1//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/ADT/DenseSet.h"
28#include "llvm/ADT/SetOperations.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/CodeGen/LiveIntervalAnalysis.h"
31#include "llvm/CodeGen/LiveStackAnalysis.h"
32#include "llvm/CodeGen/LiveVariables.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBundle.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/MC/MCAsmInfo.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetRegisterInfo.h"
48using namespace llvm;
49
50namespace {
51  struct MachineVerifier {
52
53    MachineVerifier(Pass *pass, const char *b) :
54      PASS(pass),
55      Banner(b),
56      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
57      {}
58
59    bool runOnMachineFunction(MachineFunction &MF);
60
61    Pass *const PASS;
62    const char *Banner;
63    const char *const OutFileName;
64    raw_ostream *OS;
65    const MachineFunction *MF;
66    const TargetMachine *TM;
67    const TargetInstrInfo *TII;
68    const TargetRegisterInfo *TRI;
69    const MachineRegisterInfo *MRI;
70
71    unsigned foundErrors;
72
73    typedef SmallVector<unsigned, 16> RegVector;
74    typedef SmallVector<const uint32_t*, 4> RegMaskVector;
75    typedef DenseSet<unsigned> RegSet;
76    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
77    typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
78
79    const MachineInstr *FirstTerminator;
80    BlockSet FunctionBlocks;
81
82    BitVector regsReserved;
83    RegSet regsLive;
84    RegVector regsDefined, regsDead, regsKilled;
85    RegMaskVector regMasks;
86    RegSet regsLiveInButUnused;
87
88    SlotIndex lastIndex;
89
90    // Add Reg and any sub-registers to RV
91    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
92      RV.push_back(Reg);
93      if (TargetRegisterInfo::isPhysicalRegister(Reg))
94        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
95          RV.push_back(*SubRegs);
96    }
97
98    struct BBInfo {
99      // Is this MBB reachable from the MF entry point?
100      bool reachable;
101
102      // Vregs that must be live in because they are used without being
103      // defined. Map value is the user.
104      RegMap vregsLiveIn;
105
106      // Regs killed in MBB. They may be defined again, and will then be in both
107      // regsKilled and regsLiveOut.
108      RegSet regsKilled;
109
110      // Regs defined in MBB and live out. Note that vregs passing through may
111      // be live out without being mentioned here.
112      RegSet regsLiveOut;
113
114      // Vregs that pass through MBB untouched. This set is disjoint from
115      // regsKilled and regsLiveOut.
116      RegSet vregsPassed;
117
118      // Vregs that must pass through MBB because they are needed by a successor
119      // block. This set is disjoint from regsLiveOut.
120      RegSet vregsRequired;
121
122      // Set versions of block's predecessor and successor lists.
123      BlockSet Preds, Succs;
124
125      BBInfo() : reachable(false) {}
126
127      // Add register to vregsPassed if it belongs there. Return true if
128      // anything changed.
129      bool addPassed(unsigned Reg) {
130        if (!TargetRegisterInfo::isVirtualRegister(Reg))
131          return false;
132        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
133          return false;
134        return vregsPassed.insert(Reg).second;
135      }
136
137      // Same for a full set.
138      bool addPassed(const RegSet &RS) {
139        bool changed = false;
140        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
141          if (addPassed(*I))
142            changed = true;
143        return changed;
144      }
145
146      // Add register to vregsRequired if it belongs there. Return true if
147      // anything changed.
148      bool addRequired(unsigned Reg) {
149        if (!TargetRegisterInfo::isVirtualRegister(Reg))
150          return false;
151        if (regsLiveOut.count(Reg))
152          return false;
153        return vregsRequired.insert(Reg).second;
154      }
155
156      // Same for a full set.
157      bool addRequired(const RegSet &RS) {
158        bool changed = false;
159        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
160          if (addRequired(*I))
161            changed = true;
162        return changed;
163      }
164
165      // Same for a full map.
166      bool addRequired(const RegMap &RM) {
167        bool changed = false;
168        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
169          if (addRequired(I->first))
170            changed = true;
171        return changed;
172      }
173
174      // Live-out registers are either in regsLiveOut or vregsPassed.
175      bool isLiveOut(unsigned Reg) const {
176        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
177      }
178    };
179
180    // Extra register info per MBB.
181    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
182
183    bool isReserved(unsigned Reg) {
184      return Reg < regsReserved.size() && regsReserved.test(Reg);
185    }
186
187    bool isAllocatable(unsigned Reg) {
188      return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
189    }
190
191    // Analysis information if available
192    LiveVariables *LiveVars;
193    LiveIntervals *LiveInts;
194    LiveStacks *LiveStks;
195    SlotIndexes *Indexes;
196
197    void visitMachineFunctionBefore();
198    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
199    void visitMachineBundleBefore(const MachineInstr *MI);
200    void visitMachineInstrBefore(const MachineInstr *MI);
201    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
202    void visitMachineInstrAfter(const MachineInstr *MI);
203    void visitMachineBundleAfter(const MachineInstr *MI);
204    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
205    void visitMachineFunctionAfter();
206
207    void report(const char *msg, const MachineFunction *MF);
208    void report(const char *msg, const MachineBasicBlock *MBB);
209    void report(const char *msg, const MachineInstr *MI);
210    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
211    void report(const char *msg, const MachineFunction *MF,
212                const LiveInterval &LI);
213    void report(const char *msg, const MachineBasicBlock *MBB,
214                const LiveInterval &LI);
215
216    void verifyInlineAsm(const MachineInstr *MI);
217
218    void checkLiveness(const MachineOperand *MO, unsigned MONum);
219    void markReachable(const MachineBasicBlock *MBB);
220    void calcRegsPassed();
221    void checkPHIOps(const MachineBasicBlock *MBB);
222
223    void calcRegsRequired();
224    void verifyLiveVariables();
225    void verifyLiveIntervals();
226    void verifyLiveInterval(const LiveInterval&);
227    void verifyLiveIntervalValue(const LiveInterval&, VNInfo*);
228    void verifyLiveIntervalSegment(const LiveInterval&,
229                                   LiveInterval::const_iterator);
230  };
231
232  struct MachineVerifierPass : public MachineFunctionPass {
233    static char ID; // Pass ID, replacement for typeid
234    const char *const Banner;
235
236    MachineVerifierPass(const char *b = 0)
237      : MachineFunctionPass(ID), Banner(b) {
238        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
239      }
240
241    void getAnalysisUsage(AnalysisUsage &AU) const {
242      AU.setPreservesAll();
243      MachineFunctionPass::getAnalysisUsage(AU);
244    }
245
246    bool runOnMachineFunction(MachineFunction &MF) {
247      MF.verify(this, Banner);
248      return false;
249    }
250  };
251
252}
253
254char MachineVerifierPass::ID = 0;
255INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
256                "Verify generated machine code", false, false)
257
258FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
259  return new MachineVerifierPass(Banner);
260}
261
262void MachineFunction::verify(Pass *p, const char *Banner) const {
263  MachineVerifier(p, Banner)
264    .runOnMachineFunction(const_cast<MachineFunction&>(*this));
265}
266
267bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
268  raw_ostream *OutFile = 0;
269  if (OutFileName) {
270    std::string ErrorInfo;
271    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
272                                 raw_fd_ostream::F_Append);
273    if (!ErrorInfo.empty()) {
274      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
275      exit(1);
276    }
277
278    OS = OutFile;
279  } else {
280    OS = &errs();
281  }
282
283  foundErrors = 0;
284
285  this->MF = &MF;
286  TM = &MF.getTarget();
287  TII = TM->getInstrInfo();
288  TRI = TM->getRegisterInfo();
289  MRI = &MF.getRegInfo();
290
291  LiveVars = NULL;
292  LiveInts = NULL;
293  LiveStks = NULL;
294  Indexes = NULL;
295  if (PASS) {
296    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
297    // We don't want to verify LiveVariables if LiveIntervals is available.
298    if (!LiveInts)
299      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
300    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
301    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
302  }
303
304  visitMachineFunctionBefore();
305  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
306       MFI!=MFE; ++MFI) {
307    visitMachineBasicBlockBefore(MFI);
308    // Keep track of the current bundle header.
309    const MachineInstr *CurBundle = 0;
310    // Do we expect the next instruction to be part of the same bundle?
311    bool InBundle = false;
312
313    for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
314           MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
315      if (MBBI->getParent() != MFI) {
316        report("Bad instruction parent pointer", MFI);
317        *OS << "Instruction: " << *MBBI;
318        continue;
319      }
320
321      // Check for consistent bundle flags.
322      if (InBundle && !MBBI->isBundledWithPred())
323        report("Missing BundledPred flag, "
324               "BundledSucc was set on predecessor", MBBI);
325      if (!InBundle && MBBI->isBundledWithPred())
326        report("BundledPred flag is set, "
327               "but BundledSucc not set on predecessor", MBBI);
328
329      // Is this a bundle header?
330      if (!MBBI->isInsideBundle()) {
331        if (CurBundle)
332          visitMachineBundleAfter(CurBundle);
333        CurBundle = MBBI;
334        visitMachineBundleBefore(CurBundle);
335      } else if (!CurBundle)
336        report("No bundle header", MBBI);
337      visitMachineInstrBefore(MBBI);
338      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
339        visitMachineOperand(&MBBI->getOperand(I), I);
340      visitMachineInstrAfter(MBBI);
341
342      // Was this the last bundled instruction?
343      InBundle = MBBI->isBundledWithSucc();
344    }
345    if (CurBundle)
346      visitMachineBundleAfter(CurBundle);
347    if (InBundle)
348      report("BundledSucc flag set on last instruction in block", &MFI->back());
349    visitMachineBasicBlockAfter(MFI);
350  }
351  visitMachineFunctionAfter();
352
353  if (OutFile)
354    delete OutFile;
355  else if (foundErrors)
356    report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
357
358  // Clean up.
359  regsLive.clear();
360  regsDefined.clear();
361  regsDead.clear();
362  regsKilled.clear();
363  regMasks.clear();
364  regsLiveInButUnused.clear();
365  MBBInfoMap.clear();
366
367  return false;                 // no changes
368}
369
370void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
371  assert(MF);
372  *OS << '\n';
373  if (!foundErrors++) {
374    if (Banner)
375      *OS << "# " << Banner << '\n';
376    MF->print(*OS, Indexes);
377  }
378  *OS << "*** Bad machine code: " << msg << " ***\n"
379      << "- function:    " << MF->getName() << "\n";
380}
381
382void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
383  assert(MBB);
384  report(msg, MBB->getParent());
385  *OS << "- basic block: BB#" << MBB->getNumber()
386      << ' ' << MBB->getName()
387      << " (" << (const void*)MBB << ')';
388  if (Indexes)
389    *OS << " [" << Indexes->getMBBStartIdx(MBB)
390        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
391  *OS << '\n';
392}
393
394void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
395  assert(MI);
396  report(msg, MI->getParent());
397  *OS << "- instruction: ";
398  if (Indexes && Indexes->hasIndex(MI))
399    *OS << Indexes->getInstructionIndex(MI) << '\t';
400  MI->print(*OS, TM);
401}
402
403void MachineVerifier::report(const char *msg,
404                             const MachineOperand *MO, unsigned MONum) {
405  assert(MO);
406  report(msg, MO->getParent());
407  *OS << "- operand " << MONum << ":   ";
408  MO->print(*OS, TM);
409  *OS << "\n";
410}
411
412void MachineVerifier::report(const char *msg, const MachineFunction *MF,
413                             const LiveInterval &LI) {
414  report(msg, MF);
415  *OS << "- interval:    ";
416  if (TargetRegisterInfo::isVirtualRegister(LI.reg))
417    *OS << PrintReg(LI.reg, TRI);
418  else
419    *OS << PrintRegUnit(LI.reg, TRI);
420  *OS << ' ' << LI << '\n';
421}
422
423void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
424                             const LiveInterval &LI) {
425  report(msg, MBB);
426  *OS << "- interval:    ";
427  if (TargetRegisterInfo::isVirtualRegister(LI.reg))
428    *OS << PrintReg(LI.reg, TRI);
429  else
430    *OS << PrintRegUnit(LI.reg, TRI);
431  *OS << ' ' << LI << '\n';
432}
433
434void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
435  BBInfo &MInfo = MBBInfoMap[MBB];
436  if (!MInfo.reachable) {
437    MInfo.reachable = true;
438    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
439           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
440      markReachable(*SuI);
441  }
442}
443
444void MachineVerifier::visitMachineFunctionBefore() {
445  lastIndex = SlotIndex();
446  regsReserved = MRI->getReservedRegs();
447
448  // A sub-register of a reserved register is also reserved
449  for (int Reg = regsReserved.find_first(); Reg>=0;
450       Reg = regsReserved.find_next(Reg)) {
451    for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
452      // FIXME: This should probably be:
453      // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
454      regsReserved.set(*SubRegs);
455    }
456  }
457
458  markReachable(&MF->front());
459
460  // Build a set of the basic blocks in the function.
461  FunctionBlocks.clear();
462  for (MachineFunction::const_iterator
463       I = MF->begin(), E = MF->end(); I != E; ++I) {
464    FunctionBlocks.insert(I);
465    BBInfo &MInfo = MBBInfoMap[I];
466
467    MInfo.Preds.insert(I->pred_begin(), I->pred_end());
468    if (MInfo.Preds.size() != I->pred_size())
469      report("MBB has duplicate entries in its predecessor list.", I);
470
471    MInfo.Succs.insert(I->succ_begin(), I->succ_end());
472    if (MInfo.Succs.size() != I->succ_size())
473      report("MBB has duplicate entries in its successor list.", I);
474  }
475
476  // Check that the register use lists are sane.
477  MRI->verifyUseLists();
478}
479
480// Does iterator point to a and b as the first two elements?
481static bool matchPair(MachineBasicBlock::const_succ_iterator i,
482                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
483  if (*i == a)
484    return *++i == b;
485  if (*i == b)
486    return *++i == a;
487  return false;
488}
489
490void
491MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
492  FirstTerminator = 0;
493
494  if (MRI->isSSA()) {
495    // If this block has allocatable physical registers live-in, check that
496    // it is an entry block or landing pad.
497    for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
498           LE = MBB->livein_end();
499         LI != LE; ++LI) {
500      unsigned reg = *LI;
501      if (isAllocatable(reg) && !MBB->isLandingPad() &&
502          MBB != MBB->getParent()->begin()) {
503        report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
504      }
505    }
506  }
507
508  // Count the number of landing pad successors.
509  SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
510  for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
511       E = MBB->succ_end(); I != E; ++I) {
512    if ((*I)->isLandingPad())
513      LandingPadSuccs.insert(*I);
514    if (!FunctionBlocks.count(*I))
515      report("MBB has successor that isn't part of the function.", MBB);
516    if (!MBBInfoMap[*I].Preds.count(MBB)) {
517      report("Inconsistent CFG", MBB);
518      *OS << "MBB is not in the predecessor list of the successor BB#"
519          << (*I)->getNumber() << ".\n";
520    }
521  }
522
523  // Check the predecessor list.
524  for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
525       E = MBB->pred_end(); I != E; ++I) {
526    if (!FunctionBlocks.count(*I))
527      report("MBB has predecessor that isn't part of the function.", MBB);
528    if (!MBBInfoMap[*I].Succs.count(MBB)) {
529      report("Inconsistent CFG", MBB);
530      *OS << "MBB is not in the successor list of the predecessor BB#"
531          << (*I)->getNumber() << ".\n";
532    }
533  }
534
535  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
536  const BasicBlock *BB = MBB->getBasicBlock();
537  if (LandingPadSuccs.size() > 1 &&
538      !(AsmInfo &&
539        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
540        BB && isa<SwitchInst>(BB->getTerminator())))
541    report("MBB has more than one landing pad successor", MBB);
542
543  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
544  MachineBasicBlock *TBB = 0, *FBB = 0;
545  SmallVector<MachineOperand, 4> Cond;
546  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
547                          TBB, FBB, Cond)) {
548    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
549    // check whether its answers match up with reality.
550    if (!TBB && !FBB) {
551      // Block falls through to its successor.
552      MachineFunction::const_iterator MBBI = MBB;
553      ++MBBI;
554      if (MBBI == MF->end()) {
555        // It's possible that the block legitimately ends with a noreturn
556        // call or an unreachable, in which case it won't actually fall
557        // out the bottom of the function.
558      } else if (MBB->succ_size() == LandingPadSuccs.size()) {
559        // It's possible that the block legitimately ends with a noreturn
560        // call or an unreachable, in which case it won't actuall fall
561        // out of the block.
562      } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
563        report("MBB exits via unconditional fall-through but doesn't have "
564               "exactly one CFG successor!", MBB);
565      } else if (!MBB->isSuccessor(MBBI)) {
566        report("MBB exits via unconditional fall-through but its successor "
567               "differs from its CFG successor!", MBB);
568      }
569      if (!MBB->empty() && getBundleStart(&MBB->back())->isBarrier() &&
570          !TII->isPredicated(getBundleStart(&MBB->back()))) {
571        report("MBB exits via unconditional fall-through but ends with a "
572               "barrier instruction!", MBB);
573      }
574      if (!Cond.empty()) {
575        report("MBB exits via unconditional fall-through but has a condition!",
576               MBB);
577      }
578    } else if (TBB && !FBB && Cond.empty()) {
579      // Block unconditionally branches somewhere.
580      if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
581        report("MBB exits via unconditional branch but doesn't have "
582               "exactly one CFG successor!", MBB);
583      } else if (!MBB->isSuccessor(TBB)) {
584        report("MBB exits via unconditional branch but the CFG "
585               "successor doesn't match the actual successor!", MBB);
586      }
587      if (MBB->empty()) {
588        report("MBB exits via unconditional branch but doesn't contain "
589               "any instructions!", MBB);
590      } else if (!getBundleStart(&MBB->back())->isBarrier()) {
591        report("MBB exits via unconditional branch but doesn't end with a "
592               "barrier instruction!", MBB);
593      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
594        report("MBB exits via unconditional branch but the branch isn't a "
595               "terminator instruction!", MBB);
596      }
597    } else if (TBB && !FBB && !Cond.empty()) {
598      // Block conditionally branches somewhere, otherwise falls through.
599      MachineFunction::const_iterator MBBI = MBB;
600      ++MBBI;
601      if (MBBI == MF->end()) {
602        report("MBB conditionally falls through out of function!", MBB);
603      } else if (MBB->succ_size() == 1) {
604        // A conditional branch with only one successor is weird, but allowed.
605        if (&*MBBI != TBB)
606          report("MBB exits via conditional branch/fall-through but only has "
607                 "one CFG successor!", MBB);
608        else if (TBB != *MBB->succ_begin())
609          report("MBB exits via conditional branch/fall-through but the CFG "
610                 "successor don't match the actual successor!", MBB);
611      } else if (MBB->succ_size() != 2) {
612        report("MBB exits via conditional branch/fall-through but doesn't have "
613               "exactly two CFG successors!", MBB);
614      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
615        report("MBB exits via conditional branch/fall-through but the CFG "
616               "successors don't match the actual successors!", MBB);
617      }
618      if (MBB->empty()) {
619        report("MBB exits via conditional branch/fall-through but doesn't "
620               "contain any instructions!", MBB);
621      } else if (getBundleStart(&MBB->back())->isBarrier()) {
622        report("MBB exits via conditional branch/fall-through but ends with a "
623               "barrier instruction!", MBB);
624      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
625        report("MBB exits via conditional branch/fall-through but the branch "
626               "isn't a terminator instruction!", MBB);
627      }
628    } else if (TBB && FBB) {
629      // Block conditionally branches somewhere, otherwise branches
630      // somewhere else.
631      if (MBB->succ_size() == 1) {
632        // A conditional branch with only one successor is weird, but allowed.
633        if (FBB != TBB)
634          report("MBB exits via conditional branch/branch through but only has "
635                 "one CFG successor!", MBB);
636        else if (TBB != *MBB->succ_begin())
637          report("MBB exits via conditional branch/branch through but the CFG "
638                 "successor don't match the actual successor!", MBB);
639      } else if (MBB->succ_size() != 2) {
640        report("MBB exits via conditional branch/branch but doesn't have "
641               "exactly two CFG successors!", MBB);
642      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
643        report("MBB exits via conditional branch/branch but the CFG "
644               "successors don't match the actual successors!", MBB);
645      }
646      if (MBB->empty()) {
647        report("MBB exits via conditional branch/branch but doesn't "
648               "contain any instructions!", MBB);
649      } else if (!getBundleStart(&MBB->back())->isBarrier()) {
650        report("MBB exits via conditional branch/branch but doesn't end with a "
651               "barrier instruction!", MBB);
652      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
653        report("MBB exits via conditional branch/branch but the branch "
654               "isn't a terminator instruction!", MBB);
655      }
656      if (Cond.empty()) {
657        report("MBB exits via conditinal branch/branch but there's no "
658               "condition!", MBB);
659      }
660    } else {
661      report("AnalyzeBranch returned invalid data!", MBB);
662    }
663  }
664
665  regsLive.clear();
666  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
667         E = MBB->livein_end(); I != E; ++I) {
668    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
669      report("MBB live-in list contains non-physical register", MBB);
670      continue;
671    }
672    regsLive.insert(*I);
673    for (MCSubRegIterator SubRegs(*I, TRI); SubRegs.isValid(); ++SubRegs)
674      regsLive.insert(*SubRegs);
675  }
676  regsLiveInButUnused = regsLive;
677
678  const MachineFrameInfo *MFI = MF->getFrameInfo();
679  assert(MFI && "Function has no frame info");
680  BitVector PR = MFI->getPristineRegs(MBB);
681  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
682    regsLive.insert(I);
683    for (MCSubRegIterator SubRegs(I, TRI); SubRegs.isValid(); ++SubRegs)
684      regsLive.insert(*SubRegs);
685  }
686
687  regsKilled.clear();
688  regsDefined.clear();
689
690  if (Indexes)
691    lastIndex = Indexes->getMBBStartIdx(MBB);
692}
693
694// This function gets called for all bundle headers, including normal
695// stand-alone unbundled instructions.
696void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
697  if (Indexes && Indexes->hasIndex(MI)) {
698    SlotIndex idx = Indexes->getInstructionIndex(MI);
699    if (!(idx > lastIndex)) {
700      report("Instruction index out of order", MI);
701      *OS << "Last instruction was at " << lastIndex << '\n';
702    }
703    lastIndex = idx;
704  }
705
706  // Ensure non-terminators don't follow terminators.
707  // Ignore predicated terminators formed by if conversion.
708  // FIXME: If conversion shouldn't need to violate this rule.
709  if (MI->isTerminator() && !TII->isPredicated(MI)) {
710    if (!FirstTerminator)
711      FirstTerminator = MI;
712  } else if (FirstTerminator) {
713    report("Non-terminator instruction after the first terminator", MI);
714    *OS << "First terminator was:\t" << *FirstTerminator;
715  }
716}
717
718// The operands on an INLINEASM instruction must follow a template.
719// Verify that the flag operands make sense.
720void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
721  // The first two operands on INLINEASM are the asm string and global flags.
722  if (MI->getNumOperands() < 2) {
723    report("Too few operands on inline asm", MI);
724    return;
725  }
726  if (!MI->getOperand(0).isSymbol())
727    report("Asm string must be an external symbol", MI);
728  if (!MI->getOperand(1).isImm())
729    report("Asm flags must be an immediate", MI);
730  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
731  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
732  if (!isUInt<5>(MI->getOperand(1).getImm()))
733    report("Unknown asm flags", &MI->getOperand(1), 1);
734
735  assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed");
736
737  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
738  unsigned NumOps;
739  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
740    const MachineOperand &MO = MI->getOperand(OpNo);
741    // There may be implicit ops after the fixed operands.
742    if (!MO.isImm())
743      break;
744    NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
745  }
746
747  if (OpNo > MI->getNumOperands())
748    report("Missing operands in last group", MI);
749
750  // An optional MDNode follows the groups.
751  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
752    ++OpNo;
753
754  // All trailing operands must be implicit registers.
755  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
756    const MachineOperand &MO = MI->getOperand(OpNo);
757    if (!MO.isReg() || !MO.isImplicit())
758      report("Expected implicit register after groups", &MO, OpNo);
759  }
760}
761
762void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
763  const MCInstrDesc &MCID = MI->getDesc();
764  if (MI->getNumOperands() < MCID.getNumOperands()) {
765    report("Too few operands", MI);
766    *OS << MCID.getNumOperands() << " operands expected, but "
767        << MI->getNumExplicitOperands() << " given.\n";
768  }
769
770  // Check the tied operands.
771  if (MI->isInlineAsm())
772    verifyInlineAsm(MI);
773
774  // Check the MachineMemOperands for basic consistency.
775  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
776       E = MI->memoperands_end(); I != E; ++I) {
777    if ((*I)->isLoad() && !MI->mayLoad())
778      report("Missing mayLoad flag", MI);
779    if ((*I)->isStore() && !MI->mayStore())
780      report("Missing mayStore flag", MI);
781  }
782
783  // Debug values must not have a slot index.
784  // Other instructions must have one, unless they are inside a bundle.
785  if (LiveInts) {
786    bool mapped = !LiveInts->isNotInMIMap(MI);
787    if (MI->isDebugValue()) {
788      if (mapped)
789        report("Debug instruction has a slot index", MI);
790    } else if (MI->isInsideBundle()) {
791      if (mapped)
792        report("Instruction inside bundle has a slot index", MI);
793    } else {
794      if (!mapped)
795        report("Missing slot index", MI);
796    }
797  }
798
799  StringRef ErrorInfo;
800  if (!TII->verifyInstruction(MI, ErrorInfo))
801    report(ErrorInfo.data(), MI);
802}
803
804void
805MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
806  const MachineInstr *MI = MO->getParent();
807  const MCInstrDesc &MCID = MI->getDesc();
808
809  // The first MCID.NumDefs operands must be explicit register defines
810  if (MONum < MCID.getNumDefs()) {
811    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
812    if (!MO->isReg())
813      report("Explicit definition must be a register", MO, MONum);
814    else if (!MO->isDef() && !MCOI.isOptionalDef())
815      report("Explicit definition marked as use", MO, MONum);
816    else if (MO->isImplicit())
817      report("Explicit definition marked as implicit", MO, MONum);
818  } else if (MONum < MCID.getNumOperands()) {
819    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
820    // Don't check if it's the last operand in a variadic instruction. See,
821    // e.g., LDM_RET in the arm back end.
822    if (MO->isReg() &&
823        !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
824      if (MO->isDef() && !MCOI.isOptionalDef())
825          report("Explicit operand marked as def", MO, MONum);
826      if (MO->isImplicit())
827        report("Explicit operand marked as implicit", MO, MONum);
828    }
829
830    int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
831    if (TiedTo != -1) {
832      if (!MO->isReg())
833        report("Tied use must be a register", MO, MONum);
834      else if (!MO->isTied())
835        report("Operand should be tied", MO, MONum);
836      else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
837        report("Tied def doesn't match MCInstrDesc", MO, MONum);
838    } else if (MO->isReg() && MO->isTied())
839      report("Explicit operand should not be tied", MO, MONum);
840  } else {
841    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
842    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
843      report("Extra explicit operand on non-variadic instruction", MO, MONum);
844  }
845
846  switch (MO->getType()) {
847  case MachineOperand::MO_Register: {
848    const unsigned Reg = MO->getReg();
849    if (!Reg)
850      return;
851    if (MRI->tracksLiveness() && !MI->isDebugValue())
852      checkLiveness(MO, MONum);
853
854    // Verify the consistency of tied operands.
855    if (MO->isTied()) {
856      unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
857      const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
858      if (!OtherMO.isReg())
859        report("Must be tied to a register", MO, MONum);
860      if (!OtherMO.isTied())
861        report("Missing tie flags on tied operand", MO, MONum);
862      if (MI->findTiedOperandIdx(OtherIdx) != MONum)
863        report("Inconsistent tie links", MO, MONum);
864      if (MONum < MCID.getNumDefs()) {
865        if (OtherIdx < MCID.getNumOperands()) {
866          if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
867            report("Explicit def tied to explicit use without tie constraint",
868                   MO, MONum);
869        } else {
870          if (!OtherMO.isImplicit())
871            report("Explicit def should be tied to implicit use", MO, MONum);
872        }
873      }
874    }
875
876    // Verify two-address constraints after leaving SSA form.
877    unsigned DefIdx;
878    if (!MRI->isSSA() && MO->isUse() &&
879        MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
880        Reg != MI->getOperand(DefIdx).getReg())
881      report("Two-address instruction operands must be identical", MO, MONum);
882
883    // Check register classes.
884    if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
885      unsigned SubIdx = MO->getSubReg();
886
887      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
888        if (SubIdx) {
889          report("Illegal subregister index for physical register", MO, MONum);
890          return;
891        }
892        if (const TargetRegisterClass *DRC =
893              TII->getRegClass(MCID, MONum, TRI, *MF)) {
894          if (!DRC->contains(Reg)) {
895            report("Illegal physical register for instruction", MO, MONum);
896            *OS << TRI->getName(Reg) << " is not a "
897                << DRC->getName() << " register.\n";
898          }
899        }
900      } else {
901        // Virtual register.
902        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
903        if (SubIdx) {
904          const TargetRegisterClass *SRC =
905            TRI->getSubClassWithSubReg(RC, SubIdx);
906          if (!SRC) {
907            report("Invalid subregister index for virtual register", MO, MONum);
908            *OS << "Register class " << RC->getName()
909                << " does not support subreg index " << SubIdx << "\n";
910            return;
911          }
912          if (RC != SRC) {
913            report("Invalid register class for subregister index", MO, MONum);
914            *OS << "Register class " << RC->getName()
915                << " does not fully support subreg index " << SubIdx << "\n";
916            return;
917          }
918        }
919        if (const TargetRegisterClass *DRC =
920              TII->getRegClass(MCID, MONum, TRI, *MF)) {
921          if (SubIdx) {
922            const TargetRegisterClass *SuperRC =
923              TRI->getLargestLegalSuperClass(RC);
924            if (!SuperRC) {
925              report("No largest legal super class exists.", MO, MONum);
926              return;
927            }
928            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
929            if (!DRC) {
930              report("No matching super-reg register class.", MO, MONum);
931              return;
932            }
933          }
934          if (!RC->hasSuperClassEq(DRC)) {
935            report("Illegal virtual register for instruction", MO, MONum);
936            *OS << "Expected a " << DRC->getName() << " register, but got a "
937                << RC->getName() << " register\n";
938          }
939        }
940      }
941    }
942    break;
943  }
944
945  case MachineOperand::MO_RegisterMask:
946    regMasks.push_back(MO->getRegMask());
947    break;
948
949  case MachineOperand::MO_MachineBasicBlock:
950    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
951      report("PHI operand is not in the CFG", MO, MONum);
952    break;
953
954  case MachineOperand::MO_FrameIndex:
955    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
956        LiveInts && !LiveInts->isNotInMIMap(MI)) {
957      LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
958      SlotIndex Idx = LiveInts->getInstructionIndex(MI);
959      if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
960        report("Instruction loads from dead spill slot", MO, MONum);
961        *OS << "Live stack: " << LI << '\n';
962      }
963      if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
964        report("Instruction stores to dead spill slot", MO, MONum);
965        *OS << "Live stack: " << LI << '\n';
966      }
967    }
968    break;
969
970  default:
971    break;
972  }
973}
974
975void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
976  const MachineInstr *MI = MO->getParent();
977  const unsigned Reg = MO->getReg();
978
979  // Both use and def operands can read a register.
980  if (MO->readsReg()) {
981    regsLiveInButUnused.erase(Reg);
982
983    if (MO->isKill())
984      addRegWithSubRegs(regsKilled, Reg);
985
986    // Check that LiveVars knows this kill.
987    if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
988        MO->isKill()) {
989      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
990      if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
991        report("Kill missing from LiveVariables", MO, MONum);
992    }
993
994    // Check LiveInts liveness and kill.
995    if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
996      SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
997      // Check the cached regunit intervals.
998      if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
999        for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1000          if (const LiveInterval *LI = LiveInts->getCachedRegUnit(*Units)) {
1001            LiveRangeQuery LRQ(*LI, UseIdx);
1002            if (!LRQ.valueIn()) {
1003              report("No live range at use", MO, MONum);
1004              *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
1005                  << ' ' << *LI << '\n';
1006            }
1007            if (MO->isKill() && !LRQ.isKill()) {
1008              report("Live range continues after kill flag", MO, MONum);
1009              *OS << PrintRegUnit(*Units, TRI) << ' ' << *LI << '\n';
1010            }
1011          }
1012        }
1013      }
1014
1015      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1016        if (LiveInts->hasInterval(Reg)) {
1017          // This is a virtual register interval.
1018          const LiveInterval &LI = LiveInts->getInterval(Reg);
1019          LiveRangeQuery LRQ(LI, UseIdx);
1020          if (!LRQ.valueIn()) {
1021            report("No live range at use", MO, MONum);
1022            *OS << UseIdx << " is not live in " << LI << '\n';
1023          }
1024          // Check for extra kill flags.
1025          // Note that we allow missing kill flags for now.
1026          if (MO->isKill() && !LRQ.isKill()) {
1027            report("Live range continues after kill flag", MO, MONum);
1028            *OS << "Live range: " << LI << '\n';
1029          }
1030        } else {
1031          report("Virtual register has no live interval", MO, MONum);
1032        }
1033      }
1034    }
1035
1036    // Use of a dead register.
1037    if (!regsLive.count(Reg)) {
1038      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1039        // Reserved registers may be used even when 'dead'.
1040        if (!isReserved(Reg))
1041          report("Using an undefined physical register", MO, MONum);
1042      } else if (MRI->def_empty(Reg)) {
1043        report("Reading virtual register without a def", MO, MONum);
1044      } else {
1045        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1046        // We don't know which virtual registers are live in, so only complain
1047        // if vreg was killed in this MBB. Otherwise keep track of vregs that
1048        // must be live in. PHI instructions are handled separately.
1049        if (MInfo.regsKilled.count(Reg))
1050          report("Using a killed virtual register", MO, MONum);
1051        else if (!MI->isPHI())
1052          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1053      }
1054    }
1055  }
1056
1057  if (MO->isDef()) {
1058    // Register defined.
1059    // TODO: verify that earlyclobber ops are not used.
1060    if (MO->isDead())
1061      addRegWithSubRegs(regsDead, Reg);
1062    else
1063      addRegWithSubRegs(regsDefined, Reg);
1064
1065    // Verify SSA form.
1066    if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1067        llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
1068      report("Multiple virtual register defs in SSA form", MO, MONum);
1069
1070    // Check LiveInts for a live range, but only for virtual registers.
1071    if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
1072        !LiveInts->isNotInMIMap(MI)) {
1073      SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
1074      DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1075      if (LiveInts->hasInterval(Reg)) {
1076        const LiveInterval &LI = LiveInts->getInterval(Reg);
1077        if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
1078          assert(VNI && "NULL valno is not allowed");
1079          if (VNI->def != DefIdx) {
1080            report("Inconsistent valno->def", MO, MONum);
1081            *OS << "Valno " << VNI->id << " is not defined at "
1082              << DefIdx << " in " << LI << '\n';
1083          }
1084        } else {
1085          report("No live range at def", MO, MONum);
1086          *OS << DefIdx << " is not live in " << LI << '\n';
1087        }
1088      } else {
1089        report("Virtual register has no Live interval", MO, MONum);
1090      }
1091    }
1092  }
1093}
1094
1095void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1096}
1097
1098// This function gets called after visiting all instructions in a bundle. The
1099// argument points to the bundle header.
1100// Normal stand-alone instructions are also considered 'bundles', and this
1101// function is called for all of them.
1102void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1103  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1104  set_union(MInfo.regsKilled, regsKilled);
1105  set_subtract(regsLive, regsKilled); regsKilled.clear();
1106  // Kill any masked registers.
1107  while (!regMasks.empty()) {
1108    const uint32_t *Mask = regMasks.pop_back_val();
1109    for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1110      if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1111          MachineOperand::clobbersPhysReg(Mask, *I))
1112        regsDead.push_back(*I);
1113  }
1114  set_subtract(regsLive, regsDead);   regsDead.clear();
1115  set_union(regsLive, regsDefined);   regsDefined.clear();
1116}
1117
1118void
1119MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1120  MBBInfoMap[MBB].regsLiveOut = regsLive;
1121  regsLive.clear();
1122
1123  if (Indexes) {
1124    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1125    if (!(stop > lastIndex)) {
1126      report("Block ends before last instruction index", MBB);
1127      *OS << "Block ends at " << stop
1128          << " last instruction was at " << lastIndex << '\n';
1129    }
1130    lastIndex = stop;
1131  }
1132}
1133
1134// Calculate the largest possible vregsPassed sets. These are the registers that
1135// can pass through an MBB live, but may not be live every time. It is assumed
1136// that all vregsPassed sets are empty before the call.
1137void MachineVerifier::calcRegsPassed() {
1138  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1139  // have any vregsPassed.
1140  SmallPtrSet<const MachineBasicBlock*, 8> todo;
1141  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1142       MFI != MFE; ++MFI) {
1143    const MachineBasicBlock &MBB(*MFI);
1144    BBInfo &MInfo = MBBInfoMap[&MBB];
1145    if (!MInfo.reachable)
1146      continue;
1147    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1148           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1149      BBInfo &SInfo = MBBInfoMap[*SuI];
1150      if (SInfo.addPassed(MInfo.regsLiveOut))
1151        todo.insert(*SuI);
1152    }
1153  }
1154
1155  // Iteratively push vregsPassed to successors. This will converge to the same
1156  // final state regardless of DenseSet iteration order.
1157  while (!todo.empty()) {
1158    const MachineBasicBlock *MBB = *todo.begin();
1159    todo.erase(MBB);
1160    BBInfo &MInfo = MBBInfoMap[MBB];
1161    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1162           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1163      if (*SuI == MBB)
1164        continue;
1165      BBInfo &SInfo = MBBInfoMap[*SuI];
1166      if (SInfo.addPassed(MInfo.vregsPassed))
1167        todo.insert(*SuI);
1168    }
1169  }
1170}
1171
1172// Calculate the set of virtual registers that must be passed through each basic
1173// block in order to satisfy the requirements of successor blocks. This is very
1174// similar to calcRegsPassed, only backwards.
1175void MachineVerifier::calcRegsRequired() {
1176  // First push live-in regs to predecessors' vregsRequired.
1177  SmallPtrSet<const MachineBasicBlock*, 8> todo;
1178  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1179       MFI != MFE; ++MFI) {
1180    const MachineBasicBlock &MBB(*MFI);
1181    BBInfo &MInfo = MBBInfoMap[&MBB];
1182    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1183           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1184      BBInfo &PInfo = MBBInfoMap[*PrI];
1185      if (PInfo.addRequired(MInfo.vregsLiveIn))
1186        todo.insert(*PrI);
1187    }
1188  }
1189
1190  // Iteratively push vregsRequired to predecessors. This will converge to the
1191  // same final state regardless of DenseSet iteration order.
1192  while (!todo.empty()) {
1193    const MachineBasicBlock *MBB = *todo.begin();
1194    todo.erase(MBB);
1195    BBInfo &MInfo = MBBInfoMap[MBB];
1196    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1197           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1198      if (*PrI == MBB)
1199        continue;
1200      BBInfo &SInfo = MBBInfoMap[*PrI];
1201      if (SInfo.addRequired(MInfo.vregsRequired))
1202        todo.insert(*PrI);
1203    }
1204  }
1205}
1206
1207// Check PHI instructions at the beginning of MBB. It is assumed that
1208// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1209void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1210  SmallPtrSet<const MachineBasicBlock*, 8> seen;
1211  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
1212       BBI != BBE && BBI->isPHI(); ++BBI) {
1213    seen.clear();
1214
1215    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
1216      unsigned Reg = BBI->getOperand(i).getReg();
1217      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
1218      if (!Pre->isSuccessor(MBB))
1219        continue;
1220      seen.insert(Pre);
1221      BBInfo &PrInfo = MBBInfoMap[Pre];
1222      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1223        report("PHI operand is not live-out from predecessor",
1224               &BBI->getOperand(i), i);
1225    }
1226
1227    // Did we see all predecessors?
1228    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1229           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1230      if (!seen.count(*PrI)) {
1231        report("Missing PHI operand", BBI);
1232        *OS << "BB#" << (*PrI)->getNumber()
1233            << " is a predecessor according to the CFG.\n";
1234      }
1235    }
1236  }
1237}
1238
1239void MachineVerifier::visitMachineFunctionAfter() {
1240  calcRegsPassed();
1241
1242  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1243       MFI != MFE; ++MFI) {
1244    BBInfo &MInfo = MBBInfoMap[MFI];
1245
1246    // Skip unreachable MBBs.
1247    if (!MInfo.reachable)
1248      continue;
1249
1250    checkPHIOps(MFI);
1251  }
1252
1253  // Now check liveness info if available
1254  calcRegsRequired();
1255
1256  // Check for killed virtual registers that should be live out.
1257  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1258       MFI != MFE; ++MFI) {
1259    BBInfo &MInfo = MBBInfoMap[MFI];
1260    for (RegSet::iterator
1261         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1262         ++I)
1263      if (MInfo.regsKilled.count(*I)) {
1264        report("Virtual register killed in block, but needed live out.", MFI);
1265        *OS << "Virtual register " << PrintReg(*I)
1266            << " is used after the block.\n";
1267      }
1268  }
1269
1270  if (!MF->empty()) {
1271    BBInfo &MInfo = MBBInfoMap[&MF->front()];
1272    for (RegSet::iterator
1273         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1274         ++I)
1275      report("Virtual register def doesn't dominate all uses.",
1276             MRI->getVRegDef(*I));
1277  }
1278
1279  if (LiveVars)
1280    verifyLiveVariables();
1281  if (LiveInts)
1282    verifyLiveIntervals();
1283}
1284
1285void MachineVerifier::verifyLiveVariables() {
1286  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1287  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1288    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1289    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1290    for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1291         MFI != MFE; ++MFI) {
1292      BBInfo &MInfo = MBBInfoMap[MFI];
1293
1294      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1295      if (MInfo.vregsRequired.count(Reg)) {
1296        if (!VI.AliveBlocks.test(MFI->getNumber())) {
1297          report("LiveVariables: Block missing from AliveBlocks", MFI);
1298          *OS << "Virtual register " << PrintReg(Reg)
1299              << " must be live through the block.\n";
1300        }
1301      } else {
1302        if (VI.AliveBlocks.test(MFI->getNumber())) {
1303          report("LiveVariables: Block should not be in AliveBlocks", MFI);
1304          *OS << "Virtual register " << PrintReg(Reg)
1305              << " is not needed live through the block.\n";
1306        }
1307      }
1308    }
1309  }
1310}
1311
1312void MachineVerifier::verifyLiveIntervals() {
1313  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1314  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1315    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1316
1317    // Spilling and splitting may leave unused registers around. Skip them.
1318    if (MRI->reg_nodbg_empty(Reg))
1319      continue;
1320
1321    if (!LiveInts->hasInterval(Reg)) {
1322      report("Missing live interval for virtual register", MF);
1323      *OS << PrintReg(Reg, TRI) << " still has defs or uses\n";
1324      continue;
1325    }
1326
1327    const LiveInterval &LI = LiveInts->getInterval(Reg);
1328    assert(Reg == LI.reg && "Invalid reg to interval mapping");
1329    verifyLiveInterval(LI);
1330  }
1331
1332  // Verify all the cached regunit intervals.
1333  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1334    if (const LiveInterval *LI = LiveInts->getCachedRegUnit(i))
1335      verifyLiveInterval(*LI);
1336}
1337
1338void MachineVerifier::verifyLiveIntervalValue(const LiveInterval &LI,
1339                                              VNInfo *VNI) {
1340  if (VNI->isUnused())
1341    return;
1342
1343  const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);
1344
1345  if (!DefVNI) {
1346    report("Valno not live at def and not marked unused", MF, LI);
1347    *OS << "Valno #" << VNI->id << '\n';
1348    return;
1349  }
1350
1351  if (DefVNI != VNI) {
1352    report("Live range at def has different valno", MF, LI);
1353    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1354        << " where valno #" << DefVNI->id << " is live\n";
1355    return;
1356  }
1357
1358  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1359  if (!MBB) {
1360    report("Invalid definition index", MF, LI);
1361    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1362        << " in " << LI << '\n';
1363    return;
1364  }
1365
1366  if (VNI->isPHIDef()) {
1367    if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1368      report("PHIDef value is not defined at MBB start", MBB, LI);
1369      *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1370          << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
1371    }
1372    return;
1373  }
1374
1375  // Non-PHI def.
1376  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1377  if (!MI) {
1378    report("No instruction at def index", MBB, LI);
1379    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1380    return;
1381  }
1382
1383  bool hasDef = false;
1384  bool isEarlyClobber = false;
1385  for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1386    if (!MOI->isReg() || !MOI->isDef())
1387      continue;
1388    if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1389      if (MOI->getReg() != LI.reg)
1390        continue;
1391    } else {
1392      if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1393          !TRI->hasRegUnit(MOI->getReg(), LI.reg))
1394        continue;
1395    }
1396    hasDef = true;
1397    if (MOI->isEarlyClobber())
1398      isEarlyClobber = true;
1399  }
1400
1401  if (!hasDef) {
1402    report("Defining instruction does not modify register", MI);
1403    *OS << "Valno #" << VNI->id << " in " << LI << '\n';
1404  }
1405
1406  // Early clobber defs begin at USE slots, but other defs must begin at
1407  // DEF slots.
1408  if (isEarlyClobber) {
1409    if (!VNI->def.isEarlyClobber()) {
1410      report("Early clobber def must be at an early-clobber slot", MBB, LI);
1411      *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1412    }
1413  } else if (!VNI->def.isRegister()) {
1414    report("Non-PHI, non-early clobber def must be at a register slot",
1415           MBB, LI);
1416    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1417  }
1418}
1419
1420void
1421MachineVerifier::verifyLiveIntervalSegment(const LiveInterval &LI,
1422                                           LiveInterval::const_iterator I) {
1423  const VNInfo *VNI = I->valno;
1424  assert(VNI && "Live range has no valno");
1425
1426  if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
1427    report("Foreign valno in live range", MF, LI);
1428    *OS << *I << " has a bad valno\n";
1429  }
1430
1431  if (VNI->isUnused()) {
1432    report("Live range valno is marked unused", MF, LI);
1433    *OS << *I << '\n';
1434  }
1435
1436  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
1437  if (!MBB) {
1438    report("Bad start of live segment, no basic block", MF, LI);
1439    *OS << *I << '\n';
1440    return;
1441  }
1442  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1443  if (I->start != MBBStartIdx && I->start != VNI->def) {
1444    report("Live segment must begin at MBB entry or valno def", MBB, LI);
1445    *OS << *I << '\n';
1446  }
1447
1448  const MachineBasicBlock *EndMBB =
1449    LiveInts->getMBBFromIndex(I->end.getPrevSlot());
1450  if (!EndMBB) {
1451    report("Bad end of live segment, no basic block", MF, LI);
1452    *OS << *I << '\n';
1453    return;
1454  }
1455
1456  // No more checks for live-out segments.
1457  if (I->end == LiveInts->getMBBEndIdx(EndMBB))
1458    return;
1459
1460  // RegUnit intervals are allowed dead phis.
1461  if (!TargetRegisterInfo::isVirtualRegister(LI.reg) && VNI->isPHIDef() &&
1462      I->start == VNI->def && I->end == VNI->def.getDeadSlot())
1463    return;
1464
1465  // The live segment is ending inside EndMBB
1466  const MachineInstr *MI =
1467    LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
1468  if (!MI) {
1469    report("Live segment doesn't end at a valid instruction", EndMBB, LI);
1470    *OS << *I << '\n';
1471    return;
1472  }
1473
1474  // The block slot must refer to a basic block boundary.
1475  if (I->end.isBlock()) {
1476    report("Live segment ends at B slot of an instruction", EndMBB, LI);
1477    *OS << *I << '\n';
1478  }
1479
1480  if (I->end.isDead()) {
1481    // Segment ends on the dead slot.
1482    // That means there must be a dead def.
1483    if (!SlotIndex::isSameInstr(I->start, I->end)) {
1484      report("Live segment ending at dead slot spans instructions", EndMBB, LI);
1485      *OS << *I << '\n';
1486    }
1487  }
1488
1489  // A live segment can only end at an early-clobber slot if it is being
1490  // redefined by an early-clobber def.
1491  if (I->end.isEarlyClobber()) {
1492    if (I+1 == LI.end() || (I+1)->start != I->end) {
1493      report("Live segment ending at early clobber slot must be "
1494             "redefined by an EC def in the same instruction", EndMBB, LI);
1495      *OS << *I << '\n';
1496    }
1497  }
1498
1499  // The following checks only apply to virtual registers. Physreg liveness
1500  // is too weird to check.
1501  if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1502    // A live range can end with either a redefinition, a kill flag on a
1503    // use, or a dead flag on a def.
1504    bool hasRead = false;
1505    bool hasDeadDef = false;
1506    for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1507      if (!MOI->isReg() || MOI->getReg() != LI.reg)
1508        continue;
1509      if (MOI->readsReg())
1510        hasRead = true;
1511      if (MOI->isDef() && MOI->isDead())
1512        hasDeadDef = true;
1513    }
1514
1515    if (I->end.isDead()) {
1516      if (!hasDeadDef) {
1517        report("Instruction doesn't have a dead def operand", MI);
1518        I->print(*OS);
1519        *OS << " in " << LI << '\n';
1520      }
1521    } else {
1522      if (!hasRead) {
1523        report("Instruction ending live range doesn't read the register", MI);
1524        *OS << *I << " in " << LI << '\n';
1525      }
1526    }
1527  }
1528
1529  // Now check all the basic blocks in this live segment.
1530  MachineFunction::const_iterator MFI = MBB;
1531  // Is this live range the beginning of a non-PHIDef VN?
1532  if (I->start == VNI->def && !VNI->isPHIDef()) {
1533    // Not live-in to any blocks.
1534    if (MBB == EndMBB)
1535      return;
1536    // Skip this block.
1537    ++MFI;
1538  }
1539  for (;;) {
1540    assert(LiveInts->isLiveInToMBB(LI, MFI));
1541    // We don't know how to track physregs into a landing pad.
1542    if (!TargetRegisterInfo::isVirtualRegister(LI.reg) &&
1543        MFI->isLandingPad()) {
1544      if (&*MFI == EndMBB)
1545        break;
1546      ++MFI;
1547      continue;
1548    }
1549
1550    // Is VNI a PHI-def in the current block?
1551    bool IsPHI = VNI->isPHIDef() &&
1552      VNI->def == LiveInts->getMBBStartIdx(MFI);
1553
1554    // Check that VNI is live-out of all predecessors.
1555    for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1556         PE = MFI->pred_end(); PI != PE; ++PI) {
1557      SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1558      const VNInfo *PVNI = LI.getVNInfoBefore(PEnd);
1559
1560      // All predecessors must have a live-out value.
1561      if (!PVNI) {
1562        report("Register not marked live out of predecessor", *PI, LI);
1563        *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
1564            << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
1565            << PEnd << '\n';
1566        continue;
1567      }
1568
1569      // Only PHI-defs can take different predecessor values.
1570      if (!IsPHI && PVNI != VNI) {
1571        report("Different value live out of predecessor", *PI, LI);
1572        *OS << "Valno #" << PVNI->id << " live out of BB#"
1573            << (*PI)->getNumber() << '@' << PEnd
1574            << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
1575            << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
1576      }
1577    }
1578    if (&*MFI == EndMBB)
1579      break;
1580    ++MFI;
1581  }
1582}
1583
1584void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1585  for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
1586       I!=E; ++I)
1587    verifyLiveIntervalValue(LI, *I);
1588
1589  for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I)
1590    verifyLiveIntervalSegment(LI, I);
1591
1592  // Check the LI only has one connected component.
1593  if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1594    ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1595    unsigned NumComp = ConEQ.Classify(&LI);
1596    if (NumComp > 1) {
1597      report("Multiple connected components in live interval", MF, LI);
1598      for (unsigned comp = 0; comp != NumComp; ++comp) {
1599        *OS << comp << ": valnos";
1600        for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1601             E = LI.vni_end(); I!=E; ++I)
1602          if (comp == ConEQ.getEqClass(*I))
1603            *OS << ' ' << (*I)->id;
1604        *OS << '\n';
1605      }
1606    }
1607  }
1608}
1609