gencode.c revision 190225
1/*#define CHASE_CHAIN*/
2/*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 *
22 * $FreeBSD: head/contrib/libpcap/gencode.c 190225 2009-03-21 22:58:08Z rpaulo $
23 */
24#ifndef lint
25static const char rcsid[] _U_ =
26    "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.290.2.16 2008-09-22 20:16:01 guy Exp $ (LBL)";
27#endif
28
29#ifdef HAVE_CONFIG_H
30#include "config.h"
31#endif
32
33#ifdef WIN32
34#include <pcap-stdinc.h>
35#else /* WIN32 */
36#include <sys/types.h>
37#include <sys/socket.h>
38#endif /* WIN32 */
39
40/*
41 * XXX - why was this included even on UNIX?
42 */
43#ifdef __MINGW32__
44#include "IP6_misc.h"
45#endif
46
47#ifndef WIN32
48
49#ifdef __NetBSD__
50#include <sys/param.h>
51#endif
52
53#include <netinet/in.h>
54
55#endif /* WIN32 */
56
57#include <stdlib.h>
58#include <string.h>
59#include <memory.h>
60#include <setjmp.h>
61#include <stdarg.h>
62
63#ifdef MSDOS
64#include "pcap-dos.h"
65#endif
66
67#include "pcap-int.h"
68
69#include "ethertype.h"
70#include "nlpid.h"
71#include "llc.h"
72#include "gencode.h"
73#include "ieee80211.h"
74#include "atmuni31.h"
75#include "sunatmpos.h"
76#include "ppp.h"
77#include "pcap/sll.h"
78#include "arcnet.h"
79#ifdef HAVE_NET_PFVAR_H
80#include <sys/socket.h>
81#include <net/if.h>
82#include <net/pfvar.h>
83#include <net/if_pflog.h>
84#endif
85#ifndef offsetof
86#define offsetof(s, e) ((size_t)&((s *)0)->e)
87#endif
88#ifdef INET6
89#ifndef WIN32
90#include <netdb.h>	/* for "struct addrinfo" */
91#endif /* WIN32 */
92#endif /*INET6*/
93#include <pcap/namedb.h>
94
95#define ETHERMTU	1500
96
97#ifndef IPPROTO_SCTP
98#define IPPROTO_SCTP 132
99#endif
100
101#ifdef HAVE_OS_PROTO_H
102#include "os-proto.h"
103#endif
104
105#define JMP(c) ((c)|BPF_JMP|BPF_K)
106
107/* Locals */
108static jmp_buf top_ctx;
109static pcap_t *bpf_pcap;
110
111/* Hack for updating VLAN, MPLS, and PPPoE offsets. */
112#ifdef WIN32
113static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
114#else
115static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
116#endif
117
118/* XXX */
119#ifdef PCAP_FDDIPAD
120static int	pcap_fddipad;
121#endif
122
123/* VARARGS */
124void
125bpf_error(const char *fmt, ...)
126{
127	va_list ap;
128
129	va_start(ap, fmt);
130	if (bpf_pcap != NULL)
131		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
132		    fmt, ap);
133	va_end(ap);
134	longjmp(top_ctx, 1);
135	/* NOTREACHED */
136}
137
138static void init_linktype(pcap_t *);
139
140static void init_regs(void);
141static int alloc_reg(void);
142static void free_reg(int);
143
144static struct block *root;
145
146/*
147 * Value passed to gen_load_a() to indicate what the offset argument
148 * is relative to.
149 */
150enum e_offrel {
151	OR_PACKET,	/* relative to the beginning of the packet */
152	OR_LINK,	/* relative to the beginning of the link-layer header */
153	OR_MACPL,	/* relative to the end of the MAC-layer header */
154	OR_NET,		/* relative to the network-layer header */
155	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
156	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
157	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
158};
159
160/*
161 * We divy out chunks of memory rather than call malloc each time so
162 * we don't have to worry about leaking memory.  It's probably
163 * not a big deal if all this memory was wasted but if this ever
164 * goes into a library that would probably not be a good idea.
165 *
166 * XXX - this *is* in a library....
167 */
168#define NCHUNKS 16
169#define CHUNK0SIZE 1024
170struct chunk {
171	u_int n_left;
172	void *m;
173};
174
175static struct chunk chunks[NCHUNKS];
176static int cur_chunk;
177
178static void *newchunk(u_int);
179static void freechunks(void);
180static inline struct block *new_block(int);
181static inline struct slist *new_stmt(int);
182static struct block *gen_retblk(int);
183static inline void syntax(void);
184
185static void backpatch(struct block *, struct block *);
186static void merge(struct block *, struct block *);
187static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
188static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
189static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
190static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
191static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
192static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
193    bpf_u_int32);
194static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
195static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
196    bpf_u_int32, bpf_u_int32, int, bpf_int32);
197static struct slist *gen_load_llrel(u_int, u_int);
198static struct slist *gen_load_macplrel(u_int, u_int);
199static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
200static struct slist *gen_loadx_iphdrlen(void);
201static struct block *gen_uncond(int);
202static inline struct block *gen_true(void);
203static inline struct block *gen_false(void);
204static struct block *gen_ether_linktype(int);
205static struct block *gen_linux_sll_linktype(int);
206static struct slist *gen_load_prism_llprefixlen(void);
207static struct slist *gen_load_avs_llprefixlen(void);
208static struct slist *gen_load_radiotap_llprefixlen(void);
209static struct slist *gen_load_ppi_llprefixlen(void);
210static void insert_compute_vloffsets(struct block *);
211static struct slist *gen_llprefixlen(void);
212static struct slist *gen_off_macpl(void);
213static int ethertype_to_ppptype(int);
214static struct block *gen_linktype(int);
215static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
216static struct block *gen_llc_linktype(int);
217static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
218#ifdef INET6
219static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
220#endif
221static struct block *gen_ahostop(const u_char *, int);
222static struct block *gen_ehostop(const u_char *, int);
223static struct block *gen_fhostop(const u_char *, int);
224static struct block *gen_thostop(const u_char *, int);
225static struct block *gen_wlanhostop(const u_char *, int);
226static struct block *gen_ipfchostop(const u_char *, int);
227static struct block *gen_dnhostop(bpf_u_int32, int);
228static struct block *gen_mpls_linktype(int);
229static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
230#ifdef INET6
231static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
232#endif
233#ifndef INET6
234static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
235#endif
236static struct block *gen_ipfrag(void);
237static struct block *gen_portatom(int, bpf_int32);
238static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
239#ifdef INET6
240static struct block *gen_portatom6(int, bpf_int32);
241static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
242#endif
243struct block *gen_portop(int, int, int);
244static struct block *gen_port(int, int, int);
245struct block *gen_portrangeop(int, int, int, int);
246static struct block *gen_portrange(int, int, int, int);
247#ifdef INET6
248struct block *gen_portop6(int, int, int);
249static struct block *gen_port6(int, int, int);
250struct block *gen_portrangeop6(int, int, int, int);
251static struct block *gen_portrange6(int, int, int, int);
252#endif
253static int lookup_proto(const char *, int);
254static struct block *gen_protochain(int, int, int);
255static struct block *gen_proto(int, int, int);
256static struct slist *xfer_to_x(struct arth *);
257static struct slist *xfer_to_a(struct arth *);
258static struct block *gen_mac_multicast(int);
259static struct block *gen_len(int, int);
260static struct block *gen_check_802_11_data_frame(void);
261
262static struct block *gen_ppi_dlt_check(void);
263static struct block *gen_msg_abbrev(int type);
264
265static void *
266newchunk(n)
267	u_int n;
268{
269	struct chunk *cp;
270	int k;
271	size_t size;
272
273#ifndef __NetBSD__
274	/* XXX Round up to nearest long. */
275	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
276#else
277	/* XXX Round up to structure boundary. */
278	n = ALIGN(n);
279#endif
280
281	cp = &chunks[cur_chunk];
282	if (n > cp->n_left) {
283		++cp, k = ++cur_chunk;
284		if (k >= NCHUNKS)
285			bpf_error("out of memory");
286		size = CHUNK0SIZE << k;
287		cp->m = (void *)malloc(size);
288		if (cp->m == NULL)
289			bpf_error("out of memory");
290		memset((char *)cp->m, 0, size);
291		cp->n_left = size;
292		if (n > size)
293			bpf_error("out of memory");
294	}
295	cp->n_left -= n;
296	return (void *)((char *)cp->m + cp->n_left);
297}
298
299static void
300freechunks()
301{
302	int i;
303
304	cur_chunk = 0;
305	for (i = 0; i < NCHUNKS; ++i)
306		if (chunks[i].m != NULL) {
307			free(chunks[i].m);
308			chunks[i].m = NULL;
309		}
310}
311
312/*
313 * A strdup whose allocations are freed after code generation is over.
314 */
315char *
316sdup(s)
317	register const char *s;
318{
319	int n = strlen(s) + 1;
320	char *cp = newchunk(n);
321
322	strlcpy(cp, s, n);
323	return (cp);
324}
325
326static inline struct block *
327new_block(code)
328	int code;
329{
330	struct block *p;
331
332	p = (struct block *)newchunk(sizeof(*p));
333	p->s.code = code;
334	p->head = p;
335
336	return p;
337}
338
339static inline struct slist *
340new_stmt(code)
341	int code;
342{
343	struct slist *p;
344
345	p = (struct slist *)newchunk(sizeof(*p));
346	p->s.code = code;
347
348	return p;
349}
350
351static struct block *
352gen_retblk(v)
353	int v;
354{
355	struct block *b = new_block(BPF_RET|BPF_K);
356
357	b->s.k = v;
358	return b;
359}
360
361static inline void
362syntax()
363{
364	bpf_error("syntax error in filter expression");
365}
366
367static bpf_u_int32 netmask;
368static int snaplen;
369int no_optimize;
370
371int
372pcap_compile(pcap_t *p, struct bpf_program *program,
373	     const char *buf, int optimize, bpf_u_int32 mask)
374{
375	extern int n_errors;
376	const char * volatile xbuf = buf;
377	int len;
378
379	no_optimize = 0;
380	n_errors = 0;
381	root = NULL;
382	bpf_pcap = p;
383	init_regs();
384	if (setjmp(top_ctx)) {
385		lex_cleanup();
386		freechunks();
387		return (-1);
388	}
389
390	netmask = mask;
391
392	snaplen = pcap_snapshot(p);
393	if (snaplen == 0) {
394		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
395			 "snaplen of 0 rejects all packets");
396		return -1;
397	}
398
399	lex_init(xbuf ? xbuf : "");
400	init_linktype(p);
401	(void)pcap_parse();
402
403	if (n_errors)
404		syntax();
405
406	if (root == NULL)
407		root = gen_retblk(snaplen);
408
409	if (optimize && !no_optimize) {
410		bpf_optimize(&root);
411		if (root == NULL ||
412		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
413			bpf_error("expression rejects all packets");
414	}
415	program->bf_insns = icode_to_fcode(root, &len);
416	program->bf_len = len;
417
418	lex_cleanup();
419	freechunks();
420	return (0);
421}
422
423/*
424 * entry point for using the compiler with no pcap open
425 * pass in all the stuff that is needed explicitly instead.
426 */
427int
428pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
429		    struct bpf_program *program,
430	     const char *buf, int optimize, bpf_u_int32 mask)
431{
432	pcap_t *p;
433	int ret;
434
435	p = pcap_open_dead(linktype_arg, snaplen_arg);
436	if (p == NULL)
437		return (-1);
438	ret = pcap_compile(p, program, buf, optimize, mask);
439	pcap_close(p);
440	return (ret);
441}
442
443/*
444 * Clean up a "struct bpf_program" by freeing all the memory allocated
445 * in it.
446 */
447void
448pcap_freecode(struct bpf_program *program)
449{
450	program->bf_len = 0;
451	if (program->bf_insns != NULL) {
452		free((char *)program->bf_insns);
453		program->bf_insns = NULL;
454	}
455}
456
457/*
458 * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
459 * which of the jt and jf fields has been resolved and which is a pointer
460 * back to another unresolved block (or nil).  At least one of the fields
461 * in each block is already resolved.
462 */
463static void
464backpatch(list, target)
465	struct block *list, *target;
466{
467	struct block *next;
468
469	while (list) {
470		if (!list->sense) {
471			next = JT(list);
472			JT(list) = target;
473		} else {
474			next = JF(list);
475			JF(list) = target;
476		}
477		list = next;
478	}
479}
480
481/*
482 * Merge the lists in b0 and b1, using the 'sense' field to indicate
483 * which of jt and jf is the link.
484 */
485static void
486merge(b0, b1)
487	struct block *b0, *b1;
488{
489	register struct block **p = &b0;
490
491	/* Find end of list. */
492	while (*p)
493		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
494
495	/* Concatenate the lists. */
496	*p = b1;
497}
498
499void
500finish_parse(p)
501	struct block *p;
502{
503	struct block *ppi_dlt_check;
504
505	/*
506	 * Insert before the statements of the first (root) block any
507	 * statements needed to load the lengths of any variable-length
508	 * headers into registers.
509	 *
510	 * XXX - a fancier strategy would be to insert those before the
511	 * statements of all blocks that use those lengths and that
512	 * have no predecessors that use them, so that we only compute
513	 * the lengths if we need them.  There might be even better
514	 * approaches than that.
515	 *
516	 * However, those strategies would be more complicated, and
517	 * as we don't generate code to compute a length if the
518	 * program has no tests that use the length, and as most
519	 * tests will probably use those lengths, we would just
520	 * postpone computing the lengths so that it's not done
521	 * for tests that fail early, and it's not clear that's
522	 * worth the effort.
523	 */
524	insert_compute_vloffsets(p->head);
525
526	/*
527	 * For DLT_PPI captures, generate a check of the per-packet
528	 * DLT value to make sure it's DLT_IEEE802_11.
529	 */
530	ppi_dlt_check = gen_ppi_dlt_check();
531	if (ppi_dlt_check != NULL)
532		gen_and(ppi_dlt_check, p);
533
534	backpatch(p, gen_retblk(snaplen));
535	p->sense = !p->sense;
536	backpatch(p, gen_retblk(0));
537	root = p->head;
538}
539
540void
541gen_and(b0, b1)
542	struct block *b0, *b1;
543{
544	backpatch(b0, b1->head);
545	b0->sense = !b0->sense;
546	b1->sense = !b1->sense;
547	merge(b1, b0);
548	b1->sense = !b1->sense;
549	b1->head = b0->head;
550}
551
552void
553gen_or(b0, b1)
554	struct block *b0, *b1;
555{
556	b0->sense = !b0->sense;
557	backpatch(b0, b1->head);
558	b0->sense = !b0->sense;
559	merge(b1, b0);
560	b1->head = b0->head;
561}
562
563void
564gen_not(b)
565	struct block *b;
566{
567	b->sense = !b->sense;
568}
569
570static struct block *
571gen_cmp(offrel, offset, size, v)
572	enum e_offrel offrel;
573	u_int offset, size;
574	bpf_int32 v;
575{
576	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
577}
578
579static struct block *
580gen_cmp_gt(offrel, offset, size, v)
581	enum e_offrel offrel;
582	u_int offset, size;
583	bpf_int32 v;
584{
585	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
586}
587
588static struct block *
589gen_cmp_ge(offrel, offset, size, v)
590	enum e_offrel offrel;
591	u_int offset, size;
592	bpf_int32 v;
593{
594	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
595}
596
597static struct block *
598gen_cmp_lt(offrel, offset, size, v)
599	enum e_offrel offrel;
600	u_int offset, size;
601	bpf_int32 v;
602{
603	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
604}
605
606static struct block *
607gen_cmp_le(offrel, offset, size, v)
608	enum e_offrel offrel;
609	u_int offset, size;
610	bpf_int32 v;
611{
612	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
613}
614
615static struct block *
616gen_mcmp(offrel, offset, size, v, mask)
617	enum e_offrel offrel;
618	u_int offset, size;
619	bpf_int32 v;
620	bpf_u_int32 mask;
621{
622	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
623}
624
625static struct block *
626gen_bcmp(offrel, offset, size, v)
627	enum e_offrel offrel;
628	register u_int offset, size;
629	register const u_char *v;
630{
631	register struct block *b, *tmp;
632
633	b = NULL;
634	while (size >= 4) {
635		register const u_char *p = &v[size - 4];
636		bpf_int32 w = ((bpf_int32)p[0] << 24) |
637		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
638
639		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
640		if (b != NULL)
641			gen_and(b, tmp);
642		b = tmp;
643		size -= 4;
644	}
645	while (size >= 2) {
646		register const u_char *p = &v[size - 2];
647		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
648
649		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
650		if (b != NULL)
651			gen_and(b, tmp);
652		b = tmp;
653		size -= 2;
654	}
655	if (size > 0) {
656		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
657		if (b != NULL)
658			gen_and(b, tmp);
659		b = tmp;
660	}
661	return b;
662}
663
664/*
665 * AND the field of size "size" at offset "offset" relative to the header
666 * specified by "offrel" with "mask", and compare it with the value "v"
667 * with the test specified by "jtype"; if "reverse" is true, the test
668 * should test the opposite of "jtype".
669 */
670static struct block *
671gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
672	enum e_offrel offrel;
673	bpf_int32 v;
674	bpf_u_int32 offset, size, mask, jtype;
675	int reverse;
676{
677	struct slist *s, *s2;
678	struct block *b;
679
680	s = gen_load_a(offrel, offset, size);
681
682	if (mask != 0xffffffff) {
683		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
684		s2->s.k = mask;
685		sappend(s, s2);
686	}
687
688	b = new_block(JMP(jtype));
689	b->stmts = s;
690	b->s.k = v;
691	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
692		gen_not(b);
693	return b;
694}
695
696/*
697 * Various code constructs need to know the layout of the data link
698 * layer.  These variables give the necessary offsets from the beginning
699 * of the packet data.
700 */
701
702/*
703 * This is the offset of the beginning of the link-layer header from
704 * the beginning of the raw packet data.
705 *
706 * It's usually 0, except for 802.11 with a fixed-length radio header.
707 * (For 802.11 with a variable-length radio header, we have to generate
708 * code to compute that offset; off_ll is 0 in that case.)
709 */
710static u_int off_ll;
711
712/*
713 * If there's a variable-length header preceding the link-layer header,
714 * "reg_off_ll" is the register number for a register containing the
715 * length of that header, and therefore the offset of the link-layer
716 * header from the beginning of the raw packet data.  Otherwise,
717 * "reg_off_ll" is -1.
718 */
719static int reg_off_ll;
720
721/*
722 * This is the offset of the beginning of the MAC-layer header from
723 * the beginning of the link-layer header.
724 * It's usually 0, except for ATM LANE, where it's the offset, relative
725 * to the beginning of the raw packet data, of the Ethernet header.
726 */
727static u_int off_mac;
728
729/*
730 * This is the offset of the beginning of the MAC-layer payload,
731 * from the beginning of the raw packet data.
732 *
733 * I.e., it's the sum of the length of the link-layer header (without,
734 * for example, any 802.2 LLC header, so it's the MAC-layer
735 * portion of that header), plus any prefix preceding the
736 * link-layer header.
737 */
738static u_int off_macpl;
739
740/*
741 * This is 1 if the offset of the beginning of the MAC-layer payload
742 * from the beginning of the link-layer header is variable-length.
743 */
744static int off_macpl_is_variable;
745
746/*
747 * If the link layer has variable_length headers, "reg_off_macpl"
748 * is the register number for a register containing the length of the
749 * link-layer header plus the length of any variable-length header
750 * preceding the link-layer header.  Otherwise, "reg_off_macpl"
751 * is -1.
752 */
753static int reg_off_macpl;
754
755/*
756 * "off_linktype" is the offset to information in the link-layer header
757 * giving the packet type.  This offset is relative to the beginning
758 * of the link-layer header (i.e., it doesn't include off_ll).
759 *
760 * For Ethernet, it's the offset of the Ethernet type field.
761 *
762 * For link-layer types that always use 802.2 headers, it's the
763 * offset of the LLC header.
764 *
765 * For PPP, it's the offset of the PPP type field.
766 *
767 * For Cisco HDLC, it's the offset of the CHDLC type field.
768 *
769 * For BSD loopback, it's the offset of the AF_ value.
770 *
771 * For Linux cooked sockets, it's the offset of the type field.
772 *
773 * It's set to -1 for no encapsulation, in which case, IP is assumed.
774 */
775static u_int off_linktype;
776
777/*
778 * TRUE if "pppoes" appeared in the filter; it causes link-layer type
779 * checks to check the PPP header, assumed to follow a LAN-style link-
780 * layer header and a PPPoE session header.
781 */
782static int is_pppoes = 0;
783
784/*
785 * TRUE if the link layer includes an ATM pseudo-header.
786 */
787static int is_atm = 0;
788
789/*
790 * TRUE if "lane" appeared in the filter; it causes us to generate
791 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
792 */
793static int is_lane = 0;
794
795/*
796 * These are offsets for the ATM pseudo-header.
797 */
798static u_int off_vpi;
799static u_int off_vci;
800static u_int off_proto;
801
802/*
803 * These are offsets for the MTP2 fields.
804 */
805static u_int off_li;
806
807/*
808 * These are offsets for the MTP3 fields.
809 */
810static u_int off_sio;
811static u_int off_opc;
812static u_int off_dpc;
813static u_int off_sls;
814
815/*
816 * This is the offset of the first byte after the ATM pseudo_header,
817 * or -1 if there is no ATM pseudo-header.
818 */
819static u_int off_payload;
820
821/*
822 * These are offsets to the beginning of the network-layer header.
823 * They are relative to the beginning of the MAC-layer payload (i.e.,
824 * they don't include off_ll or off_macpl).
825 *
826 * If the link layer never uses 802.2 LLC:
827 *
828 *	"off_nl" and "off_nl_nosnap" are the same.
829 *
830 * If the link layer always uses 802.2 LLC:
831 *
832 *	"off_nl" is the offset if there's a SNAP header following
833 *	the 802.2 header;
834 *
835 *	"off_nl_nosnap" is the offset if there's no SNAP header.
836 *
837 * If the link layer is Ethernet:
838 *
839 *	"off_nl" is the offset if the packet is an Ethernet II packet
840 *	(we assume no 802.3+802.2+SNAP);
841 *
842 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
843 *	with an 802.2 header following it.
844 */
845static u_int off_nl;
846static u_int off_nl_nosnap;
847
848static int linktype;
849
850static void
851init_linktype(p)
852	pcap_t *p;
853{
854	linktype = pcap_datalink(p);
855#ifdef PCAP_FDDIPAD
856	pcap_fddipad = p->fddipad;
857#endif
858
859	/*
860	 * Assume it's not raw ATM with a pseudo-header, for now.
861	 */
862	off_mac = 0;
863	is_atm = 0;
864	is_lane = 0;
865	off_vpi = -1;
866	off_vci = -1;
867	off_proto = -1;
868	off_payload = -1;
869
870	/*
871	 * And that we're not doing PPPoE.
872	 */
873	is_pppoes = 0;
874
875	/*
876	 * And assume we're not doing SS7.
877	 */
878	off_li = -1;
879	off_sio = -1;
880	off_opc = -1;
881	off_dpc = -1;
882	off_sls = -1;
883
884	/*
885	 * Also assume it's not 802.11.
886	 */
887	off_ll = 0;
888	off_macpl = 0;
889	off_macpl_is_variable = 0;
890
891	orig_linktype = -1;
892	orig_nl = -1;
893        label_stack_depth = 0;
894
895	reg_off_ll = -1;
896	reg_off_macpl = -1;
897
898	switch (linktype) {
899
900	case DLT_ARCNET:
901		off_linktype = 2;
902		off_macpl = 6;
903		off_nl = 0;		/* XXX in reality, variable! */
904		off_nl_nosnap = 0;	/* no 802.2 LLC */
905		return;
906
907	case DLT_ARCNET_LINUX:
908		off_linktype = 4;
909		off_macpl = 8;
910		off_nl = 0;		/* XXX in reality, variable! */
911		off_nl_nosnap = 0;	/* no 802.2 LLC */
912		return;
913
914	case DLT_EN10MB:
915		off_linktype = 12;
916		off_macpl = 14;		/* Ethernet header length */
917		off_nl = 0;		/* Ethernet II */
918		off_nl_nosnap = 3;	/* 802.3+802.2 */
919		return;
920
921	case DLT_SLIP:
922		/*
923		 * SLIP doesn't have a link level type.  The 16 byte
924		 * header is hacked into our SLIP driver.
925		 */
926		off_linktype = -1;
927		off_macpl = 16;
928		off_nl = 0;
929		off_nl_nosnap = 0;	/* no 802.2 LLC */
930		return;
931
932	case DLT_SLIP_BSDOS:
933		/* XXX this may be the same as the DLT_PPP_BSDOS case */
934		off_linktype = -1;
935		/* XXX end */
936		off_macpl = 24;
937		off_nl = 0;
938		off_nl_nosnap = 0;	/* no 802.2 LLC */
939		return;
940
941	case DLT_NULL:
942	case DLT_LOOP:
943		off_linktype = 0;
944		off_macpl = 4;
945		off_nl = 0;
946		off_nl_nosnap = 0;	/* no 802.2 LLC */
947		return;
948
949	case DLT_ENC:
950		off_linktype = 0;
951		off_macpl = 12;
952		off_nl = 0;
953		off_nl_nosnap = 0;	/* no 802.2 LLC */
954		return;
955
956	case DLT_PPP:
957	case DLT_PPP_PPPD:
958	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
959	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
960		off_linktype = 2;
961		off_macpl = 4;
962		off_nl = 0;
963		off_nl_nosnap = 0;	/* no 802.2 LLC */
964		return;
965
966	case DLT_PPP_ETHER:
967		/*
968		 * This does no include the Ethernet header, and
969		 * only covers session state.
970		 */
971		off_linktype = 6;
972		off_macpl = 8;
973		off_nl = 0;
974		off_nl_nosnap = 0;	/* no 802.2 LLC */
975		return;
976
977	case DLT_PPP_BSDOS:
978		off_linktype = 5;
979		off_macpl = 24;
980		off_nl = 0;
981		off_nl_nosnap = 0;	/* no 802.2 LLC */
982		return;
983
984	case DLT_FDDI:
985		/*
986		 * FDDI doesn't really have a link-level type field.
987		 * We set "off_linktype" to the offset of the LLC header.
988		 *
989		 * To check for Ethernet types, we assume that SSAP = SNAP
990		 * is being used and pick out the encapsulated Ethernet type.
991		 * XXX - should we generate code to check for SNAP?
992		 */
993		off_linktype = 13;
994#ifdef PCAP_FDDIPAD
995		off_linktype += pcap_fddipad;
996#endif
997		off_macpl = 13;		/* FDDI MAC header length */
998#ifdef PCAP_FDDIPAD
999		off_macpl += pcap_fddipad;
1000#endif
1001		off_nl = 8;		/* 802.2+SNAP */
1002		off_nl_nosnap = 3;	/* 802.2 */
1003		return;
1004
1005	case DLT_IEEE802:
1006		/*
1007		 * Token Ring doesn't really have a link-level type field.
1008		 * We set "off_linktype" to the offset of the LLC header.
1009		 *
1010		 * To check for Ethernet types, we assume that SSAP = SNAP
1011		 * is being used and pick out the encapsulated Ethernet type.
1012		 * XXX - should we generate code to check for SNAP?
1013		 *
1014		 * XXX - the header is actually variable-length.
1015		 * Some various Linux patched versions gave 38
1016		 * as "off_linktype" and 40 as "off_nl"; however,
1017		 * if a token ring packet has *no* routing
1018		 * information, i.e. is not source-routed, the correct
1019		 * values are 20 and 22, as they are in the vanilla code.
1020		 *
1021		 * A packet is source-routed iff the uppermost bit
1022		 * of the first byte of the source address, at an
1023		 * offset of 8, has the uppermost bit set.  If the
1024		 * packet is source-routed, the total number of bytes
1025		 * of routing information is 2 plus bits 0x1F00 of
1026		 * the 16-bit value at an offset of 14 (shifted right
1027		 * 8 - figure out which byte that is).
1028		 */
1029		off_linktype = 14;
1030		off_macpl = 14;		/* Token Ring MAC header length */
1031		off_nl = 8;		/* 802.2+SNAP */
1032		off_nl_nosnap = 3;	/* 802.2 */
1033		return;
1034
1035	case DLT_IEEE802_11:
1036	case DLT_PRISM_HEADER:
1037	case DLT_IEEE802_11_RADIO_AVS:
1038	case DLT_IEEE802_11_RADIO:
1039		/*
1040		 * 802.11 doesn't really have a link-level type field.
1041		 * We set "off_linktype" to the offset of the LLC header.
1042		 *
1043		 * To check for Ethernet types, we assume that SSAP = SNAP
1044		 * is being used and pick out the encapsulated Ethernet type.
1045		 * XXX - should we generate code to check for SNAP?
1046		 *
1047		 * We also handle variable-length radio headers here.
1048		 * The Prism header is in theory variable-length, but in
1049		 * practice it's always 144 bytes long.  However, some
1050		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1051		 * sometimes or always supply an AVS header, so we
1052		 * have to check whether the radio header is a Prism
1053		 * header or an AVS header, so, in practice, it's
1054		 * variable-length.
1055		 */
1056		off_linktype = 24;
1057		off_macpl = 0;		/* link-layer header is variable-length */
1058		off_macpl_is_variable = 1;
1059		off_nl = 8;		/* 802.2+SNAP */
1060		off_nl_nosnap = 3;	/* 802.2 */
1061		return;
1062
1063	case DLT_PPI:
1064		/*
1065		 * At the moment we treat PPI the same way that we treat
1066		 * normal Radiotap encoded packets. The difference is in
1067		 * the function that generates the code at the beginning
1068		 * to compute the header length.  Since this code generator
1069		 * of PPI supports bare 802.11 encapsulation only (i.e.
1070		 * the encapsulated DLT should be DLT_IEEE802_11) we
1071		 * generate code to check for this too.
1072		 */
1073		off_linktype = 24;
1074		off_macpl = 0;		/* link-layer header is variable-length */
1075		off_macpl_is_variable = 1;
1076		off_nl = 8;		/* 802.2+SNAP */
1077		off_nl_nosnap = 3;	/* 802.2 */
1078		return;
1079
1080	case DLT_ATM_RFC1483:
1081	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1082		/*
1083		 * assume routed, non-ISO PDUs
1084		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1085		 *
1086		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1087		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1088		 * latter would presumably be treated the way PPPoE
1089		 * should be, so you can do "pppoe and udp port 2049"
1090		 * or "pppoa and tcp port 80" and have it check for
1091		 * PPPo{A,E} and a PPP protocol of IP and....
1092		 */
1093		off_linktype = 0;
1094		off_macpl = 0;		/* packet begins with LLC header */
1095		off_nl = 8;		/* 802.2+SNAP */
1096		off_nl_nosnap = 3;	/* 802.2 */
1097		return;
1098
1099	case DLT_SUNATM:
1100		/*
1101		 * Full Frontal ATM; you get AALn PDUs with an ATM
1102		 * pseudo-header.
1103		 */
1104		is_atm = 1;
1105		off_vpi = SUNATM_VPI_POS;
1106		off_vci = SUNATM_VCI_POS;
1107		off_proto = PROTO_POS;
1108		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1109		off_payload = SUNATM_PKT_BEGIN_POS;
1110		off_linktype = off_payload;
1111		off_macpl = off_payload;	/* if LLC-encapsulated */
1112		off_nl = 8;		/* 802.2+SNAP */
1113		off_nl_nosnap = 3;	/* 802.2 */
1114		return;
1115
1116	case DLT_RAW:
1117		off_linktype = -1;
1118		off_macpl = 0;
1119		off_nl = 0;
1120		off_nl_nosnap = 0;	/* no 802.2 LLC */
1121		return;
1122
1123	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1124		off_linktype = 14;
1125		off_macpl = 16;
1126		off_nl = 0;
1127		off_nl_nosnap = 0;	/* no 802.2 LLC */
1128		return;
1129
1130	case DLT_LTALK:
1131		/*
1132		 * LocalTalk does have a 1-byte type field in the LLAP header,
1133		 * but really it just indicates whether there is a "short" or
1134		 * "long" DDP packet following.
1135		 */
1136		off_linktype = -1;
1137		off_macpl = 0;
1138		off_nl = 0;
1139		off_nl_nosnap = 0;	/* no 802.2 LLC */
1140		return;
1141
1142	case DLT_IP_OVER_FC:
1143		/*
1144		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1145		 * link-level type field.  We set "off_linktype" to the
1146		 * offset of the LLC header.
1147		 *
1148		 * To check for Ethernet types, we assume that SSAP = SNAP
1149		 * is being used and pick out the encapsulated Ethernet type.
1150		 * XXX - should we generate code to check for SNAP? RFC
1151		 * 2625 says SNAP should be used.
1152		 */
1153		off_linktype = 16;
1154		off_macpl = 16;
1155		off_nl = 8;		/* 802.2+SNAP */
1156		off_nl_nosnap = 3;	/* 802.2 */
1157		return;
1158
1159	case DLT_FRELAY:
1160		/*
1161		 * XXX - we should set this to handle SNAP-encapsulated
1162		 * frames (NLPID of 0x80).
1163		 */
1164		off_linktype = -1;
1165		off_macpl = 0;
1166		off_nl = 0;
1167		off_nl_nosnap = 0;	/* no 802.2 LLC */
1168		return;
1169
1170                /*
1171                 * the only BPF-interesting FRF.16 frames are non-control frames;
1172                 * Frame Relay has a variable length link-layer
1173                 * so lets start with offset 4 for now and increments later on (FIXME);
1174                 */
1175	case DLT_MFR:
1176		off_linktype = -1;
1177		off_macpl = 0;
1178		off_nl = 4;
1179		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1180		return;
1181
1182	case DLT_APPLE_IP_OVER_IEEE1394:
1183		off_linktype = 16;
1184		off_macpl = 18;
1185		off_nl = 0;
1186		off_nl_nosnap = 0;	/* no 802.2 LLC */
1187		return;
1188
1189	case DLT_LINUX_IRDA:
1190		/*
1191		 * Currently, only raw "link[N:M]" filtering is supported.
1192		 */
1193		off_linktype = -1;
1194		off_macpl = -1;
1195		off_nl = -1;
1196		off_nl_nosnap = -1;
1197		return;
1198
1199	case DLT_DOCSIS:
1200		/*
1201		 * Currently, only raw "link[N:M]" filtering is supported.
1202		 */
1203		off_linktype = -1;
1204		off_macpl = -1;
1205		off_nl = -1;
1206		off_nl_nosnap = -1;
1207		return;
1208
1209	case DLT_SYMANTEC_FIREWALL:
1210		off_linktype = 6;
1211		off_macpl = 44;
1212		off_nl = 0;		/* Ethernet II */
1213		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1214		return;
1215
1216#ifdef HAVE_NET_PFVAR_H
1217	case DLT_PFLOG:
1218		off_linktype = 0;
1219		off_macpl = PFLOG_HDRLEN;
1220		off_nl = 0;
1221		off_nl_nosnap = 0;	/* no 802.2 LLC */
1222		return;
1223#endif
1224
1225        case DLT_JUNIPER_MFR:
1226        case DLT_JUNIPER_MLFR:
1227        case DLT_JUNIPER_MLPPP:
1228        case DLT_JUNIPER_PPP:
1229        case DLT_JUNIPER_CHDLC:
1230        case DLT_JUNIPER_FRELAY:
1231                off_linktype = 4;
1232		off_macpl = 4;
1233		off_nl = 0;
1234		off_nl_nosnap = -1;	/* no 802.2 LLC */
1235                return;
1236
1237	case DLT_JUNIPER_ATM1:
1238		off_linktype = 4;	/* in reality variable between 4-8 */
1239		off_macpl = 4;	/* in reality variable between 4-8 */
1240		off_nl = 0;
1241		off_nl_nosnap = 10;
1242		return;
1243
1244	case DLT_JUNIPER_ATM2:
1245		off_linktype = 8;	/* in reality variable between 8-12 */
1246		off_macpl = 8;	/* in reality variable between 8-12 */
1247		off_nl = 0;
1248		off_nl_nosnap = 10;
1249		return;
1250
1251		/* frames captured on a Juniper PPPoE service PIC
1252		 * contain raw ethernet frames */
1253	case DLT_JUNIPER_PPPOE:
1254        case DLT_JUNIPER_ETHER:
1255        	off_macpl = 14;
1256		off_linktype = 16;
1257		off_nl = 18;		/* Ethernet II */
1258		off_nl_nosnap = 21;	/* 802.3+802.2 */
1259		return;
1260
1261	case DLT_JUNIPER_PPPOE_ATM:
1262		off_linktype = 4;
1263		off_macpl = 6;
1264		off_nl = 0;
1265		off_nl_nosnap = -1;	/* no 802.2 LLC */
1266		return;
1267
1268	case DLT_JUNIPER_GGSN:
1269		off_linktype = 6;
1270		off_macpl = 12;
1271		off_nl = 0;
1272		off_nl_nosnap = -1;	/* no 802.2 LLC */
1273		return;
1274
1275	case DLT_JUNIPER_ES:
1276		off_linktype = 6;
1277		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1278		off_nl = -1;		/* not really a network layer but raw IP addresses */
1279		off_nl_nosnap = -1;	/* no 802.2 LLC */
1280		return;
1281
1282	case DLT_JUNIPER_MONITOR:
1283		off_linktype = 12;
1284		off_macpl = 12;
1285		off_nl = 0;		/* raw IP/IP6 header */
1286		off_nl_nosnap = -1;	/* no 802.2 LLC */
1287		return;
1288
1289	case DLT_JUNIPER_SERVICES:
1290		off_linktype = 12;
1291		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1292		off_nl = -1;		/* L3 proto location dep. on cookie type */
1293		off_nl_nosnap = -1;	/* no 802.2 LLC */
1294		return;
1295
1296	case DLT_JUNIPER_VP:
1297		off_linktype = 18;
1298		off_macpl = -1;
1299		off_nl = -1;
1300		off_nl_nosnap = -1;
1301		return;
1302
1303	case DLT_JUNIPER_ST:
1304		off_linktype = 18;
1305		off_macpl = -1;
1306		off_nl = -1;
1307		off_nl_nosnap = -1;
1308		return;
1309
1310	case DLT_JUNIPER_ISM:
1311		off_linktype = 8;
1312		off_macpl = -1;
1313		off_nl = -1;
1314		off_nl_nosnap = -1;
1315		return;
1316
1317	case DLT_MTP2:
1318		off_li = 2;
1319		off_sio = 3;
1320		off_opc = 4;
1321		off_dpc = 4;
1322		off_sls = 7;
1323		off_linktype = -1;
1324		off_macpl = -1;
1325		off_nl = -1;
1326		off_nl_nosnap = -1;
1327		return;
1328
1329	case DLT_MTP2_WITH_PHDR:
1330		off_li = 6;
1331		off_sio = 7;
1332		off_opc = 8;
1333		off_dpc = 8;
1334		off_sls = 11;
1335		off_linktype = -1;
1336		off_macpl = -1;
1337		off_nl = -1;
1338		off_nl_nosnap = -1;
1339		return;
1340
1341	case DLT_ERF:
1342		off_li = 22;
1343		off_sio = 23;
1344		off_opc = 24;
1345		off_dpc = 24;
1346		off_sls = 27;
1347		off_linktype = -1;
1348		off_macpl = -1;
1349		off_nl = -1;
1350		off_nl_nosnap = -1;
1351		return;
1352
1353#ifdef DLT_PFSYNC
1354	case DLT_PFSYNC:
1355		off_linktype = -1;
1356		off_macpl = 4;
1357		off_nl = 0;
1358		off_nl_nosnap = 0;
1359		return;
1360#endif
1361
1362	case DLT_LINUX_LAPD:
1363		/*
1364		 * Currently, only raw "link[N:M]" filtering is supported.
1365		 */
1366		off_linktype = -1;
1367		off_macpl = -1;
1368		off_nl = -1;
1369		off_nl_nosnap = -1;
1370		return;
1371
1372	case DLT_USB:
1373		/*
1374		 * Currently, only raw "link[N:M]" filtering is supported.
1375		 */
1376		off_linktype = -1;
1377		off_macpl = -1;
1378		off_nl = -1;
1379		off_nl_nosnap = -1;
1380		return;
1381
1382	case DLT_BLUETOOTH_HCI_H4:
1383		/*
1384		 * Currently, only raw "link[N:M]" filtering is supported.
1385		 */
1386		off_linktype = -1;
1387		off_macpl = -1;
1388		off_nl = -1;
1389		off_nl_nosnap = -1;
1390		return;
1391
1392	case DLT_USB_LINUX:
1393		/*
1394		 * Currently, only raw "link[N:M]" filtering is supported.
1395		 */
1396		off_linktype = -1;
1397		off_macpl = -1;
1398		off_nl = -1;
1399		off_nl_nosnap = -1;
1400		return;
1401
1402	case DLT_CAN20B:
1403		/*
1404		 * Currently, only raw "link[N:M]" filtering is supported.
1405		 */
1406		off_linktype = -1;
1407		off_macpl = -1;
1408		off_nl = -1;
1409		off_nl_nosnap = -1;
1410		return;
1411
1412	case DLT_IEEE802_15_4_LINUX:
1413		/*
1414		 * Currently, only raw "link[N:M]" filtering is supported.
1415		 */
1416		off_linktype = -1;
1417		off_macpl = -1;
1418		off_nl = -1;
1419		off_nl_nosnap = -1;
1420		return;
1421
1422	case DLT_IEEE802_16_MAC_CPS_RADIO:
1423		/*
1424		 * Currently, only raw "link[N:M]" filtering is supported.
1425		 */
1426		off_linktype = -1;
1427		off_macpl = -1;
1428		off_nl = -1;
1429		off_nl_nosnap = -1;
1430		return;
1431
1432	case DLT_IEEE802_15_4:
1433		/*
1434		 * Currently, only raw "link[N:M]" filtering is supported.
1435		 */
1436		off_linktype = -1;
1437		off_macpl = -1;
1438		off_nl = -1;
1439		off_nl_nosnap = -1;
1440		return;
1441
1442	case DLT_SITA:
1443		/*
1444		 * Currently, only raw "link[N:M]" filtering is supported.
1445		 */
1446		off_linktype = -1;
1447		off_macpl = -1;
1448		off_nl = -1;
1449		off_nl_nosnap = -1;
1450		return;
1451
1452	case DLT_RAIF1:
1453		/*
1454		 * Currently, only raw "link[N:M]" filtering is supported.
1455		 */
1456		off_linktype = -1;
1457		off_macpl = -1;
1458		off_nl = -1;
1459		off_nl_nosnap = -1;
1460		return;
1461
1462	case DLT_IPMB:
1463		/*
1464		 * Currently, only raw "link[N:M]" filtering is supported.
1465		 */
1466		off_linktype = -1;
1467		off_macpl = -1;
1468		off_nl = -1;
1469		off_nl_nosnap = -1;
1470		return;
1471
1472	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
1473		/*
1474		 * Currently, only raw "link[N:M]" filtering is supported.
1475		 */
1476		off_linktype = -1;
1477		off_macpl = -1;
1478		off_nl = -1;
1479		off_nl_nosnap = -1;
1480		return;
1481
1482	case DLT_AX25_KISS:
1483		/*
1484		 * Currently, only raw "link[N:M]" filtering is supported.
1485		 */
1486		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1487		off_macpl = -1;
1488		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1489		off_nl_nosnap = -1;	/* no 802.2 LLC */
1490		off_mac = 1;		/* step over the kiss length byte */
1491		return;
1492
1493	case DLT_IEEE802_15_4_NONASK_PHY:
1494		/*
1495		 * Currently, only raw "link[N:M]" filtering is supported.
1496		 */
1497		off_linktype = -1;
1498		off_macpl = -1;
1499		off_nl = -1;
1500		off_nl_nosnap = -1;
1501		return;
1502	}
1503	bpf_error("unknown data link type %d", linktype);
1504	/* NOTREACHED */
1505}
1506
1507/*
1508 * Load a value relative to the beginning of the link-layer header.
1509 * The link-layer header doesn't necessarily begin at the beginning
1510 * of the packet data; there might be a variable-length prefix containing
1511 * radio information.
1512 */
1513static struct slist *
1514gen_load_llrel(offset, size)
1515	u_int offset, size;
1516{
1517	struct slist *s, *s2;
1518
1519	s = gen_llprefixlen();
1520
1521	/*
1522	 * If "s" is non-null, it has code to arrange that the X register
1523	 * contains the length of the prefix preceding the link-layer
1524	 * header.
1525	 *
1526	 * Otherwise, the length of the prefix preceding the link-layer
1527	 * header is "off_ll".
1528	 */
1529	if (s != NULL) {
1530		/*
1531		 * There's a variable-length prefix preceding the
1532		 * link-layer header.  "s" points to a list of statements
1533		 * that put the length of that prefix into the X register.
1534		 * do an indirect load, to use the X register as an offset.
1535		 */
1536		s2 = new_stmt(BPF_LD|BPF_IND|size);
1537		s2->s.k = offset;
1538		sappend(s, s2);
1539	} else {
1540		/*
1541		 * There is no variable-length header preceding the
1542		 * link-layer header; add in off_ll, which, if there's
1543		 * a fixed-length header preceding the link-layer header,
1544		 * is the length of that header.
1545		 */
1546		s = new_stmt(BPF_LD|BPF_ABS|size);
1547		s->s.k = offset + off_ll;
1548	}
1549	return s;
1550}
1551
1552/*
1553 * Load a value relative to the beginning of the MAC-layer payload.
1554 */
1555static struct slist *
1556gen_load_macplrel(offset, size)
1557	u_int offset, size;
1558{
1559	struct slist *s, *s2;
1560
1561	s = gen_off_macpl();
1562
1563	/*
1564	 * If s is non-null, the offset of the MAC-layer payload is
1565	 * variable, and s points to a list of instructions that
1566	 * arrange that the X register contains that offset.
1567	 *
1568	 * Otherwise, the offset of the MAC-layer payload is constant,
1569	 * and is in off_macpl.
1570	 */
1571	if (s != NULL) {
1572		/*
1573		 * The offset of the MAC-layer payload is in the X
1574		 * register.  Do an indirect load, to use the X register
1575		 * as an offset.
1576		 */
1577		s2 = new_stmt(BPF_LD|BPF_IND|size);
1578		s2->s.k = offset;
1579		sappend(s, s2);
1580	} else {
1581		/*
1582		 * The offset of the MAC-layer payload is constant,
1583		 * and is in off_macpl; load the value at that offset
1584		 * plus the specified offset.
1585		 */
1586		s = new_stmt(BPF_LD|BPF_ABS|size);
1587		s->s.k = off_macpl + offset;
1588	}
1589	return s;
1590}
1591
1592/*
1593 * Load a value relative to the beginning of the specified header.
1594 */
1595static struct slist *
1596gen_load_a(offrel, offset, size)
1597	enum e_offrel offrel;
1598	u_int offset, size;
1599{
1600	struct slist *s, *s2;
1601
1602	switch (offrel) {
1603
1604	case OR_PACKET:
1605                s = new_stmt(BPF_LD|BPF_ABS|size);
1606                s->s.k = offset;
1607		break;
1608
1609	case OR_LINK:
1610		s = gen_load_llrel(offset, size);
1611		break;
1612
1613	case OR_MACPL:
1614		s = gen_load_macplrel(offset, size);
1615		break;
1616
1617	case OR_NET:
1618		s = gen_load_macplrel(off_nl + offset, size);
1619		break;
1620
1621	case OR_NET_NOSNAP:
1622		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1623		break;
1624
1625	case OR_TRAN_IPV4:
1626		/*
1627		 * Load the X register with the length of the IPv4 header
1628		 * (plus the offset of the link-layer header, if it's
1629		 * preceded by a variable-length header such as a radio
1630		 * header), in bytes.
1631		 */
1632		s = gen_loadx_iphdrlen();
1633
1634		/*
1635		 * Load the item at {offset of the MAC-layer payload} +
1636		 * {offset, relative to the start of the MAC-layer
1637		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1638		 * {specified offset}.
1639		 *
1640		 * (If the offset of the MAC-layer payload is variable,
1641		 * it's included in the value in the X register, and
1642		 * off_macpl is 0.)
1643		 */
1644		s2 = new_stmt(BPF_LD|BPF_IND|size);
1645		s2->s.k = off_macpl + off_nl + offset;
1646		sappend(s, s2);
1647		break;
1648
1649	case OR_TRAN_IPV6:
1650		s = gen_load_macplrel(off_nl + 40 + offset, size);
1651		break;
1652
1653	default:
1654		abort();
1655		return NULL;
1656	}
1657	return s;
1658}
1659
1660/*
1661 * Generate code to load into the X register the sum of the length of
1662 * the IPv4 header and any variable-length header preceding the link-layer
1663 * header.
1664 */
1665static struct slist *
1666gen_loadx_iphdrlen()
1667{
1668	struct slist *s, *s2;
1669
1670	s = gen_off_macpl();
1671	if (s != NULL) {
1672		/*
1673		 * There's a variable-length prefix preceding the
1674		 * link-layer header, or the link-layer header is itself
1675		 * variable-length.  "s" points to a list of statements
1676		 * that put the offset of the MAC-layer payload into
1677		 * the X register.
1678		 *
1679		 * The 4*([k]&0xf) addressing mode can't be used, as we
1680		 * don't have a constant offset, so we have to load the
1681		 * value in question into the A register and add to it
1682		 * the value from the X register.
1683		 */
1684		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1685		s2->s.k = off_nl;
1686		sappend(s, s2);
1687		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1688		s2->s.k = 0xf;
1689		sappend(s, s2);
1690		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1691		s2->s.k = 2;
1692		sappend(s, s2);
1693
1694		/*
1695		 * The A register now contains the length of the
1696		 * IP header.  We need to add to it the offset of
1697		 * the MAC-layer payload, which is still in the X
1698		 * register, and move the result into the X register.
1699		 */
1700		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1701		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1702	} else {
1703		/*
1704		 * There is no variable-length header preceding the
1705		 * link-layer header, and the link-layer header is
1706		 * fixed-length; load the length of the IPv4 header,
1707		 * which is at an offset of off_nl from the beginning
1708		 * of the MAC-layer payload, and thus at an offset
1709		 * of off_mac_pl + off_nl from the beginning of the
1710		 * raw packet data.
1711		 */
1712		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1713		s->s.k = off_macpl + off_nl;
1714	}
1715	return s;
1716}
1717
1718static struct block *
1719gen_uncond(rsense)
1720	int rsense;
1721{
1722	struct block *b;
1723	struct slist *s;
1724
1725	s = new_stmt(BPF_LD|BPF_IMM);
1726	s->s.k = !rsense;
1727	b = new_block(JMP(BPF_JEQ));
1728	b->stmts = s;
1729
1730	return b;
1731}
1732
1733static inline struct block *
1734gen_true()
1735{
1736	return gen_uncond(1);
1737}
1738
1739static inline struct block *
1740gen_false()
1741{
1742	return gen_uncond(0);
1743}
1744
1745/*
1746 * Byte-swap a 32-bit number.
1747 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1748 * big-endian platforms.)
1749 */
1750#define	SWAPLONG(y) \
1751((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1752
1753/*
1754 * Generate code to match a particular packet type.
1755 *
1756 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1757 * value, if <= ETHERMTU.  We use that to determine whether to
1758 * match the type/length field or to check the type/length field for
1759 * a value <= ETHERMTU to see whether it's a type field and then do
1760 * the appropriate test.
1761 */
1762static struct block *
1763gen_ether_linktype(proto)
1764	register int proto;
1765{
1766	struct block *b0, *b1;
1767
1768	switch (proto) {
1769
1770	case LLCSAP_ISONS:
1771	case LLCSAP_IP:
1772	case LLCSAP_NETBEUI:
1773		/*
1774		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1775		 * so we check the DSAP and SSAP.
1776		 *
1777		 * LLCSAP_IP checks for IP-over-802.2, rather
1778		 * than IP-over-Ethernet or IP-over-SNAP.
1779		 *
1780		 * XXX - should we check both the DSAP and the
1781		 * SSAP, like this, or should we check just the
1782		 * DSAP, as we do for other types <= ETHERMTU
1783		 * (i.e., other SAP values)?
1784		 */
1785		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1786		gen_not(b0);
1787		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1788			     ((proto << 8) | proto));
1789		gen_and(b0, b1);
1790		return b1;
1791
1792	case LLCSAP_IPX:
1793		/*
1794		 * Check for;
1795		 *
1796		 *	Ethernet_II frames, which are Ethernet
1797		 *	frames with a frame type of ETHERTYPE_IPX;
1798		 *
1799		 *	Ethernet_802.3 frames, which are 802.3
1800		 *	frames (i.e., the type/length field is
1801		 *	a length field, <= ETHERMTU, rather than
1802		 *	a type field) with the first two bytes
1803		 *	after the Ethernet/802.3 header being
1804		 *	0xFFFF;
1805		 *
1806		 *	Ethernet_802.2 frames, which are 802.3
1807		 *	frames with an 802.2 LLC header and
1808		 *	with the IPX LSAP as the DSAP in the LLC
1809		 *	header;
1810		 *
1811		 *	Ethernet_SNAP frames, which are 802.3
1812		 *	frames with an LLC header and a SNAP
1813		 *	header and with an OUI of 0x000000
1814		 *	(encapsulated Ethernet) and a protocol
1815		 *	ID of ETHERTYPE_IPX in the SNAP header.
1816		 *
1817		 * XXX - should we generate the same code both
1818		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1819		 */
1820
1821		/*
1822		 * This generates code to check both for the
1823		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1824		 */
1825		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1826		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1827		gen_or(b0, b1);
1828
1829		/*
1830		 * Now we add code to check for SNAP frames with
1831		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1832		 */
1833		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1834		gen_or(b0, b1);
1835
1836		/*
1837		 * Now we generate code to check for 802.3
1838		 * frames in general.
1839		 */
1840		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1841		gen_not(b0);
1842
1843		/*
1844		 * Now add the check for 802.3 frames before the
1845		 * check for Ethernet_802.2 and Ethernet_802.3,
1846		 * as those checks should only be done on 802.3
1847		 * frames, not on Ethernet frames.
1848		 */
1849		gen_and(b0, b1);
1850
1851		/*
1852		 * Now add the check for Ethernet_II frames, and
1853		 * do that before checking for the other frame
1854		 * types.
1855		 */
1856		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1857		    (bpf_int32)ETHERTYPE_IPX);
1858		gen_or(b0, b1);
1859		return b1;
1860
1861	case ETHERTYPE_ATALK:
1862	case ETHERTYPE_AARP:
1863		/*
1864		 * EtherTalk (AppleTalk protocols on Ethernet link
1865		 * layer) may use 802.2 encapsulation.
1866		 */
1867
1868		/*
1869		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1870		 * we check for an Ethernet type field less than
1871		 * 1500, which means it's an 802.3 length field.
1872		 */
1873		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1874		gen_not(b0);
1875
1876		/*
1877		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1878		 * SNAP packets with an organization code of
1879		 * 0x080007 (Apple, for Appletalk) and a protocol
1880		 * type of ETHERTYPE_ATALK (Appletalk).
1881		 *
1882		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1883		 * SNAP packets with an organization code of
1884		 * 0x000000 (encapsulated Ethernet) and a protocol
1885		 * type of ETHERTYPE_AARP (Appletalk ARP).
1886		 */
1887		if (proto == ETHERTYPE_ATALK)
1888			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1889		else	/* proto == ETHERTYPE_AARP */
1890			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1891		gen_and(b0, b1);
1892
1893		/*
1894		 * Check for Ethernet encapsulation (Ethertalk
1895		 * phase 1?); we just check for the Ethernet
1896		 * protocol type.
1897		 */
1898		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1899
1900		gen_or(b0, b1);
1901		return b1;
1902
1903	default:
1904		if (proto <= ETHERMTU) {
1905			/*
1906			 * This is an LLC SAP value, so the frames
1907			 * that match would be 802.2 frames.
1908			 * Check that the frame is an 802.2 frame
1909			 * (i.e., that the length/type field is
1910			 * a length field, <= ETHERMTU) and
1911			 * then check the DSAP.
1912			 */
1913			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1914			gen_not(b0);
1915			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1916			    (bpf_int32)proto);
1917			gen_and(b0, b1);
1918			return b1;
1919		} else {
1920			/*
1921			 * This is an Ethernet type, so compare
1922			 * the length/type field with it (if
1923			 * the frame is an 802.2 frame, the length
1924			 * field will be <= ETHERMTU, and, as
1925			 * "proto" is > ETHERMTU, this test
1926			 * will fail and the frame won't match,
1927			 * which is what we want).
1928			 */
1929			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1930			    (bpf_int32)proto);
1931		}
1932	}
1933}
1934
1935/*
1936 * Generate code to match a particular packet type.
1937 *
1938 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1939 * value, if <= ETHERMTU.  We use that to determine whether to
1940 * match the type field or to check the type field for the special
1941 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1942 */
1943static struct block *
1944gen_linux_sll_linktype(proto)
1945	register int proto;
1946{
1947	struct block *b0, *b1;
1948
1949	switch (proto) {
1950
1951	case LLCSAP_ISONS:
1952	case LLCSAP_IP:
1953	case LLCSAP_NETBEUI:
1954		/*
1955		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1956		 * so we check the DSAP and SSAP.
1957		 *
1958		 * LLCSAP_IP checks for IP-over-802.2, rather
1959		 * than IP-over-Ethernet or IP-over-SNAP.
1960		 *
1961		 * XXX - should we check both the DSAP and the
1962		 * SSAP, like this, or should we check just the
1963		 * DSAP, as we do for other types <= ETHERMTU
1964		 * (i.e., other SAP values)?
1965		 */
1966		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1967		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1968			     ((proto << 8) | proto));
1969		gen_and(b0, b1);
1970		return b1;
1971
1972	case LLCSAP_IPX:
1973		/*
1974		 *	Ethernet_II frames, which are Ethernet
1975		 *	frames with a frame type of ETHERTYPE_IPX;
1976		 *
1977		 *	Ethernet_802.3 frames, which have a frame
1978		 *	type of LINUX_SLL_P_802_3;
1979		 *
1980		 *	Ethernet_802.2 frames, which are 802.3
1981		 *	frames with an 802.2 LLC header (i.e, have
1982		 *	a frame type of LINUX_SLL_P_802_2) and
1983		 *	with the IPX LSAP as the DSAP in the LLC
1984		 *	header;
1985		 *
1986		 *	Ethernet_SNAP frames, which are 802.3
1987		 *	frames with an LLC header and a SNAP
1988		 *	header and with an OUI of 0x000000
1989		 *	(encapsulated Ethernet) and a protocol
1990		 *	ID of ETHERTYPE_IPX in the SNAP header.
1991		 *
1992		 * First, do the checks on LINUX_SLL_P_802_2
1993		 * frames; generate the check for either
1994		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1995		 * then put a check for LINUX_SLL_P_802_2 frames
1996		 * before it.
1997		 */
1998		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1999		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
2000		gen_or(b0, b1);
2001		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2002		gen_and(b0, b1);
2003
2004		/*
2005		 * Now check for 802.3 frames and OR that with
2006		 * the previous test.
2007		 */
2008		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
2009		gen_or(b0, b1);
2010
2011		/*
2012		 * Now add the check for Ethernet_II frames, and
2013		 * do that before checking for the other frame
2014		 * types.
2015		 */
2016		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2017		    (bpf_int32)ETHERTYPE_IPX);
2018		gen_or(b0, b1);
2019		return b1;
2020
2021	case ETHERTYPE_ATALK:
2022	case ETHERTYPE_AARP:
2023		/*
2024		 * EtherTalk (AppleTalk protocols on Ethernet link
2025		 * layer) may use 802.2 encapsulation.
2026		 */
2027
2028		/*
2029		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2030		 * we check for the 802.2 protocol type in the
2031		 * "Ethernet type" field.
2032		 */
2033		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2034
2035		/*
2036		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2037		 * SNAP packets with an organization code of
2038		 * 0x080007 (Apple, for Appletalk) and a protocol
2039		 * type of ETHERTYPE_ATALK (Appletalk).
2040		 *
2041		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2042		 * SNAP packets with an organization code of
2043		 * 0x000000 (encapsulated Ethernet) and a protocol
2044		 * type of ETHERTYPE_AARP (Appletalk ARP).
2045		 */
2046		if (proto == ETHERTYPE_ATALK)
2047			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2048		else	/* proto == ETHERTYPE_AARP */
2049			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2050		gen_and(b0, b1);
2051
2052		/*
2053		 * Check for Ethernet encapsulation (Ethertalk
2054		 * phase 1?); we just check for the Ethernet
2055		 * protocol type.
2056		 */
2057		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2058
2059		gen_or(b0, b1);
2060		return b1;
2061
2062	default:
2063		if (proto <= ETHERMTU) {
2064			/*
2065			 * This is an LLC SAP value, so the frames
2066			 * that match would be 802.2 frames.
2067			 * Check for the 802.2 protocol type
2068			 * in the "Ethernet type" field, and
2069			 * then check the DSAP.
2070			 */
2071			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2072			    LINUX_SLL_P_802_2);
2073			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2074			     (bpf_int32)proto);
2075			gen_and(b0, b1);
2076			return b1;
2077		} else {
2078			/*
2079			 * This is an Ethernet type, so compare
2080			 * the length/type field with it (if
2081			 * the frame is an 802.2 frame, the length
2082			 * field will be <= ETHERMTU, and, as
2083			 * "proto" is > ETHERMTU, this test
2084			 * will fail and the frame won't match,
2085			 * which is what we want).
2086			 */
2087			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2088			    (bpf_int32)proto);
2089		}
2090	}
2091}
2092
2093static struct slist *
2094gen_load_prism_llprefixlen()
2095{
2096	struct slist *s1, *s2;
2097	struct slist *sjeq_avs_cookie;
2098	struct slist *sjcommon;
2099
2100	/*
2101	 * This code is not compatible with the optimizer, as
2102	 * we are generating jmp instructions within a normal
2103	 * slist of instructions
2104	 */
2105	no_optimize = 1;
2106
2107	/*
2108	 * Generate code to load the length of the radio header into
2109	 * the register assigned to hold that length, if one has been
2110	 * assigned.  (If one hasn't been assigned, no code we've
2111	 * generated uses that prefix, so we don't need to generate any
2112	 * code to load it.)
2113	 *
2114	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2115	 * or always use the AVS header rather than the Prism header.
2116	 * We load a 4-byte big-endian value at the beginning of the
2117	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2118	 * it's equal to 0x80211000.  If so, that indicates that it's
2119	 * an AVS header (the masked-out bits are the version number).
2120	 * Otherwise, it's a Prism header.
2121	 *
2122	 * XXX - the Prism header is also, in theory, variable-length,
2123	 * but no known software generates headers that aren't 144
2124	 * bytes long.
2125	 */
2126	if (reg_off_ll != -1) {
2127		/*
2128		 * Load the cookie.
2129		 */
2130		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2131		s1->s.k = 0;
2132
2133		/*
2134		 * AND it with 0xFFFFF000.
2135		 */
2136		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2137		s2->s.k = 0xFFFFF000;
2138		sappend(s1, s2);
2139
2140		/*
2141		 * Compare with 0x80211000.
2142		 */
2143		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2144		sjeq_avs_cookie->s.k = 0x80211000;
2145		sappend(s1, sjeq_avs_cookie);
2146
2147		/*
2148		 * If it's AVS:
2149		 *
2150		 * The 4 bytes at an offset of 4 from the beginning of
2151		 * the AVS header are the length of the AVS header.
2152		 * That field is big-endian.
2153		 */
2154		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2155		s2->s.k = 4;
2156		sappend(s1, s2);
2157		sjeq_avs_cookie->s.jt = s2;
2158
2159		/*
2160		 * Now jump to the code to allocate a register
2161		 * into which to save the header length and
2162		 * store the length there.  (The "jump always"
2163		 * instruction needs to have the k field set;
2164		 * it's added to the PC, so, as we're jumping
2165		 * over a single instruction, it should be 1.)
2166		 */
2167		sjcommon = new_stmt(JMP(BPF_JA));
2168		sjcommon->s.k = 1;
2169		sappend(s1, sjcommon);
2170
2171		/*
2172		 * Now for the code that handles the Prism header.
2173		 * Just load the length of the Prism header (144)
2174		 * into the A register.  Have the test for an AVS
2175		 * header branch here if we don't have an AVS header.
2176		 */
2177		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2178		s2->s.k = 144;
2179		sappend(s1, s2);
2180		sjeq_avs_cookie->s.jf = s2;
2181
2182		/*
2183		 * Now allocate a register to hold that value and store
2184		 * it.  The code for the AVS header will jump here after
2185		 * loading the length of the AVS header.
2186		 */
2187		s2 = new_stmt(BPF_ST);
2188		s2->s.k = reg_off_ll;
2189		sappend(s1, s2);
2190		sjcommon->s.jf = s2;
2191
2192		/*
2193		 * Now move it into the X register.
2194		 */
2195		s2 = new_stmt(BPF_MISC|BPF_TAX);
2196		sappend(s1, s2);
2197
2198		return (s1);
2199	} else
2200		return (NULL);
2201}
2202
2203static struct slist *
2204gen_load_avs_llprefixlen()
2205{
2206	struct slist *s1, *s2;
2207
2208	/*
2209	 * Generate code to load the length of the AVS header into
2210	 * the register assigned to hold that length, if one has been
2211	 * assigned.  (If one hasn't been assigned, no code we've
2212	 * generated uses that prefix, so we don't need to generate any
2213	 * code to load it.)
2214	 */
2215	if (reg_off_ll != -1) {
2216		/*
2217		 * The 4 bytes at an offset of 4 from the beginning of
2218		 * the AVS header are the length of the AVS header.
2219		 * That field is big-endian.
2220		 */
2221		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2222		s1->s.k = 4;
2223
2224		/*
2225		 * Now allocate a register to hold that value and store
2226		 * it.
2227		 */
2228		s2 = new_stmt(BPF_ST);
2229		s2->s.k = reg_off_ll;
2230		sappend(s1, s2);
2231
2232		/*
2233		 * Now move it into the X register.
2234		 */
2235		s2 = new_stmt(BPF_MISC|BPF_TAX);
2236		sappend(s1, s2);
2237
2238		return (s1);
2239	} else
2240		return (NULL);
2241}
2242
2243static struct slist *
2244gen_load_radiotap_llprefixlen()
2245{
2246	struct slist *s1, *s2;
2247
2248	/*
2249	 * Generate code to load the length of the radiotap header into
2250	 * the register assigned to hold that length, if one has been
2251	 * assigned.  (If one hasn't been assigned, no code we've
2252	 * generated uses that prefix, so we don't need to generate any
2253	 * code to load it.)
2254	 */
2255	if (reg_off_ll != -1) {
2256		/*
2257		 * The 2 bytes at offsets of 2 and 3 from the beginning
2258		 * of the radiotap header are the length of the radiotap
2259		 * header; unfortunately, it's little-endian, so we have
2260		 * to load it a byte at a time and construct the value.
2261		 */
2262
2263		/*
2264		 * Load the high-order byte, at an offset of 3, shift it
2265		 * left a byte, and put the result in the X register.
2266		 */
2267		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2268		s1->s.k = 3;
2269		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2270		sappend(s1, s2);
2271		s2->s.k = 8;
2272		s2 = new_stmt(BPF_MISC|BPF_TAX);
2273		sappend(s1, s2);
2274
2275		/*
2276		 * Load the next byte, at an offset of 2, and OR the
2277		 * value from the X register into it.
2278		 */
2279		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2280		sappend(s1, s2);
2281		s2->s.k = 2;
2282		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2283		sappend(s1, s2);
2284
2285		/*
2286		 * Now allocate a register to hold that value and store
2287		 * it.
2288		 */
2289		s2 = new_stmt(BPF_ST);
2290		s2->s.k = reg_off_ll;
2291		sappend(s1, s2);
2292
2293		/*
2294		 * Now move it into the X register.
2295		 */
2296		s2 = new_stmt(BPF_MISC|BPF_TAX);
2297		sappend(s1, s2);
2298
2299		return (s1);
2300	} else
2301		return (NULL);
2302}
2303
2304/*
2305 * At the moment we treat PPI as normal Radiotap encoded
2306 * packets. The difference is in the function that generates
2307 * the code at the beginning to compute the header length.
2308 * Since this code generator of PPI supports bare 802.11
2309 * encapsulation only (i.e. the encapsulated DLT should be
2310 * DLT_IEEE802_11) we generate code to check for this too;
2311 * that's done in finish_parse().
2312 */
2313static struct slist *
2314gen_load_ppi_llprefixlen()
2315{
2316	struct slist *s1, *s2;
2317
2318	/*
2319	 * Generate code to load the length of the radiotap header
2320	 * into the register assigned to hold that length, if one has
2321	 * been assigned.
2322	 */
2323	if (reg_off_ll != -1) {
2324		/*
2325		 * The 2 bytes at offsets of 2 and 3 from the beginning
2326		 * of the radiotap header are the length of the radiotap
2327		 * header; unfortunately, it's little-endian, so we have
2328		 * to load it a byte at a time and construct the value.
2329		 */
2330
2331		/*
2332		 * Load the high-order byte, at an offset of 3, shift it
2333		 * left a byte, and put the result in the X register.
2334		 */
2335		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2336		s1->s.k = 3;
2337		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2338		sappend(s1, s2);
2339		s2->s.k = 8;
2340		s2 = new_stmt(BPF_MISC|BPF_TAX);
2341		sappend(s1, s2);
2342
2343		/*
2344		 * Load the next byte, at an offset of 2, and OR the
2345		 * value from the X register into it.
2346		 */
2347		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2348		sappend(s1, s2);
2349		s2->s.k = 2;
2350		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2351		sappend(s1, s2);
2352
2353		/*
2354		 * Now allocate a register to hold that value and store
2355		 * it.
2356		 */
2357		s2 = new_stmt(BPF_ST);
2358		s2->s.k = reg_off_ll;
2359		sappend(s1, s2);
2360
2361		/*
2362		 * Now move it into the X register.
2363		 */
2364		s2 = new_stmt(BPF_MISC|BPF_TAX);
2365		sappend(s1, s2);
2366
2367		return (s1);
2368	} else
2369		return (NULL);
2370}
2371
2372/*
2373 * Load a value relative to the beginning of the link-layer header after the 802.11
2374 * header, i.e. LLC_SNAP.
2375 * The link-layer header doesn't necessarily begin at the beginning
2376 * of the packet data; there might be a variable-length prefix containing
2377 * radio information.
2378 */
2379static struct slist *
2380gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2381{
2382	struct slist *s2;
2383	struct slist *sjset_data_frame_1;
2384	struct slist *sjset_data_frame_2;
2385	struct slist *sjset_qos;
2386	struct slist *sjset_radiotap_flags;
2387	struct slist *sjset_radiotap_tsft;
2388	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2389	struct slist *s_roundup;
2390
2391	if (reg_off_macpl == -1) {
2392		/*
2393		 * No register has been assigned to the offset of
2394		 * the MAC-layer payload, which means nobody needs
2395		 * it; don't bother computing it - just return
2396		 * what we already have.
2397		 */
2398		return (s);
2399	}
2400
2401	/*
2402	 * This code is not compatible with the optimizer, as
2403	 * we are generating jmp instructions within a normal
2404	 * slist of instructions
2405	 */
2406	no_optimize = 1;
2407
2408	/*
2409	 * If "s" is non-null, it has code to arrange that the X register
2410	 * contains the length of the prefix preceding the link-layer
2411	 * header.
2412	 *
2413	 * Otherwise, the length of the prefix preceding the link-layer
2414	 * header is "off_ll".
2415	 */
2416	if (s == NULL) {
2417		/*
2418		 * There is no variable-length header preceding the
2419		 * link-layer header.
2420		 *
2421		 * Load the length of the fixed-length prefix preceding
2422		 * the link-layer header (if any) into the X register,
2423		 * and store it in the reg_off_macpl register.
2424		 * That length is off_ll.
2425		 */
2426		s = new_stmt(BPF_LDX|BPF_IMM);
2427		s->s.k = off_ll;
2428	}
2429
2430	/*
2431	 * The X register contains the offset of the beginning of the
2432	 * link-layer header; add 24, which is the minimum length
2433	 * of the MAC header for a data frame, to that, and store it
2434	 * in reg_off_macpl, and then load the Frame Control field,
2435	 * which is at the offset in the X register, with an indexed load.
2436	 */
2437	s2 = new_stmt(BPF_MISC|BPF_TXA);
2438	sappend(s, s2);
2439	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2440	s2->s.k = 24;
2441	sappend(s, s2);
2442	s2 = new_stmt(BPF_ST);
2443	s2->s.k = reg_off_macpl;
2444	sappend(s, s2);
2445
2446	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2447	s2->s.k = 0;
2448	sappend(s, s2);
2449
2450	/*
2451	 * Check the Frame Control field to see if this is a data frame;
2452	 * a data frame has the 0x08 bit (b3) in that field set and the
2453	 * 0x04 bit (b2) clear.
2454	 */
2455	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2456	sjset_data_frame_1->s.k = 0x08;
2457	sappend(s, sjset_data_frame_1);
2458
2459	/*
2460	 * If b3 is set, test b2, otherwise go to the first statement of
2461	 * the rest of the program.
2462	 */
2463	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2464	sjset_data_frame_2->s.k = 0x04;
2465	sappend(s, sjset_data_frame_2);
2466	sjset_data_frame_1->s.jf = snext;
2467
2468	/*
2469	 * If b2 is not set, this is a data frame; test the QoS bit.
2470	 * Otherwise, go to the first statement of the rest of the
2471	 * program.
2472	 */
2473	sjset_data_frame_2->s.jt = snext;
2474	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2475	sjset_qos->s.k = 0x80;	/* QoS bit */
2476	sappend(s, sjset_qos);
2477
2478	/*
2479	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2480	 * field.
2481	 * Otherwise, go to the first statement of the rest of the
2482	 * program.
2483	 */
2484	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2485	s2->s.k = reg_off_macpl;
2486	sappend(s, s2);
2487	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2488	s2->s.k = 2;
2489	sappend(s, s2);
2490	s2 = new_stmt(BPF_ST);
2491	s2->s.k = reg_off_macpl;
2492	sappend(s, s2);
2493
2494	/*
2495	 * If we have a radiotap header, look at it to see whether
2496	 * there's Atheros padding between the MAC-layer header
2497	 * and the payload.
2498	 *
2499	 * Note: all of the fields in the radiotap header are
2500	 * little-endian, so we byte-swap all of the values
2501	 * we test against, as they will be loaded as big-endian
2502	 * values.
2503	 */
2504	if (linktype == DLT_IEEE802_11_RADIO) {
2505		/*
2506		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2507		 * in the presence flag?
2508		 */
2509		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2510		s2->s.k = 4;
2511		sappend(s, s2);
2512
2513		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2514		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2515		sappend(s, sjset_radiotap_flags);
2516
2517		/*
2518		 * If not, skip all of this.
2519		 */
2520		sjset_radiotap_flags->s.jf = snext;
2521
2522		/*
2523		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2524		 */
2525		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2526		    new_stmt(JMP(BPF_JSET));
2527		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2528		sappend(s, sjset_radiotap_tsft);
2529
2530		/*
2531		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2532		 * at an offset of 16 from the beginning of the raw packet
2533		 * data (8 bytes for the radiotap header and 8 bytes for
2534		 * the TSFT field).
2535		 *
2536		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2537		 * is set.
2538		 */
2539		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2540		s2->s.k = 16;
2541		sappend(s, s2);
2542
2543		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2544		sjset_tsft_datapad->s.k = 0x20;
2545		sappend(s, sjset_tsft_datapad);
2546
2547		/*
2548		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2549		 * at an offset of 8 from the beginning of the raw packet
2550		 * data (8 bytes for the radiotap header).
2551		 *
2552		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2553		 * is set.
2554		 */
2555		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2556		s2->s.k = 8;
2557		sappend(s, s2);
2558
2559		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2560		sjset_notsft_datapad->s.k = 0x20;
2561		sappend(s, sjset_notsft_datapad);
2562
2563		/*
2564		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2565		 * set, round the length of the 802.11 header to
2566		 * a multiple of 4.  Do that by adding 3 and then
2567		 * dividing by and multiplying by 4, which we do by
2568		 * ANDing with ~3.
2569		 */
2570		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2571		s_roundup->s.k = reg_off_macpl;
2572		sappend(s, s_roundup);
2573		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2574		s2->s.k = 3;
2575		sappend(s, s2);
2576		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2577		s2->s.k = ~3;
2578		sappend(s, s2);
2579		s2 = new_stmt(BPF_ST);
2580		s2->s.k = reg_off_macpl;
2581		sappend(s, s2);
2582
2583		sjset_tsft_datapad->s.jt = s_roundup;
2584		sjset_tsft_datapad->s.jf = snext;
2585		sjset_notsft_datapad->s.jt = s_roundup;
2586		sjset_notsft_datapad->s.jf = snext;
2587	} else
2588		sjset_qos->s.jf = snext;
2589
2590	return s;
2591}
2592
2593static void
2594insert_compute_vloffsets(b)
2595	struct block *b;
2596{
2597	struct slist *s;
2598
2599	/*
2600	 * For link-layer types that have a variable-length header
2601	 * preceding the link-layer header, generate code to load
2602	 * the offset of the link-layer header into the register
2603	 * assigned to that offset, if any.
2604	 */
2605	switch (linktype) {
2606
2607	case DLT_PRISM_HEADER:
2608		s = gen_load_prism_llprefixlen();
2609		break;
2610
2611	case DLT_IEEE802_11_RADIO_AVS:
2612		s = gen_load_avs_llprefixlen();
2613		break;
2614
2615	case DLT_IEEE802_11_RADIO:
2616		s = gen_load_radiotap_llprefixlen();
2617		break;
2618
2619	case DLT_PPI:
2620		s = gen_load_ppi_llprefixlen();
2621		break;
2622
2623	default:
2624		s = NULL;
2625		break;
2626	}
2627
2628	/*
2629	 * For link-layer types that have a variable-length link-layer
2630	 * header, generate code to load the offset of the MAC-layer
2631	 * payload into the register assigned to that offset, if any.
2632	 */
2633	switch (linktype) {
2634
2635	case DLT_IEEE802_11:
2636	case DLT_PRISM_HEADER:
2637	case DLT_IEEE802_11_RADIO_AVS:
2638	case DLT_IEEE802_11_RADIO:
2639	case DLT_PPI:
2640		s = gen_load_802_11_header_len(s, b->stmts);
2641		break;
2642	}
2643
2644	/*
2645	 * If we have any offset-loading code, append all the
2646	 * existing statements in the block to those statements,
2647	 * and make the resulting list the list of statements
2648	 * for the block.
2649	 */
2650	if (s != NULL) {
2651		sappend(s, b->stmts);
2652		b->stmts = s;
2653	}
2654}
2655
2656static struct block *
2657gen_ppi_dlt_check(void)
2658{
2659	struct slist *s_load_dlt;
2660	struct block *b;
2661
2662	if (linktype == DLT_PPI)
2663	{
2664		/* Create the statements that check for the DLT
2665		 */
2666		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2667		s_load_dlt->s.k = 4;
2668
2669		b = new_block(JMP(BPF_JEQ));
2670
2671		b->stmts = s_load_dlt;
2672		b->s.k = SWAPLONG(DLT_IEEE802_11);
2673	}
2674	else
2675	{
2676		b = NULL;
2677	}
2678
2679	return b;
2680}
2681
2682static struct slist *
2683gen_prism_llprefixlen(void)
2684{
2685	struct slist *s;
2686
2687	if (reg_off_ll == -1) {
2688		/*
2689		 * We haven't yet assigned a register for the length
2690		 * of the radio header; allocate one.
2691		 */
2692		reg_off_ll = alloc_reg();
2693	}
2694
2695	/*
2696	 * Load the register containing the radio length
2697	 * into the X register.
2698	 */
2699	s = new_stmt(BPF_LDX|BPF_MEM);
2700	s->s.k = reg_off_ll;
2701	return s;
2702}
2703
2704static struct slist *
2705gen_avs_llprefixlen(void)
2706{
2707	struct slist *s;
2708
2709	if (reg_off_ll == -1) {
2710		/*
2711		 * We haven't yet assigned a register for the length
2712		 * of the AVS header; allocate one.
2713		 */
2714		reg_off_ll = alloc_reg();
2715	}
2716
2717	/*
2718	 * Load the register containing the AVS length
2719	 * into the X register.
2720	 */
2721	s = new_stmt(BPF_LDX|BPF_MEM);
2722	s->s.k = reg_off_ll;
2723	return s;
2724}
2725
2726static struct slist *
2727gen_radiotap_llprefixlen(void)
2728{
2729	struct slist *s;
2730
2731	if (reg_off_ll == -1) {
2732		/*
2733		 * We haven't yet assigned a register for the length
2734		 * of the radiotap header; allocate one.
2735		 */
2736		reg_off_ll = alloc_reg();
2737	}
2738
2739	/*
2740	 * Load the register containing the radiotap length
2741	 * into the X register.
2742	 */
2743	s = new_stmt(BPF_LDX|BPF_MEM);
2744	s->s.k = reg_off_ll;
2745	return s;
2746}
2747
2748/*
2749 * At the moment we treat PPI as normal Radiotap encoded
2750 * packets. The difference is in the function that generates
2751 * the code at the beginning to compute the header length.
2752 * Since this code generator of PPI supports bare 802.11
2753 * encapsulation only (i.e. the encapsulated DLT should be
2754 * DLT_IEEE802_11) we generate code to check for this too.
2755 */
2756static struct slist *
2757gen_ppi_llprefixlen(void)
2758{
2759	struct slist *s;
2760
2761	if (reg_off_ll == -1) {
2762		/*
2763		 * We haven't yet assigned a register for the length
2764		 * of the radiotap header; allocate one.
2765		 */
2766		reg_off_ll = alloc_reg();
2767	}
2768
2769	/*
2770	 * Load the register containing the PPI length
2771	 * into the X register.
2772	 */
2773	s = new_stmt(BPF_LDX|BPF_MEM);
2774	s->s.k = reg_off_ll;
2775	return s;
2776}
2777
2778/*
2779 * Generate code to compute the link-layer header length, if necessary,
2780 * putting it into the X register, and to return either a pointer to a
2781 * "struct slist" for the list of statements in that code, or NULL if
2782 * no code is necessary.
2783 */
2784static struct slist *
2785gen_llprefixlen(void)
2786{
2787	switch (linktype) {
2788
2789	case DLT_PRISM_HEADER:
2790		return gen_prism_llprefixlen();
2791
2792	case DLT_IEEE802_11_RADIO_AVS:
2793		return gen_avs_llprefixlen();
2794
2795	case DLT_IEEE802_11_RADIO:
2796		return gen_radiotap_llprefixlen();
2797
2798	case DLT_PPI:
2799		return gen_ppi_llprefixlen();
2800
2801	default:
2802		return NULL;
2803	}
2804}
2805
2806/*
2807 * Generate code to load the register containing the offset of the
2808 * MAC-layer payload into the X register; if no register for that offset
2809 * has been allocated, allocate it first.
2810 */
2811static struct slist *
2812gen_off_macpl(void)
2813{
2814	struct slist *s;
2815
2816	if (off_macpl_is_variable) {
2817		if (reg_off_macpl == -1) {
2818			/*
2819			 * We haven't yet assigned a register for the offset
2820			 * of the MAC-layer payload; allocate one.
2821			 */
2822			reg_off_macpl = alloc_reg();
2823		}
2824
2825		/*
2826		 * Load the register containing the offset of the MAC-layer
2827		 * payload into the X register.
2828		 */
2829		s = new_stmt(BPF_LDX|BPF_MEM);
2830		s->s.k = reg_off_macpl;
2831		return s;
2832	} else {
2833		/*
2834		 * That offset isn't variable, so we don't need to
2835		 * generate any code.
2836		 */
2837		return NULL;
2838	}
2839}
2840
2841/*
2842 * Map an Ethernet type to the equivalent PPP type.
2843 */
2844static int
2845ethertype_to_ppptype(proto)
2846	int proto;
2847{
2848	switch (proto) {
2849
2850	case ETHERTYPE_IP:
2851		proto = PPP_IP;
2852		break;
2853
2854#ifdef INET6
2855	case ETHERTYPE_IPV6:
2856		proto = PPP_IPV6;
2857		break;
2858#endif
2859
2860	case ETHERTYPE_DN:
2861		proto = PPP_DECNET;
2862		break;
2863
2864	case ETHERTYPE_ATALK:
2865		proto = PPP_APPLE;
2866		break;
2867
2868	case ETHERTYPE_NS:
2869		proto = PPP_NS;
2870		break;
2871
2872	case LLCSAP_ISONS:
2873		proto = PPP_OSI;
2874		break;
2875
2876	case LLCSAP_8021D:
2877		/*
2878		 * I'm assuming the "Bridging PDU"s that go
2879		 * over PPP are Spanning Tree Protocol
2880		 * Bridging PDUs.
2881		 */
2882		proto = PPP_BRPDU;
2883		break;
2884
2885	case LLCSAP_IPX:
2886		proto = PPP_IPX;
2887		break;
2888	}
2889	return (proto);
2890}
2891
2892/*
2893 * Generate code to match a particular packet type by matching the
2894 * link-layer type field or fields in the 802.2 LLC header.
2895 *
2896 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2897 * value, if <= ETHERMTU.
2898 */
2899static struct block *
2900gen_linktype(proto)
2901	register int proto;
2902{
2903	struct block *b0, *b1, *b2;
2904
2905	/* are we checking MPLS-encapsulated packets? */
2906	if (label_stack_depth > 0) {
2907		switch (proto) {
2908		case ETHERTYPE_IP:
2909		case PPP_IP:
2910			/* FIXME add other L3 proto IDs */
2911			return gen_mpls_linktype(Q_IP);
2912
2913		case ETHERTYPE_IPV6:
2914		case PPP_IPV6:
2915			/* FIXME add other L3 proto IDs */
2916			return gen_mpls_linktype(Q_IPV6);
2917
2918		default:
2919			bpf_error("unsupported protocol over mpls");
2920			/* NOTREACHED */
2921		}
2922	}
2923
2924	/*
2925	 * Are we testing PPPoE packets?
2926	 */
2927	if (is_pppoes) {
2928		/*
2929		 * The PPPoE session header is part of the
2930		 * MAC-layer payload, so all references
2931		 * should be relative to the beginning of
2932		 * that payload.
2933		 */
2934
2935		/*
2936		 * We use Ethernet protocol types inside libpcap;
2937		 * map them to the corresponding PPP protocol types.
2938		 */
2939		proto = ethertype_to_ppptype(proto);
2940		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2941	}
2942
2943	switch (linktype) {
2944
2945	case DLT_EN10MB:
2946		return gen_ether_linktype(proto);
2947		/*NOTREACHED*/
2948		break;
2949
2950	case DLT_C_HDLC:
2951		switch (proto) {
2952
2953		case LLCSAP_ISONS:
2954			proto = (proto << 8 | LLCSAP_ISONS);
2955			/* fall through */
2956
2957		default:
2958			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2959			    (bpf_int32)proto);
2960			/*NOTREACHED*/
2961			break;
2962		}
2963		break;
2964
2965	case DLT_IEEE802_11:
2966	case DLT_PRISM_HEADER:
2967	case DLT_IEEE802_11_RADIO_AVS:
2968	case DLT_IEEE802_11_RADIO:
2969	case DLT_PPI:
2970		/*
2971		 * Check that we have a data frame.
2972		 */
2973		b0 = gen_check_802_11_data_frame();
2974
2975		/*
2976		 * Now check for the specified link-layer type.
2977		 */
2978		b1 = gen_llc_linktype(proto);
2979		gen_and(b0, b1);
2980		return b1;
2981		/*NOTREACHED*/
2982		break;
2983
2984	case DLT_FDDI:
2985		/*
2986		 * XXX - check for asynchronous frames, as per RFC 1103.
2987		 */
2988		return gen_llc_linktype(proto);
2989		/*NOTREACHED*/
2990		break;
2991
2992	case DLT_IEEE802:
2993		/*
2994		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2995		 */
2996		return gen_llc_linktype(proto);
2997		/*NOTREACHED*/
2998		break;
2999
3000	case DLT_ATM_RFC1483:
3001	case DLT_ATM_CLIP:
3002	case DLT_IP_OVER_FC:
3003		return gen_llc_linktype(proto);
3004		/*NOTREACHED*/
3005		break;
3006
3007	case DLT_SUNATM:
3008		/*
3009		 * If "is_lane" is set, check for a LANE-encapsulated
3010		 * version of this protocol, otherwise check for an
3011		 * LLC-encapsulated version of this protocol.
3012		 *
3013		 * We assume LANE means Ethernet, not Token Ring.
3014		 */
3015		if (is_lane) {
3016			/*
3017			 * Check that the packet doesn't begin with an
3018			 * LE Control marker.  (We've already generated
3019			 * a test for LANE.)
3020			 */
3021			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3022			    0xFF00);
3023			gen_not(b0);
3024
3025			/*
3026			 * Now generate an Ethernet test.
3027			 */
3028			b1 = gen_ether_linktype(proto);
3029			gen_and(b0, b1);
3030			return b1;
3031		} else {
3032			/*
3033			 * Check for LLC encapsulation and then check the
3034			 * protocol.
3035			 */
3036			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3037			b1 = gen_llc_linktype(proto);
3038			gen_and(b0, b1);
3039			return b1;
3040		}
3041		/*NOTREACHED*/
3042		break;
3043
3044	case DLT_LINUX_SLL:
3045		return gen_linux_sll_linktype(proto);
3046		/*NOTREACHED*/
3047		break;
3048
3049	case DLT_SLIP:
3050	case DLT_SLIP_BSDOS:
3051	case DLT_RAW:
3052		/*
3053		 * These types don't provide any type field; packets
3054		 * are always IPv4 or IPv6.
3055		 *
3056		 * XXX - for IPv4, check for a version number of 4, and,
3057		 * for IPv6, check for a version number of 6?
3058		 */
3059		switch (proto) {
3060
3061		case ETHERTYPE_IP:
3062			/* Check for a version number of 4. */
3063			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3064#ifdef INET6
3065		case ETHERTYPE_IPV6:
3066			/* Check for a version number of 6. */
3067			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3068#endif
3069
3070		default:
3071			return gen_false();		/* always false */
3072		}
3073		/*NOTREACHED*/
3074		break;
3075
3076	case DLT_PPP:
3077	case DLT_PPP_PPPD:
3078	case DLT_PPP_SERIAL:
3079	case DLT_PPP_ETHER:
3080		/*
3081		 * We use Ethernet protocol types inside libpcap;
3082		 * map them to the corresponding PPP protocol types.
3083		 */
3084		proto = ethertype_to_ppptype(proto);
3085		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3086		/*NOTREACHED*/
3087		break;
3088
3089	case DLT_PPP_BSDOS:
3090		/*
3091		 * We use Ethernet protocol types inside libpcap;
3092		 * map them to the corresponding PPP protocol types.
3093		 */
3094		switch (proto) {
3095
3096		case ETHERTYPE_IP:
3097			/*
3098			 * Also check for Van Jacobson-compressed IP.
3099			 * XXX - do this for other forms of PPP?
3100			 */
3101			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3102			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3103			gen_or(b0, b1);
3104			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3105			gen_or(b1, b0);
3106			return b0;
3107
3108		default:
3109			proto = ethertype_to_ppptype(proto);
3110			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3111				(bpf_int32)proto);
3112		}
3113		/*NOTREACHED*/
3114		break;
3115
3116	case DLT_NULL:
3117	case DLT_LOOP:
3118	case DLT_ENC:
3119		/*
3120		 * For DLT_NULL, the link-layer header is a 32-bit
3121		 * word containing an AF_ value in *host* byte order,
3122		 * and for DLT_ENC, the link-layer header begins
3123		 * with a 32-bit work containing an AF_ value in
3124		 * host byte order.
3125		 *
3126		 * In addition, if we're reading a saved capture file,
3127		 * the host byte order in the capture may not be the
3128		 * same as the host byte order on this machine.
3129		 *
3130		 * For DLT_LOOP, the link-layer header is a 32-bit
3131		 * word containing an AF_ value in *network* byte order.
3132		 *
3133		 * XXX - AF_ values may, unfortunately, be platform-
3134		 * dependent; for example, FreeBSD's AF_INET6 is 24
3135		 * whilst NetBSD's and OpenBSD's is 26.
3136		 *
3137		 * This means that, when reading a capture file, just
3138		 * checking for our AF_INET6 value won't work if the
3139		 * capture file came from another OS.
3140		 */
3141		switch (proto) {
3142
3143		case ETHERTYPE_IP:
3144			proto = AF_INET;
3145			break;
3146
3147#ifdef INET6
3148		case ETHERTYPE_IPV6:
3149			proto = AF_INET6;
3150			break;
3151#endif
3152
3153		default:
3154			/*
3155			 * Not a type on which we support filtering.
3156			 * XXX - support those that have AF_ values
3157			 * #defined on this platform, at least?
3158			 */
3159			return gen_false();
3160		}
3161
3162		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3163			/*
3164			 * The AF_ value is in host byte order, but
3165			 * the BPF interpreter will convert it to
3166			 * network byte order.
3167			 *
3168			 * If this is a save file, and it's from a
3169			 * machine with the opposite byte order to
3170			 * ours, we byte-swap the AF_ value.
3171			 *
3172			 * Then we run it through "htonl()", and
3173			 * generate code to compare against the result.
3174			 */
3175			if (bpf_pcap->sf.rfile != NULL &&
3176			    bpf_pcap->sf.swapped)
3177				proto = SWAPLONG(proto);
3178			proto = htonl(proto);
3179		}
3180		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3181
3182#ifdef HAVE_NET_PFVAR_H
3183	case DLT_PFLOG:
3184		/*
3185		 * af field is host byte order in contrast to the rest of
3186		 * the packet.
3187		 */
3188		if (proto == ETHERTYPE_IP)
3189			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3190			    BPF_B, (bpf_int32)AF_INET));
3191#ifdef INET6
3192		else if (proto == ETHERTYPE_IPV6)
3193			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3194			    BPF_B, (bpf_int32)AF_INET6));
3195#endif /* INET6 */
3196		else
3197			return gen_false();
3198		/*NOTREACHED*/
3199		break;
3200#endif /* HAVE_NET_PFVAR_H */
3201
3202	case DLT_ARCNET:
3203	case DLT_ARCNET_LINUX:
3204		/*
3205		 * XXX should we check for first fragment if the protocol
3206		 * uses PHDS?
3207		 */
3208		switch (proto) {
3209
3210		default:
3211			return gen_false();
3212
3213#ifdef INET6
3214		case ETHERTYPE_IPV6:
3215			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3216				(bpf_int32)ARCTYPE_INET6));
3217#endif /* INET6 */
3218
3219		case ETHERTYPE_IP:
3220			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3221				     (bpf_int32)ARCTYPE_IP);
3222			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3223				     (bpf_int32)ARCTYPE_IP_OLD);
3224			gen_or(b0, b1);
3225			return (b1);
3226
3227		case ETHERTYPE_ARP:
3228			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3229				     (bpf_int32)ARCTYPE_ARP);
3230			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3231				     (bpf_int32)ARCTYPE_ARP_OLD);
3232			gen_or(b0, b1);
3233			return (b1);
3234
3235		case ETHERTYPE_REVARP:
3236			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3237					(bpf_int32)ARCTYPE_REVARP));
3238
3239		case ETHERTYPE_ATALK:
3240			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3241					(bpf_int32)ARCTYPE_ATALK));
3242		}
3243		/*NOTREACHED*/
3244		break;
3245
3246	case DLT_LTALK:
3247		switch (proto) {
3248		case ETHERTYPE_ATALK:
3249			return gen_true();
3250		default:
3251			return gen_false();
3252		}
3253		/*NOTREACHED*/
3254		break;
3255
3256	case DLT_FRELAY:
3257		/*
3258		 * XXX - assumes a 2-byte Frame Relay header with
3259		 * DLCI and flags.  What if the address is longer?
3260		 */
3261		switch (proto) {
3262
3263		case ETHERTYPE_IP:
3264			/*
3265			 * Check for the special NLPID for IP.
3266			 */
3267			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3268
3269#ifdef INET6
3270		case ETHERTYPE_IPV6:
3271			/*
3272			 * Check for the special NLPID for IPv6.
3273			 */
3274			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3275#endif
3276
3277		case LLCSAP_ISONS:
3278			/*
3279			 * Check for several OSI protocols.
3280			 *
3281			 * Frame Relay packets typically have an OSI
3282			 * NLPID at the beginning; we check for each
3283			 * of them.
3284			 *
3285			 * What we check for is the NLPID and a frame
3286			 * control field of UI, i.e. 0x03 followed
3287			 * by the NLPID.
3288			 */
3289			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3290			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3291			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3292			gen_or(b1, b2);
3293			gen_or(b0, b2);
3294			return b2;
3295
3296		default:
3297			return gen_false();
3298		}
3299		/*NOTREACHED*/
3300		break;
3301
3302	case DLT_MFR:
3303		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3304
3305        case DLT_JUNIPER_MFR:
3306        case DLT_JUNIPER_MLFR:
3307        case DLT_JUNIPER_MLPPP:
3308	case DLT_JUNIPER_ATM1:
3309	case DLT_JUNIPER_ATM2:
3310	case DLT_JUNIPER_PPPOE:
3311	case DLT_JUNIPER_PPPOE_ATM:
3312        case DLT_JUNIPER_GGSN:
3313        case DLT_JUNIPER_ES:
3314        case DLT_JUNIPER_MONITOR:
3315        case DLT_JUNIPER_SERVICES:
3316        case DLT_JUNIPER_ETHER:
3317        case DLT_JUNIPER_PPP:
3318        case DLT_JUNIPER_FRELAY:
3319        case DLT_JUNIPER_CHDLC:
3320        case DLT_JUNIPER_VP:
3321        case DLT_JUNIPER_ST:
3322        case DLT_JUNIPER_ISM:
3323		/* just lets verify the magic number for now -
3324		 * on ATM we may have up to 6 different encapsulations on the wire
3325		 * and need a lot of heuristics to figure out that the payload
3326		 * might be;
3327		 *
3328		 * FIXME encapsulation specific BPF_ filters
3329		 */
3330		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3331
3332	case DLT_LINUX_IRDA:
3333		bpf_error("IrDA link-layer type filtering not implemented");
3334
3335	case DLT_DOCSIS:
3336		bpf_error("DOCSIS link-layer type filtering not implemented");
3337
3338	case DLT_MTP2:
3339	case DLT_MTP2_WITH_PHDR:
3340		bpf_error("MTP2 link-layer type filtering not implemented");
3341
3342	case DLT_ERF:
3343		bpf_error("ERF link-layer type filtering not implemented");
3344
3345#ifdef DLT_PFSYNC
3346	case DLT_PFSYNC:
3347		bpf_error("PFSYNC link-layer type filtering not implemented");
3348#endif
3349
3350	case DLT_LINUX_LAPD:
3351		bpf_error("LAPD link-layer type filtering not implemented");
3352
3353	case DLT_USB:
3354	case DLT_USB_LINUX:
3355		bpf_error("USB link-layer type filtering not implemented");
3356
3357	case DLT_BLUETOOTH_HCI_H4:
3358	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3359		bpf_error("Bluetooth link-layer type filtering not implemented");
3360
3361	case DLT_CAN20B:
3362		bpf_error("CAN20B link-layer type filtering not implemented");
3363
3364	case DLT_IEEE802_15_4:
3365	case DLT_IEEE802_15_4_LINUX:
3366	case DLT_IEEE802_15_4_NONASK_PHY:
3367		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3368
3369	case DLT_IEEE802_16_MAC_CPS_RADIO:
3370		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3371
3372	case DLT_SITA:
3373		bpf_error("SITA link-layer type filtering not implemented");
3374
3375	case DLT_RAIF1:
3376		bpf_error("RAIF1 link-layer type filtering not implemented");
3377
3378	case DLT_IPMB:
3379		bpf_error("IPMB link-layer type filtering not implemented");
3380
3381	case DLT_AX25_KISS:
3382		bpf_error("AX.25 link-layer type filtering not implemented");
3383	}
3384
3385	/*
3386	 * All the types that have no encapsulation should either be
3387	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3388	 * all packets are IP packets, or should be handled in some
3389	 * special case, if none of them are (if some are and some
3390	 * aren't, the lack of encapsulation is a problem, as we'd
3391	 * have to find some other way of determining the packet type).
3392	 *
3393	 * Therefore, if "off_linktype" is -1, there's an error.
3394	 */
3395	if (off_linktype == (u_int)-1)
3396		abort();
3397
3398	/*
3399	 * Any type not handled above should always have an Ethernet
3400	 * type at an offset of "off_linktype".
3401	 */
3402	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3403}
3404
3405/*
3406 * Check for an LLC SNAP packet with a given organization code and
3407 * protocol type; we check the entire contents of the 802.2 LLC and
3408 * snap headers, checking for DSAP and SSAP of SNAP and a control
3409 * field of 0x03 in the LLC header, and for the specified organization
3410 * code and protocol type in the SNAP header.
3411 */
3412static struct block *
3413gen_snap(orgcode, ptype)
3414	bpf_u_int32 orgcode;
3415	bpf_u_int32 ptype;
3416{
3417	u_char snapblock[8];
3418
3419	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3420	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3421	snapblock[2] = 0x03;		/* control = UI */
3422	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3423	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3424	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3425	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3426	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3427	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3428}
3429
3430/*
3431 * Generate code to match a particular packet type, for link-layer types
3432 * using 802.2 LLC headers.
3433 *
3434 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3435 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3436 *
3437 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3438 * value, if <= ETHERMTU.  We use that to determine whether to
3439 * match the DSAP or both DSAP and LSAP or to check the OUI and
3440 * protocol ID in a SNAP header.
3441 */
3442static struct block *
3443gen_llc_linktype(proto)
3444	int proto;
3445{
3446	/*
3447	 * XXX - handle token-ring variable-length header.
3448	 */
3449	switch (proto) {
3450
3451	case LLCSAP_IP:
3452	case LLCSAP_ISONS:
3453	case LLCSAP_NETBEUI:
3454		/*
3455		 * XXX - should we check both the DSAP and the
3456		 * SSAP, like this, or should we check just the
3457		 * DSAP, as we do for other types <= ETHERMTU
3458		 * (i.e., other SAP values)?
3459		 */
3460		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3461			     ((proto << 8) | proto));
3462
3463	case LLCSAP_IPX:
3464		/*
3465		 * XXX - are there ever SNAP frames for IPX on
3466		 * non-Ethernet 802.x networks?
3467		 */
3468		return gen_cmp(OR_MACPL, 0, BPF_B,
3469		    (bpf_int32)LLCSAP_IPX);
3470
3471	case ETHERTYPE_ATALK:
3472		/*
3473		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3474		 * SNAP packets with an organization code of
3475		 * 0x080007 (Apple, for Appletalk) and a protocol
3476		 * type of ETHERTYPE_ATALK (Appletalk).
3477		 *
3478		 * XXX - check for an organization code of
3479		 * encapsulated Ethernet as well?
3480		 */
3481		return gen_snap(0x080007, ETHERTYPE_ATALK);
3482
3483	default:
3484		/*
3485		 * XXX - we don't have to check for IPX 802.3
3486		 * here, but should we check for the IPX Ethertype?
3487		 */
3488		if (proto <= ETHERMTU) {
3489			/*
3490			 * This is an LLC SAP value, so check
3491			 * the DSAP.
3492			 */
3493			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3494		} else {
3495			/*
3496			 * This is an Ethernet type; we assume that it's
3497			 * unlikely that it'll appear in the right place
3498			 * at random, and therefore check only the
3499			 * location that would hold the Ethernet type
3500			 * in a SNAP frame with an organization code of
3501			 * 0x000000 (encapsulated Ethernet).
3502			 *
3503			 * XXX - if we were to check for the SNAP DSAP and
3504			 * LSAP, as per XXX, and were also to check for an
3505			 * organization code of 0x000000 (encapsulated
3506			 * Ethernet), we'd do
3507			 *
3508			 *	return gen_snap(0x000000, proto);
3509			 *
3510			 * here; for now, we don't, as per the above.
3511			 * I don't know whether it's worth the extra CPU
3512			 * time to do the right check or not.
3513			 */
3514			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3515		}
3516	}
3517}
3518
3519static struct block *
3520gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3521	bpf_u_int32 addr;
3522	bpf_u_int32 mask;
3523	int dir, proto;
3524	u_int src_off, dst_off;
3525{
3526	struct block *b0, *b1;
3527	u_int offset;
3528
3529	switch (dir) {
3530
3531	case Q_SRC:
3532		offset = src_off;
3533		break;
3534
3535	case Q_DST:
3536		offset = dst_off;
3537		break;
3538
3539	case Q_AND:
3540		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3541		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3542		gen_and(b0, b1);
3543		return b1;
3544
3545	case Q_OR:
3546	case Q_DEFAULT:
3547		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3548		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3549		gen_or(b0, b1);
3550		return b1;
3551
3552	default:
3553		abort();
3554	}
3555	b0 = gen_linktype(proto);
3556	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3557	gen_and(b0, b1);
3558	return b1;
3559}
3560
3561#ifdef INET6
3562static struct block *
3563gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3564	struct in6_addr *addr;
3565	struct in6_addr *mask;
3566	int dir, proto;
3567	u_int src_off, dst_off;
3568{
3569	struct block *b0, *b1;
3570	u_int offset;
3571	u_int32_t *a, *m;
3572
3573	switch (dir) {
3574
3575	case Q_SRC:
3576		offset = src_off;
3577		break;
3578
3579	case Q_DST:
3580		offset = dst_off;
3581		break;
3582
3583	case Q_AND:
3584		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3585		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3586		gen_and(b0, b1);
3587		return b1;
3588
3589	case Q_OR:
3590	case Q_DEFAULT:
3591		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3592		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3593		gen_or(b0, b1);
3594		return b1;
3595
3596	default:
3597		abort();
3598	}
3599	/* this order is important */
3600	a = (u_int32_t *)addr;
3601	m = (u_int32_t *)mask;
3602	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3603	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3604	gen_and(b0, b1);
3605	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3606	gen_and(b0, b1);
3607	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3608	gen_and(b0, b1);
3609	b0 = gen_linktype(proto);
3610	gen_and(b0, b1);
3611	return b1;
3612}
3613#endif /*INET6*/
3614
3615static struct block *
3616gen_ehostop(eaddr, dir)
3617	register const u_char *eaddr;
3618	register int dir;
3619{
3620	register struct block *b0, *b1;
3621
3622	switch (dir) {
3623	case Q_SRC:
3624		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3625
3626	case Q_DST:
3627		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3628
3629	case Q_AND:
3630		b0 = gen_ehostop(eaddr, Q_SRC);
3631		b1 = gen_ehostop(eaddr, Q_DST);
3632		gen_and(b0, b1);
3633		return b1;
3634
3635	case Q_DEFAULT:
3636	case Q_OR:
3637		b0 = gen_ehostop(eaddr, Q_SRC);
3638		b1 = gen_ehostop(eaddr, Q_DST);
3639		gen_or(b0, b1);
3640		return b1;
3641	}
3642	abort();
3643	/* NOTREACHED */
3644}
3645
3646/*
3647 * Like gen_ehostop, but for DLT_FDDI
3648 */
3649static struct block *
3650gen_fhostop(eaddr, dir)
3651	register const u_char *eaddr;
3652	register int dir;
3653{
3654	struct block *b0, *b1;
3655
3656	switch (dir) {
3657	case Q_SRC:
3658#ifdef PCAP_FDDIPAD
3659		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3660#else
3661		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3662#endif
3663
3664	case Q_DST:
3665#ifdef PCAP_FDDIPAD
3666		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3667#else
3668		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3669#endif
3670
3671	case Q_AND:
3672		b0 = gen_fhostop(eaddr, Q_SRC);
3673		b1 = gen_fhostop(eaddr, Q_DST);
3674		gen_and(b0, b1);
3675		return b1;
3676
3677	case Q_DEFAULT:
3678	case Q_OR:
3679		b0 = gen_fhostop(eaddr, Q_SRC);
3680		b1 = gen_fhostop(eaddr, Q_DST);
3681		gen_or(b0, b1);
3682		return b1;
3683	}
3684	abort();
3685	/* NOTREACHED */
3686}
3687
3688/*
3689 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3690 */
3691static struct block *
3692gen_thostop(eaddr, dir)
3693	register const u_char *eaddr;
3694	register int dir;
3695{
3696	register struct block *b0, *b1;
3697
3698	switch (dir) {
3699	case Q_SRC:
3700		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3701
3702	case Q_DST:
3703		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3704
3705	case Q_AND:
3706		b0 = gen_thostop(eaddr, Q_SRC);
3707		b1 = gen_thostop(eaddr, Q_DST);
3708		gen_and(b0, b1);
3709		return b1;
3710
3711	case Q_DEFAULT:
3712	case Q_OR:
3713		b0 = gen_thostop(eaddr, Q_SRC);
3714		b1 = gen_thostop(eaddr, Q_DST);
3715		gen_or(b0, b1);
3716		return b1;
3717	}
3718	abort();
3719	/* NOTREACHED */
3720}
3721
3722/*
3723 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3724 * various 802.11 + radio headers.
3725 */
3726static struct block *
3727gen_wlanhostop(eaddr, dir)
3728	register const u_char *eaddr;
3729	register int dir;
3730{
3731	register struct block *b0, *b1, *b2;
3732	register struct slist *s;
3733
3734#ifdef ENABLE_WLAN_FILTERING_PATCH
3735	/*
3736	 * TODO GV 20070613
3737	 * We need to disable the optimizer because the optimizer is buggy
3738	 * and wipes out some LD instructions generated by the below
3739	 * code to validate the Frame Control bits
3740	 */
3741	no_optimize = 1;
3742#endif /* ENABLE_WLAN_FILTERING_PATCH */
3743
3744	switch (dir) {
3745	case Q_SRC:
3746		/*
3747		 * Oh, yuk.
3748		 *
3749		 *	For control frames, there is no SA.
3750		 *
3751		 *	For management frames, SA is at an
3752		 *	offset of 10 from the beginning of
3753		 *	the packet.
3754		 *
3755		 *	For data frames, SA is at an offset
3756		 *	of 10 from the beginning of the packet
3757		 *	if From DS is clear, at an offset of
3758		 *	16 from the beginning of the packet
3759		 *	if From DS is set and To DS is clear,
3760		 *	and an offset of 24 from the beginning
3761		 *	of the packet if From DS is set and To DS
3762		 *	is set.
3763		 */
3764
3765		/*
3766		 * Generate the tests to be done for data frames
3767		 * with From DS set.
3768		 *
3769		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3770		 */
3771		s = gen_load_a(OR_LINK, 1, BPF_B);
3772		b1 = new_block(JMP(BPF_JSET));
3773		b1->s.k = 0x01;	/* To DS */
3774		b1->stmts = s;
3775
3776		/*
3777		 * If To DS is set, the SA is at 24.
3778		 */
3779		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3780		gen_and(b1, b0);
3781
3782		/*
3783		 * Now, check for To DS not set, i.e. check
3784		 * "!(link[1] & 0x01)".
3785		 */
3786		s = gen_load_a(OR_LINK, 1, BPF_B);
3787		b2 = new_block(JMP(BPF_JSET));
3788		b2->s.k = 0x01;	/* To DS */
3789		b2->stmts = s;
3790		gen_not(b2);
3791
3792		/*
3793		 * If To DS is not set, the SA is at 16.
3794		 */
3795		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3796		gen_and(b2, b1);
3797
3798		/*
3799		 * Now OR together the last two checks.  That gives
3800		 * the complete set of checks for data frames with
3801		 * From DS set.
3802		 */
3803		gen_or(b1, b0);
3804
3805		/*
3806		 * Now check for From DS being set, and AND that with
3807		 * the ORed-together checks.
3808		 */
3809		s = gen_load_a(OR_LINK, 1, BPF_B);
3810		b1 = new_block(JMP(BPF_JSET));
3811		b1->s.k = 0x02;	/* From DS */
3812		b1->stmts = s;
3813		gen_and(b1, b0);
3814
3815		/*
3816		 * Now check for data frames with From DS not set.
3817		 */
3818		s = gen_load_a(OR_LINK, 1, BPF_B);
3819		b2 = new_block(JMP(BPF_JSET));
3820		b2->s.k = 0x02;	/* From DS */
3821		b2->stmts = s;
3822		gen_not(b2);
3823
3824		/*
3825		 * If From DS isn't set, the SA is at 10.
3826		 */
3827		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3828		gen_and(b2, b1);
3829
3830		/*
3831		 * Now OR together the checks for data frames with
3832		 * From DS not set and for data frames with From DS
3833		 * set; that gives the checks done for data frames.
3834		 */
3835		gen_or(b1, b0);
3836
3837		/*
3838		 * Now check for a data frame.
3839		 * I.e, check "link[0] & 0x08".
3840		 */
3841		s = gen_load_a(OR_LINK, 0, BPF_B);
3842		b1 = new_block(JMP(BPF_JSET));
3843		b1->s.k = 0x08;
3844		b1->stmts = s;
3845
3846		/*
3847		 * AND that with the checks done for data frames.
3848		 */
3849		gen_and(b1, b0);
3850
3851		/*
3852		 * If the high-order bit of the type value is 0, this
3853		 * is a management frame.
3854		 * I.e, check "!(link[0] & 0x08)".
3855		 */
3856		s = gen_load_a(OR_LINK, 0, BPF_B);
3857		b2 = new_block(JMP(BPF_JSET));
3858		b2->s.k = 0x08;
3859		b2->stmts = s;
3860		gen_not(b2);
3861
3862		/*
3863		 * For management frames, the SA is at 10.
3864		 */
3865		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3866		gen_and(b2, b1);
3867
3868		/*
3869		 * OR that with the checks done for data frames.
3870		 * That gives the checks done for management and
3871		 * data frames.
3872		 */
3873		gen_or(b1, b0);
3874
3875		/*
3876		 * If the low-order bit of the type value is 1,
3877		 * this is either a control frame or a frame
3878		 * with a reserved type, and thus not a
3879		 * frame with an SA.
3880		 *
3881		 * I.e., check "!(link[0] & 0x04)".
3882		 */
3883		s = gen_load_a(OR_LINK, 0, BPF_B);
3884		b1 = new_block(JMP(BPF_JSET));
3885		b1->s.k = 0x04;
3886		b1->stmts = s;
3887		gen_not(b1);
3888
3889		/*
3890		 * AND that with the checks for data and management
3891		 * frames.
3892		 */
3893		gen_and(b1, b0);
3894		return b0;
3895
3896	case Q_DST:
3897		/*
3898		 * Oh, yuk.
3899		 *
3900		 *	For control frames, there is no DA.
3901		 *
3902		 *	For management frames, DA is at an
3903		 *	offset of 4 from the beginning of
3904		 *	the packet.
3905		 *
3906		 *	For data frames, DA is at an offset
3907		 *	of 4 from the beginning of the packet
3908		 *	if To DS is clear and at an offset of
3909		 *	16 from the beginning of the packet
3910		 *	if To DS is set.
3911		 */
3912
3913		/*
3914		 * Generate the tests to be done for data frames.
3915		 *
3916		 * First, check for To DS set, i.e. "link[1] & 0x01".
3917		 */
3918		s = gen_load_a(OR_LINK, 1, BPF_B);
3919		b1 = new_block(JMP(BPF_JSET));
3920		b1->s.k = 0x01;	/* To DS */
3921		b1->stmts = s;
3922
3923		/*
3924		 * If To DS is set, the DA is at 16.
3925		 */
3926		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3927		gen_and(b1, b0);
3928
3929		/*
3930		 * Now, check for To DS not set, i.e. check
3931		 * "!(link[1] & 0x01)".
3932		 */
3933		s = gen_load_a(OR_LINK, 1, BPF_B);
3934		b2 = new_block(JMP(BPF_JSET));
3935		b2->s.k = 0x01;	/* To DS */
3936		b2->stmts = s;
3937		gen_not(b2);
3938
3939		/*
3940		 * If To DS is not set, the DA is at 4.
3941		 */
3942		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
3943		gen_and(b2, b1);
3944
3945		/*
3946		 * Now OR together the last two checks.  That gives
3947		 * the complete set of checks for data frames.
3948		 */
3949		gen_or(b1, b0);
3950
3951		/*
3952		 * Now check for a data frame.
3953		 * I.e, check "link[0] & 0x08".
3954		 */
3955		s = gen_load_a(OR_LINK, 0, BPF_B);
3956		b1 = new_block(JMP(BPF_JSET));
3957		b1->s.k = 0x08;
3958		b1->stmts = s;
3959
3960		/*
3961		 * AND that with the checks done for data frames.
3962		 */
3963		gen_and(b1, b0);
3964
3965		/*
3966		 * If the high-order bit of the type value is 0, this
3967		 * is a management frame.
3968		 * I.e, check "!(link[0] & 0x08)".
3969		 */
3970		s = gen_load_a(OR_LINK, 0, BPF_B);
3971		b2 = new_block(JMP(BPF_JSET));
3972		b2->s.k = 0x08;
3973		b2->stmts = s;
3974		gen_not(b2);
3975
3976		/*
3977		 * For management frames, the DA is at 4.
3978		 */
3979		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
3980		gen_and(b2, b1);
3981
3982		/*
3983		 * OR that with the checks done for data frames.
3984		 * That gives the checks done for management and
3985		 * data frames.
3986		 */
3987		gen_or(b1, b0);
3988
3989		/*
3990		 * If the low-order bit of the type value is 1,
3991		 * this is either a control frame or a frame
3992		 * with a reserved type, and thus not a
3993		 * frame with an SA.
3994		 *
3995		 * I.e., check "!(link[0] & 0x04)".
3996		 */
3997		s = gen_load_a(OR_LINK, 0, BPF_B);
3998		b1 = new_block(JMP(BPF_JSET));
3999		b1->s.k = 0x04;
4000		b1->stmts = s;
4001		gen_not(b1);
4002
4003		/*
4004		 * AND that with the checks for data and management
4005		 * frames.
4006		 */
4007		gen_and(b1, b0);
4008		return b0;
4009
4010	/*
4011	 * XXX - add RA, TA, and BSSID keywords?
4012	 */
4013	case Q_ADDR1:
4014		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4015
4016	case Q_ADDR2:
4017		/*
4018		 * Not present in CTS or ACK control frames.
4019		 */
4020		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4021			IEEE80211_FC0_TYPE_MASK);
4022		gen_not(b0);
4023		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4024			IEEE80211_FC0_SUBTYPE_MASK);
4025		gen_not(b1);
4026		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4027			IEEE80211_FC0_SUBTYPE_MASK);
4028		gen_not(b2);
4029		gen_and(b1, b2);
4030		gen_or(b0, b2);
4031		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4032		gen_and(b2, b1);
4033		return b1;
4034
4035	case Q_ADDR3:
4036		/*
4037		 * Not present in control frames.
4038		 */
4039		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4040			IEEE80211_FC0_TYPE_MASK);
4041		gen_not(b0);
4042		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4043		gen_and(b0, b1);
4044		return b1;
4045
4046	case Q_ADDR4:
4047		/*
4048		 * Present only if the direction mask has both "From DS"
4049		 * and "To DS" set.  Neither control frames nor management
4050		 * frames should have both of those set, so we don't
4051		 * check the frame type.
4052		 */
4053		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4054			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4055		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4056		gen_and(b0, b1);
4057		return b1;
4058
4059	case Q_AND:
4060		b0 = gen_wlanhostop(eaddr, Q_SRC);
4061		b1 = gen_wlanhostop(eaddr, Q_DST);
4062		gen_and(b0, b1);
4063		return b1;
4064
4065	case Q_DEFAULT:
4066	case Q_OR:
4067		b0 = gen_wlanhostop(eaddr, Q_SRC);
4068		b1 = gen_wlanhostop(eaddr, Q_DST);
4069		gen_or(b0, b1);
4070		return b1;
4071	}
4072	abort();
4073	/* NOTREACHED */
4074}
4075
4076/*
4077 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4078 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4079 * as the RFC states.)
4080 */
4081static struct block *
4082gen_ipfchostop(eaddr, dir)
4083	register const u_char *eaddr;
4084	register int dir;
4085{
4086	register struct block *b0, *b1;
4087
4088	switch (dir) {
4089	case Q_SRC:
4090		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4091
4092	case Q_DST:
4093		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4094
4095	case Q_AND:
4096		b0 = gen_ipfchostop(eaddr, Q_SRC);
4097		b1 = gen_ipfchostop(eaddr, Q_DST);
4098		gen_and(b0, b1);
4099		return b1;
4100
4101	case Q_DEFAULT:
4102	case Q_OR:
4103		b0 = gen_ipfchostop(eaddr, Q_SRC);
4104		b1 = gen_ipfchostop(eaddr, Q_DST);
4105		gen_or(b0, b1);
4106		return b1;
4107	}
4108	abort();
4109	/* NOTREACHED */
4110}
4111
4112/*
4113 * This is quite tricky because there may be pad bytes in front of the
4114 * DECNET header, and then there are two possible data packet formats that
4115 * carry both src and dst addresses, plus 5 packet types in a format that
4116 * carries only the src node, plus 2 types that use a different format and
4117 * also carry just the src node.
4118 *
4119 * Yuck.
4120 *
4121 * Instead of doing those all right, we just look for data packets with
4122 * 0 or 1 bytes of padding.  If you want to look at other packets, that
4123 * will require a lot more hacking.
4124 *
4125 * To add support for filtering on DECNET "areas" (network numbers)
4126 * one would want to add a "mask" argument to this routine.  That would
4127 * make the filter even more inefficient, although one could be clever
4128 * and not generate masking instructions if the mask is 0xFFFF.
4129 */
4130static struct block *
4131gen_dnhostop(addr, dir)
4132	bpf_u_int32 addr;
4133	int dir;
4134{
4135	struct block *b0, *b1, *b2, *tmp;
4136	u_int offset_lh;	/* offset if long header is received */
4137	u_int offset_sh;	/* offset if short header is received */
4138
4139	switch (dir) {
4140
4141	case Q_DST:
4142		offset_sh = 1;	/* follows flags */
4143		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4144		break;
4145
4146	case Q_SRC:
4147		offset_sh = 3;	/* follows flags, dstnode */
4148		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4149		break;
4150
4151	case Q_AND:
4152		/* Inefficient because we do our Calvinball dance twice */
4153		b0 = gen_dnhostop(addr, Q_SRC);
4154		b1 = gen_dnhostop(addr, Q_DST);
4155		gen_and(b0, b1);
4156		return b1;
4157
4158	case Q_OR:
4159	case Q_DEFAULT:
4160		/* Inefficient because we do our Calvinball dance twice */
4161		b0 = gen_dnhostop(addr, Q_SRC);
4162		b1 = gen_dnhostop(addr, Q_DST);
4163		gen_or(b0, b1);
4164		return b1;
4165
4166	case Q_ISO:
4167		bpf_error("ISO host filtering not implemented");
4168
4169	default:
4170		abort();
4171	}
4172	b0 = gen_linktype(ETHERTYPE_DN);
4173	/* Check for pad = 1, long header case */
4174	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4175	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4176	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4177	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4178	gen_and(tmp, b1);
4179	/* Check for pad = 0, long header case */
4180	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4181	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4182	gen_and(tmp, b2);
4183	gen_or(b2, b1);
4184	/* Check for pad = 1, short header case */
4185	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4186	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4187	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4188	gen_and(tmp, b2);
4189	gen_or(b2, b1);
4190	/* Check for pad = 0, short header case */
4191	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4192	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4193	gen_and(tmp, b2);
4194	gen_or(b2, b1);
4195
4196	/* Combine with test for linktype */
4197	gen_and(b0, b1);
4198	return b1;
4199}
4200
4201/*
4202 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4203 * test the bottom-of-stack bit, and then check the version number
4204 * field in the IP header.
4205 */
4206static struct block *
4207gen_mpls_linktype(proto)
4208	int proto;
4209{
4210	struct block *b0, *b1;
4211
4212        switch (proto) {
4213
4214        case Q_IP:
4215                /* match the bottom-of-stack bit */
4216                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4217                /* match the IPv4 version number */
4218                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4219                gen_and(b0, b1);
4220                return b1;
4221
4222       case Q_IPV6:
4223                /* match the bottom-of-stack bit */
4224                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4225                /* match the IPv4 version number */
4226                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4227                gen_and(b0, b1);
4228                return b1;
4229
4230       default:
4231                abort();
4232        }
4233}
4234
4235static struct block *
4236gen_host(addr, mask, proto, dir, type)
4237	bpf_u_int32 addr;
4238	bpf_u_int32 mask;
4239	int proto;
4240	int dir;
4241	int type;
4242{
4243	struct block *b0, *b1;
4244	const char *typestr;
4245
4246	if (type == Q_NET)
4247		typestr = "net";
4248	else
4249		typestr = "host";
4250
4251	switch (proto) {
4252
4253	case Q_DEFAULT:
4254		b0 = gen_host(addr, mask, Q_IP, dir, type);
4255		/*
4256		 * Only check for non-IPv4 addresses if we're not
4257		 * checking MPLS-encapsulated packets.
4258		 */
4259		if (label_stack_depth == 0) {
4260			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4261			gen_or(b0, b1);
4262			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4263			gen_or(b1, b0);
4264		}
4265		return b0;
4266
4267	case Q_IP:
4268		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4269
4270	case Q_RARP:
4271		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4272
4273	case Q_ARP:
4274		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4275
4276	case Q_TCP:
4277		bpf_error("'tcp' modifier applied to %s", typestr);
4278
4279	case Q_SCTP:
4280		bpf_error("'sctp' modifier applied to %s", typestr);
4281
4282	case Q_UDP:
4283		bpf_error("'udp' modifier applied to %s", typestr);
4284
4285	case Q_ICMP:
4286		bpf_error("'icmp' modifier applied to %s", typestr);
4287
4288	case Q_IGMP:
4289		bpf_error("'igmp' modifier applied to %s", typestr);
4290
4291	case Q_IGRP:
4292		bpf_error("'igrp' modifier applied to %s", typestr);
4293
4294	case Q_PIM:
4295		bpf_error("'pim' modifier applied to %s", typestr);
4296
4297	case Q_VRRP:
4298		bpf_error("'vrrp' modifier applied to %s", typestr);
4299
4300	case Q_ATALK:
4301		bpf_error("ATALK host filtering not implemented");
4302
4303	case Q_AARP:
4304		bpf_error("AARP host filtering not implemented");
4305
4306	case Q_DECNET:
4307		return gen_dnhostop(addr, dir);
4308
4309	case Q_SCA:
4310		bpf_error("SCA host filtering not implemented");
4311
4312	case Q_LAT:
4313		bpf_error("LAT host filtering not implemented");
4314
4315	case Q_MOPDL:
4316		bpf_error("MOPDL host filtering not implemented");
4317
4318	case Q_MOPRC:
4319		bpf_error("MOPRC host filtering not implemented");
4320
4321#ifdef INET6
4322	case Q_IPV6:
4323		bpf_error("'ip6' modifier applied to ip host");
4324
4325	case Q_ICMPV6:
4326		bpf_error("'icmp6' modifier applied to %s", typestr);
4327#endif /* INET6 */
4328
4329	case Q_AH:
4330		bpf_error("'ah' modifier applied to %s", typestr);
4331
4332	case Q_ESP:
4333		bpf_error("'esp' modifier applied to %s", typestr);
4334
4335	case Q_ISO:
4336		bpf_error("ISO host filtering not implemented");
4337
4338	case Q_ESIS:
4339		bpf_error("'esis' modifier applied to %s", typestr);
4340
4341	case Q_ISIS:
4342		bpf_error("'isis' modifier applied to %s", typestr);
4343
4344	case Q_CLNP:
4345		bpf_error("'clnp' modifier applied to %s", typestr);
4346
4347	case Q_STP:
4348		bpf_error("'stp' modifier applied to %s", typestr);
4349
4350	case Q_IPX:
4351		bpf_error("IPX host filtering not implemented");
4352
4353	case Q_NETBEUI:
4354		bpf_error("'netbeui' modifier applied to %s", typestr);
4355
4356	case Q_RADIO:
4357		bpf_error("'radio' modifier applied to %s", typestr);
4358
4359	default:
4360		abort();
4361	}
4362	/* NOTREACHED */
4363}
4364
4365#ifdef INET6
4366static struct block *
4367gen_host6(addr, mask, proto, dir, type)
4368	struct in6_addr *addr;
4369	struct in6_addr *mask;
4370	int proto;
4371	int dir;
4372	int type;
4373{
4374	const char *typestr;
4375
4376	if (type == Q_NET)
4377		typestr = "net";
4378	else
4379		typestr = "host";
4380
4381	switch (proto) {
4382
4383	case Q_DEFAULT:
4384		return gen_host6(addr, mask, Q_IPV6, dir, type);
4385
4386	case Q_IP:
4387		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4388
4389	case Q_RARP:
4390		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4391
4392	case Q_ARP:
4393		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4394
4395	case Q_SCTP:
4396		bpf_error("'sctp' modifier applied to %s", typestr);
4397
4398	case Q_TCP:
4399		bpf_error("'tcp' modifier applied to %s", typestr);
4400
4401	case Q_UDP:
4402		bpf_error("'udp' modifier applied to %s", typestr);
4403
4404	case Q_ICMP:
4405		bpf_error("'icmp' modifier applied to %s", typestr);
4406
4407	case Q_IGMP:
4408		bpf_error("'igmp' modifier applied to %s", typestr);
4409
4410	case Q_IGRP:
4411		bpf_error("'igrp' modifier applied to %s", typestr);
4412
4413	case Q_PIM:
4414		bpf_error("'pim' modifier applied to %s", typestr);
4415
4416	case Q_VRRP:
4417		bpf_error("'vrrp' modifier applied to %s", typestr);
4418
4419	case Q_ATALK:
4420		bpf_error("ATALK host filtering not implemented");
4421
4422	case Q_AARP:
4423		bpf_error("AARP host filtering not implemented");
4424
4425	case Q_DECNET:
4426		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4427
4428	case Q_SCA:
4429		bpf_error("SCA host filtering not implemented");
4430
4431	case Q_LAT:
4432		bpf_error("LAT host filtering not implemented");
4433
4434	case Q_MOPDL:
4435		bpf_error("MOPDL host filtering not implemented");
4436
4437	case Q_MOPRC:
4438		bpf_error("MOPRC host filtering not implemented");
4439
4440	case Q_IPV6:
4441		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4442
4443	case Q_ICMPV6:
4444		bpf_error("'icmp6' modifier applied to %s", typestr);
4445
4446	case Q_AH:
4447		bpf_error("'ah' modifier applied to %s", typestr);
4448
4449	case Q_ESP:
4450		bpf_error("'esp' modifier applied to %s", typestr);
4451
4452	case Q_ISO:
4453		bpf_error("ISO host filtering not implemented");
4454
4455	case Q_ESIS:
4456		bpf_error("'esis' modifier applied to %s", typestr);
4457
4458	case Q_ISIS:
4459		bpf_error("'isis' modifier applied to %s", typestr);
4460
4461	case Q_CLNP:
4462		bpf_error("'clnp' modifier applied to %s", typestr);
4463
4464	case Q_STP:
4465		bpf_error("'stp' modifier applied to %s", typestr);
4466
4467	case Q_IPX:
4468		bpf_error("IPX host filtering not implemented");
4469
4470	case Q_NETBEUI:
4471		bpf_error("'netbeui' modifier applied to %s", typestr);
4472
4473	case Q_RADIO:
4474		bpf_error("'radio' modifier applied to %s", typestr);
4475
4476	default:
4477		abort();
4478	}
4479	/* NOTREACHED */
4480}
4481#endif /*INET6*/
4482
4483#ifndef INET6
4484static struct block *
4485gen_gateway(eaddr, alist, proto, dir)
4486	const u_char *eaddr;
4487	bpf_u_int32 **alist;
4488	int proto;
4489	int dir;
4490{
4491	struct block *b0, *b1, *tmp;
4492
4493	if (dir != 0)
4494		bpf_error("direction applied to 'gateway'");
4495
4496	switch (proto) {
4497	case Q_DEFAULT:
4498	case Q_IP:
4499	case Q_ARP:
4500	case Q_RARP:
4501		switch (linktype) {
4502		case DLT_EN10MB:
4503			b0 = gen_ehostop(eaddr, Q_OR);
4504			break;
4505		case DLT_FDDI:
4506			b0 = gen_fhostop(eaddr, Q_OR);
4507			break;
4508		case DLT_IEEE802:
4509			b0 = gen_thostop(eaddr, Q_OR);
4510			break;
4511		case DLT_IEEE802_11:
4512		case DLT_PRISM_HEADER:
4513		case DLT_IEEE802_11_RADIO_AVS:
4514		case DLT_IEEE802_11_RADIO:
4515		case DLT_PPI:
4516			b0 = gen_wlanhostop(eaddr, Q_OR);
4517			break;
4518		case DLT_SUNATM:
4519			if (is_lane) {
4520				/*
4521				 * Check that the packet doesn't begin with an
4522				 * LE Control marker.  (We've already generated
4523				 * a test for LANE.)
4524				 */
4525				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4526				    BPF_H, 0xFF00);
4527				gen_not(b1);
4528
4529				/*
4530				 * Now check the MAC address.
4531				 */
4532				b0 = gen_ehostop(eaddr, Q_OR);
4533				gen_and(b1, b0);
4534			}
4535			break;
4536		case DLT_IP_OVER_FC:
4537			b0 = gen_ipfchostop(eaddr, Q_OR);
4538			break;
4539		default:
4540			bpf_error(
4541			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
4542		}
4543		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4544		while (*alist) {
4545			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4546			    Q_HOST);
4547			gen_or(b1, tmp);
4548			b1 = tmp;
4549		}
4550		gen_not(b1);
4551		gen_and(b0, b1);
4552		return b1;
4553	}
4554	bpf_error("illegal modifier of 'gateway'");
4555	/* NOTREACHED */
4556}
4557#endif
4558
4559struct block *
4560gen_proto_abbrev(proto)
4561	int proto;
4562{
4563	struct block *b0;
4564	struct block *b1;
4565
4566	switch (proto) {
4567
4568	case Q_SCTP:
4569		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4570#ifdef INET6
4571		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4572		gen_or(b0, b1);
4573#endif
4574		break;
4575
4576	case Q_TCP:
4577		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4578#ifdef INET6
4579		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4580		gen_or(b0, b1);
4581#endif
4582		break;
4583
4584	case Q_UDP:
4585		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4586#ifdef INET6
4587		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4588		gen_or(b0, b1);
4589#endif
4590		break;
4591
4592	case Q_ICMP:
4593		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4594		break;
4595
4596#ifndef	IPPROTO_IGMP
4597#define	IPPROTO_IGMP	2
4598#endif
4599
4600	case Q_IGMP:
4601		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4602		break;
4603
4604#ifndef	IPPROTO_IGRP
4605#define	IPPROTO_IGRP	9
4606#endif
4607	case Q_IGRP:
4608		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4609		break;
4610
4611#ifndef IPPROTO_PIM
4612#define IPPROTO_PIM	103
4613#endif
4614
4615	case Q_PIM:
4616		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4617#ifdef INET6
4618		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4619		gen_or(b0, b1);
4620#endif
4621		break;
4622
4623#ifndef IPPROTO_VRRP
4624#define IPPROTO_VRRP	112
4625#endif
4626
4627	case Q_VRRP:
4628		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4629		break;
4630
4631	case Q_IP:
4632		b1 =  gen_linktype(ETHERTYPE_IP);
4633		break;
4634
4635	case Q_ARP:
4636		b1 =  gen_linktype(ETHERTYPE_ARP);
4637		break;
4638
4639	case Q_RARP:
4640		b1 =  gen_linktype(ETHERTYPE_REVARP);
4641		break;
4642
4643	case Q_LINK:
4644		bpf_error("link layer applied in wrong context");
4645
4646	case Q_ATALK:
4647		b1 =  gen_linktype(ETHERTYPE_ATALK);
4648		break;
4649
4650	case Q_AARP:
4651		b1 =  gen_linktype(ETHERTYPE_AARP);
4652		break;
4653
4654	case Q_DECNET:
4655		b1 =  gen_linktype(ETHERTYPE_DN);
4656		break;
4657
4658	case Q_SCA:
4659		b1 =  gen_linktype(ETHERTYPE_SCA);
4660		break;
4661
4662	case Q_LAT:
4663		b1 =  gen_linktype(ETHERTYPE_LAT);
4664		break;
4665
4666	case Q_MOPDL:
4667		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4668		break;
4669
4670	case Q_MOPRC:
4671		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4672		break;
4673
4674#ifdef INET6
4675	case Q_IPV6:
4676		b1 = gen_linktype(ETHERTYPE_IPV6);
4677		break;
4678
4679#ifndef IPPROTO_ICMPV6
4680#define IPPROTO_ICMPV6	58
4681#endif
4682	case Q_ICMPV6:
4683		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4684		break;
4685#endif /* INET6 */
4686
4687#ifndef IPPROTO_AH
4688#define IPPROTO_AH	51
4689#endif
4690	case Q_AH:
4691		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4692#ifdef INET6
4693		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4694		gen_or(b0, b1);
4695#endif
4696		break;
4697
4698#ifndef IPPROTO_ESP
4699#define IPPROTO_ESP	50
4700#endif
4701	case Q_ESP:
4702		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4703#ifdef INET6
4704		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4705		gen_or(b0, b1);
4706#endif
4707		break;
4708
4709	case Q_ISO:
4710		b1 = gen_linktype(LLCSAP_ISONS);
4711		break;
4712
4713	case Q_ESIS:
4714		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4715		break;
4716
4717	case Q_ISIS:
4718		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4719		break;
4720
4721	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4722		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4723		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4724		gen_or(b0, b1);
4725		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4726		gen_or(b0, b1);
4727		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4728		gen_or(b0, b1);
4729		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4730		gen_or(b0, b1);
4731		break;
4732
4733	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4734		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4735		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4736		gen_or(b0, b1);
4737		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4738		gen_or(b0, b1);
4739		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4740		gen_or(b0, b1);
4741		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4742		gen_or(b0, b1);
4743		break;
4744
4745	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4746		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4747		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4748		gen_or(b0, b1);
4749		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4750		gen_or(b0, b1);
4751		break;
4752
4753	case Q_ISIS_LSP:
4754		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4755		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4756		gen_or(b0, b1);
4757		break;
4758
4759	case Q_ISIS_SNP:
4760		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4761		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4762		gen_or(b0, b1);
4763		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4764		gen_or(b0, b1);
4765		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4766		gen_or(b0, b1);
4767		break;
4768
4769	case Q_ISIS_CSNP:
4770		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4771		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4772		gen_or(b0, b1);
4773		break;
4774
4775	case Q_ISIS_PSNP:
4776		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4777		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4778		gen_or(b0, b1);
4779		break;
4780
4781	case Q_CLNP:
4782		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4783		break;
4784
4785	case Q_STP:
4786		b1 = gen_linktype(LLCSAP_8021D);
4787		break;
4788
4789	case Q_IPX:
4790		b1 = gen_linktype(LLCSAP_IPX);
4791		break;
4792
4793	case Q_NETBEUI:
4794		b1 = gen_linktype(LLCSAP_NETBEUI);
4795		break;
4796
4797	case Q_RADIO:
4798		bpf_error("'radio' is not a valid protocol type");
4799
4800	default:
4801		abort();
4802	}
4803	return b1;
4804}
4805
4806static struct block *
4807gen_ipfrag()
4808{
4809	struct slist *s;
4810	struct block *b;
4811
4812	/* not ip frag */
4813	s = gen_load_a(OR_NET, 6, BPF_H);
4814	b = new_block(JMP(BPF_JSET));
4815	b->s.k = 0x1fff;
4816	b->stmts = s;
4817	gen_not(b);
4818
4819	return b;
4820}
4821
4822/*
4823 * Generate a comparison to a port value in the transport-layer header
4824 * at the specified offset from the beginning of that header.
4825 *
4826 * XXX - this handles a variable-length prefix preceding the link-layer
4827 * header, such as the radiotap or AVS radio prefix, but doesn't handle
4828 * variable-length link-layer headers (such as Token Ring or 802.11
4829 * headers).
4830 */
4831static struct block *
4832gen_portatom(off, v)
4833	int off;
4834	bpf_int32 v;
4835{
4836	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
4837}
4838
4839#ifdef INET6
4840static struct block *
4841gen_portatom6(off, v)
4842	int off;
4843	bpf_int32 v;
4844{
4845	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
4846}
4847#endif/*INET6*/
4848
4849struct block *
4850gen_portop(port, proto, dir)
4851	int port, proto, dir;
4852{
4853	struct block *b0, *b1, *tmp;
4854
4855	/* ip proto 'proto' */
4856	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
4857	b0 = gen_ipfrag();
4858	gen_and(tmp, b0);
4859
4860	switch (dir) {
4861	case Q_SRC:
4862		b1 = gen_portatom(0, (bpf_int32)port);
4863		break;
4864
4865	case Q_DST:
4866		b1 = gen_portatom(2, (bpf_int32)port);
4867		break;
4868
4869	case Q_OR:
4870	case Q_DEFAULT:
4871		tmp = gen_portatom(0, (bpf_int32)port);
4872		b1 = gen_portatom(2, (bpf_int32)port);
4873		gen_or(tmp, b1);
4874		break;
4875
4876	case Q_AND:
4877		tmp = gen_portatom(0, (bpf_int32)port);
4878		b1 = gen_portatom(2, (bpf_int32)port);
4879		gen_and(tmp, b1);
4880		break;
4881
4882	default:
4883		abort();
4884	}
4885	gen_and(b0, b1);
4886
4887	return b1;
4888}
4889
4890static struct block *
4891gen_port(port, ip_proto, dir)
4892	int port;
4893	int ip_proto;
4894	int dir;
4895{
4896	struct block *b0, *b1, *tmp;
4897
4898	/*
4899	 * ether proto ip
4900	 *
4901	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
4902	 * not LLC encapsulation with LLCSAP_IP.
4903	 *
4904	 * For IEEE 802 networks - which includes 802.5 token ring
4905	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
4906	 * says that SNAP encapsulation is used, not LLC encapsulation
4907	 * with LLCSAP_IP.
4908	 *
4909	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
4910	 * RFC 2225 say that SNAP encapsulation is used, not LLC
4911	 * encapsulation with LLCSAP_IP.
4912	 *
4913	 * So we always check for ETHERTYPE_IP.
4914	 */
4915	b0 =  gen_linktype(ETHERTYPE_IP);
4916
4917	switch (ip_proto) {
4918	case IPPROTO_UDP:
4919	case IPPROTO_TCP:
4920	case IPPROTO_SCTP:
4921		b1 = gen_portop(port, ip_proto, dir);
4922		break;
4923
4924	case PROTO_UNDEF:
4925		tmp = gen_portop(port, IPPROTO_TCP, dir);
4926		b1 = gen_portop(port, IPPROTO_UDP, dir);
4927		gen_or(tmp, b1);
4928		tmp = gen_portop(port, IPPROTO_SCTP, dir);
4929		gen_or(tmp, b1);
4930		break;
4931
4932	default:
4933		abort();
4934	}
4935	gen_and(b0, b1);
4936	return b1;
4937}
4938
4939#ifdef INET6
4940struct block *
4941gen_portop6(port, proto, dir)
4942	int port, proto, dir;
4943{
4944	struct block *b0, *b1, *tmp;
4945
4946	/* ip6 proto 'proto' */
4947	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
4948
4949	switch (dir) {
4950	case Q_SRC:
4951		b1 = gen_portatom6(0, (bpf_int32)port);
4952		break;
4953
4954	case Q_DST:
4955		b1 = gen_portatom6(2, (bpf_int32)port);
4956		break;
4957
4958	case Q_OR:
4959	case Q_DEFAULT:
4960		tmp = gen_portatom6(0, (bpf_int32)port);
4961		b1 = gen_portatom6(2, (bpf_int32)port);
4962		gen_or(tmp, b1);
4963		break;
4964
4965	case Q_AND:
4966		tmp = gen_portatom6(0, (bpf_int32)port);
4967		b1 = gen_portatom6(2, (bpf_int32)port);
4968		gen_and(tmp, b1);
4969		break;
4970
4971	default:
4972		abort();
4973	}
4974	gen_and(b0, b1);
4975
4976	return b1;
4977}
4978
4979static struct block *
4980gen_port6(port, ip_proto, dir)
4981	int port;
4982	int ip_proto;
4983	int dir;
4984{
4985	struct block *b0, *b1, *tmp;
4986
4987	/* link proto ip6 */
4988	b0 =  gen_linktype(ETHERTYPE_IPV6);
4989
4990	switch (ip_proto) {
4991	case IPPROTO_UDP:
4992	case IPPROTO_TCP:
4993	case IPPROTO_SCTP:
4994		b1 = gen_portop6(port, ip_proto, dir);
4995		break;
4996
4997	case PROTO_UNDEF:
4998		tmp = gen_portop6(port, IPPROTO_TCP, dir);
4999		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5000		gen_or(tmp, b1);
5001		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5002		gen_or(tmp, b1);
5003		break;
5004
5005	default:
5006		abort();
5007	}
5008	gen_and(b0, b1);
5009	return b1;
5010}
5011#endif /* INET6 */
5012
5013/* gen_portrange code */
5014static struct block *
5015gen_portrangeatom(off, v1, v2)
5016	int off;
5017	bpf_int32 v1, v2;
5018{
5019	struct block *b1, *b2;
5020
5021	if (v1 > v2) {
5022		/*
5023		 * Reverse the order of the ports, so v1 is the lower one.
5024		 */
5025		bpf_int32 vtemp;
5026
5027		vtemp = v1;
5028		v1 = v2;
5029		v2 = vtemp;
5030	}
5031
5032	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5033	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5034
5035	gen_and(b1, b2);
5036
5037	return b2;
5038}
5039
5040struct block *
5041gen_portrangeop(port1, port2, proto, dir)
5042	int port1, port2;
5043	int proto;
5044	int dir;
5045{
5046	struct block *b0, *b1, *tmp;
5047
5048	/* ip proto 'proto' */
5049	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5050	b0 = gen_ipfrag();
5051	gen_and(tmp, b0);
5052
5053	switch (dir) {
5054	case Q_SRC:
5055		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5056		break;
5057
5058	case Q_DST:
5059		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5060		break;
5061
5062	case Q_OR:
5063	case Q_DEFAULT:
5064		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5065		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5066		gen_or(tmp, b1);
5067		break;
5068
5069	case Q_AND:
5070		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5071		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5072		gen_and(tmp, b1);
5073		break;
5074
5075	default:
5076		abort();
5077	}
5078	gen_and(b0, b1);
5079
5080	return b1;
5081}
5082
5083static struct block *
5084gen_portrange(port1, port2, ip_proto, dir)
5085	int port1, port2;
5086	int ip_proto;
5087	int dir;
5088{
5089	struct block *b0, *b1, *tmp;
5090
5091	/* link proto ip */
5092	b0 =  gen_linktype(ETHERTYPE_IP);
5093
5094	switch (ip_proto) {
5095	case IPPROTO_UDP:
5096	case IPPROTO_TCP:
5097	case IPPROTO_SCTP:
5098		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5099		break;
5100
5101	case PROTO_UNDEF:
5102		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5103		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5104		gen_or(tmp, b1);
5105		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5106		gen_or(tmp, b1);
5107		break;
5108
5109	default:
5110		abort();
5111	}
5112	gen_and(b0, b1);
5113	return b1;
5114}
5115
5116#ifdef INET6
5117static struct block *
5118gen_portrangeatom6(off, v1, v2)
5119	int off;
5120	bpf_int32 v1, v2;
5121{
5122	struct block *b1, *b2;
5123
5124	if (v1 > v2) {
5125		/*
5126		 * Reverse the order of the ports, so v1 is the lower one.
5127		 */
5128		bpf_int32 vtemp;
5129
5130		vtemp = v1;
5131		v1 = v2;
5132		v2 = vtemp;
5133	}
5134
5135	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5136	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5137
5138	gen_and(b1, b2);
5139
5140	return b2;
5141}
5142
5143struct block *
5144gen_portrangeop6(port1, port2, proto, dir)
5145	int port1, port2;
5146	int proto;
5147	int dir;
5148{
5149	struct block *b0, *b1, *tmp;
5150
5151	/* ip6 proto 'proto' */
5152	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5153
5154	switch (dir) {
5155	case Q_SRC:
5156		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5157		break;
5158
5159	case Q_DST:
5160		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5161		break;
5162
5163	case Q_OR:
5164	case Q_DEFAULT:
5165		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5166		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5167		gen_or(tmp, b1);
5168		break;
5169
5170	case Q_AND:
5171		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5172		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5173		gen_and(tmp, b1);
5174		break;
5175
5176	default:
5177		abort();
5178	}
5179	gen_and(b0, b1);
5180
5181	return b1;
5182}
5183
5184static struct block *
5185gen_portrange6(port1, port2, ip_proto, dir)
5186	int port1, port2;
5187	int ip_proto;
5188	int dir;
5189{
5190	struct block *b0, *b1, *tmp;
5191
5192	/* link proto ip6 */
5193	b0 =  gen_linktype(ETHERTYPE_IPV6);
5194
5195	switch (ip_proto) {
5196	case IPPROTO_UDP:
5197	case IPPROTO_TCP:
5198	case IPPROTO_SCTP:
5199		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5200		break;
5201
5202	case PROTO_UNDEF:
5203		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5204		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5205		gen_or(tmp, b1);
5206		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5207		gen_or(tmp, b1);
5208		break;
5209
5210	default:
5211		abort();
5212	}
5213	gen_and(b0, b1);
5214	return b1;
5215}
5216#endif /* INET6 */
5217
5218static int
5219lookup_proto(name, proto)
5220	register const char *name;
5221	register int proto;
5222{
5223	register int v;
5224
5225	switch (proto) {
5226
5227	case Q_DEFAULT:
5228	case Q_IP:
5229	case Q_IPV6:
5230		v = pcap_nametoproto(name);
5231		if (v == PROTO_UNDEF)
5232			bpf_error("unknown ip proto '%s'", name);
5233		break;
5234
5235	case Q_LINK:
5236		/* XXX should look up h/w protocol type based on linktype */
5237		v = pcap_nametoeproto(name);
5238		if (v == PROTO_UNDEF) {
5239			v = pcap_nametollc(name);
5240			if (v == PROTO_UNDEF)
5241				bpf_error("unknown ether proto '%s'", name);
5242		}
5243		break;
5244
5245	case Q_ISO:
5246		if (strcmp(name, "esis") == 0)
5247			v = ISO9542_ESIS;
5248		else if (strcmp(name, "isis") == 0)
5249			v = ISO10589_ISIS;
5250		else if (strcmp(name, "clnp") == 0)
5251			v = ISO8473_CLNP;
5252		else
5253			bpf_error("unknown osi proto '%s'", name);
5254		break;
5255
5256	default:
5257		v = PROTO_UNDEF;
5258		break;
5259	}
5260	return v;
5261}
5262
5263#if 0
5264struct stmt *
5265gen_joinsp(s, n)
5266	struct stmt **s;
5267	int n;
5268{
5269	return NULL;
5270}
5271#endif
5272
5273static struct block *
5274gen_protochain(v, proto, dir)
5275	int v;
5276	int proto;
5277	int dir;
5278{
5279#ifdef NO_PROTOCHAIN
5280	return gen_proto(v, proto, dir);
5281#else
5282	struct block *b0, *b;
5283	struct slist *s[100];
5284	int fix2, fix3, fix4, fix5;
5285	int ahcheck, again, end;
5286	int i, max;
5287	int reg2 = alloc_reg();
5288
5289	memset(s, 0, sizeof(s));
5290	fix2 = fix3 = fix4 = fix5 = 0;
5291
5292	switch (proto) {
5293	case Q_IP:
5294	case Q_IPV6:
5295		break;
5296	case Q_DEFAULT:
5297		b0 = gen_protochain(v, Q_IP, dir);
5298		b = gen_protochain(v, Q_IPV6, dir);
5299		gen_or(b0, b);
5300		return b;
5301	default:
5302		bpf_error("bad protocol applied for 'protochain'");
5303		/*NOTREACHED*/
5304	}
5305
5306	/*
5307	 * We don't handle variable-length prefixes before the link-layer
5308	 * header, or variable-length link-layer headers, here yet.
5309	 * We might want to add BPF instructions to do the protochain
5310	 * work, to simplify that and, on platforms that have a BPF
5311	 * interpreter with the new instructions, let the filtering
5312	 * be done in the kernel.  (We already require a modified BPF
5313	 * engine to do the protochain stuff, to support backward
5314	 * branches, and backward branch support is unlikely to appear
5315	 * in kernel BPF engines.)
5316	 */
5317	switch (linktype) {
5318
5319	case DLT_IEEE802_11:
5320	case DLT_PRISM_HEADER:
5321	case DLT_IEEE802_11_RADIO_AVS:
5322	case DLT_IEEE802_11_RADIO:
5323	case DLT_PPI:
5324		bpf_error("'protochain' not supported with 802.11");
5325	}
5326
5327	no_optimize = 1; /*this code is not compatible with optimzer yet */
5328
5329	/*
5330	 * s[0] is a dummy entry to protect other BPF insn from damage
5331	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5332	 * hard to find interdependency made by jump table fixup.
5333	 */
5334	i = 0;
5335	s[i] = new_stmt(0);	/*dummy*/
5336	i++;
5337
5338	switch (proto) {
5339	case Q_IP:
5340		b0 = gen_linktype(ETHERTYPE_IP);
5341
5342		/* A = ip->ip_p */
5343		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5344		s[i]->s.k = off_macpl + off_nl + 9;
5345		i++;
5346		/* X = ip->ip_hl << 2 */
5347		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5348		s[i]->s.k = off_macpl + off_nl;
5349		i++;
5350		break;
5351#ifdef INET6
5352	case Q_IPV6:
5353		b0 = gen_linktype(ETHERTYPE_IPV6);
5354
5355		/* A = ip6->ip_nxt */
5356		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5357		s[i]->s.k = off_macpl + off_nl + 6;
5358		i++;
5359		/* X = sizeof(struct ip6_hdr) */
5360		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5361		s[i]->s.k = 40;
5362		i++;
5363		break;
5364#endif
5365	default:
5366		bpf_error("unsupported proto to gen_protochain");
5367		/*NOTREACHED*/
5368	}
5369
5370	/* again: if (A == v) goto end; else fall through; */
5371	again = i;
5372	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5373	s[i]->s.k = v;
5374	s[i]->s.jt = NULL;		/*later*/
5375	s[i]->s.jf = NULL;		/*update in next stmt*/
5376	fix5 = i;
5377	i++;
5378
5379#ifndef IPPROTO_NONE
5380#define IPPROTO_NONE	59
5381#endif
5382	/* if (A == IPPROTO_NONE) goto end */
5383	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5384	s[i]->s.jt = NULL;	/*later*/
5385	s[i]->s.jf = NULL;	/*update in next stmt*/
5386	s[i]->s.k = IPPROTO_NONE;
5387	s[fix5]->s.jf = s[i];
5388	fix2 = i;
5389	i++;
5390
5391#ifdef INET6
5392	if (proto == Q_IPV6) {
5393		int v6start, v6end, v6advance, j;
5394
5395		v6start = i;
5396		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5397		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5398		s[i]->s.jt = NULL;	/*later*/
5399		s[i]->s.jf = NULL;	/*update in next stmt*/
5400		s[i]->s.k = IPPROTO_HOPOPTS;
5401		s[fix2]->s.jf = s[i];
5402		i++;
5403		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5404		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5405		s[i]->s.jt = NULL;	/*later*/
5406		s[i]->s.jf = NULL;	/*update in next stmt*/
5407		s[i]->s.k = IPPROTO_DSTOPTS;
5408		i++;
5409		/* if (A == IPPROTO_ROUTING) goto v6advance */
5410		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5411		s[i]->s.jt = NULL;	/*later*/
5412		s[i]->s.jf = NULL;	/*update in next stmt*/
5413		s[i]->s.k = IPPROTO_ROUTING;
5414		i++;
5415		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5416		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5417		s[i]->s.jt = NULL;	/*later*/
5418		s[i]->s.jf = NULL;	/*later*/
5419		s[i]->s.k = IPPROTO_FRAGMENT;
5420		fix3 = i;
5421		v6end = i;
5422		i++;
5423
5424		/* v6advance: */
5425		v6advance = i;
5426
5427		/*
5428		 * in short,
5429		 * A = P[X];
5430		 * X = X + (P[X + 1] + 1) * 8;
5431		 */
5432		/* A = X */
5433		s[i] = new_stmt(BPF_MISC|BPF_TXA);
5434		i++;
5435		/* A = P[X + packet head] */
5436		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5437		s[i]->s.k = off_macpl + off_nl;
5438		i++;
5439		/* MEM[reg2] = A */
5440		s[i] = new_stmt(BPF_ST);
5441		s[i]->s.k = reg2;
5442		i++;
5443		/* A = X */
5444		s[i] = new_stmt(BPF_MISC|BPF_TXA);
5445		i++;
5446		/* A += 1 */
5447		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5448		s[i]->s.k = 1;
5449		i++;
5450		/* X = A */
5451		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5452		i++;
5453		/* A = P[X + packet head]; */
5454		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5455		s[i]->s.k = off_macpl + off_nl;
5456		i++;
5457		/* A += 1 */
5458		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5459		s[i]->s.k = 1;
5460		i++;
5461		/* A *= 8 */
5462		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5463		s[i]->s.k = 8;
5464		i++;
5465		/* X = A; */
5466		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5467		i++;
5468		/* A = MEM[reg2] */
5469		s[i] = new_stmt(BPF_LD|BPF_MEM);
5470		s[i]->s.k = reg2;
5471		i++;
5472
5473		/* goto again; (must use BPF_JA for backward jump) */
5474		s[i] = new_stmt(BPF_JMP|BPF_JA);
5475		s[i]->s.k = again - i - 1;
5476		s[i - 1]->s.jf = s[i];
5477		i++;
5478
5479		/* fixup */
5480		for (j = v6start; j <= v6end; j++)
5481			s[j]->s.jt = s[v6advance];
5482	} else
5483#endif
5484	{
5485		/* nop */
5486		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5487		s[i]->s.k = 0;
5488		s[fix2]->s.jf = s[i];
5489		i++;
5490	}
5491
5492	/* ahcheck: */
5493	ahcheck = i;
5494	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5495	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5496	s[i]->s.jt = NULL;	/*later*/
5497	s[i]->s.jf = NULL;	/*later*/
5498	s[i]->s.k = IPPROTO_AH;
5499	if (fix3)
5500		s[fix3]->s.jf = s[ahcheck];
5501	fix4 = i;
5502	i++;
5503
5504	/*
5505	 * in short,
5506	 * A = P[X];
5507	 * X = X + (P[X + 1] + 2) * 4;
5508	 */
5509	/* A = X */
5510	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5511	i++;
5512	/* A = P[X + packet head]; */
5513	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5514	s[i]->s.k = off_macpl + off_nl;
5515	i++;
5516	/* MEM[reg2] = A */
5517	s[i] = new_stmt(BPF_ST);
5518	s[i]->s.k = reg2;
5519	i++;
5520	/* A = X */
5521	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5522	i++;
5523	/* A += 1 */
5524	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5525	s[i]->s.k = 1;
5526	i++;
5527	/* X = A */
5528	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5529	i++;
5530	/* A = P[X + packet head] */
5531	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5532	s[i]->s.k = off_macpl + off_nl;
5533	i++;
5534	/* A += 2 */
5535	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5536	s[i]->s.k = 2;
5537	i++;
5538	/* A *= 4 */
5539	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5540	s[i]->s.k = 4;
5541	i++;
5542	/* X = A; */
5543	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5544	i++;
5545	/* A = MEM[reg2] */
5546	s[i] = new_stmt(BPF_LD|BPF_MEM);
5547	s[i]->s.k = reg2;
5548	i++;
5549
5550	/* goto again; (must use BPF_JA for backward jump) */
5551	s[i] = new_stmt(BPF_JMP|BPF_JA);
5552	s[i]->s.k = again - i - 1;
5553	i++;
5554
5555	/* end: nop */
5556	end = i;
5557	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5558	s[i]->s.k = 0;
5559	s[fix2]->s.jt = s[end];
5560	s[fix4]->s.jf = s[end];
5561	s[fix5]->s.jt = s[end];
5562	i++;
5563
5564	/*
5565	 * make slist chain
5566	 */
5567	max = i;
5568	for (i = 0; i < max - 1; i++)
5569		s[i]->next = s[i + 1];
5570	s[max - 1]->next = NULL;
5571
5572	/*
5573	 * emit final check
5574	 */
5575	b = new_block(JMP(BPF_JEQ));
5576	b->stmts = s[1];	/*remember, s[0] is dummy*/
5577	b->s.k = v;
5578
5579	free_reg(reg2);
5580
5581	gen_and(b0, b);
5582	return b;
5583#endif
5584}
5585
5586static struct block *
5587gen_check_802_11_data_frame()
5588{
5589	struct slist *s;
5590	struct block *b0, *b1;
5591
5592	/*
5593	 * A data frame has the 0x08 bit (b3) in the frame control field set
5594	 * and the 0x04 bit (b2) clear.
5595	 */
5596	s = gen_load_a(OR_LINK, 0, BPF_B);
5597	b0 = new_block(JMP(BPF_JSET));
5598	b0->s.k = 0x08;
5599	b0->stmts = s;
5600
5601	s = gen_load_a(OR_LINK, 0, BPF_B);
5602	b1 = new_block(JMP(BPF_JSET));
5603	b1->s.k = 0x04;
5604	b1->stmts = s;
5605	gen_not(b1);
5606
5607	gen_and(b1, b0);
5608
5609	return b0;
5610}
5611
5612/*
5613 * Generate code that checks whether the packet is a packet for protocol
5614 * <proto> and whether the type field in that protocol's header has
5615 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5616 * IP packet and checks the protocol number in the IP header against <v>.
5617 *
5618 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5619 * against Q_IP and Q_IPV6.
5620 */
5621static struct block *
5622gen_proto(v, proto, dir)
5623	int v;
5624	int proto;
5625	int dir;
5626{
5627	struct block *b0, *b1;
5628
5629	if (dir != Q_DEFAULT)
5630		bpf_error("direction applied to 'proto'");
5631
5632	switch (proto) {
5633	case Q_DEFAULT:
5634#ifdef INET6
5635		b0 = gen_proto(v, Q_IP, dir);
5636		b1 = gen_proto(v, Q_IPV6, dir);
5637		gen_or(b0, b1);
5638		return b1;
5639#else
5640		/*FALLTHROUGH*/
5641#endif
5642	case Q_IP:
5643		/*
5644		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5645		 * not LLC encapsulation with LLCSAP_IP.
5646		 *
5647		 * For IEEE 802 networks - which includes 802.5 token ring
5648		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5649		 * says that SNAP encapsulation is used, not LLC encapsulation
5650		 * with LLCSAP_IP.
5651		 *
5652		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5653		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5654		 * encapsulation with LLCSAP_IP.
5655		 *
5656		 * So we always check for ETHERTYPE_IP.
5657		 */
5658		b0 = gen_linktype(ETHERTYPE_IP);
5659#ifndef CHASE_CHAIN
5660		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5661#else
5662		b1 = gen_protochain(v, Q_IP);
5663#endif
5664		gen_and(b0, b1);
5665		return b1;
5666
5667	case Q_ISO:
5668		switch (linktype) {
5669
5670		case DLT_FRELAY:
5671			/*
5672			 * Frame Relay packets typically have an OSI
5673			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5674			 * generates code to check for all the OSI
5675			 * NLPIDs, so calling it and then adding a check
5676			 * for the particular NLPID for which we're
5677			 * looking is bogus, as we can just check for
5678			 * the NLPID.
5679			 *
5680			 * What we check for is the NLPID and a frame
5681			 * control field value of UI, i.e. 0x03 followed
5682			 * by the NLPID.
5683			 *
5684			 * XXX - assumes a 2-byte Frame Relay header with
5685			 * DLCI and flags.  What if the address is longer?
5686			 *
5687			 * XXX - what about SNAP-encapsulated frames?
5688			 */
5689			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5690			/*NOTREACHED*/
5691			break;
5692
5693		case DLT_C_HDLC:
5694			/*
5695			 * Cisco uses an Ethertype lookalike - for OSI,
5696			 * it's 0xfefe.
5697			 */
5698			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5699			/* OSI in C-HDLC is stuffed with a fudge byte */
5700			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5701			gen_and(b0, b1);
5702			return b1;
5703
5704		default:
5705			b0 = gen_linktype(LLCSAP_ISONS);
5706			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5707			gen_and(b0, b1);
5708			return b1;
5709		}
5710
5711	case Q_ISIS:
5712		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5713		/*
5714		 * 4 is the offset of the PDU type relative to the IS-IS
5715		 * header.
5716		 */
5717		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5718		gen_and(b0, b1);
5719		return b1;
5720
5721	case Q_ARP:
5722		bpf_error("arp does not encapsulate another protocol");
5723		/* NOTREACHED */
5724
5725	case Q_RARP:
5726		bpf_error("rarp does not encapsulate another protocol");
5727		/* NOTREACHED */
5728
5729	case Q_ATALK:
5730		bpf_error("atalk encapsulation is not specifiable");
5731		/* NOTREACHED */
5732
5733	case Q_DECNET:
5734		bpf_error("decnet encapsulation is not specifiable");
5735		/* NOTREACHED */
5736
5737	case Q_SCA:
5738		bpf_error("sca does not encapsulate another protocol");
5739		/* NOTREACHED */
5740
5741	case Q_LAT:
5742		bpf_error("lat does not encapsulate another protocol");
5743		/* NOTREACHED */
5744
5745	case Q_MOPRC:
5746		bpf_error("moprc does not encapsulate another protocol");
5747		/* NOTREACHED */
5748
5749	case Q_MOPDL:
5750		bpf_error("mopdl does not encapsulate another protocol");
5751		/* NOTREACHED */
5752
5753	case Q_LINK:
5754		return gen_linktype(v);
5755
5756	case Q_UDP:
5757		bpf_error("'udp proto' is bogus");
5758		/* NOTREACHED */
5759
5760	case Q_TCP:
5761		bpf_error("'tcp proto' is bogus");
5762		/* NOTREACHED */
5763
5764	case Q_SCTP:
5765		bpf_error("'sctp proto' is bogus");
5766		/* NOTREACHED */
5767
5768	case Q_ICMP:
5769		bpf_error("'icmp proto' is bogus");
5770		/* NOTREACHED */
5771
5772	case Q_IGMP:
5773		bpf_error("'igmp proto' is bogus");
5774		/* NOTREACHED */
5775
5776	case Q_IGRP:
5777		bpf_error("'igrp proto' is bogus");
5778		/* NOTREACHED */
5779
5780	case Q_PIM:
5781		bpf_error("'pim proto' is bogus");
5782		/* NOTREACHED */
5783
5784	case Q_VRRP:
5785		bpf_error("'vrrp proto' is bogus");
5786		/* NOTREACHED */
5787
5788#ifdef INET6
5789	case Q_IPV6:
5790		b0 = gen_linktype(ETHERTYPE_IPV6);
5791#ifndef CHASE_CHAIN
5792		b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5793#else
5794		b1 = gen_protochain(v, Q_IPV6);
5795#endif
5796		gen_and(b0, b1);
5797		return b1;
5798
5799	case Q_ICMPV6:
5800		bpf_error("'icmp6 proto' is bogus");
5801#endif /* INET6 */
5802
5803	case Q_AH:
5804		bpf_error("'ah proto' is bogus");
5805
5806	case Q_ESP:
5807		bpf_error("'ah proto' is bogus");
5808
5809	case Q_STP:
5810		bpf_error("'stp proto' is bogus");
5811
5812	case Q_IPX:
5813		bpf_error("'ipx proto' is bogus");
5814
5815	case Q_NETBEUI:
5816		bpf_error("'netbeui proto' is bogus");
5817
5818	case Q_RADIO:
5819		bpf_error("'radio proto' is bogus");
5820
5821	default:
5822		abort();
5823		/* NOTREACHED */
5824	}
5825	/* NOTREACHED */
5826}
5827
5828struct block *
5829gen_scode(name, q)
5830	register const char *name;
5831	struct qual q;
5832{
5833	int proto = q.proto;
5834	int dir = q.dir;
5835	int tproto;
5836	u_char *eaddr;
5837	bpf_u_int32 mask, addr;
5838#ifndef INET6
5839	bpf_u_int32 **alist;
5840#else
5841	int tproto6;
5842	struct sockaddr_in *sin4;
5843	struct sockaddr_in6 *sin6;
5844	struct addrinfo *res, *res0;
5845	struct in6_addr mask128;
5846#endif /*INET6*/
5847	struct block *b, *tmp;
5848	int port, real_proto;
5849	int port1, port2;
5850
5851	switch (q.addr) {
5852
5853	case Q_NET:
5854		addr = pcap_nametonetaddr(name);
5855		if (addr == 0)
5856			bpf_error("unknown network '%s'", name);
5857		/* Left justify network addr and calculate its network mask */
5858		mask = 0xffffffff;
5859		while (addr && (addr & 0xff000000) == 0) {
5860			addr <<= 8;
5861			mask <<= 8;
5862		}
5863		return gen_host(addr, mask, proto, dir, q.addr);
5864
5865	case Q_DEFAULT:
5866	case Q_HOST:
5867		if (proto == Q_LINK) {
5868			switch (linktype) {
5869
5870			case DLT_EN10MB:
5871				eaddr = pcap_ether_hostton(name);
5872				if (eaddr == NULL)
5873					bpf_error(
5874					    "unknown ether host '%s'", name);
5875				b = gen_ehostop(eaddr, dir);
5876				free(eaddr);
5877				return b;
5878
5879			case DLT_FDDI:
5880				eaddr = pcap_ether_hostton(name);
5881				if (eaddr == NULL)
5882					bpf_error(
5883					    "unknown FDDI host '%s'", name);
5884				b = gen_fhostop(eaddr, dir);
5885				free(eaddr);
5886				return b;
5887
5888			case DLT_IEEE802:
5889				eaddr = pcap_ether_hostton(name);
5890				if (eaddr == NULL)
5891					bpf_error(
5892					    "unknown token ring host '%s'", name);
5893				b = gen_thostop(eaddr, dir);
5894				free(eaddr);
5895				return b;
5896
5897			case DLT_IEEE802_11:
5898			case DLT_PRISM_HEADER:
5899			case DLT_IEEE802_11_RADIO_AVS:
5900			case DLT_IEEE802_11_RADIO:
5901			case DLT_PPI:
5902				eaddr = pcap_ether_hostton(name);
5903				if (eaddr == NULL)
5904					bpf_error(
5905					    "unknown 802.11 host '%s'", name);
5906				b = gen_wlanhostop(eaddr, dir);
5907				free(eaddr);
5908				return b;
5909
5910			case DLT_IP_OVER_FC:
5911				eaddr = pcap_ether_hostton(name);
5912				if (eaddr == NULL)
5913					bpf_error(
5914					    "unknown Fibre Channel host '%s'", name);
5915				b = gen_ipfchostop(eaddr, dir);
5916				free(eaddr);
5917				return b;
5918
5919			case DLT_SUNATM:
5920				if (!is_lane)
5921					break;
5922
5923				/*
5924				 * Check that the packet doesn't begin
5925				 * with an LE Control marker.  (We've
5926				 * already generated a test for LANE.)
5927				 */
5928				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
5929				    BPF_H, 0xFF00);
5930				gen_not(tmp);
5931
5932				eaddr = pcap_ether_hostton(name);
5933				if (eaddr == NULL)
5934					bpf_error(
5935					    "unknown ether host '%s'", name);
5936				b = gen_ehostop(eaddr, dir);
5937				gen_and(tmp, b);
5938				free(eaddr);
5939				return b;
5940			}
5941
5942			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
5943		} else if (proto == Q_DECNET) {
5944			unsigned short dn_addr = __pcap_nametodnaddr(name);
5945			/*
5946			 * I don't think DECNET hosts can be multihomed, so
5947			 * there is no need to build up a list of addresses
5948			 */
5949			return (gen_host(dn_addr, 0, proto, dir, q.addr));
5950		} else {
5951#ifndef INET6
5952			alist = pcap_nametoaddr(name);
5953			if (alist == NULL || *alist == NULL)
5954				bpf_error("unknown host '%s'", name);
5955			tproto = proto;
5956			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
5957				tproto = Q_IP;
5958			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
5959			while (*alist) {
5960				tmp = gen_host(**alist++, 0xffffffff,
5961					       tproto, dir, q.addr);
5962				gen_or(b, tmp);
5963				b = tmp;
5964			}
5965			return b;
5966#else
5967			memset(&mask128, 0xff, sizeof(mask128));
5968			res0 = res = pcap_nametoaddrinfo(name);
5969			if (res == NULL)
5970				bpf_error("unknown host '%s'", name);
5971			b = tmp = NULL;
5972			tproto = tproto6 = proto;
5973			if (off_linktype == -1 && tproto == Q_DEFAULT) {
5974				tproto = Q_IP;
5975				tproto6 = Q_IPV6;
5976			}
5977			for (res = res0; res; res = res->ai_next) {
5978				switch (res->ai_family) {
5979				case AF_INET:
5980					if (tproto == Q_IPV6)
5981						continue;
5982
5983					sin4 = (struct sockaddr_in *)
5984						res->ai_addr;
5985					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
5986						0xffffffff, tproto, dir, q.addr);
5987					break;
5988				case AF_INET6:
5989					if (tproto6 == Q_IP)
5990						continue;
5991
5992					sin6 = (struct sockaddr_in6 *)
5993						res->ai_addr;
5994					tmp = gen_host6(&sin6->sin6_addr,
5995						&mask128, tproto6, dir, q.addr);
5996					break;
5997				default:
5998					continue;
5999				}
6000				if (b)
6001					gen_or(b, tmp);
6002				b = tmp;
6003			}
6004			freeaddrinfo(res0);
6005			if (b == NULL) {
6006				bpf_error("unknown host '%s'%s", name,
6007				    (proto == Q_DEFAULT)
6008					? ""
6009					: " for specified address family");
6010			}
6011			return b;
6012#endif /*INET6*/
6013		}
6014
6015	case Q_PORT:
6016		if (proto != Q_DEFAULT &&
6017		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6018			bpf_error("illegal qualifier of 'port'");
6019		if (pcap_nametoport(name, &port, &real_proto) == 0)
6020			bpf_error("unknown port '%s'", name);
6021		if (proto == Q_UDP) {
6022			if (real_proto == IPPROTO_TCP)
6023				bpf_error("port '%s' is tcp", name);
6024			else if (real_proto == IPPROTO_SCTP)
6025				bpf_error("port '%s' is sctp", name);
6026			else
6027				/* override PROTO_UNDEF */
6028				real_proto = IPPROTO_UDP;
6029		}
6030		if (proto == Q_TCP) {
6031			if (real_proto == IPPROTO_UDP)
6032				bpf_error("port '%s' is udp", name);
6033
6034			else if (real_proto == IPPROTO_SCTP)
6035				bpf_error("port '%s' is sctp", name);
6036			else
6037				/* override PROTO_UNDEF */
6038				real_proto = IPPROTO_TCP;
6039		}
6040		if (proto == Q_SCTP) {
6041			if (real_proto == IPPROTO_UDP)
6042				bpf_error("port '%s' is udp", name);
6043
6044			else if (real_proto == IPPROTO_TCP)
6045				bpf_error("port '%s' is tcp", name);
6046			else
6047				/* override PROTO_UNDEF */
6048				real_proto = IPPROTO_SCTP;
6049		}
6050#ifndef INET6
6051		return gen_port(port, real_proto, dir);
6052#else
6053		b = gen_port(port, real_proto, dir);
6054		gen_or(gen_port6(port, real_proto, dir), b);
6055		return b;
6056#endif /* INET6 */
6057
6058	case Q_PORTRANGE:
6059		if (proto != Q_DEFAULT &&
6060		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6061			bpf_error("illegal qualifier of 'portrange'");
6062		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6063			bpf_error("unknown port in range '%s'", name);
6064		if (proto == Q_UDP) {
6065			if (real_proto == IPPROTO_TCP)
6066				bpf_error("port in range '%s' is tcp", name);
6067			else if (real_proto == IPPROTO_SCTP)
6068				bpf_error("port in range '%s' is sctp", name);
6069			else
6070				/* override PROTO_UNDEF */
6071				real_proto = IPPROTO_UDP;
6072		}
6073		if (proto == Q_TCP) {
6074			if (real_proto == IPPROTO_UDP)
6075				bpf_error("port in range '%s' is udp", name);
6076			else if (real_proto == IPPROTO_SCTP)
6077				bpf_error("port in range '%s' is sctp", name);
6078			else
6079				/* override PROTO_UNDEF */
6080				real_proto = IPPROTO_TCP;
6081		}
6082		if (proto == Q_SCTP) {
6083			if (real_proto == IPPROTO_UDP)
6084				bpf_error("port in range '%s' is udp", name);
6085			else if (real_proto == IPPROTO_TCP)
6086				bpf_error("port in range '%s' is tcp", name);
6087			else
6088				/* override PROTO_UNDEF */
6089				real_proto = IPPROTO_SCTP;
6090		}
6091#ifndef INET6
6092		return gen_portrange(port1, port2, real_proto, dir);
6093#else
6094		b = gen_portrange(port1, port2, real_proto, dir);
6095		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6096		return b;
6097#endif /* INET6 */
6098
6099	case Q_GATEWAY:
6100#ifndef INET6
6101		eaddr = pcap_ether_hostton(name);
6102		if (eaddr == NULL)
6103			bpf_error("unknown ether host: %s", name);
6104
6105		alist = pcap_nametoaddr(name);
6106		if (alist == NULL || *alist == NULL)
6107			bpf_error("unknown host '%s'", name);
6108		b = gen_gateway(eaddr, alist, proto, dir);
6109		free(eaddr);
6110		return b;
6111#else
6112		bpf_error("'gateway' not supported in this configuration");
6113#endif /*INET6*/
6114
6115	case Q_PROTO:
6116		real_proto = lookup_proto(name, proto);
6117		if (real_proto >= 0)
6118			return gen_proto(real_proto, proto, dir);
6119		else
6120			bpf_error("unknown protocol: %s", name);
6121
6122	case Q_PROTOCHAIN:
6123		real_proto = lookup_proto(name, proto);
6124		if (real_proto >= 0)
6125			return gen_protochain(real_proto, proto, dir);
6126		else
6127			bpf_error("unknown protocol: %s", name);
6128
6129	case Q_UNDEF:
6130		syntax();
6131		/* NOTREACHED */
6132	}
6133	abort();
6134	/* NOTREACHED */
6135}
6136
6137struct block *
6138gen_mcode(s1, s2, masklen, q)
6139	register const char *s1, *s2;
6140	register int masklen;
6141	struct qual q;
6142{
6143	register int nlen, mlen;
6144	bpf_u_int32 n, m;
6145
6146	nlen = __pcap_atoin(s1, &n);
6147	/* Promote short ipaddr */
6148	n <<= 32 - nlen;
6149
6150	if (s2 != NULL) {
6151		mlen = __pcap_atoin(s2, &m);
6152		/* Promote short ipaddr */
6153		m <<= 32 - mlen;
6154		if ((n & ~m) != 0)
6155			bpf_error("non-network bits set in \"%s mask %s\"",
6156			    s1, s2);
6157	} else {
6158		/* Convert mask len to mask */
6159		if (masklen > 32)
6160			bpf_error("mask length must be <= 32");
6161		if (masklen == 0) {
6162			/*
6163			 * X << 32 is not guaranteed by C to be 0; it's
6164			 * undefined.
6165			 */
6166			m = 0;
6167		} else
6168			m = 0xffffffff << (32 - masklen);
6169		if ((n & ~m) != 0)
6170			bpf_error("non-network bits set in \"%s/%d\"",
6171			    s1, masklen);
6172	}
6173
6174	switch (q.addr) {
6175
6176	case Q_NET:
6177		return gen_host(n, m, q.proto, q.dir, q.addr);
6178
6179	default:
6180		bpf_error("Mask syntax for networks only");
6181		/* NOTREACHED */
6182	}
6183	/* NOTREACHED */
6184	return NULL;
6185}
6186
6187struct block *
6188gen_ncode(s, v, q)
6189	register const char *s;
6190	bpf_u_int32 v;
6191	struct qual q;
6192{
6193	bpf_u_int32 mask;
6194	int proto = q.proto;
6195	int dir = q.dir;
6196	register int vlen;
6197
6198	if (s == NULL)
6199		vlen = 32;
6200	else if (q.proto == Q_DECNET)
6201		vlen = __pcap_atodn(s, &v);
6202	else
6203		vlen = __pcap_atoin(s, &v);
6204
6205	switch (q.addr) {
6206
6207	case Q_DEFAULT:
6208	case Q_HOST:
6209	case Q_NET:
6210		if (proto == Q_DECNET)
6211			return gen_host(v, 0, proto, dir, q.addr);
6212		else if (proto == Q_LINK) {
6213			bpf_error("illegal link layer address");
6214		} else {
6215			mask = 0xffffffff;
6216			if (s == NULL && q.addr == Q_NET) {
6217				/* Promote short net number */
6218				while (v && (v & 0xff000000) == 0) {
6219					v <<= 8;
6220					mask <<= 8;
6221				}
6222			} else {
6223				/* Promote short ipaddr */
6224				v <<= 32 - vlen;
6225				mask <<= 32 - vlen;
6226			}
6227			return gen_host(v, mask, proto, dir, q.addr);
6228		}
6229
6230	case Q_PORT:
6231		if (proto == Q_UDP)
6232			proto = IPPROTO_UDP;
6233		else if (proto == Q_TCP)
6234			proto = IPPROTO_TCP;
6235		else if (proto == Q_SCTP)
6236			proto = IPPROTO_SCTP;
6237		else if (proto == Q_DEFAULT)
6238			proto = PROTO_UNDEF;
6239		else
6240			bpf_error("illegal qualifier of 'port'");
6241
6242#ifndef INET6
6243		return gen_port((int)v, proto, dir);
6244#else
6245	    {
6246		struct block *b;
6247		b = gen_port((int)v, proto, dir);
6248		gen_or(gen_port6((int)v, proto, dir), b);
6249		return b;
6250	    }
6251#endif /* INET6 */
6252
6253	case Q_PORTRANGE:
6254		if (proto == Q_UDP)
6255			proto = IPPROTO_UDP;
6256		else if (proto == Q_TCP)
6257			proto = IPPROTO_TCP;
6258		else if (proto == Q_SCTP)
6259			proto = IPPROTO_SCTP;
6260		else if (proto == Q_DEFAULT)
6261			proto = PROTO_UNDEF;
6262		else
6263			bpf_error("illegal qualifier of 'portrange'");
6264
6265#ifndef INET6
6266		return gen_portrange((int)v, (int)v, proto, dir);
6267#else
6268	    {
6269		struct block *b;
6270		b = gen_portrange((int)v, (int)v, proto, dir);
6271		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6272		return b;
6273	    }
6274#endif /* INET6 */
6275
6276	case Q_GATEWAY:
6277		bpf_error("'gateway' requires a name");
6278		/* NOTREACHED */
6279
6280	case Q_PROTO:
6281		return gen_proto((int)v, proto, dir);
6282
6283	case Q_PROTOCHAIN:
6284		return gen_protochain((int)v, proto, dir);
6285
6286	case Q_UNDEF:
6287		syntax();
6288		/* NOTREACHED */
6289
6290	default:
6291		abort();
6292		/* NOTREACHED */
6293	}
6294	/* NOTREACHED */
6295}
6296
6297#ifdef INET6
6298struct block *
6299gen_mcode6(s1, s2, masklen, q)
6300	register const char *s1, *s2;
6301	register int masklen;
6302	struct qual q;
6303{
6304	struct addrinfo *res;
6305	struct in6_addr *addr;
6306	struct in6_addr mask;
6307	struct block *b;
6308	u_int32_t *a, *m;
6309
6310	if (s2)
6311		bpf_error("no mask %s supported", s2);
6312
6313	res = pcap_nametoaddrinfo(s1);
6314	if (!res)
6315		bpf_error("invalid ip6 address %s", s1);
6316	if (res->ai_next)
6317		bpf_error("%s resolved to multiple address", s1);
6318	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6319
6320	if (sizeof(mask) * 8 < masklen)
6321		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6322	memset(&mask, 0, sizeof(mask));
6323	memset(&mask, 0xff, masklen / 8);
6324	if (masklen % 8) {
6325		mask.s6_addr[masklen / 8] =
6326			(0xff << (8 - masklen % 8)) & 0xff;
6327	}
6328
6329	a = (u_int32_t *)addr;
6330	m = (u_int32_t *)&mask;
6331	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6332	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6333		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6334	}
6335
6336	switch (q.addr) {
6337
6338	case Q_DEFAULT:
6339	case Q_HOST:
6340		if (masklen != 128)
6341			bpf_error("Mask syntax for networks only");
6342		/* FALLTHROUGH */
6343
6344	case Q_NET:
6345		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6346		freeaddrinfo(res);
6347		return b;
6348
6349	default:
6350		bpf_error("invalid qualifier against IPv6 address");
6351		/* NOTREACHED */
6352	}
6353	return NULL;
6354}
6355#endif /*INET6*/
6356
6357struct block *
6358gen_ecode(eaddr, q)
6359	register const u_char *eaddr;
6360	struct qual q;
6361{
6362	struct block *b, *tmp;
6363
6364	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6365		switch (linktype) {
6366		case DLT_EN10MB:
6367			return gen_ehostop(eaddr, (int)q.dir);
6368		case DLT_FDDI:
6369			return gen_fhostop(eaddr, (int)q.dir);
6370		case DLT_IEEE802:
6371			return gen_thostop(eaddr, (int)q.dir);
6372		case DLT_IEEE802_11:
6373		case DLT_PRISM_HEADER:
6374		case DLT_IEEE802_11_RADIO_AVS:
6375		case DLT_IEEE802_11_RADIO:
6376		case DLT_PPI:
6377			return gen_wlanhostop(eaddr, (int)q.dir);
6378		case DLT_SUNATM:
6379			if (is_lane) {
6380				/*
6381				 * Check that the packet doesn't begin with an
6382				 * LE Control marker.  (We've already generated
6383				 * a test for LANE.)
6384				 */
6385				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6386					0xFF00);
6387				gen_not(tmp);
6388
6389				/*
6390				 * Now check the MAC address.
6391				 */
6392				b = gen_ehostop(eaddr, (int)q.dir);
6393				gen_and(tmp, b);
6394				return b;
6395			}
6396			break;
6397		case DLT_IP_OVER_FC:
6398			return gen_ipfchostop(eaddr, (int)q.dir);
6399		default:
6400			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6401			break;
6402		}
6403	}
6404	bpf_error("ethernet address used in non-ether expression");
6405	/* NOTREACHED */
6406	return NULL;
6407}
6408
6409void
6410sappend(s0, s1)
6411	struct slist *s0, *s1;
6412{
6413	/*
6414	 * This is definitely not the best way to do this, but the
6415	 * lists will rarely get long.
6416	 */
6417	while (s0->next)
6418		s0 = s0->next;
6419	s0->next = s1;
6420}
6421
6422static struct slist *
6423xfer_to_x(a)
6424	struct arth *a;
6425{
6426	struct slist *s;
6427
6428	s = new_stmt(BPF_LDX|BPF_MEM);
6429	s->s.k = a->regno;
6430	return s;
6431}
6432
6433static struct slist *
6434xfer_to_a(a)
6435	struct arth *a;
6436{
6437	struct slist *s;
6438
6439	s = new_stmt(BPF_LD|BPF_MEM);
6440	s->s.k = a->regno;
6441	return s;
6442}
6443
6444/*
6445 * Modify "index" to use the value stored into its register as an
6446 * offset relative to the beginning of the header for the protocol
6447 * "proto", and allocate a register and put an item "size" bytes long
6448 * (1, 2, or 4) at that offset into that register, making it the register
6449 * for "index".
6450 */
6451struct arth *
6452gen_load(proto, inst, size)
6453	int proto;
6454	struct arth *inst;
6455	int size;
6456{
6457	struct slist *s, *tmp;
6458	struct block *b;
6459	int regno = alloc_reg();
6460
6461	free_reg(inst->regno);
6462	switch (size) {
6463
6464	default:
6465		bpf_error("data size must be 1, 2, or 4");
6466
6467	case 1:
6468		size = BPF_B;
6469		break;
6470
6471	case 2:
6472		size = BPF_H;
6473		break;
6474
6475	case 4:
6476		size = BPF_W;
6477		break;
6478	}
6479	switch (proto) {
6480	default:
6481		bpf_error("unsupported index operation");
6482
6483	case Q_RADIO:
6484		/*
6485		 * The offset is relative to the beginning of the packet
6486		 * data, if we have a radio header.  (If we don't, this
6487		 * is an error.)
6488		 */
6489		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6490		    linktype != DLT_IEEE802_11_RADIO &&
6491		    linktype != DLT_PRISM_HEADER)
6492			bpf_error("radio information not present in capture");
6493
6494		/*
6495		 * Load into the X register the offset computed into the
6496		 * register specifed by "index".
6497		 */
6498		s = xfer_to_x(inst);
6499
6500		/*
6501		 * Load the item at that offset.
6502		 */
6503		tmp = new_stmt(BPF_LD|BPF_IND|size);
6504		sappend(s, tmp);
6505		sappend(inst->s, s);
6506		break;
6507
6508	case Q_LINK:
6509		/*
6510		 * The offset is relative to the beginning of
6511		 * the link-layer header.
6512		 *
6513		 * XXX - what about ATM LANE?  Should the index be
6514		 * relative to the beginning of the AAL5 frame, so
6515		 * that 0 refers to the beginning of the LE Control
6516		 * field, or relative to the beginning of the LAN
6517		 * frame, so that 0 refers, for Ethernet LANE, to
6518		 * the beginning of the destination address?
6519		 */
6520		s = gen_llprefixlen();
6521
6522		/*
6523		 * If "s" is non-null, it has code to arrange that the
6524		 * X register contains the length of the prefix preceding
6525		 * the link-layer header.  Add to it the offset computed
6526		 * into the register specified by "index", and move that
6527		 * into the X register.  Otherwise, just load into the X
6528		 * register the offset computed into the register specifed
6529		 * by "index".
6530		 */
6531		if (s != NULL) {
6532			sappend(s, xfer_to_a(inst));
6533			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6534			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6535		} else
6536			s = xfer_to_x(inst);
6537
6538		/*
6539		 * Load the item at the sum of the offset we've put in the
6540		 * X register and the offset of the start of the link
6541		 * layer header (which is 0 if the radio header is
6542		 * variable-length; that header length is what we put
6543		 * into the X register and then added to the index).
6544		 */
6545		tmp = new_stmt(BPF_LD|BPF_IND|size);
6546		tmp->s.k = off_ll;
6547		sappend(s, tmp);
6548		sappend(inst->s, s);
6549		break;
6550
6551	case Q_IP:
6552	case Q_ARP:
6553	case Q_RARP:
6554	case Q_ATALK:
6555	case Q_DECNET:
6556	case Q_SCA:
6557	case Q_LAT:
6558	case Q_MOPRC:
6559	case Q_MOPDL:
6560#ifdef INET6
6561	case Q_IPV6:
6562#endif
6563		/*
6564		 * The offset is relative to the beginning of
6565		 * the network-layer header.
6566		 * XXX - are there any cases where we want
6567		 * off_nl_nosnap?
6568		 */
6569		s = gen_off_macpl();
6570
6571		/*
6572		 * If "s" is non-null, it has code to arrange that the
6573		 * X register contains the offset of the MAC-layer
6574		 * payload.  Add to it the offset computed into the
6575		 * register specified by "index", and move that into
6576		 * the X register.  Otherwise, just load into the X
6577		 * register the offset computed into the register specifed
6578		 * by "index".
6579		 */
6580		if (s != NULL) {
6581			sappend(s, xfer_to_a(inst));
6582			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6583			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6584		} else
6585			s = xfer_to_x(inst);
6586
6587		/*
6588		 * Load the item at the sum of the offset we've put in the
6589		 * X register, the offset of the start of the network
6590		 * layer header from the beginning of the MAC-layer
6591		 * payload, and the purported offset of the start of the
6592		 * MAC-layer payload (which might be 0 if there's a
6593		 * variable-length prefix before the link-layer header
6594		 * or the link-layer header itself is variable-length;
6595		 * the variable-length offset of the start of the
6596		 * MAC-layer payload is what we put into the X register
6597		 * and then added to the index).
6598		 */
6599		tmp = new_stmt(BPF_LD|BPF_IND|size);
6600		tmp->s.k = off_macpl + off_nl;
6601		sappend(s, tmp);
6602		sappend(inst->s, s);
6603
6604		/*
6605		 * Do the computation only if the packet contains
6606		 * the protocol in question.
6607		 */
6608		b = gen_proto_abbrev(proto);
6609		if (inst->b)
6610			gen_and(inst->b, b);
6611		inst->b = b;
6612		break;
6613
6614	case Q_SCTP:
6615	case Q_TCP:
6616	case Q_UDP:
6617	case Q_ICMP:
6618	case Q_IGMP:
6619	case Q_IGRP:
6620	case Q_PIM:
6621	case Q_VRRP:
6622		/*
6623		 * The offset is relative to the beginning of
6624		 * the transport-layer header.
6625		 *
6626		 * Load the X register with the length of the IPv4 header
6627		 * (plus the offset of the link-layer header, if it's
6628		 * a variable-length header), in bytes.
6629		 *
6630		 * XXX - are there any cases where we want
6631		 * off_nl_nosnap?
6632		 * XXX - we should, if we're built with
6633		 * IPv6 support, generate code to load either
6634		 * IPv4, IPv6, or both, as appropriate.
6635		 */
6636		s = gen_loadx_iphdrlen();
6637
6638		/*
6639		 * The X register now contains the sum of the length
6640		 * of any variable-length header preceding the link-layer
6641		 * header, any variable-length link-layer header, and the
6642		 * length of the network-layer header.
6643		 *
6644		 * Load into the A register the offset relative to
6645		 * the beginning of the transport layer header,
6646		 * add the X register to that, move that to the
6647		 * X register, and load with an offset from the
6648		 * X register equal to the offset of the network
6649		 * layer header relative to the beginning of
6650		 * the MAC-layer payload plus the fixed-length
6651		 * portion of the offset of the MAC-layer payload
6652		 * from the beginning of the raw packet data.
6653		 */
6654		sappend(s, xfer_to_a(inst));
6655		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6656		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6657		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6658		tmp->s.k = off_macpl + off_nl;
6659		sappend(inst->s, s);
6660
6661		/*
6662		 * Do the computation only if the packet contains
6663		 * the protocol in question - which is true only
6664		 * if this is an IP datagram and is the first or
6665		 * only fragment of that datagram.
6666		 */
6667		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6668		if (inst->b)
6669			gen_and(inst->b, b);
6670#ifdef INET6
6671		gen_and(gen_proto_abbrev(Q_IP), b);
6672#endif
6673		inst->b = b;
6674		break;
6675#ifdef INET6
6676	case Q_ICMPV6:
6677		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6678		/*NOTREACHED*/
6679#endif
6680	}
6681	inst->regno = regno;
6682	s = new_stmt(BPF_ST);
6683	s->s.k = regno;
6684	sappend(inst->s, s);
6685
6686	return inst;
6687}
6688
6689struct block *
6690gen_relation(code, a0, a1, reversed)
6691	int code;
6692	struct arth *a0, *a1;
6693	int reversed;
6694{
6695	struct slist *s0, *s1, *s2;
6696	struct block *b, *tmp;
6697
6698	s0 = xfer_to_x(a1);
6699	s1 = xfer_to_a(a0);
6700	if (code == BPF_JEQ) {
6701		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6702		b = new_block(JMP(code));
6703		sappend(s1, s2);
6704	}
6705	else
6706		b = new_block(BPF_JMP|code|BPF_X);
6707	if (reversed)
6708		gen_not(b);
6709
6710	sappend(s0, s1);
6711	sappend(a1->s, s0);
6712	sappend(a0->s, a1->s);
6713
6714	b->stmts = a0->s;
6715
6716	free_reg(a0->regno);
6717	free_reg(a1->regno);
6718
6719	/* 'and' together protocol checks */
6720	if (a0->b) {
6721		if (a1->b) {
6722			gen_and(a0->b, tmp = a1->b);
6723		}
6724		else
6725			tmp = a0->b;
6726	} else
6727		tmp = a1->b;
6728
6729	if (tmp)
6730		gen_and(tmp, b);
6731
6732	return b;
6733}
6734
6735struct arth *
6736gen_loadlen()
6737{
6738	int regno = alloc_reg();
6739	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6740	struct slist *s;
6741
6742	s = new_stmt(BPF_LD|BPF_LEN);
6743	s->next = new_stmt(BPF_ST);
6744	s->next->s.k = regno;
6745	a->s = s;
6746	a->regno = regno;
6747
6748	return a;
6749}
6750
6751struct arth *
6752gen_loadi(val)
6753	int val;
6754{
6755	struct arth *a;
6756	struct slist *s;
6757	int reg;
6758
6759	a = (struct arth *)newchunk(sizeof(*a));
6760
6761	reg = alloc_reg();
6762
6763	s = new_stmt(BPF_LD|BPF_IMM);
6764	s->s.k = val;
6765	s->next = new_stmt(BPF_ST);
6766	s->next->s.k = reg;
6767	a->s = s;
6768	a->regno = reg;
6769
6770	return a;
6771}
6772
6773struct arth *
6774gen_neg(a)
6775	struct arth *a;
6776{
6777	struct slist *s;
6778
6779	s = xfer_to_a(a);
6780	sappend(a->s, s);
6781	s = new_stmt(BPF_ALU|BPF_NEG);
6782	s->s.k = 0;
6783	sappend(a->s, s);
6784	s = new_stmt(BPF_ST);
6785	s->s.k = a->regno;
6786	sappend(a->s, s);
6787
6788	return a;
6789}
6790
6791struct arth *
6792gen_arth(code, a0, a1)
6793	int code;
6794	struct arth *a0, *a1;
6795{
6796	struct slist *s0, *s1, *s2;
6797
6798	s0 = xfer_to_x(a1);
6799	s1 = xfer_to_a(a0);
6800	s2 = new_stmt(BPF_ALU|BPF_X|code);
6801
6802	sappend(s1, s2);
6803	sappend(s0, s1);
6804	sappend(a1->s, s0);
6805	sappend(a0->s, a1->s);
6806
6807	free_reg(a0->regno);
6808	free_reg(a1->regno);
6809
6810	s0 = new_stmt(BPF_ST);
6811	a0->regno = s0->s.k = alloc_reg();
6812	sappend(a0->s, s0);
6813
6814	return a0;
6815}
6816
6817/*
6818 * Here we handle simple allocation of the scratch registers.
6819 * If too many registers are alloc'd, the allocator punts.
6820 */
6821static int regused[BPF_MEMWORDS];
6822static int curreg;
6823
6824/*
6825 * Initialize the table of used registers and the current register.
6826 */
6827static void
6828init_regs()
6829{
6830	curreg = 0;
6831	memset(regused, 0, sizeof regused);
6832}
6833
6834/*
6835 * Return the next free register.
6836 */
6837static int
6838alloc_reg()
6839{
6840	int n = BPF_MEMWORDS;
6841
6842	while (--n >= 0) {
6843		if (regused[curreg])
6844			curreg = (curreg + 1) % BPF_MEMWORDS;
6845		else {
6846			regused[curreg] = 1;
6847			return curreg;
6848		}
6849	}
6850	bpf_error("too many registers needed to evaluate expression");
6851	/* NOTREACHED */
6852	return 0;
6853}
6854
6855/*
6856 * Return a register to the table so it can
6857 * be used later.
6858 */
6859static void
6860free_reg(n)
6861	int n;
6862{
6863	regused[n] = 0;
6864}
6865
6866static struct block *
6867gen_len(jmp, n)
6868	int jmp, n;
6869{
6870	struct slist *s;
6871	struct block *b;
6872
6873	s = new_stmt(BPF_LD|BPF_LEN);
6874	b = new_block(JMP(jmp));
6875	b->stmts = s;
6876	b->s.k = n;
6877
6878	return b;
6879}
6880
6881struct block *
6882gen_greater(n)
6883	int n;
6884{
6885	return gen_len(BPF_JGE, n);
6886}
6887
6888/*
6889 * Actually, this is less than or equal.
6890 */
6891struct block *
6892gen_less(n)
6893	int n;
6894{
6895	struct block *b;
6896
6897	b = gen_len(BPF_JGT, n);
6898	gen_not(b);
6899
6900	return b;
6901}
6902
6903/*
6904 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
6905 * the beginning of the link-layer header.
6906 * XXX - that means you can't test values in the radiotap header, but
6907 * as that header is difficult if not impossible to parse generally
6908 * without a loop, that might not be a severe problem.  A new keyword
6909 * "radio" could be added for that, although what you'd really want
6910 * would be a way of testing particular radio header values, which
6911 * would generate code appropriate to the radio header in question.
6912 */
6913struct block *
6914gen_byteop(op, idx, val)
6915	int op, idx, val;
6916{
6917	struct block *b;
6918	struct slist *s;
6919
6920	switch (op) {
6921	default:
6922		abort();
6923
6924	case '=':
6925		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6926
6927	case '<':
6928		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6929		return b;
6930
6931	case '>':
6932		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6933		return b;
6934
6935	case '|':
6936		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
6937		break;
6938
6939	case '&':
6940		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
6941		break;
6942	}
6943	s->s.k = val;
6944	b = new_block(JMP(BPF_JEQ));
6945	b->stmts = s;
6946	gen_not(b);
6947
6948	return b;
6949}
6950
6951static u_char abroadcast[] = { 0x0 };
6952
6953struct block *
6954gen_broadcast(proto)
6955	int proto;
6956{
6957	bpf_u_int32 hostmask;
6958	struct block *b0, *b1, *b2;
6959	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
6960
6961	switch (proto) {
6962
6963	case Q_DEFAULT:
6964	case Q_LINK:
6965		switch (linktype) {
6966		case DLT_ARCNET:
6967		case DLT_ARCNET_LINUX:
6968			return gen_ahostop(abroadcast, Q_DST);
6969		case DLT_EN10MB:
6970			return gen_ehostop(ebroadcast, Q_DST);
6971		case DLT_FDDI:
6972			return gen_fhostop(ebroadcast, Q_DST);
6973		case DLT_IEEE802:
6974			return gen_thostop(ebroadcast, Q_DST);
6975		case DLT_IEEE802_11:
6976		case DLT_PRISM_HEADER:
6977		case DLT_IEEE802_11_RADIO_AVS:
6978		case DLT_IEEE802_11_RADIO:
6979		case DLT_PPI:
6980			return gen_wlanhostop(ebroadcast, Q_DST);
6981		case DLT_IP_OVER_FC:
6982			return gen_ipfchostop(ebroadcast, Q_DST);
6983		case DLT_SUNATM:
6984			if (is_lane) {
6985				/*
6986				 * Check that the packet doesn't begin with an
6987				 * LE Control marker.  (We've already generated
6988				 * a test for LANE.)
6989				 */
6990				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6991				    BPF_H, 0xFF00);
6992				gen_not(b1);
6993
6994				/*
6995				 * Now check the MAC address.
6996				 */
6997				b0 = gen_ehostop(ebroadcast, Q_DST);
6998				gen_and(b1, b0);
6999				return b0;
7000			}
7001			break;
7002		default:
7003			bpf_error("not a broadcast link");
7004		}
7005		break;
7006
7007	case Q_IP:
7008		b0 = gen_linktype(ETHERTYPE_IP);
7009		hostmask = ~netmask;
7010		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7011		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7012			      (bpf_int32)(~0 & hostmask), hostmask);
7013		gen_or(b1, b2);
7014		gen_and(b0, b2);
7015		return b2;
7016	}
7017	bpf_error("only link-layer/IP broadcast filters supported");
7018	/* NOTREACHED */
7019	return NULL;
7020}
7021
7022/*
7023 * Generate code to test the low-order bit of a MAC address (that's
7024 * the bottom bit of the *first* byte).
7025 */
7026static struct block *
7027gen_mac_multicast(offset)
7028	int offset;
7029{
7030	register struct block *b0;
7031	register struct slist *s;
7032
7033	/* link[offset] & 1 != 0 */
7034	s = gen_load_a(OR_LINK, offset, BPF_B);
7035	b0 = new_block(JMP(BPF_JSET));
7036	b0->s.k = 1;
7037	b0->stmts = s;
7038	return b0;
7039}
7040
7041struct block *
7042gen_multicast(proto)
7043	int proto;
7044{
7045	register struct block *b0, *b1, *b2;
7046	register struct slist *s;
7047
7048	switch (proto) {
7049
7050	case Q_DEFAULT:
7051	case Q_LINK:
7052		switch (linktype) {
7053		case DLT_ARCNET:
7054		case DLT_ARCNET_LINUX:
7055			/* all ARCnet multicasts use the same address */
7056			return gen_ahostop(abroadcast, Q_DST);
7057		case DLT_EN10MB:
7058			/* ether[0] & 1 != 0 */
7059			return gen_mac_multicast(0);
7060		case DLT_FDDI:
7061			/*
7062			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7063			 *
7064			 * XXX - was that referring to bit-order issues?
7065			 */
7066			/* fddi[1] & 1 != 0 */
7067			return gen_mac_multicast(1);
7068		case DLT_IEEE802:
7069			/* tr[2] & 1 != 0 */
7070			return gen_mac_multicast(2);
7071		case DLT_IEEE802_11:
7072		case DLT_PRISM_HEADER:
7073		case DLT_IEEE802_11_RADIO_AVS:
7074		case DLT_IEEE802_11_RADIO:
7075		case DLT_PPI:
7076			/*
7077			 * Oh, yuk.
7078			 *
7079			 *	For control frames, there is no DA.
7080			 *
7081			 *	For management frames, DA is at an
7082			 *	offset of 4 from the beginning of
7083			 *	the packet.
7084			 *
7085			 *	For data frames, DA is at an offset
7086			 *	of 4 from the beginning of the packet
7087			 *	if To DS is clear and at an offset of
7088			 *	16 from the beginning of the packet
7089			 *	if To DS is set.
7090			 */
7091
7092			/*
7093			 * Generate the tests to be done for data frames.
7094			 *
7095			 * First, check for To DS set, i.e. "link[1] & 0x01".
7096			 */
7097			s = gen_load_a(OR_LINK, 1, BPF_B);
7098			b1 = new_block(JMP(BPF_JSET));
7099			b1->s.k = 0x01;	/* To DS */
7100			b1->stmts = s;
7101
7102			/*
7103			 * If To DS is set, the DA is at 16.
7104			 */
7105			b0 = gen_mac_multicast(16);
7106			gen_and(b1, b0);
7107
7108			/*
7109			 * Now, check for To DS not set, i.e. check
7110			 * "!(link[1] & 0x01)".
7111			 */
7112			s = gen_load_a(OR_LINK, 1, BPF_B);
7113			b2 = new_block(JMP(BPF_JSET));
7114			b2->s.k = 0x01;	/* To DS */
7115			b2->stmts = s;
7116			gen_not(b2);
7117
7118			/*
7119			 * If To DS is not set, the DA is at 4.
7120			 */
7121			b1 = gen_mac_multicast(4);
7122			gen_and(b2, b1);
7123
7124			/*
7125			 * Now OR together the last two checks.  That gives
7126			 * the complete set of checks for data frames.
7127			 */
7128			gen_or(b1, b0);
7129
7130			/*
7131			 * Now check for a data frame.
7132			 * I.e, check "link[0] & 0x08".
7133			 */
7134			s = gen_load_a(OR_LINK, 0, BPF_B);
7135			b1 = new_block(JMP(BPF_JSET));
7136			b1->s.k = 0x08;
7137			b1->stmts = s;
7138
7139			/*
7140			 * AND that with the checks done for data frames.
7141			 */
7142			gen_and(b1, b0);
7143
7144			/*
7145			 * If the high-order bit of the type value is 0, this
7146			 * is a management frame.
7147			 * I.e, check "!(link[0] & 0x08)".
7148			 */
7149			s = gen_load_a(OR_LINK, 0, BPF_B);
7150			b2 = new_block(JMP(BPF_JSET));
7151			b2->s.k = 0x08;
7152			b2->stmts = s;
7153			gen_not(b2);
7154
7155			/*
7156			 * For management frames, the DA is at 4.
7157			 */
7158			b1 = gen_mac_multicast(4);
7159			gen_and(b2, b1);
7160
7161			/*
7162			 * OR that with the checks done for data frames.
7163			 * That gives the checks done for management and
7164			 * data frames.
7165			 */
7166			gen_or(b1, b0);
7167
7168			/*
7169			 * If the low-order bit of the type value is 1,
7170			 * this is either a control frame or a frame
7171			 * with a reserved type, and thus not a
7172			 * frame with an SA.
7173			 *
7174			 * I.e., check "!(link[0] & 0x04)".
7175			 */
7176			s = gen_load_a(OR_LINK, 0, BPF_B);
7177			b1 = new_block(JMP(BPF_JSET));
7178			b1->s.k = 0x04;
7179			b1->stmts = s;
7180			gen_not(b1);
7181
7182			/*
7183			 * AND that with the checks for data and management
7184			 * frames.
7185			 */
7186			gen_and(b1, b0);
7187			return b0;
7188		case DLT_IP_OVER_FC:
7189			b0 = gen_mac_multicast(2);
7190			return b0;
7191		case DLT_SUNATM:
7192			if (is_lane) {
7193				/*
7194				 * Check that the packet doesn't begin with an
7195				 * LE Control marker.  (We've already generated
7196				 * a test for LANE.)
7197				 */
7198				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7199				    BPF_H, 0xFF00);
7200				gen_not(b1);
7201
7202				/* ether[off_mac] & 1 != 0 */
7203				b0 = gen_mac_multicast(off_mac);
7204				gen_and(b1, b0);
7205				return b0;
7206			}
7207			break;
7208		default:
7209			break;
7210		}
7211		/* Link not known to support multicasts */
7212		break;
7213
7214	case Q_IP:
7215		b0 = gen_linktype(ETHERTYPE_IP);
7216		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7217		gen_and(b0, b1);
7218		return b1;
7219
7220#ifdef INET6
7221	case Q_IPV6:
7222		b0 = gen_linktype(ETHERTYPE_IPV6);
7223		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7224		gen_and(b0, b1);
7225		return b1;
7226#endif /* INET6 */
7227	}
7228	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7229	/* NOTREACHED */
7230	return NULL;
7231}
7232
7233/*
7234 * generate command for inbound/outbound.  It's here so we can
7235 * make it link-type specific.  'dir' = 0 implies "inbound",
7236 * = 1 implies "outbound".
7237 */
7238struct block *
7239gen_inbound(dir)
7240	int dir;
7241{
7242	register struct block *b0;
7243
7244	/*
7245	 * Only some data link types support inbound/outbound qualifiers.
7246	 */
7247	switch (linktype) {
7248	case DLT_SLIP:
7249		b0 = gen_relation(BPF_JEQ,
7250			  gen_load(Q_LINK, gen_loadi(0), 1),
7251			  gen_loadi(0),
7252			  dir);
7253		break;
7254
7255	case DLT_LINUX_SLL:
7256		if (dir) {
7257			/*
7258			 * Match packets sent by this machine.
7259			 */
7260			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7261		} else {
7262			/*
7263			 * Match packets sent to this machine.
7264			 * (No broadcast or multicast packets, or
7265			 * packets sent to some other machine and
7266			 * received promiscuously.)
7267			 *
7268			 * XXX - packets sent to other machines probably
7269			 * shouldn't be matched, but what about broadcast
7270			 * or multicast packets we received?
7271			 */
7272			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
7273		}
7274		break;
7275
7276#ifdef HAVE_NET_PFVAR_H
7277	case DLT_PFLOG:
7278		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7279		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7280		break;
7281#endif
7282
7283	case DLT_PPP_PPPD:
7284		if (dir) {
7285			/* match outgoing packets */
7286			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7287		} else {
7288			/* match incoming packets */
7289			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7290		}
7291		break;
7292
7293        case DLT_JUNIPER_MFR:
7294        case DLT_JUNIPER_MLFR:
7295        case DLT_JUNIPER_MLPPP:
7296	case DLT_JUNIPER_ATM1:
7297	case DLT_JUNIPER_ATM2:
7298	case DLT_JUNIPER_PPPOE:
7299	case DLT_JUNIPER_PPPOE_ATM:
7300        case DLT_JUNIPER_GGSN:
7301        case DLT_JUNIPER_ES:
7302        case DLT_JUNIPER_MONITOR:
7303        case DLT_JUNIPER_SERVICES:
7304        case DLT_JUNIPER_ETHER:
7305        case DLT_JUNIPER_PPP:
7306        case DLT_JUNIPER_FRELAY:
7307        case DLT_JUNIPER_CHDLC:
7308        case DLT_JUNIPER_VP:
7309        case DLT_JUNIPER_ST:
7310        case DLT_JUNIPER_ISM:
7311		/* juniper flags (including direction) are stored
7312		 * the byte after the 3-byte magic number */
7313		if (dir) {
7314			/* match outgoing packets */
7315			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7316		} else {
7317			/* match incoming packets */
7318			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7319		}
7320		break;
7321
7322	default:
7323		bpf_error("inbound/outbound not supported on linktype %d",
7324		    linktype);
7325		b0 = NULL;
7326		/* NOTREACHED */
7327	}
7328	return (b0);
7329}
7330
7331#ifdef HAVE_NET_PFVAR_H
7332/* PF firewall log matched interface */
7333struct block *
7334gen_pf_ifname(const char *ifname)
7335{
7336	struct block *b0;
7337	u_int len, off;
7338
7339	if (linktype != DLT_PFLOG) {
7340		bpf_error("ifname supported only on PF linktype");
7341		/* NOTREACHED */
7342	}
7343	len = sizeof(((struct pfloghdr *)0)->ifname);
7344	off = offsetof(struct pfloghdr, ifname);
7345	if (strlen(ifname) >= len) {
7346		bpf_error("ifname interface names can only be %d characters",
7347		    len-1);
7348		/* NOTREACHED */
7349	}
7350	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7351	return (b0);
7352}
7353
7354/* PF firewall log ruleset name */
7355struct block *
7356gen_pf_ruleset(char *ruleset)
7357{
7358	struct block *b0;
7359
7360	if (linktype != DLT_PFLOG) {
7361		bpf_error("ruleset supported only on PF linktype");
7362		/* NOTREACHED */
7363	}
7364
7365	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7366		bpf_error("ruleset names can only be %ld characters",
7367		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7368		/* NOTREACHED */
7369	}
7370
7371	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7372	    strlen(ruleset), (const u_char *)ruleset);
7373	return (b0);
7374}
7375
7376/* PF firewall log rule number */
7377struct block *
7378gen_pf_rnr(int rnr)
7379{
7380	struct block *b0;
7381
7382	if (linktype != DLT_PFLOG) {
7383		bpf_error("rnr supported only on PF linktype");
7384		/* NOTREACHED */
7385	}
7386
7387	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7388		 (bpf_int32)rnr);
7389	return (b0);
7390}
7391
7392/* PF firewall log sub-rule number */
7393struct block *
7394gen_pf_srnr(int srnr)
7395{
7396	struct block *b0;
7397
7398	if (linktype != DLT_PFLOG) {
7399		bpf_error("srnr supported only on PF linktype");
7400		/* NOTREACHED */
7401	}
7402
7403	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7404	    (bpf_int32)srnr);
7405	return (b0);
7406}
7407
7408/* PF firewall log reason code */
7409struct block *
7410gen_pf_reason(int reason)
7411{
7412	struct block *b0;
7413
7414	if (linktype != DLT_PFLOG) {
7415		bpf_error("reason supported only on PF linktype");
7416		/* NOTREACHED */
7417	}
7418
7419	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7420	    (bpf_int32)reason);
7421	return (b0);
7422}
7423
7424/* PF firewall log action */
7425struct block *
7426gen_pf_action(int action)
7427{
7428	struct block *b0;
7429
7430	if (linktype != DLT_PFLOG) {
7431		bpf_error("action supported only on PF linktype");
7432		/* NOTREACHED */
7433	}
7434
7435	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7436	    (bpf_int32)action);
7437	return (b0);
7438}
7439#else /* !HAVE_NET_PFVAR_H */
7440struct block *
7441gen_pf_ifname(const char *ifname)
7442{
7443	bpf_error("libpcap was compiled without pf support");
7444	/* NOTREACHED */
7445	return (NULL);
7446}
7447
7448struct block *
7449gen_pf_ruleset(char *ruleset)
7450{
7451	bpf_error("libpcap was compiled on a machine without pf support");
7452	/* NOTREACHED */
7453	return (NULL);
7454}
7455
7456struct block *
7457gen_pf_rnr(int rnr)
7458{
7459	bpf_error("libpcap was compiled on a machine without pf support");
7460	/* NOTREACHED */
7461	return (NULL);
7462}
7463
7464struct block *
7465gen_pf_srnr(int srnr)
7466{
7467	bpf_error("libpcap was compiled on a machine without pf support");
7468	/* NOTREACHED */
7469	return (NULL);
7470}
7471
7472struct block *
7473gen_pf_reason(int reason)
7474{
7475	bpf_error("libpcap was compiled on a machine without pf support");
7476	/* NOTREACHED */
7477	return (NULL);
7478}
7479
7480struct block *
7481gen_pf_action(int action)
7482{
7483	bpf_error("libpcap was compiled on a machine without pf support");
7484	/* NOTREACHED */
7485	return (NULL);
7486}
7487#endif /* HAVE_NET_PFVAR_H */
7488
7489/* IEEE 802.11 wireless header */
7490struct block *
7491gen_p80211_type(int type, int mask)
7492{
7493	struct block *b0;
7494
7495	switch (linktype) {
7496
7497	case DLT_IEEE802_11:
7498	case DLT_PRISM_HEADER:
7499	case DLT_IEEE802_11_RADIO_AVS:
7500	case DLT_IEEE802_11_RADIO:
7501		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7502		    (bpf_int32)mask);
7503		break;
7504
7505	default:
7506		bpf_error("802.11 link-layer types supported only on 802.11");
7507		/* NOTREACHED */
7508	}
7509
7510	return (b0);
7511}
7512
7513struct block *
7514gen_p80211_fcdir(int fcdir)
7515{
7516	struct block *b0;
7517
7518	switch (linktype) {
7519
7520	case DLT_IEEE802_11:
7521	case DLT_PRISM_HEADER:
7522	case DLT_IEEE802_11_RADIO_AVS:
7523	case DLT_IEEE802_11_RADIO:
7524		break;
7525
7526	default:
7527		bpf_error("frame direction supported only with 802.11 headers");
7528		/* NOTREACHED */
7529	}
7530
7531	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7532		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7533
7534	return (b0);
7535}
7536
7537struct block *
7538gen_acode(eaddr, q)
7539	register const u_char *eaddr;
7540	struct qual q;
7541{
7542	switch (linktype) {
7543
7544	case DLT_ARCNET:
7545	case DLT_ARCNET_LINUX:
7546		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7547		    q.proto == Q_LINK)
7548			return (gen_ahostop(eaddr, (int)q.dir));
7549		else {
7550			bpf_error("ARCnet address used in non-arc expression");
7551			/* NOTREACHED */
7552		}
7553		break;
7554
7555	default:
7556		bpf_error("aid supported only on ARCnet");
7557		/* NOTREACHED */
7558	}
7559	bpf_error("ARCnet address used in non-arc expression");
7560	/* NOTREACHED */
7561	return NULL;
7562}
7563
7564static struct block *
7565gen_ahostop(eaddr, dir)
7566	register const u_char *eaddr;
7567	register int dir;
7568{
7569	register struct block *b0, *b1;
7570
7571	switch (dir) {
7572	/* src comes first, different from Ethernet */
7573	case Q_SRC:
7574		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7575
7576	case Q_DST:
7577		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7578
7579	case Q_AND:
7580		b0 = gen_ahostop(eaddr, Q_SRC);
7581		b1 = gen_ahostop(eaddr, Q_DST);
7582		gen_and(b0, b1);
7583		return b1;
7584
7585	case Q_DEFAULT:
7586	case Q_OR:
7587		b0 = gen_ahostop(eaddr, Q_SRC);
7588		b1 = gen_ahostop(eaddr, Q_DST);
7589		gen_or(b0, b1);
7590		return b1;
7591	}
7592	abort();
7593	/* NOTREACHED */
7594}
7595
7596/*
7597 * support IEEE 802.1Q VLAN trunk over ethernet
7598 */
7599struct block *
7600gen_vlan(vlan_num)
7601	int vlan_num;
7602{
7603	struct	block	*b0, *b1;
7604
7605	/* can't check for VLAN-encapsulated packets inside MPLS */
7606	if (label_stack_depth > 0)
7607		bpf_error("no VLAN match after MPLS");
7608
7609	/*
7610	 * Check for a VLAN packet, and then change the offsets to point
7611	 * to the type and data fields within the VLAN packet.  Just
7612	 * increment the offsets, so that we can support a hierarchy, e.g.
7613	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7614	 * VLAN 100.
7615	 *
7616	 * XXX - this is a bit of a kludge.  If we were to split the
7617	 * compiler into a parser that parses an expression and
7618	 * generates an expression tree, and a code generator that
7619	 * takes an expression tree (which could come from our
7620	 * parser or from some other parser) and generates BPF code,
7621	 * we could perhaps make the offsets parameters of routines
7622	 * and, in the handler for an "AND" node, pass to subnodes
7623	 * other than the VLAN node the adjusted offsets.
7624	 *
7625	 * This would mean that "vlan" would, instead of changing the
7626	 * behavior of *all* tests after it, change only the behavior
7627	 * of tests ANDed with it.  That would change the documented
7628	 * semantics of "vlan", which might break some expressions.
7629	 * However, it would mean that "(vlan and ip) or ip" would check
7630	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7631	 * checking only for VLAN-encapsulated IP, so that could still
7632	 * be considered worth doing; it wouldn't break expressions
7633	 * that are of the form "vlan and ..." or "vlan N and ...",
7634	 * which I suspect are the most common expressions involving
7635	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7636	 * would really want, now, as all the "or ..." tests would
7637	 * be done assuming a VLAN, even though the "or" could be viewed
7638	 * as meaning "or, if this isn't a VLAN packet...".
7639	 */
7640	orig_nl = off_nl;
7641
7642	switch (linktype) {
7643
7644	case DLT_EN10MB:
7645		/* check for VLAN */
7646		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7647		    (bpf_int32)ETHERTYPE_8021Q);
7648
7649		/* If a specific VLAN is requested, check VLAN id */
7650		if (vlan_num >= 0) {
7651			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7652			    (bpf_int32)vlan_num, 0x0fff);
7653			gen_and(b0, b1);
7654			b0 = b1;
7655		}
7656
7657		off_macpl += 4;
7658		off_linktype += 4;
7659#if 0
7660		off_nl_nosnap += 4;
7661		off_nl += 4;
7662#endif
7663		break;
7664
7665	default:
7666		bpf_error("no VLAN support for data link type %d",
7667		      linktype);
7668		/*NOTREACHED*/
7669	}
7670
7671	return (b0);
7672}
7673
7674/*
7675 * support for MPLS
7676 */
7677struct block *
7678gen_mpls(label_num)
7679	int label_num;
7680{
7681	struct	block	*b0,*b1;
7682
7683	/*
7684	 * Change the offsets to point to the type and data fields within
7685	 * the MPLS packet.  Just increment the offsets, so that we
7686	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7687	 * capture packets with an outer label of 100000 and an inner
7688	 * label of 1024.
7689	 *
7690	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
7691	 */
7692        orig_nl = off_nl;
7693
7694        if (label_stack_depth > 0) {
7695            /* just match the bottom-of-stack bit clear */
7696            b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7697        } else {
7698            /*
7699             * Indicate that we're checking MPLS-encapsulated headers,
7700             * to make sure higher level code generators don't try to
7701             * match against IP-related protocols such as Q_ARP, Q_RARP
7702             * etc.
7703             */
7704            switch (linktype) {
7705
7706            case DLT_C_HDLC: /* fall through */
7707            case DLT_EN10MB:
7708                    b0 = gen_linktype(ETHERTYPE_MPLS);
7709                    break;
7710
7711            case DLT_PPP:
7712                    b0 = gen_linktype(PPP_MPLS_UCAST);
7713                    break;
7714
7715                    /* FIXME add other DLT_s ...
7716                     * for Frame-Relay/and ATM this may get messy due to SNAP headers
7717                     * leave it for now */
7718
7719            default:
7720                    bpf_error("no MPLS support for data link type %d",
7721                          linktype);
7722                    b0 = NULL;
7723                    /*NOTREACHED*/
7724                    break;
7725            }
7726        }
7727
7728	/* If a specific MPLS label is requested, check it */
7729	if (label_num >= 0) {
7730		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
7731		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
7732		    0xfffff000); /* only compare the first 20 bits */
7733		gen_and(b0, b1);
7734		b0 = b1;
7735	}
7736
7737        off_nl_nosnap += 4;
7738        off_nl += 4;
7739        label_stack_depth++;
7740	return (b0);
7741}
7742
7743/*
7744 * Support PPPOE discovery and session.
7745 */
7746struct block *
7747gen_pppoed()
7748{
7749	/* check for PPPoE discovery */
7750	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
7751}
7752
7753struct block *
7754gen_pppoes()
7755{
7756	struct block *b0;
7757
7758	/*
7759	 * Test against the PPPoE session link-layer type.
7760	 */
7761	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
7762
7763	/*
7764	 * Change the offsets to point to the type and data fields within
7765	 * the PPP packet, and note that this is PPPoE rather than
7766	 * raw PPP.
7767	 *
7768	 * XXX - this is a bit of a kludge.  If we were to split the
7769	 * compiler into a parser that parses an expression and
7770	 * generates an expression tree, and a code generator that
7771	 * takes an expression tree (which could come from our
7772	 * parser or from some other parser) and generates BPF code,
7773	 * we could perhaps make the offsets parameters of routines
7774	 * and, in the handler for an "AND" node, pass to subnodes
7775	 * other than the PPPoE node the adjusted offsets.
7776	 *
7777	 * This would mean that "pppoes" would, instead of changing the
7778	 * behavior of *all* tests after it, change only the behavior
7779	 * of tests ANDed with it.  That would change the documented
7780	 * semantics of "pppoes", which might break some expressions.
7781	 * However, it would mean that "(pppoes and ip) or ip" would check
7782	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7783	 * checking only for VLAN-encapsulated IP, so that could still
7784	 * be considered worth doing; it wouldn't break expressions
7785	 * that are of the form "pppoes and ..." which I suspect are the
7786	 * most common expressions involving "pppoes".  "pppoes or ..."
7787	 * doesn't necessarily do what the user would really want, now,
7788	 * as all the "or ..." tests would be done assuming PPPoE, even
7789	 * though the "or" could be viewed as meaning "or, if this isn't
7790	 * a PPPoE packet...".
7791	 */
7792	orig_linktype = off_linktype;	/* save original values */
7793	orig_nl = off_nl;
7794	is_pppoes = 1;
7795
7796	/*
7797	 * The "network-layer" protocol is PPPoE, which has a 6-byte
7798	 * PPPoE header, followed by a PPP packet.
7799	 *
7800	 * There is no HDLC encapsulation for the PPP packet (it's
7801	 * encapsulated in PPPoES instead), so the link-layer type
7802	 * starts at the first byte of the PPP packet.  For PPPoE,
7803	 * that offset is relative to the beginning of the total
7804	 * link-layer payload, including any 802.2 LLC header, so
7805	 * it's 6 bytes past off_nl.
7806	 */
7807	off_linktype = off_nl + 6;
7808
7809	/*
7810	 * The network-layer offsets are relative to the beginning
7811	 * of the MAC-layer payload; that's past the 6-byte
7812	 * PPPoE header and the 2-byte PPP header.
7813	 */
7814	off_nl = 6+2;
7815	off_nl_nosnap = 6+2;
7816
7817	return b0;
7818}
7819
7820struct block *
7821gen_atmfield_code(atmfield, jvalue, jtype, reverse)
7822	int atmfield;
7823	bpf_int32 jvalue;
7824	bpf_u_int32 jtype;
7825	int reverse;
7826{
7827	struct block *b0;
7828
7829	switch (atmfield) {
7830
7831	case A_VPI:
7832		if (!is_atm)
7833			bpf_error("'vpi' supported only on raw ATM");
7834		if (off_vpi == (u_int)-1)
7835			abort();
7836		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
7837		    reverse, jvalue);
7838		break;
7839
7840	case A_VCI:
7841		if (!is_atm)
7842			bpf_error("'vci' supported only on raw ATM");
7843		if (off_vci == (u_int)-1)
7844			abort();
7845		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
7846		    reverse, jvalue);
7847		break;
7848
7849	case A_PROTOTYPE:
7850		if (off_proto == (u_int)-1)
7851			abort();	/* XXX - this isn't on FreeBSD */
7852		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
7853		    reverse, jvalue);
7854		break;
7855
7856	case A_MSGTYPE:
7857		if (off_payload == (u_int)-1)
7858			abort();
7859		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
7860		    0xffffffff, jtype, reverse, jvalue);
7861		break;
7862
7863	case A_CALLREFTYPE:
7864		if (!is_atm)
7865			bpf_error("'callref' supported only on raw ATM");
7866		if (off_proto == (u_int)-1)
7867			abort();
7868		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
7869		    jtype, reverse, jvalue);
7870		break;
7871
7872	default:
7873		abort();
7874	}
7875	return b0;
7876}
7877
7878struct block *
7879gen_atmtype_abbrev(type)
7880	int type;
7881{
7882	struct block *b0, *b1;
7883
7884	switch (type) {
7885
7886	case A_METAC:
7887		/* Get all packets in Meta signalling Circuit */
7888		if (!is_atm)
7889			bpf_error("'metac' supported only on raw ATM");
7890		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7891		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
7892		gen_and(b0, b1);
7893		break;
7894
7895	case A_BCC:
7896		/* Get all packets in Broadcast Circuit*/
7897		if (!is_atm)
7898			bpf_error("'bcc' supported only on raw ATM");
7899		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7900		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
7901		gen_and(b0, b1);
7902		break;
7903
7904	case A_OAMF4SC:
7905		/* Get all cells in Segment OAM F4 circuit*/
7906		if (!is_atm)
7907			bpf_error("'oam4sc' supported only on raw ATM");
7908		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7909		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
7910		gen_and(b0, b1);
7911		break;
7912
7913	case A_OAMF4EC:
7914		/* Get all cells in End-to-End OAM F4 Circuit*/
7915		if (!is_atm)
7916			bpf_error("'oam4ec' supported only on raw ATM");
7917		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7918		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
7919		gen_and(b0, b1);
7920		break;
7921
7922	case A_SC:
7923		/*  Get all packets in connection Signalling Circuit */
7924		if (!is_atm)
7925			bpf_error("'sc' supported only on raw ATM");
7926		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7927		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
7928		gen_and(b0, b1);
7929		break;
7930
7931	case A_ILMIC:
7932		/* Get all packets in ILMI Circuit */
7933		if (!is_atm)
7934			bpf_error("'ilmic' supported only on raw ATM");
7935		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7936		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
7937		gen_and(b0, b1);
7938		break;
7939
7940	case A_LANE:
7941		/* Get all LANE packets */
7942		if (!is_atm)
7943			bpf_error("'lane' supported only on raw ATM");
7944		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
7945
7946		/*
7947		 * Arrange that all subsequent tests assume LANE
7948		 * rather than LLC-encapsulated packets, and set
7949		 * the offsets appropriately for LANE-encapsulated
7950		 * Ethernet.
7951		 *
7952		 * "off_mac" is the offset of the Ethernet header,
7953		 * which is 2 bytes past the ATM pseudo-header
7954		 * (skipping the pseudo-header and 2-byte LE Client
7955		 * field).  The other offsets are Ethernet offsets
7956		 * relative to "off_mac".
7957		 */
7958		is_lane = 1;
7959		off_mac = off_payload + 2;	/* MAC header */
7960		off_linktype = off_mac + 12;
7961		off_macpl = off_mac + 14;	/* Ethernet */
7962		off_nl = 0;			/* Ethernet II */
7963		off_nl_nosnap = 3;		/* 802.3+802.2 */
7964		break;
7965
7966	case A_LLC:
7967		/* Get all LLC-encapsulated packets */
7968		if (!is_atm)
7969			bpf_error("'llc' supported only on raw ATM");
7970		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
7971		is_lane = 0;
7972		break;
7973
7974	default:
7975		abort();
7976	}
7977	return b1;
7978}
7979
7980/*
7981 * Filtering for MTP2 messages based on li value
7982 * FISU, length is null
7983 * LSSU, length is 1 or 2
7984 * MSU, length is 3 or more
7985 */
7986struct block *
7987gen_mtp2type_abbrev(type)
7988	int type;
7989{
7990	struct block *b0, *b1;
7991
7992	switch (type) {
7993
7994	case M_FISU:
7995		if ( (linktype != DLT_MTP2) &&
7996		     (linktype != DLT_ERF) &&
7997		     (linktype != DLT_MTP2_WITH_PHDR) )
7998			bpf_error("'fisu' supported only on MTP2");
7999		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8000		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8001		break;
8002
8003	case M_LSSU:
8004		if ( (linktype != DLT_MTP2) &&
8005		     (linktype != DLT_ERF) &&
8006		     (linktype != DLT_MTP2_WITH_PHDR) )
8007			bpf_error("'lssu' supported only on MTP2");
8008		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8009		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8010		gen_and(b1, b0);
8011		break;
8012
8013	case M_MSU:
8014		if ( (linktype != DLT_MTP2) &&
8015		     (linktype != DLT_ERF) &&
8016		     (linktype != DLT_MTP2_WITH_PHDR) )
8017			bpf_error("'msu' supported only on MTP2");
8018		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8019		break;
8020
8021	default:
8022		abort();
8023	}
8024	return b0;
8025}
8026
8027struct block *
8028gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8029	int mtp3field;
8030	bpf_u_int32 jvalue;
8031	bpf_u_int32 jtype;
8032	int reverse;
8033{
8034	struct block *b0;
8035	bpf_u_int32 val1 , val2 , val3;
8036
8037	switch (mtp3field) {
8038
8039	case M_SIO:
8040		if (off_sio == (u_int)-1)
8041			bpf_error("'sio' supported only on SS7");
8042		/* sio coded on 1 byte so max value 255 */
8043		if(jvalue > 255)
8044		        bpf_error("sio value %u too big; max value = 255",
8045		            jvalue);
8046		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8047		    (u_int)jtype, reverse, (u_int)jvalue);
8048		break;
8049
8050        case M_OPC:
8051	        if (off_opc == (u_int)-1)
8052			bpf_error("'opc' supported only on SS7");
8053		/* opc coded on 14 bits so max value 16383 */
8054		if (jvalue > 16383)
8055		        bpf_error("opc value %u too big; max value = 16383",
8056		            jvalue);
8057		/* the following instructions are made to convert jvalue
8058		 * to the form used to write opc in an ss7 message*/
8059		val1 = jvalue & 0x00003c00;
8060		val1 = val1 >>10;
8061		val2 = jvalue & 0x000003fc;
8062		val2 = val2 <<6;
8063		val3 = jvalue & 0x00000003;
8064		val3 = val3 <<22;
8065		jvalue = val1 + val2 + val3;
8066		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8067		    (u_int)jtype, reverse, (u_int)jvalue);
8068		break;
8069
8070	case M_DPC:
8071	        if (off_dpc == (u_int)-1)
8072			bpf_error("'dpc' supported only on SS7");
8073		/* dpc coded on 14 bits so max value 16383 */
8074		if (jvalue > 16383)
8075		        bpf_error("dpc value %u too big; max value = 16383",
8076		            jvalue);
8077		/* the following instructions are made to convert jvalue
8078		 * to the forme used to write dpc in an ss7 message*/
8079		val1 = jvalue & 0x000000ff;
8080		val1 = val1 << 24;
8081		val2 = jvalue & 0x00003f00;
8082		val2 = val2 << 8;
8083		jvalue = val1 + val2;
8084		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8085		    (u_int)jtype, reverse, (u_int)jvalue);
8086		break;
8087
8088	case M_SLS:
8089	        if (off_sls == (u_int)-1)
8090			bpf_error("'sls' supported only on SS7");
8091		/* sls coded on 4 bits so max value 15 */
8092		if (jvalue > 15)
8093		         bpf_error("sls value %u too big; max value = 15",
8094		             jvalue);
8095		/* the following instruction is made to convert jvalue
8096		 * to the forme used to write sls in an ss7 message*/
8097		jvalue = jvalue << 4;
8098		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8099		    (u_int)jtype,reverse, (u_int)jvalue);
8100		break;
8101
8102	default:
8103		abort();
8104	}
8105	return b0;
8106}
8107
8108static struct block *
8109gen_msg_abbrev(type)
8110	int type;
8111{
8112	struct block *b1;
8113
8114	/*
8115	 * Q.2931 signalling protocol messages for handling virtual circuits
8116	 * establishment and teardown
8117	 */
8118	switch (type) {
8119
8120	case A_SETUP:
8121		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8122		break;
8123
8124	case A_CALLPROCEED:
8125		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8126		break;
8127
8128	case A_CONNECT:
8129		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8130		break;
8131
8132	case A_CONNECTACK:
8133		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8134		break;
8135
8136	case A_RELEASE:
8137		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8138		break;
8139
8140	case A_RELEASE_DONE:
8141		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8142		break;
8143
8144	default:
8145		abort();
8146	}
8147	return b1;
8148}
8149
8150struct block *
8151gen_atmmulti_abbrev(type)
8152	int type;
8153{
8154	struct block *b0, *b1;
8155
8156	switch (type) {
8157
8158	case A_OAM:
8159		if (!is_atm)
8160			bpf_error("'oam' supported only on raw ATM");
8161		b1 = gen_atmmulti_abbrev(A_OAMF4);
8162		break;
8163
8164	case A_OAMF4:
8165		if (!is_atm)
8166			bpf_error("'oamf4' supported only on raw ATM");
8167		/* OAM F4 type */
8168		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8169		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8170		gen_or(b0, b1);
8171		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8172		gen_and(b0, b1);
8173		break;
8174
8175	case A_CONNECTMSG:
8176		/*
8177		 * Get Q.2931 signalling messages for switched
8178		 * virtual connection
8179		 */
8180		if (!is_atm)
8181			bpf_error("'connectmsg' supported only on raw ATM");
8182		b0 = gen_msg_abbrev(A_SETUP);
8183		b1 = gen_msg_abbrev(A_CALLPROCEED);
8184		gen_or(b0, b1);
8185		b0 = gen_msg_abbrev(A_CONNECT);
8186		gen_or(b0, b1);
8187		b0 = gen_msg_abbrev(A_CONNECTACK);
8188		gen_or(b0, b1);
8189		b0 = gen_msg_abbrev(A_RELEASE);
8190		gen_or(b0, b1);
8191		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8192		gen_or(b0, b1);
8193		b0 = gen_atmtype_abbrev(A_SC);
8194		gen_and(b0, b1);
8195		break;
8196
8197	case A_METACONNECT:
8198		if (!is_atm)
8199			bpf_error("'metaconnect' supported only on raw ATM");
8200		b0 = gen_msg_abbrev(A_SETUP);
8201		b1 = gen_msg_abbrev(A_CALLPROCEED);
8202		gen_or(b0, b1);
8203		b0 = gen_msg_abbrev(A_CONNECT);
8204		gen_or(b0, b1);
8205		b0 = gen_msg_abbrev(A_RELEASE);
8206		gen_or(b0, b1);
8207		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8208		gen_or(b0, b1);
8209		b0 = gen_atmtype_abbrev(A_METAC);
8210		gen_and(b0, b1);
8211		break;
8212
8213	default:
8214		abort();
8215	}
8216	return b1;
8217}
8218