ExecutionEngine.h revision 195098
1//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the abstract interface that implements execution support
11// for LLVM.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_EXECUTION_ENGINE_H
16#define LLVM_EXECUTION_ENGINE_H
17
18#include <vector>
19#include <map>
20#include <string>
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/System/Mutex.h"
23#include "llvm/Target/TargetMachine.h"
24
25namespace llvm {
26
27struct GenericValue;
28class Constant;
29class Function;
30class GlobalVariable;
31class GlobalValue;
32class JITEventListener;
33class JITMemoryManager;
34class MachineCodeInfo;
35class Module;
36class ModuleProvider;
37class MutexGuard;
38class TargetData;
39class Type;
40
41class ExecutionEngineState {
42private:
43  /// GlobalAddressMap - A mapping between LLVM global values and their
44  /// actualized version...
45  std::map<const GlobalValue*, void *> GlobalAddressMap;
46
47  /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
48  /// used to convert raw addresses into the LLVM global value that is emitted
49  /// at the address.  This map is not computed unless getGlobalValueAtAddress
50  /// is called at some point.
51  std::map<void *, const GlobalValue*> GlobalAddressReverseMap;
52
53public:
54  std::map<const GlobalValue*, void *> &
55  getGlobalAddressMap(const MutexGuard &) {
56    return GlobalAddressMap;
57  }
58
59  std::map<void*, const GlobalValue*> &
60  getGlobalAddressReverseMap(const MutexGuard &) {
61    return GlobalAddressReverseMap;
62  }
63};
64
65
66class ExecutionEngine {
67  const TargetData *TD;
68  ExecutionEngineState state;
69  bool LazyCompilationDisabled;
70  bool GVCompilationDisabled;
71  bool SymbolSearchingDisabled;
72  bool DlsymStubsEnabled;
73
74protected:
75  /// Modules - This is a list of ModuleProvider's that we are JIT'ing from.  We
76  /// use a smallvector to optimize for the case where there is only one module.
77  SmallVector<ModuleProvider*, 1> Modules;
78
79  void setTargetData(const TargetData *td) {
80    TD = td;
81  }
82
83  /// getMemoryforGV - Allocate memory for a global variable.
84  virtual char* getMemoryForGV(const GlobalVariable* GV);
85
86  // To avoid having libexecutionengine depend on the JIT and interpreter
87  // libraries, the JIT and Interpreter set these functions to ctor pointers
88  // at startup time if they are linked in.
89  typedef ExecutionEngine *(*EECtorFn)(ModuleProvider*, std::string*,
90                                       CodeGenOpt::Level OptLevel);
91  static EECtorFn JITCtor, InterpCtor;
92
93  /// LazyFunctionCreator - If an unknown function is needed, this function
94  /// pointer is invoked to create it. If this returns null, the JIT will abort.
95  void* (*LazyFunctionCreator)(const std::string &);
96
97  /// ExceptionTableRegister - If Exception Handling is set, the JIT will
98  /// register dwarf tables with this function
99  typedef void (*EERegisterFn)(void*);
100  static EERegisterFn ExceptionTableRegister;
101
102public:
103  /// lock - This lock is protects the ExecutionEngine, JIT, JITResolver and
104  /// JITEmitter classes.  It must be held while changing the internal state of
105  /// any of those classes.
106  sys::Mutex lock; // Used to make this class and subclasses thread-safe
107
108  //===--------------------------------------------------------------------===//
109  //  ExecutionEngine Startup
110  //===--------------------------------------------------------------------===//
111
112  virtual ~ExecutionEngine();
113
114  /// create - This is the factory method for creating an execution engine which
115  /// is appropriate for the current machine.  This takes ownership of the
116  /// module provider.
117  static ExecutionEngine *create(ModuleProvider *MP,
118                                 bool ForceInterpreter = false,
119                                 std::string *ErrorStr = 0,
120                                 CodeGenOpt::Level OptLevel =
121                                   CodeGenOpt::Default);
122
123  /// create - This is the factory method for creating an execution engine which
124  /// is appropriate for the current machine.  This takes ownership of the
125  /// module.
126  static ExecutionEngine *create(Module *M);
127
128  /// createJIT - This is the factory method for creating a JIT for the current
129  /// machine, it does not fall back to the interpreter.  This takes ownership
130  /// of the ModuleProvider and JITMemoryManager if successful.
131  static ExecutionEngine *createJIT(ModuleProvider *MP,
132                                    std::string *ErrorStr = 0,
133                                    JITMemoryManager *JMM = 0,
134                                    CodeGenOpt::Level OptLevel =
135                                      CodeGenOpt::Default);
136
137  /// addModuleProvider - Add a ModuleProvider to the list of modules that we
138  /// can JIT from.  Note that this takes ownership of the ModuleProvider: when
139  /// the ExecutionEngine is destroyed, it destroys the MP as well.
140  virtual void addModuleProvider(ModuleProvider *P) {
141    Modules.push_back(P);
142  }
143
144  //===----------------------------------------------------------------------===//
145
146  const TargetData *getTargetData() const { return TD; }
147
148
149  /// removeModuleProvider - Remove a ModuleProvider from the list of modules.
150  /// Relases the Module from the ModuleProvider, materializing it in the
151  /// process, and returns the materialized Module.
152  virtual Module* removeModuleProvider(ModuleProvider *P,
153                                       std::string *ErrInfo = 0);
154
155  /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
156  /// and deletes the ModuleProvider and owned Module.  Avoids materializing
157  /// the underlying module.
158  virtual void deleteModuleProvider(ModuleProvider *P,std::string *ErrInfo = 0);
159
160  /// FindFunctionNamed - Search all of the active modules to find the one that
161  /// defines FnName.  This is very slow operation and shouldn't be used for
162  /// general code.
163  Function *FindFunctionNamed(const char *FnName);
164
165  /// runFunction - Execute the specified function with the specified arguments,
166  /// and return the result.
167  ///
168  virtual GenericValue runFunction(Function *F,
169                                const std::vector<GenericValue> &ArgValues) = 0;
170
171  /// runStaticConstructorsDestructors - This method is used to execute all of
172  /// the static constructors or destructors for a program, depending on the
173  /// value of isDtors.
174  void runStaticConstructorsDestructors(bool isDtors);
175  /// runStaticConstructorsDestructors - This method is used to execute all of
176  /// the static constructors or destructors for a module, depending on the
177  /// value of isDtors.
178  void runStaticConstructorsDestructors(Module *module, bool isDtors);
179
180
181  /// runFunctionAsMain - This is a helper function which wraps runFunction to
182  /// handle the common task of starting up main with the specified argc, argv,
183  /// and envp parameters.
184  int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
185                        const char * const * envp);
186
187
188  /// addGlobalMapping - Tell the execution engine that the specified global is
189  /// at the specified location.  This is used internally as functions are JIT'd
190  /// and as global variables are laid out in memory.  It can and should also be
191  /// used by clients of the EE that want to have an LLVM global overlay
192  /// existing data in memory.  After adding a mapping for GV, you must not
193  /// destroy it until you've removed the mapping.
194  void addGlobalMapping(const GlobalValue *GV, void *Addr);
195
196  /// clearAllGlobalMappings - Clear all global mappings and start over again
197  /// use in dynamic compilation scenarios when you want to move globals
198  void clearAllGlobalMappings();
199
200  /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
201  /// particular module, because it has been removed from the JIT.
202  void clearGlobalMappingsFromModule(Module *M);
203
204  /// updateGlobalMapping - Replace an existing mapping for GV with a new
205  /// address.  This updates both maps as required.  If "Addr" is null, the
206  /// entry for the global is removed from the mappings.  This returns the old
207  /// value of the pointer, or null if it was not in the map.
208  void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
209
210  /// getPointerToGlobalIfAvailable - This returns the address of the specified
211  /// global value if it is has already been codegen'd, otherwise it returns
212  /// null.
213  ///
214  void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
215
216  /// getPointerToGlobal - This returns the address of the specified global
217  /// value.  This may involve code generation if it's a function.  After
218  /// getting a pointer to GV, it and all globals it transitively refers to have
219  /// been passed to addGlobalMapping.  You must clear the mapping for each
220  /// referred-to global before destroying it.  If a referred-to global RTG is a
221  /// function and this ExecutionEngine is a JIT compiler, calling
222  /// updateGlobalMapping(RTG, 0) will leak the function's machine code, so you
223  /// should call freeMachineCodeForFunction(RTG) instead.  Note that
224  /// optimizations can move and delete non-external GlobalValues without
225  /// notifying the ExecutionEngine.
226  ///
227  void *getPointerToGlobal(const GlobalValue *GV);
228
229  /// getPointerToFunction - The different EE's represent function bodies in
230  /// different ways.  They should each implement this to say what a function
231  /// pointer should look like.  See getPointerToGlobal for the requirements on
232  /// destroying F and any GlobalValues it refers to.
233  ///
234  virtual void *getPointerToFunction(Function *F) = 0;
235
236  /// getPointerToFunctionOrStub - If the specified function has been
237  /// code-gen'd, return a pointer to the function.  If not, compile it, or use
238  /// a stub to implement lazy compilation if available.  See getPointerToGlobal
239  /// for the requirements on destroying F and any GlobalValues it refers to.
240  ///
241  virtual void *getPointerToFunctionOrStub(Function *F) {
242    // Default implementation, just codegen the function.
243    return getPointerToFunction(F);
244  }
245
246  // The JIT overrides a version that actually does this.
247  virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
248
249  /// getGlobalValueAtAddress - Return the LLVM global value object that starts
250  /// at the specified address.
251  ///
252  const GlobalValue *getGlobalValueAtAddress(void *Addr);
253
254
255  void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
256                          const Type *Ty);
257  void InitializeMemory(const Constant *Init, void *Addr);
258
259  /// recompileAndRelinkFunction - This method is used to force a function
260  /// which has already been compiled to be compiled again, possibly
261  /// after it has been modified. Then the entry to the old copy is overwritten
262  /// with a branch to the new copy. If there was no old copy, this acts
263  /// just like VM::getPointerToFunction().
264  ///
265  virtual void *recompileAndRelinkFunction(Function *F) = 0;
266
267  /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
268  /// corresponding to the machine code emitted to execute this function, useful
269  /// for garbage-collecting generated code.
270  ///
271  virtual void freeMachineCodeForFunction(Function *F) = 0;
272
273  /// getOrEmitGlobalVariable - Return the address of the specified global
274  /// variable, possibly emitting it to memory if needed.  This is used by the
275  /// Emitter.  See getPointerToGlobal for the requirements on destroying GV and
276  /// any GlobalValues it refers to.
277  virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
278    return getPointerToGlobal((GlobalValue*)GV);
279  }
280
281  /// Registers a listener to be called back on various events within
282  /// the JIT.  See JITEventListener.h for more details.  Does not
283  /// take ownership of the argument.  The argument may be NULL, in
284  /// which case these functions do nothing.
285  virtual void RegisterJITEventListener(JITEventListener *L) {}
286  virtual void UnregisterJITEventListener(JITEventListener *L) {}
287
288  /// DisableLazyCompilation - If called, the JIT will abort if lazy compilation
289  /// is ever attempted.
290  void DisableLazyCompilation(bool Disabled = true) {
291    LazyCompilationDisabled = Disabled;
292  }
293  bool isLazyCompilationDisabled() const {
294    return LazyCompilationDisabled;
295  }
296
297  /// DisableGVCompilation - If called, the JIT will abort if it's asked to
298  /// allocate space and populate a GlobalVariable that is not internal to
299  /// the module.
300  void DisableGVCompilation(bool Disabled = true) {
301    GVCompilationDisabled = Disabled;
302  }
303  bool isGVCompilationDisabled() const {
304    return GVCompilationDisabled;
305  }
306
307  /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
308  /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
309  /// resolve symbols in a custom way.
310  void DisableSymbolSearching(bool Disabled = true) {
311    SymbolSearchingDisabled = Disabled;
312  }
313  bool isSymbolSearchingDisabled() const {
314    return SymbolSearchingDisabled;
315  }
316
317  /// EnableDlsymStubs -
318  void EnableDlsymStubs(bool Enabled = true) {
319    DlsymStubsEnabled = Enabled;
320  }
321  bool areDlsymStubsEnabled() const {
322    return DlsymStubsEnabled;
323  }
324
325  /// InstallLazyFunctionCreator - If an unknown function is needed, the
326  /// specified function pointer is invoked to create it.  If it returns null,
327  /// the JIT will abort.
328  void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
329    LazyFunctionCreator = P;
330  }
331
332  /// InstallExceptionTableRegister - The JIT will use the given function
333  /// to register the exception tables it generates.
334  static void InstallExceptionTableRegister(void (*F)(void*)) {
335    ExceptionTableRegister = F;
336  }
337
338  /// RegisterTable - Registers the given pointer as an exception table. It uses
339  /// the ExceptionTableRegister function.
340  static void RegisterTable(void* res) {
341    if (ExceptionTableRegister)
342      ExceptionTableRegister(res);
343  }
344
345protected:
346  explicit ExecutionEngine(ModuleProvider *P);
347
348  void emitGlobals();
349
350  // EmitGlobalVariable - This method emits the specified global variable to the
351  // address specified in GlobalAddresses, or allocates new memory if it's not
352  // already in the map.
353  void EmitGlobalVariable(const GlobalVariable *GV);
354
355  GenericValue getConstantValue(const Constant *C);
356  void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
357                           const Type *Ty);
358};
359
360} // End llvm namespace
361
362#endif
363