LegalizeDAG.cpp revision 239462
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CallingConv.h"
15#include "llvm/Constants.h"
16#include "llvm/DebugInfo.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/LLVMContext.h"
19#include "llvm/CodeGen/Analysis.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/Target/TargetFrameLowering.h"
24#include "llvm/Target/TargetLowering.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38/// hacks on it until the target machine can handle it.  This involves
39/// eliminating value sizes the machine cannot handle (promoting small sizes to
40/// large sizes or splitting up large values into small values) as well as
41/// eliminating operations the machine cannot handle.
42///
43/// This code also does a small amount of optimization and recognition of idioms
44/// as part of its processing.  For example, if a target does not support a
45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46/// will attempt merge setcc and brc instructions into brcc's.
47///
48namespace {
49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
50  const TargetMachine &TM;
51  const TargetLowering &TLI;
52  SelectionDAG &DAG;
53
54  /// LegalizePosition - The iterator for walking through the node list.
55  SelectionDAG::allnodes_iterator LegalizePosition;
56
57  /// LegalizedNodes - The set of nodes which have already been legalized.
58  SmallPtrSet<SDNode *, 16> LegalizedNodes;
59
60  // Libcall insertion helpers.
61
62public:
63  explicit SelectionDAGLegalize(SelectionDAG &DAG);
64
65  void LegalizeDAG();
66
67private:
68  /// LegalizeOp - Legalizes the given operation.
69  void LegalizeOp(SDNode *Node);
70
71  SDValue OptimizeFloatStore(StoreSDNode *ST);
72
73  void LegalizeLoadOps(SDNode *Node);
74  void LegalizeStoreOps(SDNode *Node);
75
76  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
77  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
78  /// is necessary to spill the vector being inserted into to memory, perform
79  /// the insert there, and then read the result back.
80  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
81                                         SDValue Idx, DebugLoc dl);
82  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
83                                  SDValue Idx, DebugLoc dl);
84
85  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
86  /// performs the same shuffe in terms of order or result bytes, but on a type
87  /// whose vector element type is narrower than the original shuffle type.
88  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
89  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
90                                     SDValue N1, SDValue N2,
91                                     ArrayRef<int> Mask) const;
92
93  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
94                             DebugLoc dl);
95
96  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
97  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
98                        unsigned NumOps, bool isSigned, DebugLoc dl);
99
100  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
101                                                 SDNode *Node, bool isSigned);
102  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
103                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
104                          RTLIB::Libcall Call_PPCF128);
105  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
106                           RTLIB::Libcall Call_I8,
107                           RTLIB::Libcall Call_I16,
108                           RTLIB::Libcall Call_I32,
109                           RTLIB::Libcall Call_I64,
110                           RTLIB::Libcall Call_I128);
111  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
112
113  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
114  SDValue ExpandBUILD_VECTOR(SDNode *Node);
115  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
116  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
117                                SmallVectorImpl<SDValue> &Results);
118  SDValue ExpandFCOPYSIGN(SDNode *Node);
119  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
120                               DebugLoc dl);
121  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
122                                DebugLoc dl);
123  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
124                                DebugLoc dl);
125
126  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
127  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
128
129  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
130  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
131  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
132
133  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
134
135  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
136
137  void ExpandNode(SDNode *Node);
138  void PromoteNode(SDNode *Node);
139
140  void ForgetNode(SDNode *N) {
141    LegalizedNodes.erase(N);
142    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
143      ++LegalizePosition;
144  }
145
146public:
147  // DAGUpdateListener implementation.
148  virtual void NodeDeleted(SDNode *N, SDNode *E) {
149    ForgetNode(N);
150  }
151  virtual void NodeUpdated(SDNode *N) {}
152
153  // Node replacement helpers
154  void ReplacedNode(SDNode *N) {
155    if (N->use_empty()) {
156      DAG.RemoveDeadNode(N);
157    } else {
158      ForgetNode(N);
159    }
160  }
161  void ReplaceNode(SDNode *Old, SDNode *New) {
162    DAG.ReplaceAllUsesWith(Old, New);
163    ReplacedNode(Old);
164  }
165  void ReplaceNode(SDValue Old, SDValue New) {
166    DAG.ReplaceAllUsesWith(Old, New);
167    ReplacedNode(Old.getNode());
168  }
169  void ReplaceNode(SDNode *Old, const SDValue *New) {
170    DAG.ReplaceAllUsesWith(Old, New);
171    ReplacedNode(Old);
172  }
173};
174}
175
176/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
177/// performs the same shuffe in terms of order or result bytes, but on a type
178/// whose vector element type is narrower than the original shuffle type.
179/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
180SDValue
181SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
182                                                 SDValue N1, SDValue N2,
183                                                 ArrayRef<int> Mask) const {
184  unsigned NumMaskElts = VT.getVectorNumElements();
185  unsigned NumDestElts = NVT.getVectorNumElements();
186  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
187
188  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
189
190  if (NumEltsGrowth == 1)
191    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
192
193  SmallVector<int, 8> NewMask;
194  for (unsigned i = 0; i != NumMaskElts; ++i) {
195    int Idx = Mask[i];
196    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
197      if (Idx < 0)
198        NewMask.push_back(-1);
199      else
200        NewMask.push_back(Idx * NumEltsGrowth + j);
201    }
202  }
203  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
204  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
205  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
206}
207
208SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
209  : SelectionDAG::DAGUpdateListener(dag),
210    TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
211    DAG(dag) {
212}
213
214void SelectionDAGLegalize::LegalizeDAG() {
215  DAG.AssignTopologicalOrder();
216
217  // Visit all the nodes. We start in topological order, so that we see
218  // nodes with their original operands intact. Legalization can produce
219  // new nodes which may themselves need to be legalized. Iterate until all
220  // nodes have been legalized.
221  for (;;) {
222    bool AnyLegalized = false;
223    for (LegalizePosition = DAG.allnodes_end();
224         LegalizePosition != DAG.allnodes_begin(); ) {
225      --LegalizePosition;
226
227      SDNode *N = LegalizePosition;
228      if (LegalizedNodes.insert(N)) {
229        AnyLegalized = true;
230        LegalizeOp(N);
231      }
232    }
233    if (!AnyLegalized)
234      break;
235
236  }
237
238  // Remove dead nodes now.
239  DAG.RemoveDeadNodes();
240}
241
242/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
243/// a load from the constant pool.
244SDValue
245SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
246  bool Extend = false;
247  DebugLoc dl = CFP->getDebugLoc();
248
249  // If a FP immediate is precise when represented as a float and if the
250  // target can do an extending load from float to double, we put it into
251  // the constant pool as a float, even if it's is statically typed as a
252  // double.  This shrinks FP constants and canonicalizes them for targets where
253  // an FP extending load is the same cost as a normal load (such as on the x87
254  // fp stack or PPC FP unit).
255  EVT VT = CFP->getValueType(0);
256  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
257  if (!UseCP) {
258    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
259    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
260                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
261  }
262
263  EVT OrigVT = VT;
264  EVT SVT = VT;
265  while (SVT != MVT::f32) {
266    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
267    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
268        // Only do this if the target has a native EXTLOAD instruction from
269        // smaller type.
270        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
271        TLI.ShouldShrinkFPConstant(OrigVT)) {
272      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
273      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
274      VT = SVT;
275      Extend = true;
276    }
277  }
278
279  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
280  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
281  if (Extend) {
282    SDValue Result =
283      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
284                     DAG.getEntryNode(),
285                     CPIdx, MachinePointerInfo::getConstantPool(),
286                     VT, false, false, Alignment);
287    return Result;
288  }
289  SDValue Result =
290    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
291                MachinePointerInfo::getConstantPool(), false, false, false,
292                Alignment);
293  return Result;
294}
295
296/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
297static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
298                                 const TargetLowering &TLI,
299                                 SelectionDAGLegalize *DAGLegalize) {
300  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
301         "unaligned indexed stores not implemented!");
302  SDValue Chain = ST->getChain();
303  SDValue Ptr = ST->getBasePtr();
304  SDValue Val = ST->getValue();
305  EVT VT = Val.getValueType();
306  int Alignment = ST->getAlignment();
307  DebugLoc dl = ST->getDebugLoc();
308  if (ST->getMemoryVT().isFloatingPoint() ||
309      ST->getMemoryVT().isVector()) {
310    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
311    if (TLI.isTypeLegal(intVT)) {
312      // Expand to a bitconvert of the value to the integer type of the
313      // same size, then a (misaligned) int store.
314      // FIXME: Does not handle truncating floating point stores!
315      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
316      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
317                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
318      DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
319      return;
320    }
321    // Do a (aligned) store to a stack slot, then copy from the stack slot
322    // to the final destination using (unaligned) integer loads and stores.
323    EVT StoredVT = ST->getMemoryVT();
324    EVT RegVT =
325      TLI.getRegisterType(*DAG.getContext(),
326                          EVT::getIntegerVT(*DAG.getContext(),
327                                            StoredVT.getSizeInBits()));
328    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
329    unsigned RegBytes = RegVT.getSizeInBits() / 8;
330    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
331
332    // Make sure the stack slot is also aligned for the register type.
333    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
334
335    // Perform the original store, only redirected to the stack slot.
336    SDValue Store = DAG.getTruncStore(Chain, dl,
337                                      Val, StackPtr, MachinePointerInfo(),
338                                      StoredVT, false, false, 0);
339    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
340    SmallVector<SDValue, 8> Stores;
341    unsigned Offset = 0;
342
343    // Do all but one copies using the full register width.
344    for (unsigned i = 1; i < NumRegs; i++) {
345      // Load one integer register's worth from the stack slot.
346      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
347                                 MachinePointerInfo(),
348                                 false, false, false, 0);
349      // Store it to the final location.  Remember the store.
350      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
351                                  ST->getPointerInfo().getWithOffset(Offset),
352                                    ST->isVolatile(), ST->isNonTemporal(),
353                                    MinAlign(ST->getAlignment(), Offset)));
354      // Increment the pointers.
355      Offset += RegBytes;
356      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
357                             Increment);
358      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
359    }
360
361    // The last store may be partial.  Do a truncating store.  On big-endian
362    // machines this requires an extending load from the stack slot to ensure
363    // that the bits are in the right place.
364    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
365                                  8 * (StoredBytes - Offset));
366
367    // Load from the stack slot.
368    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
369                                  MachinePointerInfo(),
370                                  MemVT, false, false, 0);
371
372    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
373                                       ST->getPointerInfo()
374                                         .getWithOffset(Offset),
375                                       MemVT, ST->isVolatile(),
376                                       ST->isNonTemporal(),
377                                       MinAlign(ST->getAlignment(), Offset)));
378    // The order of the stores doesn't matter - say it with a TokenFactor.
379    SDValue Result =
380      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
381                  Stores.size());
382    DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
383    return;
384  }
385  assert(ST->getMemoryVT().isInteger() &&
386         !ST->getMemoryVT().isVector() &&
387         "Unaligned store of unknown type.");
388  // Get the half-size VT
389  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
390  int NumBits = NewStoredVT.getSizeInBits();
391  int IncrementSize = NumBits / 8;
392
393  // Divide the stored value in two parts.
394  SDValue ShiftAmount = DAG.getConstant(NumBits,
395                                      TLI.getShiftAmountTy(Val.getValueType()));
396  SDValue Lo = Val;
397  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
398
399  // Store the two parts
400  SDValue Store1, Store2;
401  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
402                             ST->getPointerInfo(), NewStoredVT,
403                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
404  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
405                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
406  Alignment = MinAlign(Alignment, IncrementSize);
407  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
408                             ST->getPointerInfo().getWithOffset(IncrementSize),
409                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
410                             Alignment);
411
412  SDValue Result =
413    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
414  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
415}
416
417/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
418static void
419ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
420                    const TargetLowering &TLI,
421                    SDValue &ValResult, SDValue &ChainResult) {
422  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
423         "unaligned indexed loads not implemented!");
424  SDValue Chain = LD->getChain();
425  SDValue Ptr = LD->getBasePtr();
426  EVT VT = LD->getValueType(0);
427  EVT LoadedVT = LD->getMemoryVT();
428  DebugLoc dl = LD->getDebugLoc();
429  if (VT.isFloatingPoint() || VT.isVector()) {
430    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
431    if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
432      // Expand to a (misaligned) integer load of the same size,
433      // then bitconvert to floating point or vector.
434      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
435                                    LD->isVolatile(),
436                                    LD->isNonTemporal(),
437                                    LD->isInvariant(), LD->getAlignment());
438      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
439      if (LoadedVT != VT)
440        Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
441                             ISD::ANY_EXTEND, dl, VT, Result);
442
443      ValResult = Result;
444      ChainResult = Chain;
445      return;
446    }
447
448    // Copy the value to a (aligned) stack slot using (unaligned) integer
449    // loads and stores, then do a (aligned) load from the stack slot.
450    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
451    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
452    unsigned RegBytes = RegVT.getSizeInBits() / 8;
453    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
454
455    // Make sure the stack slot is also aligned for the register type.
456    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
457
458    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
459    SmallVector<SDValue, 8> Stores;
460    SDValue StackPtr = StackBase;
461    unsigned Offset = 0;
462
463    // Do all but one copies using the full register width.
464    for (unsigned i = 1; i < NumRegs; i++) {
465      // Load one integer register's worth from the original location.
466      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
467                                 LD->getPointerInfo().getWithOffset(Offset),
468                                 LD->isVolatile(), LD->isNonTemporal(),
469                                 LD->isInvariant(),
470                                 MinAlign(LD->getAlignment(), Offset));
471      // Follow the load with a store to the stack slot.  Remember the store.
472      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
473                                    MachinePointerInfo(), false, false, 0));
474      // Increment the pointers.
475      Offset += RegBytes;
476      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
477      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
478                             Increment);
479    }
480
481    // The last copy may be partial.  Do an extending load.
482    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
483                                  8 * (LoadedBytes - Offset));
484    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
485                                  LD->getPointerInfo().getWithOffset(Offset),
486                                  MemVT, LD->isVolatile(),
487                                  LD->isNonTemporal(),
488                                  MinAlign(LD->getAlignment(), Offset));
489    // Follow the load with a store to the stack slot.  Remember the store.
490    // On big-endian machines this requires a truncating store to ensure
491    // that the bits end up in the right place.
492    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
493                                       MachinePointerInfo(), MemVT,
494                                       false, false, 0));
495
496    // The order of the stores doesn't matter - say it with a TokenFactor.
497    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
498                             Stores.size());
499
500    // Finally, perform the original load only redirected to the stack slot.
501    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
502                          MachinePointerInfo(), LoadedVT, false, false, 0);
503
504    // Callers expect a MERGE_VALUES node.
505    ValResult = Load;
506    ChainResult = TF;
507    return;
508  }
509  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
510         "Unaligned load of unsupported type.");
511
512  // Compute the new VT that is half the size of the old one.  This is an
513  // integer MVT.
514  unsigned NumBits = LoadedVT.getSizeInBits();
515  EVT NewLoadedVT;
516  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
517  NumBits >>= 1;
518
519  unsigned Alignment = LD->getAlignment();
520  unsigned IncrementSize = NumBits / 8;
521  ISD::LoadExtType HiExtType = LD->getExtensionType();
522
523  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
524  if (HiExtType == ISD::NON_EXTLOAD)
525    HiExtType = ISD::ZEXTLOAD;
526
527  // Load the value in two parts
528  SDValue Lo, Hi;
529  if (TLI.isLittleEndian()) {
530    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
531                        NewLoadedVT, LD->isVolatile(),
532                        LD->isNonTemporal(), Alignment);
533    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
534                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
535    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
536                        LD->getPointerInfo().getWithOffset(IncrementSize),
537                        NewLoadedVT, LD->isVolatile(),
538                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
539  } else {
540    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
541                        NewLoadedVT, LD->isVolatile(),
542                        LD->isNonTemporal(), Alignment);
543    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
544                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
545    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
546                        LD->getPointerInfo().getWithOffset(IncrementSize),
547                        NewLoadedVT, LD->isVolatile(),
548                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
549  }
550
551  // aggregate the two parts
552  SDValue ShiftAmount = DAG.getConstant(NumBits,
553                                       TLI.getShiftAmountTy(Hi.getValueType()));
554  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
555  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
556
557  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
558                             Hi.getValue(1));
559
560  ValResult = Result;
561  ChainResult = TF;
562}
563
564/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
565/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
566/// is necessary to spill the vector being inserted into to memory, perform
567/// the insert there, and then read the result back.
568SDValue SelectionDAGLegalize::
569PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
570                               DebugLoc dl) {
571  SDValue Tmp1 = Vec;
572  SDValue Tmp2 = Val;
573  SDValue Tmp3 = Idx;
574
575  // If the target doesn't support this, we have to spill the input vector
576  // to a temporary stack slot, update the element, then reload it.  This is
577  // badness.  We could also load the value into a vector register (either
578  // with a "move to register" or "extload into register" instruction, then
579  // permute it into place, if the idx is a constant and if the idx is
580  // supported by the target.
581  EVT VT    = Tmp1.getValueType();
582  EVT EltVT = VT.getVectorElementType();
583  EVT IdxVT = Tmp3.getValueType();
584  EVT PtrVT = TLI.getPointerTy();
585  SDValue StackPtr = DAG.CreateStackTemporary(VT);
586
587  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
588
589  // Store the vector.
590  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
591                            MachinePointerInfo::getFixedStack(SPFI),
592                            false, false, 0);
593
594  // Truncate or zero extend offset to target pointer type.
595  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
596  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
597  // Add the offset to the index.
598  unsigned EltSize = EltVT.getSizeInBits()/8;
599  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
600  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
601  // Store the scalar value.
602  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
603                         false, false, 0);
604  // Load the updated vector.
605  return DAG.getLoad(VT, dl, Ch, StackPtr,
606                     MachinePointerInfo::getFixedStack(SPFI), false, false,
607                     false, 0);
608}
609
610
611SDValue SelectionDAGLegalize::
612ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
613  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
614    // SCALAR_TO_VECTOR requires that the type of the value being inserted
615    // match the element type of the vector being created, except for
616    // integers in which case the inserted value can be over width.
617    EVT EltVT = Vec.getValueType().getVectorElementType();
618    if (Val.getValueType() == EltVT ||
619        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
620      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
621                                  Vec.getValueType(), Val);
622
623      unsigned NumElts = Vec.getValueType().getVectorNumElements();
624      // We generate a shuffle of InVec and ScVec, so the shuffle mask
625      // should be 0,1,2,3,4,5... with the appropriate element replaced with
626      // elt 0 of the RHS.
627      SmallVector<int, 8> ShufOps;
628      for (unsigned i = 0; i != NumElts; ++i)
629        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
630
631      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
632                                  &ShufOps[0]);
633    }
634  }
635  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
636}
637
638SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
639  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
640  // FIXME: We shouldn't do this for TargetConstantFP's.
641  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
642  // to phase ordering between legalized code and the dag combiner.  This
643  // probably means that we need to integrate dag combiner and legalizer
644  // together.
645  // We generally can't do this one for long doubles.
646  SDValue Chain = ST->getChain();
647  SDValue Ptr = ST->getBasePtr();
648  unsigned Alignment = ST->getAlignment();
649  bool isVolatile = ST->isVolatile();
650  bool isNonTemporal = ST->isNonTemporal();
651  DebugLoc dl = ST->getDebugLoc();
652  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
653    if (CFP->getValueType(0) == MVT::f32 &&
654        TLI.isTypeLegal(MVT::i32)) {
655      SDValue Con = DAG.getConstant(CFP->getValueAPF().
656                                      bitcastToAPInt().zextOrTrunc(32),
657                              MVT::i32);
658      return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
659                          isVolatile, isNonTemporal, Alignment);
660    }
661
662    if (CFP->getValueType(0) == MVT::f64) {
663      // If this target supports 64-bit registers, do a single 64-bit store.
664      if (TLI.isTypeLegal(MVT::i64)) {
665        SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
666                                  zextOrTrunc(64), MVT::i64);
667        return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
668                            isVolatile, isNonTemporal, Alignment);
669      }
670
671      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
672        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
673        // stores.  If the target supports neither 32- nor 64-bits, this
674        // xform is certainly not worth it.
675        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
676        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
677        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
678        if (TLI.isBigEndian()) std::swap(Lo, Hi);
679
680        Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
681                          isNonTemporal, Alignment);
682        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
683                            DAG.getIntPtrConstant(4));
684        Hi = DAG.getStore(Chain, dl, Hi, Ptr,
685                          ST->getPointerInfo().getWithOffset(4),
686                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
687
688        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
689      }
690    }
691  }
692  return SDValue(0, 0);
693}
694
695void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
696    StoreSDNode *ST = cast<StoreSDNode>(Node);
697    SDValue Chain = ST->getChain();
698    SDValue Ptr = ST->getBasePtr();
699    DebugLoc dl = Node->getDebugLoc();
700
701    unsigned Alignment = ST->getAlignment();
702    bool isVolatile = ST->isVolatile();
703    bool isNonTemporal = ST->isNonTemporal();
704
705    if (!ST->isTruncatingStore()) {
706      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
707        ReplaceNode(ST, OptStore);
708        return;
709      }
710
711      {
712        SDValue Value = ST->getValue();
713        EVT VT = Value.getValueType();
714        switch (TLI.getOperationAction(ISD::STORE, VT)) {
715        default: llvm_unreachable("This action is not supported yet!");
716        case TargetLowering::Legal:
717          // If this is an unaligned store and the target doesn't support it,
718          // expand it.
719          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
720            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
721            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
722            if (ST->getAlignment() < ABIAlignment)
723              ExpandUnalignedStore(cast<StoreSDNode>(Node),
724                                   DAG, TLI, this);
725          }
726          break;
727        case TargetLowering::Custom: {
728          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
729          if (Res.getNode())
730            ReplaceNode(SDValue(Node, 0), Res);
731          return;
732        }
733        case TargetLowering::Promote: {
734          assert(VT.isVector() && "Unknown legal promote case!");
735          Value = DAG.getNode(ISD::BITCAST, dl,
736                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Value);
737          SDValue Result =
738            DAG.getStore(Chain, dl, Value, Ptr,
739                         ST->getPointerInfo(), isVolatile,
740                         isNonTemporal, Alignment);
741          ReplaceNode(SDValue(Node, 0), Result);
742          break;
743        }
744        }
745        return;
746      }
747    } else {
748      SDValue Value = ST->getValue();
749
750      EVT StVT = ST->getMemoryVT();
751      unsigned StWidth = StVT.getSizeInBits();
752
753      if (StWidth != StVT.getStoreSizeInBits()) {
754        // Promote to a byte-sized store with upper bits zero if not
755        // storing an integral number of bytes.  For example, promote
756        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
757        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
758                                    StVT.getStoreSizeInBits());
759        Value = DAG.getZeroExtendInReg(Value, dl, StVT);
760        SDValue Result =
761          DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
762                            NVT, isVolatile, isNonTemporal, Alignment);
763        ReplaceNode(SDValue(Node, 0), Result);
764      } else if (StWidth & (StWidth - 1)) {
765        // If not storing a power-of-2 number of bits, expand as two stores.
766        assert(!StVT.isVector() && "Unsupported truncstore!");
767        unsigned RoundWidth = 1 << Log2_32(StWidth);
768        assert(RoundWidth < StWidth);
769        unsigned ExtraWidth = StWidth - RoundWidth;
770        assert(ExtraWidth < RoundWidth);
771        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
772               "Store size not an integral number of bytes!");
773        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
774        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
775        SDValue Lo, Hi;
776        unsigned IncrementSize;
777
778        if (TLI.isLittleEndian()) {
779          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
780          // Store the bottom RoundWidth bits.
781          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
782                                 RoundVT,
783                                 isVolatile, isNonTemporal, Alignment);
784
785          // Store the remaining ExtraWidth bits.
786          IncrementSize = RoundWidth / 8;
787          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
788                             DAG.getIntPtrConstant(IncrementSize));
789          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
790                           DAG.getConstant(RoundWidth,
791                                    TLI.getShiftAmountTy(Value.getValueType())));
792          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
793                             ST->getPointerInfo().getWithOffset(IncrementSize),
794                                 ExtraVT, isVolatile, isNonTemporal,
795                                 MinAlign(Alignment, IncrementSize));
796        } else {
797          // Big endian - avoid unaligned stores.
798          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
799          // Store the top RoundWidth bits.
800          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
801                           DAG.getConstant(ExtraWidth,
802                                    TLI.getShiftAmountTy(Value.getValueType())));
803          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
804                                 RoundVT, isVolatile, isNonTemporal, Alignment);
805
806          // Store the remaining ExtraWidth bits.
807          IncrementSize = RoundWidth / 8;
808          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
809                             DAG.getIntPtrConstant(IncrementSize));
810          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
811                              ST->getPointerInfo().getWithOffset(IncrementSize),
812                                 ExtraVT, isVolatile, isNonTemporal,
813                                 MinAlign(Alignment, IncrementSize));
814        }
815
816        // The order of the stores doesn't matter.
817        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
818        ReplaceNode(SDValue(Node, 0), Result);
819      } else {
820        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
821        default: llvm_unreachable("This action is not supported yet!");
822        case TargetLowering::Legal:
823          // If this is an unaligned store and the target doesn't support it,
824          // expand it.
825          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
826            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
827            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
828            if (ST->getAlignment() < ABIAlignment)
829              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
830          }
831          break;
832        case TargetLowering::Custom: {
833          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
834          if (Res.getNode())
835            ReplaceNode(SDValue(Node, 0), Res);
836          return;
837        }
838        case TargetLowering::Expand:
839          assert(!StVT.isVector() &&
840                 "Vector Stores are handled in LegalizeVectorOps");
841
842          // TRUNCSTORE:i16 i32 -> STORE i16
843          assert(TLI.isTypeLegal(StVT) &&
844                 "Do not know how to expand this store!");
845          Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
846          SDValue Result =
847            DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
848                         isVolatile, isNonTemporal, Alignment);
849          ReplaceNode(SDValue(Node, 0), Result);
850          break;
851        }
852      }
853    }
854}
855
856void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
857  LoadSDNode *LD = cast<LoadSDNode>(Node);
858  SDValue Chain = LD->getChain();  // The chain.
859  SDValue Ptr = LD->getBasePtr();  // The base pointer.
860  SDValue Value;                   // The value returned by the load op.
861  DebugLoc dl = Node->getDebugLoc();
862
863  ISD::LoadExtType ExtType = LD->getExtensionType();
864  if (ExtType == ISD::NON_EXTLOAD) {
865    EVT VT = Node->getValueType(0);
866    SDValue RVal = SDValue(Node, 0);
867    SDValue RChain = SDValue(Node, 1);
868
869    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
870    default: llvm_unreachable("This action is not supported yet!");
871    case TargetLowering::Legal:
872             // If this is an unaligned load and the target doesn't support it,
873             // expand it.
874             if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
875               Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
876               unsigned ABIAlignment =
877                 TLI.getTargetData()->getABITypeAlignment(Ty);
878               if (LD->getAlignment() < ABIAlignment){
879                 ExpandUnalignedLoad(cast<LoadSDNode>(Node),
880                                     DAG, TLI, RVal, RChain);
881               }
882             }
883             break;
884    case TargetLowering::Custom: {
885             SDValue Res = TLI.LowerOperation(RVal, DAG);
886             if (Res.getNode()) {
887               RVal = Res;
888               RChain = Res.getValue(1);
889             }
890             break;
891    }
892    case TargetLowering::Promote: {
893      // Only promote a load of vector type to another.
894      assert(VT.isVector() && "Cannot promote this load!");
895      // Change base type to a different vector type.
896      EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
897
898      SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(),
899                         LD->isVolatile(), LD->isNonTemporal(),
900                         LD->isInvariant(), LD->getAlignment());
901      RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
902      RChain = Res.getValue(1);
903      break;
904    }
905    }
906    if (RChain.getNode() != Node) {
907      assert(RVal.getNode() != Node && "Load must be completely replaced");
908      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
909      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
910      ReplacedNode(Node);
911    }
912    return;
913  }
914
915  EVT SrcVT = LD->getMemoryVT();
916  unsigned SrcWidth = SrcVT.getSizeInBits();
917  unsigned Alignment = LD->getAlignment();
918  bool isVolatile = LD->isVolatile();
919  bool isNonTemporal = LD->isNonTemporal();
920
921  if (SrcWidth != SrcVT.getStoreSizeInBits() &&
922      // Some targets pretend to have an i1 loading operation, and actually
923      // load an i8.  This trick is correct for ZEXTLOAD because the top 7
924      // bits are guaranteed to be zero; it helps the optimizers understand
925      // that these bits are zero.  It is also useful for EXTLOAD, since it
926      // tells the optimizers that those bits are undefined.  It would be
927      // nice to have an effective generic way of getting these benefits...
928      // Until such a way is found, don't insist on promoting i1 here.
929      (SrcVT != MVT::i1 ||
930       TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
931    // Promote to a byte-sized load if not loading an integral number of
932    // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
933    unsigned NewWidth = SrcVT.getStoreSizeInBits();
934    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
935    SDValue Ch;
936
937    // The extra bits are guaranteed to be zero, since we stored them that
938    // way.  A zext load from NVT thus automatically gives zext from SrcVT.
939
940    ISD::LoadExtType NewExtType =
941      ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
942
943    SDValue Result =
944      DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
945                     Chain, Ptr, LD->getPointerInfo(),
946                     NVT, isVolatile, isNonTemporal, Alignment);
947
948    Ch = Result.getValue(1); // The chain.
949
950    if (ExtType == ISD::SEXTLOAD)
951      // Having the top bits zero doesn't help when sign extending.
952      Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
953                           Result.getValueType(),
954                           Result, DAG.getValueType(SrcVT));
955    else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
956      // All the top bits are guaranteed to be zero - inform the optimizers.
957      Result = DAG.getNode(ISD::AssertZext, dl,
958                           Result.getValueType(), Result,
959                           DAG.getValueType(SrcVT));
960
961    Value = Result;
962    Chain = Ch;
963  } else if (SrcWidth & (SrcWidth - 1)) {
964    // If not loading a power-of-2 number of bits, expand as two loads.
965    assert(!SrcVT.isVector() && "Unsupported extload!");
966    unsigned RoundWidth = 1 << Log2_32(SrcWidth);
967    assert(RoundWidth < SrcWidth);
968    unsigned ExtraWidth = SrcWidth - RoundWidth;
969    assert(ExtraWidth < RoundWidth);
970    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
971           "Load size not an integral number of bytes!");
972    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
973    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
974    SDValue Lo, Hi, Ch;
975    unsigned IncrementSize;
976
977    if (TLI.isLittleEndian()) {
978      // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
979      // Load the bottom RoundWidth bits.
980      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
981                          Chain, Ptr,
982                          LD->getPointerInfo(), RoundVT, isVolatile,
983                          isNonTemporal, Alignment);
984
985      // Load the remaining ExtraWidth bits.
986      IncrementSize = RoundWidth / 8;
987      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
988                         DAG.getIntPtrConstant(IncrementSize));
989      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
990                          LD->getPointerInfo().getWithOffset(IncrementSize),
991                          ExtraVT, isVolatile, isNonTemporal,
992                          MinAlign(Alignment, IncrementSize));
993
994      // Build a factor node to remember that this load is independent of
995      // the other one.
996      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
997                       Hi.getValue(1));
998
999      // Move the top bits to the right place.
1000      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1001                       DAG.getConstant(RoundWidth,
1002                                       TLI.getShiftAmountTy(Hi.getValueType())));
1003
1004      // Join the hi and lo parts.
1005      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1006    } else {
1007      // Big endian - avoid unaligned loads.
1008      // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1009      // Load the top RoundWidth bits.
1010      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1011                          LD->getPointerInfo(), RoundVT, isVolatile,
1012                          isNonTemporal, Alignment);
1013
1014      // Load the remaining ExtraWidth bits.
1015      IncrementSize = RoundWidth / 8;
1016      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1017                         DAG.getIntPtrConstant(IncrementSize));
1018      Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1019                          dl, Node->getValueType(0), Chain, Ptr,
1020                          LD->getPointerInfo().getWithOffset(IncrementSize),
1021                          ExtraVT, isVolatile, isNonTemporal,
1022                          MinAlign(Alignment, IncrementSize));
1023
1024      // Build a factor node to remember that this load is independent of
1025      // the other one.
1026      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1027                       Hi.getValue(1));
1028
1029      // Move the top bits to the right place.
1030      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1031                       DAG.getConstant(ExtraWidth,
1032                                       TLI.getShiftAmountTy(Hi.getValueType())));
1033
1034      // Join the hi and lo parts.
1035      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1036    }
1037
1038    Chain = Ch;
1039  } else {
1040    bool isCustom = false;
1041    switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1042    default: llvm_unreachable("This action is not supported yet!");
1043    case TargetLowering::Custom:
1044             isCustom = true;
1045             // FALLTHROUGH
1046    case TargetLowering::Legal: {
1047             Value = SDValue(Node, 0);
1048             Chain = SDValue(Node, 1);
1049
1050             if (isCustom) {
1051               SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1052               if (Res.getNode()) {
1053                 Value = Res;
1054                 Chain = Res.getValue(1);
1055               }
1056             } else {
1057               // If this is an unaligned load and the target doesn't support it,
1058               // expand it.
1059               if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1060                 Type *Ty =
1061                   LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1062                 unsigned ABIAlignment =
1063                   TLI.getTargetData()->getABITypeAlignment(Ty);
1064                 if (LD->getAlignment() < ABIAlignment){
1065                   ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1066                                       DAG, TLI, Value, Chain);
1067                 }
1068               }
1069             }
1070             break;
1071    }
1072    case TargetLowering::Expand:
1073             if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1074               SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
1075                                          LD->getPointerInfo(),
1076                                          LD->isVolatile(), LD->isNonTemporal(),
1077                                          LD->isInvariant(), LD->getAlignment());
1078               unsigned ExtendOp;
1079               switch (ExtType) {
1080               case ISD::EXTLOAD:
1081                 ExtendOp = (SrcVT.isFloatingPoint() ?
1082                             ISD::FP_EXTEND : ISD::ANY_EXTEND);
1083                 break;
1084               case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1085               case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1086               default: llvm_unreachable("Unexpected extend load type!");
1087               }
1088               Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1089               Chain = Load.getValue(1);
1090               break;
1091             }
1092
1093             assert(!SrcVT.isVector() &&
1094                    "Vector Loads are handled in LegalizeVectorOps");
1095
1096             // FIXME: This does not work for vectors on most targets.  Sign- and
1097             // zero-extend operations are currently folded into extending loads,
1098             // whether they are legal or not, and then we end up here without any
1099             // support for legalizing them.
1100             assert(ExtType != ISD::EXTLOAD &&
1101                    "EXTLOAD should always be supported!");
1102             // Turn the unsupported load into an EXTLOAD followed by an explicit
1103             // zero/sign extend inreg.
1104             SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1105                                             Chain, Ptr, LD->getPointerInfo(), SrcVT,
1106                                             LD->isVolatile(), LD->isNonTemporal(),
1107                                             LD->getAlignment());
1108             SDValue ValRes;
1109             if (ExtType == ISD::SEXTLOAD)
1110               ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1111                                    Result.getValueType(),
1112                                    Result, DAG.getValueType(SrcVT));
1113             else
1114               ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1115             Value = ValRes;
1116             Chain = Result.getValue(1);
1117             break;
1118    }
1119  }
1120
1121  // Since loads produce two values, make sure to remember that we legalized
1122  // both of them.
1123  if (Chain.getNode() != Node) {
1124    assert(Value.getNode() != Node && "Load must be completely replaced");
1125    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
1126    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1127    ReplacedNode(Node);
1128  }
1129}
1130
1131/// LegalizeOp - Return a legal replacement for the given operation, with
1132/// all legal operands.
1133void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
1134  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
1135    return;
1136
1137  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1138    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
1139             TargetLowering::TypeLegal &&
1140           "Unexpected illegal type!");
1141
1142  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1143    assert((TLI.getTypeAction(*DAG.getContext(),
1144                              Node->getOperand(i).getValueType()) ==
1145              TargetLowering::TypeLegal ||
1146            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
1147           "Unexpected illegal type!");
1148
1149  // Figure out the correct action; the way to query this varies by opcode
1150  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
1151  bool SimpleFinishLegalizing = true;
1152  switch (Node->getOpcode()) {
1153  case ISD::INTRINSIC_W_CHAIN:
1154  case ISD::INTRINSIC_WO_CHAIN:
1155  case ISD::INTRINSIC_VOID:
1156  case ISD::STACKSAVE:
1157    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1158    break;
1159  case ISD::VAARG:
1160    Action = TLI.getOperationAction(Node->getOpcode(),
1161                                    Node->getValueType(0));
1162    if (Action != TargetLowering::Promote)
1163      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1164    break;
1165  case ISD::SINT_TO_FP:
1166  case ISD::UINT_TO_FP:
1167  case ISD::EXTRACT_VECTOR_ELT:
1168    Action = TLI.getOperationAction(Node->getOpcode(),
1169                                    Node->getOperand(0).getValueType());
1170    break;
1171  case ISD::FP_ROUND_INREG:
1172  case ISD::SIGN_EXTEND_INREG: {
1173    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1174    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1175    break;
1176  }
1177  case ISD::ATOMIC_STORE: {
1178    Action = TLI.getOperationAction(Node->getOpcode(),
1179                                    Node->getOperand(2).getValueType());
1180    break;
1181  }
1182  case ISD::SELECT_CC:
1183  case ISD::SETCC:
1184  case ISD::BR_CC: {
1185    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1186                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
1187    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1188    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
1189    ISD::CondCode CCCode =
1190        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1191    Action = TLI.getCondCodeAction(CCCode, OpVT);
1192    if (Action == TargetLowering::Legal) {
1193      if (Node->getOpcode() == ISD::SELECT_CC)
1194        Action = TLI.getOperationAction(Node->getOpcode(),
1195                                        Node->getValueType(0));
1196      else
1197        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1198    }
1199    break;
1200  }
1201  case ISD::LOAD:
1202  case ISD::STORE:
1203    // FIXME: Model these properly.  LOAD and STORE are complicated, and
1204    // STORE expects the unlegalized operand in some cases.
1205    SimpleFinishLegalizing = false;
1206    break;
1207  case ISD::CALLSEQ_START:
1208  case ISD::CALLSEQ_END:
1209    // FIXME: This shouldn't be necessary.  These nodes have special properties
1210    // dealing with the recursive nature of legalization.  Removing this
1211    // special case should be done as part of making LegalizeDAG non-recursive.
1212    SimpleFinishLegalizing = false;
1213    break;
1214  case ISD::EXTRACT_ELEMENT:
1215  case ISD::FLT_ROUNDS_:
1216  case ISD::SADDO:
1217  case ISD::SSUBO:
1218  case ISD::UADDO:
1219  case ISD::USUBO:
1220  case ISD::SMULO:
1221  case ISD::UMULO:
1222  case ISD::FPOWI:
1223  case ISD::MERGE_VALUES:
1224  case ISD::EH_RETURN:
1225  case ISD::FRAME_TO_ARGS_OFFSET:
1226  case ISD::EH_SJLJ_SETJMP:
1227  case ISD::EH_SJLJ_LONGJMP:
1228    // These operations lie about being legal: when they claim to be legal,
1229    // they should actually be expanded.
1230    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1231    if (Action == TargetLowering::Legal)
1232      Action = TargetLowering::Expand;
1233    break;
1234  case ISD::INIT_TRAMPOLINE:
1235  case ISD::ADJUST_TRAMPOLINE:
1236  case ISD::FRAMEADDR:
1237  case ISD::RETURNADDR:
1238    // These operations lie about being legal: when they claim to be legal,
1239    // they should actually be custom-lowered.
1240    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1241    if (Action == TargetLowering::Legal)
1242      Action = TargetLowering::Custom;
1243    break;
1244  default:
1245    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1246      Action = TargetLowering::Legal;
1247    } else {
1248      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1249    }
1250    break;
1251  }
1252
1253  if (SimpleFinishLegalizing) {
1254    SDNode *NewNode = Node;
1255    switch (Node->getOpcode()) {
1256    default: break;
1257    case ISD::SHL:
1258    case ISD::SRL:
1259    case ISD::SRA:
1260    case ISD::ROTL:
1261    case ISD::ROTR:
1262      // Legalizing shifts/rotates requires adjusting the shift amount
1263      // to the appropriate width.
1264      if (!Node->getOperand(1).getValueType().isVector()) {
1265        SDValue SAO =
1266          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1267                                    Node->getOperand(1));
1268        HandleSDNode Handle(SAO);
1269        LegalizeOp(SAO.getNode());
1270        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1271                                         Handle.getValue());
1272      }
1273      break;
1274    case ISD::SRL_PARTS:
1275    case ISD::SRA_PARTS:
1276    case ISD::SHL_PARTS:
1277      // Legalizing shifts/rotates requires adjusting the shift amount
1278      // to the appropriate width.
1279      if (!Node->getOperand(2).getValueType().isVector()) {
1280        SDValue SAO =
1281          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1282                                    Node->getOperand(2));
1283        HandleSDNode Handle(SAO);
1284        LegalizeOp(SAO.getNode());
1285        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1286                                         Node->getOperand(1),
1287                                         Handle.getValue());
1288      }
1289      break;
1290    }
1291
1292    if (NewNode != Node) {
1293      DAG.ReplaceAllUsesWith(Node, NewNode);
1294      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1295        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
1296      ReplacedNode(Node);
1297      Node = NewNode;
1298    }
1299    switch (Action) {
1300    case TargetLowering::Legal:
1301      return;
1302    case TargetLowering::Custom: {
1303      // FIXME: The handling for custom lowering with multiple results is
1304      // a complete mess.
1305      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1306      if (Res.getNode()) {
1307        SmallVector<SDValue, 8> ResultVals;
1308        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
1309          if (e == 1)
1310            ResultVals.push_back(Res);
1311          else
1312            ResultVals.push_back(Res.getValue(i));
1313        }
1314        if (Res.getNode() != Node || Res.getResNo() != 0) {
1315          DAG.ReplaceAllUsesWith(Node, ResultVals.data());
1316          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1317            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
1318          ReplacedNode(Node);
1319        }
1320        return;
1321      }
1322    }
1323      // FALL THROUGH
1324    case TargetLowering::Expand:
1325      ExpandNode(Node);
1326      return;
1327    case TargetLowering::Promote:
1328      PromoteNode(Node);
1329      return;
1330    }
1331  }
1332
1333  switch (Node->getOpcode()) {
1334  default:
1335#ifndef NDEBUG
1336    dbgs() << "NODE: ";
1337    Node->dump( &DAG);
1338    dbgs() << "\n";
1339#endif
1340    llvm_unreachable("Do not know how to legalize this operator!");
1341
1342  case ISD::CALLSEQ_START:
1343  case ISD::CALLSEQ_END:
1344    break;
1345  case ISD::LOAD: {
1346    return LegalizeLoadOps(Node);
1347  }
1348  case ISD::STORE: {
1349    return LegalizeStoreOps(Node);
1350  }
1351  }
1352}
1353
1354SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1355  SDValue Vec = Op.getOperand(0);
1356  SDValue Idx = Op.getOperand(1);
1357  DebugLoc dl = Op.getDebugLoc();
1358  // Store the value to a temporary stack slot, then LOAD the returned part.
1359  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1360  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1361                            MachinePointerInfo(), false, false, 0);
1362
1363  // Add the offset to the index.
1364  unsigned EltSize =
1365      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1366  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1367                    DAG.getConstant(EltSize, Idx.getValueType()));
1368
1369  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1370    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1371  else
1372    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1373
1374  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1375
1376  if (Op.getValueType().isVector())
1377    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1378                       false, false, false, 0);
1379  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1380                        MachinePointerInfo(),
1381                        Vec.getValueType().getVectorElementType(),
1382                        false, false, 0);
1383}
1384
1385SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1386  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1387
1388  SDValue Vec  = Op.getOperand(0);
1389  SDValue Part = Op.getOperand(1);
1390  SDValue Idx  = Op.getOperand(2);
1391  DebugLoc dl  = Op.getDebugLoc();
1392
1393  // Store the value to a temporary stack slot, then LOAD the returned part.
1394
1395  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1396  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1397  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1398
1399  // First store the whole vector.
1400  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1401                            false, false, 0);
1402
1403  // Then store the inserted part.
1404
1405  // Add the offset to the index.
1406  unsigned EltSize =
1407      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1408
1409  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1410                    DAG.getConstant(EltSize, Idx.getValueType()));
1411
1412  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1413    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1414  else
1415    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1416
1417  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1418                                    StackPtr);
1419
1420  // Store the subvector.
1421  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1422                    MachinePointerInfo(), false, false, 0);
1423
1424  // Finally, load the updated vector.
1425  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1426                     false, false, false, 0);
1427}
1428
1429SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1430  // We can't handle this case efficiently.  Allocate a sufficiently
1431  // aligned object on the stack, store each element into it, then load
1432  // the result as a vector.
1433  // Create the stack frame object.
1434  EVT VT = Node->getValueType(0);
1435  EVT EltVT = VT.getVectorElementType();
1436  DebugLoc dl = Node->getDebugLoc();
1437  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1438  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1439  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1440
1441  // Emit a store of each element to the stack slot.
1442  SmallVector<SDValue, 8> Stores;
1443  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1444  // Store (in the right endianness) the elements to memory.
1445  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1446    // Ignore undef elements.
1447    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1448
1449    unsigned Offset = TypeByteSize*i;
1450
1451    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1452    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1453
1454    // If the destination vector element type is narrower than the source
1455    // element type, only store the bits necessary.
1456    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1457      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1458                                         Node->getOperand(i), Idx,
1459                                         PtrInfo.getWithOffset(Offset),
1460                                         EltVT, false, false, 0));
1461    } else
1462      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1463                                    Node->getOperand(i), Idx,
1464                                    PtrInfo.getWithOffset(Offset),
1465                                    false, false, 0));
1466  }
1467
1468  SDValue StoreChain;
1469  if (!Stores.empty())    // Not all undef elements?
1470    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1471                             &Stores[0], Stores.size());
1472  else
1473    StoreChain = DAG.getEntryNode();
1474
1475  // Result is a load from the stack slot.
1476  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1477                     false, false, false, 0);
1478}
1479
1480SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1481  DebugLoc dl = Node->getDebugLoc();
1482  SDValue Tmp1 = Node->getOperand(0);
1483  SDValue Tmp2 = Node->getOperand(1);
1484
1485  // Get the sign bit of the RHS.  First obtain a value that has the same
1486  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1487  SDValue SignBit;
1488  EVT FloatVT = Tmp2.getValueType();
1489  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1490  if (TLI.isTypeLegal(IVT)) {
1491    // Convert to an integer with the same sign bit.
1492    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1493  } else {
1494    // Store the float to memory, then load the sign part out as an integer.
1495    MVT LoadTy = TLI.getPointerTy();
1496    // First create a temporary that is aligned for both the load and store.
1497    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1498    // Then store the float to it.
1499    SDValue Ch =
1500      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1501                   false, false, 0);
1502    if (TLI.isBigEndian()) {
1503      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1504      // Load out a legal integer with the same sign bit as the float.
1505      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1506                            false, false, false, 0);
1507    } else { // Little endian
1508      SDValue LoadPtr = StackPtr;
1509      // The float may be wider than the integer we are going to load.  Advance
1510      // the pointer so that the loaded integer will contain the sign bit.
1511      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1512      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1513      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1514                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1515      // Load a legal integer containing the sign bit.
1516      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1517                            false, false, false, 0);
1518      // Move the sign bit to the top bit of the loaded integer.
1519      unsigned BitShift = LoadTy.getSizeInBits() -
1520        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1521      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1522      if (BitShift)
1523        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1524                              DAG.getConstant(BitShift,
1525                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1526    }
1527  }
1528  // Now get the sign bit proper, by seeing whether the value is negative.
1529  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1530                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1531                         ISD::SETLT);
1532  // Get the absolute value of the result.
1533  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1534  // Select between the nabs and abs value based on the sign bit of
1535  // the input.
1536  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1537                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1538                     AbsVal);
1539}
1540
1541void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1542                                           SmallVectorImpl<SDValue> &Results) {
1543  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1544  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1545          " not tell us which reg is the stack pointer!");
1546  DebugLoc dl = Node->getDebugLoc();
1547  EVT VT = Node->getValueType(0);
1548  SDValue Tmp1 = SDValue(Node, 0);
1549  SDValue Tmp2 = SDValue(Node, 1);
1550  SDValue Tmp3 = Node->getOperand(2);
1551  SDValue Chain = Tmp1.getOperand(0);
1552
1553  // Chain the dynamic stack allocation so that it doesn't modify the stack
1554  // pointer when other instructions are using the stack.
1555  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1556
1557  SDValue Size  = Tmp2.getOperand(1);
1558  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1559  Chain = SP.getValue(1);
1560  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1561  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1562  if (Align > StackAlign)
1563    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1564                      DAG.getConstant(-(uint64_t)Align, VT));
1565  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1566  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1567
1568  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1569                            DAG.getIntPtrConstant(0, true), SDValue());
1570
1571  Results.push_back(Tmp1);
1572  Results.push_back(Tmp2);
1573}
1574
1575/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1576/// condition code CC on the current target. This routine expands SETCC with
1577/// illegal condition code into AND / OR of multiple SETCC values.
1578void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1579                                                 SDValue &LHS, SDValue &RHS,
1580                                                 SDValue &CC,
1581                                                 DebugLoc dl) {
1582  EVT OpVT = LHS.getValueType();
1583  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1584  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1585  default: llvm_unreachable("Unknown condition code action!");
1586  case TargetLowering::Legal:
1587    // Nothing to do.
1588    break;
1589  case TargetLowering::Expand: {
1590    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1591    unsigned Opc = 0;
1592    switch (CCCode) {
1593    default: llvm_unreachable("Don't know how to expand this condition!");
1594    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1595    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1596    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1597    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1598    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1599    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1600    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1601    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1602    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1603    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1604    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1605    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1606    // FIXME: Implement more expansions.
1607    }
1608
1609    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1610    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1611    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1612    RHS = SDValue();
1613    CC  = SDValue();
1614    break;
1615  }
1616  }
1617}
1618
1619/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1620/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1621/// a load from the stack slot to DestVT, extending it if needed.
1622/// The resultant code need not be legal.
1623SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1624                                               EVT SlotVT,
1625                                               EVT DestVT,
1626                                               DebugLoc dl) {
1627  // Create the stack frame object.
1628  unsigned SrcAlign =
1629    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1630                                              getTypeForEVT(*DAG.getContext()));
1631  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1632
1633  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1634  int SPFI = StackPtrFI->getIndex();
1635  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1636
1637  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1638  unsigned SlotSize = SlotVT.getSizeInBits();
1639  unsigned DestSize = DestVT.getSizeInBits();
1640  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1641  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1642
1643  // Emit a store to the stack slot.  Use a truncstore if the input value is
1644  // later than DestVT.
1645  SDValue Store;
1646
1647  if (SrcSize > SlotSize)
1648    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1649                              PtrInfo, SlotVT, false, false, SrcAlign);
1650  else {
1651    assert(SrcSize == SlotSize && "Invalid store");
1652    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1653                         PtrInfo, false, false, SrcAlign);
1654  }
1655
1656  // Result is a load from the stack slot.
1657  if (SlotSize == DestSize)
1658    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1659                       false, false, false, DestAlign);
1660
1661  assert(SlotSize < DestSize && "Unknown extension!");
1662  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1663                        PtrInfo, SlotVT, false, false, DestAlign);
1664}
1665
1666SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1667  DebugLoc dl = Node->getDebugLoc();
1668  // Create a vector sized/aligned stack slot, store the value to element #0,
1669  // then load the whole vector back out.
1670  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1671
1672  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1673  int SPFI = StackPtrFI->getIndex();
1674
1675  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1676                                 StackPtr,
1677                                 MachinePointerInfo::getFixedStack(SPFI),
1678                                 Node->getValueType(0).getVectorElementType(),
1679                                 false, false, 0);
1680  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1681                     MachinePointerInfo::getFixedStack(SPFI),
1682                     false, false, false, 0);
1683}
1684
1685
1686/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1687/// support the operation, but do support the resultant vector type.
1688SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1689  unsigned NumElems = Node->getNumOperands();
1690  SDValue Value1, Value2;
1691  DebugLoc dl = Node->getDebugLoc();
1692  EVT VT = Node->getValueType(0);
1693  EVT OpVT = Node->getOperand(0).getValueType();
1694  EVT EltVT = VT.getVectorElementType();
1695
1696  // If the only non-undef value is the low element, turn this into a
1697  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1698  bool isOnlyLowElement = true;
1699  bool MoreThanTwoValues = false;
1700  bool isConstant = true;
1701  for (unsigned i = 0; i < NumElems; ++i) {
1702    SDValue V = Node->getOperand(i);
1703    if (V.getOpcode() == ISD::UNDEF)
1704      continue;
1705    if (i > 0)
1706      isOnlyLowElement = false;
1707    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1708      isConstant = false;
1709
1710    if (!Value1.getNode()) {
1711      Value1 = V;
1712    } else if (!Value2.getNode()) {
1713      if (V != Value1)
1714        Value2 = V;
1715    } else if (V != Value1 && V != Value2) {
1716      MoreThanTwoValues = true;
1717    }
1718  }
1719
1720  if (!Value1.getNode())
1721    return DAG.getUNDEF(VT);
1722
1723  if (isOnlyLowElement)
1724    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1725
1726  // If all elements are constants, create a load from the constant pool.
1727  if (isConstant) {
1728    SmallVector<Constant*, 16> CV;
1729    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1730      if (ConstantFPSDNode *V =
1731          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1732        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1733      } else if (ConstantSDNode *V =
1734                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1735        if (OpVT==EltVT)
1736          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1737        else {
1738          // If OpVT and EltVT don't match, EltVT is not legal and the
1739          // element values have been promoted/truncated earlier.  Undo this;
1740          // we don't want a v16i8 to become a v16i32 for example.
1741          const ConstantInt *CI = V->getConstantIntValue();
1742          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1743                                        CI->getZExtValue()));
1744        }
1745      } else {
1746        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1747        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1748        CV.push_back(UndefValue::get(OpNTy));
1749      }
1750    }
1751    Constant *CP = ConstantVector::get(CV);
1752    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1753    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1754    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1755                       MachinePointerInfo::getConstantPool(),
1756                       false, false, false, Alignment);
1757  }
1758
1759  if (!MoreThanTwoValues) {
1760    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1761    for (unsigned i = 0; i < NumElems; ++i) {
1762      SDValue V = Node->getOperand(i);
1763      if (V.getOpcode() == ISD::UNDEF)
1764        continue;
1765      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1766    }
1767    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1768      // Get the splatted value into the low element of a vector register.
1769      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1770      SDValue Vec2;
1771      if (Value2.getNode())
1772        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1773      else
1774        Vec2 = DAG.getUNDEF(VT);
1775
1776      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1777      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1778    }
1779  }
1780
1781  // Otherwise, we can't handle this case efficiently.
1782  return ExpandVectorBuildThroughStack(Node);
1783}
1784
1785// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1786// does not fit into a register, return the lo part and set the hi part to the
1787// by-reg argument.  If it does fit into a single register, return the result
1788// and leave the Hi part unset.
1789SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1790                                            bool isSigned) {
1791  TargetLowering::ArgListTy Args;
1792  TargetLowering::ArgListEntry Entry;
1793  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1794    EVT ArgVT = Node->getOperand(i).getValueType();
1795    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1796    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1797    Entry.isSExt = isSigned;
1798    Entry.isZExt = !isSigned;
1799    Args.push_back(Entry);
1800  }
1801  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1802                                         TLI.getPointerTy());
1803
1804  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1805
1806  // By default, the input chain to this libcall is the entry node of the
1807  // function. If the libcall is going to be emitted as a tail call then
1808  // TLI.isUsedByReturnOnly will change it to the right chain if the return
1809  // node which is being folded has a non-entry input chain.
1810  SDValue InChain = DAG.getEntryNode();
1811
1812  // isTailCall may be true since the callee does not reference caller stack
1813  // frame. Check if it's in the right position.
1814  SDValue TCChain = InChain;
1815  bool isTailCall = isInTailCallPosition(DAG, Node, TCChain, TLI);
1816  if (isTailCall)
1817    InChain = TCChain;
1818
1819  TargetLowering::
1820  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1821                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1822                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1823                    Callee, Args, DAG, Node->getDebugLoc());
1824  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1825
1826
1827  if (!CallInfo.second.getNode())
1828    // It's a tailcall, return the chain (which is the DAG root).
1829    return DAG.getRoot();
1830
1831  return CallInfo.first;
1832}
1833
1834/// ExpandLibCall - Generate a libcall taking the given operands as arguments
1835/// and returning a result of type RetVT.
1836SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1837                                            const SDValue *Ops, unsigned NumOps,
1838                                            bool isSigned, DebugLoc dl) {
1839  TargetLowering::ArgListTy Args;
1840  Args.reserve(NumOps);
1841
1842  TargetLowering::ArgListEntry Entry;
1843  for (unsigned i = 0; i != NumOps; ++i) {
1844    Entry.Node = Ops[i];
1845    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1846    Entry.isSExt = isSigned;
1847    Entry.isZExt = !isSigned;
1848    Args.push_back(Entry);
1849  }
1850  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1851                                         TLI.getPointerTy());
1852
1853  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1854  TargetLowering::
1855  CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1856                       false, 0, TLI.getLibcallCallingConv(LC),
1857                       /*isTailCall=*/false,
1858                  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1859                  Callee, Args, DAG, dl);
1860  std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
1861
1862  return CallInfo.first;
1863}
1864
1865// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1866// ExpandLibCall except that the first operand is the in-chain.
1867std::pair<SDValue, SDValue>
1868SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1869                                         SDNode *Node,
1870                                         bool isSigned) {
1871  SDValue InChain = Node->getOperand(0);
1872
1873  TargetLowering::ArgListTy Args;
1874  TargetLowering::ArgListEntry Entry;
1875  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1876    EVT ArgVT = Node->getOperand(i).getValueType();
1877    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1878    Entry.Node = Node->getOperand(i);
1879    Entry.Ty = ArgTy;
1880    Entry.isSExt = isSigned;
1881    Entry.isZExt = !isSigned;
1882    Args.push_back(Entry);
1883  }
1884  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1885                                         TLI.getPointerTy());
1886
1887  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1888  TargetLowering::
1889  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1890                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1891                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1892                    Callee, Args, DAG, Node->getDebugLoc());
1893  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1894
1895  return CallInfo;
1896}
1897
1898SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1899                                              RTLIB::Libcall Call_F32,
1900                                              RTLIB::Libcall Call_F64,
1901                                              RTLIB::Libcall Call_F80,
1902                                              RTLIB::Libcall Call_PPCF128) {
1903  RTLIB::Libcall LC;
1904  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1905  default: llvm_unreachable("Unexpected request for libcall!");
1906  case MVT::f32: LC = Call_F32; break;
1907  case MVT::f64: LC = Call_F64; break;
1908  case MVT::f80: LC = Call_F80; break;
1909  case MVT::ppcf128: LC = Call_PPCF128; break;
1910  }
1911  return ExpandLibCall(LC, Node, false);
1912}
1913
1914SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1915                                               RTLIB::Libcall Call_I8,
1916                                               RTLIB::Libcall Call_I16,
1917                                               RTLIB::Libcall Call_I32,
1918                                               RTLIB::Libcall Call_I64,
1919                                               RTLIB::Libcall Call_I128) {
1920  RTLIB::Libcall LC;
1921  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1922  default: llvm_unreachable("Unexpected request for libcall!");
1923  case MVT::i8:   LC = Call_I8; break;
1924  case MVT::i16:  LC = Call_I16; break;
1925  case MVT::i32:  LC = Call_I32; break;
1926  case MVT::i64:  LC = Call_I64; break;
1927  case MVT::i128: LC = Call_I128; break;
1928  }
1929  return ExpandLibCall(LC, Node, isSigned);
1930}
1931
1932/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
1933static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
1934                                     const TargetLowering &TLI) {
1935  RTLIB::Libcall LC;
1936  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1937  default: llvm_unreachable("Unexpected request for libcall!");
1938  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1939  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1940  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1941  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1942  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1943  }
1944
1945  return TLI.getLibcallName(LC) != 0;
1946}
1947
1948/// useDivRem - Only issue divrem libcall if both quotient and remainder are
1949/// needed.
1950static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
1951  // The other use might have been replaced with a divrem already.
1952  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
1953  unsigned OtherOpcode = 0;
1954  if (isSigned)
1955    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
1956  else
1957    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
1958
1959  SDValue Op0 = Node->getOperand(0);
1960  SDValue Op1 = Node->getOperand(1);
1961  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
1962         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
1963    SDNode *User = *UI;
1964    if (User == Node)
1965      continue;
1966    if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
1967        User->getOperand(0) == Op0 &&
1968        User->getOperand(1) == Op1)
1969      return true;
1970  }
1971  return false;
1972}
1973
1974/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
1975/// pairs.
1976void
1977SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
1978                                          SmallVectorImpl<SDValue> &Results) {
1979  unsigned Opcode = Node->getOpcode();
1980  bool isSigned = Opcode == ISD::SDIVREM;
1981
1982  RTLIB::Libcall LC;
1983  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1984  default: llvm_unreachable("Unexpected request for libcall!");
1985  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1986  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1987  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1988  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1989  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1990  }
1991
1992  // The input chain to this libcall is the entry node of the function.
1993  // Legalizing the call will automatically add the previous call to the
1994  // dependence.
1995  SDValue InChain = DAG.getEntryNode();
1996
1997  EVT RetVT = Node->getValueType(0);
1998  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1999
2000  TargetLowering::ArgListTy Args;
2001  TargetLowering::ArgListEntry Entry;
2002  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2003    EVT ArgVT = Node->getOperand(i).getValueType();
2004    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2005    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2006    Entry.isSExt = isSigned;
2007    Entry.isZExt = !isSigned;
2008    Args.push_back(Entry);
2009  }
2010
2011  // Also pass the return address of the remainder.
2012  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2013  Entry.Node = FIPtr;
2014  Entry.Ty = RetTy->getPointerTo();
2015  Entry.isSExt = isSigned;
2016  Entry.isZExt = !isSigned;
2017  Args.push_back(Entry);
2018
2019  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2020                                         TLI.getPointerTy());
2021
2022  DebugLoc dl = Node->getDebugLoc();
2023  TargetLowering::
2024  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
2025                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2026                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2027                    Callee, Args, DAG, dl);
2028  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2029
2030  // Remainder is loaded back from the stack frame.
2031  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2032                            MachinePointerInfo(), false, false, false, 0);
2033  Results.push_back(CallInfo.first);
2034  Results.push_back(Rem);
2035}
2036
2037/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2038/// INT_TO_FP operation of the specified operand when the target requests that
2039/// we expand it.  At this point, we know that the result and operand types are
2040/// legal for the target.
2041SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2042                                                   SDValue Op0,
2043                                                   EVT DestVT,
2044                                                   DebugLoc dl) {
2045  if (Op0.getValueType() == MVT::i32) {
2046    // simple 32-bit [signed|unsigned] integer to float/double expansion
2047
2048    // Get the stack frame index of a 8 byte buffer.
2049    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2050
2051    // word offset constant for Hi/Lo address computation
2052    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2053    // set up Hi and Lo (into buffer) address based on endian
2054    SDValue Hi = StackSlot;
2055    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2056                             TLI.getPointerTy(), StackSlot, WordOff);
2057    if (TLI.isLittleEndian())
2058      std::swap(Hi, Lo);
2059
2060    // if signed map to unsigned space
2061    SDValue Op0Mapped;
2062    if (isSigned) {
2063      // constant used to invert sign bit (signed to unsigned mapping)
2064      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2065      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2066    } else {
2067      Op0Mapped = Op0;
2068    }
2069    // store the lo of the constructed double - based on integer input
2070    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2071                                  Op0Mapped, Lo, MachinePointerInfo(),
2072                                  false, false, 0);
2073    // initial hi portion of constructed double
2074    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2075    // store the hi of the constructed double - biased exponent
2076    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2077                                  MachinePointerInfo(),
2078                                  false, false, 0);
2079    // load the constructed double
2080    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2081                               MachinePointerInfo(), false, false, false, 0);
2082    // FP constant to bias correct the final result
2083    SDValue Bias = DAG.getConstantFP(isSigned ?
2084                                     BitsToDouble(0x4330000080000000ULL) :
2085                                     BitsToDouble(0x4330000000000000ULL),
2086                                     MVT::f64);
2087    // subtract the bias
2088    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2089    // final result
2090    SDValue Result;
2091    // handle final rounding
2092    if (DestVT == MVT::f64) {
2093      // do nothing
2094      Result = Sub;
2095    } else if (DestVT.bitsLT(MVT::f64)) {
2096      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2097                           DAG.getIntPtrConstant(0));
2098    } else if (DestVT.bitsGT(MVT::f64)) {
2099      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2100    }
2101    return Result;
2102  }
2103  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2104  // Code below here assumes !isSigned without checking again.
2105
2106  // Implementation of unsigned i64 to f64 following the algorithm in
2107  // __floatundidf in compiler_rt. This implementation has the advantage
2108  // of performing rounding correctly, both in the default rounding mode
2109  // and in all alternate rounding modes.
2110  // TODO: Generalize this for use with other types.
2111  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2112    SDValue TwoP52 =
2113      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2114    SDValue TwoP84PlusTwoP52 =
2115      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2116    SDValue TwoP84 =
2117      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2118
2119    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2120    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2121                             DAG.getConstant(32, MVT::i64));
2122    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2123    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2124    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2125    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2126    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2127                                TwoP84PlusTwoP52);
2128    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2129  }
2130
2131  // Implementation of unsigned i64 to f32.
2132  // TODO: Generalize this for use with other types.
2133  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2134    // For unsigned conversions, convert them to signed conversions using the
2135    // algorithm from the x86_64 __floatundidf in compiler_rt.
2136    if (!isSigned) {
2137      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2138
2139      SDValue ShiftConst =
2140          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2141      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2142      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2143      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2144      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2145
2146      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2147      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2148
2149      // TODO: This really should be implemented using a branch rather than a
2150      // select.  We happen to get lucky and machinesink does the right
2151      // thing most of the time.  This would be a good candidate for a
2152      //pseudo-op, or, even better, for whole-function isel.
2153      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2154        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2155      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2156    }
2157
2158    // Otherwise, implement the fully general conversion.
2159
2160    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2161         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2162    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2163         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2164    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2165         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2166    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2167                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2168    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2169    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2170                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2171                   ISD::SETUGE);
2172    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2173    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2174
2175    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2176                             DAG.getConstant(32, SHVT));
2177    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2178    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2179    SDValue TwoP32 =
2180      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2181    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2182    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2183    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2184    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2185    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2186                       DAG.getIntPtrConstant(0));
2187  }
2188
2189  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2190
2191  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2192                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2193                                 ISD::SETLT);
2194  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2195  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2196                                    SignSet, Four, Zero);
2197
2198  // If the sign bit of the integer is set, the large number will be treated
2199  // as a negative number.  To counteract this, the dynamic code adds an
2200  // offset depending on the data type.
2201  uint64_t FF;
2202  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2203  default: llvm_unreachable("Unsupported integer type!");
2204  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2205  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2206  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2207  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2208  }
2209  if (TLI.isLittleEndian()) FF <<= 32;
2210  Constant *FudgeFactor = ConstantInt::get(
2211                                       Type::getInt64Ty(*DAG.getContext()), FF);
2212
2213  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2214  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2215  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2216  Alignment = std::min(Alignment, 4u);
2217  SDValue FudgeInReg;
2218  if (DestVT == MVT::f32)
2219    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2220                             MachinePointerInfo::getConstantPool(),
2221                             false, false, false, Alignment);
2222  else {
2223    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2224                                  DAG.getEntryNode(), CPIdx,
2225                                  MachinePointerInfo::getConstantPool(),
2226                                  MVT::f32, false, false, Alignment);
2227    HandleSDNode Handle(Load);
2228    LegalizeOp(Load.getNode());
2229    FudgeInReg = Handle.getValue();
2230  }
2231
2232  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2233}
2234
2235/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2236/// *INT_TO_FP operation of the specified operand when the target requests that
2237/// we promote it.  At this point, we know that the result and operand types are
2238/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2239/// operation that takes a larger input.
2240SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2241                                                    EVT DestVT,
2242                                                    bool isSigned,
2243                                                    DebugLoc dl) {
2244  // First step, figure out the appropriate *INT_TO_FP operation to use.
2245  EVT NewInTy = LegalOp.getValueType();
2246
2247  unsigned OpToUse = 0;
2248
2249  // Scan for the appropriate larger type to use.
2250  while (1) {
2251    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2252    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2253
2254    // If the target supports SINT_TO_FP of this type, use it.
2255    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2256      OpToUse = ISD::SINT_TO_FP;
2257      break;
2258    }
2259    if (isSigned) continue;
2260
2261    // If the target supports UINT_TO_FP of this type, use it.
2262    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2263      OpToUse = ISD::UINT_TO_FP;
2264      break;
2265    }
2266
2267    // Otherwise, try a larger type.
2268  }
2269
2270  // Okay, we found the operation and type to use.  Zero extend our input to the
2271  // desired type then run the operation on it.
2272  return DAG.getNode(OpToUse, dl, DestVT,
2273                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2274                                 dl, NewInTy, LegalOp));
2275}
2276
2277/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2278/// FP_TO_*INT operation of the specified operand when the target requests that
2279/// we promote it.  At this point, we know that the result and operand types are
2280/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2281/// operation that returns a larger result.
2282SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2283                                                    EVT DestVT,
2284                                                    bool isSigned,
2285                                                    DebugLoc dl) {
2286  // First step, figure out the appropriate FP_TO*INT operation to use.
2287  EVT NewOutTy = DestVT;
2288
2289  unsigned OpToUse = 0;
2290
2291  // Scan for the appropriate larger type to use.
2292  while (1) {
2293    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2294    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2295
2296    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2297      OpToUse = ISD::FP_TO_SINT;
2298      break;
2299    }
2300
2301    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2302      OpToUse = ISD::FP_TO_UINT;
2303      break;
2304    }
2305
2306    // Otherwise, try a larger type.
2307  }
2308
2309
2310  // Okay, we found the operation and type to use.
2311  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2312
2313  // Truncate the result of the extended FP_TO_*INT operation to the desired
2314  // size.
2315  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2316}
2317
2318/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2319///
2320SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2321  EVT VT = Op.getValueType();
2322  EVT SHVT = TLI.getShiftAmountTy(VT);
2323  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2324  switch (VT.getSimpleVT().SimpleTy) {
2325  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2326  case MVT::i16:
2327    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2328    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2329    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2330  case MVT::i32:
2331    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2332    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2333    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2334    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2335    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2336    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2337    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2338    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2339    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2340  case MVT::i64:
2341    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2342    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2343    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2344    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2345    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2346    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2347    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2348    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2349    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2350    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2351    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2352    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2353    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2354    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2355    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2356    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2357    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2358    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2359    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2360    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2361    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2362  }
2363}
2364
2365/// SplatByte - Distribute ByteVal over NumBits bits.
2366// FIXME: Move this helper to a common place.
2367static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2368  APInt Val = APInt(NumBits, ByteVal);
2369  unsigned Shift = 8;
2370  for (unsigned i = NumBits; i > 8; i >>= 1) {
2371    Val = (Val << Shift) | Val;
2372    Shift <<= 1;
2373  }
2374  return Val;
2375}
2376
2377/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2378///
2379SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2380                                             DebugLoc dl) {
2381  switch (Opc) {
2382  default: llvm_unreachable("Cannot expand this yet!");
2383  case ISD::CTPOP: {
2384    EVT VT = Op.getValueType();
2385    EVT ShVT = TLI.getShiftAmountTy(VT);
2386    unsigned Len = VT.getSizeInBits();
2387
2388    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2389           "CTPOP not implemented for this type.");
2390
2391    // This is the "best" algorithm from
2392    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2393
2394    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2395    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2396    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2397    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2398
2399    // v = v - ((v >> 1) & 0x55555555...)
2400    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2401                     DAG.getNode(ISD::AND, dl, VT,
2402                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2403                                             DAG.getConstant(1, ShVT)),
2404                                 Mask55));
2405    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2406    Op = DAG.getNode(ISD::ADD, dl, VT,
2407                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2408                     DAG.getNode(ISD::AND, dl, VT,
2409                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2410                                             DAG.getConstant(2, ShVT)),
2411                                 Mask33));
2412    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2413    Op = DAG.getNode(ISD::AND, dl, VT,
2414                     DAG.getNode(ISD::ADD, dl, VT, Op,
2415                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2416                                             DAG.getConstant(4, ShVT))),
2417                     Mask0F);
2418    // v = (v * 0x01010101...) >> (Len - 8)
2419    Op = DAG.getNode(ISD::SRL, dl, VT,
2420                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2421                     DAG.getConstant(Len - 8, ShVT));
2422
2423    return Op;
2424  }
2425  case ISD::CTLZ_ZERO_UNDEF:
2426    // This trivially expands to CTLZ.
2427    return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2428  case ISD::CTLZ: {
2429    // for now, we do this:
2430    // x = x | (x >> 1);
2431    // x = x | (x >> 2);
2432    // ...
2433    // x = x | (x >>16);
2434    // x = x | (x >>32); // for 64-bit input
2435    // return popcount(~x);
2436    //
2437    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2438    EVT VT = Op.getValueType();
2439    EVT ShVT = TLI.getShiftAmountTy(VT);
2440    unsigned len = VT.getSizeInBits();
2441    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2442      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2443      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2444                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2445    }
2446    Op = DAG.getNOT(dl, Op, VT);
2447    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2448  }
2449  case ISD::CTTZ_ZERO_UNDEF:
2450    // This trivially expands to CTTZ.
2451    return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2452  case ISD::CTTZ: {
2453    // for now, we use: { return popcount(~x & (x - 1)); }
2454    // unless the target has ctlz but not ctpop, in which case we use:
2455    // { return 32 - nlz(~x & (x-1)); }
2456    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2457    EVT VT = Op.getValueType();
2458    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2459                               DAG.getNOT(dl, Op, VT),
2460                               DAG.getNode(ISD::SUB, dl, VT, Op,
2461                                           DAG.getConstant(1, VT)));
2462    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2463    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2464        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2465      return DAG.getNode(ISD::SUB, dl, VT,
2466                         DAG.getConstant(VT.getSizeInBits(), VT),
2467                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2468    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2469  }
2470  }
2471}
2472
2473std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2474  unsigned Opc = Node->getOpcode();
2475  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2476  RTLIB::Libcall LC;
2477
2478  switch (Opc) {
2479  default:
2480    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2481  case ISD::ATOMIC_SWAP:
2482    switch (VT.SimpleTy) {
2483    default: llvm_unreachable("Unexpected value type for atomic!");
2484    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2485    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2486    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2487    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2488    }
2489    break;
2490  case ISD::ATOMIC_CMP_SWAP:
2491    switch (VT.SimpleTy) {
2492    default: llvm_unreachable("Unexpected value type for atomic!");
2493    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2494    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2495    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2496    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2497    }
2498    break;
2499  case ISD::ATOMIC_LOAD_ADD:
2500    switch (VT.SimpleTy) {
2501    default: llvm_unreachable("Unexpected value type for atomic!");
2502    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2503    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2504    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2505    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2506    }
2507    break;
2508  case ISD::ATOMIC_LOAD_SUB:
2509    switch (VT.SimpleTy) {
2510    default: llvm_unreachable("Unexpected value type for atomic!");
2511    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2512    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2513    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2514    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2515    }
2516    break;
2517  case ISD::ATOMIC_LOAD_AND:
2518    switch (VT.SimpleTy) {
2519    default: llvm_unreachable("Unexpected value type for atomic!");
2520    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2521    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2522    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2523    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2524    }
2525    break;
2526  case ISD::ATOMIC_LOAD_OR:
2527    switch (VT.SimpleTy) {
2528    default: llvm_unreachable("Unexpected value type for atomic!");
2529    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2530    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2531    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2532    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2533    }
2534    break;
2535  case ISD::ATOMIC_LOAD_XOR:
2536    switch (VT.SimpleTy) {
2537    default: llvm_unreachable("Unexpected value type for atomic!");
2538    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2539    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2540    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2541    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2542    }
2543    break;
2544  case ISD::ATOMIC_LOAD_NAND:
2545    switch (VT.SimpleTy) {
2546    default: llvm_unreachable("Unexpected value type for atomic!");
2547    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2548    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2549    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2550    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2551    }
2552    break;
2553  }
2554
2555  return ExpandChainLibCall(LC, Node, false);
2556}
2557
2558void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2559  SmallVector<SDValue, 8> Results;
2560  DebugLoc dl = Node->getDebugLoc();
2561  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2562  switch (Node->getOpcode()) {
2563  case ISD::CTPOP:
2564  case ISD::CTLZ:
2565  case ISD::CTLZ_ZERO_UNDEF:
2566  case ISD::CTTZ:
2567  case ISD::CTTZ_ZERO_UNDEF:
2568    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2569    Results.push_back(Tmp1);
2570    break;
2571  case ISD::BSWAP:
2572    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2573    break;
2574  case ISD::FRAMEADDR:
2575  case ISD::RETURNADDR:
2576  case ISD::FRAME_TO_ARGS_OFFSET:
2577    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2578    break;
2579  case ISD::FLT_ROUNDS_:
2580    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2581    break;
2582  case ISD::EH_RETURN:
2583  case ISD::EH_LABEL:
2584  case ISD::PREFETCH:
2585  case ISD::VAEND:
2586  case ISD::EH_SJLJ_LONGJMP:
2587    // If the target didn't expand these, there's nothing to do, so just
2588    // preserve the chain and be done.
2589    Results.push_back(Node->getOperand(0));
2590    break;
2591  case ISD::EH_SJLJ_SETJMP:
2592    // If the target didn't expand this, just return 'zero' and preserve the
2593    // chain.
2594    Results.push_back(DAG.getConstant(0, MVT::i32));
2595    Results.push_back(Node->getOperand(0));
2596    break;
2597  case ISD::ATOMIC_FENCE:
2598  case ISD::MEMBARRIER: {
2599    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2600    // FIXME: handle "fence singlethread" more efficiently.
2601    TargetLowering::ArgListTy Args;
2602    TargetLowering::
2603    CallLoweringInfo CLI(Node->getOperand(0),
2604                         Type::getVoidTy(*DAG.getContext()),
2605                      false, false, false, false, 0, CallingConv::C,
2606                      /*isTailCall=*/false,
2607                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2608                      DAG.getExternalSymbol("__sync_synchronize",
2609                                            TLI.getPointerTy()),
2610                      Args, DAG, dl);
2611    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2612
2613    Results.push_back(CallResult.second);
2614    break;
2615  }
2616  case ISD::ATOMIC_LOAD: {
2617    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2618    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2619    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2620                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2621                                 Node->getOperand(0),
2622                                 Node->getOperand(1), Zero, Zero,
2623                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2624                                 cast<AtomicSDNode>(Node)->getOrdering(),
2625                                 cast<AtomicSDNode>(Node)->getSynchScope());
2626    Results.push_back(Swap.getValue(0));
2627    Results.push_back(Swap.getValue(1));
2628    break;
2629  }
2630  case ISD::ATOMIC_STORE: {
2631    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2632    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2633                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2634                                 Node->getOperand(0),
2635                                 Node->getOperand(1), Node->getOperand(2),
2636                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2637                                 cast<AtomicSDNode>(Node)->getOrdering(),
2638                                 cast<AtomicSDNode>(Node)->getSynchScope());
2639    Results.push_back(Swap.getValue(1));
2640    break;
2641  }
2642  // By default, atomic intrinsics are marked Legal and lowered. Targets
2643  // which don't support them directly, however, may want libcalls, in which
2644  // case they mark them Expand, and we get here.
2645  case ISD::ATOMIC_SWAP:
2646  case ISD::ATOMIC_LOAD_ADD:
2647  case ISD::ATOMIC_LOAD_SUB:
2648  case ISD::ATOMIC_LOAD_AND:
2649  case ISD::ATOMIC_LOAD_OR:
2650  case ISD::ATOMIC_LOAD_XOR:
2651  case ISD::ATOMIC_LOAD_NAND:
2652  case ISD::ATOMIC_LOAD_MIN:
2653  case ISD::ATOMIC_LOAD_MAX:
2654  case ISD::ATOMIC_LOAD_UMIN:
2655  case ISD::ATOMIC_LOAD_UMAX:
2656  case ISD::ATOMIC_CMP_SWAP: {
2657    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2658    Results.push_back(Tmp.first);
2659    Results.push_back(Tmp.second);
2660    break;
2661  }
2662  case ISD::DYNAMIC_STACKALLOC:
2663    ExpandDYNAMIC_STACKALLOC(Node, Results);
2664    break;
2665  case ISD::MERGE_VALUES:
2666    for (unsigned i = 0; i < Node->getNumValues(); i++)
2667      Results.push_back(Node->getOperand(i));
2668    break;
2669  case ISD::UNDEF: {
2670    EVT VT = Node->getValueType(0);
2671    if (VT.isInteger())
2672      Results.push_back(DAG.getConstant(0, VT));
2673    else {
2674      assert(VT.isFloatingPoint() && "Unknown value type!");
2675      Results.push_back(DAG.getConstantFP(0, VT));
2676    }
2677    break;
2678  }
2679  case ISD::TRAP: {
2680    // If this operation is not supported, lower it to 'abort()' call
2681    TargetLowering::ArgListTy Args;
2682    TargetLowering::
2683    CallLoweringInfo CLI(Node->getOperand(0),
2684                         Type::getVoidTy(*DAG.getContext()),
2685                      false, false, false, false, 0, CallingConv::C,
2686                      /*isTailCall=*/false,
2687                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2688                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2689                      Args, DAG, dl);
2690    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2691
2692    Results.push_back(CallResult.second);
2693    break;
2694  }
2695  case ISD::FP_ROUND:
2696  case ISD::BITCAST:
2697    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2698                            Node->getValueType(0), dl);
2699    Results.push_back(Tmp1);
2700    break;
2701  case ISD::FP_EXTEND:
2702    Tmp1 = EmitStackConvert(Node->getOperand(0),
2703                            Node->getOperand(0).getValueType(),
2704                            Node->getValueType(0), dl);
2705    Results.push_back(Tmp1);
2706    break;
2707  case ISD::SIGN_EXTEND_INREG: {
2708    // NOTE: we could fall back on load/store here too for targets without
2709    // SAR.  However, it is doubtful that any exist.
2710    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2711    EVT VT = Node->getValueType(0);
2712    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2713    if (VT.isVector())
2714      ShiftAmountTy = VT;
2715    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2716                        ExtraVT.getScalarType().getSizeInBits();
2717    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2718    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2719                       Node->getOperand(0), ShiftCst);
2720    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2721    Results.push_back(Tmp1);
2722    break;
2723  }
2724  case ISD::FP_ROUND_INREG: {
2725    // The only way we can lower this is to turn it into a TRUNCSTORE,
2726    // EXTLOAD pair, targeting a temporary location (a stack slot).
2727
2728    // NOTE: there is a choice here between constantly creating new stack
2729    // slots and always reusing the same one.  We currently always create
2730    // new ones, as reuse may inhibit scheduling.
2731    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2732    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2733                            Node->getValueType(0), dl);
2734    Results.push_back(Tmp1);
2735    break;
2736  }
2737  case ISD::SINT_TO_FP:
2738  case ISD::UINT_TO_FP:
2739    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2740                                Node->getOperand(0), Node->getValueType(0), dl);
2741    Results.push_back(Tmp1);
2742    break;
2743  case ISD::FP_TO_UINT: {
2744    SDValue True, False;
2745    EVT VT =  Node->getOperand(0).getValueType();
2746    EVT NVT = Node->getValueType(0);
2747    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2748    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2749    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2750    Tmp1 = DAG.getConstantFP(apf, VT);
2751    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2752                        Node->getOperand(0),
2753                        Tmp1, ISD::SETLT);
2754    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2755    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2756                        DAG.getNode(ISD::FSUB, dl, VT,
2757                                    Node->getOperand(0), Tmp1));
2758    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2759                        DAG.getConstant(x, NVT));
2760    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2761    Results.push_back(Tmp1);
2762    break;
2763  }
2764  case ISD::VAARG: {
2765    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2766    EVT VT = Node->getValueType(0);
2767    Tmp1 = Node->getOperand(0);
2768    Tmp2 = Node->getOperand(1);
2769    unsigned Align = Node->getConstantOperandVal(3);
2770
2771    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2772                                     MachinePointerInfo(V),
2773                                     false, false, false, 0);
2774    SDValue VAList = VAListLoad;
2775
2776    if (Align > TLI.getMinStackArgumentAlignment()) {
2777      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2778
2779      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2780                           DAG.getConstant(Align - 1,
2781                                           TLI.getPointerTy()));
2782
2783      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2784                           DAG.getConstant(-(int64_t)Align,
2785                                           TLI.getPointerTy()));
2786    }
2787
2788    // Increment the pointer, VAList, to the next vaarg
2789    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2790                       DAG.getConstant(TLI.getTargetData()->
2791                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2792                                       TLI.getPointerTy()));
2793    // Store the incremented VAList to the legalized pointer
2794    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2795                        MachinePointerInfo(V), false, false, 0);
2796    // Load the actual argument out of the pointer VAList
2797    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2798                                  false, false, false, 0));
2799    Results.push_back(Results[0].getValue(1));
2800    break;
2801  }
2802  case ISD::VACOPY: {
2803    // This defaults to loading a pointer from the input and storing it to the
2804    // output, returning the chain.
2805    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2806    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2807    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2808                       Node->getOperand(2), MachinePointerInfo(VS),
2809                       false, false, false, 0);
2810    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2811                        MachinePointerInfo(VD), false, false, 0);
2812    Results.push_back(Tmp1);
2813    break;
2814  }
2815  case ISD::EXTRACT_VECTOR_ELT:
2816    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2817      // This must be an access of the only element.  Return it.
2818      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2819                         Node->getOperand(0));
2820    else
2821      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2822    Results.push_back(Tmp1);
2823    break;
2824  case ISD::EXTRACT_SUBVECTOR:
2825    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2826    break;
2827  case ISD::INSERT_SUBVECTOR:
2828    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2829    break;
2830  case ISD::CONCAT_VECTORS: {
2831    Results.push_back(ExpandVectorBuildThroughStack(Node));
2832    break;
2833  }
2834  case ISD::SCALAR_TO_VECTOR:
2835    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2836    break;
2837  case ISD::INSERT_VECTOR_ELT:
2838    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2839                                              Node->getOperand(1),
2840                                              Node->getOperand(2), dl));
2841    break;
2842  case ISD::VECTOR_SHUFFLE: {
2843    SmallVector<int, 32> NewMask;
2844    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2845
2846    EVT VT = Node->getValueType(0);
2847    EVT EltVT = VT.getVectorElementType();
2848    SDValue Op0 = Node->getOperand(0);
2849    SDValue Op1 = Node->getOperand(1);
2850    if (!TLI.isTypeLegal(EltVT)) {
2851
2852      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2853
2854      // BUILD_VECTOR operands are allowed to be wider than the element type.
2855      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
2856      if (NewEltVT.bitsLT(EltVT)) {
2857
2858        // Convert shuffle node.
2859        // If original node was v4i64 and the new EltVT is i32,
2860        // cast operands to v8i32 and re-build the mask.
2861
2862        // Calculate new VT, the size of the new VT should be equal to original.
2863        EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
2864                                      VT.getSizeInBits()/NewEltVT.getSizeInBits());
2865        assert(NewVT.bitsEq(VT));
2866
2867        // cast operands to new VT
2868        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2869        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2870
2871        // Convert the shuffle mask
2872        unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
2873
2874        // EltVT gets smaller
2875        assert(factor > 0);
2876
2877        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
2878          if (Mask[i] < 0) {
2879            for (unsigned fi = 0; fi < factor; ++fi)
2880              NewMask.push_back(Mask[i]);
2881          }
2882          else {
2883            for (unsigned fi = 0; fi < factor; ++fi)
2884              NewMask.push_back(Mask[i]*factor+fi);
2885          }
2886        }
2887        Mask = NewMask;
2888        VT = NewVT;
2889      }
2890      EltVT = NewEltVT;
2891    }
2892    unsigned NumElems = VT.getVectorNumElements();
2893    SmallVector<SDValue, 16> Ops;
2894    for (unsigned i = 0; i != NumElems; ++i) {
2895      if (Mask[i] < 0) {
2896        Ops.push_back(DAG.getUNDEF(EltVT));
2897        continue;
2898      }
2899      unsigned Idx = Mask[i];
2900      if (Idx < NumElems)
2901        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2902                                  Op0,
2903                                  DAG.getIntPtrConstant(Idx)));
2904      else
2905        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2906                                  Op1,
2907                                  DAG.getIntPtrConstant(Idx - NumElems)));
2908    }
2909
2910    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2911    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
2912    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
2913    Results.push_back(Tmp1);
2914    break;
2915  }
2916  case ISD::EXTRACT_ELEMENT: {
2917    EVT OpTy = Node->getOperand(0).getValueType();
2918    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2919      // 1 -> Hi
2920      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2921                         DAG.getConstant(OpTy.getSizeInBits()/2,
2922                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
2923      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2924    } else {
2925      // 0 -> Lo
2926      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2927                         Node->getOperand(0));
2928    }
2929    Results.push_back(Tmp1);
2930    break;
2931  }
2932  case ISD::STACKSAVE:
2933    // Expand to CopyFromReg if the target set
2934    // StackPointerRegisterToSaveRestore.
2935    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2936      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2937                                           Node->getValueType(0)));
2938      Results.push_back(Results[0].getValue(1));
2939    } else {
2940      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2941      Results.push_back(Node->getOperand(0));
2942    }
2943    break;
2944  case ISD::STACKRESTORE:
2945    // Expand to CopyToReg if the target set
2946    // StackPointerRegisterToSaveRestore.
2947    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2948      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2949                                         Node->getOperand(1)));
2950    } else {
2951      Results.push_back(Node->getOperand(0));
2952    }
2953    break;
2954  case ISD::FCOPYSIGN:
2955    Results.push_back(ExpandFCOPYSIGN(Node));
2956    break;
2957  case ISD::FNEG:
2958    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2959    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2960    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2961                       Node->getOperand(0));
2962    Results.push_back(Tmp1);
2963    break;
2964  case ISD::FABS: {
2965    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2966    EVT VT = Node->getValueType(0);
2967    Tmp1 = Node->getOperand(0);
2968    Tmp2 = DAG.getConstantFP(0.0, VT);
2969    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2970                        Tmp1, Tmp2, ISD::SETUGT);
2971    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2972    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2973    Results.push_back(Tmp1);
2974    break;
2975  }
2976  case ISD::FSQRT:
2977    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2978                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2979    break;
2980  case ISD::FSIN:
2981    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2982                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2983    break;
2984  case ISD::FCOS:
2985    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2986                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2987    break;
2988  case ISD::FLOG:
2989    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2990                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2991    break;
2992  case ISD::FLOG2:
2993    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2994                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2995    break;
2996  case ISD::FLOG10:
2997    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2998                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2999    break;
3000  case ISD::FEXP:
3001    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3002                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
3003    break;
3004  case ISD::FEXP2:
3005    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3006                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
3007    break;
3008  case ISD::FTRUNC:
3009    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3010                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
3011    break;
3012  case ISD::FFLOOR:
3013    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3014                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
3015    break;
3016  case ISD::FCEIL:
3017    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3018                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
3019    break;
3020  case ISD::FRINT:
3021    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3022                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
3023    break;
3024  case ISD::FNEARBYINT:
3025    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3026                                      RTLIB::NEARBYINT_F64,
3027                                      RTLIB::NEARBYINT_F80,
3028                                      RTLIB::NEARBYINT_PPCF128));
3029    break;
3030  case ISD::FPOWI:
3031    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3032                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3033    break;
3034  case ISD::FPOW:
3035    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3036                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
3037    break;
3038  case ISD::FDIV:
3039    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3040                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3041    break;
3042  case ISD::FREM:
3043    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3044                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3045    break;
3046  case ISD::FMA:
3047    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3048                                      RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
3049    break;
3050  case ISD::FP16_TO_FP32:
3051    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3052    break;
3053  case ISD::FP32_TO_FP16:
3054    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3055    break;
3056  case ISD::ConstantFP: {
3057    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3058    // Check to see if this FP immediate is already legal.
3059    // If this is a legal constant, turn it into a TargetConstantFP node.
3060    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3061      Results.push_back(ExpandConstantFP(CFP, true));
3062    break;
3063  }
3064  case ISD::EHSELECTION: {
3065    unsigned Reg = TLI.getExceptionSelectorRegister();
3066    assert(Reg && "Can't expand to unknown register!");
3067    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3068                                         Node->getValueType(0)));
3069    Results.push_back(Results[0].getValue(1));
3070    break;
3071  }
3072  case ISD::EXCEPTIONADDR: {
3073    unsigned Reg = TLI.getExceptionPointerRegister();
3074    assert(Reg && "Can't expand to unknown register!");
3075    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3076                                         Node->getValueType(0)));
3077    Results.push_back(Results[0].getValue(1));
3078    break;
3079  }
3080  case ISD::FSUB: {
3081    EVT VT = Node->getValueType(0);
3082    assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3083           TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
3084           "Don't know how to expand this FP subtraction!");
3085    Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3086    Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3087    Results.push_back(Tmp1);
3088    break;
3089  }
3090  case ISD::SUB: {
3091    EVT VT = Node->getValueType(0);
3092    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3093           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3094           "Don't know how to expand this subtraction!");
3095    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3096               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3097    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
3098    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3099    break;
3100  }
3101  case ISD::UREM:
3102  case ISD::SREM: {
3103    EVT VT = Node->getValueType(0);
3104    SDVTList VTs = DAG.getVTList(VT, VT);
3105    bool isSigned = Node->getOpcode() == ISD::SREM;
3106    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3107    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3108    Tmp2 = Node->getOperand(0);
3109    Tmp3 = Node->getOperand(1);
3110    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3111        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3112         useDivRem(Node, isSigned, false))) {
3113      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3114    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3115      // X % Y -> X-X/Y*Y
3116      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3117      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3118      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3119    } else if (isSigned)
3120      Tmp1 = ExpandIntLibCall(Node, true,
3121                              RTLIB::SREM_I8,
3122                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3123                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3124    else
3125      Tmp1 = ExpandIntLibCall(Node, false,
3126                              RTLIB::UREM_I8,
3127                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3128                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3129    Results.push_back(Tmp1);
3130    break;
3131  }
3132  case ISD::UDIV:
3133  case ISD::SDIV: {
3134    bool isSigned = Node->getOpcode() == ISD::SDIV;
3135    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3136    EVT VT = Node->getValueType(0);
3137    SDVTList VTs = DAG.getVTList(VT, VT);
3138    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3139        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3140         useDivRem(Node, isSigned, true)))
3141      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3142                         Node->getOperand(1));
3143    else if (isSigned)
3144      Tmp1 = ExpandIntLibCall(Node, true,
3145                              RTLIB::SDIV_I8,
3146                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3147                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3148    else
3149      Tmp1 = ExpandIntLibCall(Node, false,
3150                              RTLIB::UDIV_I8,
3151                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3152                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3153    Results.push_back(Tmp1);
3154    break;
3155  }
3156  case ISD::MULHU:
3157  case ISD::MULHS: {
3158    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3159                                                              ISD::SMUL_LOHI;
3160    EVT VT = Node->getValueType(0);
3161    SDVTList VTs = DAG.getVTList(VT, VT);
3162    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3163           "If this wasn't legal, it shouldn't have been created!");
3164    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3165                       Node->getOperand(1));
3166    Results.push_back(Tmp1.getValue(1));
3167    break;
3168  }
3169  case ISD::SDIVREM:
3170  case ISD::UDIVREM:
3171    // Expand into divrem libcall
3172    ExpandDivRemLibCall(Node, Results);
3173    break;
3174  case ISD::MUL: {
3175    EVT VT = Node->getValueType(0);
3176    SDVTList VTs = DAG.getVTList(VT, VT);
3177    // See if multiply or divide can be lowered using two-result operations.
3178    // We just need the low half of the multiply; try both the signed
3179    // and unsigned forms. If the target supports both SMUL_LOHI and
3180    // UMUL_LOHI, form a preference by checking which forms of plain
3181    // MULH it supports.
3182    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3183    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3184    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3185    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3186    unsigned OpToUse = 0;
3187    if (HasSMUL_LOHI && !HasMULHS) {
3188      OpToUse = ISD::SMUL_LOHI;
3189    } else if (HasUMUL_LOHI && !HasMULHU) {
3190      OpToUse = ISD::UMUL_LOHI;
3191    } else if (HasSMUL_LOHI) {
3192      OpToUse = ISD::SMUL_LOHI;
3193    } else if (HasUMUL_LOHI) {
3194      OpToUse = ISD::UMUL_LOHI;
3195    }
3196    if (OpToUse) {
3197      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3198                                    Node->getOperand(1)));
3199      break;
3200    }
3201    Tmp1 = ExpandIntLibCall(Node, false,
3202                            RTLIB::MUL_I8,
3203                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3204                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3205    Results.push_back(Tmp1);
3206    break;
3207  }
3208  case ISD::SADDO:
3209  case ISD::SSUBO: {
3210    SDValue LHS = Node->getOperand(0);
3211    SDValue RHS = Node->getOperand(1);
3212    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3213                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3214                              LHS, RHS);
3215    Results.push_back(Sum);
3216    EVT OType = Node->getValueType(1);
3217
3218    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3219
3220    //   LHSSign -> LHS >= 0
3221    //   RHSSign -> RHS >= 0
3222    //   SumSign -> Sum >= 0
3223    //
3224    //   Add:
3225    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3226    //   Sub:
3227    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3228    //
3229    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3230    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3231    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3232                                      Node->getOpcode() == ISD::SADDO ?
3233                                      ISD::SETEQ : ISD::SETNE);
3234
3235    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3236    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3237
3238    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3239    Results.push_back(Cmp);
3240    break;
3241  }
3242  case ISD::UADDO:
3243  case ISD::USUBO: {
3244    SDValue LHS = Node->getOperand(0);
3245    SDValue RHS = Node->getOperand(1);
3246    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3247                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3248                              LHS, RHS);
3249    Results.push_back(Sum);
3250    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3251                                   Node->getOpcode () == ISD::UADDO ?
3252                                   ISD::SETULT : ISD::SETUGT));
3253    break;
3254  }
3255  case ISD::UMULO:
3256  case ISD::SMULO: {
3257    EVT VT = Node->getValueType(0);
3258    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3259    SDValue LHS = Node->getOperand(0);
3260    SDValue RHS = Node->getOperand(1);
3261    SDValue BottomHalf;
3262    SDValue TopHalf;
3263    static const unsigned Ops[2][3] =
3264        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3265          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3266    bool isSigned = Node->getOpcode() == ISD::SMULO;
3267    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3268      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3269      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3270    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3271      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3272                               RHS);
3273      TopHalf = BottomHalf.getValue(1);
3274    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3275                                                 VT.getSizeInBits() * 2))) {
3276      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3277      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3278      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3279      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3280                               DAG.getIntPtrConstant(0));
3281      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3282                            DAG.getIntPtrConstant(1));
3283    } else {
3284      // We can fall back to a libcall with an illegal type for the MUL if we
3285      // have a libcall big enough.
3286      // Also, we can fall back to a division in some cases, but that's a big
3287      // performance hit in the general case.
3288      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3289      if (WideVT == MVT::i16)
3290        LC = RTLIB::MUL_I16;
3291      else if (WideVT == MVT::i32)
3292        LC = RTLIB::MUL_I32;
3293      else if (WideVT == MVT::i64)
3294        LC = RTLIB::MUL_I64;
3295      else if (WideVT == MVT::i128)
3296        LC = RTLIB::MUL_I128;
3297      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3298
3299      // The high part is obtained by SRA'ing all but one of the bits of low
3300      // part.
3301      unsigned LoSize = VT.getSizeInBits();
3302      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3303                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3304      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3305                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3306
3307      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3308      // pre-lowered to the correct types. This all depends upon WideVT not
3309      // being a legal type for the architecture and thus has to be split to
3310      // two arguments.
3311      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3312      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3313      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3314                               DAG.getIntPtrConstant(0));
3315      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3316                            DAG.getIntPtrConstant(1));
3317      // Ret is a node with an illegal type. Because such things are not
3318      // generally permitted during this phase of legalization, delete the
3319      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3320      DAG.DeleteNode(Ret.getNode());
3321    }
3322
3323    if (isSigned) {
3324      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3325                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3326      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3327      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3328                             ISD::SETNE);
3329    } else {
3330      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3331                             DAG.getConstant(0, VT), ISD::SETNE);
3332    }
3333    Results.push_back(BottomHalf);
3334    Results.push_back(TopHalf);
3335    break;
3336  }
3337  case ISD::BUILD_PAIR: {
3338    EVT PairTy = Node->getValueType(0);
3339    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3340    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3341    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3342                       DAG.getConstant(PairTy.getSizeInBits()/2,
3343                                       TLI.getShiftAmountTy(PairTy)));
3344    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3345    break;
3346  }
3347  case ISD::SELECT:
3348    Tmp1 = Node->getOperand(0);
3349    Tmp2 = Node->getOperand(1);
3350    Tmp3 = Node->getOperand(2);
3351    if (Tmp1.getOpcode() == ISD::SETCC) {
3352      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3353                             Tmp2, Tmp3,
3354                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3355    } else {
3356      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3357                             DAG.getConstant(0, Tmp1.getValueType()),
3358                             Tmp2, Tmp3, ISD::SETNE);
3359    }
3360    Results.push_back(Tmp1);
3361    break;
3362  case ISD::BR_JT: {
3363    SDValue Chain = Node->getOperand(0);
3364    SDValue Table = Node->getOperand(1);
3365    SDValue Index = Node->getOperand(2);
3366
3367    EVT PTy = TLI.getPointerTy();
3368
3369    const TargetData &TD = *TLI.getTargetData();
3370    unsigned EntrySize =
3371      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3372
3373    Index = DAG.getNode(ISD::MUL, dl, PTy,
3374                        Index, DAG.getConstant(EntrySize, PTy));
3375    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3376
3377    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3378    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3379                                MachinePointerInfo::getJumpTable(), MemVT,
3380                                false, false, 0);
3381    Addr = LD;
3382    if (TM.getRelocationModel() == Reloc::PIC_) {
3383      // For PIC, the sequence is:
3384      // BRIND(load(Jumptable + index) + RelocBase)
3385      // RelocBase can be JumpTable, GOT or some sort of global base.
3386      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3387                          TLI.getPICJumpTableRelocBase(Table, DAG));
3388    }
3389    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3390    Results.push_back(Tmp1);
3391    break;
3392  }
3393  case ISD::BRCOND:
3394    // Expand brcond's setcc into its constituent parts and create a BR_CC
3395    // Node.
3396    Tmp1 = Node->getOperand(0);
3397    Tmp2 = Node->getOperand(1);
3398    if (Tmp2.getOpcode() == ISD::SETCC) {
3399      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3400                         Tmp1, Tmp2.getOperand(2),
3401                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3402                         Node->getOperand(2));
3403    } else {
3404      // We test only the i1 bit.  Skip the AND if UNDEF.
3405      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3406        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3407                    DAG.getConstant(1, Tmp2.getValueType()));
3408      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3409                         DAG.getCondCode(ISD::SETNE), Tmp3,
3410                         DAG.getConstant(0, Tmp3.getValueType()),
3411                         Node->getOperand(2));
3412    }
3413    Results.push_back(Tmp1);
3414    break;
3415  case ISD::SETCC: {
3416    Tmp1 = Node->getOperand(0);
3417    Tmp2 = Node->getOperand(1);
3418    Tmp3 = Node->getOperand(2);
3419    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3420
3421    // If we expanded the SETCC into an AND/OR, return the new node
3422    if (Tmp2.getNode() == 0) {
3423      Results.push_back(Tmp1);
3424      break;
3425    }
3426
3427    // Otherwise, SETCC for the given comparison type must be completely
3428    // illegal; expand it into a SELECT_CC.
3429    EVT VT = Node->getValueType(0);
3430    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3431                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3432    Results.push_back(Tmp1);
3433    break;
3434  }
3435  case ISD::SELECT_CC: {
3436    Tmp1 = Node->getOperand(0);   // LHS
3437    Tmp2 = Node->getOperand(1);   // RHS
3438    Tmp3 = Node->getOperand(2);   // True
3439    Tmp4 = Node->getOperand(3);   // False
3440    SDValue CC = Node->getOperand(4);
3441
3442    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3443                          Tmp1, Tmp2, CC, dl);
3444
3445    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3446    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3447    CC = DAG.getCondCode(ISD::SETNE);
3448    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3449                       Tmp3, Tmp4, CC);
3450    Results.push_back(Tmp1);
3451    break;
3452  }
3453  case ISD::BR_CC: {
3454    Tmp1 = Node->getOperand(0);              // Chain
3455    Tmp2 = Node->getOperand(2);              // LHS
3456    Tmp3 = Node->getOperand(3);              // RHS
3457    Tmp4 = Node->getOperand(1);              // CC
3458
3459    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3460                          Tmp2, Tmp3, Tmp4, dl);
3461
3462    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3463    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3464    Tmp4 = DAG.getCondCode(ISD::SETNE);
3465    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3466                       Tmp3, Node->getOperand(4));
3467    Results.push_back(Tmp1);
3468    break;
3469  }
3470  case ISD::BUILD_VECTOR:
3471    Results.push_back(ExpandBUILD_VECTOR(Node));
3472    break;
3473  case ISD::SRA:
3474  case ISD::SRL:
3475  case ISD::SHL: {
3476    // Scalarize vector SRA/SRL/SHL.
3477    EVT VT = Node->getValueType(0);
3478    assert(VT.isVector() && "Unable to legalize non-vector shift");
3479    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3480    unsigned NumElem = VT.getVectorNumElements();
3481
3482    SmallVector<SDValue, 8> Scalars;
3483    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3484      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3485                               VT.getScalarType(),
3486                               Node->getOperand(0), DAG.getIntPtrConstant(Idx));
3487      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3488                               VT.getScalarType(),
3489                               Node->getOperand(1), DAG.getIntPtrConstant(Idx));
3490      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3491                                    VT.getScalarType(), Ex, Sh));
3492    }
3493    SDValue Result =
3494      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3495                  &Scalars[0], Scalars.size());
3496    ReplaceNode(SDValue(Node, 0), Result);
3497    break;
3498  }
3499  case ISD::GLOBAL_OFFSET_TABLE:
3500  case ISD::GlobalAddress:
3501  case ISD::GlobalTLSAddress:
3502  case ISD::ExternalSymbol:
3503  case ISD::ConstantPool:
3504  case ISD::JumpTable:
3505  case ISD::INTRINSIC_W_CHAIN:
3506  case ISD::INTRINSIC_WO_CHAIN:
3507  case ISD::INTRINSIC_VOID:
3508    // FIXME: Custom lowering for these operations shouldn't return null!
3509    break;
3510  }
3511
3512  // Replace the original node with the legalized result.
3513  if (!Results.empty())
3514    ReplaceNode(Node, Results.data());
3515}
3516
3517void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3518  SmallVector<SDValue, 8> Results;
3519  EVT OVT = Node->getValueType(0);
3520  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3521      Node->getOpcode() == ISD::SINT_TO_FP ||
3522      Node->getOpcode() == ISD::SETCC) {
3523    OVT = Node->getOperand(0).getValueType();
3524  }
3525  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3526  DebugLoc dl = Node->getDebugLoc();
3527  SDValue Tmp1, Tmp2, Tmp3;
3528  switch (Node->getOpcode()) {
3529  case ISD::CTTZ:
3530  case ISD::CTTZ_ZERO_UNDEF:
3531  case ISD::CTLZ:
3532  case ISD::CTLZ_ZERO_UNDEF:
3533  case ISD::CTPOP:
3534    // Zero extend the argument.
3535    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3536    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3537    // already the correct result.
3538    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3539    if (Node->getOpcode() == ISD::CTTZ) {
3540      // FIXME: This should set a bit in the zero extended value instead.
3541      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3542                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3543                          ISD::SETEQ);
3544      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3545                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3546    } else if (Node->getOpcode() == ISD::CTLZ ||
3547               Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
3548      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3549      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3550                          DAG.getConstant(NVT.getSizeInBits() -
3551                                          OVT.getSizeInBits(), NVT));
3552    }
3553    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3554    break;
3555  case ISD::BSWAP: {
3556    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3557    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3558    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3559    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3560                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3561    Results.push_back(Tmp1);
3562    break;
3563  }
3564  case ISD::FP_TO_UINT:
3565  case ISD::FP_TO_SINT:
3566    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3567                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3568    Results.push_back(Tmp1);
3569    break;
3570  case ISD::UINT_TO_FP:
3571  case ISD::SINT_TO_FP:
3572    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3573                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3574    Results.push_back(Tmp1);
3575    break;
3576  case ISD::VAARG: {
3577    SDValue Chain = Node->getOperand(0); // Get the chain.
3578    SDValue Ptr = Node->getOperand(1); // Get the pointer.
3579
3580    unsigned TruncOp;
3581    if (OVT.isVector()) {
3582      TruncOp = ISD::BITCAST;
3583    } else {
3584      assert(OVT.isInteger()
3585        && "VAARG promotion is supported only for vectors or integer types");
3586      TruncOp = ISD::TRUNCATE;
3587    }
3588
3589    // Perform the larger operation, then convert back
3590    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
3591             Node->getConstantOperandVal(3));
3592    Chain = Tmp1.getValue(1);
3593
3594    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
3595
3596    // Modified the chain result - switch anything that used the old chain to
3597    // use the new one.
3598    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
3599    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
3600    ReplacedNode(Node);
3601    break;
3602  }
3603  case ISD::AND:
3604  case ISD::OR:
3605  case ISD::XOR: {
3606    unsigned ExtOp, TruncOp;
3607    if (OVT.isVector()) {
3608      ExtOp   = ISD::BITCAST;
3609      TruncOp = ISD::BITCAST;
3610    } else {
3611      assert(OVT.isInteger() && "Cannot promote logic operation");
3612      ExtOp   = ISD::ANY_EXTEND;
3613      TruncOp = ISD::TRUNCATE;
3614    }
3615    // Promote each of the values to the new type.
3616    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3617    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3618    // Perform the larger operation, then convert back
3619    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3620    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3621    break;
3622  }
3623  case ISD::SELECT: {
3624    unsigned ExtOp, TruncOp;
3625    if (Node->getValueType(0).isVector()) {
3626      ExtOp   = ISD::BITCAST;
3627      TruncOp = ISD::BITCAST;
3628    } else if (Node->getValueType(0).isInteger()) {
3629      ExtOp   = ISD::ANY_EXTEND;
3630      TruncOp = ISD::TRUNCATE;
3631    } else {
3632      ExtOp   = ISD::FP_EXTEND;
3633      TruncOp = ISD::FP_ROUND;
3634    }
3635    Tmp1 = Node->getOperand(0);
3636    // Promote each of the values to the new type.
3637    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3638    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3639    // Perform the larger operation, then round down.
3640    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3641    if (TruncOp != ISD::FP_ROUND)
3642      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3643    else
3644      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3645                         DAG.getIntPtrConstant(0));
3646    Results.push_back(Tmp1);
3647    break;
3648  }
3649  case ISD::VECTOR_SHUFFLE: {
3650    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3651
3652    // Cast the two input vectors.
3653    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3654    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3655
3656    // Convert the shuffle mask to the right # elements.
3657    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3658    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3659    Results.push_back(Tmp1);
3660    break;
3661  }
3662  case ISD::SETCC: {
3663    unsigned ExtOp = ISD::FP_EXTEND;
3664    if (NVT.isInteger()) {
3665      ISD::CondCode CCCode =
3666        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3667      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3668    }
3669    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3670    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3671    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3672                                  Tmp1, Tmp2, Node->getOperand(2)));
3673    break;
3674  }
3675  case ISD::FDIV:
3676  case ISD::FREM:
3677  case ISD::FPOW: {
3678    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3679    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
3680    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3681    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3682                                  Tmp3, DAG.getIntPtrConstant(0)));
3683    break;
3684  }
3685  case ISD::FLOG2:
3686  case ISD::FEXP2:
3687  case ISD::FLOG:
3688  case ISD::FEXP: {
3689    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3690    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3691    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3692                                  Tmp2, DAG.getIntPtrConstant(0)));
3693    break;
3694  }
3695  }
3696
3697  // Replace the original node with the legalized result.
3698  if (!Results.empty())
3699    ReplaceNode(Node, Results.data());
3700}
3701
3702// SelectionDAG::Legalize - This is the entry point for the file.
3703//
3704void SelectionDAG::Legalize() {
3705  /// run - This is the main entry point to this class.
3706  ///
3707  SelectionDAGLegalize(*this).LegalizeDAG();
3708}
3709