optimize.c revision 56889
1/*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 *  Optimization module for tcpdump intermediate representation.
22 */
23#ifndef lint
24static const char rcsid[] =
25    "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.61 1999/10/19 15:18:30 itojun Exp $ (LBL)";
26#endif
27
28#include <sys/types.h>
29#include <sys/time.h>
30
31#include <stdio.h>
32#include <stdlib.h>
33#include <memory.h>
34
35#include "pcap-int.h"
36
37#include "gencode.h"
38
39#include "gnuc.h"
40#ifdef HAVE_OS_PROTO_H
41#include "os-proto.h"
42#endif
43
44#ifdef BDEBUG
45extern int dflag;
46#endif
47
48#define A_ATOM BPF_MEMWORDS
49#define X_ATOM (BPF_MEMWORDS+1)
50
51#define NOP -1
52
53/*
54 * This define is used to represent *both* the accumulator and
55 * x register in use-def computations.
56 * Currently, the use-def code assumes only one definition per instruction.
57 */
58#define AX_ATOM N_ATOMS
59
60/*
61 * A flag to indicate that further optimization is needed.
62 * Iterative passes are continued until a given pass yields no
63 * branch movement.
64 */
65static int done;
66
67/*
68 * A block is marked if only if its mark equals the current mark.
69 * Rather than traverse the code array, marking each item, 'cur_mark' is
70 * incremented.  This automatically makes each element unmarked.
71 */
72static int cur_mark;
73#define isMarked(p) ((p)->mark == cur_mark)
74#define unMarkAll() cur_mark += 1
75#define Mark(p) ((p)->mark = cur_mark)
76
77static void opt_init(struct block *);
78static void opt_cleanup(void);
79
80static void make_marks(struct block *);
81static void mark_code(struct block *);
82
83static void intern_blocks(struct block *);
84
85static int eq_slist(struct slist *, struct slist *);
86
87static void find_levels_r(struct block *);
88
89static void find_levels(struct block *);
90static void find_dom(struct block *);
91static void propedom(struct edge *);
92static void find_edom(struct block *);
93static void find_closure(struct block *);
94static int atomuse(struct stmt *);
95static int atomdef(struct stmt *);
96static void compute_local_ud(struct block *);
97static void find_ud(struct block *);
98static void init_val(void);
99static int F(int, int, int);
100static inline void vstore(struct stmt *, int *, int, int);
101static void opt_blk(struct block *, int);
102static int use_conflict(struct block *, struct block *);
103static void opt_j(struct edge *);
104static void or_pullup(struct block *);
105static void and_pullup(struct block *);
106static void opt_blks(struct block *, int);
107static inline void link_inedge(struct edge *, struct block *);
108static void find_inedges(struct block *);
109static void opt_root(struct block **);
110static void opt_loop(struct block *, int);
111static void fold_op(struct stmt *, int, int);
112static inline struct slist *this_op(struct slist *);
113static void opt_not(struct block *);
114static void opt_peep(struct block *);
115static void opt_stmt(struct stmt *, int[], int);
116static void deadstmt(struct stmt *, struct stmt *[]);
117static void opt_deadstores(struct block *);
118static void opt_blk(struct block *, int);
119static int use_conflict(struct block *, struct block *);
120static void opt_j(struct edge *);
121static struct block *fold_edge(struct block *, struct edge *);
122static inline int eq_blk(struct block *, struct block *);
123static int slength(struct slist *);
124static int count_blocks(struct block *);
125static void number_blks_r(struct block *);
126static int count_stmts(struct block *);
127static int convert_code_r(struct block *);
128#ifdef BDEBUG
129static void opt_dump(struct block *);
130#endif
131
132static int n_blocks;
133struct block **blocks;
134static int n_edges;
135struct edge **edges;
136
137/*
138 * A bit vector set representation of the dominators.
139 * We round up the set size to the next power of two.
140 */
141static int nodewords;
142static int edgewords;
143struct block **levels;
144bpf_u_int32 *space;
145#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
146/*
147 * True if a is in uset {p}
148 */
149#define SET_MEMBER(p, a) \
150((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
151
152/*
153 * Add 'a' to uset p.
154 */
155#define SET_INSERT(p, a) \
156(p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
157
158/*
159 * Delete 'a' from uset p.
160 */
161#define SET_DELETE(p, a) \
162(p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
163
164/*
165 * a := a intersect b
166 */
167#define SET_INTERSECT(a, b, n)\
168{\
169	register bpf_u_int32 *_x = a, *_y = b;\
170	register int _n = n;\
171	while (--_n >= 0) *_x++ &= *_y++;\
172}
173
174/*
175 * a := a - b
176 */
177#define SET_SUBTRACT(a, b, n)\
178{\
179	register bpf_u_int32 *_x = a, *_y = b;\
180	register int _n = n;\
181	while (--_n >= 0) *_x++ &=~ *_y++;\
182}
183
184/*
185 * a := a union b
186 */
187#define SET_UNION(a, b, n)\
188{\
189	register bpf_u_int32 *_x = a, *_y = b;\
190	register int _n = n;\
191	while (--_n >= 0) *_x++ |= *_y++;\
192}
193
194static uset all_dom_sets;
195static uset all_closure_sets;
196static uset all_edge_sets;
197
198#ifndef MAX
199#define MAX(a,b) ((a)>(b)?(a):(b))
200#endif
201
202static void
203find_levels_r(b)
204	struct block *b;
205{
206	int level;
207
208	if (isMarked(b))
209		return;
210
211	Mark(b);
212	b->link = 0;
213
214	if (JT(b)) {
215		find_levels_r(JT(b));
216		find_levels_r(JF(b));
217		level = MAX(JT(b)->level, JF(b)->level) + 1;
218	} else
219		level = 0;
220	b->level = level;
221	b->link = levels[level];
222	levels[level] = b;
223}
224
225/*
226 * Level graph.  The levels go from 0 at the leaves to
227 * N_LEVELS at the root.  The levels[] array points to the
228 * first node of the level list, whose elements are linked
229 * with the 'link' field of the struct block.
230 */
231static void
232find_levels(root)
233	struct block *root;
234{
235	memset((char *)levels, 0, n_blocks * sizeof(*levels));
236	unMarkAll();
237	find_levels_r(root);
238}
239
240/*
241 * Find dominator relationships.
242 * Assumes graph has been leveled.
243 */
244static void
245find_dom(root)
246	struct block *root;
247{
248	int i;
249	struct block *b;
250	bpf_u_int32 *x;
251
252	/*
253	 * Initialize sets to contain all nodes.
254	 */
255	x = all_dom_sets;
256	i = n_blocks * nodewords;
257	while (--i >= 0)
258		*x++ = ~0;
259	/* Root starts off empty. */
260	for (i = nodewords; --i >= 0;)
261		root->dom[i] = 0;
262
263	/* root->level is the highest level no found. */
264	for (i = root->level; i >= 0; --i) {
265		for (b = levels[i]; b; b = b->link) {
266			SET_INSERT(b->dom, b->id);
267			if (JT(b) == 0)
268				continue;
269			SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
270			SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
271		}
272	}
273}
274
275static void
276propedom(ep)
277	struct edge *ep;
278{
279	SET_INSERT(ep->edom, ep->id);
280	if (ep->succ) {
281		SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
282		SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
283	}
284}
285
286/*
287 * Compute edge dominators.
288 * Assumes graph has been leveled and predecessors established.
289 */
290static void
291find_edom(root)
292	struct block *root;
293{
294	int i;
295	uset x;
296	struct block *b;
297
298	x = all_edge_sets;
299	for (i = n_edges * edgewords; --i >= 0; )
300		x[i] = ~0;
301
302	/* root->level is the highest level no found. */
303	memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
304	memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
305	for (i = root->level; i >= 0; --i) {
306		for (b = levels[i]; b != 0; b = b->link) {
307			propedom(&b->et);
308			propedom(&b->ef);
309		}
310	}
311}
312
313/*
314 * Find the backwards transitive closure of the flow graph.  These sets
315 * are backwards in the sense that we find the set of nodes that reach
316 * a given node, not the set of nodes that can be reached by a node.
317 *
318 * Assumes graph has been leveled.
319 */
320static void
321find_closure(root)
322	struct block *root;
323{
324	int i;
325	struct block *b;
326
327	/*
328	 * Initialize sets to contain no nodes.
329	 */
330	memset((char *)all_closure_sets, 0,
331	      n_blocks * nodewords * sizeof(*all_closure_sets));
332
333	/* root->level is the highest level no found. */
334	for (i = root->level; i >= 0; --i) {
335		for (b = levels[i]; b; b = b->link) {
336			SET_INSERT(b->closure, b->id);
337			if (JT(b) == 0)
338				continue;
339			SET_UNION(JT(b)->closure, b->closure, nodewords);
340			SET_UNION(JF(b)->closure, b->closure, nodewords);
341		}
342	}
343}
344
345/*
346 * Return the register number that is used by s.  If A and X are both
347 * used, return AX_ATOM.  If no register is used, return -1.
348 *
349 * The implementation should probably change to an array access.
350 */
351static int
352atomuse(s)
353	struct stmt *s;
354{
355	register int c = s->code;
356
357	if (c == NOP)
358		return -1;
359
360	switch (BPF_CLASS(c)) {
361
362	case BPF_RET:
363		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
364			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
365
366	case BPF_LD:
367	case BPF_LDX:
368		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
369			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
370
371	case BPF_ST:
372		return A_ATOM;
373
374	case BPF_STX:
375		return X_ATOM;
376
377	case BPF_JMP:
378	case BPF_ALU:
379		if (BPF_SRC(c) == BPF_X)
380			return AX_ATOM;
381		return A_ATOM;
382
383	case BPF_MISC:
384		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
385	}
386	abort();
387	/* NOTREACHED */
388}
389
390/*
391 * Return the register number that is defined by 's'.  We assume that
392 * a single stmt cannot define more than one register.  If no register
393 * is defined, return -1.
394 *
395 * The implementation should probably change to an array access.
396 */
397static int
398atomdef(s)
399	struct stmt *s;
400{
401	if (s->code == NOP)
402		return -1;
403
404	switch (BPF_CLASS(s->code)) {
405
406	case BPF_LD:
407	case BPF_ALU:
408		return A_ATOM;
409
410	case BPF_LDX:
411		return X_ATOM;
412
413	case BPF_ST:
414	case BPF_STX:
415		return s->k;
416
417	case BPF_MISC:
418		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
419	}
420	return -1;
421}
422
423static void
424compute_local_ud(b)
425	struct block *b;
426{
427	struct slist *s;
428	atomset def = 0, use = 0, kill = 0;
429	int atom;
430
431	for (s = b->stmts; s; s = s->next) {
432		if (s->s.code == NOP)
433			continue;
434		atom = atomuse(&s->s);
435		if (atom >= 0) {
436			if (atom == AX_ATOM) {
437				if (!ATOMELEM(def, X_ATOM))
438					use |= ATOMMASK(X_ATOM);
439				if (!ATOMELEM(def, A_ATOM))
440					use |= ATOMMASK(A_ATOM);
441			}
442			else if (atom < N_ATOMS) {
443				if (!ATOMELEM(def, atom))
444					use |= ATOMMASK(atom);
445			}
446			else
447				abort();
448		}
449		atom = atomdef(&s->s);
450		if (atom >= 0) {
451			if (!ATOMELEM(use, atom))
452				kill |= ATOMMASK(atom);
453			def |= ATOMMASK(atom);
454		}
455	}
456	if (!ATOMELEM(def, A_ATOM) && BPF_CLASS(b->s.code) == BPF_JMP)
457		use |= ATOMMASK(A_ATOM);
458
459	b->def = def;
460	b->kill = kill;
461	b->in_use = use;
462}
463
464/*
465 * Assume graph is already leveled.
466 */
467static void
468find_ud(root)
469	struct block *root;
470{
471	int i, maxlevel;
472	struct block *p;
473
474	/*
475	 * root->level is the highest level no found;
476	 * count down from there.
477	 */
478	maxlevel = root->level;
479	for (i = maxlevel; i >= 0; --i)
480		for (p = levels[i]; p; p = p->link) {
481			compute_local_ud(p);
482			p->out_use = 0;
483		}
484
485	for (i = 1; i <= maxlevel; ++i) {
486		for (p = levels[i]; p; p = p->link) {
487			p->out_use |= JT(p)->in_use | JF(p)->in_use;
488			p->in_use |= p->out_use &~ p->kill;
489		}
490	}
491}
492
493/*
494 * These data structures are used in a Cocke and Shwarz style
495 * value numbering scheme.  Since the flowgraph is acyclic,
496 * exit values can be propagated from a node's predecessors
497 * provided it is uniquely defined.
498 */
499struct valnode {
500	int code;
501	int v0, v1;
502	int val;
503	struct valnode *next;
504};
505
506#define MODULUS 213
507static struct valnode *hashtbl[MODULUS];
508static int curval;
509static int maxval;
510
511/* Integer constants mapped with the load immediate opcode. */
512#define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
513
514struct vmapinfo {
515	int is_const;
516	bpf_int32 const_val;
517};
518
519struct vmapinfo *vmap;
520struct valnode *vnode_base;
521struct valnode *next_vnode;
522
523static void
524init_val()
525{
526	curval = 0;
527	next_vnode = vnode_base;
528	memset((char *)vmap, 0, maxval * sizeof(*vmap));
529	memset((char *)hashtbl, 0, sizeof hashtbl);
530}
531
532/* Because we really don't have an IR, this stuff is a little messy. */
533static int
534F(code, v0, v1)
535	int code;
536	int v0, v1;
537{
538	u_int hash;
539	int val;
540	struct valnode *p;
541
542	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
543	hash %= MODULUS;
544
545	for (p = hashtbl[hash]; p; p = p->next)
546		if (p->code == code && p->v0 == v0 && p->v1 == v1)
547			return p->val;
548
549	val = ++curval;
550	if (BPF_MODE(code) == BPF_IMM &&
551	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
552		vmap[val].const_val = v0;
553		vmap[val].is_const = 1;
554	}
555	p = next_vnode++;
556	p->val = val;
557	p->code = code;
558	p->v0 = v0;
559	p->v1 = v1;
560	p->next = hashtbl[hash];
561	hashtbl[hash] = p;
562
563	return val;
564}
565
566static inline void
567vstore(s, valp, newval, alter)
568	struct stmt *s;
569	int *valp;
570	int newval;
571	int alter;
572{
573	if (alter && *valp == newval)
574		s->code = NOP;
575	else
576		*valp = newval;
577}
578
579static void
580fold_op(s, v0, v1)
581	struct stmt *s;
582	int v0, v1;
583{
584	bpf_int32 a, b;
585
586	a = vmap[v0].const_val;
587	b = vmap[v1].const_val;
588
589	switch (BPF_OP(s->code)) {
590	case BPF_ADD:
591		a += b;
592		break;
593
594	case BPF_SUB:
595		a -= b;
596		break;
597
598	case BPF_MUL:
599		a *= b;
600		break;
601
602	case BPF_DIV:
603		if (b == 0)
604			bpf_error("division by zero");
605		a /= b;
606		break;
607
608	case BPF_AND:
609		a &= b;
610		break;
611
612	case BPF_OR:
613		a |= b;
614		break;
615
616	case BPF_LSH:
617		a <<= b;
618		break;
619
620	case BPF_RSH:
621		a >>= b;
622		break;
623
624	case BPF_NEG:
625		a = -a;
626		break;
627
628	default:
629		abort();
630	}
631	s->k = a;
632	s->code = BPF_LD|BPF_IMM;
633	done = 0;
634}
635
636static inline struct slist *
637this_op(s)
638	struct slist *s;
639{
640	while (s != 0 && s->s.code == NOP)
641		s = s->next;
642	return s;
643}
644
645static void
646opt_not(b)
647	struct block *b;
648{
649	struct block *tmp = JT(b);
650
651	JT(b) = JF(b);
652	JF(b) = tmp;
653}
654
655static void
656opt_peep(b)
657	struct block *b;
658{
659	struct slist *s;
660	struct slist *next, *last;
661	int val;
662
663	s = b->stmts;
664	if (s == 0)
665		return;
666
667	last = s;
668	while (1) {
669		s = this_op(s);
670		if (s == 0)
671			break;
672		next = this_op(s->next);
673		if (next == 0)
674			break;
675		last = next;
676
677		/*
678		 * st  M[k]	-->	st  M[k]
679		 * ldx M[k]		tax
680		 */
681		if (s->s.code == BPF_ST &&
682		    next->s.code == (BPF_LDX|BPF_MEM) &&
683		    s->s.k == next->s.k) {
684			done = 0;
685			next->s.code = BPF_MISC|BPF_TAX;
686		}
687		/*
688		 * ld  #k	-->	ldx  #k
689		 * tax			txa
690		 */
691		if (s->s.code == (BPF_LD|BPF_IMM) &&
692		    next->s.code == (BPF_MISC|BPF_TAX)) {
693			s->s.code = BPF_LDX|BPF_IMM;
694			next->s.code = BPF_MISC|BPF_TXA;
695			done = 0;
696		}
697		/*
698		 * This is an ugly special case, but it happens
699		 * when you say tcp[k] or udp[k] where k is a constant.
700		 */
701		if (s->s.code == (BPF_LD|BPF_IMM)) {
702			struct slist *add, *tax, *ild;
703
704			/*
705			 * Check that X isn't used on exit from this
706			 * block (which the optimizer might cause).
707			 * We know the code generator won't generate
708			 * any local dependencies.
709			 */
710			if (ATOMELEM(b->out_use, X_ATOM))
711				break;
712
713			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
714				add = next;
715			else
716				add = this_op(next->next);
717			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
718				break;
719
720			tax = this_op(add->next);
721			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
722				break;
723
724			ild = this_op(tax->next);
725			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
726			    BPF_MODE(ild->s.code) != BPF_IND)
727				break;
728			/*
729			 * XXX We need to check that X is not
730			 * subsequently used.  We know we can eliminate the
731			 * accumulator modifications since it is defined
732			 * by the last stmt of this sequence.
733			 *
734			 * We want to turn this sequence:
735			 *
736			 * (004) ldi     #0x2		{s}
737			 * (005) ldxms   [14]		{next}  -- optional
738			 * (006) addx			{add}
739			 * (007) tax			{tax}
740			 * (008) ild     [x+0]		{ild}
741			 *
742			 * into this sequence:
743			 *
744			 * (004) nop
745			 * (005) ldxms   [14]
746			 * (006) nop
747			 * (007) nop
748			 * (008) ild     [x+2]
749			 *
750			 */
751			ild->s.k += s->s.k;
752			s->s.code = NOP;
753			add->s.code = NOP;
754			tax->s.code = NOP;
755			done = 0;
756		}
757		s = next;
758	}
759	/*
760	 * If we have a subtract to do a comparison, and the X register
761	 * is a known constant, we can merge this value into the
762	 * comparison.
763	 */
764	if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X) &&
765	    !ATOMELEM(b->out_use, A_ATOM)) {
766		val = b->val[X_ATOM];
767		if (vmap[val].is_const) {
768			int op;
769
770			b->s.k += vmap[val].const_val;
771			op = BPF_OP(b->s.code);
772			if (op == BPF_JGT || op == BPF_JGE) {
773				struct block *t = JT(b);
774				JT(b) = JF(b);
775				JF(b) = t;
776				b->s.k += 0x80000000;
777			}
778			last->s.code = NOP;
779			done = 0;
780		} else if (b->s.k == 0) {
781			/*
782			 * sub x  ->	nop
783			 * j  #0	j  x
784			 */
785			last->s.code = NOP;
786			b->s.code = BPF_CLASS(b->s.code) | BPF_OP(b->s.code) |
787				BPF_X;
788			done = 0;
789		}
790	}
791	/*
792	 * Likewise, a constant subtract can be simplified.
793	 */
794	else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K) &&
795		 !ATOMELEM(b->out_use, A_ATOM)) {
796		int op;
797
798		b->s.k += last->s.k;
799		last->s.code = NOP;
800		op = BPF_OP(b->s.code);
801		if (op == BPF_JGT || op == BPF_JGE) {
802			struct block *t = JT(b);
803			JT(b) = JF(b);
804			JF(b) = t;
805			b->s.k += 0x80000000;
806		}
807		done = 0;
808	}
809	/*
810	 * and #k	nop
811	 * jeq #0  ->	jset #k
812	 */
813	if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
814	    !ATOMELEM(b->out_use, A_ATOM) && b->s.k == 0) {
815		b->s.k = last->s.k;
816		b->s.code = BPF_JMP|BPF_K|BPF_JSET;
817		last->s.code = NOP;
818		done = 0;
819		opt_not(b);
820	}
821	/*
822	 * If the accumulator is a known constant, we can compute the
823	 * comparison result.
824	 */
825	val = b->val[A_ATOM];
826	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
827		bpf_int32 v = vmap[val].const_val;
828		switch (BPF_OP(b->s.code)) {
829
830		case BPF_JEQ:
831			v = v == b->s.k;
832			break;
833
834		case BPF_JGT:
835			v = (unsigned)v > b->s.k;
836			break;
837
838		case BPF_JGE:
839			v = (unsigned)v >= b->s.k;
840			break;
841
842		case BPF_JSET:
843			v &= b->s.k;
844			break;
845
846		default:
847			abort();
848		}
849		if (JF(b) != JT(b))
850			done = 0;
851		if (v)
852			JF(b) = JT(b);
853		else
854			JT(b) = JF(b);
855	}
856}
857
858/*
859 * Compute the symbolic value of expression of 's', and update
860 * anything it defines in the value table 'val'.  If 'alter' is true,
861 * do various optimizations.  This code would be cleaner if symbolic
862 * evaluation and code transformations weren't folded together.
863 */
864static void
865opt_stmt(s, val, alter)
866	struct stmt *s;
867	int val[];
868	int alter;
869{
870	int op;
871	int v;
872
873	switch (s->code) {
874
875	case BPF_LD|BPF_ABS|BPF_W:
876	case BPF_LD|BPF_ABS|BPF_H:
877	case BPF_LD|BPF_ABS|BPF_B:
878		v = F(s->code, s->k, 0L);
879		vstore(s, &val[A_ATOM], v, alter);
880		break;
881
882	case BPF_LD|BPF_IND|BPF_W:
883	case BPF_LD|BPF_IND|BPF_H:
884	case BPF_LD|BPF_IND|BPF_B:
885		v = val[X_ATOM];
886		if (alter && vmap[v].is_const) {
887			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
888			s->k += vmap[v].const_val;
889			v = F(s->code, s->k, 0L);
890			done = 0;
891		}
892		else
893			v = F(s->code, s->k, v);
894		vstore(s, &val[A_ATOM], v, alter);
895		break;
896
897	case BPF_LD|BPF_LEN:
898		v = F(s->code, 0L, 0L);
899		vstore(s, &val[A_ATOM], v, alter);
900		break;
901
902	case BPF_LD|BPF_IMM:
903		v = K(s->k);
904		vstore(s, &val[A_ATOM], v, alter);
905		break;
906
907	case BPF_LDX|BPF_IMM:
908		v = K(s->k);
909		vstore(s, &val[X_ATOM], v, alter);
910		break;
911
912	case BPF_LDX|BPF_MSH|BPF_B:
913		v = F(s->code, s->k, 0L);
914		vstore(s, &val[X_ATOM], v, alter);
915		break;
916
917	case BPF_ALU|BPF_NEG:
918		if (alter && vmap[val[A_ATOM]].is_const) {
919			s->code = BPF_LD|BPF_IMM;
920			s->k = -vmap[val[A_ATOM]].const_val;
921			val[A_ATOM] = K(s->k);
922		}
923		else
924			val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
925		break;
926
927	case BPF_ALU|BPF_ADD|BPF_K:
928	case BPF_ALU|BPF_SUB|BPF_K:
929	case BPF_ALU|BPF_MUL|BPF_K:
930	case BPF_ALU|BPF_DIV|BPF_K:
931	case BPF_ALU|BPF_AND|BPF_K:
932	case BPF_ALU|BPF_OR|BPF_K:
933	case BPF_ALU|BPF_LSH|BPF_K:
934	case BPF_ALU|BPF_RSH|BPF_K:
935		op = BPF_OP(s->code);
936		if (alter) {
937			if (s->k == 0) {
938				if (op == BPF_ADD || op == BPF_SUB ||
939				    op == BPF_LSH || op == BPF_RSH ||
940				    op == BPF_OR) {
941					s->code = NOP;
942					break;
943				}
944				if (op == BPF_MUL || op == BPF_AND) {
945					s->code = BPF_LD|BPF_IMM;
946					val[A_ATOM] = K(s->k);
947					break;
948				}
949			}
950			if (vmap[val[A_ATOM]].is_const) {
951				fold_op(s, val[A_ATOM], K(s->k));
952				val[A_ATOM] = K(s->k);
953				break;
954			}
955		}
956		val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
957		break;
958
959	case BPF_ALU|BPF_ADD|BPF_X:
960	case BPF_ALU|BPF_SUB|BPF_X:
961	case BPF_ALU|BPF_MUL|BPF_X:
962	case BPF_ALU|BPF_DIV|BPF_X:
963	case BPF_ALU|BPF_AND|BPF_X:
964	case BPF_ALU|BPF_OR|BPF_X:
965	case BPF_ALU|BPF_LSH|BPF_X:
966	case BPF_ALU|BPF_RSH|BPF_X:
967		op = BPF_OP(s->code);
968		if (alter && vmap[val[X_ATOM]].is_const) {
969			if (vmap[val[A_ATOM]].is_const) {
970				fold_op(s, val[A_ATOM], val[X_ATOM]);
971				val[A_ATOM] = K(s->k);
972			}
973			else {
974				s->code = BPF_ALU|BPF_K|op;
975				s->k = vmap[val[X_ATOM]].const_val;
976				done = 0;
977				val[A_ATOM] =
978					F(s->code, val[A_ATOM], K(s->k));
979			}
980			break;
981		}
982		/*
983		 * Check if we're doing something to an accumulator
984		 * that is 0, and simplify.  This may not seem like
985		 * much of a simplification but it could open up further
986		 * optimizations.
987		 * XXX We could also check for mul by 1, and -1, etc.
988		 */
989		if (alter && vmap[val[A_ATOM]].is_const
990		    && vmap[val[A_ATOM]].const_val == 0) {
991			if (op == BPF_ADD || op == BPF_OR ||
992			    op == BPF_LSH || op == BPF_RSH || op == BPF_SUB) {
993				s->code = BPF_MISC|BPF_TXA;
994				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
995				break;
996			}
997			else if (op == BPF_MUL || op == BPF_DIV ||
998				 op == BPF_AND) {
999				s->code = BPF_LD|BPF_IMM;
1000				s->k = 0;
1001				vstore(s, &val[A_ATOM], K(s->k), alter);
1002				break;
1003			}
1004			else if (op == BPF_NEG) {
1005				s->code = NOP;
1006				break;
1007			}
1008		}
1009		val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1010		break;
1011
1012	case BPF_MISC|BPF_TXA:
1013		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1014		break;
1015
1016	case BPF_LD|BPF_MEM:
1017		v = val[s->k];
1018		if (alter && vmap[v].is_const) {
1019			s->code = BPF_LD|BPF_IMM;
1020			s->k = vmap[v].const_val;
1021			done = 0;
1022		}
1023		vstore(s, &val[A_ATOM], v, alter);
1024		break;
1025
1026	case BPF_MISC|BPF_TAX:
1027		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1028		break;
1029
1030	case BPF_LDX|BPF_MEM:
1031		v = val[s->k];
1032		if (alter && vmap[v].is_const) {
1033			s->code = BPF_LDX|BPF_IMM;
1034			s->k = vmap[v].const_val;
1035			done = 0;
1036		}
1037		vstore(s, &val[X_ATOM], v, alter);
1038		break;
1039
1040	case BPF_ST:
1041		vstore(s, &val[s->k], val[A_ATOM], alter);
1042		break;
1043
1044	case BPF_STX:
1045		vstore(s, &val[s->k], val[X_ATOM], alter);
1046		break;
1047	}
1048}
1049
1050static void
1051deadstmt(s, last)
1052	register struct stmt *s;
1053	register struct stmt *last[];
1054{
1055	register int atom;
1056
1057	atom = atomuse(s);
1058	if (atom >= 0) {
1059		if (atom == AX_ATOM) {
1060			last[X_ATOM] = 0;
1061			last[A_ATOM] = 0;
1062		}
1063		else
1064			last[atom] = 0;
1065	}
1066	atom = atomdef(s);
1067	if (atom >= 0) {
1068		if (last[atom]) {
1069			done = 0;
1070			last[atom]->code = NOP;
1071		}
1072		last[atom] = s;
1073	}
1074}
1075
1076static void
1077opt_deadstores(b)
1078	register struct block *b;
1079{
1080	register struct slist *s;
1081	register int atom;
1082	struct stmt *last[N_ATOMS];
1083
1084	memset((char *)last, 0, sizeof last);
1085
1086	for (s = b->stmts; s != 0; s = s->next)
1087		deadstmt(&s->s, last);
1088	deadstmt(&b->s, last);
1089
1090	for (atom = 0; atom < N_ATOMS; ++atom)
1091		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1092			last[atom]->code = NOP;
1093			done = 0;
1094		}
1095}
1096
1097static void
1098opt_blk(b, do_stmts)
1099	struct block *b;
1100	int do_stmts;
1101{
1102	struct slist *s;
1103	struct edge *p;
1104	int i;
1105	bpf_int32 aval;
1106
1107#if 0
1108	for (s = b->stmts; s && s->next; s = s->next)
1109		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1110			do_stmts = 0;
1111			break;
1112		}
1113#endif
1114
1115	/*
1116	 * Initialize the atom values.
1117	 * If we have no predecessors, everything is undefined.
1118	 * Otherwise, we inherent our values from our predecessors.
1119	 * If any register has an ambiguous value (i.e. control paths are
1120	 * merging) give it the undefined value of 0.
1121	 */
1122	p = b->in_edges;
1123	if (p == 0)
1124		memset((char *)b->val, 0, sizeof(b->val));
1125	else {
1126		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1127		while ((p = p->next) != NULL) {
1128			for (i = 0; i < N_ATOMS; ++i)
1129				if (b->val[i] != p->pred->val[i])
1130					b->val[i] = 0;
1131		}
1132	}
1133	aval = b->val[A_ATOM];
1134	for (s = b->stmts; s; s = s->next)
1135		opt_stmt(&s->s, b->val, do_stmts);
1136
1137	/*
1138	 * This is a special case: if we don't use anything from this
1139	 * block, and we load the accumulator with value that is
1140	 * already there, or if this block is a return,
1141	 * eliminate all the statements.
1142	 */
1143	if (do_stmts &&
1144	    ((b->out_use == 0 && aval != 0 &&b->val[A_ATOM] == aval) ||
1145	     BPF_CLASS(b->s.code) == BPF_RET)) {
1146		if (b->stmts != 0) {
1147			b->stmts = 0;
1148			done = 0;
1149		}
1150	} else {
1151		opt_peep(b);
1152		opt_deadstores(b);
1153	}
1154	/*
1155	 * Set up values for branch optimizer.
1156	 */
1157	if (BPF_SRC(b->s.code) == BPF_K)
1158		b->oval = K(b->s.k);
1159	else
1160		b->oval = b->val[X_ATOM];
1161	b->et.code = b->s.code;
1162	b->ef.code = -b->s.code;
1163}
1164
1165/*
1166 * Return true if any register that is used on exit from 'succ', has
1167 * an exit value that is different from the corresponding exit value
1168 * from 'b'.
1169 */
1170static int
1171use_conflict(b, succ)
1172	struct block *b, *succ;
1173{
1174	int atom;
1175	atomset use = succ->out_use;
1176
1177	if (use == 0)
1178		return 0;
1179
1180	for (atom = 0; atom < N_ATOMS; ++atom)
1181		if (ATOMELEM(use, atom))
1182			if (b->val[atom] != succ->val[atom])
1183				return 1;
1184	return 0;
1185}
1186
1187static struct block *
1188fold_edge(child, ep)
1189	struct block *child;
1190	struct edge *ep;
1191{
1192	int sense;
1193	int aval0, aval1, oval0, oval1;
1194	int code = ep->code;
1195
1196	if (code < 0) {
1197		code = -code;
1198		sense = 0;
1199	} else
1200		sense = 1;
1201
1202	if (child->s.code != code)
1203		return 0;
1204
1205	aval0 = child->val[A_ATOM];
1206	oval0 = child->oval;
1207	aval1 = ep->pred->val[A_ATOM];
1208	oval1 = ep->pred->oval;
1209
1210	if (aval0 != aval1)
1211		return 0;
1212
1213	if (oval0 == oval1)
1214		/*
1215		 * The operands are identical, so the
1216		 * result is true if a true branch was
1217		 * taken to get here, otherwise false.
1218		 */
1219		return sense ? JT(child) : JF(child);
1220
1221	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1222		/*
1223		 * At this point, we only know the comparison if we
1224		 * came down the true branch, and it was an equality
1225		 * comparison with a constant.  We rely on the fact that
1226		 * distinct constants have distinct value numbers.
1227		 */
1228		return JF(child);
1229
1230	return 0;
1231}
1232
1233static void
1234opt_j(ep)
1235	struct edge *ep;
1236{
1237	register int i, k;
1238	register struct block *target;
1239
1240	if (JT(ep->succ) == 0)
1241		return;
1242
1243	if (JT(ep->succ) == JF(ep->succ)) {
1244		/*
1245		 * Common branch targets can be eliminated, provided
1246		 * there is no data dependency.
1247		 */
1248		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1249			done = 0;
1250			ep->succ = JT(ep->succ);
1251		}
1252	}
1253	/*
1254	 * For each edge dominator that matches the successor of this
1255	 * edge, promote the edge successor to the its grandchild.
1256	 *
1257	 * XXX We violate the set abstraction here in favor a reasonably
1258	 * efficient loop.
1259	 */
1260 top:
1261	for (i = 0; i < edgewords; ++i) {
1262		register bpf_u_int32 x = ep->edom[i];
1263
1264		while (x != 0) {
1265			k = ffs(x) - 1;
1266			x &=~ (1 << k);
1267			k += i * BITS_PER_WORD;
1268
1269			target = fold_edge(ep->succ, edges[k]);
1270			/*
1271			 * Check that there is no data dependency between
1272			 * nodes that will be violated if we move the edge.
1273			 */
1274			if (target != 0 && !use_conflict(ep->pred, target)) {
1275				done = 0;
1276				ep->succ = target;
1277				if (JT(target) != 0)
1278					/*
1279					 * Start over unless we hit a leaf.
1280					 */
1281					goto top;
1282				return;
1283			}
1284		}
1285	}
1286}
1287
1288
1289static void
1290or_pullup(b)
1291	struct block *b;
1292{
1293	int val, at_top;
1294	struct block *pull;
1295	struct block **diffp, **samep;
1296	struct edge *ep;
1297
1298	ep = b->in_edges;
1299	if (ep == 0)
1300		return;
1301
1302	/*
1303	 * Make sure each predecessor loads the same value.
1304	 * XXX why?
1305	 */
1306	val = ep->pred->val[A_ATOM];
1307	for (ep = ep->next; ep != 0; ep = ep->next)
1308		if (val != ep->pred->val[A_ATOM])
1309			return;
1310
1311	if (JT(b->in_edges->pred) == b)
1312		diffp = &JT(b->in_edges->pred);
1313	else
1314		diffp = &JF(b->in_edges->pred);
1315
1316	at_top = 1;
1317	while (1) {
1318		if (*diffp == 0)
1319			return;
1320
1321		if (JT(*diffp) != JT(b))
1322			return;
1323
1324		if (!SET_MEMBER((*diffp)->dom, b->id))
1325			return;
1326
1327		if ((*diffp)->val[A_ATOM] != val)
1328			break;
1329
1330		diffp = &JF(*diffp);
1331		at_top = 0;
1332	}
1333	samep = &JF(*diffp);
1334	while (1) {
1335		if (*samep == 0)
1336			return;
1337
1338		if (JT(*samep) != JT(b))
1339			return;
1340
1341		if (!SET_MEMBER((*samep)->dom, b->id))
1342			return;
1343
1344		if ((*samep)->val[A_ATOM] == val)
1345			break;
1346
1347		/* XXX Need to check that there are no data dependencies
1348		   between dp0 and dp1.  Currently, the code generator
1349		   will not produce such dependencies. */
1350		samep = &JF(*samep);
1351	}
1352#ifdef notdef
1353	/* XXX This doesn't cover everything. */
1354	for (i = 0; i < N_ATOMS; ++i)
1355		if ((*samep)->val[i] != pred->val[i])
1356			return;
1357#endif
1358	/* Pull up the node. */
1359	pull = *samep;
1360	*samep = JF(pull);
1361	JF(pull) = *diffp;
1362
1363	/*
1364	 * At the top of the chain, each predecessor needs to point at the
1365	 * pulled up node.  Inside the chain, there is only one predecessor
1366	 * to worry about.
1367	 */
1368	if (at_top) {
1369		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1370			if (JT(ep->pred) == b)
1371				JT(ep->pred) = pull;
1372			else
1373				JF(ep->pred) = pull;
1374		}
1375	}
1376	else
1377		*diffp = pull;
1378
1379	done = 0;
1380}
1381
1382static void
1383and_pullup(b)
1384	struct block *b;
1385{
1386	int val, at_top;
1387	struct block *pull;
1388	struct block **diffp, **samep;
1389	struct edge *ep;
1390
1391	ep = b->in_edges;
1392	if (ep == 0)
1393		return;
1394
1395	/*
1396	 * Make sure each predecessor loads the same value.
1397	 */
1398	val = ep->pred->val[A_ATOM];
1399	for (ep = ep->next; ep != 0; ep = ep->next)
1400		if (val != ep->pred->val[A_ATOM])
1401			return;
1402
1403	if (JT(b->in_edges->pred) == b)
1404		diffp = &JT(b->in_edges->pred);
1405	else
1406		diffp = &JF(b->in_edges->pred);
1407
1408	at_top = 1;
1409	while (1) {
1410		if (*diffp == 0)
1411			return;
1412
1413		if (JF(*diffp) != JF(b))
1414			return;
1415
1416		if (!SET_MEMBER((*diffp)->dom, b->id))
1417			return;
1418
1419		if ((*diffp)->val[A_ATOM] != val)
1420			break;
1421
1422		diffp = &JT(*diffp);
1423		at_top = 0;
1424	}
1425	samep = &JT(*diffp);
1426	while (1) {
1427		if (*samep == 0)
1428			return;
1429
1430		if (JF(*samep) != JF(b))
1431			return;
1432
1433		if (!SET_MEMBER((*samep)->dom, b->id))
1434			return;
1435
1436		if ((*samep)->val[A_ATOM] == val)
1437			break;
1438
1439		/* XXX Need to check that there are no data dependencies
1440		   between diffp and samep.  Currently, the code generator
1441		   will not produce such dependencies. */
1442		samep = &JT(*samep);
1443	}
1444#ifdef notdef
1445	/* XXX This doesn't cover everything. */
1446	for (i = 0; i < N_ATOMS; ++i)
1447		if ((*samep)->val[i] != pred->val[i])
1448			return;
1449#endif
1450	/* Pull up the node. */
1451	pull = *samep;
1452	*samep = JT(pull);
1453	JT(pull) = *diffp;
1454
1455	/*
1456	 * At the top of the chain, each predecessor needs to point at the
1457	 * pulled up node.  Inside the chain, there is only one predecessor
1458	 * to worry about.
1459	 */
1460	if (at_top) {
1461		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1462			if (JT(ep->pred) == b)
1463				JT(ep->pred) = pull;
1464			else
1465				JF(ep->pred) = pull;
1466		}
1467	}
1468	else
1469		*diffp = pull;
1470
1471	done = 0;
1472}
1473
1474static void
1475opt_blks(root, do_stmts)
1476	struct block *root;
1477	int do_stmts;
1478{
1479	int i, maxlevel;
1480	struct block *p;
1481
1482	init_val();
1483	maxlevel = root->level;
1484	for (i = maxlevel; i >= 0; --i)
1485		for (p = levels[i]; p; p = p->link)
1486			opt_blk(p, do_stmts);
1487
1488	if (do_stmts)
1489		/*
1490		 * No point trying to move branches; it can't possibly
1491		 * make a difference at this point.
1492		 */
1493		return;
1494
1495	for (i = 1; i <= maxlevel; ++i) {
1496		for (p = levels[i]; p; p = p->link) {
1497			opt_j(&p->et);
1498			opt_j(&p->ef);
1499		}
1500	}
1501	for (i = 1; i <= maxlevel; ++i) {
1502		for (p = levels[i]; p; p = p->link) {
1503			or_pullup(p);
1504			and_pullup(p);
1505		}
1506	}
1507}
1508
1509static inline void
1510link_inedge(parent, child)
1511	struct edge *parent;
1512	struct block *child;
1513{
1514	parent->next = child->in_edges;
1515	child->in_edges = parent;
1516}
1517
1518static void
1519find_inedges(root)
1520	struct block *root;
1521{
1522	int i;
1523	struct block *b;
1524
1525	for (i = 0; i < n_blocks; ++i)
1526		blocks[i]->in_edges = 0;
1527
1528	/*
1529	 * Traverse the graph, adding each edge to the predecessor
1530	 * list of its successors.  Skip the leaves (i.e. level 0).
1531	 */
1532	for (i = root->level; i > 0; --i) {
1533		for (b = levels[i]; b != 0; b = b->link) {
1534			link_inedge(&b->et, JT(b));
1535			link_inedge(&b->ef, JF(b));
1536		}
1537	}
1538}
1539
1540static void
1541opt_root(b)
1542	struct block **b;
1543{
1544	struct slist *tmp, *s;
1545
1546	s = (*b)->stmts;
1547	(*b)->stmts = 0;
1548	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1549		*b = JT(*b);
1550
1551	tmp = (*b)->stmts;
1552	if (tmp != 0)
1553		sappend(s, tmp);
1554	(*b)->stmts = s;
1555
1556	/*
1557	 * If the root node is a return, then there is no
1558	 * point executing any statements (since the bpf machine
1559	 * has no side effects).
1560	 */
1561	if (BPF_CLASS((*b)->s.code) == BPF_RET)
1562		(*b)->stmts = 0;
1563}
1564
1565static void
1566opt_loop(root, do_stmts)
1567	struct block *root;
1568	int do_stmts;
1569{
1570
1571#ifdef BDEBUG
1572	if (dflag > 1)
1573		opt_dump(root);
1574#endif
1575	do {
1576		done = 1;
1577		find_levels(root);
1578		find_dom(root);
1579		find_closure(root);
1580		find_inedges(root);
1581		find_ud(root);
1582		find_edom(root);
1583		opt_blks(root, do_stmts);
1584#ifdef BDEBUG
1585		if (dflag > 1)
1586			opt_dump(root);
1587#endif
1588	} while (!done);
1589}
1590
1591/*
1592 * Optimize the filter code in its dag representation.
1593 */
1594void
1595bpf_optimize(rootp)
1596	struct block **rootp;
1597{
1598	struct block *root;
1599
1600	root = *rootp;
1601
1602	opt_init(root);
1603	opt_loop(root, 0);
1604	opt_loop(root, 1);
1605	intern_blocks(root);
1606	opt_root(rootp);
1607	opt_cleanup();
1608}
1609
1610static void
1611make_marks(p)
1612	struct block *p;
1613{
1614	if (!isMarked(p)) {
1615		Mark(p);
1616		if (BPF_CLASS(p->s.code) != BPF_RET) {
1617			make_marks(JT(p));
1618			make_marks(JF(p));
1619		}
1620	}
1621}
1622
1623/*
1624 * Mark code array such that isMarked(i) is true
1625 * only for nodes that are alive.
1626 */
1627static void
1628mark_code(p)
1629	struct block *p;
1630{
1631	cur_mark += 1;
1632	make_marks(p);
1633}
1634
1635/*
1636 * True iff the two stmt lists load the same value from the packet into
1637 * the accumulator.
1638 */
1639static int
1640eq_slist(x, y)
1641	struct slist *x, *y;
1642{
1643	while (1) {
1644		while (x && x->s.code == NOP)
1645			x = x->next;
1646		while (y && y->s.code == NOP)
1647			y = y->next;
1648		if (x == 0)
1649			return y == 0;
1650		if (y == 0)
1651			return x == 0;
1652		if (x->s.code != y->s.code || x->s.k != y->s.k)
1653			return 0;
1654		x = x->next;
1655		y = y->next;
1656	}
1657}
1658
1659static inline int
1660eq_blk(b0, b1)
1661	struct block *b0, *b1;
1662{
1663	if (b0->s.code == b1->s.code &&
1664	    b0->s.k == b1->s.k &&
1665	    b0->et.succ == b1->et.succ &&
1666	    b0->ef.succ == b1->ef.succ)
1667		return eq_slist(b0->stmts, b1->stmts);
1668	return 0;
1669}
1670
1671static void
1672intern_blocks(root)
1673	struct block *root;
1674{
1675	struct block *p;
1676	int i, j;
1677	int done;
1678 top:
1679	done = 1;
1680	for (i = 0; i < n_blocks; ++i)
1681		blocks[i]->link = 0;
1682
1683	mark_code(root);
1684
1685	for (i = n_blocks - 1; --i >= 0; ) {
1686		if (!isMarked(blocks[i]))
1687			continue;
1688		for (j = i + 1; j < n_blocks; ++j) {
1689			if (!isMarked(blocks[j]))
1690				continue;
1691			if (eq_blk(blocks[i], blocks[j])) {
1692				blocks[i]->link = blocks[j]->link ?
1693					blocks[j]->link : blocks[j];
1694				break;
1695			}
1696		}
1697	}
1698	for (i = 0; i < n_blocks; ++i) {
1699		p = blocks[i];
1700		if (JT(p) == 0)
1701			continue;
1702		if (JT(p)->link) {
1703			done = 0;
1704			JT(p) = JT(p)->link;
1705		}
1706		if (JF(p)->link) {
1707			done = 0;
1708			JF(p) = JF(p)->link;
1709		}
1710	}
1711	if (!done)
1712		goto top;
1713}
1714
1715static void
1716opt_cleanup()
1717{
1718	free((void *)vnode_base);
1719	free((void *)vmap);
1720	free((void *)edges);
1721	free((void *)space);
1722	free((void *)levels);
1723	free((void *)blocks);
1724}
1725
1726/*
1727 * Return the number of stmts in 's'.
1728 */
1729static int
1730slength(s)
1731	struct slist *s;
1732{
1733	int n = 0;
1734
1735	for (; s; s = s->next)
1736		if (s->s.code != NOP)
1737			++n;
1738	return n;
1739}
1740
1741/*
1742 * Return the number of nodes reachable by 'p'.
1743 * All nodes should be initially unmarked.
1744 */
1745static int
1746count_blocks(p)
1747	struct block *p;
1748{
1749	if (p == 0 || isMarked(p))
1750		return 0;
1751	Mark(p);
1752	return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1753}
1754
1755/*
1756 * Do a depth first search on the flow graph, numbering the
1757 * the basic blocks, and entering them into the 'blocks' array.`
1758 */
1759static void
1760number_blks_r(p)
1761	struct block *p;
1762{
1763	int n;
1764
1765	if (p == 0 || isMarked(p))
1766		return;
1767
1768	Mark(p);
1769	n = n_blocks++;
1770	p->id = n;
1771	blocks[n] = p;
1772
1773	number_blks_r(JT(p));
1774	number_blks_r(JF(p));
1775}
1776
1777/*
1778 * Return the number of stmts in the flowgraph reachable by 'p'.
1779 * The nodes should be unmarked before calling.
1780 */
1781static int
1782count_stmts(p)
1783	struct block *p;
1784{
1785	int n;
1786
1787	if (p == 0 || isMarked(p))
1788		return 0;
1789	Mark(p);
1790	n = count_stmts(JT(p)) + count_stmts(JF(p));
1791	return slength(p->stmts) + n + 1;
1792}
1793
1794/*
1795 * Allocate memory.  All allocation is done before optimization
1796 * is begun.  A linear bound on the size of all data structures is computed
1797 * from the total number of blocks and/or statements.
1798 */
1799static void
1800opt_init(root)
1801	struct block *root;
1802{
1803	bpf_u_int32 *p;
1804	int i, n, max_stmts;
1805
1806	/*
1807	 * First, count the blocks, so we can malloc an array to map
1808	 * block number to block.  Then, put the blocks into the array.
1809	 */
1810	unMarkAll();
1811	n = count_blocks(root);
1812	blocks = (struct block **)malloc(n * sizeof(*blocks));
1813	unMarkAll();
1814	n_blocks = 0;
1815	number_blks_r(root);
1816
1817	n_edges = 2 * n_blocks;
1818	edges = (struct edge **)malloc(n_edges * sizeof(*edges));
1819
1820	/*
1821	 * The number of levels is bounded by the number of nodes.
1822	 */
1823	levels = (struct block **)malloc(n_blocks * sizeof(*levels));
1824
1825	edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1826	nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1827
1828	/* XXX */
1829	space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
1830				 + n_edges * edgewords * sizeof(*space));
1831	p = space;
1832	all_dom_sets = p;
1833	for (i = 0; i < n; ++i) {
1834		blocks[i]->dom = p;
1835		p += nodewords;
1836	}
1837	all_closure_sets = p;
1838	for (i = 0; i < n; ++i) {
1839		blocks[i]->closure = p;
1840		p += nodewords;
1841	}
1842	all_edge_sets = p;
1843	for (i = 0; i < n; ++i) {
1844		register struct block *b = blocks[i];
1845
1846		b->et.edom = p;
1847		p += edgewords;
1848		b->ef.edom = p;
1849		p += edgewords;
1850		b->et.id = i;
1851		edges[i] = &b->et;
1852		b->ef.id = n_blocks + i;
1853		edges[n_blocks + i] = &b->ef;
1854		b->et.pred = b;
1855		b->ef.pred = b;
1856	}
1857	max_stmts = 0;
1858	for (i = 0; i < n; ++i)
1859		max_stmts += slength(blocks[i]->stmts) + 1;
1860	/*
1861	 * We allocate at most 3 value numbers per statement,
1862	 * so this is an upper bound on the number of valnodes
1863	 * we'll need.
1864	 */
1865	maxval = 3 * max_stmts;
1866	vmap = (struct vmapinfo *)malloc(maxval * sizeof(*vmap));
1867	vnode_base = (struct valnode *)malloc(maxval * sizeof(*vmap));
1868}
1869
1870/*
1871 * Some pointers used to convert the basic block form of the code,
1872 * into the array form that BPF requires.  'fstart' will point to
1873 * the malloc'd array while 'ftail' is used during the recursive traversal.
1874 */
1875static struct bpf_insn *fstart;
1876static struct bpf_insn *ftail;
1877
1878#ifdef BDEBUG
1879int bids[1000];
1880#endif
1881
1882/*
1883 * Returns true if successful.  Returns false if a branch has
1884 * an offset that is too large.  If so, we have marked that
1885 * branch so that on a subsequent iteration, it will be treated
1886 * properly.
1887 */
1888static int
1889convert_code_r(p)
1890	struct block *p;
1891{
1892	struct bpf_insn *dst;
1893	struct slist *src;
1894	int slen;
1895	u_int off;
1896	int extrajmps;		/* number of extra jumps inserted */
1897	struct slist **offset = NULL;
1898
1899	if (p == 0 || isMarked(p))
1900		return (1);
1901	Mark(p);
1902
1903	if (convert_code_r(JF(p)) == 0)
1904		return (0);
1905	if (convert_code_r(JT(p)) == 0)
1906		return (0);
1907
1908	slen = slength(p->stmts);
1909	dst = ftail -= (slen + 1 + p->longjt + p->longjf);
1910		/* inflate length by any extra jumps */
1911
1912	p->offset = dst - fstart;
1913
1914	/* generate offset[] for convenience  */
1915	if (slen) {
1916		offset = (struct slist **)calloc(sizeof(struct slist *), slen);
1917		if (!offset) {
1918			bpf_error("not enough core");
1919			/*NOTREACHED*/
1920		}
1921	}
1922	src = p->stmts;
1923	for (off = 0; off < slen && src; off++) {
1924#if 0
1925		printf("off=%d src=%x\n", off, src);
1926#endif
1927		offset[off] = src;
1928		src = src->next;
1929	}
1930
1931	off = 0;
1932	for (src = p->stmts; src; src = src->next) {
1933		if (src->s.code == NOP)
1934			continue;
1935		dst->code = (u_short)src->s.code;
1936		dst->k = src->s.k;
1937
1938		/* fill block-local relative jump */
1939		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == BPF_JMP|BPF_JA) {
1940#if 0
1941			if (src->s.jt || src->s.jf) {
1942				bpf_error("illegal jmp destination");
1943				/*NOTREACHED*/
1944			}
1945#endif
1946			goto filled;
1947		}
1948		if (off == slen - 2)	/*???*/
1949			goto filled;
1950
1951	    {
1952		int i;
1953		int jt, jf;
1954		char *ljerr = "%s for block-local relative jump: off=%d";
1955
1956#if 0
1957		printf("code=%x off=%d %x %x\n", src->s.code,
1958			off, src->s.jt, src->s.jf);
1959#endif
1960
1961		if (!src->s.jt || !src->s.jf) {
1962			bpf_error(ljerr, "no jmp destination", off);
1963			/*NOTREACHED*/
1964		}
1965
1966		jt = jf = 0;
1967		for (i = 0; i < slen; i++) {
1968			if (offset[i] == src->s.jt) {
1969				if (jt) {
1970					bpf_error(ljerr, "multiple matches", off);
1971					/*NOTREACHED*/
1972				}
1973
1974				dst->jt = i - off - 1;
1975				jt++;
1976			}
1977			if (offset[i] == src->s.jf) {
1978				if (jf) {
1979					bpf_error(ljerr, "multiple matches", off);
1980					/*NOTREACHED*/
1981				}
1982				dst->jf = i - off - 1;
1983				jf++;
1984			}
1985		}
1986		if (!jt || !jf) {
1987			bpf_error(ljerr, "no destination found", off);
1988			/*NOTREACHED*/
1989		}
1990	    }
1991filled:
1992		++dst;
1993		++off;
1994	}
1995	if (offset)
1996		free(offset);
1997
1998#ifdef BDEBUG
1999	bids[dst - fstart] = p->id + 1;
2000#endif
2001	dst->code = (u_short)p->s.code;
2002	dst->k = p->s.k;
2003	if (JT(p)) {
2004		extrajmps = 0;
2005		off = JT(p)->offset - (p->offset + slen) - 1;
2006		if (off >= 256) {
2007		    /* offset too large for branch, must add a jump */
2008		    if (p->longjt == 0) {
2009		    	/* mark this instruction and retry */
2010			p->longjt++;
2011			return(0);
2012		    }
2013		    /* branch if T to following jump */
2014		    dst->jt = extrajmps;
2015		    extrajmps++;
2016		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2017		    dst[extrajmps].k = off - extrajmps;
2018		}
2019		else
2020		    dst->jt = off;
2021		off = JF(p)->offset - (p->offset + slen) - 1;
2022		if (off >= 256) {
2023		    /* offset too large for branch, must add a jump */
2024		    if (p->longjf == 0) {
2025		    	/* mark this instruction and retry */
2026			p->longjf++;
2027			return(0);
2028		    }
2029		    /* branch if F to following jump */
2030		    /* if two jumps are inserted, F goes to second one */
2031		    dst->jf = extrajmps;
2032		    extrajmps++;
2033		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2034		    dst[extrajmps].k = off - extrajmps;
2035		}
2036		else
2037		    dst->jf = off;
2038	}
2039	return (1);
2040}
2041
2042
2043/*
2044 * Convert flowgraph intermediate representation to the
2045 * BPF array representation.  Set *lenp to the number of instructions.
2046 */
2047struct bpf_insn *
2048icode_to_fcode(root, lenp)
2049	struct block *root;
2050	int *lenp;
2051{
2052	int n;
2053	struct bpf_insn *fp;
2054
2055	/*
2056	 * Loop doing convert_codr_r() until no branches remain
2057	 * with too-large offsets.
2058	 */
2059	while (1) {
2060	    unMarkAll();
2061	    n = *lenp = count_stmts(root);
2062
2063	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2064	    memset((char *)fp, 0, sizeof(*fp) * n);
2065	    fstart = fp;
2066	    ftail = fp + n;
2067
2068	    unMarkAll();
2069	    if (convert_code_r(root))
2070		break;
2071	    free(fp);
2072	}
2073
2074	return fp;
2075}
2076
2077#ifdef BDEBUG
2078static void
2079opt_dump(root)
2080	struct block *root;
2081{
2082	struct bpf_program f;
2083
2084	memset(bids, 0, sizeof bids);
2085	f.bf_insns = icode_to_fcode(root, &f.bf_len);
2086	bpf_dump(&f, 1);
2087	putchar('\n');
2088	free((char *)f.bf_insns);
2089}
2090#endif
2091