(VT);
1511193323Sed                        // fall through
1512193323Sed      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1513193323Sed                                           R==APFloat::cmpLessThan, VT);
1514193323Sed      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1515193323Sed                          return getUNDEF(VT);
1516193323Sed                        // fall through
1517193323Sed      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1518193323Sed      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1519193323Sed                          return getUNDEF(VT);
1520193323Sed                        // fall through
1521193323Sed      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1522193323Sed      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1523193323Sed                          return getUNDEF(VT);
1524193323Sed                        // fall through
1525193323Sed      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1526193323Sed                                           R==APFloat::cmpEqual, VT);
1527193323Sed      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1528193323Sed                          return getUNDEF(VT);
1529193323Sed                        // fall through
1530193323Sed      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1531193323Sed                                           R==APFloat::cmpEqual, VT);
1532193323Sed      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1533193323Sed      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1534193323Sed      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1535193323Sed                                           R==APFloat::cmpEqual, VT);
1536193323Sed      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1537193323Sed      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1538193323Sed                                           R==APFloat::cmpLessThan, VT);
1539193323Sed      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1540193323Sed                                           R==APFloat::cmpUnordered, VT);
1541193323Sed      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1542193323Sed      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1543193323Sed      }
1544193323Sed    } else {
1545193323Sed      // Ensure that the constant occurs on the RHS.
1546193323Sed      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1547193323Sed    }
1548193323Sed  }
1549193323Sed
1550193323Sed  // Could not fold it.
1551193323Sed  return SDValue();
1552193323Sed}
1553193323Sed
1554193323Sed/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1555193323Sed/// use this predicate to simplify operations downstream.
1556193323Sedbool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1557198090Srdivacky  // This predicate is not safe for vector operations.
1558198090Srdivacky  if (Op.getValueType().isVector())
1559198090Srdivacky    return false;
1560198090Srdivacky
1561200581Srdivacky  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1562193323Sed  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1563193323Sed}
1564193323Sed
1565193323Sed/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1566193323Sed/// this predicate to simplify operations downstream.  Mask is known to be zero
1567193323Sed/// for bits that V cannot have.
1568193323Sedbool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1569193323Sed                                     unsigned Depth) const {
1570193323Sed  APInt KnownZero, KnownOne;
1571193323Sed  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1572193323Sed  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573193323Sed  return (KnownZero & Mask) == Mask;
1574193323Sed}
1575193323Sed
1576193323Sed/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1577193323Sed/// known to be either zero or one and return them in the KnownZero/KnownOne
1578193323Sed/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1579193323Sed/// processing.
1580193323Sedvoid SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1581193323Sed                                     APInt &KnownZero, APInt &KnownOne,
1582193323Sed                                     unsigned Depth) const {
1583193323Sed  unsigned BitWidth = Mask.getBitWidth();
1584200581Srdivacky  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1585193323Sed         "Mask size mismatches value type size!");
1586193323Sed
1587193323Sed  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1588193323Sed  if (Depth == 6 || Mask == 0)
1589193323Sed    return;  // Limit search depth.
1590193323Sed
1591193323Sed  APInt KnownZero2, KnownOne2;
1592193323Sed
1593193323Sed  switch (Op.getOpcode()) {
1594193323Sed  case ISD::Constant:
1595193323Sed    // We know all of the bits for a constant!
1596193323Sed    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1597193323Sed    KnownZero = ~KnownOne & Mask;
1598193323Sed    return;
1599193323Sed  case ISD::AND:
1600193323Sed    // If either the LHS or the RHS are Zero, the result is zero.
1601193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1602193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1603193323Sed                      KnownZero2, KnownOne2, Depth+1);
1604193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1605193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1606193323Sed
1607193323Sed    // Output known-1 bits are only known if set in both the LHS & RHS.
1608193323Sed    KnownOne &= KnownOne2;
1609193323Sed    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1610193323Sed    KnownZero |= KnownZero2;
1611193323Sed    return;
1612193323Sed  case ISD::OR:
1613193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1614193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1615193323Sed                      KnownZero2, KnownOne2, Depth+1);
1616193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1617193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1618193323Sed
1619193323Sed    // Output known-0 bits are only known if clear in both the LHS & RHS.
1620193323Sed    KnownZero &= KnownZero2;
1621193323Sed    // Output known-1 are known to be set if set in either the LHS | RHS.
1622193323Sed    KnownOne |= KnownOne2;
1623193323Sed    return;
1624193323Sed  case ISD::XOR: {
1625193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1626193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1627193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1628193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1629193323Sed
1630193323Sed    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1631193323Sed    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1632193323Sed    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1633193323Sed    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1634193323Sed    KnownZero = KnownZeroOut;
1635193323Sed    return;
1636193323Sed  }
1637193323Sed  case ISD::MUL: {
1638193323Sed    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1639193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1640193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1641193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1642193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1643193323Sed
1644193323Sed    // If low bits are zero in either operand, output low known-0 bits.
1645193323Sed    // Also compute a conserative estimate for high known-0 bits.
1646193323Sed    // More trickiness is possible, but this is sufficient for the
1647193323Sed    // interesting case of alignment computation.
1648193323Sed    KnownOne.clear();
1649193323Sed    unsigned TrailZ = KnownZero.countTrailingOnes() +
1650193323Sed                      KnownZero2.countTrailingOnes();
1651193323Sed    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1652193323Sed                               KnownZero2.countLeadingOnes(),
1653193323Sed                               BitWidth) - BitWidth;
1654193323Sed
1655193323Sed    TrailZ = std::min(TrailZ, BitWidth);
1656193323Sed    LeadZ = std::min(LeadZ, BitWidth);
1657193323Sed    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1658193323Sed                APInt::getHighBitsSet(BitWidth, LeadZ);
1659193323Sed    KnownZero &= Mask;
1660193323Sed    return;
1661193323Sed  }
1662193323Sed  case ISD::UDIV: {
1663193323Sed    // For the purposes of computing leading zeros we can conservatively
1664193323Sed    // treat a udiv as a logical right shift by the power of 2 known to
1665193323Sed    // be less than the denominator.
1666193323Sed    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1667193323Sed    ComputeMaskedBits(Op.getOperand(0),
1668193323Sed                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1669193323Sed    unsigned LeadZ = KnownZero2.countLeadingOnes();
1670193323Sed
1671193323Sed    KnownOne2.clear();
1672193323Sed    KnownZero2.clear();
1673193323Sed    ComputeMaskedBits(Op.getOperand(1),
1674193323Sed                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1675193323Sed    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1676193323Sed    if (RHSUnknownLeadingOnes != BitWidth)
1677193323Sed      LeadZ = std::min(BitWidth,
1678193323Sed                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1679193323Sed
1680193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1681193323Sed    return;
1682193323Sed  }
1683193323Sed  case ISD::SELECT:
1684193323Sed    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1685193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1686193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1687193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1688193323Sed
1689193323Sed    // Only known if known in both the LHS and RHS.
1690193323Sed    KnownOne &= KnownOne2;
1691193323Sed    KnownZero &= KnownZero2;
1692193323Sed    return;
1693193323Sed  case ISD::SELECT_CC:
1694193323Sed    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1695193323Sed    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1696193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1697193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1698193323Sed
1699193323Sed    // Only known if known in both the LHS and RHS.
1700193323Sed    KnownOne &= KnownOne2;
1701193323Sed    KnownZero &= KnownZero2;
1702193323Sed    return;
1703193323Sed  case ISD::SADDO:
1704193323Sed  case ISD::UADDO:
1705193323Sed  case ISD::SSUBO:
1706193323Sed  case ISD::USUBO:
1707193323Sed  case ISD::SMULO:
1708193323Sed  case ISD::UMULO:
1709193323Sed    if (Op.getResNo() != 1)
1710193323Sed      return;
1711193323Sed    // The boolean result conforms to getBooleanContents.  Fall through.
1712193323Sed  case ISD::SETCC:
1713193323Sed    // If we know the result of a setcc has the top bits zero, use this info.
1714193323Sed    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1715193323Sed        BitWidth > 1)
1716193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1717193323Sed    return;
1718193323Sed  case ISD::SHL:
1719193323Sed    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1720193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1721193323Sed      unsigned ShAmt = SA->getZExtValue();
1722193323Sed
1723193323Sed      // If the shift count is an invalid immediate, don't do anything.
1724193323Sed      if (ShAmt >= BitWidth)
1725193323Sed        return;
1726193323Sed
1727193323Sed      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1728193323Sed                        KnownZero, KnownOne, Depth+1);
1729193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1730193323Sed      KnownZero <<= ShAmt;
1731193323Sed      KnownOne  <<= ShAmt;
1732193323Sed      // low bits known zero.
1733193323Sed      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1734193323Sed    }
1735193323Sed    return;
1736193323Sed  case ISD::SRL:
1737193323Sed    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1738193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1739193323Sed      unsigned ShAmt = SA->getZExtValue();
1740193323Sed
1741193323Sed      // If the shift count is an invalid immediate, don't do anything.
1742193323Sed      if (ShAmt >= BitWidth)
1743193323Sed        return;
1744193323Sed
1745193323Sed      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1746193323Sed                        KnownZero, KnownOne, Depth+1);
1747193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1748193323Sed      KnownZero = KnownZero.lshr(ShAmt);
1749193323Sed      KnownOne  = KnownOne.lshr(ShAmt);
1750193323Sed
1751193323Sed      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1752193323Sed      KnownZero |= HighBits;  // High bits known zero.
1753193323Sed    }
1754193323Sed    return;
1755193323Sed  case ISD::SRA:
1756193323Sed    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1757193323Sed      unsigned ShAmt = SA->getZExtValue();
1758193323Sed
1759193323Sed      // If the shift count is an invalid immediate, don't do anything.
1760193323Sed      if (ShAmt >= BitWidth)
1761193323Sed        return;
1762193323Sed
1763193323Sed      APInt InDemandedMask = (Mask << ShAmt);
1764193323Sed      // If any of the demanded bits are produced by the sign extension, we also
1765193323Sed      // demand the input sign bit.
1766193323Sed      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1767193323Sed      if (HighBits.getBoolValue())
1768193323Sed        InDemandedMask |= APInt::getSignBit(BitWidth);
1769193323Sed
1770193323Sed      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1771193323Sed                        Depth+1);
1772193323Sed      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1773193323Sed      KnownZero = KnownZero.lshr(ShAmt);
1774193323Sed      KnownOne  = KnownOne.lshr(ShAmt);
1775193323Sed
1776193323Sed      // Handle the sign bits.
1777193323Sed      APInt SignBit = APInt::getSignBit(BitWidth);
1778193323Sed      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1779193323Sed
1780193323Sed      if (KnownZero.intersects(SignBit)) {
1781193323Sed        KnownZero |= HighBits;  // New bits are known zero.
1782193323Sed      } else if (KnownOne.intersects(SignBit)) {
1783193323Sed        KnownOne  |= HighBits;  // New bits are known one.
1784193323Sed      }
1785193323Sed    }
1786193323Sed    return;
1787193323Sed  case ISD::SIGN_EXTEND_INREG: {
1788198090Srdivacky    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1789193323Sed    unsigned EBits = EVT.getSizeInBits();
1790193323Sed
1791193323Sed    // Sign extension.  Compute the demanded bits in the result that are not
1792193323Sed    // present in the input.
1793193323Sed    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1794193323Sed
1795193323Sed    APInt InSignBit = APInt::getSignBit(EBits);
1796193323Sed    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1797193323Sed
1798193323Sed    // If the sign extended bits are demanded, we know that the sign
1799193323Sed    // bit is demanded.
1800193323Sed    InSignBit.zext(BitWidth);
1801193323Sed    if (NewBits.getBoolValue())
1802193323Sed      InputDemandedBits |= InSignBit;
1803193323Sed
1804193323Sed    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1805193323Sed                      KnownZero, KnownOne, Depth+1);
1806193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1807193323Sed
1808193323Sed    // If the sign bit of the input is known set or clear, then we know the
1809193323Sed    // top bits of the result.
1810193323Sed    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1811193323Sed      KnownZero |= NewBits;
1812193323Sed      KnownOne  &= ~NewBits;
1813193323Sed    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1814193323Sed      KnownOne  |= NewBits;
1815193323Sed      KnownZero &= ~NewBits;
1816193323Sed    } else {                              // Input sign bit unknown
1817193323Sed      KnownZero &= ~NewBits;
1818193323Sed      KnownOne  &= ~NewBits;
1819193323Sed    }
1820193323Sed    return;
1821193323Sed  }
1822193323Sed  case ISD::CTTZ:
1823193323Sed  case ISD::CTLZ:
1824193323Sed  case ISD::CTPOP: {
1825193323Sed    unsigned LowBits = Log2_32(BitWidth)+1;
1826193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1827193323Sed    KnownOne.clear();
1828193323Sed    return;
1829193323Sed  }
1830193323Sed  case ISD::LOAD: {
1831193323Sed    if (ISD::isZEXTLoad(Op.getNode())) {
1832193323Sed      LoadSDNode *LD = cast<LoadSDNode>(Op);
1833198090Srdivacky      EVT VT = LD->getMemoryVT();
1834193323Sed      unsigned MemBits = VT.getSizeInBits();
1835193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1836193323Sed    }
1837193323Sed    return;
1838193323Sed  }
1839193323Sed  case ISD::ZERO_EXTEND: {
1840198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1841200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1842193323Sed    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1843193323Sed    APInt InMask    = Mask;
1844193323Sed    InMask.trunc(InBits);
1845193323Sed    KnownZero.trunc(InBits);
1846193323Sed    KnownOne.trunc(InBits);
1847193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1848193323Sed    KnownZero.zext(BitWidth);
1849193323Sed    KnownOne.zext(BitWidth);
1850193323Sed    KnownZero |= NewBits;
1851193323Sed    return;
1852193323Sed  }
1853193323Sed  case ISD::SIGN_EXTEND: {
1854198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1855200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1856193323Sed    APInt InSignBit = APInt::getSignBit(InBits);
1857193323Sed    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1858193323Sed    APInt InMask = Mask;
1859193323Sed    InMask.trunc(InBits);
1860193323Sed
1861193323Sed    // If any of the sign extended bits are demanded, we know that the sign
1862193323Sed    // bit is demanded. Temporarily set this bit in the mask for our callee.
1863193323Sed    if (NewBits.getBoolValue())
1864193323Sed      InMask |= InSignBit;
1865193323Sed
1866193323Sed    KnownZero.trunc(InBits);
1867193323Sed    KnownOne.trunc(InBits);
1868193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1869193323Sed
1870193323Sed    // Note if the sign bit is known to be zero or one.
1871193323Sed    bool SignBitKnownZero = KnownZero.isNegative();
1872193323Sed    bool SignBitKnownOne  = KnownOne.isNegative();
1873193323Sed    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1874193323Sed           "Sign bit can't be known to be both zero and one!");
1875193323Sed
1876193323Sed    // If the sign bit wasn't actually demanded by our caller, we don't
1877193323Sed    // want it set in the KnownZero and KnownOne result values. Reset the
1878193323Sed    // mask and reapply it to the result values.
1879193323Sed    InMask = Mask;
1880193323Sed    InMask.trunc(InBits);
1881193323Sed    KnownZero &= InMask;
1882193323Sed    KnownOne  &= InMask;
1883193323Sed
1884193323Sed    KnownZero.zext(BitWidth);
1885193323Sed    KnownOne.zext(BitWidth);
1886193323Sed
1887193323Sed    // If the sign bit is known zero or one, the top bits match.
1888193323Sed    if (SignBitKnownZero)
1889193323Sed      KnownZero |= NewBits;
1890193323Sed    else if (SignBitKnownOne)
1891193323Sed      KnownOne  |= NewBits;
1892193323Sed    return;
1893193323Sed  }
1894193323Sed  case ISD::ANY_EXTEND: {
1895198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1896200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1897193323Sed    APInt InMask = Mask;
1898193323Sed    InMask.trunc(InBits);
1899193323Sed    KnownZero.trunc(InBits);
1900193323Sed    KnownOne.trunc(InBits);
1901193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1902193323Sed    KnownZero.zext(BitWidth);
1903193323Sed    KnownOne.zext(BitWidth);
1904193323Sed    return;
1905193323Sed  }
1906193323Sed  case ISD::TRUNCATE: {
1907198090Srdivacky    EVT InVT = Op.getOperand(0).getValueType();
1908200581Srdivacky    unsigned InBits = InVT.getScalarType().getSizeInBits();
1909193323Sed    APInt InMask = Mask;
1910193323Sed    InMask.zext(InBits);
1911193323Sed    KnownZero.zext(InBits);
1912193323Sed    KnownOne.zext(InBits);
1913193323Sed    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1914193323Sed    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1915193323Sed    KnownZero.trunc(BitWidth);
1916193323Sed    KnownOne.trunc(BitWidth);
1917193323Sed    break;
1918193323Sed  }
1919193323Sed  case ISD::AssertZext: {
1920198090Srdivacky    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1921193323Sed    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1922193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1923193323Sed                      KnownOne, Depth+1);
1924193323Sed    KnownZero |= (~InMask) & Mask;
1925193323Sed    return;
1926193323Sed  }
1927193323Sed  case ISD::FGETSIGN:
1928193323Sed    // All bits are zero except the low bit.
1929193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1930193323Sed    return;
1931193323Sed
1932193323Sed  case ISD::SUB: {
1933193323Sed    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1934193323Sed      // We know that the top bits of C-X are clear if X contains less bits
1935193323Sed      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1936193323Sed      // positive if we can prove that X is >= 0 and < 16.
1937193323Sed      if (CLHS->getAPIntValue().isNonNegative()) {
1938193323Sed        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1939193323Sed        // NLZ can't be BitWidth with no sign bit
1940193323Sed        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1941193323Sed        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1942193323Sed                          Depth+1);
1943193323Sed
1944193323Sed        // If all of the MaskV bits are known to be zero, then we know the
1945193323Sed        // output top bits are zero, because we now know that the output is
1946193323Sed        // from [0-C].
1947193323Sed        if ((KnownZero2 & MaskV) == MaskV) {
1948193323Sed          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1949193323Sed          // Top bits known zero.
1950193323Sed          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1951193323Sed        }
1952193323Sed      }
1953193323Sed    }
1954193323Sed  }
1955193323Sed  // fall through
1956193323Sed  case ISD::ADD: {
1957193323Sed    // Output known-0 bits are known if clear or set in both the low clear bits
1958193323Sed    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1959193323Sed    // low 3 bits clear.
1960193323Sed    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1961193323Sed    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1962193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1963193323Sed    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1964193323Sed
1965193323Sed    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1966193323Sed    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967193323Sed    KnownZeroOut = std::min(KnownZeroOut,
1968193323Sed                            KnownZero2.countTrailingOnes());
1969193323Sed
1970193323Sed    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1971193323Sed    return;
1972193323Sed  }
1973193323Sed  case ISD::SREM:
1974193323Sed    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1975193323Sed      const APInt &RA = Rem->getAPIntValue();
1976193323Sed      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1977193323Sed        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1978193323Sed        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1979193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1980193323Sed
1981193323Sed        // If the sign bit of the first operand is zero, the sign bit of
1982193323Sed        // the result is zero. If the first operand has no one bits below
1983193323Sed        // the second operand's single 1 bit, its sign will be zero.
1984193323Sed        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1985193323Sed          KnownZero2 |= ~LowBits;
1986193323Sed
1987193323Sed        KnownZero |= KnownZero2 & Mask;
1988193323Sed
1989193323Sed        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1990193323Sed      }
1991193323Sed    }
1992193323Sed    return;
1993193323Sed  case ISD::UREM: {
1994193323Sed    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1995193323Sed      const APInt &RA = Rem->getAPIntValue();
1996193323Sed      if (RA.isPowerOf2()) {
1997193323Sed        APInt LowBits = (RA - 1);
1998193323Sed        APInt Mask2 = LowBits & Mask;
1999193323Sed        KnownZero |= ~LowBits & Mask;
2000193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2001193323Sed        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2002193323Sed        break;
2003193323Sed      }
2004193323Sed    }
2005193323Sed
2006193323Sed    // Since the result is less than or equal to either operand, any leading
2007193323Sed    // zero bits in either operand must also exist in the result.
2008193323Sed    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2009193323Sed    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2010193323Sed                      Depth+1);
2011193323Sed    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2012193323Sed                      Depth+1);
2013193323Sed
2014193323Sed    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2015193323Sed                                KnownZero2.countLeadingOnes());
2016193323Sed    KnownOne.clear();
2017193323Sed    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2018193323Sed    return;
2019193323Sed  }
2020193323Sed  default:
2021193323Sed    // Allow the target to implement this method for its nodes.
2022193323Sed    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2023193323Sed  case ISD::INTRINSIC_WO_CHAIN:
2024193323Sed  case ISD::INTRINSIC_W_CHAIN:
2025193323Sed  case ISD::INTRINSIC_VOID:
2026198090Srdivacky      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2027198090Srdivacky                                         Depth);
2028193323Sed    }
2029193323Sed    return;
2030193323Sed  }
2031193323Sed}
2032193323Sed
2033193323Sed/// ComputeNumSignBits - Return the number of times the sign bit of the
2034193323Sed/// register is replicated into the other bits.  We know that at least 1 bit
2035193323Sed/// is always equal to the sign bit (itself), but other cases can give us
2036193323Sed/// information.  For example, immediately after an "SRA X, 2", we know that
2037193323Sed/// the top 3 bits are all equal to each other, so we return 3.
2038193323Sedunsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2039198090Srdivacky  EVT VT = Op.getValueType();
2040193323Sed  assert(VT.isInteger() && "Invalid VT!");
2041200581Srdivacky  unsigned VTBits = VT.getScalarType().getSizeInBits();
2042193323Sed  unsigned Tmp, Tmp2;
2043193323Sed  unsigned FirstAnswer = 1;
2044193323Sed
2045193323Sed  if (Depth == 6)
2046193323Sed    return 1;  // Limit search depth.
2047193323Sed
2048193323Sed  switch (Op.getOpcode()) {
2049193323Sed  default: break;
2050193323Sed  case ISD::AssertSext:
2051193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2052193323Sed    return VTBits-Tmp+1;
2053193323Sed  case ISD::AssertZext:
2054193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2055193323Sed    return VTBits-Tmp;
2056193323Sed
2057193323Sed  case ISD::Constant: {
2058193323Sed    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2059193323Sed    // If negative, return # leading ones.
2060193323Sed    if (Val.isNegative())
2061193323Sed      return Val.countLeadingOnes();
2062193323Sed
2063193323Sed    // Return # leading zeros.
2064193323Sed    return Val.countLeadingZeros();
2065193323Sed  }
2066193323Sed
2067193323Sed  case ISD::SIGN_EXTEND:
2068200581Srdivacky    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2069193323Sed    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2070193323Sed
2071193323Sed  case ISD::SIGN_EXTEND_INREG:
2072193323Sed    // Max of the input and what this extends.
2073193323Sed    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2074193323Sed    Tmp = VTBits-Tmp+1;
2075193323Sed
2076193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2077193323Sed    return std::max(Tmp, Tmp2);
2078193323Sed
2079193323Sed  case ISD::SRA:
2080193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2081193323Sed    // SRA X, C   -> adds C sign bits.
2082193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2083193323Sed      Tmp += C->getZExtValue();
2084193323Sed      if (Tmp > VTBits) Tmp = VTBits;
2085193323Sed    }
2086193323Sed    return Tmp;
2087193323Sed  case ISD::SHL:
2088193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2089193323Sed      // shl destroys sign bits.
2090193323Sed      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2091193323Sed      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2092193323Sed          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2093193323Sed      return Tmp - C->getZExtValue();
2094193323Sed    }
2095193323Sed    break;
2096193323Sed  case ISD::AND:
2097193323Sed  case ISD::OR:
2098193323Sed  case ISD::XOR:    // NOT is handled here.
2099193323Sed    // Logical binary ops preserve the number of sign bits at the worst.
2100193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2101193323Sed    if (Tmp != 1) {
2102193323Sed      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2103193323Sed      FirstAnswer = std::min(Tmp, Tmp2);
2104193323Sed      // We computed what we know about the sign bits as our first
2105193323Sed      // answer. Now proceed to the generic code that uses
2106193323Sed      // ComputeMaskedBits, and pick whichever answer is better.
2107193323Sed    }
2108193323Sed    break;
2109193323Sed
2110193323Sed  case ISD::SELECT:
2111193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2112193323Sed    if (Tmp == 1) return 1;  // Early out.
2113193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2114193323Sed    return std::min(Tmp, Tmp2);
2115193323Sed
2116193323Sed  case ISD::SADDO:
2117193323Sed  case ISD::UADDO:
2118193323Sed  case ISD::SSUBO:
2119193323Sed  case ISD::USUBO:
2120193323Sed  case ISD::SMULO:
2121193323Sed  case ISD::UMULO:
2122193323Sed    if (Op.getResNo() != 1)
2123193323Sed      break;
2124193323Sed    // The boolean result conforms to getBooleanContents.  Fall through.
2125193323Sed  case ISD::SETCC:
2126193323Sed    // If setcc returns 0/-1, all bits are sign bits.
2127193323Sed    if (TLI.getBooleanContents() ==
2128193323Sed        TargetLowering::ZeroOrNegativeOneBooleanContent)
2129193323Sed      return VTBits;
2130193323Sed    break;
2131193323Sed  case ISD::ROTL:
2132193323Sed  case ISD::ROTR:
2133193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2134193323Sed      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2135193323Sed
2136193323Sed      // Handle rotate right by N like a rotate left by 32-N.
2137193323Sed      if (Op.getOpcode() == ISD::ROTR)
2138193323Sed        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2139193323Sed
2140193323Sed      // If we aren't rotating out all of the known-in sign bits, return the
2141193323Sed      // number that are left.  This handles rotl(sext(x), 1) for example.
2142193323Sed      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2143193323Sed      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2144193323Sed    }
2145193323Sed    break;
2146193323Sed  case ISD::ADD:
2147193323Sed    // Add can have at most one carry bit.  Thus we know that the output
2148193323Sed    // is, at worst, one more bit than the inputs.
2149193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2150193323Sed    if (Tmp == 1) return 1;  // Early out.
2151193323Sed
2152193323Sed    // Special case decrementing a value (ADD X, -1):
2153193323Sed    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2154193323Sed      if (CRHS->isAllOnesValue()) {
2155193323Sed        APInt KnownZero, KnownOne;
2156193323Sed        APInt Mask = APInt::getAllOnesValue(VTBits);
2157193323Sed        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2158193323Sed
2159193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2160193323Sed        // sign bits set.
2161193323Sed        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2162193323Sed          return VTBits;
2163193323Sed
2164193323Sed        // If we are subtracting one from a positive number, there is no carry
2165193323Sed        // out of the result.
2166193323Sed        if (KnownZero.isNegative())
2167193323Sed          return Tmp;
2168193323Sed      }
2169193323Sed
2170193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2171193323Sed    if (Tmp2 == 1) return 1;
2172193323Sed      return std::min(Tmp, Tmp2)-1;
2173193323Sed    break;
2174193323Sed
2175193323Sed  case ISD::SUB:
2176193323Sed    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2177193323Sed    if (Tmp2 == 1) return 1;
2178193323Sed
2179193323Sed    // Handle NEG.
2180193323Sed    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2181193323Sed      if (CLHS->isNullValue()) {
2182193323Sed        APInt KnownZero, KnownOne;
2183193323Sed        APInt Mask = APInt::getAllOnesValue(VTBits);
2184193323Sed        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2185193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2186193323Sed        // sign bits set.
2187193323Sed        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2188193323Sed          return VTBits;
2189193323Sed
2190193323Sed        // If the input is known to be positive (the sign bit is known clear),
2191193323Sed        // the output of the NEG has the same number of sign bits as the input.
2192193323Sed        if (KnownZero.isNegative())
2193193323Sed          return Tmp2;
2194193323Sed
2195193323Sed        // Otherwise, we treat this like a SUB.
2196193323Sed      }
2197193323Sed
2198193323Sed    // Sub can have at most one carry bit.  Thus we know that the output
2199193323Sed    // is, at worst, one more bit than the inputs.
2200193323Sed    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2201193323Sed    if (Tmp == 1) return 1;  // Early out.
2202193323Sed      return std::min(Tmp, Tmp2)-1;
2203193323Sed    break;
2204193323Sed  case ISD::TRUNCATE:
2205193323Sed    // FIXME: it's tricky to do anything useful for this, but it is an important
2206193323Sed    // case for targets like X86.
2207193323Sed    break;
2208193323Sed  }
2209193323Sed
2210193323Sed  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2211193323Sed  if (Op.getOpcode() == ISD::LOAD) {
2212193323Sed    LoadSDNode *LD = cast<LoadSDNode>(Op);
2213193323Sed    unsigned ExtType = LD->getExtensionType();
2214193323Sed    switch (ExtType) {
2215193323Sed    default: break;
2216193323Sed    case ISD::SEXTLOAD:    // '17' bits known
2217193323Sed      Tmp = LD->getMemoryVT().getSizeInBits();
2218193323Sed      return VTBits-Tmp+1;
2219193323Sed    case ISD::ZEXTLOAD:    // '16' bits known
2220193323Sed      Tmp = LD->getMemoryVT().getSizeInBits();
2221193323Sed      return VTBits-Tmp;
2222193323Sed    }
2223193323Sed  }
2224193323Sed
2225193323Sed  // Allow the target to implement this method for its nodes.
2226193323Sed  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2227193323Sed      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2228193323Sed      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2229193323Sed      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2230193323Sed    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2231193323Sed    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2232193323Sed  }
2233193323Sed
2234193323Sed  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2235193323Sed  // use this information.
2236193323Sed  APInt KnownZero, KnownOne;
2237193323Sed  APInt Mask = APInt::getAllOnesValue(VTBits);
2238193323Sed  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2239193323Sed
2240193323Sed  if (KnownZero.isNegative()) {        // sign bit is 0
2241193323Sed    Mask = KnownZero;
2242193323Sed  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2243193323Sed    Mask = KnownOne;
2244193323Sed  } else {
2245193323Sed    // Nothing known.
2246193323Sed    return FirstAnswer;
2247193323Sed  }
2248193323Sed
2249193323Sed  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2250193323Sed  // the number of identical bits in the top of the input value.
2251193323Sed  Mask = ~Mask;
2252193323Sed  Mask <<= Mask.getBitWidth()-VTBits;
2253193323Sed  // Return # leading zeros.  We use 'min' here in case Val was zero before
2254193323Sed  // shifting.  We don't want to return '64' as for an i32 "0".
2255193323Sed  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2256193323Sed}
2257193323Sed
2258198090Srdivackybool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2259198090Srdivacky  // If we're told that NaNs won't happen, assume they won't.
2260198090Srdivacky  if (FiniteOnlyFPMath())
2261198090Srdivacky    return true;
2262193323Sed
2263198090Srdivacky  // If the value is a constant, we can obviously see if it is a NaN or not.
2264198090Srdivacky  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2265198090Srdivacky    return !C->getValueAPF().isNaN();
2266198090Srdivacky
2267198090Srdivacky  // TODO: Recognize more cases here.
2268198090Srdivacky
2269198090Srdivacky  return false;
2270198090Srdivacky}
2271198090Srdivacky
2272193323Sedbool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2273193323Sed  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2274193323Sed  if (!GA) return false;
2275193323Sed  if (GA->getOffset() != 0) return false;
2276193323Sed  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2277193323Sed  if (!GV) return false;
2278193323Sed  MachineModuleInfo *MMI = getMachineModuleInfo();
2279193323Sed  return MMI && MMI->hasDebugInfo();
2280193323Sed}
2281193323Sed
2282193323Sed
2283193323Sed/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2284193323Sed/// element of the result of the vector shuffle.
2285193323SedSDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2286193323Sed                                          unsigned i) {
2287198090Srdivacky  EVT VT = N->getValueType(0);
2288193323Sed  DebugLoc dl = N->getDebugLoc();
2289193323Sed  if (N->getMaskElt(i) < 0)
2290193323Sed    return getUNDEF(VT.getVectorElementType());
2291193323Sed  unsigned Index = N->getMaskElt(i);
2292193323Sed  unsigned NumElems = VT.getVectorNumElements();
2293193323Sed  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2294193323Sed  Index %= NumElems;
2295193323Sed
2296193323Sed  if (V.getOpcode() == ISD::BIT_CONVERT) {
2297193323Sed    V = V.getOperand(0);
2298198090Srdivacky    EVT VVT = V.getValueType();
2299193323Sed    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2300193323Sed      return SDValue();
2301193323Sed  }
2302193323Sed  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2303193323Sed    return (Index == 0) ? V.getOperand(0)
2304193323Sed                      : getUNDEF(VT.getVectorElementType());
2305193323Sed  if (V.getOpcode() == ISD::BUILD_VECTOR)
2306193323Sed    return V.getOperand(Index);
2307193323Sed  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2308193323Sed    return getShuffleScalarElt(SVN, Index);
2309193323Sed  return SDValue();
2310193323Sed}
2311193323Sed
2312193323Sed
2313193323Sed/// getNode - Gets or creates the specified node.
2314193323Sed///
2315198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2316193323Sed  FoldingSetNodeID ID;
2317193323Sed  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2318193323Sed  void *IP = 0;
2319200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
2320200581Srdivacky    if (Ordering) Ordering->add(E);
2321193323Sed    return SDValue(E, 0);
2322200581Srdivacky  }
2323193323Sed  SDNode *N = NodeAllocator.Allocate<SDNode>();
2324193323Sed  new (N) SDNode(Opcode, DL, getVTList(VT));
2325193323Sed  CSEMap.InsertNode(N, IP);
2326193323Sed
2327193323Sed  AllNodes.push_back(N);
2328200581Srdivacky  if (Ordering) Ordering->add(N);
2329193323Sed#ifndef NDEBUG
2330193323Sed  VerifyNode(N);
2331193323Sed#endif
2332193323Sed  return SDValue(N, 0);
2333193323Sed}
2334193323Sed
2335193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2336198090Srdivacky                              EVT VT, SDValue Operand) {
2337193323Sed  // Constant fold unary operations with an integer constant operand.
2338193323Sed  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2339193323Sed    const APInt &Val = C->getAPIntValue();
2340193323Sed    unsigned BitWidth = VT.getSizeInBits();
2341193323Sed    switch (Opcode) {
2342193323Sed    default: break;
2343193323Sed    case ISD::SIGN_EXTEND:
2344193323Sed      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2345193323Sed    case ISD::ANY_EXTEND:
2346193323Sed    case ISD::ZERO_EXTEND:
2347193323Sed    case ISD::TRUNCATE:
2348193323Sed      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2349193323Sed    case ISD::UINT_TO_FP:
2350193323Sed    case ISD::SINT_TO_FP: {
2351193323Sed      const uint64_t zero[] = {0, 0};
2352193323Sed      // No compile time operations on this type.
2353193323Sed      if (VT==MVT::ppcf128)
2354193323Sed        break;
2355193323Sed      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2356193323Sed      (void)apf.convertFromAPInt(Val,
2357193323Sed                                 Opcode==ISD::SINT_TO_FP,
2358193323Sed                                 APFloat::rmNearestTiesToEven);
2359193323Sed      return getConstantFP(apf, VT);
2360193323Sed    }
2361193323Sed    case ISD::BIT_CONVERT:
2362193323Sed      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2363193323Sed        return getConstantFP(Val.bitsToFloat(), VT);
2364193323Sed      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2365193323Sed        return getConstantFP(Val.bitsToDouble(), VT);
2366193323Sed      break;
2367193323Sed    case ISD::BSWAP:
2368193323Sed      return getConstant(Val.byteSwap(), VT);
2369193323Sed    case ISD::CTPOP:
2370193323Sed      return getConstant(Val.countPopulation(), VT);
2371193323Sed    case ISD::CTLZ:
2372193323Sed      return getConstant(Val.countLeadingZeros(), VT);
2373193323Sed    case ISD::CTTZ:
2374193323Sed      return getConstant(Val.countTrailingZeros(), VT);
2375193323Sed    }
2376193323Sed  }
2377193323Sed
2378193323Sed  // Constant fold unary operations with a floating point constant operand.
2379193323Sed  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2380193323Sed    APFloat V = C->getValueAPF();    // make copy
2381193323Sed    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2382193323Sed      switch (Opcode) {
2383193323Sed      case ISD::FNEG:
2384193323Sed        V.changeSign();
2385193323Sed        return getConstantFP(V, VT);
2386193323Sed      case ISD::FABS:
2387193323Sed        V.clearSign();
2388193323Sed        return getConstantFP(V, VT);
2389193323Sed      case ISD::FP_ROUND:
2390193323Sed      case ISD::FP_EXTEND: {
2391193323Sed        bool ignored;
2392193323Sed        // This can return overflow, underflow, or inexact; we don't care.
2393193323Sed        // FIXME need to be more flexible about rounding mode.
2394198090Srdivacky        (void)V.convert(*EVTToAPFloatSemantics(VT),
2395193323Sed                        APFloat::rmNearestTiesToEven, &ignored);
2396193323Sed        return getConstantFP(V, VT);
2397193323Sed      }
2398193323Sed      case ISD::FP_TO_SINT:
2399193323Sed      case ISD::FP_TO_UINT: {
2400193323Sed        integerPart x[2];
2401193323Sed        bool ignored;
2402193323Sed        assert(integerPartWidth >= 64);
2403193323Sed        // FIXME need to be more flexible about rounding mode.
2404193323Sed        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2405193323Sed                              Opcode==ISD::FP_TO_SINT,
2406193323Sed                              APFloat::rmTowardZero, &ignored);
2407193323Sed        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2408193323Sed          break;
2409193323Sed        APInt api(VT.getSizeInBits(), 2, x);
2410193323Sed        return getConstant(api, VT);
2411193323Sed      }
2412193323Sed      case ISD::BIT_CONVERT:
2413193323Sed        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2414193323Sed          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2415193323Sed        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2416193323Sed          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2417193323Sed        break;
2418193323Sed      }
2419193323Sed    }
2420193323Sed  }
2421193323Sed
2422193323Sed  unsigned OpOpcode = Operand.getNode()->getOpcode();
2423193323Sed  switch (Opcode) {
2424193323Sed  case ISD::TokenFactor:
2425193323Sed  case ISD::MERGE_VALUES:
2426193323Sed  case ISD::CONCAT_VECTORS:
2427193323Sed    return Operand;         // Factor, merge or concat of one node?  No need.
2428198090Srdivacky  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2429193323Sed  case ISD::FP_EXTEND:
2430193323Sed    assert(VT.isFloatingPoint() &&
2431193323Sed           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2432193323Sed    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2433200581Srdivacky    assert((!VT.isVector() ||
2434200581Srdivacky            VT.getVectorNumElements() ==
2435200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2436200581Srdivacky           "Vector element count mismatch!");
2437193323Sed    if (Operand.getOpcode() == ISD::UNDEF)
2438193323Sed      return getUNDEF(VT);
2439193323Sed    break;
2440193323Sed  case ISD::SIGN_EXTEND:
2441193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2442193323Sed           "Invalid SIGN_EXTEND!");
2443193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2444200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2445200581Srdivacky           "Invalid sext node, dst < src!");
2446200581Srdivacky    assert((!VT.isVector() ||
2447200581Srdivacky            VT.getVectorNumElements() ==
2448200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2449200581Srdivacky           "Vector element count mismatch!");
2450193323Sed    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2451193323Sed      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2452193323Sed    break;
2453193323Sed  case ISD::ZERO_EXTEND:
2454193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2455193323Sed           "Invalid ZERO_EXTEND!");
2456193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2457200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2458200581Srdivacky           "Invalid zext node, dst < src!");
2459200581Srdivacky    assert((!VT.isVector() ||
2460200581Srdivacky            VT.getVectorNumElements() ==
2461200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2462200581Srdivacky           "Vector element count mismatch!");
2463193323Sed    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2464193323Sed      return getNode(ISD::ZERO_EXTEND, DL, VT,
2465193323Sed                     Operand.getNode()->getOperand(0));
2466193323Sed    break;
2467193323Sed  case ISD::ANY_EXTEND:
2468193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2469193323Sed           "Invalid ANY_EXTEND!");
2470193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop extension
2471200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2472200581Srdivacky           "Invalid anyext node, dst < src!");
2473200581Srdivacky    assert((!VT.isVector() ||
2474200581Srdivacky            VT.getVectorNumElements() ==
2475200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2476200581Srdivacky           "Vector element count mismatch!");
2477193323Sed    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2478193323Sed      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2479193323Sed      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2480193323Sed    break;
2481193323Sed  case ISD::TRUNCATE:
2482193323Sed    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2483193323Sed           "Invalid TRUNCATE!");
2484193323Sed    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2485200581Srdivacky    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2486200581Srdivacky           "Invalid truncate node, src < dst!");
2487200581Srdivacky    assert((!VT.isVector() ||
2488200581Srdivacky            VT.getVectorNumElements() ==
2489200581Srdivacky            Operand.getValueType().getVectorNumElements()) &&
2490200581Srdivacky           "Vector element count mismatch!");
2491193323Sed    if (OpOpcode == ISD::TRUNCATE)
2492193323Sed      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2493193323Sed    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2494193323Sed             OpOpcode == ISD::ANY_EXTEND) {
2495193323Sed      // If the source is smaller than the dest, we still need an extend.
2496200581Srdivacky      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2497200581Srdivacky            .bitsLT(VT.getScalarType()))
2498193323Sed        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2499193323Sed      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2500193323Sed        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2501193323Sed      else
2502193323Sed        return Operand.getNode()->getOperand(0);
2503193323Sed    }
2504193323Sed    break;
2505193323Sed  case ISD::BIT_CONVERT:
2506193323Sed    // Basic sanity checking.
2507193323Sed    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2508193323Sed           && "Cannot BIT_CONVERT between types of different sizes!");
2509193323Sed    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2510193323Sed    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2511193323Sed      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2512193323Sed    if (OpOpcode == ISD::UNDEF)
2513193323Sed      return getUNDEF(VT);
2514193323Sed    break;
2515193323Sed  case ISD::SCALAR_TO_VECTOR:
2516193323Sed    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2517193323Sed           (VT.getVectorElementType() == Operand.getValueType() ||
2518193323Sed            (VT.getVectorElementType().isInteger() &&
2519193323Sed             Operand.getValueType().isInteger() &&
2520193323Sed             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2521193323Sed           "Illegal SCALAR_TO_VECTOR node!");
2522193323Sed    if (OpOpcode == ISD::UNDEF)
2523193323Sed      return getUNDEF(VT);
2524193323Sed    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2525193323Sed    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2526193323Sed        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2527193323Sed        Operand.getConstantOperandVal(1) == 0 &&
2528193323Sed        Operand.getOperand(0).getValueType() == VT)
2529193323Sed      return Operand.getOperand(0);
2530193323Sed    break;
2531193323Sed  case ISD::FNEG:
2532193323Sed    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2533193323Sed    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2534193323Sed      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2535193323Sed                     Operand.getNode()->getOperand(0));
2536193323Sed    if (OpOpcode == ISD::FNEG)  // --X -> X
2537193323Sed      return Operand.getNode()->getOperand(0);
2538193323Sed    break;
2539193323Sed  case ISD::FABS:
2540193323Sed    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2541193323Sed      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2542193323Sed    break;
2543193323Sed  }
2544193323Sed
2545193323Sed  SDNode *N;
2546193323Sed  SDVTList VTs = getVTList(VT);
2547193323Sed  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2548193323Sed    FoldingSetNodeID ID;
2549193323Sed    SDValue Ops[1] = { Operand };
2550193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2551193323Sed    void *IP = 0;
2552200581Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
2553200581Srdivacky      if (Ordering) Ordering->add(E);
2554193323Sed      return SDValue(E, 0);
2555200581Srdivacky    }
2556193323Sed    N = NodeAllocator.Allocate<UnarySDNode>();
2557193323Sed    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2558193323Sed    CSEMap.InsertNode(N, IP);
2559193323Sed  } else {
2560193323Sed    N = NodeAllocator.Allocate<UnarySDNode>();
2561193323Sed    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2562193323Sed  }
2563193323Sed
2564193323Sed  AllNodes.push_back(N);
2565200581Srdivacky  if (Ordering) Ordering->add(N);
2566193323Sed#ifndef NDEBUG
2567193323Sed  VerifyNode(N);
2568193323Sed#endif
2569193323Sed  return SDValue(N, 0);
2570193323Sed}
2571193323Sed
2572193323SedSDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2573198090Srdivacky                                             EVT VT,
2574193323Sed                                             ConstantSDNode *Cst1,
2575193323Sed                                             ConstantSDNode *Cst2) {
2576193323Sed  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2577193323Sed
2578193323Sed  switch (Opcode) {
2579193323Sed  case ISD::ADD:  return getConstant(C1 + C2, VT);
2580193323Sed  case ISD::SUB:  return getConstant(C1 - C2, VT);
2581193323Sed  case ISD::MUL:  return getConstant(C1 * C2, VT);
2582193323Sed  case ISD::UDIV:
2583193323Sed    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2584193323Sed    break;
2585193323Sed  case ISD::UREM:
2586193323Sed    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2587193323Sed    break;
2588193323Sed  case ISD::SDIV:
2589193323Sed    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2590193323Sed    break;
2591193323Sed  case ISD::SREM:
2592193323Sed    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2593193323Sed    break;
2594193323Sed  case ISD::AND:  return getConstant(C1 & C2, VT);
2595193323Sed  case ISD::OR:   return getConstant(C1 | C2, VT);
2596193323Sed  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2597193323Sed  case ISD::SHL:  return getConstant(C1 << C2, VT);
2598193323Sed  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2599193323Sed  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2600193323Sed  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2601193323Sed  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2602193323Sed  default: break;
2603193323Sed  }
2604193323Sed
2605193323Sed  return SDValue();
2606193323Sed}
2607193323Sed
2608198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2609193323Sed                              SDValue N1, SDValue N2) {
2610193323Sed  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2611193323Sed  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2612193323Sed  switch (Opcode) {
2613193323Sed  default: break;
2614193323Sed  case ISD::TokenFactor:
2615193323Sed    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2616193323Sed           N2.getValueType() == MVT::Other && "Invalid token factor!");
2617193323Sed    // Fold trivial token factors.
2618193323Sed    if (N1.getOpcode() == ISD::EntryToken) return N2;
2619193323Sed    if (N2.getOpcode() == ISD::EntryToken) return N1;
2620193323Sed    if (N1 == N2) return N1;
2621193323Sed    break;
2622193323Sed  case ISD::CONCAT_VECTORS:
2623193323Sed    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2624193323Sed    // one big BUILD_VECTOR.
2625193323Sed    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2626193323Sed        N2.getOpcode() == ISD::BUILD_VECTOR) {
2627193323Sed      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2628193323Sed      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2629193323Sed      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2630193323Sed    }
2631193323Sed    break;
2632193323Sed  case ISD::AND:
2633193323Sed    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2634193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2635193323Sed    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2636193323Sed    // worth handling here.
2637193323Sed    if (N2C && N2C->isNullValue())
2638193323Sed      return N2;
2639193323Sed    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2640193323Sed      return N1;
2641193323Sed    break;
2642193323Sed  case ISD::OR:
2643193323Sed  case ISD::XOR:
2644193323Sed  case ISD::ADD:
2645193323Sed  case ISD::SUB:
2646193323Sed    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2647193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2648193323Sed    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2649193323Sed    // it's worth handling here.
2650193323Sed    if (N2C && N2C->isNullValue())
2651193323Sed      return N1;
2652193323Sed    break;
2653193323Sed  case ISD::UDIV:
2654193323Sed  case ISD::UREM:
2655193323Sed  case ISD::MULHU:
2656193323Sed  case ISD::MULHS:
2657193323Sed  case ISD::MUL:
2658193323Sed  case ISD::SDIV:
2659193323Sed  case ISD::SREM:
2660193323Sed    assert(VT.isInteger() && "This operator does not apply to FP types!");
2661193323Sed    // fall through
2662193323Sed  case ISD::FADD:
2663193323Sed  case ISD::FSUB:
2664193323Sed  case ISD::FMUL:
2665193323Sed  case ISD::FDIV:
2666193323Sed  case ISD::FREM:
2667193323Sed    if (UnsafeFPMath) {
2668193323Sed      if (Opcode == ISD::FADD) {
2669193323Sed        // 0+x --> x
2670193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2671193323Sed          if (CFP->getValueAPF().isZero())
2672193323Sed            return N2;
2673193323Sed        // x+0 --> x
2674193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2675193323Sed          if (CFP->getValueAPF().isZero())
2676193323Sed            return N1;
2677193323Sed      } else if (Opcode == ISD::FSUB) {
2678193323Sed        // x-0 --> x
2679193323Sed        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2680193323Sed          if (CFP->getValueAPF().isZero())
2681193323Sed            return N1;
2682193323Sed      }
2683193323Sed    }
2684193323Sed    assert(N1.getValueType() == N2.getValueType() &&
2685193323Sed           N1.getValueType() == VT && "Binary operator types must match!");
2686193323Sed    break;
2687193323Sed  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2688193323Sed    assert(N1.getValueType() == VT &&
2689193323Sed           N1.getValueType().isFloatingPoint() &&
2690193323Sed           N2.getValueType().isFloatingPoint() &&
2691193323Sed           "Invalid FCOPYSIGN!");
2692193323Sed    break;
2693193323Sed  case ISD::SHL:
2694193323Sed  case ISD::SRA:
2695193323Sed  case ISD::SRL:
2696193323Sed  case ISD::ROTL:
2697193323Sed  case ISD::ROTR:
2698193323Sed    assert(VT == N1.getValueType() &&
2699193323Sed           "Shift operators return type must be the same as their first arg");
2700193323Sed    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2701193323Sed           "Shifts only work on integers");
2702193323Sed
2703193323Sed    // Always fold shifts of i1 values so the code generator doesn't need to
2704193323Sed    // handle them.  Since we know the size of the shift has to be less than the
2705193323Sed    // size of the value, the shift/rotate count is guaranteed to be zero.
2706193323Sed    if (VT == MVT::i1)
2707193323Sed      return N1;
2708193323Sed    break;
2709193323Sed  case ISD::FP_ROUND_INREG: {
2710198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2711193323Sed    assert(VT == N1.getValueType() && "Not an inreg round!");
2712193323Sed    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2713193323Sed           "Cannot FP_ROUND_INREG integer types");
2714193323Sed    assert(EVT.bitsLE(VT) && "Not rounding down!");
2715193323Sed    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2716193323Sed    break;
2717193323Sed  }
2718193323Sed  case ISD::FP_ROUND:
2719193323Sed    assert(VT.isFloatingPoint() &&
2720193323Sed           N1.getValueType().isFloatingPoint() &&
2721193323Sed           VT.bitsLE(N1.getValueType()) &&
2722193323Sed           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2723193323Sed    if (N1.getValueType() == VT) return N1;  // noop conversion.
2724193323Sed    break;
2725193323Sed  case ISD::AssertSext:
2726193323Sed  case ISD::AssertZext: {
2727198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2728193323Sed    assert(VT == N1.getValueType() && "Not an inreg extend!");
2729193323Sed    assert(VT.isInteger() && EVT.isInteger() &&
2730193323Sed           "Cannot *_EXTEND_INREG FP types");
2731200581Srdivacky    assert(!EVT.isVector() &&
2732200581Srdivacky           "AssertSExt/AssertZExt type should be the vector element type "
2733200581Srdivacky           "rather than the vector type!");
2734193323Sed    assert(EVT.bitsLE(VT) && "Not extending!");
2735193323Sed    if (VT == EVT) return N1; // noop assertion.
2736193323Sed    break;
2737193323Sed  }
2738193323Sed  case ISD::SIGN_EXTEND_INREG: {
2739198090Srdivacky    EVT EVT = cast<VTSDNode>(N2)->getVT();
2740193323Sed    assert(VT == N1.getValueType() && "Not an inreg extend!");
2741193323Sed    assert(VT.isInteger() && EVT.isInteger() &&
2742193323Sed           "Cannot *_EXTEND_INREG FP types");
2743200581Srdivacky    assert(!EVT.isVector() &&
2744200581Srdivacky           "SIGN_EXTEND_INREG type should be the vector element type rather "
2745200581Srdivacky           "than the vector type!");
2746200581Srdivacky    assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
2747193323Sed    if (EVT == VT) return N1;  // Not actually extending
2748193323Sed
2749193323Sed    if (N1C) {
2750193323Sed      APInt Val = N1C->getAPIntValue();
2751200581Srdivacky      unsigned FromBits = EVT.getSizeInBits();
2752193323Sed      Val <<= Val.getBitWidth()-FromBits;
2753193323Sed      Val = Val.ashr(Val.getBitWidth()-FromBits);
2754193323Sed      return getConstant(Val, VT);
2755193323Sed    }
2756193323Sed    break;
2757193323Sed  }
2758193323Sed  case ISD::EXTRACT_VECTOR_ELT:
2759193323Sed    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2760193323Sed    if (N1.getOpcode() == ISD::UNDEF)
2761193323Sed      return getUNDEF(VT);
2762193323Sed
2763193323Sed    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2764193323Sed    // expanding copies of large vectors from registers.
2765193323Sed    if (N2C &&
2766193323Sed        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2767193323Sed        N1.getNumOperands() > 0) {
2768193323Sed      unsigned Factor =
2769193323Sed        N1.getOperand(0).getValueType().getVectorNumElements();
2770193323Sed      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2771193323Sed                     N1.getOperand(N2C->getZExtValue() / Factor),
2772193323Sed                     getConstant(N2C->getZExtValue() % Factor,
2773193323Sed                                 N2.getValueType()));
2774193323Sed    }
2775193323Sed
2776193323Sed    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2777193323Sed    // expanding large vector constants.
2778193323Sed    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2779193323Sed      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2780198090Srdivacky      EVT VEltTy = N1.getValueType().getVectorElementType();
2781198090Srdivacky      if (Elt.getValueType() != VEltTy) {
2782193323Sed        // If the vector element type is not legal, the BUILD_VECTOR operands
2783193323Sed        // are promoted and implicitly truncated.  Make that explicit here.
2784198090Srdivacky        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2785193323Sed      }
2786198090Srdivacky      if (VT != VEltTy) {
2787198090Srdivacky        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2788198090Srdivacky        // result is implicitly extended.
2789198090Srdivacky        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2790198090Srdivacky      }
2791193323Sed      return Elt;
2792193323Sed    }
2793193323Sed
2794193323Sed    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2795193323Sed    // operations are lowered to scalars.
2796193323Sed    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2797193323Sed      // If the indices are the same, return the inserted element.
2798193323Sed      if (N1.getOperand(2) == N2)
2799193323Sed        return N1.getOperand(1);
2800193323Sed      // If the indices are known different, extract the element from
2801193323Sed      // the original vector.
2802193323Sed      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2803193323Sed               isa<ConstantSDNode>(N2))
2804193323Sed        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2805193323Sed    }
2806193323Sed    break;
2807193323Sed  case ISD::EXTRACT_ELEMENT:
2808193323Sed    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2809193323Sed    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2810193323Sed           (N1.getValueType().isInteger() == VT.isInteger()) &&
2811193323Sed           "Wrong types for EXTRACT_ELEMENT!");
2812193323Sed
2813193323Sed    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2814193323Sed    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2815193323Sed    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2816193323Sed    if (N1.getOpcode() == ISD::BUILD_PAIR)
2817193323Sed      return N1.getOperand(N2C->getZExtValue());
2818193323Sed
2819193323Sed    // EXTRACT_ELEMENT of a constant int is also very common.
2820193323Sed    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2821193323Sed      unsigned ElementSize = VT.getSizeInBits();
2822193323Sed      unsigned Shift = ElementSize * N2C->getZExtValue();
2823193323Sed      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2824193323Sed      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2825193323Sed    }
2826193323Sed    break;
2827193323Sed  case ISD::EXTRACT_SUBVECTOR:
2828193323Sed    if (N1.getValueType() == VT) // Trivial extraction.
2829193323Sed      return N1;
2830193323Sed    break;
2831193323Sed  }
2832193323Sed
2833193323Sed  if (N1C) {
2834193323Sed    if (N2C) {
2835193323Sed      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2836193323Sed      if (SV.getNode()) return SV;
2837193323Sed    } else {      // Cannonicalize constant to RHS if commutative
2838193323Sed      if (isCommutativeBinOp(Opcode)) {
2839193323Sed        std::swap(N1C, N2C);
2840193323Sed        std::swap(N1, N2);
2841193323Sed      }
2842193323Sed    }
2843193323Sed  }
2844193323Sed
2845193323Sed  // Constant fold FP operations.
2846193323Sed  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2847193323Sed  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2848193323Sed  if (N1CFP) {
2849193323Sed    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2850193323Sed      // Cannonicalize constant to RHS if commutative
2851193323Sed      std::swap(N1CFP, N2CFP);
2852193323Sed      std::swap(N1, N2);
2853193323Sed    } else if (N2CFP && VT != MVT::ppcf128) {
2854193323Sed      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2855193323Sed      APFloat::opStatus s;
2856193323Sed      switch (Opcode) {
2857193323Sed      case ISD::FADD:
2858193323Sed        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2859193323Sed        if (s != APFloat::opInvalidOp)
2860193323Sed          return getConstantFP(V1, VT);
2861193323Sed        break;
2862193323Sed      case ISD::FSUB:
2863193323Sed        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2864193323Sed        if (s!=APFloat::opInvalidOp)
2865193323Sed          return getConstantFP(V1, VT);
2866193323Sed        break;
2867193323Sed      case ISD::FMUL:
2868193323Sed        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2869193323Sed        if (s!=APFloat::opInvalidOp)
2870193323Sed          return getConstantFP(V1, VT);
2871193323Sed        break;
2872193323Sed      case ISD::FDIV:
2873193323Sed        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2874193323Sed        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2875193323Sed          return getConstantFP(V1, VT);
2876193323Sed        break;
2877193323Sed      case ISD::FREM :
2878193323Sed        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2879193323Sed        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2880193323Sed          return getConstantFP(V1, VT);
2881193323Sed        break;
2882193323Sed      case ISD::FCOPYSIGN:
2883193323Sed        V1.copySign(V2);
2884193323Sed        return getConstantFP(V1, VT);
2885193323Sed      default: break;
2886193323Sed      }
2887193323Sed    }
2888193323Sed  }
2889193323Sed
2890193323Sed  // Canonicalize an UNDEF to the RHS, even over a constant.
2891193323Sed  if (N1.getOpcode() == ISD::UNDEF) {
2892193323Sed    if (isCommutativeBinOp(Opcode)) {
2893193323Sed      std::swap(N1, N2);
2894193323Sed    } else {
2895193323Sed      switch (Opcode) {
2896193323Sed      case ISD::FP_ROUND_INREG:
2897193323Sed      case ISD::SIGN_EXTEND_INREG:
2898193323Sed      case ISD::SUB:
2899193323Sed      case ISD::FSUB:
2900193323Sed      case ISD::FDIV:
2901193323Sed      case ISD::FREM:
2902193323Sed      case ISD::SRA:
2903193323Sed        return N1;     // fold op(undef, arg2) -> undef
2904193323Sed      case ISD::UDIV:
2905193323Sed      case ISD::SDIV:
2906193323Sed      case ISD::UREM:
2907193323Sed      case ISD::SREM:
2908193323Sed      case ISD::SRL:
2909193323Sed      case ISD::SHL:
2910193323Sed        if (!VT.isVector())
2911193323Sed          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2912193323Sed        // For vectors, we can't easily build an all zero vector, just return
2913193323Sed        // the LHS.
2914193323Sed        return N2;
2915193323Sed      }
2916193323Sed    }
2917193323Sed  }
2918193323Sed
2919193323Sed  // Fold a bunch of operators when the RHS is undef.
2920193323Sed  if (N2.getOpcode() == ISD::UNDEF) {
2921193323Sed    switch (Opcode) {
2922193323Sed    case ISD::XOR:
2923193323Sed      if (N1.getOpcode() == ISD::UNDEF)
2924193323Sed        // Handle undef ^ undef -> 0 special case. This is a common
2925193323Sed        // idiom (misuse).
2926193323Sed        return getConstant(0, VT);
2927193323Sed      // fallthrough
2928193323Sed    case ISD::ADD:
2929193323Sed    case ISD::ADDC:
2930193323Sed    case ISD::ADDE:
2931193323Sed    case ISD::SUB:
2932193574Sed    case ISD::UDIV:
2933193574Sed    case ISD::SDIV:
2934193574Sed    case ISD::UREM:
2935193574Sed    case ISD::SREM:
2936193574Sed      return N2;       // fold op(arg1, undef) -> undef
2937193323Sed    case ISD::FADD:
2938193323Sed    case ISD::FSUB:
2939193323Sed    case ISD::FMUL:
2940193323Sed    case ISD::FDIV:
2941193323Sed    case ISD::FREM:
2942193574Sed      if (UnsafeFPMath)
2943193574Sed        return N2;
2944193574Sed      break;
2945193323Sed    case ISD::MUL:
2946193323Sed    case ISD::AND:
2947193323Sed    case ISD::SRL:
2948193323Sed    case ISD::SHL:
2949193323Sed      if (!VT.isVector())
2950193323Sed        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2951193323Sed      // For vectors, we can't easily build an all zero vector, just return
2952193323Sed      // the LHS.
2953193323Sed      return N1;
2954193323Sed    case ISD::OR:
2955193323Sed      if (!VT.isVector())
2956193323Sed        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2957193323Sed      // For vectors, we can't easily build an all one vector, just return
2958193323Sed      // the LHS.
2959193323Sed      return N1;
2960193323Sed    case ISD::SRA:
2961193323Sed      return N1;
2962193323Sed    }
2963193323Sed  }
2964193323Sed
2965193323Sed  // Memoize this node if possible.
2966193323Sed  SDNode *N;
2967193323Sed  SDVTList VTs = getVTList(VT);
2968193323Sed  if (VT != MVT::Flag) {
2969193323Sed    SDValue Ops[] = { N1, N2 };
2970193323Sed    FoldingSetNodeID ID;
2971193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2972193323Sed    void *IP = 0;
2973200581Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
2974200581Srdivacky      if (Ordering) Ordering->add(E);
2975193323Sed      return SDValue(E, 0);
2976200581Srdivacky    }
2977193323Sed    N = NodeAllocator.Allocate<BinarySDNode>();
2978193323Sed    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2979193323Sed    CSEMap.InsertNode(N, IP);
2980193323Sed  } else {
2981193323Sed    N = NodeAllocator.Allocate<BinarySDNode>();
2982193323Sed    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2983193323Sed  }
2984193323Sed
2985193323Sed  AllNodes.push_back(N);
2986200581Srdivacky  if (Ordering) Ordering->add(N);
2987193323Sed#ifndef NDEBUG
2988193323Sed  VerifyNode(N);
2989193323Sed#endif
2990193323Sed  return SDValue(N, 0);
2991193323Sed}
2992193323Sed
2993198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2994193323Sed                              SDValue N1, SDValue N2, SDValue N3) {
2995193323Sed  // Perform various simplifications.
2996193323Sed  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2997193323Sed  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2998193323Sed  switch (Opcode) {
2999193323Sed  case ISD::CONCAT_VECTORS:
3000193323Sed    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3001193323Sed    // one big BUILD_VECTOR.
3002193323Sed    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3003193323Sed        N2.getOpcode() == ISD::BUILD_VECTOR &&
3004193323Sed        N3.getOpcode() == ISD::BUILD_VECTOR) {
3005193323Sed      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3006193323Sed      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3007193323Sed      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3008193323Sed      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3009193323Sed    }
3010193323Sed    break;
3011193323Sed  case ISD::SETCC: {
3012193323Sed    // Use FoldSetCC to simplify SETCC's.
3013193323Sed    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3014193323Sed    if (Simp.getNode()) return Simp;
3015193323Sed    break;
3016193323Sed  }
3017193323Sed  case ISD::SELECT:
3018193323Sed    if (N1C) {
3019193323Sed     if (N1C->getZExtValue())
3020193323Sed        return N2;             // select true, X, Y -> X
3021193323Sed      else
3022193323Sed        return N3;             // select false, X, Y -> Y
3023193323Sed    }
3024193323Sed
3025193323Sed    if (N2 == N3) return N2;   // select C, X, X -> X
3026193323Sed    break;
3027193323Sed  case ISD::BRCOND:
3028193323Sed    if (N2C) {
3029193323Sed      if (N2C->getZExtValue()) // Unconditional branch
3030193323Sed        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3031193323Sed      else
3032193323Sed        return N1;         // Never-taken branch
3033193323Sed    }
3034193323Sed    break;
3035193323Sed  case ISD::VECTOR_SHUFFLE:
3036198090Srdivacky    llvm_unreachable("should use getVectorShuffle constructor!");
3037193323Sed    break;
3038193323Sed  case ISD::BIT_CONVERT:
3039193323Sed    // Fold bit_convert nodes from a type to themselves.
3040193323Sed    if (N1.getValueType() == VT)
3041193323Sed      return N1;
3042193323Sed    break;
3043193323Sed  }
3044193323Sed
3045193323Sed  // Memoize node if it doesn't produce a flag.
3046193323Sed  SDNode *N;
3047193323Sed  SDVTList VTs = getVTList(VT);
3048193323Sed  if (VT != MVT::Flag) {
3049193323Sed    SDValue Ops[] = { N1, N2, N3 };
3050193323Sed    FoldingSetNodeID ID;
3051193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3052193323Sed    void *IP = 0;
3053200581Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3054200581Srdivacky      if (Ordering) Ordering->add(E);
3055193323Sed      return SDValue(E, 0);
3056200581Srdivacky    }
3057193323Sed    N = NodeAllocator.Allocate<TernarySDNode>();
3058193323Sed    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3059193323Sed    CSEMap.InsertNode(N, IP);
3060193323Sed  } else {
3061193323Sed    N = NodeAllocator.Allocate<TernarySDNode>();
3062193323Sed    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3063193323Sed  }
3064200581Srdivacky
3065193323Sed  AllNodes.push_back(N);
3066200581Srdivacky  if (Ordering) Ordering->add(N);
3067193323Sed#ifndef NDEBUG
3068193323Sed  VerifyNode(N);
3069193323Sed#endif
3070193323Sed  return SDValue(N, 0);
3071193323Sed}
3072193323Sed
3073198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3074193323Sed                              SDValue N1, SDValue N2, SDValue N3,
3075193323Sed                              SDValue N4) {
3076193323Sed  SDValue Ops[] = { N1, N2, N3, N4 };
3077193323Sed  return getNode(Opcode, DL, VT, Ops, 4);
3078193323Sed}
3079193323Sed
3080198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3081193323Sed                              SDValue N1, SDValue N2, SDValue N3,
3082193323Sed                              SDValue N4, SDValue N5) {
3083193323Sed  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3084193323Sed  return getNode(Opcode, DL, VT, Ops, 5);
3085193323Sed}
3086193323Sed
3087198090Srdivacky/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3088198090Srdivacky/// the incoming stack arguments to be loaded from the stack.
3089198090SrdivackySDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3090198090Srdivacky  SmallVector<SDValue, 8> ArgChains;
3091198090Srdivacky
3092198090Srdivacky  // Include the original chain at the beginning of the list. When this is
3093198090Srdivacky  // used by target LowerCall hooks, this helps legalize find the
3094198090Srdivacky  // CALLSEQ_BEGIN node.
3095198090Srdivacky  ArgChains.push_back(Chain);
3096198090Srdivacky
3097198090Srdivacky  // Add a chain value for each stack argument.
3098198090Srdivacky  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3099198090Srdivacky       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3100198090Srdivacky    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3101198090Srdivacky      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3102198090Srdivacky        if (FI->getIndex() < 0)
3103198090Srdivacky          ArgChains.push_back(SDValue(L, 1));
3104198090Srdivacky
3105198090Srdivacky  // Build a tokenfactor for all the chains.
3106198090Srdivacky  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3107198090Srdivacky                 &ArgChains[0], ArgChains.size());
3108198090Srdivacky}
3109198090Srdivacky
3110193323Sed/// getMemsetValue - Vectorized representation of the memset value
3111193323Sed/// operand.
3112198090Srdivackystatic SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3113193323Sed                              DebugLoc dl) {
3114193323Sed  unsigned NumBits = VT.isVector() ?
3115193323Sed    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3116193323Sed  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3117193323Sed    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3118193323Sed    unsigned Shift = 8;
3119193323Sed    for (unsigned i = NumBits; i > 8; i >>= 1) {
3120193323Sed      Val = (Val << Shift) | Val;
3121193323Sed      Shift <<= 1;
3122193323Sed    }
3123193323Sed    if (VT.isInteger())
3124193323Sed      return DAG.getConstant(Val, VT);
3125193323Sed    return DAG.getConstantFP(APFloat(Val), VT);
3126193323Sed  }
3127193323Sed
3128193323Sed  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3129193323Sed  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3130193323Sed  unsigned Shift = 8;
3131193323Sed  for (unsigned i = NumBits; i > 8; i >>= 1) {
3132193323Sed    Value = DAG.getNode(ISD::OR, dl, VT,
3133193323Sed                        DAG.getNode(ISD::SHL, dl, VT, Value,
3134193323Sed                                    DAG.getConstant(Shift,
3135193323Sed                                                    TLI.getShiftAmountTy())),
3136193323Sed                        Value);
3137193323Sed    Shift <<= 1;
3138193323Sed  }
3139193323Sed
3140193323Sed  return Value;
3141193323Sed}
3142193323Sed
3143193323Sed/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3144193323Sed/// used when a memcpy is turned into a memset when the source is a constant
3145193323Sed/// string ptr.
3146198090Srdivackystatic SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3147198090Srdivacky                                  const TargetLowering &TLI,
3148198090Srdivacky                                  std::string &Str, unsigned Offset) {
3149193323Sed  // Handle vector with all elements zero.
3150193323Sed  if (Str.empty()) {
3151193323Sed    if (VT.isInteger())
3152193323Sed      return DAG.getConstant(0, VT);
3153193323Sed    unsigned NumElts = VT.getVectorNumElements();
3154193323Sed    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3155193323Sed    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3156198090Srdivacky                       DAG.getConstant(0,
3157198090Srdivacky                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3158193323Sed  }
3159193323Sed
3160193323Sed  assert(!VT.isVector() && "Can't handle vector type here!");
3161193323Sed  unsigned NumBits = VT.getSizeInBits();
3162193323Sed  unsigned MSB = NumBits / 8;
3163193323Sed  uint64_t Val = 0;
3164193323Sed  if (TLI.isLittleEndian())
3165193323Sed    Offset = Offset + MSB - 1;
3166193323Sed  for (unsigned i = 0; i != MSB; ++i) {
3167193323Sed    Val = (Val << 8) | (unsigned char)Str[Offset];
3168193323Sed    Offset += TLI.isLittleEndian() ? -1 : 1;
3169193323Sed  }
3170193323Sed  return DAG.getConstant(Val, VT);
3171193323Sed}
3172193323Sed
3173193323Sed/// getMemBasePlusOffset - Returns base and offset node for the
3174193323Sed///
3175193323Sedstatic SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3176193323Sed                                      SelectionDAG &DAG) {
3177198090Srdivacky  EVT VT = Base.getValueType();
3178193323Sed  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3179193323Sed                     VT, Base, DAG.getConstant(Offset, VT));
3180193323Sed}
3181193323Sed
3182193323Sed/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3183193323Sed///
3184193323Sedstatic bool isMemSrcFromString(SDValue Src, std::string &Str) {
3185193323Sed  unsigned SrcDelta = 0;
3186193323Sed  GlobalAddressSDNode *G = NULL;
3187193323Sed  if (Src.getOpcode() == ISD::GlobalAddress)
3188193323Sed    G = cast<GlobalAddressSDNode>(Src);
3189193323Sed  else if (Src.getOpcode() == ISD::ADD &&
3190193323Sed           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3191193323Sed           Src.getOperand(1).getOpcode() == ISD::Constant) {
3192193323Sed    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3193193323Sed    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3194193323Sed  }
3195193323Sed  if (!G)
3196193323Sed    return false;
3197193323Sed
3198193323Sed  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3199193323Sed  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3200193323Sed    return true;
3201193323Sed
3202193323Sed  return false;
3203193323Sed}
3204193323Sed
3205193323Sed/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3206193323Sed/// to replace the memset / memcpy is below the threshold. It also returns the
3207193323Sed/// types of the sequence of memory ops to perform memset / memcpy.
3208193323Sedstatic
3209198090Srdivackybool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3210193323Sed                              SDValue Dst, SDValue Src,
3211193323Sed                              unsigned Limit, uint64_t Size, unsigned &Align,
3212193323Sed                              std::string &Str, bool &isSrcStr,
3213193323Sed                              SelectionDAG &DAG,
3214193323Sed                              const TargetLowering &TLI) {
3215193323Sed  isSrcStr = isMemSrcFromString(Src, Str);
3216193323Sed  bool isSrcConst = isa<ConstantSDNode>(Src);
3217198090Srdivacky  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3218198090Srdivacky  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3219193323Sed  if (VT != MVT::iAny) {
3220198090Srdivacky    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3221198090Srdivacky    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3222193323Sed    // If source is a string constant, this will require an unaligned load.
3223193323Sed    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3224193323Sed      if (Dst.getOpcode() != ISD::FrameIndex) {
3225193323Sed        // Can't change destination alignment. It requires a unaligned store.
3226193323Sed        if (AllowUnalign)
3227193323Sed          VT = MVT::iAny;
3228193323Sed      } else {
3229193323Sed        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3230193323Sed        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3231193323Sed        if (MFI->isFixedObjectIndex(FI)) {
3232193323Sed          // Can't change destination alignment. It requires a unaligned store.
3233193323Sed          if (AllowUnalign)
3234193323Sed            VT = MVT::iAny;
3235193323Sed        } else {
3236193323Sed          // Give the stack frame object a larger alignment if needed.
3237193323Sed          if (MFI->getObjectAlignment(FI) < NewAlign)
3238193323Sed            MFI->setObjectAlignment(FI, NewAlign);
3239193323Sed          Align = NewAlign;
3240193323Sed        }
3241193323Sed      }
3242193323Sed    }
3243193323Sed  }
3244193323Sed
3245193323Sed  if (VT == MVT::iAny) {
3246198090Srdivacky    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3247193323Sed      VT = MVT::i64;
3248193323Sed    } else {
3249193323Sed      switch (Align & 7) {
3250193323Sed      case 0:  VT = MVT::i64; break;
3251193323Sed      case 4:  VT = MVT::i32; break;
3252193323Sed      case 2:  VT = MVT::i16; break;
3253193323Sed      default: VT = MVT::i8;  break;
3254193323Sed      }
3255193323Sed    }
3256193323Sed
3257193323Sed    MVT LVT = MVT::i64;
3258193323Sed    while (!TLI.isTypeLegal(LVT))
3259198090Srdivacky      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3260193323Sed    assert(LVT.isInteger());
3261193323Sed
3262193323Sed    if (VT.bitsGT(LVT))
3263193323Sed      VT = LVT;
3264193323Sed  }
3265193323Sed
3266193323Sed  unsigned NumMemOps = 0;
3267193323Sed  while (Size != 0) {
3268193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3269193323Sed    while (VTSize > Size) {
3270193323Sed      // For now, only use non-vector load / store's for the left-over pieces.
3271193323Sed      if (VT.isVector()) {
3272193323Sed        VT = MVT::i64;
3273193323Sed        while (!TLI.isTypeLegal(VT))
3274198090Srdivacky          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3275193323Sed        VTSize = VT.getSizeInBits() / 8;
3276193323Sed      } else {
3277194710Sed        // This can result in a type that is not legal on the target, e.g.
3278194710Sed        // 1 or 2 bytes on PPC.
3279198090Srdivacky        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3280193323Sed        VTSize >>= 1;
3281193323Sed      }
3282193323Sed    }
3283193323Sed
3284193323Sed    if (++NumMemOps > Limit)
3285193323Sed      return false;
3286193323Sed    MemOps.push_back(VT);
3287193323Sed    Size -= VTSize;
3288193323Sed  }
3289193323Sed
3290193323Sed  return true;
3291193323Sed}
3292193323Sed
3293193323Sedstatic SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3294193323Sed                                         SDValue Chain, SDValue Dst,
3295193323Sed                                         SDValue Src, uint64_t Size,
3296193323Sed                                         unsigned Align, bool AlwaysInline,
3297193323Sed                                         const Value *DstSV, uint64_t DstSVOff,
3298193323Sed                                         const Value *SrcSV, uint64_t SrcSVOff){
3299193323Sed  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3300193323Sed
3301193323Sed  // Expand memcpy to a series of load and store ops if the size operand falls
3302193323Sed  // below a certain threshold.
3303198090Srdivacky  std::vector<EVT> MemOps;
3304193323Sed  uint64_t Limit = -1ULL;
3305193323Sed  if (!AlwaysInline)
3306193323Sed    Limit = TLI.getMaxStoresPerMemcpy();
3307193323Sed  unsigned DstAlign = Align;  // Destination alignment can change.
3308193323Sed  std::string Str;
3309193323Sed  bool CopyFromStr;
3310193323Sed  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3311193323Sed                                Str, CopyFromStr, DAG, TLI))
3312193323Sed    return SDValue();
3313193323Sed
3314193323Sed
3315193323Sed  bool isZeroStr = CopyFromStr && Str.empty();
3316193323Sed  SmallVector<SDValue, 8> OutChains;
3317193323Sed  unsigned NumMemOps = MemOps.size();
3318193323Sed  uint64_t SrcOff = 0, DstOff = 0;
3319198090Srdivacky  for (unsigned i = 0; i != NumMemOps; ++i) {
3320198090Srdivacky    EVT VT = MemOps[i];
3321193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3322193323Sed    SDValue Value, Store;
3323193323Sed
3324193323Sed    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3325193323Sed      // It's unlikely a store of a vector immediate can be done in a single
3326193323Sed      // instruction. It would require a load from a constantpool first.
3327193323Sed      // We also handle store a vector with all zero's.
3328193323Sed      // FIXME: Handle other cases where store of vector immediate is done in
3329193323Sed      // a single instruction.
3330193323Sed      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3331193323Sed      Store = DAG.getStore(Chain, dl, Value,
3332193323Sed                           getMemBasePlusOffset(Dst, DstOff, DAG),
3333193323Sed                           DstSV, DstSVOff + DstOff, false, DstAlign);
3334193323Sed    } else {
3335194710Sed      // The type might not be legal for the target.  This should only happen
3336194710Sed      // if the type is smaller than a legal type, as on PPC, so the right
3337195098Sed      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3338195098Sed      // to Load/Store if NVT==VT.
3339194710Sed      // FIXME does the case above also need this?
3340198090Srdivacky      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3341195098Sed      assert(NVT.bitsGE(VT));
3342195098Sed      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3343195098Sed                             getMemBasePlusOffset(Src, SrcOff, DAG),
3344195098Sed                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3345195098Sed      Store = DAG.getTruncStore(Chain, dl, Value,
3346194710Sed                             getMemBasePlusOffset(Dst, DstOff, DAG),
3347195098Sed                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3348193323Sed    }
3349193323Sed    OutChains.push_back(Store);
3350193323Sed    SrcOff += VTSize;
3351193323Sed    DstOff += VTSize;
3352193323Sed  }
3353193323Sed
3354193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3355193323Sed                     &OutChains[0], OutChains.size());
3356193323Sed}
3357193323Sed
3358193323Sedstatic SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3359193323Sed                                          SDValue Chain, SDValue Dst,
3360193323Sed                                          SDValue Src, uint64_t Size,
3361193323Sed                                          unsigned Align, bool AlwaysInline,
3362193323Sed                                          const Value *DstSV, uint64_t DstSVOff,
3363193323Sed                                          const Value *SrcSV, uint64_t SrcSVOff){
3364193323Sed  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3365193323Sed
3366193323Sed  // Expand memmove to a series of load and store ops if the size operand falls
3367193323Sed  // below a certain threshold.
3368198090Srdivacky  std::vector<EVT> MemOps;
3369193323Sed  uint64_t Limit = -1ULL;
3370193323Sed  if (!AlwaysInline)
3371193323Sed    Limit = TLI.getMaxStoresPerMemmove();
3372193323Sed  unsigned DstAlign = Align;  // Destination alignment can change.
3373193323Sed  std::string Str;
3374193323Sed  bool CopyFromStr;
3375193323Sed  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3376193323Sed                                Str, CopyFromStr, DAG, TLI))
3377193323Sed    return SDValue();
3378193323Sed
3379193323Sed  uint64_t SrcOff = 0, DstOff = 0;
3380193323Sed
3381193323Sed  SmallVector<SDValue, 8> LoadValues;
3382193323Sed  SmallVector<SDValue, 8> LoadChains;
3383193323Sed  SmallVector<SDValue, 8> OutChains;
3384193323Sed  unsigned NumMemOps = MemOps.size();
3385193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3386198090Srdivacky    EVT VT = MemOps[i];
3387193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3388193323Sed    SDValue Value, Store;
3389193323Sed
3390193323Sed    Value = DAG.getLoad(VT, dl, Chain,
3391193323Sed                        getMemBasePlusOffset(Src, SrcOff, DAG),
3392193323Sed                        SrcSV, SrcSVOff + SrcOff, false, Align);
3393193323Sed    LoadValues.push_back(Value);
3394193323Sed    LoadChains.push_back(Value.getValue(1));
3395193323Sed    SrcOff += VTSize;
3396193323Sed  }
3397193323Sed  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3398193323Sed                      &LoadChains[0], LoadChains.size());
3399193323Sed  OutChains.clear();
3400193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3401198090Srdivacky    EVT VT = MemOps[i];
3402193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3403193323Sed    SDValue Value, Store;
3404193323Sed
3405193323Sed    Store = DAG.getStore(Chain, dl, LoadValues[i],
3406193323Sed                         getMemBasePlusOffset(Dst, DstOff, DAG),
3407193323Sed                         DstSV, DstSVOff + DstOff, false, DstAlign);
3408193323Sed    OutChains.push_back(Store);
3409193323Sed    DstOff += VTSize;
3410193323Sed  }
3411193323Sed
3412193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3413193323Sed                     &OutChains[0], OutChains.size());
3414193323Sed}
3415193323Sed
3416193323Sedstatic SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3417193323Sed                                 SDValue Chain, SDValue Dst,
3418193323Sed                                 SDValue Src, uint64_t Size,
3419193323Sed                                 unsigned Align,
3420193323Sed                                 const Value *DstSV, uint64_t DstSVOff) {
3421193323Sed  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3422193323Sed
3423193323Sed  // Expand memset to a series of load/store ops if the size operand
3424193323Sed  // falls below a certain threshold.
3425198090Srdivacky  std::vector<EVT> MemOps;
3426193323Sed  std::string Str;
3427193323Sed  bool CopyFromStr;
3428193323Sed  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3429193323Sed                                Size, Align, Str, CopyFromStr, DAG, TLI))
3430193323Sed    return SDValue();
3431193323Sed
3432193323Sed  SmallVector<SDValue, 8> OutChains;
3433193323Sed  uint64_t DstOff = 0;
3434193323Sed
3435193323Sed  unsigned NumMemOps = MemOps.size();
3436193323Sed  for (unsigned i = 0; i < NumMemOps; i++) {
3437198090Srdivacky    EVT VT = MemOps[i];
3438193323Sed    unsigned VTSize = VT.getSizeInBits() / 8;
3439193323Sed    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3440193323Sed    SDValue Store = DAG.getStore(Chain, dl, Value,
3441193323Sed                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3442193323Sed                                 DstSV, DstSVOff + DstOff);
3443193323Sed    OutChains.push_back(Store);
3444193323Sed    DstOff += VTSize;
3445193323Sed  }
3446193323Sed
3447193323Sed  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3448193323Sed                     &OutChains[0], OutChains.size());
3449193323Sed}
3450193323Sed
3451193323SedSDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3452193323Sed                                SDValue Src, SDValue Size,
3453193323Sed                                unsigned Align, bool AlwaysInline,
3454193323Sed                                const Value *DstSV, uint64_t DstSVOff,
3455193323Sed                                const Value *SrcSV, uint64_t SrcSVOff) {
3456193323Sed
3457193323Sed  // Check to see if we should lower the memcpy to loads and stores first.
3458193323Sed  // For cases within the target-specified limits, this is the best choice.
3459193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3460193323Sed  if (ConstantSize) {
3461193323Sed    // Memcpy with size zero? Just return the original chain.
3462193323Sed    if (ConstantSize->isNullValue())
3463193323Sed      return Chain;
3464193323Sed
3465193323Sed    SDValue Result =
3466193323Sed      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3467193323Sed                              ConstantSize->getZExtValue(),
3468193323Sed                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3469193323Sed    if (Result.getNode())
3470193323Sed      return Result;
3471193323Sed  }
3472193323Sed
3473193323Sed  // Then check to see if we should lower the memcpy with target-specific
3474193323Sed  // code. If the target chooses to do this, this is the next best.
3475193323Sed  SDValue Result =
3476193323Sed    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3477193323Sed                                AlwaysInline,
3478193323Sed                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3479193323Sed  if (Result.getNode())
3480193323Sed    return Result;
3481193323Sed
3482193323Sed  // If we really need inline code and the target declined to provide it,
3483193323Sed  // use a (potentially long) sequence of loads and stores.
3484193323Sed  if (AlwaysInline) {
3485193323Sed    assert(ConstantSize && "AlwaysInline requires a constant size!");
3486193323Sed    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3487193323Sed                                   ConstantSize->getZExtValue(), Align, true,
3488193323Sed                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3489193323Sed  }
3490193323Sed
3491193323Sed  // Emit a library call.
3492193323Sed  TargetLowering::ArgListTy Args;
3493193323Sed  TargetLowering::ArgListEntry Entry;
3494198090Srdivacky  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3495193323Sed  Entry.Node = Dst; Args.push_back(Entry);
3496193323Sed  Entry.Node = Src; Args.push_back(Entry);
3497193323Sed  Entry.Node = Size; Args.push_back(Entry);
3498193323Sed  // FIXME: pass in DebugLoc
3499193323Sed  std::pair<SDValue,SDValue> CallResult =
3500198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3501198090Srdivacky                    false, false, false, false, 0,
3502198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3503198090Srdivacky                    /*isReturnValueUsed=*/false,
3504198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3505198090Srdivacky                                      TLI.getPointerTy()),
3506193323Sed                    Args, *this, dl);
3507193323Sed  return CallResult.second;
3508193323Sed}
3509193323Sed
3510193323SedSDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3511193323Sed                                 SDValue Src, SDValue Size,
3512193323Sed                                 unsigned Align,
3513193323Sed                                 const Value *DstSV, uint64_t DstSVOff,
3514193323Sed                                 const Value *SrcSV, uint64_t SrcSVOff) {
3515193323Sed
3516193323Sed  // Check to see if we should lower the memmove to loads and stores first.
3517193323Sed  // For cases within the target-specified limits, this is the best choice.
3518193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3519193323Sed  if (ConstantSize) {
3520193323Sed    // Memmove with size zero? Just return the original chain.
3521193323Sed    if (ConstantSize->isNullValue())
3522193323Sed      return Chain;
3523193323Sed
3524193323Sed    SDValue Result =
3525193323Sed      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3526193323Sed                               ConstantSize->getZExtValue(),
3527193323Sed                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3528193323Sed    if (Result.getNode())
3529193323Sed      return Result;
3530193323Sed  }
3531193323Sed
3532193323Sed  // Then check to see if we should lower the memmove with target-specific
3533193323Sed  // code. If the target chooses to do this, this is the next best.
3534193323Sed  SDValue Result =
3535193323Sed    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3536193323Sed                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3537193323Sed  if (Result.getNode())
3538193323Sed    return Result;
3539193323Sed
3540193323Sed  // Emit a library call.
3541193323Sed  TargetLowering::ArgListTy Args;
3542193323Sed  TargetLowering::ArgListEntry Entry;
3543198090Srdivacky  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3544193323Sed  Entry.Node = Dst; Args.push_back(Entry);
3545193323Sed  Entry.Node = Src; Args.push_back(Entry);
3546193323Sed  Entry.Node = Size; Args.push_back(Entry);
3547193323Sed  // FIXME:  pass in DebugLoc
3548193323Sed  std::pair<SDValue,SDValue> CallResult =
3549198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3550198090Srdivacky                    false, false, false, false, 0,
3551198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3552198090Srdivacky                    /*isReturnValueUsed=*/false,
3553198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3554198090Srdivacky                                      TLI.getPointerTy()),
3555193323Sed                    Args, *this, dl);
3556193323Sed  return CallResult.second;
3557193323Sed}
3558193323Sed
3559193323SedSDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3560193323Sed                                SDValue Src, SDValue Size,
3561193323Sed                                unsigned Align,
3562193323Sed                                const Value *DstSV, uint64_t DstSVOff) {
3563193323Sed
3564193323Sed  // Check to see if we should lower the memset to stores first.
3565193323Sed  // For cases within the target-specified limits, this is the best choice.
3566193323Sed  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3567193323Sed  if (ConstantSize) {
3568193323Sed    // Memset with size zero? Just return the original chain.
3569193323Sed    if (ConstantSize->isNullValue())
3570193323Sed      return Chain;
3571193323Sed
3572193323Sed    SDValue Result =
3573193323Sed      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3574193323Sed                      Align, DstSV, DstSVOff);
3575193323Sed    if (Result.getNode())
3576193323Sed      return Result;
3577193323Sed  }
3578193323Sed
3579193323Sed  // Then check to see if we should lower the memset with target-specific
3580193323Sed  // code. If the target chooses to do this, this is the next best.
3581193323Sed  SDValue Result =
3582193323Sed    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3583193323Sed                                DstSV, DstSVOff);
3584193323Sed  if (Result.getNode())
3585193323Sed    return Result;
3586193323Sed
3587193323Sed  // Emit a library call.
3588198090Srdivacky  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3589193323Sed  TargetLowering::ArgListTy Args;
3590193323Sed  TargetLowering::ArgListEntry Entry;
3591193323Sed  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3592193323Sed  Args.push_back(Entry);
3593193323Sed  // Extend or truncate the argument to be an i32 value for the call.
3594193323Sed  if (Src.getValueType().bitsGT(MVT::i32))
3595193323Sed    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3596193323Sed  else
3597193323Sed    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3598198090Srdivacky  Entry.Node = Src;
3599198090Srdivacky  Entry.Ty = Type::getInt32Ty(*getContext());
3600198090Srdivacky  Entry.isSExt = true;
3601193323Sed  Args.push_back(Entry);
3602198090Srdivacky  Entry.Node = Size;
3603198090Srdivacky  Entry.Ty = IntPtrTy;
3604198090Srdivacky  Entry.isSExt = false;
3605193323Sed  Args.push_back(Entry);
3606193323Sed  // FIXME: pass in DebugLoc
3607193323Sed  std::pair<SDValue,SDValue> CallResult =
3608198090Srdivacky    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3609198090Srdivacky                    false, false, false, false, 0,
3610198090Srdivacky                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3611198090Srdivacky                    /*isReturnValueUsed=*/false,
3612198090Srdivacky                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3613198090Srdivacky                                      TLI.getPointerTy()),
3614193323Sed                    Args, *this, dl);
3615193323Sed  return CallResult.second;
3616193323Sed}
3617193323Sed
3618198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3619193323Sed                                SDValue Chain,
3620193323Sed                                SDValue Ptr, SDValue Cmp,
3621193323Sed                                SDValue Swp, const Value* PtrVal,
3622193323Sed                                unsigned Alignment) {
3623198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3624198090Srdivacky    Alignment = getEVTAlignment(MemVT);
3625198090Srdivacky
3626198090Srdivacky  // Check if the memory reference references a frame index
3627198090Srdivacky  if (!PtrVal)
3628198090Srdivacky    if (const FrameIndexSDNode *FI =
3629198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3630198090Srdivacky      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3631198090Srdivacky
3632198090Srdivacky  MachineFunction &MF = getMachineFunction();
3633198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3634198090Srdivacky
3635198090Srdivacky  // For now, atomics are considered to be volatile always.
3636198090Srdivacky  Flags |= MachineMemOperand::MOVolatile;
3637198090Srdivacky
3638198090Srdivacky  MachineMemOperand *MMO =
3639198090Srdivacky    MF.getMachineMemOperand(PtrVal, Flags, 0,
3640198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3641198090Srdivacky
3642198090Srdivacky  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3643198090Srdivacky}
3644198090Srdivacky
3645198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3646198090Srdivacky                                SDValue Chain,
3647198090Srdivacky                                SDValue Ptr, SDValue Cmp,
3648198090Srdivacky                                SDValue Swp, MachineMemOperand *MMO) {
3649193323Sed  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3650193323Sed  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3651193323Sed
3652198090Srdivacky  EVT VT = Cmp.getValueType();
3653193323Sed
3654193323Sed  SDVTList VTs = getVTList(VT, MVT::Other);
3655193323Sed  FoldingSetNodeID ID;
3656193323Sed  ID.AddInteger(MemVT.getRawBits());
3657193323Sed  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3658193323Sed  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3659193323Sed  void* IP = 0;
3660198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3661198090Srdivacky    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3662200581Srdivacky    if (Ordering) Ordering->add(E);
3663193323Sed    return SDValue(E, 0);
3664198090Srdivacky  }
3665193323Sed  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3666198090Srdivacky  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3667193323Sed  CSEMap.InsertNode(N, IP);
3668193323Sed  AllNodes.push_back(N);
3669200581Srdivacky  if (Ordering) Ordering->add(N);
3670193323Sed  return SDValue(N, 0);
3671193323Sed}
3672193323Sed
3673198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3674193323Sed                                SDValue Chain,
3675193323Sed                                SDValue Ptr, SDValue Val,
3676193323Sed                                const Value* PtrVal,
3677193323Sed                                unsigned Alignment) {
3678198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3679198090Srdivacky    Alignment = getEVTAlignment(MemVT);
3680198090Srdivacky
3681198090Srdivacky  // Check if the memory reference references a frame index
3682198090Srdivacky  if (!PtrVal)
3683198090Srdivacky    if (const FrameIndexSDNode *FI =
3684198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3685198090Srdivacky      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3686198090Srdivacky
3687198090Srdivacky  MachineFunction &MF = getMachineFunction();
3688198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3689198090Srdivacky
3690198090Srdivacky  // For now, atomics are considered to be volatile always.
3691198090Srdivacky  Flags |= MachineMemOperand::MOVolatile;
3692198090Srdivacky
3693198090Srdivacky  MachineMemOperand *MMO =
3694198090Srdivacky    MF.getMachineMemOperand(PtrVal, Flags, 0,
3695198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3696198090Srdivacky
3697198090Srdivacky  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3698198090Srdivacky}
3699198090Srdivacky
3700198090SrdivackySDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3701198090Srdivacky                                SDValue Chain,
3702198090Srdivacky                                SDValue Ptr, SDValue Val,
3703198090Srdivacky                                MachineMemOperand *MMO) {
3704193323Sed  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3705193323Sed          Opcode == ISD::ATOMIC_LOAD_SUB ||
3706193323Sed          Opcode == ISD::ATOMIC_LOAD_AND ||
3707193323Sed          Opcode == ISD::ATOMIC_LOAD_OR ||
3708193323Sed          Opcode == ISD::ATOMIC_LOAD_XOR ||
3709193323Sed          Opcode == ISD::ATOMIC_LOAD_NAND ||
3710193323Sed          Opcode == ISD::ATOMIC_LOAD_MIN ||
3711193323Sed          Opcode == ISD::ATOMIC_LOAD_MAX ||
3712193323Sed          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3713193323Sed          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3714193323Sed          Opcode == ISD::ATOMIC_SWAP) &&
3715193323Sed         "Invalid Atomic Op");
3716193323Sed
3717198090Srdivacky  EVT VT = Val.getValueType();
3718193323Sed
3719193323Sed  SDVTList VTs = getVTList(VT, MVT::Other);
3720193323Sed  FoldingSetNodeID ID;
3721193323Sed  ID.AddInteger(MemVT.getRawBits());
3722193323Sed  SDValue Ops[] = {Chain, Ptr, Val};
3723193323Sed  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3724193323Sed  void* IP = 0;
3725198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3726198090Srdivacky    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3727200581Srdivacky    if (Ordering) Ordering->add(E);
3728193323Sed    return SDValue(E, 0);
3729198090Srdivacky  }
3730193323Sed  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3731198090Srdivacky  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3732193323Sed  CSEMap.InsertNode(N, IP);
3733193323Sed  AllNodes.push_back(N);
3734200581Srdivacky  if (Ordering) Ordering->add(N);
3735193323Sed  return SDValue(N, 0);
3736193323Sed}
3737193323Sed
3738193323Sed/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3739193323Sed/// Allowed to return something different (and simpler) if Simplify is true.
3740193323SedSDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3741193323Sed                                     DebugLoc dl) {
3742193323Sed  if (NumOps == 1)
3743193323Sed    return Ops[0];
3744193323Sed
3745198090Srdivacky  SmallVector<EVT, 4> VTs;
3746193323Sed  VTs.reserve(NumOps);
3747193323Sed  for (unsigned i = 0; i < NumOps; ++i)
3748193323Sed    VTs.push_back(Ops[i].getValueType());
3749193323Sed  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3750193323Sed                 Ops, NumOps);
3751193323Sed}
3752193323Sed
3753193323SedSDValue
3754193323SedSelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3755198090Srdivacky                                  const EVT *VTs, unsigned NumVTs,
3756193323Sed                                  const SDValue *Ops, unsigned NumOps,
3757198090Srdivacky                                  EVT MemVT, const Value *srcValue, int SVOff,
3758193323Sed                                  unsigned Align, bool Vol,
3759193323Sed                                  bool ReadMem, bool WriteMem) {
3760193323Sed  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3761193323Sed                             MemVT, srcValue, SVOff, Align, Vol,
3762193323Sed                             ReadMem, WriteMem);
3763193323Sed}
3764193323Sed
3765193323SedSDValue
3766193323SedSelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3767193323Sed                                  const SDValue *Ops, unsigned NumOps,
3768198090Srdivacky                                  EVT MemVT, const Value *srcValue, int SVOff,
3769193323Sed                                  unsigned Align, bool Vol,
3770193323Sed                                  bool ReadMem, bool WriteMem) {
3771198090Srdivacky  if (Align == 0)  // Ensure that codegen never sees alignment 0
3772198090Srdivacky    Align = getEVTAlignment(MemVT);
3773198090Srdivacky
3774198090Srdivacky  MachineFunction &MF = getMachineFunction();
3775198090Srdivacky  unsigned Flags = 0;
3776198090Srdivacky  if (WriteMem)
3777198090Srdivacky    Flags |= MachineMemOperand::MOStore;
3778198090Srdivacky  if (ReadMem)
3779198090Srdivacky    Flags |= MachineMemOperand::MOLoad;
3780198090Srdivacky  if (Vol)
3781198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3782198090Srdivacky  MachineMemOperand *MMO =
3783198090Srdivacky    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3784198090Srdivacky                            MemVT.getStoreSize(), Align);
3785198090Srdivacky
3786198090Srdivacky  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3787198090Srdivacky}
3788198090Srdivacky
3789198090SrdivackySDValue
3790198090SrdivackySelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3791198090Srdivacky                                  const SDValue *Ops, unsigned NumOps,
3792198090Srdivacky                                  EVT MemVT, MachineMemOperand *MMO) {
3793198090Srdivacky  assert((Opcode == ISD::INTRINSIC_VOID ||
3794198090Srdivacky          Opcode == ISD::INTRINSIC_W_CHAIN ||
3795198090Srdivacky          (Opcode <= INT_MAX &&
3796198090Srdivacky           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3797198090Srdivacky         "Opcode is not a memory-accessing opcode!");
3798198090Srdivacky
3799193323Sed  // Memoize the node unless it returns a flag.
3800193323Sed  MemIntrinsicSDNode *N;
3801193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3802193323Sed    FoldingSetNodeID ID;
3803193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3804193323Sed    void *IP = 0;
3805198090Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3806198090Srdivacky      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3807200581Srdivacky      if (Ordering) Ordering->add(E);
3808193323Sed      return SDValue(E, 0);
3809198090Srdivacky    }
3810193323Sed
3811193323Sed    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3812198090Srdivacky    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3813193323Sed    CSEMap.InsertNode(N, IP);
3814193323Sed  } else {
3815193323Sed    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3816198090Srdivacky    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3817193323Sed  }
3818193323Sed  AllNodes.push_back(N);
3819200581Srdivacky  if (Ordering) Ordering->add(N);
3820193323Sed  return SDValue(N, 0);
3821193323Sed}
3822193323Sed
3823193323SedSDValue
3824193323SedSelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3825198090Srdivacky                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3826193323Sed                      SDValue Ptr, SDValue Offset,
3827198090Srdivacky                      const Value *SV, int SVOffset, EVT MemVT,
3828193323Sed                      bool isVolatile, unsigned Alignment) {
3829193323Sed  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3830198090Srdivacky    Alignment = getEVTAlignment(VT);
3831193323Sed
3832198090Srdivacky  // Check if the memory reference references a frame index
3833198090Srdivacky  if (!SV)
3834198090Srdivacky    if (const FrameIndexSDNode *FI =
3835198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3836198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3837198090Srdivacky
3838198090Srdivacky  MachineFunction &MF = getMachineFunction();
3839198090Srdivacky  unsigned Flags = MachineMemOperand::MOLoad;
3840198090Srdivacky  if (isVolatile)
3841198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3842198090Srdivacky  MachineMemOperand *MMO =
3843198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset,
3844198090Srdivacky                            MemVT.getStoreSize(), Alignment);
3845198090Srdivacky  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3846198090Srdivacky}
3847198090Srdivacky
3848198090SrdivackySDValue
3849198090SrdivackySelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3850198090Srdivacky                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3851198090Srdivacky                      SDValue Ptr, SDValue Offset, EVT MemVT,
3852198090Srdivacky                      MachineMemOperand *MMO) {
3853198090Srdivacky  if (VT == MemVT) {
3854193323Sed    ExtType = ISD::NON_EXTLOAD;
3855193323Sed  } else if (ExtType == ISD::NON_EXTLOAD) {
3856198090Srdivacky    assert(VT == MemVT && "Non-extending load from different memory type!");
3857193323Sed  } else {
3858193323Sed    // Extending load.
3859200581Srdivacky    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3860200581Srdivacky           "Should only be an extending load, not truncating!");
3861198090Srdivacky    assert(VT.isInteger() == MemVT.isInteger() &&
3862193323Sed           "Cannot convert from FP to Int or Int -> FP!");
3863200581Srdivacky    assert(VT.isVector() == MemVT.isVector() &&
3864200581Srdivacky           "Cannot use trunc store to convert to or from a vector!");
3865200581Srdivacky    assert((!VT.isVector() ||
3866200581Srdivacky            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3867200581Srdivacky           "Cannot use trunc store to change the number of vector elements!");
3868193323Sed  }
3869193323Sed
3870193323Sed  bool Indexed = AM != ISD::UNINDEXED;
3871193323Sed  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3872193323Sed         "Unindexed load with an offset!");
3873193323Sed
3874193323Sed  SDVTList VTs = Indexed ?
3875193323Sed    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3876193323Sed  SDValue Ops[] = { Chain, Ptr, Offset };
3877193323Sed  FoldingSetNodeID ID;
3878193323Sed  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3879198090Srdivacky  ID.AddInteger(MemVT.getRawBits());
3880198090Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3881193323Sed  void *IP = 0;
3882198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3883198090Srdivacky    cast<LoadSDNode>(E)->refineAlignment(MMO);
3884200581Srdivacky    if (Ordering) Ordering->add(E);
3885193323Sed    return SDValue(E, 0);
3886198090Srdivacky  }
3887193323Sed  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3888198090Srdivacky  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3889193323Sed  CSEMap.InsertNode(N, IP);
3890193323Sed  AllNodes.push_back(N);
3891200581Srdivacky  if (Ordering) Ordering->add(N);
3892193323Sed  return SDValue(N, 0);
3893193323Sed}
3894193323Sed
3895198090SrdivackySDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3896193323Sed                              SDValue Chain, SDValue Ptr,
3897193323Sed                              const Value *SV, int SVOffset,
3898193323Sed                              bool isVolatile, unsigned Alignment) {
3899193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3900193323Sed  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3901193323Sed                 SV, SVOffset, VT, isVolatile, Alignment);
3902193323Sed}
3903193323Sed
3904198090SrdivackySDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3905193323Sed                                 SDValue Chain, SDValue Ptr,
3906193323Sed                                 const Value *SV,
3907198090Srdivacky                                 int SVOffset, EVT MemVT,
3908193323Sed                                 bool isVolatile, unsigned Alignment) {
3909193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3910193323Sed  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3911198090Srdivacky                 SV, SVOffset, MemVT, isVolatile, Alignment);
3912193323Sed}
3913193323Sed
3914193323SedSDValue
3915193323SedSelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3916193323Sed                             SDValue Offset, ISD::MemIndexedMode AM) {
3917193323Sed  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3918193323Sed  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3919193323Sed         "Load is already a indexed load!");
3920193323Sed  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3921193323Sed                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3922193323Sed                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3923193323Sed                 LD->isVolatile(), LD->getAlignment());
3924193323Sed}
3925193323Sed
3926193323SedSDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3927193323Sed                               SDValue Ptr, const Value *SV, int SVOffset,
3928193323Sed                               bool isVolatile, unsigned Alignment) {
3929193323Sed  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3930198090Srdivacky    Alignment = getEVTAlignment(Val.getValueType());
3931193323Sed
3932198090Srdivacky  // Check if the memory reference references a frame index
3933198090Srdivacky  if (!SV)
3934198090Srdivacky    if (const FrameIndexSDNode *FI =
3935198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3936198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3937198090Srdivacky
3938198090Srdivacky  MachineFunction &MF = getMachineFunction();
3939198090Srdivacky  unsigned Flags = MachineMemOperand::MOStore;
3940198090Srdivacky  if (isVolatile)
3941198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3942198090Srdivacky  MachineMemOperand *MMO =
3943198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset,
3944198090Srdivacky                            Val.getValueType().getStoreSize(), Alignment);
3945198090Srdivacky
3946198090Srdivacky  return getStore(Chain, dl, Val, Ptr, MMO);
3947198090Srdivacky}
3948198090Srdivacky
3949198090SrdivackySDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3950198090Srdivacky                               SDValue Ptr, MachineMemOperand *MMO) {
3951198090Srdivacky  EVT VT = Val.getValueType();
3952193323Sed  SDVTList VTs = getVTList(MVT::Other);
3953193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
3954193323Sed  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3955193323Sed  FoldingSetNodeID ID;
3956193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3957193323Sed  ID.AddInteger(VT.getRawBits());
3958198090Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3959193323Sed  void *IP = 0;
3960198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3961198090Srdivacky    cast<StoreSDNode>(E)->refineAlignment(MMO);
3962200581Srdivacky    if (Ordering) Ordering->add(E);
3963193323Sed    return SDValue(E, 0);
3964198090Srdivacky  }
3965193323Sed  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3966198090Srdivacky  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3967193323Sed  CSEMap.InsertNode(N, IP);
3968193323Sed  AllNodes.push_back(N);
3969200581Srdivacky  if (Ordering) Ordering->add(N);
3970193323Sed  return SDValue(N, 0);
3971193323Sed}
3972193323Sed
3973193323SedSDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3974193323Sed                                    SDValue Ptr, const Value *SV,
3975198090Srdivacky                                    int SVOffset, EVT SVT,
3976193323Sed                                    bool isVolatile, unsigned Alignment) {
3977198090Srdivacky  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3978198090Srdivacky    Alignment = getEVTAlignment(SVT);
3979193323Sed
3980198090Srdivacky  // Check if the memory reference references a frame index
3981198090Srdivacky  if (!SV)
3982198090Srdivacky    if (const FrameIndexSDNode *FI =
3983198090Srdivacky          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3984198090Srdivacky      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3985198090Srdivacky
3986198090Srdivacky  MachineFunction &MF = getMachineFunction();
3987198090Srdivacky  unsigned Flags = MachineMemOperand::MOStore;
3988198090Srdivacky  if (isVolatile)
3989198090Srdivacky    Flags |= MachineMemOperand::MOVolatile;
3990198090Srdivacky  MachineMemOperand *MMO =
3991198090Srdivacky    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3992198090Srdivacky
3993198090Srdivacky  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3994198090Srdivacky}
3995198090Srdivacky
3996198090SrdivackySDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3997198090Srdivacky                                    SDValue Ptr, EVT SVT,
3998198090Srdivacky                                    MachineMemOperand *MMO) {
3999198090Srdivacky  EVT VT = Val.getValueType();
4000198090Srdivacky
4001193323Sed  if (VT == SVT)
4002198090Srdivacky    return getStore(Chain, dl, Val, Ptr, MMO);
4003193323Sed
4004200581Srdivacky  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4005200581Srdivacky         "Should only be a truncating store, not extending!");
4006193323Sed  assert(VT.isInteger() == SVT.isInteger() &&
4007193323Sed         "Can't do FP-INT conversion!");
4008200581Srdivacky  assert(VT.isVector() == SVT.isVector() &&
4009200581Srdivacky         "Cannot use trunc store to convert to or from a vector!");
4010200581Srdivacky  assert((!VT.isVector() ||
4011200581Srdivacky          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4012200581Srdivacky         "Cannot use trunc store to change the number of vector elements!");
4013193323Sed
4014193323Sed  SDVTList VTs = getVTList(MVT::Other);
4015193323Sed  SDValue Undef = getUNDEF(Ptr.getValueType());
4016193323Sed  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4017193323Sed  FoldingSetNodeID ID;
4018193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4019193323Sed  ID.AddInteger(SVT.getRawBits());
4020198090Srdivacky  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
4021193323Sed  void *IP = 0;
4022198090Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4023198090Srdivacky    cast<StoreSDNode>(E)->refineAlignment(MMO);
4024200581Srdivacky    if (Ordering) Ordering->add(E);
4025193323Sed    return SDValue(E, 0);
4026198090Srdivacky  }
4027193323Sed  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4028198090Srdivacky  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
4029193323Sed  CSEMap.InsertNode(N, IP);
4030193323Sed  AllNodes.push_back(N);
4031200581Srdivacky  if (Ordering) Ordering->add(N);
4032193323Sed  return SDValue(N, 0);
4033193323Sed}
4034193323Sed
4035193323SedSDValue
4036193323SedSelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4037193323Sed                              SDValue Offset, ISD::MemIndexedMode AM) {
4038193323Sed  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4039193323Sed  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4040193323Sed         "Store is already a indexed store!");
4041193323Sed  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4042193323Sed  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4043193323Sed  FoldingSetNodeID ID;
4044193323Sed  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4045193323Sed  ID.AddInteger(ST->getMemoryVT().getRawBits());
4046193323Sed  ID.AddInteger(ST->getRawSubclassData());
4047193323Sed  void *IP = 0;
4048200581Srdivacky  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4049200581Srdivacky    if (Ordering) Ordering->add(E);
4050193323Sed    return SDValue(E, 0);
4051200581Srdivacky  }
4052193323Sed  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4053193323Sed  new (N) StoreSDNode(Ops, dl, VTs, AM,
4054193323Sed                      ST->isTruncatingStore(), ST->getMemoryVT(),
4055198090Srdivacky                      ST->getMemOperand());
4056193323Sed  CSEMap.InsertNode(N, IP);
4057193323Sed  AllNodes.push_back(N);
4058200581Srdivacky  if (Ordering) Ordering->add(N);
4059193323Sed  return SDValue(N, 0);
4060193323Sed}
4061193323Sed
4062198090SrdivackySDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4063193323Sed                               SDValue Chain, SDValue Ptr,
4064193323Sed                               SDValue SV) {
4065193323Sed  SDValue Ops[] = { Chain, Ptr, SV };
4066193323Sed  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4067193323Sed}
4068193323Sed
4069198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4070193323Sed                              const SDUse *Ops, unsigned NumOps) {
4071193323Sed  switch (NumOps) {
4072193323Sed  case 0: return getNode(Opcode, DL, VT);
4073193323Sed  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4074193323Sed  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4075193323Sed  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4076193323Sed  default: break;
4077193323Sed  }
4078193323Sed
4079193323Sed  // Copy from an SDUse array into an SDValue array for use with
4080193323Sed  // the regular getNode logic.
4081193323Sed  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4082193323Sed  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4083193323Sed}
4084193323Sed
4085198090SrdivackySDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4086193323Sed                              const SDValue *Ops, unsigned NumOps) {
4087193323Sed  switch (NumOps) {
4088193323Sed  case 0: return getNode(Opcode, DL, VT);
4089193323Sed  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4090193323Sed  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4091193323Sed  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4092193323Sed  default: break;
4093193323Sed  }
4094193323Sed
4095193323Sed  switch (Opcode) {
4096193323Sed  default: break;
4097193323Sed  case ISD::SELECT_CC: {
4098193323Sed    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4099193323Sed    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4100193323Sed           "LHS and RHS of condition must have same type!");
4101193323Sed    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4102193323Sed           "True and False arms of SelectCC must have same type!");
4103193323Sed    assert(Ops[2].getValueType() == VT &&
4104193323Sed           "select_cc node must be of same type as true and false value!");
4105193323Sed    break;
4106193323Sed  }
4107193323Sed  case ISD::BR_CC: {
4108193323Sed    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4109193323Sed    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4110193323Sed           "LHS/RHS of comparison should match types!");
4111193323Sed    break;
4112193323Sed  }
4113193323Sed  }
4114193323Sed
4115193323Sed  // Memoize nodes.
4116193323Sed  SDNode *N;
4117193323Sed  SDVTList VTs = getVTList(VT);
4118193323Sed
4119193323Sed  if (VT != MVT::Flag) {
4120193323Sed    FoldingSetNodeID ID;
4121193323Sed    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4122193323Sed    void *IP = 0;
4123193323Sed
4124200581Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4125200581Srdivacky      if (Ordering) Ordering->add(E);
4126193323Sed      return SDValue(E, 0);
4127200581Srdivacky    }
4128193323Sed
4129193323Sed    N = NodeAllocator.Allocate<SDNode>();
4130193323Sed    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4131193323Sed    CSEMap.InsertNode(N, IP);
4132193323Sed  } else {
4133193323Sed    N = NodeAllocator.Allocate<SDNode>();
4134193323Sed    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4135193323Sed  }
4136193323Sed
4137193323Sed  AllNodes.push_back(N);
4138200581Srdivacky  if (Ordering) Ordering->add(N);
4139193323Sed#ifndef NDEBUG
4140193323Sed  VerifyNode(N);
4141193323Sed#endif
4142193323Sed  return SDValue(N, 0);
4143193323Sed}
4144193323Sed
4145193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4146198090Srdivacky                              const std::vector<EVT> &ResultTys,
4147193323Sed                              const SDValue *Ops, unsigned NumOps) {
4148193323Sed  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4149193323Sed                 Ops, NumOps);
4150193323Sed}
4151193323Sed
4152193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4153198090Srdivacky                              const EVT *VTs, unsigned NumVTs,
4154193323Sed                              const SDValue *Ops, unsigned NumOps) {
4155193323Sed  if (NumVTs == 1)
4156193323Sed    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4157193323Sed  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4158193323Sed}
4159193323Sed
4160193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4161193323Sed                              const SDValue *Ops, unsigned NumOps) {
4162193323Sed  if (VTList.NumVTs == 1)
4163193323Sed    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4164193323Sed
4165198090Srdivacky#if 0
4166193323Sed  switch (Opcode) {
4167193323Sed  // FIXME: figure out how to safely handle things like
4168193323Sed  // int foo(int x) { return 1 << (x & 255); }
4169193323Sed  // int bar() { return foo(256); }
4170193323Sed  case ISD::SRA_PARTS:
4171193323Sed  case ISD::SRL_PARTS:
4172193323Sed  case ISD::SHL_PARTS:
4173193323Sed    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4174193323Sed        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4175193323Sed      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4176193323Sed    else if (N3.getOpcode() == ISD::AND)
4177193323Sed      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4178193323Sed        // If the and is only masking out bits that cannot effect the shift,
4179193323Sed        // eliminate the and.
4180193323Sed        unsigned NumBits = VT.getSizeInBits()*2;
4181193323Sed        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4182193323Sed          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4183193323Sed      }
4184193323Sed    break;
4185198090Srdivacky  }
4186193323Sed#endif
4187193323Sed
4188193323Sed  // Memoize the node unless it returns a flag.
4189193323Sed  SDNode *N;
4190193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4191193323Sed    FoldingSetNodeID ID;
4192193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4193193323Sed    void *IP = 0;
4194200581Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4195200581Srdivacky      if (Ordering) Ordering->add(E);
4196193323Sed      return SDValue(E, 0);
4197200581Srdivacky    }
4198193323Sed    if (NumOps == 1) {
4199193323Sed      N = NodeAllocator.Allocate<UnarySDNode>();
4200193323Sed      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4201193323Sed    } else if (NumOps == 2) {
4202193323Sed      N = NodeAllocator.Allocate<BinarySDNode>();
4203193323Sed      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4204193323Sed    } else if (NumOps == 3) {
4205193323Sed      N = NodeAllocator.Allocate<TernarySDNode>();
4206193323Sed      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4207193323Sed    } else {
4208193323Sed      N = NodeAllocator.Allocate<SDNode>();
4209193323Sed      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4210193323Sed    }
4211193323Sed    CSEMap.InsertNode(N, IP);
4212193323Sed  } else {
4213193323Sed    if (NumOps == 1) {
4214193323Sed      N = NodeAllocator.Allocate<UnarySDNode>();
4215193323Sed      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4216193323Sed    } else if (NumOps == 2) {
4217193323Sed      N = NodeAllocator.Allocate<BinarySDNode>();
4218193323Sed      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4219193323Sed    } else if (NumOps == 3) {
4220193323Sed      N = NodeAllocator.Allocate<TernarySDNode>();
4221193323Sed      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4222193323Sed    } else {
4223193323Sed      N = NodeAllocator.Allocate<SDNode>();
4224193323Sed      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4225193323Sed    }
4226193323Sed  }
4227193323Sed  AllNodes.push_back(N);
4228200581Srdivacky  if (Ordering) Ordering->add(N);
4229193323Sed#ifndef NDEBUG
4230193323Sed  VerifyNode(N);
4231193323Sed#endif
4232193323Sed  return SDValue(N, 0);
4233193323Sed}
4234193323Sed
4235193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4236193323Sed  return getNode(Opcode, DL, VTList, 0, 0);
4237193323Sed}
4238193323Sed
4239193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4240193323Sed                              SDValue N1) {
4241193323Sed  SDValue Ops[] = { N1 };
4242193323Sed  return getNode(Opcode, DL, VTList, Ops, 1);
4243193323Sed}
4244193323Sed
4245193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4246193323Sed                              SDValue N1, SDValue N2) {
4247193323Sed  SDValue Ops[] = { N1, N2 };
4248193323Sed  return getNode(Opcode, DL, VTList, Ops, 2);
4249193323Sed}
4250193323Sed
4251193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4252193323Sed                              SDValue N1, SDValue N2, SDValue N3) {
4253193323Sed  SDValue Ops[] = { N1, N2, N3 };
4254193323Sed  return getNode(Opcode, DL, VTList, Ops, 3);
4255193323Sed}
4256193323Sed
4257193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4258193323Sed                              SDValue N1, SDValue N2, SDValue N3,
4259193323Sed                              SDValue N4) {
4260193323Sed  SDValue Ops[] = { N1, N2, N3, N4 };
4261193323Sed  return getNode(Opcode, DL, VTList, Ops, 4);
4262193323Sed}
4263193323Sed
4264193323SedSDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4265193323Sed                              SDValue N1, SDValue N2, SDValue N3,
4266193323Sed                              SDValue N4, SDValue N5) {
4267193323Sed  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4268193323Sed  return getNode(Opcode, DL, VTList, Ops, 5);
4269193323Sed}
4270193323Sed
4271198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT) {
4272193323Sed  return makeVTList(SDNode::getValueTypeList(VT), 1);
4273193323Sed}
4274193323Sed
4275198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4276193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4277193323Sed       E = VTList.rend(); I != E; ++I)
4278193323Sed    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4279193323Sed      return *I;
4280193323Sed
4281198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(2);
4282193323Sed  Array[0] = VT1;
4283193323Sed  Array[1] = VT2;
4284193323Sed  SDVTList Result = makeVTList(Array, 2);
4285193323Sed  VTList.push_back(Result);
4286193323Sed  return Result;
4287193323Sed}
4288193323Sed
4289198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4290193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4291193323Sed       E = VTList.rend(); I != E; ++I)
4292193323Sed    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4293193323Sed                          I->VTs[2] == VT3)
4294193323Sed      return *I;
4295193323Sed
4296198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(3);
4297193323Sed  Array[0] = VT1;
4298193323Sed  Array[1] = VT2;
4299193323Sed  Array[2] = VT3;
4300193323Sed  SDVTList Result = makeVTList(Array, 3);
4301193323Sed  VTList.push_back(Result);
4302193323Sed  return Result;
4303193323Sed}
4304193323Sed
4305198090SrdivackySDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4306193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4307193323Sed       E = VTList.rend(); I != E; ++I)
4308193323Sed    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4309193323Sed                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4310193323Sed      return *I;
4311193323Sed
4312200581Srdivacky  EVT *Array = Allocator.Allocate<EVT>(4);
4313193323Sed  Array[0] = VT1;
4314193323Sed  Array[1] = VT2;
4315193323Sed  Array[2] = VT3;
4316193323Sed  Array[3] = VT4;
4317193323Sed  SDVTList Result = makeVTList(Array, 4);
4318193323Sed  VTList.push_back(Result);
4319193323Sed  return Result;
4320193323Sed}
4321193323Sed
4322198090SrdivackySDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4323193323Sed  switch (NumVTs) {
4324198090Srdivacky    case 0: llvm_unreachable("Cannot have nodes without results!");
4325193323Sed    case 1: return getVTList(VTs[0]);
4326193323Sed    case 2: return getVTList(VTs[0], VTs[1]);
4327193323Sed    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4328193323Sed    default: break;
4329193323Sed  }
4330193323Sed
4331193323Sed  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4332193323Sed       E = VTList.rend(); I != E; ++I) {
4333193323Sed    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4334193323Sed      continue;
4335193323Sed
4336193323Sed    bool NoMatch = false;
4337193323Sed    for (unsigned i = 2; i != NumVTs; ++i)
4338193323Sed      if (VTs[i] != I->VTs[i]) {
4339193323Sed        NoMatch = true;
4340193323Sed        break;
4341193323Sed      }
4342193323Sed    if (!NoMatch)
4343193323Sed      return *I;
4344193323Sed  }
4345193323Sed
4346198090Srdivacky  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4347193323Sed  std::copy(VTs, VTs+NumVTs, Array);
4348193323Sed  SDVTList Result = makeVTList(Array, NumVTs);
4349193323Sed  VTList.push_back(Result);
4350193323Sed  return Result;
4351193323Sed}
4352193323Sed
4353193323Sed
4354193323Sed/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4355193323Sed/// specified operands.  If the resultant node already exists in the DAG,
4356193323Sed/// this does not modify the specified node, instead it returns the node that
4357193323Sed/// already exists.  If the resultant node does not exist in the DAG, the
4358193323Sed/// input node is returned.  As a degenerate case, if you specify the same
4359193323Sed/// input operands as the node already has, the input node is returned.
4360193323SedSDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4361193323Sed  SDNode *N = InN.getNode();
4362193323Sed  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4363193323Sed
4364193323Sed  // Check to see if there is no change.
4365193323Sed  if (Op == N->getOperand(0)) return InN;
4366193323Sed
4367193323Sed  // See if the modified node already exists.
4368193323Sed  void *InsertPos = 0;
4369193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4370193323Sed    return SDValue(Existing, InN.getResNo());
4371193323Sed
4372193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4373193323Sed  if (InsertPos)
4374193323Sed    if (!RemoveNodeFromCSEMaps(N))
4375193323Sed      InsertPos = 0;
4376193323Sed
4377193323Sed  // Now we update the operands.
4378193323Sed  N->OperandList[0].set(Op);
4379193323Sed
4380193323Sed  // If this gets put into a CSE map, add it.
4381193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4382193323Sed  return InN;
4383193323Sed}
4384193323Sed
4385193323SedSDValue SelectionDAG::
4386193323SedUpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4387193323Sed  SDNode *N = InN.getNode();
4388193323Sed  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4389193323Sed
4390193323Sed  // Check to see if there is no change.
4391193323Sed  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4392193323Sed    return InN;   // No operands changed, just return the input node.
4393193323Sed
4394193323Sed  // See if the modified node already exists.
4395193323Sed  void *InsertPos = 0;
4396193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4397193323Sed    return SDValue(Existing, InN.getResNo());
4398193323Sed
4399193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4400193323Sed  if (InsertPos)
4401193323Sed    if (!RemoveNodeFromCSEMaps(N))
4402193323Sed      InsertPos = 0;
4403193323Sed
4404193323Sed  // Now we update the operands.
4405193323Sed  if (N->OperandList[0] != Op1)
4406193323Sed    N->OperandList[0].set(Op1);
4407193323Sed  if (N->OperandList[1] != Op2)
4408193323Sed    N->OperandList[1].set(Op2);
4409193323Sed
4410193323Sed  // If this gets put into a CSE map, add it.
4411193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4412193323Sed  return InN;
4413193323Sed}
4414193323Sed
4415193323SedSDValue SelectionDAG::
4416193323SedUpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4417193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4418193323Sed  return UpdateNodeOperands(N, Ops, 3);
4419193323Sed}
4420193323Sed
4421193323SedSDValue SelectionDAG::
4422193323SedUpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4423193323Sed                   SDValue Op3, SDValue Op4) {
4424193323Sed  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4425193323Sed  return UpdateNodeOperands(N, Ops, 4);
4426193323Sed}
4427193323Sed
4428193323SedSDValue SelectionDAG::
4429193323SedUpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4430193323Sed                   SDValue Op3, SDValue Op4, SDValue Op5) {
4431193323Sed  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4432193323Sed  return UpdateNodeOperands(N, Ops, 5);
4433193323Sed}
4434193323Sed
4435193323SedSDValue SelectionDAG::
4436193323SedUpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4437193323Sed  SDNode *N = InN.getNode();
4438193323Sed  assert(N->getNumOperands() == NumOps &&
4439193323Sed         "Update with wrong number of operands");
4440193323Sed
4441193323Sed  // Check to see if there is no change.
4442193323Sed  bool AnyChange = false;
4443193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
4444193323Sed    if (Ops[i] != N->getOperand(i)) {
4445193323Sed      AnyChange = true;
4446193323Sed      break;
4447193323Sed    }
4448193323Sed  }
4449193323Sed
4450193323Sed  // No operands changed, just return the input node.
4451193323Sed  if (!AnyChange) return InN;
4452193323Sed
4453193323Sed  // See if the modified node already exists.
4454193323Sed  void *InsertPos = 0;
4455193323Sed  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4456193323Sed    return SDValue(Existing, InN.getResNo());
4457193323Sed
4458193323Sed  // Nope it doesn't.  Remove the node from its current place in the maps.
4459193323Sed  if (InsertPos)
4460193323Sed    if (!RemoveNodeFromCSEMaps(N))
4461193323Sed      InsertPos = 0;
4462193323Sed
4463193323Sed  // Now we update the operands.
4464193323Sed  for (unsigned i = 0; i != NumOps; ++i)
4465193323Sed    if (N->OperandList[i] != Ops[i])
4466193323Sed      N->OperandList[i].set(Ops[i]);
4467193323Sed
4468193323Sed  // If this gets put into a CSE map, add it.
4469193323Sed  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4470193323Sed  return InN;
4471193323Sed}
4472193323Sed
4473193323Sed/// DropOperands - Release the operands and set this node to have
4474193323Sed/// zero operands.
4475193323Sedvoid SDNode::DropOperands() {
4476193323Sed  // Unlike the code in MorphNodeTo that does this, we don't need to
4477193323Sed  // watch for dead nodes here.
4478193323Sed  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4479193323Sed    SDUse &Use = *I++;
4480193323Sed    Use.set(SDValue());
4481193323Sed  }
4482193323Sed}
4483193323Sed
4484193323Sed/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4485193323Sed/// machine opcode.
4486193323Sed///
4487193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4488198090Srdivacky                                   EVT VT) {
4489193323Sed  SDVTList VTs = getVTList(VT);
4490193323Sed  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4491193323Sed}
4492193323Sed
4493193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4494198090Srdivacky                                   EVT VT, SDValue Op1) {
4495193323Sed  SDVTList VTs = getVTList(VT);
4496193323Sed  SDValue Ops[] = { Op1 };
4497193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4498193323Sed}
4499193323Sed
4500193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4501198090Srdivacky                                   EVT VT, SDValue Op1,
4502193323Sed                                   SDValue Op2) {
4503193323Sed  SDVTList VTs = getVTList(VT);
4504193323Sed  SDValue Ops[] = { Op1, Op2 };
4505193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4506193323Sed}
4507193323Sed
4508193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4509198090Srdivacky                                   EVT VT, SDValue Op1,
4510193323Sed                                   SDValue Op2, SDValue Op3) {
4511193323Sed  SDVTList VTs = getVTList(VT);
4512193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4513193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4514193323Sed}
4515193323Sed
4516193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4517198090Srdivacky                                   EVT VT, const SDValue *Ops,
4518193323Sed                                   unsigned NumOps) {
4519193323Sed  SDVTList VTs = getVTList(VT);
4520193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4521193323Sed}
4522193323Sed
4523193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4524198090Srdivacky                                   EVT VT1, EVT VT2, const SDValue *Ops,
4525193323Sed                                   unsigned NumOps) {
4526193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4527193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4528193323Sed}
4529193323Sed
4530193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4531198090Srdivacky                                   EVT VT1, EVT VT2) {
4532193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4533193323Sed  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4534193323Sed}
4535193323Sed
4536193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4537198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3,
4538193323Sed                                   const SDValue *Ops, unsigned NumOps) {
4539193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4540193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4541193323Sed}
4542193323Sed
4543193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4544198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4545193323Sed                                   const SDValue *Ops, unsigned NumOps) {
4546193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4547193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4548193323Sed}
4549193323Sed
4550193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4551198090Srdivacky                                   EVT VT1, EVT VT2,
4552193323Sed                                   SDValue Op1) {
4553193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4554193323Sed  SDValue Ops[] = { Op1 };
4555193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4556193323Sed}
4557193323Sed
4558193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4559198090Srdivacky                                   EVT VT1, EVT VT2,
4560193323Sed                                   SDValue Op1, SDValue Op2) {
4561193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4562193323Sed  SDValue Ops[] = { Op1, Op2 };
4563193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4564193323Sed}
4565193323Sed
4566193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4567198090Srdivacky                                   EVT VT1, EVT VT2,
4568193323Sed                                   SDValue Op1, SDValue Op2,
4569193323Sed                                   SDValue Op3) {
4570193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4571193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4572193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4573193323Sed}
4574193323Sed
4575193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4576198090Srdivacky                                   EVT VT1, EVT VT2, EVT VT3,
4577193323Sed                                   SDValue Op1, SDValue Op2,
4578193323Sed                                   SDValue Op3) {
4579193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4580193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4581193323Sed  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4582193323Sed}
4583193323Sed
4584193323SedSDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4585193323Sed                                   SDVTList VTs, const SDValue *Ops,
4586193323Sed                                   unsigned NumOps) {
4587193323Sed  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4588193323Sed}
4589193323Sed
4590193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4591198090Srdivacky                                  EVT VT) {
4592193323Sed  SDVTList VTs = getVTList(VT);
4593193323Sed  return MorphNodeTo(N, Opc, VTs, 0, 0);
4594193323Sed}
4595193323Sed
4596193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4597198090Srdivacky                                  EVT VT, SDValue Op1) {
4598193323Sed  SDVTList VTs = getVTList(VT);
4599193323Sed  SDValue Ops[] = { Op1 };
4600193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4601193323Sed}
4602193323Sed
4603193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4604198090Srdivacky                                  EVT VT, SDValue Op1,
4605193323Sed                                  SDValue Op2) {
4606193323Sed  SDVTList VTs = getVTList(VT);
4607193323Sed  SDValue Ops[] = { Op1, Op2 };
4608193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4609193323Sed}
4610193323Sed
4611193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4612198090Srdivacky                                  EVT VT, SDValue Op1,
4613193323Sed                                  SDValue Op2, SDValue Op3) {
4614193323Sed  SDVTList VTs = getVTList(VT);
4615193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4616193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4617193323Sed}
4618193323Sed
4619193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4620198090Srdivacky                                  EVT VT, const SDValue *Ops,
4621193323Sed                                  unsigned NumOps) {
4622193323Sed  SDVTList VTs = getVTList(VT);
4623193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4624193323Sed}
4625193323Sed
4626193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4627198090Srdivacky                                  EVT VT1, EVT VT2, const SDValue *Ops,
4628193323Sed                                  unsigned NumOps) {
4629193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4630193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4631193323Sed}
4632193323Sed
4633193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4634198090Srdivacky                                  EVT VT1, EVT VT2) {
4635193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4636193323Sed  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4637193323Sed}
4638193323Sed
4639193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4640198090Srdivacky                                  EVT VT1, EVT VT2, EVT VT3,
4641193323Sed                                  const SDValue *Ops, unsigned NumOps) {
4642193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4643193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4644193323Sed}
4645193323Sed
4646193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4647198090Srdivacky                                  EVT VT1, EVT VT2,
4648193323Sed                                  SDValue Op1) {
4649193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4650193323Sed  SDValue Ops[] = { Op1 };
4651193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4652193323Sed}
4653193323Sed
4654193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4655198090Srdivacky                                  EVT VT1, EVT VT2,
4656193323Sed                                  SDValue Op1, SDValue Op2) {
4657193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4658193323Sed  SDValue Ops[] = { Op1, Op2 };
4659193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4660193323Sed}
4661193323Sed
4662193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4663198090Srdivacky                                  EVT VT1, EVT VT2,
4664193323Sed                                  SDValue Op1, SDValue Op2,
4665193323Sed                                  SDValue Op3) {
4666193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4667193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4668193323Sed  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4669193323Sed}
4670193323Sed
4671193323Sed/// MorphNodeTo - These *mutate* the specified node to have the specified
4672193323Sed/// return type, opcode, and operands.
4673193323Sed///
4674193323Sed/// Note that MorphNodeTo returns the resultant node.  If there is already a
4675193323Sed/// node of the specified opcode and operands, it returns that node instead of
4676193323Sed/// the current one.  Note that the DebugLoc need not be the same.
4677193323Sed///
4678193323Sed/// Using MorphNodeTo is faster than creating a new node and swapping it in
4679193323Sed/// with ReplaceAllUsesWith both because it often avoids allocating a new
4680193323Sed/// node, and because it doesn't require CSE recalculation for any of
4681193323Sed/// the node's users.
4682193323Sed///
4683193323SedSDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4684193323Sed                                  SDVTList VTs, const SDValue *Ops,
4685193323Sed                                  unsigned NumOps) {
4686193323Sed  // If an identical node already exists, use it.
4687193323Sed  void *IP = 0;
4688193323Sed  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4689193323Sed    FoldingSetNodeID ID;
4690193323Sed    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4691200581Srdivacky    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4692200581Srdivacky      if (Ordering) Ordering->add(ON);
4693193323Sed      return ON;
4694200581Srdivacky    }
4695193323Sed  }
4696193323Sed
4697193323Sed  if (!RemoveNodeFromCSEMaps(N))
4698193323Sed    IP = 0;
4699193323Sed
4700193323Sed  // Start the morphing.
4701193323Sed  N->NodeType = Opc;
4702193323Sed  N->ValueList = VTs.VTs;
4703193323Sed  N->NumValues = VTs.NumVTs;
4704193323Sed
4705193323Sed  // Clear the operands list, updating used nodes to remove this from their
4706193323Sed  // use list.  Keep track of any operands that become dead as a result.
4707193323Sed  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4708193323Sed  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4709193323Sed    SDUse &Use = *I++;
4710193323Sed    SDNode *Used = Use.getNode();
4711193323Sed    Use.set(SDValue());
4712193323Sed    if (Used->use_empty())
4713193323Sed      DeadNodeSet.insert(Used);
4714193323Sed  }
4715193323Sed
4716198090Srdivacky  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4717198090Srdivacky    // Initialize the memory references information.
4718198090Srdivacky    MN->setMemRefs(0, 0);
4719198090Srdivacky    // If NumOps is larger than the # of operands we can have in a
4720198090Srdivacky    // MachineSDNode, reallocate the operand list.
4721198090Srdivacky    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4722198090Srdivacky      if (MN->OperandsNeedDelete)
4723198090Srdivacky        delete[] MN->OperandList;
4724198090Srdivacky      if (NumOps > array_lengthof(MN->LocalOperands))
4725198090Srdivacky        // We're creating a final node that will live unmorphed for the
4726198090Srdivacky        // remainder of the current SelectionDAG iteration, so we can allocate
4727198090Srdivacky        // the operands directly out of a pool with no recycling metadata.
4728198090Srdivacky        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4729198090Srdivacky                        Ops, NumOps);
4730198090Srdivacky      else
4731198090Srdivacky        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4732198090Srdivacky      MN->OperandsNeedDelete = false;
4733198090Srdivacky    } else
4734198090Srdivacky      MN->InitOperands(MN->OperandList, Ops, NumOps);
4735198090Srdivacky  } else {
4736198090Srdivacky    // If NumOps is larger than the # of operands we currently have, reallocate
4737198090Srdivacky    // the operand list.
4738198090Srdivacky    if (NumOps > N->NumOperands) {
4739198090Srdivacky      if (N->OperandsNeedDelete)
4740198090Srdivacky        delete[] N->OperandList;
4741198090Srdivacky      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4742193323Sed      N->OperandsNeedDelete = true;
4743198090Srdivacky    } else
4744198396Srdivacky      N->InitOperands(N->OperandList, Ops, NumOps);
4745193323Sed  }
4746193323Sed
4747193323Sed  // Delete any nodes that are still dead after adding the uses for the
4748193323Sed  // new operands.
4749193323Sed  SmallVector<SDNode *, 16> DeadNodes;
4750193323Sed  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4751193323Sed       E = DeadNodeSet.end(); I != E; ++I)
4752193323Sed    if ((*I)->use_empty())
4753193323Sed      DeadNodes.push_back(*I);
4754193323Sed  RemoveDeadNodes(DeadNodes);
4755193323Sed
4756193323Sed  if (IP)
4757193323Sed    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4758200581Srdivacky  if (Ordering) Ordering->add(N);
4759193323Sed  return N;
4760193323Sed}
4761193323Sed
4762193323Sed
4763198090Srdivacky/// getMachineNode - These are used for target selectors to create a new node
4764198090Srdivacky/// with specified return type(s), MachineInstr opcode, and operands.
4765193323Sed///
4766198090Srdivacky/// Note that getMachineNode returns the resultant node.  If there is already a
4767193323Sed/// node of the specified opcode and operands, it returns that node instead of
4768193323Sed/// the current one.
4769198090SrdivackyMachineSDNode *
4770198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4771198090Srdivacky  SDVTList VTs = getVTList(VT);
4772198090Srdivacky  return getMachineNode(Opcode, dl, VTs, 0, 0);
4773193323Sed}
4774193323Sed
4775198090SrdivackyMachineSDNode *
4776198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4777198090Srdivacky  SDVTList VTs = getVTList(VT);
4778198090Srdivacky  SDValue Ops[] = { Op1 };
4779198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4780193323Sed}
4781193323Sed
4782198090SrdivackyMachineSDNode *
4783198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4784198090Srdivacky                             SDValue Op1, SDValue Op2) {
4785198090Srdivacky  SDVTList VTs = getVTList(VT);
4786198090Srdivacky  SDValue Ops[] = { Op1, Op2 };
4787198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4788193323Sed}
4789193323Sed
4790198090SrdivackyMachineSDNode *
4791198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4792198090Srdivacky                             SDValue Op1, SDValue Op2, SDValue Op3) {
4793198090Srdivacky  SDVTList VTs = getVTList(VT);
4794198090Srdivacky  SDValue Ops[] = { Op1, Op2, Op3 };
4795198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4796193323Sed}
4797193323Sed
4798198090SrdivackyMachineSDNode *
4799198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4800198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4801198090Srdivacky  SDVTList VTs = getVTList(VT);
4802198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4803193323Sed}
4804193323Sed
4805198090SrdivackyMachineSDNode *
4806198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4807193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4808198090Srdivacky  return getMachineNode(Opcode, dl, VTs, 0, 0);
4809193323Sed}
4810193323Sed
4811198090SrdivackyMachineSDNode *
4812198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4813198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1) {
4814193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4815198090Srdivacky  SDValue Ops[] = { Op1 };
4816198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4817193323Sed}
4818193323Sed
4819198090SrdivackyMachineSDNode *
4820198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4821198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4822193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4823193323Sed  SDValue Ops[] = { Op1, Op2 };
4824198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4825193323Sed}
4826193323Sed
4827198090SrdivackyMachineSDNode *
4828198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4829198090Srdivacky                             EVT VT1, EVT VT2, SDValue Op1,
4830198090Srdivacky                             SDValue Op2, SDValue Op3) {
4831193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4832193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4833198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4834193323Sed}
4835193323Sed
4836198090SrdivackyMachineSDNode *
4837198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4838198090Srdivacky                             EVT VT1, EVT VT2,
4839198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4840193323Sed  SDVTList VTs = getVTList(VT1, VT2);
4841198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4842193323Sed}
4843193323Sed
4844198090SrdivackyMachineSDNode *
4845198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4846198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4847198090Srdivacky                             SDValue Op1, SDValue Op2) {
4848193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4849193323Sed  SDValue Ops[] = { Op1, Op2 };
4850198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4851193323Sed}
4852193323Sed
4853198090SrdivackyMachineSDNode *
4854198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4855198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4856198090Srdivacky                             SDValue Op1, SDValue Op2, SDValue Op3) {
4857193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4858193323Sed  SDValue Ops[] = { Op1, Op2, Op3 };
4859198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4860193323Sed}
4861193323Sed
4862198090SrdivackyMachineSDNode *
4863198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4864198090Srdivacky                             EVT VT1, EVT VT2, EVT VT3,
4865198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4866193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3);
4867198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4868193323Sed}
4869193323Sed
4870198090SrdivackyMachineSDNode *
4871198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4872198090Srdivacky                             EVT VT2, EVT VT3, EVT VT4,
4873198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4874193323Sed  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4875198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4876193323Sed}
4877193323Sed
4878198090SrdivackyMachineSDNode *
4879198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4880198090Srdivacky                             const std::vector<EVT> &ResultTys,
4881198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4882198090Srdivacky  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4883198090Srdivacky  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4884193323Sed}
4885193323Sed
4886198090SrdivackyMachineSDNode *
4887198090SrdivackySelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4888198090Srdivacky                             const SDValue *Ops, unsigned NumOps) {
4889198090Srdivacky  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4890198090Srdivacky  MachineSDNode *N;
4891198090Srdivacky  void *IP;
4892198090Srdivacky
4893198090Srdivacky  if (DoCSE) {
4894198090Srdivacky    FoldingSetNodeID ID;
4895198090Srdivacky    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4896198090Srdivacky    IP = 0;
4897200581Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4898200581Srdivacky      if (Ordering) Ordering->add(E);
4899198090Srdivacky      return cast<MachineSDNode>(E);
4900200581Srdivacky    }
4901198090Srdivacky  }
4902198090Srdivacky
4903198090Srdivacky  // Allocate a new MachineSDNode.
4904198090Srdivacky  N = NodeAllocator.Allocate<MachineSDNode>();
4905198090Srdivacky  new (N) MachineSDNode(~Opcode, DL, VTs);
4906198090Srdivacky
4907198090Srdivacky  // Initialize the operands list.
4908198090Srdivacky  if (NumOps > array_lengthof(N->LocalOperands))
4909198090Srdivacky    // We're creating a final node that will live unmorphed for the
4910198090Srdivacky    // remainder of the current SelectionDAG iteration, so we can allocate
4911198090Srdivacky    // the operands directly out of a pool with no recycling metadata.
4912198090Srdivacky    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4913198090Srdivacky                    Ops, NumOps);
4914198090Srdivacky  else
4915198090Srdivacky    N->InitOperands(N->LocalOperands, Ops, NumOps);
4916198090Srdivacky  N->OperandsNeedDelete = false;
4917198090Srdivacky
4918198090Srdivacky  if (DoCSE)
4919198090Srdivacky    CSEMap.InsertNode(N, IP);
4920198090Srdivacky
4921198090Srdivacky  AllNodes.push_back(N);
4922200581Srdivacky  if (Ordering) Ordering->add(N);
4923198090Srdivacky#ifndef NDEBUG
4924198090Srdivacky  VerifyNode(N);
4925198090Srdivacky#endif
4926198090Srdivacky  return N;
4927198090Srdivacky}
4928198090Srdivacky
4929198090Srdivacky/// getTargetExtractSubreg - A convenience function for creating
4930198090Srdivacky/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4931198090SrdivackySDValue
4932198090SrdivackySelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4933198090Srdivacky                                     SDValue Operand) {
4934198090Srdivacky  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4935198090Srdivacky  SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4936198090Srdivacky                                  VT, Operand, SRIdxVal);
4937198090Srdivacky  return SDValue(Subreg, 0);
4938198090Srdivacky}
4939198090Srdivacky
4940198090Srdivacky/// getTargetInsertSubreg - A convenience function for creating
4941198090Srdivacky/// TargetInstrInfo::INSERT_SUBREG nodes.
4942198090SrdivackySDValue
4943198090SrdivackySelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4944198090Srdivacky                                    SDValue Operand, SDValue Subreg) {
4945198090Srdivacky  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4946198090Srdivacky  SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
4947198090Srdivacky                                  VT, Operand, Subreg, SRIdxVal);
4948198090Srdivacky  return SDValue(Result, 0);
4949198090Srdivacky}
4950198090Srdivacky
4951193323Sed/// getNodeIfExists - Get the specified node if it's already available, or
4952193323Sed/// else return NULL.
4953193323SedSDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4954193323Sed                                      const SDValue *Ops, unsigned NumOps) {
4955193323Sed  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4956193323Sed    FoldingSetNodeID ID;
4957193323Sed    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4958193323Sed    void *IP = 0;
4959200581Srdivacky    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4960200581Srdivacky      if (Ordering) Ordering->add(E);
4961193323Sed      return E;
4962200581Srdivacky    }
4963193323Sed  }
4964193323Sed  return NULL;
4965193323Sed}
4966193323Sed
4967193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4968193323Sed/// This can cause recursive merging of nodes in the DAG.
4969193323Sed///
4970193323Sed/// This version assumes From has a single result value.
4971193323Sed///
4972193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4973193323Sed                                      DAGUpdateListener *UpdateListener) {
4974193323Sed  SDNode *From = FromN.getNode();
4975193323Sed  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4976193323Sed         "Cannot replace with this method!");
4977193323Sed  assert(From != To.getNode() && "Cannot replace uses of with self");
4978193323Sed
4979193323Sed  // Iterate over all the existing uses of From. New uses will be added
4980193323Sed  // to the beginning of the use list, which we avoid visiting.
4981193323Sed  // This specifically avoids visiting uses of From that arise while the
4982193323Sed  // replacement is happening, because any such uses would be the result
4983193323Sed  // of CSE: If an existing node looks like From after one of its operands
4984193323Sed  // is replaced by To, we don't want to replace of all its users with To
4985193323Sed  // too. See PR3018 for more info.
4986193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4987193323Sed  while (UI != UE) {
4988193323Sed    SDNode *User = *UI;
4989193323Sed
4990193323Sed    // This node is about to morph, remove its old self from the CSE maps.
4991193323Sed    RemoveNodeFromCSEMaps(User);
4992193323Sed
4993193323Sed    // A user can appear in a use list multiple times, and when this
4994193323Sed    // happens the uses are usually next to each other in the list.
4995193323Sed    // To help reduce the number of CSE recomputations, process all
4996193323Sed    // the uses of this user that we can find this way.
4997193323Sed    do {
4998193323Sed      SDUse &Use = UI.getUse();
4999193323Sed      ++UI;
5000193323Sed      Use.set(To);
5001193323Sed    } while (UI != UE && *UI == User);
5002193323Sed
5003193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5004193323Sed    // already exists there, recursively merge the results together.
5005193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
5006193323Sed  }
5007193323Sed}
5008193323Sed
5009193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5010193323Sed/// This can cause recursive merging of nodes in the DAG.
5011193323Sed///
5012193323Sed/// This version assumes that for each value of From, there is a
5013193323Sed/// corresponding value in To in the same position with the same type.
5014193323Sed///
5015193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5016193323Sed                                      DAGUpdateListener *UpdateListener) {
5017193323Sed#ifndef NDEBUG
5018193323Sed  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5019193323Sed    assert((!From->hasAnyUseOfValue(i) ||
5020193323Sed            From->getValueType(i) == To->getValueType(i)) &&
5021193323Sed           "Cannot use this version of ReplaceAllUsesWith!");
5022193323Sed#endif
5023193323Sed
5024193323Sed  // Handle the trivial case.
5025193323Sed  if (From == To)
5026193323Sed    return;
5027193323Sed
5028193323Sed  // Iterate over just the existing users of From. See the comments in
5029193323Sed  // the ReplaceAllUsesWith above.
5030193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5031193323Sed  while (UI != UE) {
5032193323Sed    SDNode *User = *UI;
5033193323Sed
5034193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5035193323Sed    RemoveNodeFromCSEMaps(User);
5036193323Sed
5037193323Sed    // A user can appear in a use list multiple times, and when this
5038193323Sed    // happens the uses are usually next to each other in the list.
5039193323Sed    // To help reduce the number of CSE recomputations, process all
5040193323Sed    // the uses of this user that we can find this way.
5041193323Sed    do {
5042193323Sed      SDUse &Use = UI.getUse();
5043193323Sed      ++UI;
5044193323Sed      Use.setNode(To);
5045193323Sed    } while (UI != UE && *UI == User);
5046193323Sed
5047193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5048193323Sed    // already exists there, recursively merge the results together.
5049193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
5050193323Sed  }
5051193323Sed}
5052193323Sed
5053193323Sed/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5054193323Sed/// This can cause recursive merging of nodes in the DAG.
5055193323Sed///
5056193323Sed/// This version can replace From with any result values.  To must match the
5057193323Sed/// number and types of values returned by From.
5058193323Sedvoid SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5059193323Sed                                      const SDValue *To,
5060193323Sed                                      DAGUpdateListener *UpdateListener) {
5061193323Sed  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5062193323Sed    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5063193323Sed
5064193323Sed  // Iterate over just the existing users of From. See the comments in
5065193323Sed  // the ReplaceAllUsesWith above.
5066193323Sed  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5067193323Sed  while (UI != UE) {
5068193323Sed    SDNode *User = *UI;
5069193323Sed
5070193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5071193323Sed    RemoveNodeFromCSEMaps(User);
5072193323Sed
5073193323Sed    // A user can appear in a use list multiple times, and when this
5074193323Sed    // happens the uses are usually next to each other in the list.
5075193323Sed    // To help reduce the number of CSE recomputations, process all
5076193323Sed    // the uses of this user that we can find this way.
5077193323Sed    do {
5078193323Sed      SDUse &Use = UI.getUse();
5079193323Sed      const SDValue &ToOp = To[Use.getResNo()];
5080193323Sed      ++UI;
5081193323Sed      Use.set(ToOp);
5082193323Sed    } while (UI != UE && *UI == User);
5083193323Sed
5084193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5085193323Sed    // already exists there, recursively merge the results together.
5086193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
5087193323Sed  }
5088193323Sed}
5089193323Sed
5090193323Sed/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5091193323Sed/// uses of other values produced by From.getNode() alone.  The Deleted
5092193323Sed/// vector is handled the same way as for ReplaceAllUsesWith.
5093193323Sedvoid SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5094193323Sed                                             DAGUpdateListener *UpdateListener){
5095193323Sed  // Handle the really simple, really trivial case efficiently.
5096193323Sed  if (From == To) return;
5097193323Sed
5098193323Sed  // Handle the simple, trivial, case efficiently.
5099193323Sed  if (From.getNode()->getNumValues() == 1) {
5100193323Sed    ReplaceAllUsesWith(From, To, UpdateListener);
5101193323Sed    return;
5102193323Sed  }
5103193323Sed
5104193323Sed  // Iterate over just the existing users of From. See the comments in
5105193323Sed  // the ReplaceAllUsesWith above.
5106193323Sed  SDNode::use_iterator UI = From.getNode()->use_begin(),
5107193323Sed                       UE = From.getNode()->use_end();
5108193323Sed  while (UI != UE) {
5109193323Sed    SDNode *User = *UI;
5110193323Sed    bool UserRemovedFromCSEMaps = false;
5111193323Sed
5112193323Sed    // A user can appear in a use list multiple times, and when this
5113193323Sed    // happens the uses are usually next to each other in the list.
5114193323Sed    // To help reduce the number of CSE recomputations, process all
5115193323Sed    // the uses of this user that we can find this way.
5116193323Sed    do {
5117193323Sed      SDUse &Use = UI.getUse();
5118193323Sed
5119193323Sed      // Skip uses of different values from the same node.
5120193323Sed      if (Use.getResNo() != From.getResNo()) {
5121193323Sed        ++UI;
5122193323Sed        continue;
5123193323Sed      }
5124193323Sed
5125193323Sed      // If this node hasn't been modified yet, it's still in the CSE maps,
5126193323Sed      // so remove its old self from the CSE maps.
5127193323Sed      if (!UserRemovedFromCSEMaps) {
5128193323Sed        RemoveNodeFromCSEMaps(User);
5129193323Sed        UserRemovedFromCSEMaps = true;
5130193323Sed      }
5131193323Sed
5132193323Sed      ++UI;
5133193323Sed      Use.set(To);
5134193323Sed    } while (UI != UE && *UI == User);
5135193323Sed
5136193323Sed    // We are iterating over all uses of the From node, so if a use
5137193323Sed    // doesn't use the specific value, no changes are made.
5138193323Sed    if (!UserRemovedFromCSEMaps)
5139193323Sed      continue;
5140193323Sed
5141193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5142193323Sed    // already exists there, recursively merge the results together.
5143193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
5144193323Sed  }
5145193323Sed}
5146193323Sed
5147193323Sednamespace {
5148193323Sed  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5149193323Sed  /// to record information about a use.
5150193323Sed  struct UseMemo {
5151193323Sed    SDNode *User;
5152193323Sed    unsigned Index;
5153193323Sed    SDUse *Use;
5154193323Sed  };
5155193323Sed
5156193323Sed  /// operator< - Sort Memos by User.
5157193323Sed  bool operator<(const UseMemo &L, const UseMemo &R) {
5158193323Sed    return (intptr_t)L.User < (intptr_t)R.User;
5159193323Sed  }
5160193323Sed}
5161193323Sed
5162193323Sed/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5163193323Sed/// uses of other values produced by From.getNode() alone.  The same value
5164193323Sed/// may appear in both the From and To list.  The Deleted vector is
5165193323Sed/// handled the same way as for ReplaceAllUsesWith.
5166193323Sedvoid SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5167193323Sed                                              const SDValue *To,
5168193323Sed                                              unsigned Num,
5169193323Sed                                              DAGUpdateListener *UpdateListener){
5170193323Sed  // Handle the simple, trivial case efficiently.
5171193323Sed  if (Num == 1)
5172193323Sed    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5173193323Sed
5174193323Sed  // Read up all the uses and make records of them. This helps
5175193323Sed  // processing new uses that are introduced during the
5176193323Sed  // replacement process.
5177193323Sed  SmallVector<UseMemo, 4> Uses;
5178193323Sed  for (unsigned i = 0; i != Num; ++i) {
5179193323Sed    unsigned FromResNo = From[i].getResNo();
5180193323Sed    SDNode *FromNode = From[i].getNode();
5181193323Sed    for (SDNode::use_iterator UI = FromNode->use_begin(),
5182193323Sed         E = FromNode->use_end(); UI != E; ++UI) {
5183193323Sed      SDUse &Use = UI.getUse();
5184193323Sed      if (Use.getResNo() == FromResNo) {
5185193323Sed        UseMemo Memo = { *UI, i, &Use };
5186193323Sed        Uses.push_back(Memo);
5187193323Sed      }
5188193323Sed    }
5189193323Sed  }
5190193323Sed
5191193323Sed  // Sort the uses, so that all the uses from a given User are together.
5192193323Sed  std::sort(Uses.begin(), Uses.end());
5193193323Sed
5194193323Sed  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5195193323Sed       UseIndex != UseIndexEnd; ) {
5196193323Sed    // We know that this user uses some value of From.  If it is the right
5197193323Sed    // value, update it.
5198193323Sed    SDNode *User = Uses[UseIndex].User;
5199193323Sed
5200193323Sed    // This node is about to morph, remove its old self from the CSE maps.
5201193323Sed    RemoveNodeFromCSEMaps(User);
5202193323Sed
5203193323Sed    // The Uses array is sorted, so all the uses for a given User
5204193323Sed    // are next to each other in the list.
5205193323Sed    // To help reduce the number of CSE recomputations, process all
5206193323Sed    // the uses of this user that we can find this way.
5207193323Sed    do {
5208193323Sed      unsigned i = Uses[UseIndex].Index;
5209193323Sed      SDUse &Use = *Uses[UseIndex].Use;
5210193323Sed      ++UseIndex;
5211193323Sed
5212193323Sed      Use.set(To[i]);
5213193323Sed    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5214193323Sed
5215193323Sed    // Now that we have modified User, add it back to the CSE maps.  If it
5216193323Sed    // already exists there, recursively merge the results together.
5217193323Sed    AddModifiedNodeToCSEMaps(User, UpdateListener);
5218193323Sed  }
5219193323Sed}
5220193323Sed
5221193323Sed/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5222193323Sed/// based on their topological order. It returns the maximum id and a vector
5223193323Sed/// of the SDNodes* in assigned order by reference.
5224193323Sedunsigned SelectionDAG::AssignTopologicalOrder() {
5225193323Sed
5226193323Sed  unsigned DAGSize = 0;
5227193323Sed
5228193323Sed  // SortedPos tracks the progress of the algorithm. Nodes before it are
5229193323Sed  // sorted, nodes after it are unsorted. When the algorithm completes
5230193323Sed  // it is at the end of the list.
5231193323Sed  allnodes_iterator SortedPos = allnodes_begin();
5232193323Sed
5233193323Sed  // Visit all the nodes. Move nodes with no operands to the front of
5234193323Sed  // the list immediately. Annotate nodes that do have operands with their
5235193323Sed  // operand count. Before we do this, the Node Id fields of the nodes
5236193323Sed  // may contain arbitrary values. After, the Node Id fields for nodes
5237193323Sed  // before SortedPos will contain the topological sort index, and the
5238193323Sed  // Node Id fields for nodes At SortedPos and after will contain the
5239193323Sed  // count of outstanding operands.
5240193323Sed  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5241193323Sed    SDNode *N = I++;
5242193323Sed    unsigned Degree = N->getNumOperands();
5243193323Sed    if (Degree == 0) {
5244193323Sed      // A node with no uses, add it to the result array immediately.
5245193323Sed      N->setNodeId(DAGSize++);
5246193323Sed      allnodes_iterator Q = N;
5247193323Sed      if (Q != SortedPos)
5248193323Sed        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5249193323Sed      ++SortedPos;
5250193323Sed    } else {
5251193323Sed      // Temporarily use the Node Id as scratch space for the degree count.
5252193323Sed      N->setNodeId(Degree);
5253193323Sed    }
5254193323Sed  }
5255193323Sed
5256193323Sed  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5257193323Sed  // such that by the time the end is reached all nodes will be sorted.
5258193323Sed  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5259193323Sed    SDNode *N = I;
5260193323Sed    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5261193323Sed         UI != UE; ++UI) {
5262193323Sed      SDNode *P = *UI;
5263193323Sed      unsigned Degree = P->getNodeId();
5264193323Sed      --Degree;
5265193323Sed      if (Degree == 0) {
5266193323Sed        // All of P's operands are sorted, so P may sorted now.
5267193323Sed        P->setNodeId(DAGSize++);
5268193323Sed        if (P != SortedPos)
5269193323Sed          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5270193323Sed        ++SortedPos;
5271193323Sed      } else {
5272193323Sed        // Update P's outstanding operand count.
5273193323Sed        P->setNodeId(Degree);
5274193323Sed      }
5275193323Sed    }
5276193323Sed  }
5277193323Sed
5278193323Sed  assert(SortedPos == AllNodes.end() &&
5279193323Sed         "Topological sort incomplete!");
5280193323Sed  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5281193323Sed         "First node in topological sort is not the entry token!");
5282193323Sed  assert(AllNodes.front().getNodeId() == 0 &&
5283193323Sed         "First node in topological sort has non-zero id!");
5284193323Sed  assert(AllNodes.front().getNumOperands() == 0 &&
5285193323Sed         "First node in topological sort has operands!");
5286193323Sed  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5287193323Sed         "Last node in topologic sort has unexpected id!");
5288193323Sed  assert(AllNodes.back().use_empty() &&
5289193323Sed         "Last node in topologic sort has users!");
5290193323Sed  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5291193323Sed  return DAGSize;
5292193323Sed}
5293193323Sed
5294193323Sed
5295193323Sed
5296193323Sed//===----------------------------------------------------------------------===//
5297193323Sed//                              SDNode Class
5298193323Sed//===----------------------------------------------------------------------===//
5299193323Sed
5300193323SedHandleSDNode::~HandleSDNode() {
5301193323Sed  DropOperands();
5302193323Sed}
5303193323Sed
5304195098SedGlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5305198090Srdivacky                                         EVT VT, int64_t o, unsigned char TF)
5306195098Sed  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5307195098Sed    Offset(o), TargetFlags(TF) {
5308193323Sed  TheGlobal = const_cast<GlobalValue*>(GA);
5309193323Sed}
5310193323Sed
5311198090SrdivackyMemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5312198090Srdivacky                     MachineMemOperand *mmo)
5313198090Srdivacky : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5314198090Srdivacky  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5315198090Srdivacky  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5316198090Srdivacky  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5317193323Sed}
5318193323Sed
5319193323SedMemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5320198090Srdivacky                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5321198090Srdivacky                     MachineMemOperand *mmo)
5322193323Sed   : SDNode(Opc, dl, VTs, Ops, NumOps),
5323198090Srdivacky     MemoryVT(memvt), MMO(mmo) {
5324198090Srdivacky  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5325198090Srdivacky  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5326198090Srdivacky  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5327193323Sed}
5328193323Sed
5329193323Sed/// Profile - Gather unique data for the node.
5330193323Sed///
5331193323Sedvoid SDNode::Profile(FoldingSetNodeID &ID) const {
5332193323Sed  AddNodeIDNode(ID, this);
5333193323Sed}
5334193323Sed
5335198090Srdivackynamespace {
5336198090Srdivacky  struct EVTArray {
5337198090Srdivacky    std::vector<EVT> VTs;
5338198090Srdivacky
5339198090Srdivacky    EVTArray() {
5340198090Srdivacky      VTs.reserve(MVT::LAST_VALUETYPE);
5341198090Srdivacky      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5342198090Srdivacky        VTs.push_back(MVT((MVT::SimpleValueType)i));
5343198090Srdivacky    }
5344198090Srdivacky  };
5345198090Srdivacky}
5346198090Srdivacky
5347198090Srdivackystatic ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5348198090Srdivackystatic ManagedStatic<EVTArray> SimpleVTArray;
5349195098Sedstatic ManagedStatic<sys::SmartMutex<true> > VTMutex;
5350195098Sed
5351193323Sed/// getValueTypeList - Return a pointer to the specified value type.
5352193323Sed///
5353198090Srdivackyconst EVT *SDNode::getValueTypeList(EVT VT) {
5354193323Sed  if (VT.isExtended()) {
5355198090Srdivacky    sys::SmartScopedLock<true> Lock(*VTMutex);
5356195098Sed    return &(*EVTs->insert(VT).first);
5357193323Sed  } else {
5358198090Srdivacky    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5359193323Sed  }
5360193323Sed}
5361193323Sed
5362193323Sed/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5363193323Sed/// indicated value.  This method ignores uses of other values defined by this
5364193323Sed/// operation.
5365193323Sedbool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5366193323Sed  assert(Value < getNumValues() && "Bad value!");
5367193323Sed
5368193323Sed  // TODO: Only iterate over uses of a given value of the node
5369193323Sed  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5370193323Sed    if (UI.getUse().getResNo() == Value) {
5371193323Sed      if (NUses == 0)
5372193323Sed        return false;
5373193323Sed      --NUses;
5374193323Sed    }
5375193323Sed  }
5376193323Sed
5377193323Sed  // Found exactly the right number of uses?
5378193323Sed  return NUses == 0;
5379193323Sed}
5380193323Sed
5381193323Sed
5382193323Sed/// hasAnyUseOfValue - Return true if there are any use of the indicated
5383193323Sed/// value. This method ignores uses of other values defined by this operation.
5384193323Sedbool SDNode::hasAnyUseOfValue(unsigned Value) const {
5385193323Sed  assert(Value < getNumValues() && "Bad value!");
5386193323Sed
5387193323Sed  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5388193323Sed    if (UI.getUse().getResNo() == Value)
5389193323Sed      return true;
5390193323Sed
5391193323Sed  return false;
5392193323Sed}
5393193323Sed
5394193323Sed
5395193323Sed/// isOnlyUserOf - Return true if this node is the only use of N.
5396193323Sed///
5397193323Sedbool SDNode::isOnlyUserOf(SDNode *N) const {
5398193323Sed  bool Seen = false;
5399193323Sed  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5400193323Sed    SDNode *User = *I;
5401193323Sed    if (User == this)
5402193323Sed      Seen = true;
5403193323Sed    else
5404193323Sed      return false;
5405193323Sed  }
5406193323Sed
5407193323Sed  return Seen;
5408193323Sed}
5409193323Sed
5410193323Sed/// isOperand - Return true if this node is an operand of N.
5411193323Sed///
5412193323Sedbool SDValue::isOperandOf(SDNode *N) const {
5413193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5414193323Sed    if (*this == N->getOperand(i))
5415193323Sed      return true;
5416193323Sed  return false;
5417193323Sed}
5418193323Sed
5419193323Sedbool SDNode::isOperandOf(SDNode *N) const {
5420193323Sed  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5421193323Sed    if (this == N->OperandList[i].getNode())
5422193323Sed      return true;
5423193323Sed  return false;
5424193323Sed}
5425193323Sed
5426193323Sed/// reachesChainWithoutSideEffects - Return true if this operand (which must
5427193323Sed/// be a chain) reaches the specified operand without crossing any
5428193323Sed/// side-effecting instructions.  In practice, this looks through token
5429193323Sed/// factors and non-volatile loads.  In order to remain efficient, this only
5430193323Sed/// looks a couple of nodes in, it does not do an exhaustive search.
5431193323Sedbool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5432193323Sed                                               unsigned Depth) const {
5433193323Sed  if (*this == Dest) return true;
5434193323Sed
5435193323Sed  // Don't search too deeply, we just want to be able to see through
5436193323Sed  // TokenFactor's etc.
5437193323Sed  if (Depth == 0) return false;
5438193323Sed
5439193323Sed  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5440193323Sed  // of the operands of the TF reach dest, then we can do the xform.
5441193323Sed  if (getOpcode() == ISD::TokenFactor) {
5442193323Sed    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5443193323Sed      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5444193323Sed        return true;
5445193323Sed    return false;
5446193323Sed  }
5447193323Sed
5448193323Sed  // Loads don't have side effects, look through them.
5449193323Sed  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5450193323Sed    if (!Ld->isVolatile())
5451193323Sed      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5452193323Sed  }
5453193323Sed  return false;
5454193323Sed}
5455193323Sed
5456193323Sed/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5457198892Srdivacky/// is either an operand of N or it can be reached by traversing up the operands.
5458193323Sed/// NOTE: this is an expensive method. Use it carefully.
5459193323Sedbool SDNode::isPredecessorOf(SDNode *N) const {
5460193323Sed  SmallPtrSet<SDNode *, 32> Visited;
5461198892Srdivacky  SmallVector<SDNode *, 16> Worklist;
5462198892Srdivacky  Worklist.push_back(N);
5463198892Srdivacky
5464198892Srdivacky  do {
5465198892Srdivacky    N = Worklist.pop_back_val();
5466198892Srdivacky    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5467198892Srdivacky      SDNode *Op = N->getOperand(i).getNode();
5468198892Srdivacky      if (Op == this)
5469198892Srdivacky        return true;
5470198892Srdivacky      if (Visited.insert(Op))
5471198892Srdivacky        Worklist.push_back(Op);
5472198892Srdivacky    }
5473198892Srdivacky  } while (!Worklist.empty());
5474198892Srdivacky
5475198892Srdivacky  return false;
5476193323Sed}
5477193323Sed
5478193323Seduint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5479193323Sed  assert(Num < NumOperands && "Invalid child # of SDNode!");
5480193323Sed  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5481193323Sed}
5482193323Sed
5483193323Sedstd::string SDNode::getOperationName(const SelectionDAG *G) const {
5484193323Sed  switch (getOpcode()) {
5485193323Sed  default:
5486193323Sed    if (getOpcode() < ISD::BUILTIN_OP_END)
5487193323Sed      return "<<Unknown DAG Node>>";
5488193323Sed    if (isMachineOpcode()) {
5489193323Sed      if (G)
5490193323Sed        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5491193323Sed          if (getMachineOpcode() < TII->getNumOpcodes())
5492193323Sed            return TII->get(getMachineOpcode()).getName();
5493193323Sed      return "<<Unknown Machine Node>>";
5494193323Sed    }
5495193323Sed    if (G) {
5496193323Sed      const TargetLowering &TLI = G->getTargetLoweringInfo();
5497193323Sed      const char *Name = TLI.getTargetNodeName(getOpcode());
5498193323Sed      if (Name) return Name;
5499193323Sed      return "<<Unknown Target Node>>";
5500193323Sed    }
5501193323Sed    return "<<Unknown Node>>";
5502193323Sed
5503193323Sed#ifndef NDEBUG
5504193323Sed  case ISD::DELETED_NODE:
5505193323Sed    return "<<Deleted Node!>>";
5506193323Sed#endif
5507193323Sed  case ISD::PREFETCH:      return "Prefetch";
5508193323Sed  case ISD::MEMBARRIER:    return "MemBarrier";
5509193323Sed  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5510193323Sed  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5511193323Sed  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5512193323Sed  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5513193323Sed  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5514193323Sed  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5515193323Sed  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5516193323Sed  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5517193323Sed  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5518193323Sed  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5519193323Sed  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5520193323Sed  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5521193323Sed  case ISD::PCMARKER:      return "PCMarker";
5522193323Sed  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5523193323Sed  case ISD::SRCVALUE:      return "SrcValue";
5524193323Sed  case ISD::EntryToken:    return "EntryToken";
5525193323Sed  case ISD::TokenFactor:   return "TokenFactor";
5526193323Sed  case ISD::AssertSext:    return "AssertSext";
5527193323Sed  case ISD::AssertZext:    return "AssertZext";
5528193323Sed
5529193323Sed  case ISD::BasicBlock:    return "BasicBlock";
5530193323Sed  case ISD::VALUETYPE:     return "ValueType";
5531193323Sed  case ISD::Register:      return "Register";
5532193323Sed
5533193323Sed  case ISD::Constant:      return "Constant";
5534193323Sed  case ISD::ConstantFP:    return "ConstantFP";
5535193323Sed  case ISD::GlobalAddress: return "GlobalAddress";
5536193323Sed  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5537193323Sed  case ISD::FrameIndex:    return "FrameIndex";
5538193323Sed  case ISD::JumpTable:     return "JumpTable";
5539193323Sed  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5540193323Sed  case ISD::RETURNADDR: return "RETURNADDR";
5541193323Sed  case ISD::FRAMEADDR: return "FRAMEADDR";
5542193323Sed  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5543193323Sed  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5544198090Srdivacky  case ISD::LSDAADDR: return "LSDAADDR";
5545193323Sed  case ISD::EHSELECTION: return "EHSELECTION";
5546193323Sed  case ISD::EH_RETURN: return "EH_RETURN";
5547193323Sed  case ISD::ConstantPool:  return "ConstantPool";
5548193323Sed  case ISD::ExternalSymbol: return "ExternalSymbol";
5549198892Srdivacky  case ISD::BlockAddress:  return "BlockAddress";
5550198396Srdivacky  case ISD::INTRINSIC_WO_CHAIN:
5551193323Sed  case ISD::INTRINSIC_VOID:
5552193323Sed  case ISD::INTRINSIC_W_CHAIN: {
5553198396Srdivacky    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5554198396Srdivacky    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5555198396Srdivacky    if (IID < Intrinsic::num_intrinsics)
5556198396Srdivacky      return Intrinsic::getName((Intrinsic::ID)IID);
5557198396Srdivacky    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5558198396Srdivacky      return TII->getName(IID);
5559198396Srdivacky    llvm_unreachable("Invalid intrinsic ID");
5560193323Sed  }
5561193323Sed
5562193323Sed  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5563193323Sed  case ISD::TargetConstant: return "TargetConstant";
5564193323Sed  case ISD::TargetConstantFP:return "TargetConstantFP";
5565193323Sed  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5566193323Sed  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5567193323Sed  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5568193323Sed  case ISD::TargetJumpTable:  return "TargetJumpTable";
5569193323Sed  case ISD::TargetConstantPool:  return "TargetConstantPool";
5570193323Sed  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5571198892Srdivacky  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5572193323Sed
5573193323Sed  case ISD::CopyToReg:     return "CopyToReg";
5574193323Sed  case ISD::CopyFromReg:   return "CopyFromReg";
5575193323Sed  case ISD::UNDEF:         return "undef";
5576193323Sed  case ISD::MERGE_VALUES:  return "merge_values";
5577193323Sed  case ISD::INLINEASM:     return "inlineasm";
5578193323Sed  case ISD::EH_LABEL:      return "eh_label";
5579193323Sed  case ISD::HANDLENODE:    return "handlenode";
5580193323Sed
5581193323Sed  // Unary operators
5582193323Sed  case ISD::FABS:   return "fabs";
5583193323Sed  case ISD::FNEG:   return "fneg";
5584193323Sed  case ISD::FSQRT:  return "fsqrt";
5585193323Sed  case ISD::FSIN:   return "fsin";
5586193323Sed  case ISD::FCOS:   return "fcos";
5587193323Sed  case ISD::FPOWI:  return "fpowi";
5588193323Sed  case ISD::FPOW:   return "fpow";
5589193323Sed  case ISD::FTRUNC: return "ftrunc";
5590193323Sed  case ISD::FFLOOR: return "ffloor";
5591193323Sed  case ISD::FCEIL:  return "fceil";
5592193323Sed  case ISD::FRINT:  return "frint";
5593193323Sed  case ISD::FNEARBYINT: return "fnearbyint";
5594193323Sed
5595193323Sed  // Binary operators
5596193323Sed  case ISD::ADD:    return "add";
5597193323Sed  case ISD::SUB:    return "sub";
5598193323Sed  case ISD::MUL:    return "mul";
5599193323Sed  case ISD::MULHU:  return "mulhu";
5600193323Sed  case ISD::MULHS:  return "mulhs";
5601193323Sed  case ISD::SDIV:   return "sdiv";
5602193323Sed  case ISD::UDIV:   return "udiv";
5603193323Sed  case ISD::SREM:   return "srem";
5604193323Sed  case ISD::UREM:   return "urem";
5605193323Sed  case ISD::SMUL_LOHI:  return "smul_lohi";
5606193323Sed  case ISD::UMUL_LOHI:  return "umul_lohi";
5607193323Sed  case ISD::SDIVREM:    return "sdivrem";
5608193323Sed  case ISD::UDIVREM:    return "udivrem";
5609193323Sed  case ISD::AND:    return "and";
5610193323Sed  case ISD::OR:     return "or";
5611193323Sed  case ISD::XOR:    return "xor";
5612193323Sed  case ISD::SHL:    return "shl";
5613193323Sed  case ISD::SRA:    return "sra";
5614193323Sed  case ISD::SRL:    return "srl";
5615193323Sed  case ISD::ROTL:   return "rotl";
5616193323Sed  case ISD::ROTR:   return "rotr";
5617193323Sed  case ISD::FADD:   return "fadd";
5618193323Sed  case ISD::FSUB:   return "fsub";
5619193323Sed  case ISD::FMUL:   return "fmul";
5620193323Sed  case ISD::FDIV:   return "fdiv";
5621193323Sed  case ISD::FREM:   return "frem";
5622193323Sed  case ISD::FCOPYSIGN: return "fcopysign";
5623193323Sed  case ISD::FGETSIGN:  return "fgetsign";
5624193323Sed
5625193323Sed  case ISD::SETCC:       return "setcc";
5626193323Sed  case ISD::VSETCC:      return "vsetcc";
5627193323Sed  case ISD::SELECT:      return "select";
5628193323Sed  case ISD::SELECT_CC:   return "select_cc";
5629193323Sed  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5630193323Sed  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5631193323Sed  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5632193323Sed  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5633193323Sed  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5634193323Sed  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5635193323Sed  case ISD::CARRY_FALSE:         return "carry_false";
5636193323Sed  case ISD::ADDC:        return "addc";
5637193323Sed  case ISD::ADDE:        return "adde";
5638193323Sed  case ISD::SADDO:       return "saddo";
5639193323Sed  case ISD::UADDO:       return "uaddo";
5640193323Sed  case ISD::SSUBO:       return "ssubo";
5641193323Sed  case ISD::USUBO:       return "usubo";
5642193323Sed  case ISD::SMULO:       return "smulo";
5643193323Sed  case ISD::UMULO:       return "umulo";
5644193323Sed  case ISD::SUBC:        return "subc";
5645193323Sed  case ISD::SUBE:        return "sube";
5646193323Sed  case ISD::SHL_PARTS:   return "shl_parts";
5647193323Sed  case ISD::SRA_PARTS:   return "sra_parts";
5648193323Sed  case ISD::SRL_PARTS:   return "srl_parts";
5649193323Sed
5650193323Sed  // Conversion operators.
5651193323Sed  case ISD::SIGN_EXTEND: return "sign_extend";
5652193323Sed  case ISD::ZERO_EXTEND: return "zero_extend";
5653193323Sed  case ISD::ANY_EXTEND:  return "any_extend";
5654193323Sed  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5655193323Sed  case ISD::TRUNCATE:    return "truncate";
5656193323Sed  case ISD::FP_ROUND:    return "fp_round";
5657193323Sed  case ISD::FLT_ROUNDS_: return "flt_rounds";
5658193323Sed  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5659193323Sed  case ISD::FP_EXTEND:   return "fp_extend";
5660193323Sed
5661193323Sed  case ISD::SINT_TO_FP:  return "sint_to_fp";
5662193323Sed  case ISD::UINT_TO_FP:  return "uint_to_fp";
5663193323Sed  case ISD::FP_TO_SINT:  return "fp_to_sint";
5664193323Sed  case ISD::FP_TO_UINT:  return "fp_to_uint";
5665193323Sed  case ISD::BIT_CONVERT: return "bit_convert";
5666193323Sed
5667193323Sed  case ISD::CONVERT_RNDSAT: {
5668193323Sed    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5669198090Srdivacky    default: llvm_unreachable("Unknown cvt code!");
5670193323Sed    case ISD::CVT_FF:  return "cvt_ff";
5671193323Sed    case ISD::CVT_FS:  return "cvt_fs";
5672193323Sed    case ISD::CVT_FU:  return "cvt_fu";
5673193323Sed    case ISD::CVT_SF:  return "cvt_sf";
5674193323Sed    case ISD::CVT_UF:  return "cvt_uf";
5675193323Sed    case ISD::CVT_SS:  return "cvt_ss";
5676193323Sed    case ISD::CVT_SU:  return "cvt_su";
5677193323Sed    case ISD::CVT_US:  return "cvt_us";
5678193323Sed    case ISD::CVT_UU:  return "cvt_uu";
5679193323Sed    }
5680193323Sed  }
5681193323Sed
5682193323Sed    // Control flow instructions
5683193323Sed  case ISD::BR:      return "br";
5684193323Sed  case ISD::BRIND:   return "brind";
5685193323Sed  case ISD::BR_JT:   return "br_jt";
5686193323Sed  case ISD::BRCOND:  return "brcond";
5687193323Sed  case ISD::BR_CC:   return "br_cc";
5688193323Sed  case ISD::CALLSEQ_START:  return "callseq_start";
5689193323Sed  case ISD::CALLSEQ_END:    return "callseq_end";
5690193323Sed
5691193323Sed    // Other operators
5692193323Sed  case ISD::LOAD:               return "load";
5693193323Sed  case ISD::STORE:              return "store";
5694193323Sed  case ISD::VAARG:              return "vaarg";
5695193323Sed  case ISD::VACOPY:             return "vacopy";
5696193323Sed  case ISD::VAEND:              return "vaend";
5697193323Sed  case ISD::VASTART:            return "vastart";
5698193323Sed  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5699193323Sed  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5700193323Sed  case ISD::BUILD_PAIR:         return "build_pair";
5701193323Sed  case ISD::STACKSAVE:          return "stacksave";
5702193323Sed  case ISD::STACKRESTORE:       return "stackrestore";
5703193323Sed  case ISD::TRAP:               return "trap";
5704193323Sed
5705193323Sed  // Bit manipulation
5706193323Sed  case ISD::BSWAP:   return "bswap";
5707193323Sed  case ISD::CTPOP:   return "ctpop";
5708193323Sed  case ISD::CTTZ:    return "cttz";
5709193323Sed  case ISD::CTLZ:    return "ctlz";
5710193323Sed
5711193323Sed  // Trampolines
5712193323Sed  case ISD::TRAMPOLINE: return "trampoline";
5713193323Sed
5714193323Sed  case ISD::CONDCODE:
5715193323Sed    switch (cast<CondCodeSDNode>(this)->get()) {
5716198090Srdivacky    default: llvm_unreachable("Unknown setcc condition!");
5717193323Sed    case ISD::SETOEQ:  return "setoeq";
5718193323Sed    case ISD::SETOGT:  return "setogt";
5719193323Sed    case ISD::SETOGE:  return "setoge";
5720193323Sed    case ISD::SETOLT:  return "setolt";
5721193323Sed    case ISD::SETOLE:  return "setole";
5722193323Sed    case ISD::SETONE:  return "setone";
5723193323Sed
5724193323Sed    case ISD::SETO:    return "seto";
5725193323Sed    case ISD::SETUO:   return "setuo";
5726193323Sed    case ISD::SETUEQ:  return "setue";
5727193323Sed    case ISD::SETUGT:  return "setugt";
5728193323Sed    case ISD::SETUGE:  return "setuge";
5729193323Sed    case ISD::SETULT:  return "setult";
5730193323Sed    case ISD::SETULE:  return "setule";
5731193323Sed    case ISD::SETUNE:  return "setune";
5732193323Sed
5733193323Sed    case ISD::SETEQ:   return "seteq";
5734193323Sed    case ISD::SETGT:   return "setgt";
5735193323Sed    case ISD::SETGE:   return "setge";
5736193323Sed    case ISD::SETLT:   return "setlt";
5737193323Sed    case ISD::SETLE:   return "setle";
5738193323Sed    case ISD::SETNE:   return "setne";
5739193323Sed    }
5740193323Sed  }
5741193323Sed}
5742193323Sed
5743193323Sedconst char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5744193323Sed  switch (AM) {
5745193323Sed  default:
5746193323Sed    return "";
5747193323Sed  case ISD::PRE_INC:
5748193323Sed    return "<pre-inc>";
5749193323Sed  case ISD::PRE_DEC:
5750193323Sed    return "<pre-dec>";
5751193323Sed  case ISD::POST_INC:
5752193323Sed    return "<post-inc>";
5753193323Sed  case ISD::POST_DEC:
5754193323Sed    return "<post-dec>";
5755193323Sed  }
5756193323Sed}
5757193323Sed
5758193323Sedstd::string ISD::ArgFlagsTy::getArgFlagsString() {
5759193323Sed  std::string S = "< ";
5760193323Sed
5761193323Sed  if (isZExt())
5762193323Sed    S += "zext ";
5763193323Sed  if (isSExt())
5764193323Sed    S += "sext ";
5765193323Sed  if (isInReg())
5766193323Sed    S += "inreg ";
5767193323Sed  if (isSRet())
5768193323Sed    S += "sret ";
5769193323Sed  if (isByVal())
5770193323Sed    S += "byval ";
5771193323Sed  if (isNest())
5772193323Sed    S += "nest ";
5773193323Sed  if (getByValAlign())
5774193323Sed    S += "byval-align:" + utostr(getByValAlign()) + " ";
5775193323Sed  if (getOrigAlign())
5776193323Sed    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5777193323Sed  if (getByValSize())
5778193323Sed    S += "byval-size:" + utostr(getByValSize()) + " ";
5779193323Sed  return S + ">";
5780193323Sed}
5781193323Sed
5782193323Sedvoid SDNode::dump() const { dump(0); }
5783193323Sedvoid SDNode::dump(const SelectionDAG *G) const {
5784193323Sed  print(errs(), G);
5785193323Sed}
5786193323Sed
5787193323Sedvoid SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5788193323Sed  OS << (void*)this << ": ";
5789193323Sed
5790193323Sed  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5791193323Sed    if (i) OS << ",";
5792193323Sed    if (getValueType(i) == MVT::Other)
5793193323Sed      OS << "ch";
5794193323Sed    else
5795198090Srdivacky      OS << getValueType(i).getEVTString();
5796193323Sed  }
5797193323Sed  OS << " = " << getOperationName(G);
5798193323Sed}
5799193323Sed
5800193323Sedvoid SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5801198090Srdivacky  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5802198090Srdivacky    if (!MN->memoperands_empty()) {
5803198090Srdivacky      OS << "<";
5804198090Srdivacky      OS << "Mem:";
5805198090Srdivacky      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5806198090Srdivacky           e = MN->memoperands_end(); i != e; ++i) {
5807198090Srdivacky        OS << **i;
5808198090Srdivacky        if (next(i) != e)
5809198090Srdivacky          OS << " ";
5810198090Srdivacky      }
5811198090Srdivacky      OS << ">";
5812198090Srdivacky    }
5813198090Srdivacky  } else if (const ShuffleVectorSDNode *SVN =
5814198090Srdivacky               dyn_cast<ShuffleVectorSDNode>(this)) {
5815193323Sed    OS << "<";
5816193323Sed    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5817193323Sed      int Idx = SVN->getMaskElt(i);
5818193323Sed      if (i) OS << ",";
5819193323Sed      if (Idx < 0)
5820193323Sed        OS << "u";
5821193323Sed      else
5822193323Sed        OS << Idx;
5823193323Sed    }
5824193323Sed    OS << ">";
5825198090Srdivacky  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5826193323Sed    OS << '<' << CSDN->getAPIntValue() << '>';
5827193323Sed  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5828193323Sed    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5829193323Sed      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5830193323Sed    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5831193323Sed      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5832193323Sed    else {
5833193323Sed      OS << "<APFloat(";
5834193323Sed      CSDN->getValueAPF().bitcastToAPInt().dump();
5835193323Sed      OS << ")>";
5836193323Sed    }
5837193323Sed  } else if (const GlobalAddressSDNode *GADN =
5838193323Sed             dyn_cast<GlobalAddressSDNode>(this)) {
5839193323Sed    int64_t offset = GADN->getOffset();
5840193323Sed    OS << '<';
5841193323Sed    WriteAsOperand(OS, GADN->getGlobal());
5842193323Sed    OS << '>';
5843193323Sed    if (offset > 0)
5844193323Sed      OS << " + " << offset;
5845193323Sed    else
5846193323Sed      OS << " " << offset;
5847198090Srdivacky    if (unsigned int TF = GADN->getTargetFlags())
5848195098Sed      OS << " [TF=" << TF << ']';
5849193323Sed  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5850193323Sed    OS << "<" << FIDN->getIndex() << ">";
5851193323Sed  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5852193323Sed    OS << "<" << JTDN->getIndex() << ">";
5853198090Srdivacky    if (unsigned int TF = JTDN->getTargetFlags())
5854195098Sed      OS << " [TF=" << TF << ']';
5855193323Sed  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5856193323Sed    int offset = CP->getOffset();
5857193323Sed    if (CP->isMachineConstantPoolEntry())
5858193323Sed      OS << "<" << *CP->getMachineCPVal() << ">";
5859193323Sed    else
5860193323Sed      OS << "<" << *CP->getConstVal() << ">";
5861193323Sed    if (offset > 0)
5862193323Sed      OS << " + " << offset;
5863193323Sed    else
5864193323Sed      OS << " " << offset;
5865198090Srdivacky    if (unsigned int TF = CP->getTargetFlags())
5866195098Sed      OS << " [TF=" << TF << ']';
5867193323Sed  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5868193323Sed    OS << "<";
5869193323Sed    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5870193323Sed    if (LBB)
5871193323Sed      OS << LBB->getName() << " ";
5872193323Sed    OS << (const void*)BBDN->getBasicBlock() << ">";
5873193323Sed  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5874193323Sed    if (G && R->getReg() &&
5875193323Sed        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5876198892Srdivacky      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5877193323Sed    } else {
5878198892Srdivacky      OS << " %reg" << R->getReg();
5879193323Sed    }
5880193323Sed  } else if (const ExternalSymbolSDNode *ES =
5881193323Sed             dyn_cast<ExternalSymbolSDNode>(this)) {
5882193323Sed    OS << "'" << ES->getSymbol() << "'";
5883198090Srdivacky    if (unsigned int TF = ES->getTargetFlags())
5884195098Sed      OS << " [TF=" << TF << ']';
5885193323Sed  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5886193323Sed    if (M->getValue())
5887193323Sed      OS << "<" << M->getValue() << ">";
5888193323Sed    else
5889193323Sed      OS << "<null>";
5890193323Sed  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5891198090Srdivacky    OS << ":" << N->getVT().getEVTString();
5892193323Sed  }
5893193323Sed  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5894198892Srdivacky    OS << "<" << *LD->getMemOperand();
5895193323Sed
5896193323Sed    bool doExt = true;
5897193323Sed    switch (LD->getExtensionType()) {
5898193323Sed    default: doExt = false; break;
5899198090Srdivacky    case ISD::EXTLOAD: OS << ", anyext"; break;
5900198090Srdivacky    case ISD::SEXTLOAD: OS << ", sext"; break;
5901198090Srdivacky    case ISD::ZEXTLOAD: OS << ", zext"; break;
5902193323Sed    }
5903193323Sed    if (doExt)
5904198090Srdivacky      OS << " from " << LD->getMemoryVT().getEVTString();
5905193323Sed
5906193323Sed    const char *AM = getIndexedModeName(LD->getAddressingMode());
5907193323Sed    if (*AM)
5908198090Srdivacky      OS << ", " << AM;
5909198090Srdivacky
5910198090Srdivacky    OS << ">";
5911193323Sed  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5912198892Srdivacky    OS << "<" << *ST->getMemOperand();
5913193323Sed
5914193323Sed    if (ST->isTruncatingStore())
5915198090Srdivacky      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5916193323Sed
5917193323Sed    const char *AM = getIndexedModeName(ST->getAddressingMode());
5918193323Sed    if (*AM)
5919198090Srdivacky      OS << ", " << AM;
5920198090Srdivacky
5921198090Srdivacky    OS << ">";
5922198090Srdivacky  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5923198892Srdivacky    OS << "<" << *M->getMemOperand() << ">";
5924198892Srdivacky  } else if (const BlockAddressSDNode *BA =
5925198892Srdivacky               dyn_cast<BlockAddressSDNode>(this)) {
5926198892Srdivacky    OS << "<";
5927198892Srdivacky    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5928198892Srdivacky    OS << ", ";
5929198892Srdivacky    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5930198892Srdivacky    OS << ">";
5931199989Srdivacky    if (unsigned int TF = BA->getTargetFlags())
5932199989Srdivacky      OS << " [TF=" << TF << ']';
5933193323Sed  }
5934193323Sed}
5935193323Sed
5936193323Sedvoid SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5937193323Sed  print_types(OS, G);
5938193323Sed  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5939199481Srdivacky    if (i) OS << ", "; else OS << " ";
5940193323Sed    OS << (void*)getOperand(i).getNode();
5941193323Sed    if (unsigned RN = getOperand(i).getResNo())
5942193323Sed      OS << ":" << RN;
5943193323Sed  }
5944193323Sed  print_details(OS, G);
5945193323Sed}
5946193323Sed
5947193323Sedstatic void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5948193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5949193323Sed    if (N->getOperand(i).getNode()->hasOneUse())
5950193323Sed      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5951193323Sed    else
5952198090Srdivacky      errs() << "\n" << std::string(indent+2, ' ')
5953198090Srdivacky             << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5954193323Sed
5955193323Sed
5956198090Srdivacky  errs() << "\n";
5957198090Srdivacky  errs().indent(indent);
5958193323Sed  N->dump(G);
5959193323Sed}
5960193323Sed
5961199989SrdivackySDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5962199989Srdivacky  assert(N->getNumValues() == 1 &&
5963199989Srdivacky         "Can't unroll a vector with multiple results!");
5964199989Srdivacky
5965199989Srdivacky  EVT VT = N->getValueType(0);
5966199989Srdivacky  unsigned NE = VT.getVectorNumElements();
5967199989Srdivacky  EVT EltVT = VT.getVectorElementType();
5968199989Srdivacky  DebugLoc dl = N->getDebugLoc();
5969199989Srdivacky
5970199989Srdivacky  SmallVector<SDValue, 8> Scalars;
5971199989Srdivacky  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5972199989Srdivacky
5973199989Srdivacky  // If ResNE is 0, fully unroll the vector op.
5974199989Srdivacky  if (ResNE == 0)
5975199989Srdivacky    ResNE = NE;
5976199989Srdivacky  else if (NE > ResNE)
5977199989Srdivacky    NE = ResNE;
5978199989Srdivacky
5979199989Srdivacky  unsigned i;
5980199989Srdivacky  for (i= 0; i != NE; ++i) {
5981199989Srdivacky    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
5982199989Srdivacky      SDValue Operand = N->getOperand(j);
5983199989Srdivacky      EVT OperandVT = Operand.getValueType();
5984199989Srdivacky      if (OperandVT.isVector()) {
5985199989Srdivacky        // A vector operand; extract a single element.
5986199989Srdivacky        EVT OperandEltVT = OperandVT.getVectorElementType();
5987199989Srdivacky        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
5988199989Srdivacky                              OperandEltVT,
5989199989Srdivacky                              Operand,
5990199989Srdivacky                              getConstant(i, MVT::i32));
5991199989Srdivacky      } else {
5992199989Srdivacky        // A scalar operand; just use it as is.
5993199989Srdivacky        Operands[j] = Operand;
5994199989Srdivacky      }
5995199989Srdivacky    }
5996199989Srdivacky
5997199989Srdivacky    switch (N->getOpcode()) {
5998199989Srdivacky    default:
5999199989Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6000199989Srdivacky                                &Operands[0], Operands.size()));
6001199989Srdivacky      break;
6002199989Srdivacky    case ISD::SHL:
6003199989Srdivacky    case ISD::SRA:
6004199989Srdivacky    case ISD::SRL:
6005199989Srdivacky    case ISD::ROTL:
6006199989Srdivacky    case ISD::ROTR:
6007199989Srdivacky      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6008199989Srdivacky                                getShiftAmountOperand(Operands[1])));
6009199989Srdivacky      break;
6010199989Srdivacky    }
6011199989Srdivacky  }
6012199989Srdivacky
6013199989Srdivacky  for (; i < ResNE; ++i)
6014199989Srdivacky    Scalars.push_back(getUNDEF(EltVT));
6015199989Srdivacky
6016199989Srdivacky  return getNode(ISD::BUILD_VECTOR, dl,
6017199989Srdivacky                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6018199989Srdivacky                 &Scalars[0], Scalars.size());
6019199989Srdivacky}
6020199989Srdivacky
6021200581Srdivacky
6022200581Srdivacky/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6023200581Srdivacky/// location that is 'Dist' units away from the location that the 'Base' load
6024200581Srdivacky/// is loading from.
6025200581Srdivackybool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6026200581Srdivacky                                     unsigned Bytes, int Dist) const {
6027200581Srdivacky  if (LD->getChain() != Base->getChain())
6028200581Srdivacky    return false;
6029200581Srdivacky  EVT VT = LD->getValueType(0);
6030200581Srdivacky  if (VT.getSizeInBits() / 8 != Bytes)
6031200581Srdivacky    return false;
6032200581Srdivacky
6033200581Srdivacky  SDValue Loc = LD->getOperand(1);
6034200581Srdivacky  SDValue BaseLoc = Base->getOperand(1);
6035200581Srdivacky  if (Loc.getOpcode() == ISD::FrameIndex) {
6036200581Srdivacky    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6037200581Srdivacky      return false;
6038200581Srdivacky    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6039200581Srdivacky    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6040200581Srdivacky    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6041200581Srdivacky    int FS  = MFI->getObjectSize(FI);
6042200581Srdivacky    int BFS = MFI->getObjectSize(BFI);
6043200581Srdivacky    if (FS != BFS || FS != (int)Bytes) return false;
6044200581Srdivacky    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6045200581Srdivacky  }
6046200581Srdivacky  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6047200581Srdivacky    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6048200581Srdivacky    if (V && (V->getSExtValue() == Dist*Bytes))
6049200581Srdivacky      return true;
6050200581Srdivacky  }
6051200581Srdivacky
6052200581Srdivacky  GlobalValue *GV1 = NULL;
6053200581Srdivacky  GlobalValue *GV2 = NULL;
6054200581Srdivacky  int64_t Offset1 = 0;
6055200581Srdivacky  int64_t Offset2 = 0;
6056200581Srdivacky  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6057200581Srdivacky  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6058200581Srdivacky  if (isGA1 && isGA2 && GV1 == GV2)
6059200581Srdivacky    return Offset1 == (Offset2 + Dist*Bytes);
6060200581Srdivacky  return false;
6061200581Srdivacky}
6062200581Srdivacky
6063200581Srdivacky
6064200581Srdivacky/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6065200581Srdivacky/// it cannot be inferred.
6066200581Srdivackyunsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6067200581Srdivacky  // If this is a GlobalAddress + cst, return the alignment.
6068200581Srdivacky  GlobalValue *GV;
6069200581Srdivacky  int64_t GVOffset = 0;
6070200581Srdivacky  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6071200581Srdivacky    return MinAlign(GV->getAlignment(), GVOffset);
6072200581Srdivacky
6073200581Srdivacky  // If this is a direct reference to a stack slot, use information about the
6074200581Srdivacky  // stack slot's alignment.
6075200581Srdivacky  int FrameIdx = 1 << 31;
6076200581Srdivacky  int64_t FrameOffset = 0;
6077200581Srdivacky  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6078200581Srdivacky    FrameIdx = FI->getIndex();
6079200581Srdivacky  } else if (Ptr.getOpcode() == ISD::ADD &&
6080200581Srdivacky             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6081200581Srdivacky             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6082200581Srdivacky    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6083200581Srdivacky    FrameOffset = Ptr.getConstantOperandVal(1);
6084200581Srdivacky  }
6085200581Srdivacky
6086200581Srdivacky  if (FrameIdx != (1 << 31)) {
6087200581Srdivacky    // FIXME: Handle FI+CST.
6088200581Srdivacky    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6089200581Srdivacky    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6090200581Srdivacky                                    FrameOffset);
6091200581Srdivacky    if (MFI.isFixedObjectIndex(FrameIdx)) {
6092200581Srdivacky      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6093200581Srdivacky
6094200581Srdivacky      // The alignment of the frame index can be determined from its offset from
6095200581Srdivacky      // the incoming frame position.  If the frame object is at offset 32 and
6096200581Srdivacky      // the stack is guaranteed to be 16-byte aligned, then we know that the
6097200581Srdivacky      // object is 16-byte aligned.
6098200581Srdivacky      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6099200581Srdivacky      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6100200581Srdivacky
6101200581Srdivacky      // Finally, the frame object itself may have a known alignment.  Factor
6102200581Srdivacky      // the alignment + offset into a new alignment.  For example, if we know
6103200581Srdivacky      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6104200581Srdivacky      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6105200581Srdivacky      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6106200581Srdivacky      return std::max(Align, FIInfoAlign);
6107200581Srdivacky    }
6108200581Srdivacky    return FIInfoAlign;
6109200581Srdivacky  }
6110200581Srdivacky
6111200581Srdivacky  return 0;
6112200581Srdivacky}
6113200581Srdivacky
6114193323Sedvoid SelectionDAG::dump() const {
6115198090Srdivacky  errs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6116193323Sed
6117193323Sed  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6118193323Sed       I != E; ++I) {
6119193323Sed    const SDNode *N = I;
6120193323Sed    if (!N->hasOneUse() && N != getRoot().getNode())
6121193323Sed      DumpNodes(N, 2, this);
6122193323Sed  }
6123193323Sed
6124193323Sed  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6125193323Sed
6126198090Srdivacky  errs() << "\n\n";
6127193323Sed}
6128193323Sed
6129200581Srdivackyvoid SelectionDAG::NodeOrdering::dump() const {
6130200581Srdivacky}
6131200581Srdivacky
6132193323Sedvoid SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6133193323Sed  print_types(OS, G);
6134193323Sed  print_details(OS, G);
6135193323Sed}
6136193323Sed
6137193323Sedtypedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6138193323Sedstatic void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6139193323Sed                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6140193323Sed  if (!once.insert(N))          // If we've been here before, return now.
6141193323Sed    return;
6142193323Sed  // Dump the current SDNode, but don't end the line yet.
6143193323Sed  OS << std::string(indent, ' ');
6144193323Sed  N->printr(OS, G);
6145193323Sed  // Having printed this SDNode, walk the children:
6146193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6147193323Sed    const SDNode *child = N->getOperand(i).getNode();
6148193323Sed    if (i) OS << ",";
6149193323Sed    OS << " ";
6150193323Sed    if (child->getNumOperands() == 0) {
6151193323Sed      // This child has no grandchildren; print it inline right here.
6152193323Sed      child->printr(OS, G);
6153193323Sed      once.insert(child);
6154193323Sed    } else {          // Just the address.  FIXME: also print the child's opcode
6155193323Sed      OS << (void*)child;
6156193323Sed      if (unsigned RN = N->getOperand(i).getResNo())
6157193323Sed        OS << ":" << RN;
6158193323Sed    }
6159193323Sed  }
6160193323Sed  OS << "\n";
6161193323Sed  // Dump children that have grandchildren on their own line(s).
6162193323Sed  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6163193323Sed    const SDNode *child = N->getOperand(i).getNode();
6164193323Sed    DumpNodesr(OS, child, indent+2, G, once);
6165193323Sed  }
6166193323Sed}
6167193323Sed
6168193323Sedvoid SDNode::dumpr() const {
6169193323Sed  VisitedSDNodeSet once;
6170193323Sed  DumpNodesr(errs(), this, 0, 0, once);
6171193323Sed}
6172193323Sed
6173198090Srdivackyvoid SDNode::dumpr(const SelectionDAG *G) const {
6174198090Srdivacky  VisitedSDNodeSet once;
6175198090Srdivacky  DumpNodesr(errs(), this, 0, G, once);
6176198090Srdivacky}
6177193323Sed
6178198090Srdivacky
6179193323Sed// getAddressSpace - Return the address space this GlobalAddress belongs to.
6180193323Sedunsigned GlobalAddressSDNode::getAddressSpace() const {
6181193323Sed  return getGlobal()->getType()->getAddressSpace();
6182193323Sed}
6183193323Sed
6184193323Sed
6185193323Sedconst Type *ConstantPoolSDNode::getType() const {
6186193323Sed  if (isMachineConstantPoolEntry())
6187193323Sed    return Val.MachineCPVal->getType();
6188193323Sed  return Val.ConstVal->getType();
6189193323Sed}
6190193323Sed
6191193323Sedbool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6192193323Sed                                        APInt &SplatUndef,
6193193323Sed                                        unsigned &SplatBitSize,
6194193323Sed                                        bool &HasAnyUndefs,
6195199481Srdivacky                                        unsigned MinSplatBits,
6196199481Srdivacky                                        bool isBigEndian) {
6197198090Srdivacky  EVT VT = getValueType(0);
6198193323Sed  assert(VT.isVector() && "Expected a vector type");
6199193323Sed  unsigned sz = VT.getSizeInBits();
6200193323Sed  if (MinSplatBits > sz)
6201193323Sed    return false;
6202193323Sed
6203193323Sed  SplatValue = APInt(sz, 0);
6204193323Sed  SplatUndef = APInt(sz, 0);
6205193323Sed
6206193323Sed  // Get the bits.  Bits with undefined values (when the corresponding element
6207193323Sed  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6208193323Sed  // in SplatValue.  If any of the values are not constant, give up and return
6209193323Sed  // false.
6210193323Sed  unsigned int nOps = getNumOperands();
6211193323Sed  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6212193323Sed  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6213199481Srdivacky
6214199481Srdivacky  for (unsigned j = 0; j < nOps; ++j) {
6215199481Srdivacky    unsigned i = isBigEndian ? nOps-1-j : j;
6216193323Sed    SDValue OpVal = getOperand(i);
6217199481Srdivacky    unsigned BitPos = j * EltBitSize;
6218193323Sed
6219193323Sed    if (OpVal.getOpcode() == ISD::UNDEF)
6220199481Srdivacky      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6221193323Sed    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6222193323Sed      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6223193323Sed                     zextOrTrunc(sz) << BitPos);
6224193323Sed    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6225193323Sed      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6226193323Sed     else
6227193323Sed      return false;
6228193323Sed  }
6229193323Sed
6230193323Sed  // The build_vector is all constants or undefs.  Find the smallest element
6231193323Sed  // size that splats the vector.
6232193323Sed
6233193323Sed  HasAnyUndefs = (SplatUndef != 0);
6234193323Sed  while (sz > 8) {
6235193323Sed
6236193323Sed    unsigned HalfSize = sz / 2;
6237193323Sed    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6238193323Sed    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6239193323Sed    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6240193323Sed    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6241193323Sed
6242193323Sed    // If the two halves do not match (ignoring undef bits), stop here.
6243193323Sed    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6244193323Sed        MinSplatBits > HalfSize)
6245193323Sed      break;
6246193323Sed
6247193323Sed    SplatValue = HighValue | LowValue;
6248193323Sed    SplatUndef = HighUndef & LowUndef;
6249198090Srdivacky
6250193323Sed    sz = HalfSize;
6251193323Sed  }
6252193323Sed
6253193323Sed  SplatBitSize = sz;
6254193323Sed  return true;
6255193323Sed}
6256193323Sed
6257198090Srdivackybool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6258193323Sed  // Find the first non-undef value in the shuffle mask.
6259193323Sed  unsigned i, e;
6260193323Sed  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6261193323Sed    /* search */;
6262193323Sed
6263193323Sed  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6264198090Srdivacky
6265193323Sed  // Make sure all remaining elements are either undef or the same as the first
6266193323Sed  // non-undef value.
6267193323Sed  for (int Idx = Mask[i]; i != e; ++i)
6268193323Sed    if (Mask[i] >= 0 && Mask[i] != Idx)
6269193323Sed      return false;
6270193323Sed  return true;
6271193323Sed}
6272