ExecutionEngine.h revision 193323
1//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the abstract interface that implements execution support
11// for LLVM.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_EXECUTION_ENGINE_H
16#define LLVM_EXECUTION_ENGINE_H
17
18#include <vector>
19#include <map>
20#include <string>
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/System/Mutex.h"
23#include "llvm/Target/TargetMachine.h"
24
25namespace llvm {
26
27struct GenericValue;
28class Constant;
29class Function;
30class GlobalVariable;
31class GlobalValue;
32class Module;
33class ModuleProvider;
34class TargetData;
35class Type;
36class MutexGuard;
37class JITMemoryManager;
38class MachineCodeInfo;
39
40class ExecutionEngineState {
41private:
42  /// GlobalAddressMap - A mapping between LLVM global values and their
43  /// actualized version...
44  std::map<const GlobalValue*, void *> GlobalAddressMap;
45
46  /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
47  /// used to convert raw addresses into the LLVM global value that is emitted
48  /// at the address.  This map is not computed unless getGlobalValueAtAddress
49  /// is called at some point.
50  std::map<void *, const GlobalValue*> GlobalAddressReverseMap;
51
52public:
53  std::map<const GlobalValue*, void *> &
54  getGlobalAddressMap(const MutexGuard &) {
55    return GlobalAddressMap;
56  }
57
58  std::map<void*, const GlobalValue*> &
59  getGlobalAddressReverseMap(const MutexGuard &) {
60    return GlobalAddressReverseMap;
61  }
62};
63
64
65class ExecutionEngine {
66  const TargetData *TD;
67  ExecutionEngineState state;
68  bool LazyCompilationDisabled;
69  bool GVCompilationDisabled;
70  bool SymbolSearchingDisabled;
71  bool DlsymStubsEnabled;
72
73protected:
74  /// Modules - This is a list of ModuleProvider's that we are JIT'ing from.  We
75  /// use a smallvector to optimize for the case where there is only one module.
76  SmallVector<ModuleProvider*, 1> Modules;
77
78  void setTargetData(const TargetData *td) {
79    TD = td;
80  }
81
82  /// getMemoryforGV - Allocate memory for a global variable.
83  virtual char* getMemoryForGV(const GlobalVariable* GV);
84
85  // To avoid having libexecutionengine depend on the JIT and interpreter
86  // libraries, the JIT and Interpreter set these functions to ctor pointers
87  // at startup time if they are linked in.
88  typedef ExecutionEngine *(*EECtorFn)(ModuleProvider*, std::string*,
89                                       CodeGenOpt::Level OptLevel);
90  static EECtorFn JITCtor, InterpCtor;
91
92  /// LazyFunctionCreator - If an unknown function is needed, this function
93  /// pointer is invoked to create it. If this returns null, the JIT will abort.
94  void* (*LazyFunctionCreator)(const std::string &);
95
96  /// ExceptionTableRegister - If Exception Handling is set, the JIT will
97  /// register dwarf tables with this function
98  typedef void (*EERegisterFn)(void*);
99  static EERegisterFn ExceptionTableRegister;
100
101public:
102  /// lock - This lock is protects the ExecutionEngine, JIT, JITResolver and
103  /// JITEmitter classes.  It must be held while changing the internal state of
104  /// any of those classes.
105  sys::Mutex lock; // Used to make this class and subclasses thread-safe
106
107  //===--------------------------------------------------------------------===//
108  //  ExecutionEngine Startup
109  //===--------------------------------------------------------------------===//
110
111  virtual ~ExecutionEngine();
112
113  /// create - This is the factory method for creating an execution engine which
114  /// is appropriate for the current machine.  This takes ownership of the
115  /// module provider.
116  static ExecutionEngine *create(ModuleProvider *MP,
117                                 bool ForceInterpreter = false,
118                                 std::string *ErrorStr = 0,
119                                 CodeGenOpt::Level OptLevel =
120                                   CodeGenOpt::Default);
121
122  /// create - This is the factory method for creating an execution engine which
123  /// is appropriate for the current machine.  This takes ownership of the
124  /// module.
125  static ExecutionEngine *create(Module *M);
126
127  /// createJIT - This is the factory method for creating a JIT for the current
128  /// machine, it does not fall back to the interpreter.  This takes ownership
129  /// of the ModuleProvider and JITMemoryManager if successful.
130  static ExecutionEngine *createJIT(ModuleProvider *MP,
131                                    std::string *ErrorStr = 0,
132                                    JITMemoryManager *JMM = 0,
133                                    CodeGenOpt::Level OptLevel =
134                                      CodeGenOpt::Default);
135
136  /// addModuleProvider - Add a ModuleProvider to the list of modules that we
137  /// can JIT from.  Note that this takes ownership of the ModuleProvider: when
138  /// the ExecutionEngine is destroyed, it destroys the MP as well.
139  virtual void addModuleProvider(ModuleProvider *P) {
140    Modules.push_back(P);
141  }
142
143  //===----------------------------------------------------------------------===//
144
145  const TargetData *getTargetData() const { return TD; }
146
147
148  /// removeModuleProvider - Remove a ModuleProvider from the list of modules.
149  /// Relases the Module from the ModuleProvider, materializing it in the
150  /// process, and returns the materialized Module.
151  virtual Module* removeModuleProvider(ModuleProvider *P,
152                                       std::string *ErrInfo = 0);
153
154  /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
155  /// and deletes the ModuleProvider and owned Module.  Avoids materializing
156  /// the underlying module.
157  virtual void deleteModuleProvider(ModuleProvider *P,std::string *ErrInfo = 0);
158
159  /// FindFunctionNamed - Search all of the active modules to find the one that
160  /// defines FnName.  This is very slow operation and shouldn't be used for
161  /// general code.
162  Function *FindFunctionNamed(const char *FnName);
163
164  /// runFunction - Execute the specified function with the specified arguments,
165  /// and return the result.
166  ///
167  virtual GenericValue runFunction(Function *F,
168                                const std::vector<GenericValue> &ArgValues) = 0;
169
170  /// runStaticConstructorsDestructors - This method is used to execute all of
171  /// the static constructors or destructors for a program, depending on the
172  /// value of isDtors.
173  void runStaticConstructorsDestructors(bool isDtors);
174  /// runStaticConstructorsDestructors - This method is used to execute all of
175  /// the static constructors or destructors for a module, depending on the
176  /// value of isDtors.
177  void runStaticConstructorsDestructors(Module *module, bool isDtors);
178
179
180  /// runFunctionAsMain - This is a helper function which wraps runFunction to
181  /// handle the common task of starting up main with the specified argc, argv,
182  /// and envp parameters.
183  int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
184                        const char * const * envp);
185
186
187  /// addGlobalMapping - Tell the execution engine that the specified global is
188  /// at the specified location.  This is used internally as functions are JIT'd
189  /// and as global variables are laid out in memory.  It can and should also be
190  /// used by clients of the EE that want to have an LLVM global overlay
191  /// existing data in memory.  After adding a mapping for GV, you must not
192  /// destroy it until you've removed the mapping.
193  void addGlobalMapping(const GlobalValue *GV, void *Addr);
194
195  /// clearAllGlobalMappings - Clear all global mappings and start over again
196  /// use in dynamic compilation scenarios when you want to move globals
197  void clearAllGlobalMappings();
198
199  /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
200  /// particular module, because it has been removed from the JIT.
201  void clearGlobalMappingsFromModule(Module *M);
202
203  /// updateGlobalMapping - Replace an existing mapping for GV with a new
204  /// address.  This updates both maps as required.  If "Addr" is null, the
205  /// entry for the global is removed from the mappings.  This returns the old
206  /// value of the pointer, or null if it was not in the map.
207  void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
208
209  /// getPointerToGlobalIfAvailable - This returns the address of the specified
210  /// global value if it is has already been codegen'd, otherwise it returns
211  /// null.
212  ///
213  void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
214
215  /// getPointerToGlobal - This returns the address of the specified global
216  /// value.  This may involve code generation if it's a function.  After
217  /// getting a pointer to GV, it and all globals it transitively refers to have
218  /// been passed to addGlobalMapping.  You must clear the mapping for each
219  /// referred-to global before destroying it.  If a referred-to global RTG is a
220  /// function and this ExecutionEngine is a JIT compiler, calling
221  /// updateGlobalMapping(RTG, 0) will leak the function's machine code, so you
222  /// should call freeMachineCodeForFunction(RTG) instead.  Note that
223  /// optimizations can move and delete non-external GlobalValues without
224  /// notifying the ExecutionEngine.
225  ///
226  void *getPointerToGlobal(const GlobalValue *GV);
227
228  /// getPointerToFunction - The different EE's represent function bodies in
229  /// different ways.  They should each implement this to say what a function
230  /// pointer should look like.  See getPointerToGlobal for the requirements on
231  /// destroying F and any GlobalValues it refers to.
232  ///
233  virtual void *getPointerToFunction(Function *F) = 0;
234
235  /// getPointerToFunctionOrStub - If the specified function has been
236  /// code-gen'd, return a pointer to the function.  If not, compile it, or use
237  /// a stub to implement lazy compilation if available.  See getPointerToGlobal
238  /// for the requirements on destroying F and any GlobalValues it refers to.
239  ///
240  virtual void *getPointerToFunctionOrStub(Function *F) {
241    // Default implementation, just codegen the function.
242    return getPointerToFunction(F);
243  }
244
245  // The JIT overrides a version that actually does this.
246  virtual void runJITOnFunction(Function *F, MachineCodeInfo *MCI = 0) { }
247
248  /// getGlobalValueAtAddress - Return the LLVM global value object that starts
249  /// at the specified address.
250  ///
251  const GlobalValue *getGlobalValueAtAddress(void *Addr);
252
253
254  void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
255                          const Type *Ty);
256  void InitializeMemory(const Constant *Init, void *Addr);
257
258  /// recompileAndRelinkFunction - This method is used to force a function
259  /// which has already been compiled to be compiled again, possibly
260  /// after it has been modified. Then the entry to the old copy is overwritten
261  /// with a branch to the new copy. If there was no old copy, this acts
262  /// just like VM::getPointerToFunction().
263  ///
264  virtual void *recompileAndRelinkFunction(Function *F) = 0;
265
266  /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
267  /// corresponding to the machine code emitted to execute this function, useful
268  /// for garbage-collecting generated code.
269  ///
270  virtual void freeMachineCodeForFunction(Function *F) = 0;
271
272  /// getOrEmitGlobalVariable - Return the address of the specified global
273  /// variable, possibly emitting it to memory if needed.  This is used by the
274  /// Emitter.  See getPointerToGlobal for the requirements on destroying GV and
275  /// any GlobalValues it refers to.
276  virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
277    return getPointerToGlobal((GlobalValue*)GV);
278  }
279
280  /// DisableLazyCompilation - If called, the JIT will abort if lazy compilation
281  /// is ever attempted.
282  void DisableLazyCompilation(bool Disabled = true) {
283    LazyCompilationDisabled = Disabled;
284  }
285  bool isLazyCompilationDisabled() const {
286    return LazyCompilationDisabled;
287  }
288
289  /// DisableGVCompilation - If called, the JIT will abort if it's asked to
290  /// allocate space and populate a GlobalVariable that is not internal to
291  /// the module.
292  void DisableGVCompilation(bool Disabled = true) {
293    GVCompilationDisabled = Disabled;
294  }
295  bool isGVCompilationDisabled() const {
296    return GVCompilationDisabled;
297  }
298
299  /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
300  /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
301  /// resolve symbols in a custom way.
302  void DisableSymbolSearching(bool Disabled = true) {
303    SymbolSearchingDisabled = Disabled;
304  }
305  bool isSymbolSearchingDisabled() const {
306    return SymbolSearchingDisabled;
307  }
308
309  /// EnableDlsymStubs -
310  void EnableDlsymStubs(bool Enabled = true) {
311    DlsymStubsEnabled = Enabled;
312  }
313  bool areDlsymStubsEnabled() const {
314    return DlsymStubsEnabled;
315  }
316
317  /// InstallLazyFunctionCreator - If an unknown function is needed, the
318  /// specified function pointer is invoked to create it.  If it returns null,
319  /// the JIT will abort.
320  void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
321    LazyFunctionCreator = P;
322  }
323
324  /// InstallExceptionTableRegister - The JIT will use the given function
325  /// to register the exception tables it generates.
326  static void InstallExceptionTableRegister(void (*F)(void*)) {
327    ExceptionTableRegister = F;
328  }
329
330  /// RegisterTable - Registers the given pointer as an exception table. It uses
331  /// the ExceptionTableRegister function.
332  static void RegisterTable(void* res) {
333    if (ExceptionTableRegister)
334      ExceptionTableRegister(res);
335  }
336
337protected:
338  explicit ExecutionEngine(ModuleProvider *P);
339
340  void emitGlobals();
341
342  // EmitGlobalVariable - This method emits the specified global variable to the
343  // address specified in GlobalAddresses, or allocates new memory if it's not
344  // already in the map.
345  void EmitGlobalVariable(const GlobalVariable *GV);
346
347  GenericValue getConstantValue(const Constant *C);
348  void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
349                           const Type *Ty);
350};
351
352} // End llvm namespace
353
354#endif
355