regex.c revision 131543
1/* Extended regular expression matching and search library,
2   version 0.12.
3   (Implements POSIX draft P1003.2/D11.2, except for some of the
4   internationalization features.)
5   Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
6
7   The GNU C Library is free software; you can redistribute it and/or
8   modify it under the terms of the GNU Library General Public License as
9   published by the Free Software Foundation; either version 2 of the
10   License, or (at your option) any later version.
11
12   The GNU C Library is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15   Library General Public License for more details.
16
17   You should have received a copy of the GNU Library General Public
18   License along with the GNU C Library; see the file COPYING.LIB.  If not,
19   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20   Boston, MA 02111-1307, USA.  */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined _AIX && !defined REGEX_MALLOC
24  #pragma alloca
25#endif
26
27#undef	_GNU_SOURCE
28#define _GNU_SOURCE
29
30#ifdef HAVE_CONFIG_H
31# include <config.h>
32#endif
33
34#ifndef PARAMS
35# if defined __GNUC__ || (defined __STDC__ && __STDC__)
36#  define PARAMS(args) args
37# else
38#  define PARAMS(args) ()
39# endif  /* GCC.  */
40#endif  /* Not PARAMS.  */
41
42#if defined STDC_HEADERS && !defined emacs
43# include <stddef.h>
44#else
45/* We need this for `regex.h', and perhaps for the Emacs include files.  */
46# include <sys/types.h>
47#endif
48
49#define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
50
51/* For platform which support the ISO C amendement 1 functionality we
52   support user defined character classes.  */
53#if defined _LIBC || WIDE_CHAR_SUPPORT
54/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
55# include <wchar.h>
56# include <wctype.h>
57#endif
58
59/* This is for multi byte string support.  */
60#ifdef MBS_SUPPORT
61# define CHAR_TYPE wchar_t
62# define US_CHAR_TYPE wchar_t/* unsigned character type */
63# define COMPILED_BUFFER_VAR wc_buffer
64# define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
65# define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_TYPE)+1)
66# define PUT_CHAR(c) \
67  do {									      \
68    if (MB_CUR_MAX == 1)						      \
69      putchar (c);							      \
70    else								      \
71      printf ("%C", (wint_t) c); /* Should we use wide stream??  */	      \
72  } while (0)
73# define TRUE 1
74# define FALSE 0
75#else
76# define CHAR_TYPE char
77# define US_CHAR_TYPE unsigned char /* unsigned character type */
78# define COMPILED_BUFFER_VAR bufp->buffer
79# define OFFSET_ADDRESS_SIZE 2
80# define PUT_CHAR(c) putchar (c)
81#endif /* MBS_SUPPORT */
82
83#ifdef _LIBC
84/* We have to keep the namespace clean.  */
85# define regfree(preg) __regfree (preg)
86# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
87# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
88# define regerror(errcode, preg, errbuf, errbuf_size) \
89	__regerror(errcode, preg, errbuf, errbuf_size)
90# define re_set_registers(bu, re, nu, st, en) \
91	__re_set_registers (bu, re, nu, st, en)
92# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
93	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
94# define re_match(bufp, string, size, pos, regs) \
95	__re_match (bufp, string, size, pos, regs)
96# define re_search(bufp, string, size, startpos, range, regs) \
97	__re_search (bufp, string, size, startpos, range, regs)
98# define re_compile_pattern(pattern, length, bufp) \
99	__re_compile_pattern (pattern, length, bufp)
100# define re_set_syntax(syntax) __re_set_syntax (syntax)
101# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
102	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
103# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
104
105# define btowc __btowc
106
107/* We are also using some library internals.  */
108# include <locale/localeinfo.h>
109# include <locale/elem-hash.h>
110# include <langinfo.h>
111# include <locale/coll-lookup.h>
112#endif
113
114/* This is for other GNU distributions with internationalized messages.  */
115#if HAVE_LIBINTL_H || defined _LIBC
116# include <libintl.h>
117# ifdef _LIBC
118#  undef gettext
119#  define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
120# endif
121#else
122# define gettext(msgid) (msgid)
123#endif
124
125#ifndef gettext_noop
126/* This define is so xgettext can find the internationalizable
127   strings.  */
128# define gettext_noop(String) String
129#endif
130
131/* The `emacs' switch turns on certain matching commands
132   that make sense only in Emacs. */
133#ifdef emacs
134
135# include "lisp.h"
136# include "buffer.h"
137# include "syntax.h"
138
139#else  /* not emacs */
140
141/* If we are not linking with Emacs proper,
142   we can't use the relocating allocator
143   even if config.h says that we can.  */
144# undef REL_ALLOC
145
146# if defined STDC_HEADERS || defined _LIBC
147#  include <stdlib.h>
148# else
149char *malloc ();
150char *realloc ();
151# endif
152
153/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
154   If nothing else has been done, use the method below.  */
155# ifdef INHIBIT_STRING_HEADER
156#  if !(defined HAVE_BZERO && defined HAVE_BCOPY)
157#   if !defined bzero && !defined bcopy
158#    undef INHIBIT_STRING_HEADER
159#   endif
160#  endif
161# endif
162
163/* This is the normal way of making sure we have a bcopy and a bzero.
164   This is used in most programs--a few other programs avoid this
165   by defining INHIBIT_STRING_HEADER.  */
166# ifndef INHIBIT_STRING_HEADER
167#  if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
168#   include <string.h>
169#   ifndef bzero
170#    ifndef _LIBC
171#     define bzero(s, n)	(memset (s, '\0', n), (s))
172#    else
173#     define bzero(s, n)	__bzero (s, n)
174#    endif
175#   endif
176#  else
177#   include <strings.h>
178#   ifndef memcmp
179#    define memcmp(s1, s2, n)	bcmp (s1, s2, n)
180#   endif
181#   ifndef memcpy
182#    define memcpy(d, s, n)	(bcopy (s, d, n), (d))
183#   endif
184#  endif
185# endif
186
187/* Define the syntax stuff for \<, \>, etc.  */
188
189/* This must be nonzero for the wordchar and notwordchar pattern
190   commands in re_match_2.  */
191# ifndef Sword
192#  define Sword 1
193# endif
194
195# ifdef SWITCH_ENUM_BUG
196#  define SWITCH_ENUM_CAST(x) ((int)(x))
197# else
198#  define SWITCH_ENUM_CAST(x) (x)
199# endif
200
201#endif /* not emacs */
202
203#if defined _LIBC || HAVE_LIMITS_H
204# include <limits.h>
205#endif
206
207#ifndef MB_LEN_MAX
208# define MB_LEN_MAX 1
209#endif
210
211/* Get the interface, including the syntax bits.  */
212#include <regex.h>
213
214/* isalpha etc. are used for the character classes.  */
215#include <ctype.h>
216
217/* Jim Meyering writes:
218
219   "... Some ctype macros are valid only for character codes that
220   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
221   using /bin/cc or gcc but without giving an ansi option).  So, all
222   ctype uses should be through macros like ISPRINT...  If
223   STDC_HEADERS is defined, then autoconf has verified that the ctype
224   macros don't need to be guarded with references to isascii. ...
225   Defining isascii to 1 should let any compiler worth its salt
226   eliminate the && through constant folding."
227   Solaris defines some of these symbols so we must undefine them first.  */
228
229#undef ISASCII
230#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
231# define ISASCII(c) 1
232#else
233# define ISASCII(c) isascii(c)
234#endif
235
236#ifdef isblank
237# define ISBLANK(c) (ISASCII (c) && isblank (c))
238#else
239# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
240#endif
241#ifdef isgraph
242# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
243#else
244# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
245#endif
246
247#undef ISPRINT
248#define ISPRINT(c) (ISASCII (c) && isprint (c))
249#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
250#define ISALNUM(c) (ISASCII (c) && isalnum (c))
251#define ISALPHA(c) (ISASCII (c) && isalpha (c))
252#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
253#define ISLOWER(c) (ISASCII (c) && islower (c))
254#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
255#define ISSPACE(c) (ISASCII (c) && isspace (c))
256#define ISUPPER(c) (ISASCII (c) && isupper (c))
257#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
258
259#ifdef _tolower
260# define TOLOWER(c) _tolower(c)
261#else
262# define TOLOWER(c) tolower(c)
263#endif
264
265#ifndef NULL
266# define NULL (void *)0
267#endif
268
269/* We remove any previous definition of `SIGN_EXTEND_CHAR',
270   since ours (we hope) works properly with all combinations of
271   machines, compilers, `char' and `unsigned char' argument types.
272   (Per Bothner suggested the basic approach.)  */
273#undef SIGN_EXTEND_CHAR
274#if __STDC__
275# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
276#else  /* not __STDC__ */
277/* As in Harbison and Steele.  */
278# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
279#endif
280
281#ifndef emacs
282/* How many characters in the character set.  */
283# define CHAR_SET_SIZE 256
284
285# ifdef SYNTAX_TABLE
286
287extern char *re_syntax_table;
288
289# else /* not SYNTAX_TABLE */
290
291static char re_syntax_table[CHAR_SET_SIZE];
292
293static void init_syntax_once PARAMS ((void));
294
295static void
296init_syntax_once ()
297{
298   register int c;
299   static int done = 0;
300
301   if (done)
302     return;
303   bzero (re_syntax_table, sizeof re_syntax_table);
304
305   for (c = 0; c < CHAR_SET_SIZE; ++c)
306     if (ISALNUM (c))
307	re_syntax_table[c] = Sword;
308
309   re_syntax_table['_'] = Sword;
310
311   done = 1;
312}
313
314# endif /* not SYNTAX_TABLE */
315
316# define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
317
318#endif /* emacs */
319
320/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
321   use `alloca' instead of `malloc'.  This is because using malloc in
322   re_search* or re_match* could cause memory leaks when C-g is used in
323   Emacs; also, malloc is slower and causes storage fragmentation.  On
324   the other hand, malloc is more portable, and easier to debug.
325
326   Because we sometimes use alloca, some routines have to be macros,
327   not functions -- `alloca'-allocated space disappears at the end of the
328   function it is called in.  */
329
330#ifdef REGEX_MALLOC
331
332# define REGEX_ALLOCATE malloc
333# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
334# define REGEX_FREE free
335
336#else /* not REGEX_MALLOC  */
337
338/* Emacs already defines alloca, sometimes.  */
339# ifndef alloca
340
341/* Make alloca work the best possible way.  */
342#  ifdef __GNUC__
343#   define alloca __builtin_alloca
344#  else /* not __GNUC__ */
345#   if HAVE_ALLOCA_H
346#    include <alloca.h>
347#   endif /* HAVE_ALLOCA_H */
348#  endif /* not __GNUC__ */
349
350# endif /* not alloca */
351
352# define REGEX_ALLOCATE alloca
353
354/* Assumes a `char *destination' variable.  */
355# define REGEX_REALLOCATE(source, osize, nsize)				\
356  (destination = (char *) alloca (nsize),				\
357   memcpy (destination, source, osize))
358
359/* No need to do anything to free, after alloca.  */
360# define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
361
362#endif /* not REGEX_MALLOC */
363
364/* Define how to allocate the failure stack.  */
365
366#if defined REL_ALLOC && defined REGEX_MALLOC
367
368# define REGEX_ALLOCATE_STACK(size)				\
369  r_alloc (&failure_stack_ptr, (size))
370# define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
371  r_re_alloc (&failure_stack_ptr, (nsize))
372# define REGEX_FREE_STACK(ptr)					\
373  r_alloc_free (&failure_stack_ptr)
374
375#else /* not using relocating allocator */
376
377# ifdef REGEX_MALLOC
378
379#  define REGEX_ALLOCATE_STACK malloc
380#  define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
381#  define REGEX_FREE_STACK free
382
383# else /* not REGEX_MALLOC */
384
385#  define REGEX_ALLOCATE_STACK alloca
386
387#  define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
388   REGEX_REALLOCATE (source, osize, nsize)
389/* No need to explicitly free anything.  */
390#  define REGEX_FREE_STACK(arg)
391
392# endif /* not REGEX_MALLOC */
393#endif /* not using relocating allocator */
394
395
396/* True if `size1' is non-NULL and PTR is pointing anywhere inside
397   `string1' or just past its end.  This works if PTR is NULL, which is
398   a good thing.  */
399#define FIRST_STRING_P(ptr) 					\
400  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
401
402/* (Re)Allocate N items of type T using malloc, or fail.  */
403#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
404#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
405#define RETALLOC_IF(addr, n, t) \
406  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
407#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
408
409#define BYTEWIDTH 8 /* In bits.  */
410
411#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
412
413#undef MAX
414#undef MIN
415#define MAX(a, b) ((a) > (b) ? (a) : (b))
416#define MIN(a, b) ((a) < (b) ? (a) : (b))
417
418typedef char boolean;
419#define false 0
420#define true 1
421
422static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
423					const char *string1, int size1,
424					const char *string2, int size2,
425					int pos,
426					struct re_registers *regs,
427					int stop));
428
429/* These are the command codes that appear in compiled regular
430   expressions.  Some opcodes are followed by argument bytes.  A
431   command code can specify any interpretation whatsoever for its
432   arguments.  Zero bytes may appear in the compiled regular expression.  */
433
434typedef enum
435{
436  no_op = 0,
437
438  /* Succeed right away--no more backtracking.  */
439  succeed,
440
441        /* Followed by one byte giving n, then by n literal bytes.  */
442  exactn,
443
444#ifdef MBS_SUPPORT
445	/* Same as exactn, but contains binary data.  */
446  exactn_bin,
447#endif
448
449        /* Matches any (more or less) character.  */
450  anychar,
451
452        /* Matches any one char belonging to specified set.  First
453           following byte is number of bitmap bytes.  Then come bytes
454           for a bitmap saying which chars are in.  Bits in each byte
455           are ordered low-bit-first.  A character is in the set if its
456           bit is 1.  A character too large to have a bit in the map is
457           automatically not in the set.  */
458        /* ifdef MBS_SUPPORT, following element is length of character
459	   classes, length of collating symbols, length of equivalence
460	   classes, length of character ranges, and length of characters.
461	   Next, character class element, collating symbols elements,
462	   equivalence class elements, range elements, and character
463	   elements follow.
464	   See regex_compile function.  */
465  charset,
466
467        /* Same parameters as charset, but match any character that is
468           not one of those specified.  */
469  charset_not,
470
471        /* Start remembering the text that is matched, for storing in a
472           register.  Followed by one byte with the register number, in
473           the range 0 to one less than the pattern buffer's re_nsub
474           field.  Then followed by one byte with the number of groups
475           inner to this one.  (This last has to be part of the
476           start_memory only because we need it in the on_failure_jump
477           of re_match_2.)  */
478  start_memory,
479
480        /* Stop remembering the text that is matched and store it in a
481           memory register.  Followed by one byte with the register
482           number, in the range 0 to one less than `re_nsub' in the
483           pattern buffer, and one byte with the number of inner groups,
484           just like `start_memory'.  (We need the number of inner
485           groups here because we don't have any easy way of finding the
486           corresponding start_memory when we're at a stop_memory.)  */
487  stop_memory,
488
489        /* Match a duplicate of something remembered. Followed by one
490           byte containing the register number.  */
491  duplicate,
492
493        /* Fail unless at beginning of line.  */
494  begline,
495
496        /* Fail unless at end of line.  */
497  endline,
498
499        /* Succeeds if at beginning of buffer (if emacs) or at beginning
500           of string to be matched (if not).  */
501  begbuf,
502
503        /* Analogously, for end of buffer/string.  */
504  endbuf,
505
506        /* Followed by two byte relative address to which to jump.  */
507  jump,
508
509	/* Same as jump, but marks the end of an alternative.  */
510  jump_past_alt,
511
512        /* Followed by two-byte relative address of place to resume at
513           in case of failure.  */
514        /* ifdef MBS_SUPPORT, the size of address is 1.  */
515  on_failure_jump,
516
517        /* Like on_failure_jump, but pushes a placeholder instead of the
518           current string position when executed.  */
519  on_failure_keep_string_jump,
520
521        /* Throw away latest failure point and then jump to following
522           two-byte relative address.  */
523        /* ifdef MBS_SUPPORT, the size of address is 1.  */
524  pop_failure_jump,
525
526        /* Change to pop_failure_jump if know won't have to backtrack to
527           match; otherwise change to jump.  This is used to jump
528           back to the beginning of a repeat.  If what follows this jump
529           clearly won't match what the repeat does, such that we can be
530           sure that there is no use backtracking out of repetitions
531           already matched, then we change it to a pop_failure_jump.
532           Followed by two-byte address.  */
533        /* ifdef MBS_SUPPORT, the size of address is 1.  */
534  maybe_pop_jump,
535
536        /* Jump to following two-byte address, and push a dummy failure
537           point. This failure point will be thrown away if an attempt
538           is made to use it for a failure.  A `+' construct makes this
539           before the first repeat.  Also used as an intermediary kind
540           of jump when compiling an alternative.  */
541        /* ifdef MBS_SUPPORT, the size of address is 1.  */
542  dummy_failure_jump,
543
544	/* Push a dummy failure point and continue.  Used at the end of
545	   alternatives.  */
546  push_dummy_failure,
547
548        /* Followed by two-byte relative address and two-byte number n.
549           After matching N times, jump to the address upon failure.  */
550        /* ifdef MBS_SUPPORT, the size of address is 1.  */
551  succeed_n,
552
553        /* Followed by two-byte relative address, and two-byte number n.
554           Jump to the address N times, then fail.  */
555        /* ifdef MBS_SUPPORT, the size of address is 1.  */
556  jump_n,
557
558        /* Set the following two-byte relative address to the
559           subsequent two-byte number.  The address *includes* the two
560           bytes of number.  */
561        /* ifdef MBS_SUPPORT, the size of address is 1.  */
562  set_number_at,
563
564  wordchar,	/* Matches any word-constituent character.  */
565  notwordchar,	/* Matches any char that is not a word-constituent.  */
566
567  wordbeg,	/* Succeeds if at word beginning.  */
568  wordend,	/* Succeeds if at word end.  */
569
570  wordbound,	/* Succeeds if at a word boundary.  */
571  notwordbound	/* Succeeds if not at a word boundary.  */
572
573#ifdef emacs
574  ,before_dot,	/* Succeeds if before point.  */
575  at_dot,	/* Succeeds if at point.  */
576  after_dot,	/* Succeeds if after point.  */
577
578	/* Matches any character whose syntax is specified.  Followed by
579           a byte which contains a syntax code, e.g., Sword.  */
580  syntaxspec,
581
582	/* Matches any character whose syntax is not that specified.  */
583  notsyntaxspec
584#endif /* emacs */
585} re_opcode_t;
586
587/* Common operations on the compiled pattern.  */
588
589/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
590/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
591
592#ifdef MBS_SUPPORT
593# define STORE_NUMBER(destination, number)				\
594  do {									\
595    *(destination) = (US_CHAR_TYPE)(number);				\
596  } while (0)
597#else
598# define STORE_NUMBER(destination, number)				\
599  do {									\
600    (destination)[0] = (number) & 0377;					\
601    (destination)[1] = (number) >> 8;					\
602  } while (0)
603#endif /* MBS_SUPPORT */
604
605/* Same as STORE_NUMBER, except increment DESTINATION to
606   the byte after where the number is stored.  Therefore, DESTINATION
607   must be an lvalue.  */
608/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
609
610#define STORE_NUMBER_AND_INCR(destination, number)			\
611  do {									\
612    STORE_NUMBER (destination, number);					\
613    (destination) += OFFSET_ADDRESS_SIZE;				\
614  } while (0)
615
616/* Put into DESTINATION a number stored in two contiguous bytes starting
617   at SOURCE.  */
618/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
619
620#ifdef MBS_SUPPORT
621# define EXTRACT_NUMBER(destination, source)				\
622  do {									\
623    (destination) = *(source);						\
624  } while (0)
625#else
626# define EXTRACT_NUMBER(destination, source)				\
627  do {									\
628    (destination) = *(source) & 0377;					\
629    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
630  } while (0)
631#endif
632
633#ifdef DEBUG
634static void extract_number _RE_ARGS ((int *dest, US_CHAR_TYPE *source));
635static void
636extract_number (dest, source)
637    int *dest;
638    US_CHAR_TYPE *source;
639{
640#ifdef MBS_SUPPORT
641  *dest = *source;
642#else
643  int temp = SIGN_EXTEND_CHAR (*(source + 1));
644  *dest = *source & 0377;
645  *dest += temp << 8;
646#endif
647}
648
649# ifndef EXTRACT_MACROS /* To debug the macros.  */
650#  undef EXTRACT_NUMBER
651#  define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
652# endif /* not EXTRACT_MACROS */
653
654#endif /* DEBUG */
655
656/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
657   SOURCE must be an lvalue.  */
658
659#define EXTRACT_NUMBER_AND_INCR(destination, source)			\
660  do {									\
661    EXTRACT_NUMBER (destination, source);				\
662    (source) += OFFSET_ADDRESS_SIZE; 					\
663  } while (0)
664
665#ifdef DEBUG
666static void extract_number_and_incr _RE_ARGS ((int *destination,
667					       US_CHAR_TYPE **source));
668static void
669extract_number_and_incr (destination, source)
670    int *destination;
671    US_CHAR_TYPE **source;
672{
673  extract_number (destination, *source);
674  *source += OFFSET_ADDRESS_SIZE;
675}
676
677# ifndef EXTRACT_MACROS
678#  undef EXTRACT_NUMBER_AND_INCR
679#  define EXTRACT_NUMBER_AND_INCR(dest, src) \
680  extract_number_and_incr (&dest, &src)
681# endif /* not EXTRACT_MACROS */
682
683#endif /* DEBUG */
684
685/* If DEBUG is defined, Regex prints many voluminous messages about what
686   it is doing (if the variable `debug' is nonzero).  If linked with the
687   main program in `iregex.c', you can enter patterns and strings
688   interactively.  And if linked with the main program in `main.c' and
689   the other test files, you can run the already-written tests.  */
690
691#ifdef DEBUG
692
693/* We use standard I/O for debugging.  */
694# include <stdio.h>
695
696/* It is useful to test things that ``must'' be true when debugging.  */
697# include <assert.h>
698
699static int debug;
700
701# define DEBUG_STATEMENT(e) e
702# define DEBUG_PRINT1(x) if (debug) printf (x)
703# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
704# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
705# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
706# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 				\
707  if (debug) print_partial_compiled_pattern (s, e)
708# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
709  if (debug) print_double_string (w, s1, sz1, s2, sz2)
710
711
712/* Print the fastmap in human-readable form.  */
713
714void
715print_fastmap (fastmap)
716    char *fastmap;
717{
718  unsigned was_a_range = 0;
719  unsigned i = 0;
720
721  while (i < (1 << BYTEWIDTH))
722    {
723      if (fastmap[i++])
724	{
725	  was_a_range = 0;
726          putchar (i - 1);
727          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
728            {
729              was_a_range = 1;
730              i++;
731            }
732	  if (was_a_range)
733            {
734              printf ("-");
735              putchar (i - 1);
736            }
737        }
738    }
739  putchar ('\n');
740}
741
742
743/* Print a compiled pattern string in human-readable form, starting at
744   the START pointer into it and ending just before the pointer END.  */
745
746void
747print_partial_compiled_pattern (start, end)
748    US_CHAR_TYPE *start;
749    US_CHAR_TYPE *end;
750{
751  int mcnt, mcnt2;
752  US_CHAR_TYPE *p1;
753  US_CHAR_TYPE *p = start;
754  US_CHAR_TYPE *pend = end;
755
756  if (start == NULL)
757    {
758      printf ("(null)\n");
759      return;
760    }
761
762  /* Loop over pattern commands.  */
763  while (p < pend)
764    {
765#ifdef _LIBC
766      printf ("%td:\t", p - start);
767#else
768      printf ("%ld:\t", (long int) (p - start));
769#endif
770
771      switch ((re_opcode_t) *p++)
772	{
773        case no_op:
774          printf ("/no_op");
775          break;
776
777	case exactn:
778	  mcnt = *p++;
779          printf ("/exactn/%d", mcnt);
780          do
781	    {
782              putchar ('/');
783	      PUT_CHAR (*p++);
784            }
785          while (--mcnt);
786          break;
787
788#ifdef MBS_SUPPORT
789	case exactn_bin:
790	  mcnt = *p++;
791	  printf ("/exactn_bin/%d", mcnt);
792          do
793	    {
794	      printf("/%lx", (long int) *p++);
795            }
796          while (--mcnt);
797          break;
798#endif /* MBS_SUPPORT */
799
800	case start_memory:
801          mcnt = *p++;
802          printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
803          break;
804
805	case stop_memory:
806          mcnt = *p++;
807	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
808          break;
809
810	case duplicate:
811	  printf ("/duplicate/%ld", (long int) *p++);
812	  break;
813
814	case anychar:
815	  printf ("/anychar");
816	  break;
817
818	case charset:
819        case charset_not:
820          {
821#ifdef MBS_SUPPORT
822	    int i, length;
823	    wchar_t *workp = p;
824	    printf ("/charset [%s",
825	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
826	    p += 5;
827	    length = *workp++; /* the length of char_classes */
828	    for (i=0 ; i<length ; i++)
829	      printf("[:%lx:]", (long int) *p++);
830	    length = *workp++; /* the length of collating_symbol */
831	    for (i=0 ; i<length ;)
832	      {
833		printf("[.");
834		while(*p != 0)
835		  PUT_CHAR((i++,*p++));
836		i++,p++;
837		printf(".]");
838	      }
839	    length = *workp++; /* the length of equivalence_class */
840	    for (i=0 ; i<length ;)
841	      {
842		printf("[=");
843		while(*p != 0)
844		  PUT_CHAR((i++,*p++));
845		i++,p++;
846		printf("=]");
847	      }
848	    length = *workp++; /* the length of char_range */
849	    for (i=0 ; i<length ; i++)
850	      {
851		wchar_t range_start = *p++;
852		wchar_t range_end = *p++;
853		if (MB_CUR_MAX == 1)
854		  printf("%c-%c", (char) range_start, (char) range_end);
855		else
856		  printf("%C-%C", (wint_t) range_start, (wint_t) range_end);
857	      }
858	    length = *workp++; /* the length of char */
859	    for (i=0 ; i<length ; i++)
860	      if (MB_CUR_MAX == 1)
861		putchar (*p++);
862	      else
863		printf("%C", (wint_t) *p++);
864	    putchar (']');
865#else
866            register int c, last = -100;
867	    register int in_range = 0;
868
869	    printf ("/charset [%s",
870	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
871
872            assert (p + *p < pend);
873
874            for (c = 0; c < 256; c++)
875	      if (c / 8 < *p
876		  && (p[1 + (c/8)] & (1 << (c % 8))))
877		{
878		  /* Are we starting a range?  */
879		  if (last + 1 == c && ! in_range)
880		    {
881		      putchar ('-');
882		      in_range = 1;
883		    }
884		  /* Have we broken a range?  */
885		  else if (last + 1 != c && in_range)
886              {
887		      putchar (last);
888		      in_range = 0;
889		    }
890
891		  if (! in_range)
892		    putchar (c);
893
894		  last = c;
895              }
896
897	    if (in_range)
898	      putchar (last);
899
900	    putchar (']');
901
902	    p += 1 + *p;
903#endif /* MBS_SUPPORT */
904	  }
905	  break;
906
907	case begline:
908	  printf ("/begline");
909          break;
910
911	case endline:
912          printf ("/endline");
913          break;
914
915	case on_failure_jump:
916          extract_number_and_incr (&mcnt, &p);
917#ifdef _LIBC
918  	  printf ("/on_failure_jump to %td", p + mcnt - start);
919#else
920  	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
921#endif
922          break;
923
924	case on_failure_keep_string_jump:
925          extract_number_and_incr (&mcnt, &p);
926#ifdef _LIBC
927  	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
928#else
929  	  printf ("/on_failure_keep_string_jump to %ld",
930		  (long int) (p + mcnt - start));
931#endif
932          break;
933
934	case dummy_failure_jump:
935          extract_number_and_incr (&mcnt, &p);
936#ifdef _LIBC
937  	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
938#else
939  	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
940#endif
941          break;
942
943	case push_dummy_failure:
944          printf ("/push_dummy_failure");
945          break;
946
947        case maybe_pop_jump:
948          extract_number_and_incr (&mcnt, &p);
949#ifdef _LIBC
950  	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
951#else
952  	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
953#endif
954	  break;
955
956        case pop_failure_jump:
957	  extract_number_and_incr (&mcnt, &p);
958#ifdef _LIBC
959  	  printf ("/pop_failure_jump to %td", p + mcnt - start);
960#else
961  	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
962#endif
963	  break;
964
965        case jump_past_alt:
966	  extract_number_and_incr (&mcnt, &p);
967#ifdef _LIBC
968  	  printf ("/jump_past_alt to %td", p + mcnt - start);
969#else
970  	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
971#endif
972	  break;
973
974        case jump:
975	  extract_number_and_incr (&mcnt, &p);
976#ifdef _LIBC
977  	  printf ("/jump to %td", p + mcnt - start);
978#else
979  	  printf ("/jump to %ld", (long int) (p + mcnt - start));
980#endif
981	  break;
982
983        case succeed_n:
984          extract_number_and_incr (&mcnt, &p);
985	  p1 = p + mcnt;
986          extract_number_and_incr (&mcnt2, &p);
987#ifdef _LIBC
988	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
989#else
990	  printf ("/succeed_n to %ld, %d times",
991		  (long int) (p1 - start), mcnt2);
992#endif
993          break;
994
995        case jump_n:
996          extract_number_and_incr (&mcnt, &p);
997	  p1 = p + mcnt;
998          extract_number_and_incr (&mcnt2, &p);
999	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1000          break;
1001
1002        case set_number_at:
1003          extract_number_and_incr (&mcnt, &p);
1004	  p1 = p + mcnt;
1005          extract_number_and_incr (&mcnt2, &p);
1006#ifdef _LIBC
1007	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1008#else
1009	  printf ("/set_number_at location %ld to %d",
1010		  (long int) (p1 - start), mcnt2);
1011#endif
1012          break;
1013
1014        case wordbound:
1015	  printf ("/wordbound");
1016	  break;
1017
1018	case notwordbound:
1019	  printf ("/notwordbound");
1020          break;
1021
1022	case wordbeg:
1023	  printf ("/wordbeg");
1024	  break;
1025
1026	case wordend:
1027	  printf ("/wordend");
1028	  break;
1029
1030# ifdef emacs
1031	case before_dot:
1032	  printf ("/before_dot");
1033          break;
1034
1035	case at_dot:
1036	  printf ("/at_dot");
1037          break;
1038
1039	case after_dot:
1040	  printf ("/after_dot");
1041          break;
1042
1043	case syntaxspec:
1044          printf ("/syntaxspec");
1045	  mcnt = *p++;
1046	  printf ("/%d", mcnt);
1047          break;
1048
1049	case notsyntaxspec:
1050          printf ("/notsyntaxspec");
1051	  mcnt = *p++;
1052	  printf ("/%d", mcnt);
1053	  break;
1054# endif /* emacs */
1055
1056	case wordchar:
1057	  printf ("/wordchar");
1058          break;
1059
1060	case notwordchar:
1061	  printf ("/notwordchar");
1062          break;
1063
1064	case begbuf:
1065	  printf ("/begbuf");
1066          break;
1067
1068	case endbuf:
1069	  printf ("/endbuf");
1070          break;
1071
1072        default:
1073          printf ("?%ld", (long int) *(p-1));
1074	}
1075
1076      putchar ('\n');
1077    }
1078
1079#ifdef _LIBC
1080  printf ("%td:\tend of pattern.\n", p - start);
1081#else
1082  printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1083#endif
1084}
1085
1086
1087void
1088print_compiled_pattern (bufp)
1089    struct re_pattern_buffer *bufp;
1090{
1091  US_CHAR_TYPE *buffer = (US_CHAR_TYPE*) bufp->buffer;
1092
1093  print_partial_compiled_pattern (buffer, buffer
1094				  + bufp->used / sizeof(US_CHAR_TYPE));
1095  printf ("%ld bytes used/%ld bytes allocated.\n",
1096	  bufp->used, bufp->allocated);
1097
1098  if (bufp->fastmap_accurate && bufp->fastmap)
1099    {
1100      printf ("fastmap: ");
1101      print_fastmap (bufp->fastmap);
1102    }
1103
1104#ifdef _LIBC
1105  printf ("re_nsub: %Zd\t", bufp->re_nsub);
1106#else
1107  printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1108#endif
1109  printf ("regs_alloc: %d\t", bufp->regs_allocated);
1110  printf ("can_be_null: %d\t", bufp->can_be_null);
1111  printf ("newline_anchor: %d\n", bufp->newline_anchor);
1112  printf ("no_sub: %d\t", bufp->no_sub);
1113  printf ("not_bol: %d\t", bufp->not_bol);
1114  printf ("not_eol: %d\t", bufp->not_eol);
1115  printf ("syntax: %lx\n", bufp->syntax);
1116  /* Perhaps we should print the translate table?  */
1117}
1118
1119
1120void
1121print_double_string (where, string1, size1, string2, size2)
1122    const CHAR_TYPE *where;
1123    const CHAR_TYPE *string1;
1124    const CHAR_TYPE *string2;
1125    int size1;
1126    int size2;
1127{
1128  int this_char;
1129
1130  if (where == NULL)
1131    printf ("(null)");
1132  else
1133    {
1134      if (FIRST_STRING_P (where))
1135        {
1136          for (this_char = where - string1; this_char < size1; this_char++)
1137	    PUT_CHAR (string1[this_char]);
1138
1139          where = string2;
1140        }
1141
1142      for (this_char = where - string2; this_char < size2; this_char++)
1143        PUT_CHAR (string2[this_char]);
1144    }
1145}
1146
1147void
1148printchar (c)
1149     int c;
1150{
1151  putc (c, stderr);
1152}
1153
1154#else /* not DEBUG */
1155
1156# undef assert
1157# define assert(e)
1158
1159# define DEBUG_STATEMENT(e)
1160# define DEBUG_PRINT1(x)
1161# define DEBUG_PRINT2(x1, x2)
1162# define DEBUG_PRINT3(x1, x2, x3)
1163# define DEBUG_PRINT4(x1, x2, x3, x4)
1164# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1165# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1166
1167#endif /* not DEBUG */
1168
1169#ifdef MBS_SUPPORT
1170/* This  convert a multibyte string to a wide character string.
1171   And write their correspondances to offset_buffer(see below)
1172   and write whether each wchar_t is binary data to is_binary.
1173   This assume invalid multibyte sequences as binary data.
1174   We assume offset_buffer and is_binary is already allocated
1175   enough space.  */
1176
1177static size_t convert_mbs_to_wcs (CHAR_TYPE *dest, const unsigned char* src,
1178				  size_t len, int *offset_buffer,
1179				  char *is_binary);
1180static size_t
1181convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1182     CHAR_TYPE *dest;
1183     const unsigned char* src;
1184     size_t len; /* the length of multibyte string.  */
1185
1186     /* It hold correspondances between src(char string) and
1187	dest(wchar_t string) for optimization.
1188	e.g. src  = "xxxyzz"
1189             dest = {'X', 'Y', 'Z'}
1190	      (each "xxx", "y" and "zz" represent one multibyte character
1191	       corresponding to 'X', 'Y' and 'Z'.)
1192	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1193	  	        = {0, 3, 4, 6}
1194     */
1195     int *offset_buffer;
1196     char *is_binary;
1197{
1198  wchar_t *pdest = dest;
1199  const unsigned char *psrc = src;
1200  size_t wc_count = 0;
1201
1202  if (MB_CUR_MAX == 1)
1203    { /* We don't need conversion.  */
1204      for ( ; wc_count < len ; ++wc_count)
1205	{
1206	  *pdest++ = *psrc++;
1207	  is_binary[wc_count] = FALSE;
1208	  offset_buffer[wc_count] = wc_count;
1209	}
1210      offset_buffer[wc_count] = wc_count;
1211    }
1212  else
1213    {
1214      /* We need conversion.  */
1215      mbstate_t mbs;
1216      int consumed;
1217      size_t mb_remain = len;
1218      size_t mb_count = 0;
1219
1220      /* Initialize the conversion state.  */
1221      memset (&mbs, 0, sizeof (mbstate_t));
1222
1223      offset_buffer[0] = 0;
1224      for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1225	     psrc += consumed)
1226	{
1227	  consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1228
1229	  if (consumed <= 0)
1230	    /* failed to convert. maybe src contains binary data.
1231	       So we consume 1 byte manualy.  */
1232	    {
1233	      *pdest = *psrc;
1234	      consumed = 1;
1235	      is_binary[wc_count] = TRUE;
1236	    }
1237	  else
1238	    is_binary[wc_count] = FALSE;
1239	  /* In sjis encoding, we use yen sign as escape character in
1240	     place of reverse solidus. So we convert 0x5c(yen sign in
1241	     sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1242	     solidus in UCS2).  */
1243	  if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1244	    *pdest = (wchar_t) *psrc;
1245
1246	  offset_buffer[wc_count + 1] = mb_count += consumed;
1247	}
1248    }
1249
1250  return wc_count;
1251}
1252
1253#endif /* MBS_SUPPORT */
1254
1255/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1256   also be assigned to arbitrarily: each pattern buffer stores its own
1257   syntax, so it can be changed between regex compilations.  */
1258/* This has no initializer because initialized variables in Emacs
1259   become read-only after dumping.  */
1260reg_syntax_t re_syntax_options;
1261
1262
1263/* Specify the precise syntax of regexps for compilation.  This provides
1264   for compatibility for various utilities which historically have
1265   different, incompatible syntaxes.
1266
1267   The argument SYNTAX is a bit mask comprised of the various bits
1268   defined in regex.h.  We return the old syntax.  */
1269
1270reg_syntax_t
1271re_set_syntax (syntax)
1272    reg_syntax_t syntax;
1273{
1274  reg_syntax_t ret = re_syntax_options;
1275
1276  re_syntax_options = syntax;
1277#ifdef DEBUG
1278  if (syntax & RE_DEBUG)
1279    debug = 1;
1280  else if (debug) /* was on but now is not */
1281    debug = 0;
1282#endif /* DEBUG */
1283  return ret;
1284}
1285#ifdef _LIBC
1286weak_alias (__re_set_syntax, re_set_syntax)
1287#endif
1288
1289/* This table gives an error message for each of the error codes listed
1290   in regex.h.  Obviously the order here has to be same as there.
1291   POSIX doesn't require that we do anything for REG_NOERROR,
1292   but why not be nice?  */
1293
1294static const char re_error_msgid[] =
1295  {
1296#define REG_NOERROR_IDX	0
1297    gettext_noop ("Success")	/* REG_NOERROR */
1298    "\0"
1299#define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1300    gettext_noop ("No match")	/* REG_NOMATCH */
1301    "\0"
1302#define REG_BADPAT_IDX	(REG_NOMATCH_IDX + sizeof "No match")
1303    gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1304    "\0"
1305#define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1306    gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1307    "\0"
1308#define REG_ECTYPE_IDX	(REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1309    gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1310    "\0"
1311#define REG_EESCAPE_IDX	(REG_ECTYPE_IDX + sizeof "Invalid character class name")
1312    gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1313    "\0"
1314#define REG_ESUBREG_IDX	(REG_EESCAPE_IDX + sizeof "Trailing backslash")
1315    gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1316    "\0"
1317#define REG_EBRACK_IDX	(REG_ESUBREG_IDX + sizeof "Invalid back reference")
1318    gettext_noop ("Unmatched [ or [^")	/* REG_EBRACK */
1319    "\0"
1320#define REG_EPAREN_IDX	(REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1321    gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1322    "\0"
1323#define REG_EBRACE_IDX	(REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1324    gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1325    "\0"
1326#define REG_BADBR_IDX	(REG_EBRACE_IDX + sizeof "Unmatched \\{")
1327    gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1328    "\0"
1329#define REG_ERANGE_IDX	(REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1330    gettext_noop ("Invalid range end")	/* REG_ERANGE */
1331    "\0"
1332#define REG_ESPACE_IDX	(REG_ERANGE_IDX + sizeof "Invalid range end")
1333    gettext_noop ("Memory exhausted") /* REG_ESPACE */
1334    "\0"
1335#define REG_BADRPT_IDX	(REG_ESPACE_IDX + sizeof "Memory exhausted")
1336    gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1337    "\0"
1338#define REG_EEND_IDX	(REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1339    gettext_noop ("Premature end of regular expression") /* REG_EEND */
1340    "\0"
1341#define REG_ESIZE_IDX	(REG_EEND_IDX + sizeof "Premature end of regular expression")
1342    gettext_noop ("Regular expression too big") /* REG_ESIZE */
1343    "\0"
1344#define REG_ERPAREN_IDX	(REG_ESIZE_IDX + sizeof "Regular expression too big")
1345    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1346  };
1347
1348static const size_t re_error_msgid_idx[] =
1349  {
1350    REG_NOERROR_IDX,
1351    REG_NOMATCH_IDX,
1352    REG_BADPAT_IDX,
1353    REG_ECOLLATE_IDX,
1354    REG_ECTYPE_IDX,
1355    REG_EESCAPE_IDX,
1356    REG_ESUBREG_IDX,
1357    REG_EBRACK_IDX,
1358    REG_EPAREN_IDX,
1359    REG_EBRACE_IDX,
1360    REG_BADBR_IDX,
1361    REG_ERANGE_IDX,
1362    REG_ESPACE_IDX,
1363    REG_BADRPT_IDX,
1364    REG_EEND_IDX,
1365    REG_ESIZE_IDX,
1366    REG_ERPAREN_IDX
1367  };
1368
1369/* Avoiding alloca during matching, to placate r_alloc.  */
1370
1371/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1372   searching and matching functions should not call alloca.  On some
1373   systems, alloca is implemented in terms of malloc, and if we're
1374   using the relocating allocator routines, then malloc could cause a
1375   relocation, which might (if the strings being searched are in the
1376   ralloc heap) shift the data out from underneath the regexp
1377   routines.
1378
1379   Here's another reason to avoid allocation: Emacs
1380   processes input from X in a signal handler; processing X input may
1381   call malloc; if input arrives while a matching routine is calling
1382   malloc, then we're scrod.  But Emacs can't just block input while
1383   calling matching routines; then we don't notice interrupts when
1384   they come in.  So, Emacs blocks input around all regexp calls
1385   except the matching calls, which it leaves unprotected, in the
1386   faith that they will not malloc.  */
1387
1388/* Normally, this is fine.  */
1389#define MATCH_MAY_ALLOCATE
1390
1391/* When using GNU C, we are not REALLY using the C alloca, no matter
1392   what config.h may say.  So don't take precautions for it.  */
1393#ifdef __GNUC__
1394# undef C_ALLOCA
1395#endif
1396
1397/* The match routines may not allocate if (1) they would do it with malloc
1398   and (2) it's not safe for them to use malloc.
1399   Note that if REL_ALLOC is defined, matching would not use malloc for the
1400   failure stack, but we would still use it for the register vectors;
1401   so REL_ALLOC should not affect this.  */
1402#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1403# undef MATCH_MAY_ALLOCATE
1404#endif
1405
1406
1407/* Failure stack declarations and macros; both re_compile_fastmap and
1408   re_match_2 use a failure stack.  These have to be macros because of
1409   REGEX_ALLOCATE_STACK.  */
1410
1411
1412/* Number of failure points for which to initially allocate space
1413   when matching.  If this number is exceeded, we allocate more
1414   space, so it is not a hard limit.  */
1415#ifndef INIT_FAILURE_ALLOC
1416# define INIT_FAILURE_ALLOC 5
1417#endif
1418
1419/* Roughly the maximum number of failure points on the stack.  Would be
1420   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1421   This is a variable only so users of regex can assign to it; we never
1422   change it ourselves.  */
1423
1424#ifdef INT_IS_16BIT
1425
1426# if defined MATCH_MAY_ALLOCATE
1427/* 4400 was enough to cause a crash on Alpha OSF/1,
1428   whose default stack limit is 2mb.  */
1429long int re_max_failures = 4000;
1430# else
1431long int re_max_failures = 2000;
1432# endif
1433
1434union fail_stack_elt
1435{
1436  US_CHAR_TYPE *pointer;
1437  long int integer;
1438};
1439
1440typedef union fail_stack_elt fail_stack_elt_t;
1441
1442typedef struct
1443{
1444  fail_stack_elt_t *stack;
1445  unsigned long int size;
1446  unsigned long int avail;		/* Offset of next open position.  */
1447} fail_stack_type;
1448
1449#else /* not INT_IS_16BIT */
1450
1451# if defined MATCH_MAY_ALLOCATE
1452/* 4400 was enough to cause a crash on Alpha OSF/1,
1453   whose default stack limit is 2mb.  */
1454int re_max_failures = 4000;
1455# else
1456int re_max_failures = 2000;
1457# endif
1458
1459union fail_stack_elt
1460{
1461  US_CHAR_TYPE *pointer;
1462  int integer;
1463};
1464
1465typedef union fail_stack_elt fail_stack_elt_t;
1466
1467typedef struct
1468{
1469  fail_stack_elt_t *stack;
1470  unsigned size;
1471  unsigned avail;			/* Offset of next open position.  */
1472} fail_stack_type;
1473
1474#endif /* INT_IS_16BIT */
1475
1476#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1477#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1478#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1479
1480
1481/* Define macros to initialize and free the failure stack.
1482   Do `return -2' if the alloc fails.  */
1483
1484#ifdef MATCH_MAY_ALLOCATE
1485# define INIT_FAIL_STACK()						\
1486  do {									\
1487    fail_stack.stack = (fail_stack_elt_t *)				\
1488      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1489									\
1490    if (fail_stack.stack == NULL)					\
1491      return -2;							\
1492									\
1493    fail_stack.size = INIT_FAILURE_ALLOC;				\
1494    fail_stack.avail = 0;						\
1495  } while (0)
1496
1497# define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1498#else
1499# define INIT_FAIL_STACK()						\
1500  do {									\
1501    fail_stack.avail = 0;						\
1502  } while (0)
1503
1504# define RESET_FAIL_STACK()
1505#endif
1506
1507
1508/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1509
1510   Return 1 if succeeds, and 0 if either ran out of memory
1511   allocating space for it or it was already too large.
1512
1513   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1514
1515#define DOUBLE_FAIL_STACK(fail_stack)					\
1516  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1517   ? 0									\
1518   : ((fail_stack).stack = (fail_stack_elt_t *)				\
1519        REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1520          (fail_stack).size * sizeof (fail_stack_elt_t),		\
1521          ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
1522									\
1523      (fail_stack).stack == NULL					\
1524      ? 0								\
1525      : ((fail_stack).size <<= 1, 					\
1526         1)))
1527
1528
1529/* Push pointer POINTER on FAIL_STACK.
1530   Return 1 if was able to do so and 0 if ran out of memory allocating
1531   space to do so.  */
1532#define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1533  ((FAIL_STACK_FULL ()							\
1534    && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1535   ? 0									\
1536   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1537      1))
1538
1539/* Push a pointer value onto the failure stack.
1540   Assumes the variable `fail_stack'.  Probably should only
1541   be called from within `PUSH_FAILURE_POINT'.  */
1542#define PUSH_FAILURE_POINTER(item)					\
1543  fail_stack.stack[fail_stack.avail++].pointer = (US_CHAR_TYPE *) (item)
1544
1545/* This pushes an integer-valued item onto the failure stack.
1546   Assumes the variable `fail_stack'.  Probably should only
1547   be called from within `PUSH_FAILURE_POINT'.  */
1548#define PUSH_FAILURE_INT(item)					\
1549  fail_stack.stack[fail_stack.avail++].integer = (item)
1550
1551/* Push a fail_stack_elt_t value onto the failure stack.
1552   Assumes the variable `fail_stack'.  Probably should only
1553   be called from within `PUSH_FAILURE_POINT'.  */
1554#define PUSH_FAILURE_ELT(item)					\
1555  fail_stack.stack[fail_stack.avail++] =  (item)
1556
1557/* These three POP... operations complement the three PUSH... operations.
1558   All assume that `fail_stack' is nonempty.  */
1559#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1560#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1561#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1562
1563/* Used to omit pushing failure point id's when we're not debugging.  */
1564#ifdef DEBUG
1565# define DEBUG_PUSH PUSH_FAILURE_INT
1566# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1567#else
1568# define DEBUG_PUSH(item)
1569# define DEBUG_POP(item_addr)
1570#endif
1571
1572
1573/* Push the information about the state we will need
1574   if we ever fail back to it.
1575
1576   Requires variables fail_stack, regstart, regend, reg_info, and
1577   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1578   be declared.
1579
1580   Does `return FAILURE_CODE' if runs out of memory.  */
1581
1582#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1583  do {									\
1584    char *destination;							\
1585    /* Must be int, so when we don't save any registers, the arithmetic	\
1586       of 0 + -1 isn't done as unsigned.  */				\
1587    /* Can't be int, since there is not a shred of a guarantee that int	\
1588       is wide enough to hold a value of something to which pointer can	\
1589       be assigned */							\
1590    active_reg_t this_reg;						\
1591    									\
1592    DEBUG_STATEMENT (failure_id++);					\
1593    DEBUG_STATEMENT (nfailure_points_pushed++);				\
1594    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1595    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1596    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1597									\
1598    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1599    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1600									\
1601    /* Ensure we have enough space allocated for what we will push.  */	\
1602    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1603      {									\
1604        if (!DOUBLE_FAIL_STACK (fail_stack))				\
1605          return failure_code;						\
1606									\
1607        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1608		       (fail_stack).size);				\
1609        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1610      }									\
1611									\
1612    /* Push the info, starting with the registers.  */			\
1613    DEBUG_PRINT1 ("\n");						\
1614									\
1615    if (1)								\
1616      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1617	   this_reg++)							\
1618	{								\
1619	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1620	  DEBUG_STATEMENT (num_regs_pushed++);				\
1621									\
1622	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1623	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1624									\
1625	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1626	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1627									\
1628	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1629			reg_info[this_reg].word.pointer);		\
1630	  DEBUG_PRINT2 (" match_null=%d",				\
1631			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1632	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1633	  DEBUG_PRINT2 (" matched_something=%d",			\
1634			MATCHED_SOMETHING (reg_info[this_reg]));	\
1635	  DEBUG_PRINT2 (" ever_matched=%d",				\
1636			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1637	  DEBUG_PRINT1 ("\n");						\
1638	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1639	}								\
1640									\
1641    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1642    PUSH_FAILURE_INT (lowest_active_reg);				\
1643									\
1644    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1645    PUSH_FAILURE_INT (highest_active_reg);				\
1646									\
1647    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1648    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1649    PUSH_FAILURE_POINTER (pattern_place);				\
1650									\
1651    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1652    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1653				 size2);				\
1654    DEBUG_PRINT1 ("'\n");						\
1655    PUSH_FAILURE_POINTER (string_place);				\
1656									\
1657    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1658    DEBUG_PUSH (failure_id);						\
1659  } while (0)
1660
1661/* This is the number of items that are pushed and popped on the stack
1662   for each register.  */
1663#define NUM_REG_ITEMS  3
1664
1665/* Individual items aside from the registers.  */
1666#ifdef DEBUG
1667# define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1668#else
1669# define NUM_NONREG_ITEMS 4
1670#endif
1671
1672/* We push at most this many items on the stack.  */
1673/* We used to use (num_regs - 1), which is the number of registers
1674   this regexp will save; but that was changed to 5
1675   to avoid stack overflow for a regexp with lots of parens.  */
1676#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1677
1678/* We actually push this many items.  */
1679#define NUM_FAILURE_ITEMS				\
1680  (((0							\
1681     ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1682    * NUM_REG_ITEMS)					\
1683   + NUM_NONREG_ITEMS)
1684
1685/* How many items can still be added to the stack without overflowing it.  */
1686#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1687
1688
1689/* Pops what PUSH_FAIL_STACK pushes.
1690
1691   We restore into the parameters, all of which should be lvalues:
1692     STR -- the saved data position.
1693     PAT -- the saved pattern position.
1694     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1695     REGSTART, REGEND -- arrays of string positions.
1696     REG_INFO -- array of information about each subexpression.
1697
1698   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1699   `pend', `string1', `size1', `string2', and `size2'.  */
1700#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1701{									\
1702  DEBUG_STATEMENT (unsigned failure_id;)				\
1703  active_reg_t this_reg;						\
1704  const US_CHAR_TYPE *string_temp;					\
1705									\
1706  assert (!FAIL_STACK_EMPTY ());					\
1707									\
1708  /* Remove failure points and point to how many regs pushed.  */	\
1709  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1710  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1711  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1712									\
1713  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1714									\
1715  DEBUG_POP (&failure_id);						\
1716  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1717									\
1718  /* If the saved string location is NULL, it came from an		\
1719     on_failure_keep_string_jump opcode, and we want to throw away the	\
1720     saved NULL, thus retaining our current position in the string.  */	\
1721  string_temp = POP_FAILURE_POINTER ();					\
1722  if (string_temp != NULL)						\
1723    str = (const CHAR_TYPE *) string_temp;				\
1724									\
1725  DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1726  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1727  DEBUG_PRINT1 ("'\n");							\
1728									\
1729  pat = (US_CHAR_TYPE *) POP_FAILURE_POINTER ();			\
1730  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1731  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1732									\
1733  /* Restore register info.  */						\
1734  high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1735  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1736									\
1737  low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1738  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1739									\
1740  if (1)								\
1741    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1742      {									\
1743	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1744									\
1745	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1746	DEBUG_PRINT2 ("      info: %p\n",				\
1747		      reg_info[this_reg].word.pointer);			\
1748									\
1749	regend[this_reg] = (const CHAR_TYPE *) POP_FAILURE_POINTER ();	\
1750	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1751									\
1752	regstart[this_reg] = (const CHAR_TYPE *) POP_FAILURE_POINTER ();\
1753	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1754      }									\
1755  else									\
1756    {									\
1757      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1758	{								\
1759	  reg_info[this_reg].word.integer = 0;				\
1760	  regend[this_reg] = 0;						\
1761	  regstart[this_reg] = 0;					\
1762	}								\
1763      highest_active_reg = high_reg;					\
1764    }									\
1765									\
1766  set_regs_matched_done = 0;						\
1767  DEBUG_STATEMENT (nfailure_points_popped++);				\
1768} /* POP_FAILURE_POINT */
1769
1770
1771/* Structure for per-register (a.k.a. per-group) information.
1772   Other register information, such as the
1773   starting and ending positions (which are addresses), and the list of
1774   inner groups (which is a bits list) are maintained in separate
1775   variables.
1776
1777   We are making a (strictly speaking) nonportable assumption here: that
1778   the compiler will pack our bit fields into something that fits into
1779   the type of `word', i.e., is something that fits into one item on the
1780   failure stack.  */
1781
1782
1783/* Declarations and macros for re_match_2.  */
1784
1785typedef union
1786{
1787  fail_stack_elt_t word;
1788  struct
1789  {
1790      /* This field is one if this group can match the empty string,
1791         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1792#define MATCH_NULL_UNSET_VALUE 3
1793    unsigned match_null_string_p : 2;
1794    unsigned is_active : 1;
1795    unsigned matched_something : 1;
1796    unsigned ever_matched_something : 1;
1797  } bits;
1798} register_info_type;
1799
1800#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1801#define IS_ACTIVE(R)  ((R).bits.is_active)
1802#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1803#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1804
1805
1806/* Call this when have matched a real character; it sets `matched' flags
1807   for the subexpressions which we are currently inside.  Also records
1808   that those subexprs have matched.  */
1809#define SET_REGS_MATCHED()						\
1810  do									\
1811    {									\
1812      if (!set_regs_matched_done)					\
1813	{								\
1814	  active_reg_t r;						\
1815	  set_regs_matched_done = 1;					\
1816	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1817	    {								\
1818	      MATCHED_SOMETHING (reg_info[r])				\
1819		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1820		= 1;							\
1821	    }								\
1822	}								\
1823    }									\
1824  while (0)
1825
1826/* Registers are set to a sentinel when they haven't yet matched.  */
1827static CHAR_TYPE reg_unset_dummy;
1828#define REG_UNSET_VALUE (&reg_unset_dummy)
1829#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1830
1831/* Subroutine declarations and macros for regex_compile.  */
1832
1833static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1834					      reg_syntax_t syntax,
1835					      struct re_pattern_buffer *bufp));
1836static void store_op1 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc, int arg));
1837static void store_op2 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc,
1838				 int arg1, int arg2));
1839static void insert_op1 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc,
1840				  int arg, US_CHAR_TYPE *end));
1841static void insert_op2 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc,
1842				  int arg1, int arg2, US_CHAR_TYPE *end));
1843static boolean at_begline_loc_p _RE_ARGS ((const CHAR_TYPE *pattern,
1844					   const CHAR_TYPE *p,
1845					   reg_syntax_t syntax));
1846static boolean at_endline_loc_p _RE_ARGS ((const CHAR_TYPE *p,
1847					   const CHAR_TYPE *pend,
1848					   reg_syntax_t syntax));
1849#ifdef MBS_SUPPORT
1850static reg_errcode_t compile_range _RE_ARGS ((CHAR_TYPE range_start,
1851					      const CHAR_TYPE **p_ptr,
1852					      const CHAR_TYPE *pend,
1853					      char *translate,
1854					      reg_syntax_t syntax,
1855					      US_CHAR_TYPE *b,
1856					      CHAR_TYPE *char_set));
1857static void insert_space _RE_ARGS ((int num, CHAR_TYPE *loc, CHAR_TYPE *end));
1858#else
1859static reg_errcode_t compile_range _RE_ARGS ((unsigned int range_start,
1860					      const CHAR_TYPE **p_ptr,
1861					      const CHAR_TYPE *pend,
1862					      char *translate,
1863					      reg_syntax_t syntax,
1864					      US_CHAR_TYPE *b));
1865#endif /* MBS_SUPPORT */
1866
1867/* Fetch the next character in the uncompiled pattern---translating it
1868   if necessary.  Also cast from a signed character in the constant
1869   string passed to us by the user to an unsigned char that we can use
1870   as an array index (in, e.g., `translate').  */
1871/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1872   because it is impossible to allocate 4GB array for some encodings
1873   which have 4 byte character_set like UCS4.  */
1874#ifndef PATFETCH
1875# ifdef MBS_SUPPORT
1876#  define PATFETCH(c)							\
1877  do {if (p == pend) return REG_EEND;					\
1878    c = (US_CHAR_TYPE) *p++;						\
1879    if (translate && (c <= 0xff)) c = (US_CHAR_TYPE) translate[c];	\
1880  } while (0)
1881# else
1882#  define PATFETCH(c)							\
1883  do {if (p == pend) return REG_EEND;					\
1884    c = (unsigned char) *p++;						\
1885    if (translate) c = (unsigned char) translate[c];			\
1886  } while (0)
1887# endif /* MBS_SUPPORT */
1888#endif
1889
1890/* Fetch the next character in the uncompiled pattern, with no
1891   translation.  */
1892#define PATFETCH_RAW(c)							\
1893  do {if (p == pend) return REG_EEND;					\
1894    c = (US_CHAR_TYPE) *p++; 						\
1895  } while (0)
1896
1897/* Go backwards one character in the pattern.  */
1898#define PATUNFETCH p--
1899
1900
1901/* If `translate' is non-null, return translate[D], else just D.  We
1902   cast the subscript to translate because some data is declared as
1903   `char *', to avoid warnings when a string constant is passed.  But
1904   when we use a character as a subscript we must make it unsigned.  */
1905/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1906   because it is impossible to allocate 4GB array for some encodings
1907   which have 4 byte character_set like UCS4.  */
1908#ifndef TRANSLATE
1909# ifdef MBS_SUPPORT
1910#  define TRANSLATE(d) \
1911  ((translate && ((US_CHAR_TYPE) (d)) <= 0xff) \
1912   ? (char) translate[(unsigned char) (d)] : (d))
1913#else
1914#  define TRANSLATE(d) \
1915  (translate ? (char) translate[(unsigned char) (d)] : (d))
1916# endif /* MBS_SUPPORT */
1917#endif
1918
1919
1920/* Macros for outputting the compiled pattern into `buffer'.  */
1921
1922/* If the buffer isn't allocated when it comes in, use this.  */
1923#define INIT_BUF_SIZE  (32 * sizeof(US_CHAR_TYPE))
1924
1925/* Make sure we have at least N more bytes of space in buffer.  */
1926#ifdef MBS_SUPPORT
1927# define GET_BUFFER_SPACE(n)						\
1928    while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
1929            + (n)*sizeof(CHAR_TYPE)) > bufp->allocated)			\
1930      EXTEND_BUFFER ()
1931#else
1932# define GET_BUFFER_SPACE(n)						\
1933    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1934      EXTEND_BUFFER ()
1935#endif /* MBS_SUPPORT */
1936
1937/* Make sure we have one more byte of buffer space and then add C to it.  */
1938#define BUF_PUSH(c)							\
1939  do {									\
1940    GET_BUFFER_SPACE (1);						\
1941    *b++ = (US_CHAR_TYPE) (c);						\
1942  } while (0)
1943
1944
1945/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1946#define BUF_PUSH_2(c1, c2)						\
1947  do {									\
1948    GET_BUFFER_SPACE (2);						\
1949    *b++ = (US_CHAR_TYPE) (c1);					\
1950    *b++ = (US_CHAR_TYPE) (c2);					\
1951  } while (0)
1952
1953
1954/* As with BUF_PUSH_2, except for three bytes.  */
1955#define BUF_PUSH_3(c1, c2, c3)						\
1956  do {									\
1957    GET_BUFFER_SPACE (3);						\
1958    *b++ = (US_CHAR_TYPE) (c1);					\
1959    *b++ = (US_CHAR_TYPE) (c2);					\
1960    *b++ = (US_CHAR_TYPE) (c3);					\
1961  } while (0)
1962
1963/* Store a jump with opcode OP at LOC to location TO.  We store a
1964   relative address offset by the three bytes the jump itself occupies.  */
1965#define STORE_JUMP(op, loc, to) \
1966  store_op1 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1967
1968/* Likewise, for a two-argument jump.  */
1969#define STORE_JUMP2(op, loc, to, arg) \
1970  store_op2 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1971
1972/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1973#define INSERT_JUMP(op, loc, to) \
1974  insert_op1 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1975
1976/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1977#define INSERT_JUMP2(op, loc, to, arg) \
1978  insert_op2 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1979	      arg, b)
1980
1981
1982/* This is not an arbitrary limit: the arguments which represent offsets
1983   into the pattern are two bytes long.  So if 2^16 bytes turns out to
1984   be too small, many things would have to change.  */
1985/* Any other compiler which, like MSC, has allocation limit below 2^16
1986   bytes will have to use approach similar to what was done below for
1987   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1988   reallocating to 0 bytes.  Such thing is not going to work too well.
1989   You have been warned!!  */
1990#if defined _MSC_VER  && !defined WIN32
1991/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1992   The REALLOC define eliminates a flurry of conversion warnings,
1993   but is not required. */
1994# define MAX_BUF_SIZE  65500L
1995# define REALLOC(p,s) realloc ((p), (size_t) (s))
1996#else
1997# define MAX_BUF_SIZE (1L << 16)
1998# define REALLOC(p,s) realloc ((p), (s))
1999#endif
2000
2001/* Extend the buffer by twice its current size via realloc and
2002   reset the pointers that pointed into the old block to point to the
2003   correct places in the new one.  If extending the buffer results in it
2004   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2005#if __BOUNDED_POINTERS__
2006# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2007# define MOVE_BUFFER_POINTER(P) \
2008  (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2009# define ELSE_EXTEND_BUFFER_HIGH_BOUND		\
2010  else						\
2011    {						\
2012      SET_HIGH_BOUND (b);			\
2013      SET_HIGH_BOUND (begalt);			\
2014      if (fixup_alt_jump)			\
2015	SET_HIGH_BOUND (fixup_alt_jump);	\
2016      if (laststart)				\
2017	SET_HIGH_BOUND (laststart);		\
2018      if (pending_exact)			\
2019	SET_HIGH_BOUND (pending_exact);		\
2020    }
2021#else
2022# define MOVE_BUFFER_POINTER(P) (P) += incr
2023# define ELSE_EXTEND_BUFFER_HIGH_BOUND
2024#endif
2025
2026#ifdef MBS_SUPPORT
2027# define EXTEND_BUFFER()						\
2028  do {									\
2029    US_CHAR_TYPE *old_buffer = COMPILED_BUFFER_VAR;			\
2030    int wchar_count;							\
2031    if (bufp->allocated + sizeof(US_CHAR_TYPE) > MAX_BUF_SIZE)		\
2032      return REG_ESIZE;							\
2033    bufp->allocated <<= 1;						\
2034    if (bufp->allocated > MAX_BUF_SIZE)					\
2035      bufp->allocated = MAX_BUF_SIZE;					\
2036    /* How many characters the new buffer can have?  */			\
2037    wchar_count = bufp->allocated / sizeof(US_CHAR_TYPE);		\
2038    if (wchar_count == 0) wchar_count = 1;				\
2039    /* Truncate the buffer to CHAR_TYPE align.  */			\
2040    bufp->allocated = wchar_count * sizeof(US_CHAR_TYPE);		\
2041    RETALLOC (COMPILED_BUFFER_VAR, wchar_count, US_CHAR_TYPE);		\
2042    bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2043    if (COMPILED_BUFFER_VAR == NULL)					\
2044      return REG_ESPACE;						\
2045    /* If the buffer moved, move all the pointers into it.  */		\
2046    if (old_buffer != COMPILED_BUFFER_VAR)				\
2047      {									\
2048	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2049	MOVE_BUFFER_POINTER (b);					\
2050	MOVE_BUFFER_POINTER (begalt);					\
2051	if (fixup_alt_jump)						\
2052	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2053	if (laststart)							\
2054	  MOVE_BUFFER_POINTER (laststart);				\
2055	if (pending_exact)						\
2056	  MOVE_BUFFER_POINTER (pending_exact);				\
2057      }									\
2058    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2059  } while (0)
2060#else
2061# define EXTEND_BUFFER()						\
2062  do {									\
2063    US_CHAR_TYPE *old_buffer = COMPILED_BUFFER_VAR;			\
2064    if (bufp->allocated == MAX_BUF_SIZE)				\
2065      return REG_ESIZE;							\
2066    bufp->allocated <<= 1;						\
2067    if (bufp->allocated > MAX_BUF_SIZE)					\
2068      bufp->allocated = MAX_BUF_SIZE;					\
2069    bufp->buffer = (US_CHAR_TYPE *) REALLOC (COMPILED_BUFFER_VAR,	\
2070						bufp->allocated);	\
2071    if (COMPILED_BUFFER_VAR == NULL)					\
2072      return REG_ESPACE;						\
2073    /* If the buffer moved, move all the pointers into it.  */		\
2074    if (old_buffer != COMPILED_BUFFER_VAR)				\
2075      {									\
2076	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2077	MOVE_BUFFER_POINTER (b);					\
2078	MOVE_BUFFER_POINTER (begalt);					\
2079	if (fixup_alt_jump)						\
2080	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2081	if (laststart)							\
2082	  MOVE_BUFFER_POINTER (laststart);				\
2083	if (pending_exact)						\
2084	  MOVE_BUFFER_POINTER (pending_exact);				\
2085      }									\
2086    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2087  } while (0)
2088#endif /* MBS_SUPPORT */
2089
2090/* Since we have one byte reserved for the register number argument to
2091   {start,stop}_memory, the maximum number of groups we can report
2092   things about is what fits in that byte.  */
2093#define MAX_REGNUM 255
2094
2095/* But patterns can have more than `MAX_REGNUM' registers.  We just
2096   ignore the excess.  */
2097typedef unsigned regnum_t;
2098
2099
2100/* Macros for the compile stack.  */
2101
2102/* Since offsets can go either forwards or backwards, this type needs to
2103   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2104/* int may be not enough when sizeof(int) == 2.  */
2105typedef long pattern_offset_t;
2106
2107typedef struct
2108{
2109  pattern_offset_t begalt_offset;
2110  pattern_offset_t fixup_alt_jump;
2111  pattern_offset_t inner_group_offset;
2112  pattern_offset_t laststart_offset;
2113  regnum_t regnum;
2114} compile_stack_elt_t;
2115
2116
2117typedef struct
2118{
2119  compile_stack_elt_t *stack;
2120  unsigned size;
2121  unsigned avail;			/* Offset of next open position.  */
2122} compile_stack_type;
2123
2124
2125#define INIT_COMPILE_STACK_SIZE 32
2126
2127#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2128#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2129
2130/* The next available element.  */
2131#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2132
2133
2134/* Set the bit for character C in a list.  */
2135#define SET_LIST_BIT(c)                               \
2136  (b[((unsigned char) (c)) / BYTEWIDTH]               \
2137   |= 1 << (((unsigned char) c) % BYTEWIDTH))
2138
2139
2140/* Get the next unsigned number in the uncompiled pattern.  */
2141#define GET_UNSIGNED_NUMBER(num) 					\
2142  {									\
2143    while (p != pend)							\
2144      {									\
2145	PATFETCH (c);							\
2146	if (! ('0' <= c && c <= '9'))					\
2147	  break;							\
2148	if (num <= RE_DUP_MAX)						\
2149	  {								\
2150	    if (num < 0)						\
2151	      num = 0;							\
2152	    num = num * 10 + c - '0';					\
2153	  }								\
2154      }									\
2155  }
2156
2157#if defined _LIBC || WIDE_CHAR_SUPPORT
2158/* The GNU C library provides support for user-defined character classes
2159   and the functions from ISO C amendement 1.  */
2160# ifdef CHARCLASS_NAME_MAX
2161#  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2162# else
2163/* This shouldn't happen but some implementation might still have this
2164   problem.  Use a reasonable default value.  */
2165#  define CHAR_CLASS_MAX_LENGTH 256
2166# endif
2167
2168# ifdef _LIBC
2169#  define IS_CHAR_CLASS(string) __wctype (string)
2170# else
2171#  define IS_CHAR_CLASS(string) wctype (string)
2172# endif
2173#else
2174# define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2175
2176# define IS_CHAR_CLASS(string)						\
2177   (STREQ (string, "alpha") || STREQ (string, "upper")			\
2178    || STREQ (string, "lower") || STREQ (string, "digit")		\
2179    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2180    || STREQ (string, "space") || STREQ (string, "print")		\
2181    || STREQ (string, "punct") || STREQ (string, "graph")		\
2182    || STREQ (string, "cntrl") || STREQ (string, "blank"))
2183#endif
2184
2185#ifndef MATCH_MAY_ALLOCATE
2186
2187/* If we cannot allocate large objects within re_match_2_internal,
2188   we make the fail stack and register vectors global.
2189   The fail stack, we grow to the maximum size when a regexp
2190   is compiled.
2191   The register vectors, we adjust in size each time we
2192   compile a regexp, according to the number of registers it needs.  */
2193
2194static fail_stack_type fail_stack;
2195
2196/* Size with which the following vectors are currently allocated.
2197   That is so we can make them bigger as needed,
2198   but never make them smaller.  */
2199static int regs_allocated_size;
2200
2201static const char **     regstart, **     regend;
2202static const char ** old_regstart, ** old_regend;
2203static const char **best_regstart, **best_regend;
2204static register_info_type *reg_info;
2205static const char **reg_dummy;
2206static register_info_type *reg_info_dummy;
2207
2208/* Make the register vectors big enough for NUM_REGS registers,
2209   but don't make them smaller.  */
2210
2211static
2212regex_grow_registers (num_regs)
2213     int num_regs;
2214{
2215  if (num_regs > regs_allocated_size)
2216    {
2217      RETALLOC_IF (regstart,	 num_regs, const char *);
2218      RETALLOC_IF (regend,	 num_regs, const char *);
2219      RETALLOC_IF (old_regstart, num_regs, const char *);
2220      RETALLOC_IF (old_regend,	 num_regs, const char *);
2221      RETALLOC_IF (best_regstart, num_regs, const char *);
2222      RETALLOC_IF (best_regend,	 num_regs, const char *);
2223      RETALLOC_IF (reg_info,	 num_regs, register_info_type);
2224      RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2225      RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
2226
2227      regs_allocated_size = num_regs;
2228    }
2229}
2230
2231#endif /* not MATCH_MAY_ALLOCATE */
2232
2233static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2234						 compile_stack,
2235						 regnum_t regnum));
2236
2237/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2238   Returns one of error codes defined in `regex.h', or zero for success.
2239
2240   Assumes the `allocated' (and perhaps `buffer') and `translate'
2241   fields are set in BUFP on entry.
2242
2243   If it succeeds, results are put in BUFP (if it returns an error, the
2244   contents of BUFP are undefined):
2245     `buffer' is the compiled pattern;
2246     `syntax' is set to SYNTAX;
2247     `used' is set to the length of the compiled pattern;
2248     `fastmap_accurate' is zero;
2249     `re_nsub' is the number of subexpressions in PATTERN;
2250     `not_bol' and `not_eol' are zero;
2251
2252   The `fastmap' and `newline_anchor' fields are neither
2253   examined nor set.  */
2254
2255/* Return, freeing storage we allocated.  */
2256#ifdef MBS_SUPPORT
2257# define FREE_STACK_RETURN(value)		\
2258  return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2259#else
2260# define FREE_STACK_RETURN(value)		\
2261  return (free (compile_stack.stack), value)
2262#endif /* MBS_SUPPORT */
2263
2264static reg_errcode_t
2265#ifdef MBS_SUPPORT
2266regex_compile (cpattern, csize, syntax, bufp)
2267     const char *cpattern;
2268     size_t csize;
2269#else
2270regex_compile (pattern, size, syntax, bufp)
2271     const char *pattern;
2272     size_t size;
2273#endif /* MBS_SUPPORT */
2274     reg_syntax_t syntax;
2275     struct re_pattern_buffer *bufp;
2276{
2277  /* We fetch characters from PATTERN here.  Even though PATTERN is
2278     `char *' (i.e., signed), we declare these variables as unsigned, so
2279     they can be reliably used as array indices.  */
2280  register US_CHAR_TYPE c, c1;
2281
2282#ifdef MBS_SUPPORT
2283  /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2284  CHAR_TYPE *pattern, *COMPILED_BUFFER_VAR;
2285  size_t size;
2286  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
2287  int *mbs_offset = NULL;
2288  /* It hold whether each wchar_t is binary data or not.  */
2289  char *is_binary = NULL;
2290  /* A flag whether exactn is handling binary data or not.  */
2291  char is_exactn_bin = FALSE;
2292#endif /* MBS_SUPPORT */
2293
2294  /* A random temporary spot in PATTERN.  */
2295  const CHAR_TYPE *p1;
2296
2297  /* Points to the end of the buffer, where we should append.  */
2298  register US_CHAR_TYPE *b;
2299
2300  /* Keeps track of unclosed groups.  */
2301  compile_stack_type compile_stack;
2302
2303  /* Points to the current (ending) position in the pattern.  */
2304#ifdef MBS_SUPPORT
2305  const CHAR_TYPE *p;
2306  const CHAR_TYPE *pend;
2307#else
2308  const CHAR_TYPE *p = pattern;
2309  const CHAR_TYPE *pend = pattern + size;
2310#endif /* MBS_SUPPORT */
2311
2312  /* How to translate the characters in the pattern.  */
2313  RE_TRANSLATE_TYPE translate = bufp->translate;
2314
2315  /* Address of the count-byte of the most recently inserted `exactn'
2316     command.  This makes it possible to tell if a new exact-match
2317     character can be added to that command or if the character requires
2318     a new `exactn' command.  */
2319  US_CHAR_TYPE *pending_exact = 0;
2320
2321  /* Address of start of the most recently finished expression.
2322     This tells, e.g., postfix * where to find the start of its
2323     operand.  Reset at the beginning of groups and alternatives.  */
2324  US_CHAR_TYPE *laststart = 0;
2325
2326  /* Address of beginning of regexp, or inside of last group.  */
2327  US_CHAR_TYPE *begalt;
2328
2329  /* Address of the place where a forward jump should go to the end of
2330     the containing expression.  Each alternative of an `or' -- except the
2331     last -- ends with a forward jump of this sort.  */
2332  US_CHAR_TYPE *fixup_alt_jump = 0;
2333
2334  /* Counts open-groups as they are encountered.  Remembered for the
2335     matching close-group on the compile stack, so the same register
2336     number is put in the stop_memory as the start_memory.  */
2337  regnum_t regnum = 0;
2338
2339#ifdef MBS_SUPPORT
2340  /* Initialize the wchar_t PATTERN and offset_buffer.  */
2341  p = pend = pattern = TALLOC(csize + 1, CHAR_TYPE);
2342  p[csize] = L'\0';	/* sentinel */
2343  mbs_offset = TALLOC(csize + 1, int);
2344  is_binary = TALLOC(csize + 1, char);
2345  if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2346    {
2347      if (pattern) free(pattern);
2348      if (mbs_offset) free(mbs_offset);
2349      if (is_binary) free(is_binary);
2350      return REG_ESPACE;
2351    }
2352  size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2353  pend = p + size;
2354  if (size < 0)
2355    {
2356      if (pattern) free(pattern);
2357      if (mbs_offset) free(mbs_offset);
2358      if (is_binary) free(is_binary);
2359      return REG_BADPAT;
2360    }
2361#endif
2362
2363#ifdef DEBUG
2364  DEBUG_PRINT1 ("\nCompiling pattern: ");
2365  if (debug)
2366    {
2367      unsigned debug_count;
2368
2369      for (debug_count = 0; debug_count < size; debug_count++)
2370        PUT_CHAR (pattern[debug_count]);
2371      putchar ('\n');
2372    }
2373#endif /* DEBUG */
2374
2375  /* Initialize the compile stack.  */
2376  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2377  if (compile_stack.stack == NULL)
2378    {
2379#ifdef MBS_SUPPORT
2380      if (pattern) free(pattern);
2381      if (mbs_offset) free(mbs_offset);
2382      if (is_binary) free(is_binary);
2383#endif
2384      return REG_ESPACE;
2385    }
2386
2387  compile_stack.size = INIT_COMPILE_STACK_SIZE;
2388  compile_stack.avail = 0;
2389
2390  /* Initialize the pattern buffer.  */
2391  bufp->syntax = syntax;
2392  bufp->fastmap_accurate = 0;
2393  bufp->not_bol = bufp->not_eol = 0;
2394
2395  /* Set `used' to zero, so that if we return an error, the pattern
2396     printer (for debugging) will think there's no pattern.  We reset it
2397     at the end.  */
2398  bufp->used = 0;
2399
2400  /* Always count groups, whether or not bufp->no_sub is set.  */
2401  bufp->re_nsub = 0;
2402
2403#if !defined emacs && !defined SYNTAX_TABLE
2404  /* Initialize the syntax table.  */
2405   init_syntax_once ();
2406#endif
2407
2408  if (bufp->allocated == 0)
2409    {
2410      if (bufp->buffer)
2411	{ /* If zero allocated, but buffer is non-null, try to realloc
2412             enough space.  This loses if buffer's address is bogus, but
2413             that is the user's responsibility.  */
2414#ifdef MBS_SUPPORT
2415	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2416	     buffer.  */
2417          free(bufp->buffer);
2418          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(US_CHAR_TYPE),
2419					US_CHAR_TYPE);
2420#else
2421          RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, US_CHAR_TYPE);
2422#endif /* MBS_SUPPORT */
2423        }
2424      else
2425        { /* Caller did not allocate a buffer.  Do it for them.  */
2426          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(US_CHAR_TYPE),
2427					US_CHAR_TYPE);
2428        }
2429
2430      if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2431#ifdef MBS_SUPPORT
2432      bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2433#endif /* MBS_SUPPORT */
2434      bufp->allocated = INIT_BUF_SIZE;
2435    }
2436#ifdef MBS_SUPPORT
2437  else
2438    COMPILED_BUFFER_VAR = (US_CHAR_TYPE*) bufp->buffer;
2439#endif
2440
2441  begalt = b = COMPILED_BUFFER_VAR;
2442
2443  /* Loop through the uncompiled pattern until we're at the end.  */
2444  while (p != pend)
2445    {
2446      PATFETCH (c);
2447
2448      switch (c)
2449        {
2450        case '^':
2451          {
2452            if (   /* If at start of pattern, it's an operator.  */
2453                   p == pattern + 1
2454                   /* If context independent, it's an operator.  */
2455                || syntax & RE_CONTEXT_INDEP_ANCHORS
2456                   /* Otherwise, depends on what's come before.  */
2457                || at_begline_loc_p (pattern, p, syntax))
2458              BUF_PUSH (begline);
2459            else
2460              goto normal_char;
2461          }
2462          break;
2463
2464
2465        case '$':
2466          {
2467            if (   /* If at end of pattern, it's an operator.  */
2468                   p == pend
2469                   /* If context independent, it's an operator.  */
2470                || syntax & RE_CONTEXT_INDEP_ANCHORS
2471                   /* Otherwise, depends on what's next.  */
2472                || at_endline_loc_p (p, pend, syntax))
2473               BUF_PUSH (endline);
2474             else
2475               goto normal_char;
2476           }
2477           break;
2478
2479
2480	case '+':
2481        case '?':
2482          if ((syntax & RE_BK_PLUS_QM)
2483              || (syntax & RE_LIMITED_OPS))
2484            goto normal_char;
2485        handle_plus:
2486        case '*':
2487          /* If there is no previous pattern... */
2488          if (!laststart)
2489            {
2490              if (syntax & RE_CONTEXT_INVALID_OPS)
2491                FREE_STACK_RETURN (REG_BADRPT);
2492              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2493                goto normal_char;
2494            }
2495
2496          {
2497            /* Are we optimizing this jump?  */
2498            boolean keep_string_p = false;
2499
2500            /* 1 means zero (many) matches is allowed.  */
2501            char zero_times_ok = 0, many_times_ok = 0;
2502
2503            /* If there is a sequence of repetition chars, collapse it
2504               down to just one (the right one).  We can't combine
2505               interval operators with these because of, e.g., `a{2}*',
2506               which should only match an even number of `a's.  */
2507
2508            for (;;)
2509              {
2510                zero_times_ok |= c != '+';
2511                many_times_ok |= c != '?';
2512
2513                if (p == pend)
2514                  break;
2515
2516                PATFETCH (c);
2517
2518                if (c == '*'
2519                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2520                  ;
2521
2522                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2523                  {
2524                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2525
2526                    PATFETCH (c1);
2527                    if (!(c1 == '+' || c1 == '?'))
2528                      {
2529                        PATUNFETCH;
2530                        PATUNFETCH;
2531                        break;
2532                      }
2533
2534                    c = c1;
2535                  }
2536                else
2537                  {
2538                    PATUNFETCH;
2539                    break;
2540                  }
2541
2542                /* If we get here, we found another repeat character.  */
2543               }
2544
2545            /* Star, etc. applied to an empty pattern is equivalent
2546               to an empty pattern.  */
2547            if (!laststart)
2548              break;
2549
2550            /* Now we know whether or not zero matches is allowed
2551               and also whether or not two or more matches is allowed.  */
2552            if (many_times_ok)
2553              { /* More than one repetition is allowed, so put in at the
2554                   end a backward relative jump from `b' to before the next
2555                   jump we're going to put in below (which jumps from
2556                   laststart to after this jump).
2557
2558                   But if we are at the `*' in the exact sequence `.*\n',
2559                   insert an unconditional jump backwards to the .,
2560                   instead of the beginning of the loop.  This way we only
2561                   push a failure point once, instead of every time
2562                   through the loop.  */
2563                assert (p - 1 > pattern);
2564
2565                /* Allocate the space for the jump.  */
2566                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2567
2568                /* We know we are not at the first character of the pattern,
2569                   because laststart was nonzero.  And we've already
2570                   incremented `p', by the way, to be the character after
2571                   the `*'.  Do we have to do something analogous here
2572                   for null bytes, because of RE_DOT_NOT_NULL?  */
2573                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2574		    && zero_times_ok
2575                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2576                    && !(syntax & RE_DOT_NEWLINE))
2577                  { /* We have .*\n.  */
2578                    STORE_JUMP (jump, b, laststart);
2579                    keep_string_p = true;
2580                  }
2581                else
2582                  /* Anything else.  */
2583                  STORE_JUMP (maybe_pop_jump, b, laststart -
2584			      (1 + OFFSET_ADDRESS_SIZE));
2585
2586                /* We've added more stuff to the buffer.  */
2587                b += 1 + OFFSET_ADDRESS_SIZE;
2588              }
2589
2590            /* On failure, jump from laststart to b + 3, which will be the
2591               end of the buffer after this jump is inserted.  */
2592	    /* ifdef MBS_SUPPORT, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2593	       'b + 3'.  */
2594            GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2595            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2596                                       : on_failure_jump,
2597                         laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2598            pending_exact = 0;
2599            b += 1 + OFFSET_ADDRESS_SIZE;
2600
2601            if (!zero_times_ok)
2602              {
2603                /* At least one repetition is required, so insert a
2604                   `dummy_failure_jump' before the initial
2605                   `on_failure_jump' instruction of the loop. This
2606                   effects a skip over that instruction the first time
2607                   we hit that loop.  */
2608                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2609                INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2610			     2 + 2 * OFFSET_ADDRESS_SIZE);
2611                b += 1 + OFFSET_ADDRESS_SIZE;
2612              }
2613            }
2614	  break;
2615
2616
2617	case '.':
2618          laststart = b;
2619          BUF_PUSH (anychar);
2620          break;
2621
2622
2623        case '[':
2624          {
2625            boolean had_char_class = false;
2626#ifdef MBS_SUPPORT
2627	    CHAR_TYPE range_start = 0xffffffff;
2628#else
2629	    unsigned int range_start = 0xffffffff;
2630#endif
2631            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2632
2633#ifdef MBS_SUPPORT
2634	    /* We assume a charset(_not) structure as a wchar_t array.
2635	       charset[0] = (re_opcode_t) charset(_not)
2636               charset[1] = l (= length of char_classes)
2637               charset[2] = m (= length of collating_symbols)
2638               charset[3] = n (= length of equivalence_classes)
2639	       charset[4] = o (= length of char_ranges)
2640	       charset[5] = p (= length of chars)
2641
2642               charset[6] = char_class (wctype_t)
2643               charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2644                         ...
2645               charset[l+5]  = char_class (wctype_t)
2646
2647               charset[l+6]  = collating_symbol (wchar_t)
2648                            ...
2649               charset[l+m+5]  = collating_symbol (wchar_t)
2650					ifdef _LIBC we use the index if
2651					_NL_COLLATE_SYMB_EXTRAMB instead of
2652					wchar_t string.
2653
2654               charset[l+m+6]  = equivalence_classes (wchar_t)
2655                              ...
2656               charset[l+m+n+5]  = equivalence_classes (wchar_t)
2657					ifdef _LIBC we use the index in
2658					_NL_COLLATE_WEIGHT instead of
2659					wchar_t string.
2660
2661	       charset[l+m+n+6] = range_start
2662	       charset[l+m+n+7] = range_end
2663	                       ...
2664	       charset[l+m+n+2o+4] = range_start
2665	       charset[l+m+n+2o+5] = range_end
2666					ifdef _LIBC we use the value looked up
2667					in _NL_COLLATE_COLLSEQ instead of
2668					wchar_t character.
2669
2670	       charset[l+m+n+2o+6] = char
2671	                          ...
2672	       charset[l+m+n+2o+p+5] = char
2673
2674	     */
2675
2676	    /* We need at least 6 spaces: the opcode, the length of
2677               char_classes, the length of collating_symbols, the length of
2678               equivalence_classes, the length of char_ranges, the length of
2679               chars.  */
2680	    GET_BUFFER_SPACE (6);
2681
2682	    /* Save b as laststart. And We use laststart as the pointer
2683	       to the first element of the charset here.
2684	       In other words, laststart[i] indicates charset[i].  */
2685            laststart = b;
2686
2687            /* We test `*p == '^' twice, instead of using an if
2688               statement, so we only need one BUF_PUSH.  */
2689            BUF_PUSH (*p == '^' ? charset_not : charset);
2690            if (*p == '^')
2691              p++;
2692
2693            /* Push the length of char_classes, the length of
2694               collating_symbols, the length of equivalence_classes, the
2695               length of char_ranges and the length of chars.  */
2696            BUF_PUSH_3 (0, 0, 0);
2697            BUF_PUSH_2 (0, 0);
2698
2699            /* Remember the first position in the bracket expression.  */
2700            p1 = p;
2701
2702            /* charset_not matches newline according to a syntax bit.  */
2703            if ((re_opcode_t) b[-6] == charset_not
2704                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2705	      {
2706		BUF_PUSH('\n');
2707		laststart[5]++; /* Update the length of characters  */
2708	      }
2709
2710            /* Read in characters and ranges, setting map bits.  */
2711            for (;;)
2712              {
2713                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2714
2715                PATFETCH (c);
2716
2717                /* \ might escape characters inside [...] and [^...].  */
2718                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2719                  {
2720                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2721
2722                    PATFETCH (c1);
2723		    BUF_PUSH(c1);
2724		    laststart[5]++; /* Update the length of chars  */
2725		    range_start = c1;
2726                    continue;
2727                  }
2728
2729                /* Could be the end of the bracket expression.  If it's
2730                   not (i.e., when the bracket expression is `[]' so
2731                   far), the ']' character bit gets set way below.  */
2732                if (c == ']' && p != p1 + 1)
2733                  break;
2734
2735                /* Look ahead to see if it's a range when the last thing
2736                   was a character class.  */
2737                if (had_char_class && c == '-' && *p != ']')
2738                  FREE_STACK_RETURN (REG_ERANGE);
2739
2740                /* Look ahead to see if it's a range when the last thing
2741                   was a character: if this is a hyphen not at the
2742                   beginning or the end of a list, then it's the range
2743                   operator.  */
2744                if (c == '-'
2745                    && !(p - 2 >= pattern && p[-2] == '[')
2746                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2747                    && *p != ']')
2748                  {
2749                    reg_errcode_t ret;
2750		    /* Allocate the space for range_start and range_end.  */
2751		    GET_BUFFER_SPACE (2);
2752		    /* Update the pointer to indicate end of buffer.  */
2753                    b += 2;
2754                    ret = compile_range (range_start, &p, pend, translate,
2755                                         syntax, b, laststart);
2756                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2757                    range_start = 0xffffffff;
2758                  }
2759                else if (p[0] == '-' && p[1] != ']')
2760                  { /* This handles ranges made up of characters only.  */
2761                    reg_errcode_t ret;
2762
2763		    /* Move past the `-'.  */
2764                    PATFETCH (c1);
2765		    /* Allocate the space for range_start and range_end.  */
2766		    GET_BUFFER_SPACE (2);
2767		    /* Update the pointer to indicate end of buffer.  */
2768                    b += 2;
2769                    ret = compile_range (c, &p, pend, translate, syntax, b,
2770                                         laststart);
2771                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2772		    range_start = 0xffffffff;
2773                  }
2774
2775                /* See if we're at the beginning of a possible character
2776                   class.  */
2777                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2778                  { /* Leave room for the null.  */
2779                    char str[CHAR_CLASS_MAX_LENGTH + 1];
2780
2781                    PATFETCH (c);
2782                    c1 = 0;
2783
2784                    /* If pattern is `[[:'.  */
2785                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2786
2787                    for (;;)
2788                      {
2789                        PATFETCH (c);
2790                        if ((c == ':' && *p == ']') || p == pend)
2791                          break;
2792			if (c1 < CHAR_CLASS_MAX_LENGTH)
2793			  str[c1++] = c;
2794			else
2795			  /* This is in any case an invalid class name.  */
2796			  str[0] = '\0';
2797                      }
2798                    str[c1] = '\0';
2799
2800                    /* If isn't a word bracketed by `[:' and `:]':
2801                       undo the ending character, the letters, and leave
2802                       the leading `:' and `[' (but store them as character).  */
2803                    if (c == ':' && *p == ']')
2804                      {
2805			wctype_t wt;
2806			uintptr_t alignedp;
2807
2808			/* Query the character class as wctype_t.  */
2809			wt = IS_CHAR_CLASS (str);
2810			if (wt == 0)
2811			  FREE_STACK_RETURN (REG_ECTYPE);
2812
2813                        /* Throw away the ] at the end of the character
2814                           class.  */
2815                        PATFETCH (c);
2816
2817                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2818
2819			/* Allocate the space for character class.  */
2820                        GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2821			/* Update the pointer to indicate end of buffer.  */
2822                        b += CHAR_CLASS_SIZE;
2823			/* Move data which follow character classes
2824			    not to violate the data.  */
2825                        insert_space(CHAR_CLASS_SIZE,
2826				     laststart + 6 + laststart[1],
2827				     b - 1);
2828			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2829				    + __alignof__(wctype_t) - 1)
2830			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2831			/* Store the character class.  */
2832                        *((wctype_t*)alignedp) = wt;
2833                        /* Update length of char_classes */
2834                        laststart[1] += CHAR_CLASS_SIZE;
2835
2836                        had_char_class = true;
2837                      }
2838                    else
2839                      {
2840                        c1++;
2841                        while (c1--)
2842                          PATUNFETCH;
2843                        BUF_PUSH ('[');
2844                        BUF_PUSH (':');
2845                        laststart[5] += 2; /* Update the length of characters  */
2846			range_start = ':';
2847                        had_char_class = false;
2848                      }
2849                  }
2850                else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2851							  || *p == '.'))
2852		  {
2853		    CHAR_TYPE str[128];	/* Should be large enough.  */
2854		    CHAR_TYPE delim = *p; /* '=' or '.'  */
2855# ifdef _LIBC
2856		    uint32_t nrules =
2857		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2858# endif
2859		    PATFETCH (c);
2860		    c1 = 0;
2861
2862		    /* If pattern is `[[=' or '[[.'.  */
2863		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2864
2865		    for (;;)
2866		      {
2867			PATFETCH (c);
2868			if ((c == delim && *p == ']') || p == pend)
2869			  break;
2870			if (c1 < sizeof (str) - 1)
2871			  str[c1++] = c;
2872			else
2873			  /* This is in any case an invalid class name.  */
2874			  str[0] = '\0';
2875                      }
2876		    str[c1] = '\0';
2877
2878		    if (c == delim && *p == ']' && str[0] != '\0')
2879		      {
2880                        unsigned int i, offset;
2881			/* If we have no collation data we use the default
2882			   collation in which each character is in a class
2883			   by itself.  It also means that ASCII is the
2884			   character set and therefore we cannot have character
2885			   with more than one byte in the multibyte
2886			   representation.  */
2887
2888                        /* If not defined _LIBC, we push the name and
2889			   `\0' for the sake of matching performance.  */
2890			int datasize = c1 + 1;
2891
2892# ifdef _LIBC
2893			int32_t idx = 0;
2894			if (nrules == 0)
2895# endif
2896			  {
2897			    if (c1 != 1)
2898			      FREE_STACK_RETURN (REG_ECOLLATE);
2899			  }
2900# ifdef _LIBC
2901			else
2902			  {
2903			    const int32_t *table;
2904			    const int32_t *weights;
2905			    const int32_t *extra;
2906			    const int32_t *indirect;
2907			    wint_t *cp;
2908
2909			    /* This #include defines a local function!  */
2910#  include <locale/weightwc.h>
2911
2912			    if(delim == '=')
2913			      {
2914				/* We push the index for equivalence class.  */
2915				cp = (wint_t*)str;
2916
2917				table = (const int32_t *)
2918				  _NL_CURRENT (LC_COLLATE,
2919					       _NL_COLLATE_TABLEWC);
2920				weights = (const int32_t *)
2921				  _NL_CURRENT (LC_COLLATE,
2922					       _NL_COLLATE_WEIGHTWC);
2923				extra = (const int32_t *)
2924				  _NL_CURRENT (LC_COLLATE,
2925					       _NL_COLLATE_EXTRAWC);
2926				indirect = (const int32_t *)
2927				  _NL_CURRENT (LC_COLLATE,
2928					       _NL_COLLATE_INDIRECTWC);
2929
2930				idx = findidx ((const wint_t**)&cp);
2931				if (idx == 0 || cp < (wint_t*) str + c1)
2932				  /* This is no valid character.  */
2933				  FREE_STACK_RETURN (REG_ECOLLATE);
2934
2935				str[0] = (wchar_t)idx;
2936			      }
2937			    else /* delim == '.' */
2938			      {
2939				/* We push collation sequence value
2940				   for collating symbol.  */
2941				int32_t table_size;
2942				const int32_t *symb_table;
2943				const unsigned char *extra;
2944				int32_t idx;
2945				int32_t elem;
2946				int32_t second;
2947				int32_t hash;
2948				char char_str[c1];
2949
2950				/* We have to convert the name to a single-byte
2951				   string.  This is possible since the names
2952				   consist of ASCII characters and the internal
2953				   representation is UCS4.  */
2954				for (i = 0; i < c1; ++i)
2955				  char_str[i] = str[i];
2956
2957				table_size =
2958				  _NL_CURRENT_WORD (LC_COLLATE,
2959						    _NL_COLLATE_SYMB_HASH_SIZEMB);
2960				symb_table = (const int32_t *)
2961				  _NL_CURRENT (LC_COLLATE,
2962					       _NL_COLLATE_SYMB_TABLEMB);
2963				extra = (const unsigned char *)
2964				  _NL_CURRENT (LC_COLLATE,
2965					       _NL_COLLATE_SYMB_EXTRAMB);
2966
2967				/* Locate the character in the hashing table.  */
2968				hash = elem_hash (char_str, c1);
2969
2970				idx = 0;
2971				elem = hash % table_size;
2972				second = hash % (table_size - 2);
2973				while (symb_table[2 * elem] != 0)
2974				  {
2975				    /* First compare the hashing value.  */
2976				    if (symb_table[2 * elem] == hash
2977					&& c1 == extra[symb_table[2 * elem + 1]]
2978					&& memcmp (str,
2979						   &extra[symb_table[2 * elem + 1]
2980							 + 1], c1) == 0)
2981				      {
2982					/* Yep, this is the entry.  */
2983					idx = symb_table[2 * elem + 1];
2984					idx += 1 + extra[idx];
2985					break;
2986				      }
2987
2988				    /* Next entry.  */
2989				    elem += second;
2990				  }
2991
2992				if (symb_table[2 * elem] != 0)
2993				  {
2994				    /* Compute the index of the byte sequence
2995				       in the table.  */
2996				    idx += 1 + extra[idx];
2997				    /* Adjust for the alignment.  */
2998				    idx = (idx + 3) & ~4;
2999
3000				    str[0] = (wchar_t) idx + 4;
3001				  }
3002				else if (symb_table[2 * elem] == 0 && c1 == 1)
3003				  {
3004				    /* No valid character.  Match it as a
3005				       single byte character.  */
3006				    had_char_class = false;
3007				    BUF_PUSH(str[0]);
3008				    /* Update the length of characters  */
3009				    laststart[5]++;
3010				    range_start = str[0];
3011
3012				    /* Throw away the ] at the end of the
3013				       collating symbol.  */
3014				    PATFETCH (c);
3015				    /* exit from the switch block.  */
3016				    continue;
3017				  }
3018				else
3019				  FREE_STACK_RETURN (REG_ECOLLATE);
3020			      }
3021			    datasize = 1;
3022			  }
3023# endif
3024                        /* Throw away the ] at the end of the equivalence
3025                           class (or collating symbol).  */
3026                        PATFETCH (c);
3027
3028			/* Allocate the space for the equivalence class
3029			   (or collating symbol) (and '\0' if needed).  */
3030                        GET_BUFFER_SPACE(datasize);
3031			/* Update the pointer to indicate end of buffer.  */
3032                        b += datasize;
3033
3034			if (delim == '=')
3035			  { /* equivalence class  */
3036			    /* Calculate the offset of char_ranges,
3037			       which is next to equivalence_classes.  */
3038			    offset = laststart[1] + laststart[2]
3039			      + laststart[3] +6;
3040			    /* Insert space.  */
3041			    insert_space(datasize, laststart + offset, b - 1);
3042
3043			    /* Write the equivalence_class and \0.  */
3044			    for (i = 0 ; i < datasize ; i++)
3045			      laststart[offset + i] = str[i];
3046
3047			    /* Update the length of equivalence_classes.  */
3048			    laststart[3] += datasize;
3049			    had_char_class = true;
3050			  }
3051			else /* delim == '.' */
3052			  { /* collating symbol  */
3053			    /* Calculate the offset of the equivalence_classes,
3054			       which is next to collating_symbols.  */
3055			    offset = laststart[1] + laststart[2] + 6;
3056			    /* Insert space and write the collationg_symbol
3057			       and \0.  */
3058			    insert_space(datasize, laststart + offset, b-1);
3059			    for (i = 0 ; i < datasize ; i++)
3060			      laststart[offset + i] = str[i];
3061
3062			    /* In re_match_2_internal if range_start < -1, we
3063			       assume -range_start is the offset of the
3064			       collating symbol which is specified as
3065			       the character of the range start.  So we assign
3066			       -(laststart[1] + laststart[2] + 6) to
3067			       range_start.  */
3068			    range_start = -(laststart[1] + laststart[2] + 6);
3069			    /* Update the length of collating_symbol.  */
3070			    laststart[2] += datasize;
3071			    had_char_class = false;
3072			  }
3073		      }
3074                    else
3075                      {
3076                        c1++;
3077                        while (c1--)
3078                          PATUNFETCH;
3079                        BUF_PUSH ('[');
3080                        BUF_PUSH (delim);
3081                        laststart[5] += 2; /* Update the length of characters  */
3082			range_start = delim;
3083                        had_char_class = false;
3084                      }
3085		  }
3086                else
3087                  {
3088                    had_char_class = false;
3089		    BUF_PUSH(c);
3090		    laststart[5]++;  /* Update the length of characters  */
3091		    range_start = c;
3092                  }
3093	      }
3094
3095#else /* not MBS_SUPPORT */
3096            /* Ensure that we have enough space to push a charset: the
3097               opcode, the length count, and the bitset; 34 bytes in all.  */
3098	    GET_BUFFER_SPACE (34);
3099
3100            laststart = b;
3101
3102            /* We test `*p == '^' twice, instead of using an if
3103               statement, so we only need one BUF_PUSH.  */
3104            BUF_PUSH (*p == '^' ? charset_not : charset);
3105            if (*p == '^')
3106              p++;
3107
3108            /* Remember the first position in the bracket expression.  */
3109            p1 = p;
3110
3111            /* Push the number of bytes in the bitmap.  */
3112            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3113
3114            /* Clear the whole map.  */
3115            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3116
3117            /* charset_not matches newline according to a syntax bit.  */
3118            if ((re_opcode_t) b[-2] == charset_not
3119                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3120              SET_LIST_BIT ('\n');
3121
3122            /* Read in characters and ranges, setting map bits.  */
3123            for (;;)
3124              {
3125                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3126
3127                PATFETCH (c);
3128
3129                /* \ might escape characters inside [...] and [^...].  */
3130                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3131                  {
3132                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3133
3134                    PATFETCH (c1);
3135                    SET_LIST_BIT (c1);
3136		    range_start = c1;
3137                    continue;
3138                  }
3139
3140                /* Could be the end of the bracket expression.  If it's
3141                   not (i.e., when the bracket expression is `[]' so
3142                   far), the ']' character bit gets set way below.  */
3143                if (c == ']' && p != p1 + 1)
3144                  break;
3145
3146                /* Look ahead to see if it's a range when the last thing
3147                   was a character class.  */
3148                if (had_char_class && c == '-' && *p != ']')
3149                  FREE_STACK_RETURN (REG_ERANGE);
3150
3151                /* Look ahead to see if it's a range when the last thing
3152                   was a character: if this is a hyphen not at the
3153                   beginning or the end of a list, then it's the range
3154                   operator.  */
3155                if (c == '-'
3156                    && !(p - 2 >= pattern && p[-2] == '[')
3157                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3158                    && *p != ']')
3159                  {
3160                    reg_errcode_t ret
3161                      = compile_range (range_start, &p, pend, translate,
3162				       syntax, b);
3163                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3164		    range_start = 0xffffffff;
3165                  }
3166
3167                else if (p[0] == '-' && p[1] != ']')
3168                  { /* This handles ranges made up of characters only.  */
3169                    reg_errcode_t ret;
3170
3171		    /* Move past the `-'.  */
3172                    PATFETCH (c1);
3173
3174                    ret = compile_range (c, &p, pend, translate, syntax, b);
3175                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3176		    range_start = 0xffffffff;
3177                  }
3178
3179                /* See if we're at the beginning of a possible character
3180                   class.  */
3181
3182                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3183                  { /* Leave room for the null.  */
3184                    char str[CHAR_CLASS_MAX_LENGTH + 1];
3185
3186                    PATFETCH (c);
3187                    c1 = 0;
3188
3189                    /* If pattern is `[[:'.  */
3190                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3191
3192                    for (;;)
3193                      {
3194                        PATFETCH (c);
3195                        if ((c == ':' && *p == ']') || p == pend)
3196                          break;
3197			if (c1 < CHAR_CLASS_MAX_LENGTH)
3198			  str[c1++] = c;
3199			else
3200			  /* This is in any case an invalid class name.  */
3201			  str[0] = '\0';
3202                      }
3203                    str[c1] = '\0';
3204
3205                    /* If isn't a word bracketed by `[:' and `:]':
3206                       undo the ending character, the letters, and leave
3207                       the leading `:' and `[' (but set bits for them).  */
3208                    if (c == ':' && *p == ']')
3209                      {
3210# if defined _LIBC || WIDE_CHAR_SUPPORT
3211                        boolean is_lower = STREQ (str, "lower");
3212                        boolean is_upper = STREQ (str, "upper");
3213			wctype_t wt;
3214                        int ch;
3215
3216			wt = IS_CHAR_CLASS (str);
3217			if (wt == 0)
3218			  FREE_STACK_RETURN (REG_ECTYPE);
3219
3220                        /* Throw away the ] at the end of the character
3221                           class.  */
3222                        PATFETCH (c);
3223
3224                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3225
3226                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3227			  {
3228#  ifdef _LIBC
3229			    if (__iswctype (__btowc (ch), wt))
3230			      SET_LIST_BIT (ch);
3231#  else
3232			    if (iswctype (btowc (ch), wt))
3233			      SET_LIST_BIT (ch);
3234#  endif
3235
3236			    if (translate && (is_upper || is_lower)
3237				&& (ISUPPER (ch) || ISLOWER (ch)))
3238			      SET_LIST_BIT (ch);
3239			  }
3240
3241                        had_char_class = true;
3242# else
3243                        int ch;
3244                        boolean is_alnum = STREQ (str, "alnum");
3245                        boolean is_alpha = STREQ (str, "alpha");
3246                        boolean is_blank = STREQ (str, "blank");
3247                        boolean is_cntrl = STREQ (str, "cntrl");
3248                        boolean is_digit = STREQ (str, "digit");
3249                        boolean is_graph = STREQ (str, "graph");
3250                        boolean is_lower = STREQ (str, "lower");
3251                        boolean is_print = STREQ (str, "print");
3252                        boolean is_punct = STREQ (str, "punct");
3253                        boolean is_space = STREQ (str, "space");
3254                        boolean is_upper = STREQ (str, "upper");
3255                        boolean is_xdigit = STREQ (str, "xdigit");
3256
3257                        if (!IS_CHAR_CLASS (str))
3258			  FREE_STACK_RETURN (REG_ECTYPE);
3259
3260                        /* Throw away the ] at the end of the character
3261                           class.  */
3262                        PATFETCH (c);
3263
3264                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3265
3266                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3267                          {
3268			    /* This was split into 3 if's to
3269			       avoid an arbitrary limit in some compiler.  */
3270                            if (   (is_alnum  && ISALNUM (ch))
3271                                || (is_alpha  && ISALPHA (ch))
3272                                || (is_blank  && ISBLANK (ch))
3273                                || (is_cntrl  && ISCNTRL (ch)))
3274			      SET_LIST_BIT (ch);
3275			    if (   (is_digit  && ISDIGIT (ch))
3276                                || (is_graph  && ISGRAPH (ch))
3277                                || (is_lower  && ISLOWER (ch))
3278                                || (is_print  && ISPRINT (ch)))
3279			      SET_LIST_BIT (ch);
3280			    if (   (is_punct  && ISPUNCT (ch))
3281                                || (is_space  && ISSPACE (ch))
3282                                || (is_upper  && ISUPPER (ch))
3283                                || (is_xdigit && ISXDIGIT (ch)))
3284			      SET_LIST_BIT (ch);
3285			    if (   translate && (is_upper || is_lower)
3286				&& (ISUPPER (ch) || ISLOWER (ch)))
3287			      SET_LIST_BIT (ch);
3288                          }
3289                        had_char_class = true;
3290# endif	/* libc || wctype.h */
3291                      }
3292                    else
3293                      {
3294                        c1++;
3295                        while (c1--)
3296                          PATUNFETCH;
3297                        SET_LIST_BIT ('[');
3298                        SET_LIST_BIT (':');
3299			range_start = ':';
3300                        had_char_class = false;
3301                      }
3302                  }
3303                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3304		  {
3305		    unsigned char str[MB_LEN_MAX + 1];
3306# ifdef _LIBC
3307		    uint32_t nrules =
3308		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3309# endif
3310
3311		    PATFETCH (c);
3312		    c1 = 0;
3313
3314		    /* If pattern is `[[='.  */
3315		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3316
3317		    for (;;)
3318		      {
3319			PATFETCH (c);
3320			if ((c == '=' && *p == ']') || p == pend)
3321			  break;
3322			if (c1 < MB_LEN_MAX)
3323			  str[c1++] = c;
3324			else
3325			  /* This is in any case an invalid class name.  */
3326			  str[0] = '\0';
3327                      }
3328		    str[c1] = '\0';
3329
3330		    if (c == '=' && *p == ']' && str[0] != '\0')
3331		      {
3332			/* If we have no collation data we use the default
3333			   collation in which each character is in a class
3334			   by itself.  It also means that ASCII is the
3335			   character set and therefore we cannot have character
3336			   with more than one byte in the multibyte
3337			   representation.  */
3338# ifdef _LIBC
3339			if (nrules == 0)
3340# endif
3341			  {
3342			    if (c1 != 1)
3343			      FREE_STACK_RETURN (REG_ECOLLATE);
3344
3345			    /* Throw away the ] at the end of the equivalence
3346			       class.  */
3347			    PATFETCH (c);
3348
3349			    /* Set the bit for the character.  */
3350			    SET_LIST_BIT (str[0]);
3351			  }
3352# ifdef _LIBC
3353			else
3354			  {
3355			    /* Try to match the byte sequence in `str' against
3356			       those known to the collate implementation.
3357			       First find out whether the bytes in `str' are
3358			       actually from exactly one character.  */
3359			    const int32_t *table;
3360			    const unsigned char *weights;
3361			    const unsigned char *extra;
3362			    const int32_t *indirect;
3363			    int32_t idx;
3364			    const unsigned char *cp = str;
3365			    int ch;
3366
3367			    /* This #include defines a local function!  */
3368#  include <locale/weight.h>
3369
3370			    table = (const int32_t *)
3371			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3372			    weights = (const unsigned char *)
3373			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3374			    extra = (const unsigned char *)
3375			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3376			    indirect = (const int32_t *)
3377			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3378
3379			    idx = findidx (&cp);
3380			    if (idx == 0 || cp < str + c1)
3381			      /* This is no valid character.  */
3382			      FREE_STACK_RETURN (REG_ECOLLATE);
3383
3384			    /* Throw away the ] at the end of the equivalence
3385			       class.  */
3386			    PATFETCH (c);
3387
3388			    /* Now we have to go throught the whole table
3389			       and find all characters which have the same
3390			       first level weight.
3391
3392			       XXX Note that this is not entirely correct.
3393			       we would have to match multibyte sequences
3394			       but this is not possible with the current
3395			       implementation.  */
3396			    for (ch = 1; ch < 256; ++ch)
3397			      /* XXX This test would have to be changed if we
3398				 would allow matching multibyte sequences.  */
3399			      if (table[ch] > 0)
3400				{
3401				  int32_t idx2 = table[ch];
3402				  size_t len = weights[idx2];
3403
3404				  /* Test whether the lenghts match.  */
3405				  if (weights[idx] == len)
3406				    {
3407				      /* They do.  New compare the bytes of
3408					 the weight.  */
3409				      size_t cnt = 0;
3410
3411				      while (cnt < len
3412					     && (weights[idx + 1 + cnt]
3413						 == weights[idx2 + 1 + cnt]))
3414					++cnt;
3415
3416				      if (cnt == len)
3417					/* They match.  Mark the character as
3418					   acceptable.  */
3419					SET_LIST_BIT (ch);
3420				    }
3421				}
3422			  }
3423# endif
3424			had_char_class = true;
3425		      }
3426                    else
3427                      {
3428                        c1++;
3429                        while (c1--)
3430                          PATUNFETCH;
3431                        SET_LIST_BIT ('[');
3432                        SET_LIST_BIT ('=');
3433			range_start = '=';
3434                        had_char_class = false;
3435                      }
3436		  }
3437                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3438		  {
3439		    unsigned char str[128];	/* Should be large enough.  */
3440# ifdef _LIBC
3441		    uint32_t nrules =
3442		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3443# endif
3444
3445		    PATFETCH (c);
3446		    c1 = 0;
3447
3448		    /* If pattern is `[[.'.  */
3449		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3450
3451		    for (;;)
3452		      {
3453			PATFETCH (c);
3454			if ((c == '.' && *p == ']') || p == pend)
3455			  break;
3456			if (c1 < sizeof (str))
3457			  str[c1++] = c;
3458			else
3459			  /* This is in any case an invalid class name.  */
3460			  str[0] = '\0';
3461                      }
3462		    str[c1] = '\0';
3463
3464		    if (c == '.' && *p == ']' && str[0] != '\0')
3465		      {
3466			/* If we have no collation data we use the default
3467			   collation in which each character is the name
3468			   for its own class which contains only the one
3469			   character.  It also means that ASCII is the
3470			   character set and therefore we cannot have character
3471			   with more than one byte in the multibyte
3472			   representation.  */
3473# ifdef _LIBC
3474			if (nrules == 0)
3475# endif
3476			  {
3477			    if (c1 != 1)
3478			      FREE_STACK_RETURN (REG_ECOLLATE);
3479
3480			    /* Throw away the ] at the end of the equivalence
3481			       class.  */
3482			    PATFETCH (c);
3483
3484			    /* Set the bit for the character.  */
3485			    SET_LIST_BIT (str[0]);
3486			    range_start = ((const unsigned char *) str)[0];
3487			  }
3488# ifdef _LIBC
3489			else
3490			  {
3491			    /* Try to match the byte sequence in `str' against
3492			       those known to the collate implementation.
3493			       First find out whether the bytes in `str' are
3494			       actually from exactly one character.  */
3495			    int32_t table_size;
3496			    const int32_t *symb_table;
3497			    const unsigned char *extra;
3498			    int32_t idx;
3499			    int32_t elem;
3500			    int32_t second;
3501			    int32_t hash;
3502
3503			    table_size =
3504			      _NL_CURRENT_WORD (LC_COLLATE,
3505						_NL_COLLATE_SYMB_HASH_SIZEMB);
3506			    symb_table = (const int32_t *)
3507			      _NL_CURRENT (LC_COLLATE,
3508					   _NL_COLLATE_SYMB_TABLEMB);
3509			    extra = (const unsigned char *)
3510			      _NL_CURRENT (LC_COLLATE,
3511					   _NL_COLLATE_SYMB_EXTRAMB);
3512
3513			    /* Locate the character in the hashing table.  */
3514			    hash = elem_hash (str, c1);
3515
3516			    idx = 0;
3517			    elem = hash % table_size;
3518			    second = hash % (table_size - 2);
3519			    while (symb_table[2 * elem] != 0)
3520			      {
3521				/* First compare the hashing value.  */
3522				if (symb_table[2 * elem] == hash
3523				    && c1 == extra[symb_table[2 * elem + 1]]
3524				    && memcmp (str,
3525					       &extra[symb_table[2 * elem + 1]
3526						     + 1],
3527					       c1) == 0)
3528				  {
3529				    /* Yep, this is the entry.  */
3530				    idx = symb_table[2 * elem + 1];
3531				    idx += 1 + extra[idx];
3532				    break;
3533				  }
3534
3535				/* Next entry.  */
3536				elem += second;
3537			      }
3538
3539			    if (symb_table[2 * elem] == 0)
3540			      /* This is no valid character.  */
3541			      FREE_STACK_RETURN (REG_ECOLLATE);
3542
3543			    /* Throw away the ] at the end of the equivalence
3544			       class.  */
3545			    PATFETCH (c);
3546
3547			    /* Now add the multibyte character(s) we found
3548			       to the accept list.
3549
3550			       XXX Note that this is not entirely correct.
3551			       we would have to match multibyte sequences
3552			       but this is not possible with the current
3553			       implementation.  Also, we have to match
3554			       collating symbols, which expand to more than
3555			       one file, as a whole and not allow the
3556			       individual bytes.  */
3557			    c1 = extra[idx++];
3558			    if (c1 == 1)
3559			      range_start = extra[idx];
3560			    while (c1-- > 0)
3561			      {
3562				SET_LIST_BIT (extra[idx]);
3563				++idx;
3564			      }
3565			  }
3566# endif
3567			had_char_class = false;
3568		      }
3569                    else
3570                      {
3571                        c1++;
3572                        while (c1--)
3573                          PATUNFETCH;
3574                        SET_LIST_BIT ('[');
3575                        SET_LIST_BIT ('.');
3576			range_start = '.';
3577                        had_char_class = false;
3578                      }
3579		  }
3580                else
3581                  {
3582                    had_char_class = false;
3583                    SET_LIST_BIT (c);
3584		    range_start = c;
3585                  }
3586              }
3587
3588            /* Discard any (non)matching list bytes that are all 0 at the
3589               end of the map.  Decrease the map-length byte too.  */
3590            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3591              b[-1]--;
3592            b += b[-1];
3593#endif /* MBS_SUPPORT */
3594          }
3595          break;
3596
3597
3598	case '(':
3599          if (syntax & RE_NO_BK_PARENS)
3600            goto handle_open;
3601          else
3602            goto normal_char;
3603
3604
3605        case ')':
3606          if (syntax & RE_NO_BK_PARENS)
3607            goto handle_close;
3608          else
3609            goto normal_char;
3610
3611
3612        case '\n':
3613          if (syntax & RE_NEWLINE_ALT)
3614            goto handle_alt;
3615          else
3616            goto normal_char;
3617
3618
3619	case '|':
3620          if (syntax & RE_NO_BK_VBAR)
3621            goto handle_alt;
3622          else
3623            goto normal_char;
3624
3625
3626        case '{':
3627           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3628             goto handle_interval;
3629           else
3630             goto normal_char;
3631
3632
3633        case '\\':
3634          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3635
3636          /* Do not translate the character after the \, so that we can
3637             distinguish, e.g., \B from \b, even if we normally would
3638             translate, e.g., B to b.  */
3639          PATFETCH_RAW (c);
3640
3641          switch (c)
3642            {
3643            case '(':
3644              if (syntax & RE_NO_BK_PARENS)
3645                goto normal_backslash;
3646
3647            handle_open:
3648              bufp->re_nsub++;
3649              regnum++;
3650
3651              if (COMPILE_STACK_FULL)
3652                {
3653                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
3654                            compile_stack_elt_t);
3655                  if (compile_stack.stack == NULL) return REG_ESPACE;
3656
3657                  compile_stack.size <<= 1;
3658                }
3659
3660              /* These are the values to restore when we hit end of this
3661                 group.  They are all relative offsets, so that if the
3662                 whole pattern moves because of realloc, they will still
3663                 be valid.  */
3664              COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3665              COMPILE_STACK_TOP.fixup_alt_jump
3666                = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3667              COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3668              COMPILE_STACK_TOP.regnum = regnum;
3669
3670              /* We will eventually replace the 0 with the number of
3671                 groups inner to this one.  But do not push a
3672                 start_memory for groups beyond the last one we can
3673                 represent in the compiled pattern.  */
3674              if (regnum <= MAX_REGNUM)
3675                {
3676                  COMPILE_STACK_TOP.inner_group_offset = b
3677		    - COMPILED_BUFFER_VAR + 2;
3678                  BUF_PUSH_3 (start_memory, regnum, 0);
3679                }
3680
3681              compile_stack.avail++;
3682
3683              fixup_alt_jump = 0;
3684              laststart = 0;
3685              begalt = b;
3686	      /* If we've reached MAX_REGNUM groups, then this open
3687		 won't actually generate any code, so we'll have to
3688		 clear pending_exact explicitly.  */
3689	      pending_exact = 0;
3690              break;
3691
3692
3693            case ')':
3694              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3695
3696              if (COMPILE_STACK_EMPTY)
3697		{
3698		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3699		    goto normal_backslash;
3700		  else
3701		    FREE_STACK_RETURN (REG_ERPAREN);
3702		}
3703
3704            handle_close:
3705              if (fixup_alt_jump)
3706                { /* Push a dummy failure point at the end of the
3707                     alternative for a possible future
3708                     `pop_failure_jump' to pop.  See comments at
3709                     `push_dummy_failure' in `re_match_2'.  */
3710                  BUF_PUSH (push_dummy_failure);
3711
3712                  /* We allocated space for this jump when we assigned
3713                     to `fixup_alt_jump', in the `handle_alt' case below.  */
3714                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3715                }
3716
3717              /* See similar code for backslashed left paren above.  */
3718              if (COMPILE_STACK_EMPTY)
3719		{
3720		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3721		    goto normal_char;
3722		  else
3723		    FREE_STACK_RETURN (REG_ERPAREN);
3724		}
3725
3726              /* Since we just checked for an empty stack above, this
3727                 ``can't happen''.  */
3728              assert (compile_stack.avail != 0);
3729              {
3730                /* We don't just want to restore into `regnum', because
3731                   later groups should continue to be numbered higher,
3732                   as in `(ab)c(de)' -- the second group is #2.  */
3733                regnum_t this_group_regnum;
3734
3735                compile_stack.avail--;
3736                begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3737                fixup_alt_jump
3738                  = COMPILE_STACK_TOP.fixup_alt_jump
3739                    ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3740                    : 0;
3741                laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3742                this_group_regnum = COMPILE_STACK_TOP.regnum;
3743		/* If we've reached MAX_REGNUM groups, then this open
3744		   won't actually generate any code, so we'll have to
3745		   clear pending_exact explicitly.  */
3746		pending_exact = 0;
3747
3748                /* We're at the end of the group, so now we know how many
3749                   groups were inside this one.  */
3750                if (this_group_regnum <= MAX_REGNUM)
3751                  {
3752		    US_CHAR_TYPE *inner_group_loc
3753                      = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3754
3755                    *inner_group_loc = regnum - this_group_regnum;
3756                    BUF_PUSH_3 (stop_memory, this_group_regnum,
3757                                regnum - this_group_regnum);
3758                  }
3759              }
3760              break;
3761
3762
3763            case '|':					/* `\|'.  */
3764              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3765                goto normal_backslash;
3766            handle_alt:
3767              if (syntax & RE_LIMITED_OPS)
3768                goto normal_char;
3769
3770              /* Insert before the previous alternative a jump which
3771                 jumps to this alternative if the former fails.  */
3772              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3773              INSERT_JUMP (on_failure_jump, begalt,
3774			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3775              pending_exact = 0;
3776              b += 1 + OFFSET_ADDRESS_SIZE;
3777
3778              /* The alternative before this one has a jump after it
3779                 which gets executed if it gets matched.  Adjust that
3780                 jump so it will jump to this alternative's analogous
3781                 jump (put in below, which in turn will jump to the next
3782                 (if any) alternative's such jump, etc.).  The last such
3783                 jump jumps to the correct final destination.  A picture:
3784                          _____ _____
3785                          |   | |   |
3786                          |   v |   v
3787                         a | b   | c
3788
3789                 If we are at `b', then fixup_alt_jump right now points to a
3790                 three-byte space after `a'.  We'll put in the jump, set
3791                 fixup_alt_jump to right after `b', and leave behind three
3792                 bytes which we'll fill in when we get to after `c'.  */
3793
3794              if (fixup_alt_jump)
3795                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3796
3797              /* Mark and leave space for a jump after this alternative,
3798                 to be filled in later either by next alternative or
3799                 when know we're at the end of a series of alternatives.  */
3800              fixup_alt_jump = b;
3801              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3802              b += 1 + OFFSET_ADDRESS_SIZE;
3803
3804              laststart = 0;
3805              begalt = b;
3806              break;
3807
3808
3809            case '{':
3810              /* If \{ is a literal.  */
3811              if (!(syntax & RE_INTERVALS)
3812                     /* If we're at `\{' and it's not the open-interval
3813                        operator.  */
3814		  || (syntax & RE_NO_BK_BRACES))
3815                goto normal_backslash;
3816
3817            handle_interval:
3818              {
3819                /* If got here, then the syntax allows intervals.  */
3820
3821                /* At least (most) this many matches must be made.  */
3822                int lower_bound = -1, upper_bound = -1;
3823
3824		/* Place in the uncompiled pattern (i.e., just after
3825		   the '{') to go back to if the interval is invalid.  */
3826		const CHAR_TYPE *beg_interval = p;
3827
3828                if (p == pend)
3829		  goto invalid_interval;
3830
3831                GET_UNSIGNED_NUMBER (lower_bound);
3832
3833                if (c == ',')
3834                  {
3835                    GET_UNSIGNED_NUMBER (upper_bound);
3836		    if (upper_bound < 0)
3837		      upper_bound = RE_DUP_MAX;
3838                  }
3839                else
3840                  /* Interval such as `{1}' => match exactly once. */
3841                  upper_bound = lower_bound;
3842
3843                if (! (0 <= lower_bound && lower_bound <= upper_bound))
3844		  goto invalid_interval;
3845
3846                if (!(syntax & RE_NO_BK_BRACES))
3847                  {
3848		    if (c != '\\' || p == pend)
3849		      goto invalid_interval;
3850                    PATFETCH (c);
3851                  }
3852
3853                if (c != '}')
3854		  goto invalid_interval;
3855
3856                /* If it's invalid to have no preceding re.  */
3857                if (!laststart)
3858                  {
3859		    if (syntax & RE_CONTEXT_INVALID_OPS
3860			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3861                      FREE_STACK_RETURN (REG_BADRPT);
3862                    else if (syntax & RE_CONTEXT_INDEP_OPS)
3863                      laststart = b;
3864                    else
3865                      goto unfetch_interval;
3866                  }
3867
3868                /* We just parsed a valid interval.  */
3869
3870                if (RE_DUP_MAX < upper_bound)
3871		  FREE_STACK_RETURN (REG_BADBR);
3872
3873                /* If the upper bound is zero, don't want to succeed at
3874                   all; jump from `laststart' to `b + 3', which will be
3875		   the end of the buffer after we insert the jump.  */
3876		/* ifdef MBS_SUPPORT, 'b + 1 + OFFSET_ADDRESS_SIZE'
3877		   instead of 'b + 3'.  */
3878                 if (upper_bound == 0)
3879                   {
3880                     GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3881                     INSERT_JUMP (jump, laststart, b + 1
3882				  + OFFSET_ADDRESS_SIZE);
3883                     b += 1 + OFFSET_ADDRESS_SIZE;
3884                   }
3885
3886                 /* Otherwise, we have a nontrivial interval.  When
3887                    we're all done, the pattern will look like:
3888                      set_number_at <jump count> <upper bound>
3889                      set_number_at <succeed_n count> <lower bound>
3890                      succeed_n <after jump addr> <succeed_n count>
3891                      <body of loop>
3892                      jump_n <succeed_n addr> <jump count>
3893                    (The upper bound and `jump_n' are omitted if
3894                    `upper_bound' is 1, though.)  */
3895                 else
3896                   { /* If the upper bound is > 1, we need to insert
3897                        more at the end of the loop.  */
3898                     unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3899		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3900
3901                     GET_BUFFER_SPACE (nbytes);
3902
3903                     /* Initialize lower bound of the `succeed_n', even
3904                        though it will be set during matching by its
3905                        attendant `set_number_at' (inserted next),
3906                        because `re_compile_fastmap' needs to know.
3907                        Jump to the `jump_n' we might insert below.  */
3908                     INSERT_JUMP2 (succeed_n, laststart,
3909                                   b + 1 + 2 * OFFSET_ADDRESS_SIZE
3910				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3911				   , lower_bound);
3912                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3913
3914                     /* Code to initialize the lower bound.  Insert
3915                        before the `succeed_n'.  The `5' is the last two
3916                        bytes of this `set_number_at', plus 3 bytes of
3917                        the following `succeed_n'.  */
3918		     /* ifdef MBS_SUPPORT, The '1+2*OFFSET_ADDRESS_SIZE'
3919			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3920			of the following `succeed_n'.  */
3921                     insert_op2 (set_number_at, laststart, 1
3922				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3923                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3924
3925                     if (upper_bound > 1)
3926                       { /* More than one repetition is allowed, so
3927                            append a backward jump to the `succeed_n'
3928                            that starts this interval.
3929
3930                            When we've reached this during matching,
3931                            we'll have matched the interval once, so
3932                            jump back only `upper_bound - 1' times.  */
3933                         STORE_JUMP2 (jump_n, b, laststart
3934				      + 2 * OFFSET_ADDRESS_SIZE + 1,
3935                                      upper_bound - 1);
3936                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3937
3938                         /* The location we want to set is the second
3939                            parameter of the `jump_n'; that is `b-2' as
3940                            an absolute address.  `laststart' will be
3941                            the `set_number_at' we're about to insert;
3942                            `laststart+3' the number to set, the source
3943                            for the relative address.  But we are
3944                            inserting into the middle of the pattern --
3945                            so everything is getting moved up by 5.
3946                            Conclusion: (b - 2) - (laststart + 3) + 5,
3947                            i.e., b - laststart.
3948
3949                            We insert this at the beginning of the loop
3950                            so that if we fail during matching, we'll
3951                            reinitialize the bounds.  */
3952                         insert_op2 (set_number_at, laststart, b - laststart,
3953                                     upper_bound - 1, b);
3954                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3955                       }
3956                   }
3957                pending_exact = 0;
3958		break;
3959
3960	      invalid_interval:
3961		if (!(syntax & RE_INVALID_INTERVAL_ORD))
3962		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3963	      unfetch_interval:
3964		/* Match the characters as literals.  */
3965		p = beg_interval;
3966		c = '{';
3967		if (syntax & RE_NO_BK_BRACES)
3968		  goto normal_char;
3969		else
3970		  goto normal_backslash;
3971	      }
3972
3973#ifdef emacs
3974            /* There is no way to specify the before_dot and after_dot
3975               operators.  rms says this is ok.  --karl  */
3976            case '=':
3977              BUF_PUSH (at_dot);
3978              break;
3979
3980            case 's':
3981              laststart = b;
3982              PATFETCH (c);
3983              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3984              break;
3985
3986            case 'S':
3987              laststart = b;
3988              PATFETCH (c);
3989              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3990              break;
3991#endif /* emacs */
3992
3993
3994            case 'w':
3995	      if (syntax & RE_NO_GNU_OPS)
3996		goto normal_char;
3997              laststart = b;
3998              BUF_PUSH (wordchar);
3999              break;
4000
4001
4002            case 'W':
4003	      if (syntax & RE_NO_GNU_OPS)
4004		goto normal_char;
4005              laststart = b;
4006              BUF_PUSH (notwordchar);
4007              break;
4008
4009
4010            case '<':
4011	      if (syntax & RE_NO_GNU_OPS)
4012		goto normal_char;
4013              BUF_PUSH (wordbeg);
4014              break;
4015
4016            case '>':
4017	      if (syntax & RE_NO_GNU_OPS)
4018		goto normal_char;
4019              BUF_PUSH (wordend);
4020              break;
4021
4022            case 'b':
4023	      if (syntax & RE_NO_GNU_OPS)
4024		goto normal_char;
4025              BUF_PUSH (wordbound);
4026              break;
4027
4028            case 'B':
4029	      if (syntax & RE_NO_GNU_OPS)
4030		goto normal_char;
4031              BUF_PUSH (notwordbound);
4032              break;
4033
4034            case '`':
4035	      if (syntax & RE_NO_GNU_OPS)
4036		goto normal_char;
4037              BUF_PUSH (begbuf);
4038              break;
4039
4040            case '\'':
4041	      if (syntax & RE_NO_GNU_OPS)
4042		goto normal_char;
4043              BUF_PUSH (endbuf);
4044              break;
4045
4046            case '1': case '2': case '3': case '4': case '5':
4047            case '6': case '7': case '8': case '9':
4048              if (syntax & RE_NO_BK_REFS)
4049                goto normal_char;
4050
4051              c1 = c - '0';
4052
4053              if (c1 > regnum)
4054                FREE_STACK_RETURN (REG_ESUBREG);
4055
4056              /* Can't back reference to a subexpression if inside of it.  */
4057              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4058                goto normal_char;
4059
4060              laststart = b;
4061              BUF_PUSH_2 (duplicate, c1);
4062              break;
4063
4064
4065            case '+':
4066            case '?':
4067              if (syntax & RE_BK_PLUS_QM)
4068                goto handle_plus;
4069              else
4070                goto normal_backslash;
4071
4072            default:
4073            normal_backslash:
4074              /* You might think it would be useful for \ to mean
4075                 not to translate; but if we don't translate it
4076                 it will never match anything.  */
4077              c = TRANSLATE (c);
4078              goto normal_char;
4079            }
4080          break;
4081
4082
4083	default:
4084        /* Expects the character in `c'.  */
4085	normal_char:
4086	      /* If no exactn currently being built.  */
4087          if (!pending_exact
4088#ifdef MBS_SUPPORT
4089	      /* If last exactn handle binary(or character) and
4090		 new exactn handle character(or binary).  */
4091	      || is_exactn_bin != is_binary[p - 1 - pattern]
4092#endif /* MBS_SUPPORT */
4093
4094              /* If last exactn not at current position.  */
4095              || pending_exact + *pending_exact + 1 != b
4096
4097              /* We have only one byte following the exactn for the count.  */
4098	      || *pending_exact == (1 << BYTEWIDTH) - 1
4099
4100              /* If followed by a repetition operator.  */
4101              || *p == '*' || *p == '^'
4102	      || ((syntax & RE_BK_PLUS_QM)
4103		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4104		  : (*p == '+' || *p == '?'))
4105	      || ((syntax & RE_INTERVALS)
4106                  && ((syntax & RE_NO_BK_BRACES)
4107		      ? *p == '{'
4108                      : (p[0] == '\\' && p[1] == '{'))))
4109	    {
4110	      /* Start building a new exactn.  */
4111
4112              laststart = b;
4113
4114#ifdef MBS_SUPPORT
4115	      /* Is this exactn binary data or character? */
4116	      is_exactn_bin = is_binary[p - 1 - pattern];
4117	      if (is_exactn_bin)
4118		  BUF_PUSH_2 (exactn_bin, 0);
4119	      else
4120		  BUF_PUSH_2 (exactn, 0);
4121#else
4122	      BUF_PUSH_2 (exactn, 0);
4123#endif /* MBS_SUPPORT */
4124	      pending_exact = b - 1;
4125            }
4126
4127	  BUF_PUSH (c);
4128          (*pending_exact)++;
4129	  break;
4130        } /* switch (c) */
4131    } /* while p != pend */
4132
4133
4134  /* Through the pattern now.  */
4135
4136  if (fixup_alt_jump)
4137    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4138
4139  if (!COMPILE_STACK_EMPTY)
4140    FREE_STACK_RETURN (REG_EPAREN);
4141
4142  /* If we don't want backtracking, force success
4143     the first time we reach the end of the compiled pattern.  */
4144  if (syntax & RE_NO_POSIX_BACKTRACKING)
4145    BUF_PUSH (succeed);
4146
4147#ifdef MBS_SUPPORT
4148  free (pattern);
4149  free (mbs_offset);
4150  free (is_binary);
4151#endif
4152  free (compile_stack.stack);
4153
4154  /* We have succeeded; set the length of the buffer.  */
4155#ifdef MBS_SUPPORT
4156  bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4157#else
4158  bufp->used = b - bufp->buffer;
4159#endif
4160
4161#ifdef DEBUG
4162  if (debug)
4163    {
4164      DEBUG_PRINT1 ("\nCompiled pattern: \n");
4165      print_compiled_pattern (bufp);
4166    }
4167#endif /* DEBUG */
4168
4169#ifndef MATCH_MAY_ALLOCATE
4170  /* Initialize the failure stack to the largest possible stack.  This
4171     isn't necessary unless we're trying to avoid calling alloca in
4172     the search and match routines.  */
4173  {
4174    int num_regs = bufp->re_nsub + 1;
4175
4176    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4177       is strictly greater than re_max_failures, the largest possible stack
4178       is 2 * re_max_failures failure points.  */
4179    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4180      {
4181	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4182
4183# ifdef emacs
4184	if (! fail_stack.stack)
4185	  fail_stack.stack
4186	    = (fail_stack_elt_t *) xmalloc (fail_stack.size
4187					    * sizeof (fail_stack_elt_t));
4188	else
4189	  fail_stack.stack
4190	    = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
4191					     (fail_stack.size
4192					      * sizeof (fail_stack_elt_t)));
4193# else /* not emacs */
4194	if (! fail_stack.stack)
4195	  fail_stack.stack
4196	    = (fail_stack_elt_t *) malloc (fail_stack.size
4197					   * sizeof (fail_stack_elt_t));
4198	else
4199	  fail_stack.stack
4200	    = (fail_stack_elt_t *) realloc (fail_stack.stack,
4201					    (fail_stack.size
4202					     * sizeof (fail_stack_elt_t)));
4203# endif /* not emacs */
4204      }
4205
4206    regex_grow_registers (num_regs);
4207  }
4208#endif /* not MATCH_MAY_ALLOCATE */
4209
4210  return REG_NOERROR;
4211} /* regex_compile */
4212
4213/* Subroutines for `regex_compile'.  */
4214
4215/* Store OP at LOC followed by two-byte integer parameter ARG.  */
4216/* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t.  */
4217
4218static void
4219store_op1 (op, loc, arg)
4220    re_opcode_t op;
4221    US_CHAR_TYPE *loc;
4222    int arg;
4223{
4224  *loc = (US_CHAR_TYPE) op;
4225  STORE_NUMBER (loc + 1, arg);
4226}
4227
4228
4229/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4230/* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t.  */
4231
4232static void
4233store_op2 (op, loc, arg1, arg2)
4234    re_opcode_t op;
4235    US_CHAR_TYPE *loc;
4236    int arg1, arg2;
4237{
4238  *loc = (US_CHAR_TYPE) op;
4239  STORE_NUMBER (loc + 1, arg1);
4240  STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4241}
4242
4243
4244/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4245   for OP followed by two-byte integer parameter ARG.  */
4246/* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t.  */
4247
4248static void
4249insert_op1 (op, loc, arg, end)
4250    re_opcode_t op;
4251    US_CHAR_TYPE *loc;
4252    int arg;
4253    US_CHAR_TYPE *end;
4254{
4255  register US_CHAR_TYPE *pfrom = end;
4256  register US_CHAR_TYPE *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4257
4258  while (pfrom != loc)
4259    *--pto = *--pfrom;
4260
4261  store_op1 (op, loc, arg);
4262}
4263
4264
4265/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4266/* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t.  */
4267
4268static void
4269insert_op2 (op, loc, arg1, arg2, end)
4270    re_opcode_t op;
4271    US_CHAR_TYPE *loc;
4272    int arg1, arg2;
4273    US_CHAR_TYPE *end;
4274{
4275  register US_CHAR_TYPE *pfrom = end;
4276  register US_CHAR_TYPE *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4277
4278  while (pfrom != loc)
4279    *--pto = *--pfrom;
4280
4281  store_op2 (op, loc, arg1, arg2);
4282}
4283
4284
4285/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4286   after an alternative or a begin-subexpression.  We assume there is at
4287   least one character before the ^.  */
4288
4289static boolean
4290at_begline_loc_p (pattern, p, syntax)
4291    const CHAR_TYPE *pattern, *p;
4292    reg_syntax_t syntax;
4293{
4294  const CHAR_TYPE *prev = p - 2;
4295  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4296
4297  return
4298       /* After a subexpression?  */
4299       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4300       /* After an alternative?  */
4301    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4302}
4303
4304
4305/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4306   at least one character after the $, i.e., `P < PEND'.  */
4307
4308static boolean
4309at_endline_loc_p (p, pend, syntax)
4310    const CHAR_TYPE *p, *pend;
4311    reg_syntax_t syntax;
4312{
4313  const CHAR_TYPE *next = p;
4314  boolean next_backslash = *next == '\\';
4315  const CHAR_TYPE *next_next = p + 1 < pend ? p + 1 : 0;
4316
4317  return
4318       /* Before a subexpression?  */
4319       (syntax & RE_NO_BK_PARENS ? *next == ')'
4320        : next_backslash && next_next && *next_next == ')')
4321       /* Before an alternative?  */
4322    || (syntax & RE_NO_BK_VBAR ? *next == '|'
4323        : next_backslash && next_next && *next_next == '|');
4324}
4325
4326
4327/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4328   false if it's not.  */
4329
4330static boolean
4331group_in_compile_stack (compile_stack, regnum)
4332    compile_stack_type compile_stack;
4333    regnum_t regnum;
4334{
4335  int this_element;
4336
4337  for (this_element = compile_stack.avail - 1;
4338       this_element >= 0;
4339       this_element--)
4340    if (compile_stack.stack[this_element].regnum == regnum)
4341      return true;
4342
4343  return false;
4344}
4345
4346#ifdef MBS_SUPPORT
4347/* This insert space, which size is "num", into the pattern at "loc".
4348   "end" must point the end of the allocated buffer.  */
4349static void
4350insert_space (num, loc, end)
4351     int num;
4352     CHAR_TYPE *loc;
4353     CHAR_TYPE *end;
4354{
4355  register CHAR_TYPE *pto = end;
4356  register CHAR_TYPE *pfrom = end - num;
4357
4358  while (pfrom >= loc)
4359    *pto-- = *pfrom--;
4360}
4361#endif /* MBS_SUPPORT */
4362
4363#ifdef MBS_SUPPORT
4364static reg_errcode_t
4365compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4366	       char_set)
4367     CHAR_TYPE range_start_char;
4368     const CHAR_TYPE **p_ptr, *pend;
4369     CHAR_TYPE *char_set, *b;
4370     RE_TRANSLATE_TYPE translate;
4371     reg_syntax_t syntax;
4372{
4373  const CHAR_TYPE *p = *p_ptr;
4374  CHAR_TYPE range_start, range_end;
4375  reg_errcode_t ret;
4376# ifdef _LIBC
4377  uint32_t nrules;
4378  uint32_t start_val, end_val;
4379# endif
4380  if (p == pend)
4381    return REG_ERANGE;
4382
4383# ifdef _LIBC
4384  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4385  if (nrules != 0)
4386    {
4387      const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4388						       _NL_COLLATE_COLLSEQWC);
4389      const unsigned char *extra = (const unsigned char *)
4390	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4391
4392      if (range_start_char < -1)
4393	{
4394	  /* range_start is a collating symbol.  */
4395	  int32_t *wextra;
4396	  /* Retreive the index and get collation sequence value.  */
4397	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4398	  start_val = wextra[1 + *wextra];
4399	}
4400      else
4401	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4402
4403      end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4404
4405      /* Report an error if the range is empty and the syntax prohibits
4406	 this.  */
4407      ret = ((syntax & RE_NO_EMPTY_RANGES)
4408	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4409
4410      /* Insert space to the end of the char_ranges.  */
4411      insert_space(2, b - char_set[5] - 2, b - 1);
4412      *(b - char_set[5] - 2) = (wchar_t)start_val;
4413      *(b - char_set[5] - 1) = (wchar_t)end_val;
4414      char_set[4]++; /* ranges_index */
4415    }
4416  else
4417# endif
4418    {
4419      range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4420	range_start_char;
4421      range_end = TRANSLATE (p[0]);
4422      /* Report an error if the range is empty and the syntax prohibits
4423	 this.  */
4424      ret = ((syntax & RE_NO_EMPTY_RANGES)
4425	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4426
4427      /* Insert space to the end of the char_ranges.  */
4428      insert_space(2, b - char_set[5] - 2, b - 1);
4429      *(b - char_set[5] - 2) = range_start;
4430      *(b - char_set[5] - 1) = range_end;
4431      char_set[4]++; /* ranges_index */
4432    }
4433  /* Have to increment the pointer into the pattern string, so the
4434     caller isn't still at the ending character.  */
4435  (*p_ptr)++;
4436
4437  return ret;
4438}
4439#else
4440/* Read the ending character of a range (in a bracket expression) from the
4441   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4442   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4443   Then we set the translation of all bits between the starting and
4444   ending characters (inclusive) in the compiled pattern B.
4445
4446   Return an error code.
4447
4448   We use these short variable names so we can use the same macros as
4449   `regex_compile' itself.  */
4450
4451static reg_errcode_t
4452compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4453     unsigned int range_start_char;
4454     const char **p_ptr, *pend;
4455     RE_TRANSLATE_TYPE translate;
4456     reg_syntax_t syntax;
4457     unsigned char *b;
4458{
4459  unsigned this_char;
4460  const char *p = *p_ptr;
4461  reg_errcode_t ret;
4462# if _LIBC
4463  const unsigned char *collseq;
4464  unsigned int start_colseq;
4465  unsigned int end_colseq;
4466# else
4467  unsigned end_char;
4468# endif
4469
4470  if (p == pend)
4471    return REG_ERANGE;
4472
4473  /* Have to increment the pointer into the pattern string, so the
4474     caller isn't still at the ending character.  */
4475  (*p_ptr)++;
4476
4477  /* Report an error if the range is empty and the syntax prohibits this.  */
4478  ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4479
4480# if _LIBC
4481  collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4482						 _NL_COLLATE_COLLSEQMB);
4483
4484  start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4485  end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4486  for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4487    {
4488      unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4489
4490      if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4491	{
4492	  SET_LIST_BIT (TRANSLATE (this_char));
4493	  ret = REG_NOERROR;
4494	}
4495    }
4496# else
4497  /* Here we see why `this_char' has to be larger than an `unsigned
4498     char' -- we would otherwise go into an infinite loop, since all
4499     characters <= 0xff.  */
4500  range_start_char = TRANSLATE (range_start_char);
4501  /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4502     and some compilers cast it to int implicitly, so following for_loop
4503     may fall to (almost) infinite loop.
4504     e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4505     To avoid this, we cast p[0] to unsigned int and truncate it.  */
4506  end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4507
4508  for (this_char = range_start_char; this_char <= end_char; ++this_char)
4509    {
4510      SET_LIST_BIT (TRANSLATE (this_char));
4511      ret = REG_NOERROR;
4512    }
4513# endif
4514
4515  return ret;
4516}
4517#endif /* MBS_SUPPORT */
4518
4519/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4520   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4521   characters can start a string that matches the pattern.  This fastmap
4522   is used by re_search to skip quickly over impossible starting points.
4523
4524   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4525   area as BUFP->fastmap.
4526
4527   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4528   the pattern buffer.
4529
4530   Returns 0 if we succeed, -2 if an internal error.   */
4531
4532#ifdef MBS_SUPPORT
4533/* local function for re_compile_fastmap.
4534   truncate wchar_t character to char.  */
4535static unsigned char truncate_wchar (CHAR_TYPE c);
4536
4537static unsigned char
4538truncate_wchar (c)
4539     CHAR_TYPE c;
4540{
4541  unsigned char buf[MB_LEN_MAX];
4542  int retval = wctomb(buf, c);
4543  return retval > 0 ? buf[0] : (unsigned char)c;
4544}
4545#endif /* MBS_SUPPORT */
4546
4547int
4548re_compile_fastmap (bufp)
4549     struct re_pattern_buffer *bufp;
4550{
4551  int j, k;
4552#ifdef MATCH_MAY_ALLOCATE
4553  fail_stack_type fail_stack;
4554#endif
4555#ifndef REGEX_MALLOC
4556  char *destination;
4557#endif
4558
4559  register char *fastmap = bufp->fastmap;
4560
4561#ifdef MBS_SUPPORT
4562  /* We need to cast pattern to (wchar_t*), because we casted this compiled
4563     pattern to (char*) in regex_compile.  */
4564  US_CHAR_TYPE *pattern = (US_CHAR_TYPE*)bufp->buffer;
4565  register US_CHAR_TYPE *pend = (US_CHAR_TYPE*) (bufp->buffer + bufp->used);
4566#else
4567  US_CHAR_TYPE *pattern = bufp->buffer;
4568  register US_CHAR_TYPE *pend = pattern + bufp->used;
4569#endif /* MBS_SUPPORT */
4570  US_CHAR_TYPE *p = pattern;
4571
4572#ifdef REL_ALLOC
4573  /* This holds the pointer to the failure stack, when
4574     it is allocated relocatably.  */
4575  fail_stack_elt_t *failure_stack_ptr;
4576#endif
4577
4578  /* Assume that each path through the pattern can be null until
4579     proven otherwise.  We set this false at the bottom of switch
4580     statement, to which we get only if a particular path doesn't
4581     match the empty string.  */
4582  boolean path_can_be_null = true;
4583
4584  /* We aren't doing a `succeed_n' to begin with.  */
4585  boolean succeed_n_p = false;
4586
4587  assert (fastmap != NULL && p != NULL);
4588
4589  INIT_FAIL_STACK ();
4590  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4591  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4592  bufp->can_be_null = 0;
4593
4594  while (1)
4595    {
4596      if (p == pend || *p == succeed)
4597	{
4598	  /* We have reached the (effective) end of pattern.  */
4599	  if (!FAIL_STACK_EMPTY ())
4600	    {
4601	      bufp->can_be_null |= path_can_be_null;
4602
4603	      /* Reset for next path.  */
4604	      path_can_be_null = true;
4605
4606	      p = fail_stack.stack[--fail_stack.avail].pointer;
4607
4608	      continue;
4609	    }
4610	  else
4611	    break;
4612	}
4613
4614      /* We should never be about to go beyond the end of the pattern.  */
4615      assert (p < pend);
4616
4617      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4618	{
4619
4620        /* I guess the idea here is to simply not bother with a fastmap
4621           if a backreference is used, since it's too hard to figure out
4622           the fastmap for the corresponding group.  Setting
4623           `can_be_null' stops `re_search_2' from using the fastmap, so
4624           that is all we do.  */
4625	case duplicate:
4626	  bufp->can_be_null = 1;
4627          goto done;
4628
4629
4630      /* Following are the cases which match a character.  These end
4631         with `break'.  */
4632
4633#ifdef MBS_SUPPORT
4634	case exactn:
4635          fastmap[truncate_wchar(p[1])] = 1;
4636	  break;
4637	case exactn_bin:
4638	  fastmap[p[1]] = 1;
4639	  break;
4640#else
4641	case exactn:
4642          fastmap[p[1]] = 1;
4643	  break;
4644#endif /* MBS_SUPPORT */
4645
4646
4647#ifdef MBS_SUPPORT
4648        /* It is hard to distinguish fastmap from (multi byte) characters
4649           which depends on current locale.  */
4650        case charset:
4651	case charset_not:
4652	case wordchar:
4653	case notwordchar:
4654          bufp->can_be_null = 1;
4655          goto done;
4656#else
4657        case charset:
4658          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4659	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4660              fastmap[j] = 1;
4661	  break;
4662
4663
4664	case charset_not:
4665	  /* Chars beyond end of map must be allowed.  */
4666	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4667            fastmap[j] = 1;
4668
4669	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4670	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4671              fastmap[j] = 1;
4672          break;
4673
4674
4675	case wordchar:
4676	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4677	    if (SYNTAX (j) == Sword)
4678	      fastmap[j] = 1;
4679	  break;
4680
4681
4682	case notwordchar:
4683	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4684	    if (SYNTAX (j) != Sword)
4685	      fastmap[j] = 1;
4686	  break;
4687#endif
4688
4689        case anychar:
4690	  {
4691	    int fastmap_newline = fastmap['\n'];
4692
4693	    /* `.' matches anything ...  */
4694	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4695	      fastmap[j] = 1;
4696
4697	    /* ... except perhaps newline.  */
4698	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4699	      fastmap['\n'] = fastmap_newline;
4700
4701	    /* Return if we have already set `can_be_null'; if we have,
4702	       then the fastmap is irrelevant.  Something's wrong here.  */
4703	    else if (bufp->can_be_null)
4704	      goto done;
4705
4706	    /* Otherwise, have to check alternative paths.  */
4707	    break;
4708	  }
4709
4710#ifdef emacs
4711        case syntaxspec:
4712	  k = *p++;
4713	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4714	    if (SYNTAX (j) == (enum syntaxcode) k)
4715	      fastmap[j] = 1;
4716	  break;
4717
4718
4719	case notsyntaxspec:
4720	  k = *p++;
4721	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4722	    if (SYNTAX (j) != (enum syntaxcode) k)
4723	      fastmap[j] = 1;
4724	  break;
4725
4726
4727      /* All cases after this match the empty string.  These end with
4728         `continue'.  */
4729
4730
4731	case before_dot:
4732	case at_dot:
4733	case after_dot:
4734          continue;
4735#endif /* emacs */
4736
4737
4738        case no_op:
4739        case begline:
4740        case endline:
4741	case begbuf:
4742	case endbuf:
4743	case wordbound:
4744	case notwordbound:
4745	case wordbeg:
4746	case wordend:
4747        case push_dummy_failure:
4748          continue;
4749
4750
4751	case jump_n:
4752        case pop_failure_jump:
4753	case maybe_pop_jump:
4754	case jump:
4755        case jump_past_alt:
4756	case dummy_failure_jump:
4757          EXTRACT_NUMBER_AND_INCR (j, p);
4758	  p += j;
4759	  if (j > 0)
4760	    continue;
4761
4762          /* Jump backward implies we just went through the body of a
4763             loop and matched nothing.  Opcode jumped to should be
4764             `on_failure_jump' or `succeed_n'.  Just treat it like an
4765             ordinary jump.  For a * loop, it has pushed its failure
4766             point already; if so, discard that as redundant.  */
4767          if ((re_opcode_t) *p != on_failure_jump
4768	      && (re_opcode_t) *p != succeed_n)
4769	    continue;
4770
4771          p++;
4772          EXTRACT_NUMBER_AND_INCR (j, p);
4773          p += j;
4774
4775          /* If what's on the stack is where we are now, pop it.  */
4776          if (!FAIL_STACK_EMPTY ()
4777	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4778            fail_stack.avail--;
4779
4780          continue;
4781
4782
4783        case on_failure_jump:
4784        case on_failure_keep_string_jump:
4785	handle_on_failure_jump:
4786          EXTRACT_NUMBER_AND_INCR (j, p);
4787
4788          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4789             end of the pattern.  We don't want to push such a point,
4790             since when we restore it above, entering the switch will
4791             increment `p' past the end of the pattern.  We don't need
4792             to push such a point since we obviously won't find any more
4793             fastmap entries beyond `pend'.  Such a pattern can match
4794             the null string, though.  */
4795          if (p + j < pend)
4796            {
4797              if (!PUSH_PATTERN_OP (p + j, fail_stack))
4798		{
4799		  RESET_FAIL_STACK ();
4800		  return -2;
4801		}
4802            }
4803          else
4804            bufp->can_be_null = 1;
4805
4806          if (succeed_n_p)
4807            {
4808              EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4809              succeed_n_p = false;
4810	    }
4811
4812          continue;
4813
4814
4815	case succeed_n:
4816          /* Get to the number of times to succeed.  */
4817          p += OFFSET_ADDRESS_SIZE;
4818
4819          /* Increment p past the n for when k != 0.  */
4820          EXTRACT_NUMBER_AND_INCR (k, p);
4821          if (k == 0)
4822	    {
4823              p -= 2 * OFFSET_ADDRESS_SIZE;
4824  	      succeed_n_p = true;  /* Spaghetti code alert.  */
4825              goto handle_on_failure_jump;
4826            }
4827          continue;
4828
4829
4830	case set_number_at:
4831          p += 2 * OFFSET_ADDRESS_SIZE;
4832          continue;
4833
4834
4835	case start_memory:
4836        case stop_memory:
4837	  p += 2;
4838	  continue;
4839
4840
4841	default:
4842          abort (); /* We have listed all the cases.  */
4843        } /* switch *p++ */
4844
4845      /* Getting here means we have found the possible starting
4846         characters for one path of the pattern -- and that the empty
4847         string does not match.  We need not follow this path further.
4848         Instead, look at the next alternative (remembered on the
4849         stack), or quit if no more.  The test at the top of the loop
4850         does these things.  */
4851      path_can_be_null = false;
4852      p = pend;
4853    } /* while p */
4854
4855  /* Set `can_be_null' for the last path (also the first path, if the
4856     pattern is empty).  */
4857  bufp->can_be_null |= path_can_be_null;
4858
4859 done:
4860  RESET_FAIL_STACK ();
4861  return 0;
4862} /* re_compile_fastmap */
4863#ifdef _LIBC
4864weak_alias (__re_compile_fastmap, re_compile_fastmap)
4865#endif
4866
4867/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4868   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4869   this memory for recording register information.  STARTS and ENDS
4870   must be allocated using the malloc library routine, and must each
4871   be at least NUM_REGS * sizeof (regoff_t) bytes long.
4872
4873   If NUM_REGS == 0, then subsequent matches should allocate their own
4874   register data.
4875
4876   Unless this function is called, the first search or match using
4877   PATTERN_BUFFER will allocate its own register data, without
4878   freeing the old data.  */
4879
4880void
4881re_set_registers (bufp, regs, num_regs, starts, ends)
4882    struct re_pattern_buffer *bufp;
4883    struct re_registers *regs;
4884    unsigned num_regs;
4885    regoff_t *starts, *ends;
4886{
4887  if (num_regs)
4888    {
4889      bufp->regs_allocated = REGS_REALLOCATE;
4890      regs->num_regs = num_regs;
4891      regs->start = starts;
4892      regs->end = ends;
4893    }
4894  else
4895    {
4896      bufp->regs_allocated = REGS_UNALLOCATED;
4897      regs->num_regs = 0;
4898      regs->start = regs->end = (regoff_t *) 0;
4899    }
4900}
4901#ifdef _LIBC
4902weak_alias (__re_set_registers, re_set_registers)
4903#endif
4904
4905/* Searching routines.  */
4906
4907/* Like re_search_2, below, but only one string is specified, and
4908   doesn't let you say where to stop matching.  */
4909
4910int
4911re_search (bufp, string, size, startpos, range, regs)
4912     struct re_pattern_buffer *bufp;
4913     const char *string;
4914     int size, startpos, range;
4915     struct re_registers *regs;
4916{
4917  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4918		      regs, size);
4919}
4920#ifdef _LIBC
4921weak_alias (__re_search, re_search)
4922#endif
4923
4924
4925/* Using the compiled pattern in BUFP->buffer, first tries to match the
4926   virtual concatenation of STRING1 and STRING2, starting first at index
4927   STARTPOS, then at STARTPOS + 1, and so on.
4928
4929   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4930
4931   RANGE is how far to scan while trying to match.  RANGE = 0 means try
4932   only at STARTPOS; in general, the last start tried is STARTPOS +
4933   RANGE.
4934
4935   In REGS, return the indices of the virtual concatenation of STRING1
4936   and STRING2 that matched the entire BUFP->buffer and its contained
4937   subexpressions.
4938
4939   Do not consider matching one past the index STOP in the virtual
4940   concatenation of STRING1 and STRING2.
4941
4942   We return either the position in the strings at which the match was
4943   found, -1 if no match, or -2 if error (such as failure
4944   stack overflow).  */
4945
4946int
4947re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
4948     struct re_pattern_buffer *bufp;
4949     const char *string1, *string2;
4950     int size1, size2;
4951     int startpos;
4952     int range;
4953     struct re_registers *regs;
4954     int stop;
4955{
4956  int val;
4957  register char *fastmap = bufp->fastmap;
4958  register RE_TRANSLATE_TYPE translate = bufp->translate;
4959  int total_size = size1 + size2;
4960  int endpos = startpos + range;
4961
4962  /* Check for out-of-range STARTPOS.  */
4963  if (startpos < 0 || startpos > total_size)
4964    return -1;
4965
4966  /* Fix up RANGE if it might eventually take us outside
4967     the virtual concatenation of STRING1 and STRING2.
4968     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
4969  if (endpos < 0)
4970    range = 0 - startpos;
4971  else if (endpos > total_size)
4972    range = total_size - startpos;
4973
4974  /* If the search isn't to be a backwards one, don't waste time in a
4975     search for a pattern that must be anchored.  */
4976  if (bufp->used > 0 && range > 0
4977      && ((re_opcode_t) bufp->buffer[0] == begbuf
4978	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
4979	  || ((re_opcode_t) bufp->buffer[0] == begline
4980	      && !bufp->newline_anchor)))
4981    {
4982      if (startpos > 0)
4983	return -1;
4984      else
4985	range = 1;
4986    }
4987
4988#ifdef emacs
4989  /* In a forward search for something that starts with \=.
4990     don't keep searching past point.  */
4991  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4992    {
4993      range = PT - startpos;
4994      if (range <= 0)
4995	return -1;
4996    }
4997#endif /* emacs */
4998
4999  /* Update the fastmap now if not correct already.  */
5000  if (fastmap && !bufp->fastmap_accurate)
5001    if (re_compile_fastmap (bufp) == -2)
5002      return -2;
5003
5004  /* Loop through the string, looking for a place to start matching.  */
5005  for (;;)
5006    {
5007      /* If a fastmap is supplied, skip quickly over characters that
5008         cannot be the start of a match.  If the pattern can match the
5009         null string, however, we don't need to skip characters; we want
5010         the first null string.  */
5011      if (fastmap && startpos < total_size && !bufp->can_be_null)
5012	{
5013	  if (range > 0)	/* Searching forwards.  */
5014	    {
5015	      register const char *d;
5016	      register int lim = 0;
5017	      int irange = range;
5018
5019              if (startpos < size1 && startpos + range >= size1)
5020                lim = range - (size1 - startpos);
5021
5022	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5023
5024              /* Written out as an if-else to avoid testing `translate'
5025                 inside the loop.  */
5026	      if (translate)
5027                while (range > lim
5028                       && !fastmap[(unsigned char)
5029				   translate[(unsigned char) *d++]])
5030                  range--;
5031	      else
5032                while (range > lim && !fastmap[(unsigned char) *d++])
5033                  range--;
5034
5035	      startpos += irange - range;
5036	    }
5037	  else				/* Searching backwards.  */
5038	    {
5039	      register CHAR_TYPE c = (size1 == 0 || startpos >= size1
5040				      ? string2[startpos - size1]
5041				      : string1[startpos]);
5042
5043	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5044		goto advance;
5045	    }
5046	}
5047
5048      /* If can't match the null string, and that's all we have left, fail.  */
5049      if (range >= 0 && startpos == total_size && fastmap
5050          && !bufp->can_be_null)
5051	return -1;
5052
5053      val = re_match_2_internal (bufp, string1, size1, string2, size2,
5054				 startpos, regs, stop);
5055#ifndef REGEX_MALLOC
5056# ifdef C_ALLOCA
5057      alloca (0);
5058# endif
5059#endif
5060
5061      if (val >= 0)
5062	return startpos;
5063
5064      if (val == -2)
5065	return -2;
5066
5067    advance:
5068      if (!range)
5069        break;
5070      else if (range > 0)
5071        {
5072          range--;
5073          startpos++;
5074        }
5075      else
5076        {
5077          range++;
5078          startpos--;
5079        }
5080    }
5081  return -1;
5082} /* re_search_2 */
5083#ifdef _LIBC
5084weak_alias (__re_search_2, re_search_2)
5085#endif
5086
5087#ifdef MBS_SUPPORT
5088/* This converts PTR, a pointer into one of the search wchar_t strings
5089   `string1' and `string2' into an multibyte string offset from the
5090   beginning of that string. We use mbs_offset to optimize.
5091   See convert_mbs_to_wcs.  */
5092# define POINTER_TO_OFFSET(ptr)						\
5093  (FIRST_STRING_P (ptr)							\
5094   ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5095   : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5096		 + csize1)))
5097#else
5098/* This converts PTR, a pointer into one of the search strings `string1'
5099   and `string2' into an offset from the beginning of that string.  */
5100# define POINTER_TO_OFFSET(ptr)			\
5101  (FIRST_STRING_P (ptr)				\
5102   ? ((regoff_t) ((ptr) - string1))		\
5103   : ((regoff_t) ((ptr) - string2 + size1)))
5104#endif /* MBS_SUPPORT */
5105
5106/* Macros for dealing with the split strings in re_match_2.  */
5107
5108#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5109
5110/* Call before fetching a character with *d.  This switches over to
5111   string2 if necessary.  */
5112#define PREFETCH()							\
5113  while (d == dend)						    	\
5114    {									\
5115      /* End of string2 => fail.  */					\
5116      if (dend == end_match_2) 						\
5117        goto fail;							\
5118      /* End of string1 => advance to string2.  */ 			\
5119      d = string2;						        \
5120      dend = end_match_2;						\
5121    }
5122
5123
5124/* Test if at very beginning or at very end of the virtual concatenation
5125   of `string1' and `string2'.  If only one string, it's `string2'.  */
5126#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5127#define AT_STRINGS_END(d) ((d) == end2)
5128
5129
5130/* Test if D points to a character which is word-constituent.  We have
5131   two special cases to check for: if past the end of string1, look at
5132   the first character in string2; and if before the beginning of
5133   string2, look at the last character in string1.  */
5134#ifdef MBS_SUPPORT
5135/* Use internationalized API instead of SYNTAX.  */
5136# define WORDCHAR_P(d)							\
5137  (iswalnum ((wint_t)((d) == end1 ? *string2				\
5138           : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0)
5139#else
5140# define WORDCHAR_P(d)							\
5141  (SYNTAX ((d) == end1 ? *string2					\
5142           : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5143   == Sword)
5144#endif /* MBS_SUPPORT */
5145
5146/* Disabled due to a compiler bug -- see comment at case wordbound */
5147#if 0
5148/* Test if the character before D and the one at D differ with respect
5149   to being word-constituent.  */
5150#define AT_WORD_BOUNDARY(d)						\
5151  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5152   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5153#endif
5154
5155/* Free everything we malloc.  */
5156#ifdef MATCH_MAY_ALLOCATE
5157# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5158# ifdef MBS_SUPPORT
5159#  define FREE_VARIABLES()						\
5160  do {									\
5161    REGEX_FREE_STACK (fail_stack.stack);				\
5162    FREE_VAR (regstart);						\
5163    FREE_VAR (regend);							\
5164    FREE_VAR (old_regstart);						\
5165    FREE_VAR (old_regend);						\
5166    FREE_VAR (best_regstart);						\
5167    FREE_VAR (best_regend);						\
5168    FREE_VAR (reg_info);						\
5169    FREE_VAR (reg_dummy);						\
5170    FREE_VAR (reg_info_dummy);						\
5171    FREE_VAR (string1);							\
5172    FREE_VAR (string2);							\
5173    FREE_VAR (mbs_offset1);						\
5174    FREE_VAR (mbs_offset2);						\
5175  } while (0)
5176# else /* not MBS_SUPPORT */
5177#  define FREE_VARIABLES()						\
5178  do {									\
5179    REGEX_FREE_STACK (fail_stack.stack);				\
5180    FREE_VAR (regstart);						\
5181    FREE_VAR (regend);							\
5182    FREE_VAR (old_regstart);						\
5183    FREE_VAR (old_regend);						\
5184    FREE_VAR (best_regstart);						\
5185    FREE_VAR (best_regend);						\
5186    FREE_VAR (reg_info);						\
5187    FREE_VAR (reg_dummy);						\
5188    FREE_VAR (reg_info_dummy);						\
5189  } while (0)
5190# endif /* MBS_SUPPORT */
5191#else
5192# define FREE_VAR(var) if (var) free (var); var = NULL
5193# ifdef MBS_SUPPORT
5194#  define FREE_VARIABLES()						\
5195  do {									\
5196    FREE_VAR (string1);							\
5197    FREE_VAR (string2);							\
5198    FREE_VAR (mbs_offset1);						\
5199    FREE_VAR (mbs_offset2);						\
5200  } while (0)
5201# else
5202#  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5203# endif /* MBS_SUPPORT */
5204#endif /* not MATCH_MAY_ALLOCATE */
5205
5206/* These values must meet several constraints.  They must not be valid
5207   register values; since we have a limit of 255 registers (because
5208   we use only one byte in the pattern for the register number), we can
5209   use numbers larger than 255.  They must differ by 1, because of
5210   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5211   be larger than the value for the highest register, so we do not try
5212   to actually save any registers when none are active.  */
5213#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5214#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5215
5216/* Matching routines.  */
5217
5218#ifndef emacs   /* Emacs never uses this.  */
5219/* re_match is like re_match_2 except it takes only a single string.  */
5220
5221int
5222re_match (bufp, string, size, pos, regs)
5223     struct re_pattern_buffer *bufp;
5224     const char *string;
5225     int size, pos;
5226     struct re_registers *regs;
5227{
5228  int result = re_match_2_internal (bufp, NULL, 0, string, size,
5229				    pos, regs, size);
5230# ifndef REGEX_MALLOC
5231#  ifdef C_ALLOCA
5232  alloca (0);
5233#  endif
5234# endif
5235  return result;
5236}
5237# ifdef _LIBC
5238weak_alias (__re_match, re_match)
5239# endif
5240#endif /* not emacs */
5241
5242static boolean group_match_null_string_p _RE_ARGS ((US_CHAR_TYPE **p,
5243						    US_CHAR_TYPE *end,
5244						register_info_type *reg_info));
5245static boolean alt_match_null_string_p _RE_ARGS ((US_CHAR_TYPE *p,
5246						  US_CHAR_TYPE *end,
5247						register_info_type *reg_info));
5248static boolean common_op_match_null_string_p _RE_ARGS ((US_CHAR_TYPE **p,
5249							US_CHAR_TYPE *end,
5250						register_info_type *reg_info));
5251static int bcmp_translate _RE_ARGS ((const CHAR_TYPE *s1, const CHAR_TYPE *s2,
5252				     int len, char *translate));
5253
5254/* re_match_2 matches the compiled pattern in BUFP against the
5255   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5256   and SIZE2, respectively).  We start matching at POS, and stop
5257   matching at STOP.
5258
5259   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5260   store offsets for the substring each group matched in REGS.  See the
5261   documentation for exactly how many groups we fill.
5262
5263   We return -1 if no match, -2 if an internal error (such as the
5264   failure stack overflowing).  Otherwise, we return the length of the
5265   matched substring.  */
5266
5267int
5268re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5269     struct re_pattern_buffer *bufp;
5270     const char *string1, *string2;
5271     int size1, size2;
5272     int pos;
5273     struct re_registers *regs;
5274     int stop;
5275{
5276  int result = re_match_2_internal (bufp, string1, size1, string2, size2,
5277				    pos, regs, stop);
5278#ifndef REGEX_MALLOC
5279# ifdef C_ALLOCA
5280  alloca (0);
5281# endif
5282#endif
5283  return result;
5284}
5285#ifdef _LIBC
5286weak_alias (__re_match_2, re_match_2)
5287#endif
5288
5289#ifdef MBS_SUPPORT
5290
5291static int count_mbs_length PARAMS ((int *, int));
5292
5293/* This check the substring (from 0, to length) of the multibyte string,
5294   to which offset_buffer correspond. And count how many wchar_t_characters
5295   the substring occupy. We use offset_buffer to optimization.
5296   See convert_mbs_to_wcs.  */
5297
5298static int
5299count_mbs_length(offset_buffer, length)
5300     int *offset_buffer;
5301     int length;
5302{
5303  int wcs_size;
5304
5305  /* Check whether the size is valid.  */
5306  if (length < 0)
5307    return -1;
5308
5309  if (offset_buffer == NULL)
5310    return 0;
5311
5312  for (wcs_size = 0 ; offset_buffer[wcs_size] != -1 ; wcs_size++)
5313    {
5314      if (offset_buffer[wcs_size] == length)
5315	return wcs_size;
5316      if (offset_buffer[wcs_size] > length)
5317	/* It is a fragment of a wide character.  */
5318	return -1;
5319    }
5320
5321  /* We reached at the sentinel.  */
5322  return -1;
5323}
5324#endif /* MBS_SUPPORT */
5325
5326/* This is a separate function so that we can force an alloca cleanup
5327   afterwards.  */
5328static int
5329#ifdef MBS_SUPPORT
5330re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos, regs, stop)
5331     struct re_pattern_buffer *bufp;
5332     const char *cstring1, *cstring2;
5333     int csize1, csize2;
5334#else
5335re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
5336     struct re_pattern_buffer *bufp;
5337     const char *string1, *string2;
5338     int size1, size2;
5339#endif
5340     int pos;
5341     struct re_registers *regs;
5342     int stop;
5343{
5344  /* General temporaries.  */
5345  int mcnt;
5346  US_CHAR_TYPE *p1;
5347#ifdef MBS_SUPPORT
5348  /* We need wchar_t* buffers correspond to string1, string2.  */
5349  CHAR_TYPE *string1 = NULL, *string2 = NULL;
5350  /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5351  int size1 = 0, size2 = 0;
5352  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5353  int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5354  /* They hold whether each wchar_t is binary data or not.  */
5355  char *is_binary = NULL;
5356#endif /* MBS_SUPPORT */
5357
5358  /* Just past the end of the corresponding string.  */
5359  const CHAR_TYPE *end1, *end2;
5360
5361  /* Pointers into string1 and string2, just past the last characters in
5362     each to consider matching.  */
5363  const CHAR_TYPE *end_match_1, *end_match_2;
5364
5365  /* Where we are in the data, and the end of the current string.  */
5366  const CHAR_TYPE *d, *dend;
5367
5368  /* Where we are in the pattern, and the end of the pattern.  */
5369#ifdef MBS_SUPPORT
5370  US_CHAR_TYPE *pattern, *p;
5371  register US_CHAR_TYPE *pend;
5372#else
5373  US_CHAR_TYPE *p = bufp->buffer;
5374  register US_CHAR_TYPE *pend = p + bufp->used;
5375#endif /* MBS_SUPPORT */
5376
5377  /* Mark the opcode just after a start_memory, so we can test for an
5378     empty subpattern when we get to the stop_memory.  */
5379  US_CHAR_TYPE *just_past_start_mem = 0;
5380
5381  /* We use this to map every character in the string.  */
5382  RE_TRANSLATE_TYPE translate = bufp->translate;
5383
5384  /* Failure point stack.  Each place that can handle a failure further
5385     down the line pushes a failure point on this stack.  It consists of
5386     restart, regend, and reg_info for all registers corresponding to
5387     the subexpressions we're currently inside, plus the number of such
5388     registers, and, finally, two char *'s.  The first char * is where
5389     to resume scanning the pattern; the second one is where to resume
5390     scanning the strings.  If the latter is zero, the failure point is
5391     a ``dummy''; if a failure happens and the failure point is a dummy,
5392     it gets discarded and the next next one is tried.  */
5393#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5394  fail_stack_type fail_stack;
5395#endif
5396#ifdef DEBUG
5397  static unsigned failure_id;
5398  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5399#endif
5400
5401#ifdef REL_ALLOC
5402  /* This holds the pointer to the failure stack, when
5403     it is allocated relocatably.  */
5404  fail_stack_elt_t *failure_stack_ptr;
5405#endif
5406
5407  /* We fill all the registers internally, independent of what we
5408     return, for use in backreferences.  The number here includes
5409     an element for register zero.  */
5410  size_t num_regs = bufp->re_nsub + 1;
5411
5412  /* The currently active registers.  */
5413  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5414  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5415
5416  /* Information on the contents of registers. These are pointers into
5417     the input strings; they record just what was matched (on this
5418     attempt) by a subexpression part of the pattern, that is, the
5419     regnum-th regstart pointer points to where in the pattern we began
5420     matching and the regnum-th regend points to right after where we
5421     stopped matching the regnum-th subexpression.  (The zeroth register
5422     keeps track of what the whole pattern matches.)  */
5423#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5424  const CHAR_TYPE **regstart, **regend;
5425#endif
5426
5427  /* If a group that's operated upon by a repetition operator fails to
5428     match anything, then the register for its start will need to be
5429     restored because it will have been set to wherever in the string we
5430     are when we last see its open-group operator.  Similarly for a
5431     register's end.  */
5432#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5433  const CHAR_TYPE **old_regstart, **old_regend;
5434#endif
5435
5436  /* The is_active field of reg_info helps us keep track of which (possibly
5437     nested) subexpressions we are currently in. The matched_something
5438     field of reg_info[reg_num] helps us tell whether or not we have
5439     matched any of the pattern so far this time through the reg_num-th
5440     subexpression.  These two fields get reset each time through any
5441     loop their register is in.  */
5442#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5443  register_info_type *reg_info;
5444#endif
5445
5446  /* The following record the register info as found in the above
5447     variables when we find a match better than any we've seen before.
5448     This happens as we backtrack through the failure points, which in
5449     turn happens only if we have not yet matched the entire string. */
5450  unsigned best_regs_set = false;
5451#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5452  const CHAR_TYPE **best_regstart, **best_regend;
5453#endif
5454
5455  /* Logically, this is `best_regend[0]'.  But we don't want to have to
5456     allocate space for that if we're not allocating space for anything
5457     else (see below).  Also, we never need info about register 0 for
5458     any of the other register vectors, and it seems rather a kludge to
5459     treat `best_regend' differently than the rest.  So we keep track of
5460     the end of the best match so far in a separate variable.  We
5461     initialize this to NULL so that when we backtrack the first time
5462     and need to test it, it's not garbage.  */
5463  const CHAR_TYPE *match_end = NULL;
5464
5465  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5466  int set_regs_matched_done = 0;
5467
5468  /* Used when we pop values we don't care about.  */
5469#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5470  const CHAR_TYPE **reg_dummy;
5471  register_info_type *reg_info_dummy;
5472#endif
5473
5474#ifdef DEBUG
5475  /* Counts the total number of registers pushed.  */
5476  unsigned num_regs_pushed = 0;
5477#endif
5478
5479  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5480
5481  INIT_FAIL_STACK ();
5482
5483#ifdef MATCH_MAY_ALLOCATE
5484  /* Do not bother to initialize all the register variables if there are
5485     no groups in the pattern, as it takes a fair amount of time.  If
5486     there are groups, we include space for register 0 (the whole
5487     pattern), even though we never use it, since it simplifies the
5488     array indexing.  We should fix this.  */
5489  if (bufp->re_nsub)
5490    {
5491      regstart = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5492      regend = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5493      old_regstart = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5494      old_regend = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5495      best_regstart = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5496      best_regend = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5497      reg_info = REGEX_TALLOC (num_regs, register_info_type);
5498      reg_dummy = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5499      reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
5500
5501      if (!(regstart && regend && old_regstart && old_regend && reg_info
5502            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5503        {
5504          FREE_VARIABLES ();
5505          return -2;
5506        }
5507    }
5508  else
5509    {
5510      /* We must initialize all our variables to NULL, so that
5511         `FREE_VARIABLES' doesn't try to free them.  */
5512      regstart = regend = old_regstart = old_regend = best_regstart
5513        = best_regend = reg_dummy = NULL;
5514      reg_info = reg_info_dummy = (register_info_type *) NULL;
5515    }
5516#endif /* MATCH_MAY_ALLOCATE */
5517
5518  /* The starting position is bogus.  */
5519#ifdef MBS_SUPPORT
5520  if (pos < 0 || pos > csize1 + csize2)
5521#else
5522  if (pos < 0 || pos > size1 + size2)
5523#endif
5524    {
5525      FREE_VARIABLES ();
5526      return -1;
5527    }
5528
5529#ifdef MBS_SUPPORT
5530  /* Allocate wchar_t array for string1 and string2 and
5531     fill them with converted string.  */
5532  if (csize1 != 0)
5533    {
5534      string1 = REGEX_TALLOC (csize1 + 1, CHAR_TYPE);
5535      mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5536      is_binary = REGEX_TALLOC (csize1 + 1, char);
5537      if (!string1 || !mbs_offset1 || !is_binary)
5538	{
5539	  FREE_VAR (string1);
5540	  FREE_VAR (mbs_offset1);
5541	  FREE_VAR (is_binary);
5542	  return -2;
5543	}
5544      size1 = convert_mbs_to_wcs(string1, cstring1, csize1,
5545				 mbs_offset1, is_binary);
5546      string1[size1] = L'\0'; /* for a sentinel  */
5547      FREE_VAR (is_binary);
5548    }
5549  if (csize2 != 0)
5550    {
5551      string2 = REGEX_TALLOC (csize2 + 1, CHAR_TYPE);
5552      mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5553      is_binary = REGEX_TALLOC (csize2 + 1, char);
5554      if (!string2 || !mbs_offset2 || !is_binary)
5555	{
5556	  FREE_VAR (string1);
5557	  FREE_VAR (mbs_offset1);
5558	  FREE_VAR (string2);
5559	  FREE_VAR (mbs_offset2);
5560	  FREE_VAR (is_binary);
5561	  return -2;
5562	}
5563      size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5564				 mbs_offset2, is_binary);
5565      string2[size2] = L'\0'; /* for a sentinel  */
5566      FREE_VAR (is_binary);
5567    }
5568
5569  /* We need to cast pattern to (wchar_t*), because we casted this compiled
5570     pattern to (char*) in regex_compile.  */
5571  p = pattern = (CHAR_TYPE*)bufp->buffer;
5572  pend = (CHAR_TYPE*)(bufp->buffer + bufp->used);
5573
5574#endif /* MBS_SUPPORT */
5575
5576  /* Initialize subexpression text positions to -1 to mark ones that no
5577     start_memory/stop_memory has been seen for. Also initialize the
5578     register information struct.  */
5579  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5580    {
5581      regstart[mcnt] = regend[mcnt]
5582        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5583
5584      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5585      IS_ACTIVE (reg_info[mcnt]) = 0;
5586      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5587      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5588    }
5589
5590  /* We move `string1' into `string2' if the latter's empty -- but not if
5591     `string1' is null.  */
5592  if (size2 == 0 && string1 != NULL)
5593    {
5594      string2 = string1;
5595      size2 = size1;
5596      string1 = 0;
5597      size1 = 0;
5598    }
5599  end1 = string1 + size1;
5600  end2 = string2 + size2;
5601
5602  /* Compute where to stop matching, within the two strings.  */
5603#ifdef MBS_SUPPORT
5604  if (stop <= csize1)
5605    {
5606      mcnt = count_mbs_length(mbs_offset1, stop);
5607      end_match_1 = string1 + mcnt;
5608      end_match_2 = string2;
5609    }
5610  else
5611    {
5612      end_match_1 = end1;
5613      mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5614      end_match_2 = string2 + mcnt;
5615    }
5616  if (mcnt < 0)
5617    { /* count_mbs_length return error.  */
5618      FREE_VARIABLES ();
5619      return -1;
5620    }
5621#else
5622  if (stop <= size1)
5623    {
5624      end_match_1 = string1 + stop;
5625      end_match_2 = string2;
5626    }
5627  else
5628    {
5629      end_match_1 = end1;
5630      end_match_2 = string2 + stop - size1;
5631    }
5632#endif /* MBS_SUPPORT */
5633
5634  /* `p' scans through the pattern as `d' scans through the data.
5635     `dend' is the end of the input string that `d' points within.  `d'
5636     is advanced into the following input string whenever necessary, but
5637     this happens before fetching; therefore, at the beginning of the
5638     loop, `d' can be pointing at the end of a string, but it cannot
5639     equal `string2'.  */
5640#ifdef MBS_SUPPORT
5641  if (size1 > 0 && pos <= csize1)
5642    {
5643      mcnt = count_mbs_length(mbs_offset1, pos);
5644      d = string1 + mcnt;
5645      dend = end_match_1;
5646    }
5647  else
5648    {
5649      mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5650      d = string2 + mcnt;
5651      dend = end_match_2;
5652    }
5653
5654  if (mcnt < 0)
5655    { /* count_mbs_length return error.  */
5656      FREE_VARIABLES ();
5657      return -1;
5658    }
5659#else
5660  if (size1 > 0 && pos <= size1)
5661    {
5662      d = string1 + pos;
5663      dend = end_match_1;
5664    }
5665  else
5666    {
5667      d = string2 + pos - size1;
5668      dend = end_match_2;
5669    }
5670#endif /* MBS_SUPPORT */
5671
5672  DEBUG_PRINT1 ("The compiled pattern is:\n");
5673  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5674  DEBUG_PRINT1 ("The string to match is: `");
5675  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5676  DEBUG_PRINT1 ("'\n");
5677
5678  /* This loops over pattern commands.  It exits by returning from the
5679     function if the match is complete, or it drops through if the match
5680     fails at this starting point in the input data.  */
5681  for (;;)
5682    {
5683#ifdef _LIBC
5684      DEBUG_PRINT2 ("\n%p: ", p);
5685#else
5686      DEBUG_PRINT2 ("\n0x%x: ", p);
5687#endif
5688
5689      if (p == pend)
5690	{ /* End of pattern means we might have succeeded.  */
5691          DEBUG_PRINT1 ("end of pattern ... ");
5692
5693	  /* If we haven't matched the entire string, and we want the
5694             longest match, try backtracking.  */
5695          if (d != end_match_2)
5696	    {
5697	      /* 1 if this match ends in the same string (string1 or string2)
5698		 as the best previous match.  */
5699	      boolean same_str_p = (FIRST_STRING_P (match_end)
5700				    == MATCHING_IN_FIRST_STRING);
5701	      /* 1 if this match is the best seen so far.  */
5702	      boolean best_match_p;
5703
5704	      /* AIX compiler got confused when this was combined
5705		 with the previous declaration.  */
5706	      if (same_str_p)
5707		best_match_p = d > match_end;
5708	      else
5709		best_match_p = !MATCHING_IN_FIRST_STRING;
5710
5711              DEBUG_PRINT1 ("backtracking.\n");
5712
5713              if (!FAIL_STACK_EMPTY ())
5714                { /* More failure points to try.  */
5715
5716                  /* If exceeds best match so far, save it.  */
5717                  if (!best_regs_set || best_match_p)
5718                    {
5719                      best_regs_set = true;
5720                      match_end = d;
5721
5722                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5723
5724                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5725                        {
5726                          best_regstart[mcnt] = regstart[mcnt];
5727                          best_regend[mcnt] = regend[mcnt];
5728                        }
5729                    }
5730                  goto fail;
5731                }
5732
5733              /* If no failure points, don't restore garbage.  And if
5734                 last match is real best match, don't restore second
5735                 best one. */
5736              else if (best_regs_set && !best_match_p)
5737                {
5738  	        restore_best_regs:
5739                  /* Restore best match.  It may happen that `dend ==
5740                     end_match_1' while the restored d is in string2.
5741                     For example, the pattern `x.*y.*z' against the
5742                     strings `x-' and `y-z-', if the two strings are
5743                     not consecutive in memory.  */
5744                  DEBUG_PRINT1 ("Restoring best registers.\n");
5745
5746                  d = match_end;
5747                  dend = ((d >= string1 && d <= end1)
5748		           ? end_match_1 : end_match_2);
5749
5750		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5751		    {
5752		      regstart[mcnt] = best_regstart[mcnt];
5753		      regend[mcnt] = best_regend[mcnt];
5754		    }
5755                }
5756            } /* d != end_match_2 */
5757
5758	succeed_label:
5759          DEBUG_PRINT1 ("Accepting match.\n");
5760          /* If caller wants register contents data back, do it.  */
5761          if (regs && !bufp->no_sub)
5762	    {
5763	      /* Have the register data arrays been allocated?  */
5764              if (bufp->regs_allocated == REGS_UNALLOCATED)
5765                { /* No.  So allocate them with malloc.  We need one
5766                     extra element beyond `num_regs' for the `-1' marker
5767                     GNU code uses.  */
5768                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5769                  regs->start = TALLOC (regs->num_regs, regoff_t);
5770                  regs->end = TALLOC (regs->num_regs, regoff_t);
5771                  if (regs->start == NULL || regs->end == NULL)
5772		    {
5773		      FREE_VARIABLES ();
5774		      return -2;
5775		    }
5776                  bufp->regs_allocated = REGS_REALLOCATE;
5777                }
5778              else if (bufp->regs_allocated == REGS_REALLOCATE)
5779                { /* Yes.  If we need more elements than were already
5780                     allocated, reallocate them.  If we need fewer, just
5781                     leave it alone.  */
5782                  if (regs->num_regs < num_regs + 1)
5783                    {
5784                      regs->num_regs = num_regs + 1;
5785                      RETALLOC (regs->start, regs->num_regs, regoff_t);
5786                      RETALLOC (regs->end, regs->num_regs, regoff_t);
5787                      if (regs->start == NULL || regs->end == NULL)
5788			{
5789			  FREE_VARIABLES ();
5790			  return -2;
5791			}
5792                    }
5793                }
5794              else
5795		{
5796		  /* These braces fend off a "empty body in an else-statement"
5797		     warning under GCC when assert expands to nothing.  */
5798		  assert (bufp->regs_allocated == REGS_FIXED);
5799		}
5800
5801              /* Convert the pointer data in `regstart' and `regend' to
5802                 indices.  Register zero has to be set differently,
5803                 since we haven't kept track of any info for it.  */
5804              if (regs->num_regs > 0)
5805                {
5806                  regs->start[0] = pos;
5807#ifdef MBS_SUPPORT
5808		  if (MATCHING_IN_FIRST_STRING)
5809		    regs->end[0] = mbs_offset1 != NULL ?
5810					mbs_offset1[d-string1] : 0;
5811		  else
5812		    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
5813					     mbs_offset2[d-string2] : 0);
5814#else
5815                  regs->end[0] = (MATCHING_IN_FIRST_STRING
5816				  ? ((regoff_t) (d - string1))
5817			          : ((regoff_t) (d - string2 + size1)));
5818#endif /* MBS_SUPPORT */
5819                }
5820
5821              /* Go through the first `min (num_regs, regs->num_regs)'
5822                 registers, since that is all we initialized.  */
5823	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
5824		   mcnt++)
5825		{
5826                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
5827                    regs->start[mcnt] = regs->end[mcnt] = -1;
5828                  else
5829                    {
5830		      regs->start[mcnt]
5831			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
5832                      regs->end[mcnt]
5833			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
5834                    }
5835		}
5836
5837              /* If the regs structure we return has more elements than
5838                 were in the pattern, set the extra elements to -1.  If
5839                 we (re)allocated the registers, this is the case,
5840                 because we always allocate enough to have at least one
5841                 -1 at the end.  */
5842              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
5843                regs->start[mcnt] = regs->end[mcnt] = -1;
5844	    } /* regs && !bufp->no_sub */
5845
5846          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5847                        nfailure_points_pushed, nfailure_points_popped,
5848                        nfailure_points_pushed - nfailure_points_popped);
5849          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5850
5851#ifdef MBS_SUPPORT
5852	  if (MATCHING_IN_FIRST_STRING)
5853	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
5854	  else
5855	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
5856			csize1;
5857          mcnt -= pos;
5858#else
5859          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
5860			    ? string1
5861			    : string2 - size1);
5862#endif /* MBS_SUPPORT */
5863
5864          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5865
5866          FREE_VARIABLES ();
5867          return mcnt;
5868        }
5869
5870      /* Otherwise match next pattern command.  */
5871      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5872	{
5873        /* Ignore these.  Used to ignore the n of succeed_n's which
5874           currently have n == 0.  */
5875        case no_op:
5876          DEBUG_PRINT1 ("EXECUTING no_op.\n");
5877          break;
5878
5879	case succeed:
5880          DEBUG_PRINT1 ("EXECUTING succeed.\n");
5881	  goto succeed_label;
5882
5883        /* Match the next n pattern characters exactly.  The following
5884           byte in the pattern defines n, and the n bytes after that
5885           are the characters to match.  */
5886	case exactn:
5887#ifdef MBS_SUPPORT
5888	case exactn_bin:
5889#endif
5890	  mcnt = *p++;
5891          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5892
5893          /* This is written out as an if-else so we don't waste time
5894             testing `translate' inside the loop.  */
5895          if (translate)
5896	    {
5897	      do
5898		{
5899		  PREFETCH ();
5900#ifdef MBS_SUPPORT
5901		  if (*d <= 0xff)
5902		    {
5903		      if ((US_CHAR_TYPE) translate[(unsigned char) *d++]
5904			  != (US_CHAR_TYPE) *p++)
5905			goto fail;
5906		    }
5907		  else
5908		    {
5909		      if (*d++ != (CHAR_TYPE) *p++)
5910			goto fail;
5911		    }
5912#else
5913		  if ((US_CHAR_TYPE) translate[(unsigned char) *d++]
5914		      != (US_CHAR_TYPE) *p++)
5915                    goto fail;
5916#endif /* MBS_SUPPORT */
5917		}
5918	      while (--mcnt);
5919	    }
5920	  else
5921	    {
5922	      do
5923		{
5924		  PREFETCH ();
5925		  if (*d++ != (CHAR_TYPE) *p++) goto fail;
5926		}
5927	      while (--mcnt);
5928	    }
5929	  SET_REGS_MATCHED ();
5930          break;
5931
5932
5933        /* Match any character except possibly a newline or a null.  */
5934	case anychar:
5935          DEBUG_PRINT1 ("EXECUTING anychar.\n");
5936
5937          PREFETCH ();
5938
5939          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
5940              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
5941	    goto fail;
5942
5943          SET_REGS_MATCHED ();
5944          DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
5945          d++;
5946	  break;
5947
5948
5949	case charset:
5950	case charset_not:
5951	  {
5952	    register US_CHAR_TYPE c;
5953#ifdef MBS_SUPPORT
5954	    unsigned int i, char_class_length, coll_symbol_length,
5955              equiv_class_length, ranges_length, chars_length, length;
5956	    CHAR_TYPE *workp, *workp2, *charset_top;
5957#define WORK_BUFFER_SIZE 128
5958            CHAR_TYPE str_buf[WORK_BUFFER_SIZE];
5959# ifdef _LIBC
5960	    uint32_t nrules;
5961# endif /* _LIBC */
5962#endif /* MBS_SUPPORT */
5963	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
5964
5965            DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5966	    PREFETCH ();
5967	    c = TRANSLATE (*d); /* The character to match.  */
5968#ifdef MBS_SUPPORT
5969# ifdef _LIBC
5970	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
5971# endif /* _LIBC */
5972	    charset_top = p - 1;
5973	    char_class_length = *p++;
5974	    coll_symbol_length = *p++;
5975	    equiv_class_length = *p++;
5976	    ranges_length = *p++;
5977	    chars_length = *p++;
5978	    /* p points charset[6], so the address of the next instruction
5979	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
5980	       where l=length of char_classes, m=length of collating_symbol,
5981	       n=equivalence_class, o=length of char_range,
5982	       p'=length of character.  */
5983	    workp = p;
5984	    /* Update p to indicate the next instruction.  */
5985	    p += char_class_length + coll_symbol_length+ equiv_class_length +
5986              2*ranges_length + chars_length;
5987
5988            /* match with char_class?  */
5989	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
5990	      {
5991		wctype_t wctype;
5992		uintptr_t alignedp = ((uintptr_t)workp
5993				      + __alignof__(wctype_t) - 1)
5994		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
5995		wctype = *((wctype_t*)alignedp);
5996		workp += CHAR_CLASS_SIZE;
5997		if (iswctype((wint_t)c, wctype))
5998		  goto char_set_matched;
5999	      }
6000
6001            /* match with collating_symbol?  */
6002# ifdef _LIBC
6003	    if (nrules != 0)
6004	      {
6005		const unsigned char *extra = (const unsigned char *)
6006		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6007
6008		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6009		     workp++)
6010		  {
6011		    int32_t *wextra;
6012		    wextra = (int32_t*)(extra + *workp++);
6013		    for (i = 0; i < *wextra; ++i)
6014		      if (TRANSLATE(d[i]) != wextra[1 + i])
6015			break;
6016
6017		    if (i == *wextra)
6018		      {
6019			/* Update d, however d will be incremented at
6020			   char_set_matched:, we decrement d here.  */
6021			d += i - 1;
6022			goto char_set_matched;
6023		      }
6024		  }
6025	      }
6026	    else /* (nrules == 0) */
6027# endif
6028	      /* If we can't look up collation data, we use wcscoll
6029		 instead.  */
6030	      {
6031		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6032		  {
6033		    const CHAR_TYPE *backup_d = d, *backup_dend = dend;
6034		    length = wcslen(workp);
6035
6036		    /* If wcscoll(the collating symbol, whole string) > 0,
6037		       any substring of the string never match with the
6038		       collating symbol.  */
6039		    if (wcscoll(workp, d) > 0)
6040		      {
6041			workp += length + 1;
6042			continue;
6043		      }
6044
6045		    /* First, we compare the collating symbol with
6046		       the first character of the string.
6047		       If it don't match, we add the next character to
6048		       the compare buffer in turn.  */
6049		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6050		      {
6051			int match;
6052			if (d == dend)
6053			  {
6054			    if (dend == end_match_2)
6055			      break;
6056			    d = string2;
6057			    dend = end_match_2;
6058			  }
6059
6060			/* add next character to the compare buffer.  */
6061			str_buf[i] = TRANSLATE(*d);
6062			str_buf[i+1] = '\0';
6063
6064			match = wcscoll(workp, str_buf);
6065			if (match == 0)
6066			  goto char_set_matched;
6067
6068			if (match < 0)
6069			  /* (str_buf > workp) indicate (str_buf + X > workp),
6070			     because for all X (str_buf + X > str_buf).
6071			     So we don't need continue this loop.  */
6072			  break;
6073
6074			/* Otherwise(str_buf < workp),
6075			   (str_buf+next_character) may equals (workp).
6076			   So we continue this loop.  */
6077		      }
6078		    /* not matched */
6079		    d = backup_d;
6080		    dend = backup_dend;
6081		    workp += length + 1;
6082		  }
6083              }
6084            /* match with equivalence_class?  */
6085# ifdef _LIBC
6086	    if (nrules != 0)
6087	      {
6088                const CHAR_TYPE *backup_d = d, *backup_dend = dend;
6089		/* Try to match the equivalence class against
6090		   those known to the collate implementation.  */
6091		const int32_t *table;
6092		const int32_t *weights;
6093		const int32_t *extra;
6094		const int32_t *indirect;
6095		int32_t idx, idx2;
6096		wint_t *cp;
6097		size_t len;
6098
6099		/* This #include defines a local function!  */
6100#  include <locale/weightwc.h>
6101
6102		table = (const int32_t *)
6103		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6104		weights = (const wint_t *)
6105		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6106		extra = (const wint_t *)
6107		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6108		indirect = (const int32_t *)
6109		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6110
6111		/* Write 1 collating element to str_buf, and
6112		   get its index.  */
6113		idx2 = 0;
6114
6115		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6116		  {
6117		    cp = (wint_t*)str_buf;
6118		    if (d == dend)
6119		      {
6120			if (dend == end_match_2)
6121			  break;
6122			d = string2;
6123			dend = end_match_2;
6124		      }
6125		    str_buf[i] = TRANSLATE(*(d+i));
6126		    str_buf[i+1] = '\0'; /* sentinel */
6127		    idx2 = findidx ((const wint_t**)&cp);
6128		  }
6129
6130		/* Update d, however d will be incremented at
6131		   char_set_matched:, we decrement d here.  */
6132		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6133		if (d >= dend)
6134		  {
6135		    if (dend == end_match_2)
6136			d = dend;
6137		    else
6138		      {
6139			d = string2;
6140			dend = end_match_2;
6141		      }
6142		  }
6143
6144		len = weights[idx2];
6145
6146		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6147		     workp++)
6148		  {
6149		    idx = (int32_t)*workp;
6150		    /* We already checked idx != 0 in regex_compile. */
6151
6152		    if (idx2 != 0 && len == weights[idx])
6153		      {
6154			int cnt = 0;
6155			while (cnt < len && (weights[idx + 1 + cnt]
6156					     == weights[idx2 + 1 + cnt]))
6157			  ++cnt;
6158
6159			if (cnt == len)
6160			  goto char_set_matched;
6161		      }
6162		  }
6163		/* not matched */
6164                d = backup_d;
6165                dend = backup_dend;
6166	      }
6167	    else /* (nrules == 0) */
6168# endif
6169	      /* If we can't look up collation data, we use wcscoll
6170		 instead.  */
6171	      {
6172		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6173		  {
6174		    const CHAR_TYPE *backup_d = d, *backup_dend = dend;
6175		    length = wcslen(workp);
6176
6177		    /* If wcscoll(the collating symbol, whole string) > 0,
6178		       any substring of the string never match with the
6179		       collating symbol.  */
6180		    if (wcscoll(workp, d) > 0)
6181		      {
6182			workp += length + 1;
6183			break;
6184		      }
6185
6186		    /* First, we compare the equivalence class with
6187		       the first character of the string.
6188		       If it don't match, we add the next character to
6189		       the compare buffer in turn.  */
6190		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6191		      {
6192			int match;
6193			if (d == dend)
6194			  {
6195			    if (dend == end_match_2)
6196			      break;
6197			    d = string2;
6198			    dend = end_match_2;
6199			  }
6200
6201			/* add next character to the compare buffer.  */
6202			str_buf[i] = TRANSLATE(*d);
6203			str_buf[i+1] = '\0';
6204
6205			match = wcscoll(workp, str_buf);
6206
6207			if (match == 0)
6208			  goto char_set_matched;
6209
6210			if (match < 0)
6211			/* (str_buf > workp) indicate (str_buf + X > workp),
6212			   because for all X (str_buf + X > str_buf).
6213			   So we don't need continue this loop.  */
6214			  break;
6215
6216			/* Otherwise(str_buf < workp),
6217			   (str_buf+next_character) may equals (workp).
6218			   So we continue this loop.  */
6219		      }
6220		    /* not matched */
6221		    d = backup_d;
6222		    dend = backup_dend;
6223		    workp += length + 1;
6224		  }
6225	      }
6226
6227            /* match with char_range?  */
6228#ifdef _LIBC
6229	    if (nrules != 0)
6230	      {
6231		uint32_t collseqval;
6232		const char *collseq = (const char *)
6233		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6234
6235		collseqval = collseq_table_lookup (collseq, c);
6236
6237		for (; workp < p - chars_length ;)
6238		  {
6239		    uint32_t start_val, end_val;
6240
6241		    /* We already compute the collation sequence value
6242		       of the characters (or collating symbols).  */
6243		    start_val = (uint32_t) *workp++; /* range_start */
6244		    end_val = (uint32_t) *workp++; /* range_end */
6245
6246		    if (start_val <= collseqval && collseqval <= end_val)
6247		      goto char_set_matched;
6248		  }
6249	      }
6250	    else
6251#endif
6252	      {
6253		/* We set range_start_char at str_buf[0], range_end_char
6254		   at str_buf[4], and compared char at str_buf[2].  */
6255		str_buf[1] = 0;
6256		str_buf[2] = c;
6257		str_buf[3] = 0;
6258		str_buf[5] = 0;
6259		for (; workp < p - chars_length ;)
6260		  {
6261		    wchar_t *range_start_char, *range_end_char;
6262
6263		    /* match if (range_start_char <= c <= range_end_char).  */
6264
6265		    /* If range_start(or end) < 0, we assume -range_start(end)
6266		       is the offset of the collating symbol which is specified
6267		       as the character of the range start(end).  */
6268
6269		    /* range_start */
6270		    if (*workp < 0)
6271		      range_start_char = charset_top - (*workp++);
6272		    else
6273		      {
6274			str_buf[0] = *workp++;
6275			range_start_char = str_buf;
6276		      }
6277
6278		    /* range_end */
6279		    if (*workp < 0)
6280		      range_end_char = charset_top - (*workp++);
6281		    else
6282		      {
6283			str_buf[4] = *workp++;
6284			range_end_char = str_buf + 4;
6285		      }
6286
6287		    if (wcscoll(range_start_char, str_buf+2) <= 0 &&
6288			wcscoll(str_buf+2, range_end_char) <= 0)
6289
6290		      goto char_set_matched;
6291		  }
6292	      }
6293
6294            /* match with char?  */
6295	    for (; workp < p ; workp++)
6296	      if (c == *workp)
6297		goto char_set_matched;
6298
6299	    not = !not;
6300
6301	  char_set_matched:
6302	    if (not) goto fail;
6303#else
6304            /* Cast to `unsigned' instead of `unsigned char' in case the
6305               bit list is a full 32 bytes long.  */
6306	    if (c < (unsigned) (*p * BYTEWIDTH)
6307		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6308	      not = !not;
6309
6310	    p += 1 + *p;
6311
6312	    if (!not) goto fail;
6313#undef WORK_BUFFER_SIZE
6314#endif /* MBS_SUPPORT */
6315	    SET_REGS_MATCHED ();
6316            d++;
6317	    break;
6318	  }
6319
6320
6321        /* The beginning of a group is represented by start_memory.
6322           The arguments are the register number in the next byte, and the
6323           number of groups inner to this one in the next.  The text
6324           matched within the group is recorded (in the internal
6325           registers data structure) under the register number.  */
6326        case start_memory:
6327	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6328			(long int) *p, (long int) p[1]);
6329
6330          /* Find out if this group can match the empty string.  */
6331	  p1 = p;		/* To send to group_match_null_string_p.  */
6332
6333          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6334            REG_MATCH_NULL_STRING_P (reg_info[*p])
6335              = group_match_null_string_p (&p1, pend, reg_info);
6336
6337          /* Save the position in the string where we were the last time
6338             we were at this open-group operator in case the group is
6339             operated upon by a repetition operator, e.g., with `(a*)*b'
6340             against `ab'; then we want to ignore where we are now in
6341             the string in case this attempt to match fails.  */
6342          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6343                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6344                             : regstart[*p];
6345	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6346			 POINTER_TO_OFFSET (old_regstart[*p]));
6347
6348          regstart[*p] = d;
6349	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6350
6351          IS_ACTIVE (reg_info[*p]) = 1;
6352          MATCHED_SOMETHING (reg_info[*p]) = 0;
6353
6354	  /* Clear this whenever we change the register activity status.  */
6355	  set_regs_matched_done = 0;
6356
6357          /* This is the new highest active register.  */
6358          highest_active_reg = *p;
6359
6360          /* If nothing was active before, this is the new lowest active
6361             register.  */
6362          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6363            lowest_active_reg = *p;
6364
6365          /* Move past the register number and inner group count.  */
6366          p += 2;
6367	  just_past_start_mem = p;
6368
6369          break;
6370
6371
6372        /* The stop_memory opcode represents the end of a group.  Its
6373           arguments are the same as start_memory's: the register
6374           number, and the number of inner groups.  */
6375	case stop_memory:
6376	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6377			(long int) *p, (long int) p[1]);
6378
6379          /* We need to save the string position the last time we were at
6380             this close-group operator in case the group is operated
6381             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6382             against `aba'; then we want to ignore where we are now in
6383             the string in case this attempt to match fails.  */
6384          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6385                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
6386			   : regend[*p];
6387	  DEBUG_PRINT2 ("      old_regend: %d\n",
6388			 POINTER_TO_OFFSET (old_regend[*p]));
6389
6390          regend[*p] = d;
6391	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6392
6393          /* This register isn't active anymore.  */
6394          IS_ACTIVE (reg_info[*p]) = 0;
6395
6396	  /* Clear this whenever we change the register activity status.  */
6397	  set_regs_matched_done = 0;
6398
6399          /* If this was the only register active, nothing is active
6400             anymore.  */
6401          if (lowest_active_reg == highest_active_reg)
6402            {
6403              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6404              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6405            }
6406          else
6407            { /* We must scan for the new highest active register, since
6408                 it isn't necessarily one less than now: consider
6409                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6410                 new highest active register is 1.  */
6411              US_CHAR_TYPE r = *p - 1;
6412              while (r > 0 && !IS_ACTIVE (reg_info[r]))
6413                r--;
6414
6415              /* If we end up at register zero, that means that we saved
6416                 the registers as the result of an `on_failure_jump', not
6417                 a `start_memory', and we jumped to past the innermost
6418                 `stop_memory'.  For example, in ((.)*) we save
6419                 registers 1 and 2 as a result of the *, but when we pop
6420                 back to the second ), we are at the stop_memory 1.
6421                 Thus, nothing is active.  */
6422	      if (r == 0)
6423                {
6424                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6425                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6426                }
6427              else
6428                highest_active_reg = r;
6429            }
6430
6431          /* If just failed to match something this time around with a
6432             group that's operated on by a repetition operator, try to
6433             force exit from the ``loop'', and restore the register
6434             information for this group that we had before trying this
6435             last match.  */
6436          if ((!MATCHED_SOMETHING (reg_info[*p])
6437               || just_past_start_mem == p - 1)
6438	      && (p + 2) < pend)
6439            {
6440              boolean is_a_jump_n = false;
6441
6442              p1 = p + 2;
6443              mcnt = 0;
6444              switch ((re_opcode_t) *p1++)
6445                {
6446                  case jump_n:
6447		    is_a_jump_n = true;
6448                  case pop_failure_jump:
6449		  case maybe_pop_jump:
6450		  case jump:
6451		  case dummy_failure_jump:
6452                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6453		    if (is_a_jump_n)
6454		      p1 += OFFSET_ADDRESS_SIZE;
6455                    break;
6456
6457                  default:
6458                    /* do nothing */ ;
6459                }
6460	      p1 += mcnt;
6461
6462              /* If the next operation is a jump backwards in the pattern
6463	         to an on_failure_jump right before the start_memory
6464                 corresponding to this stop_memory, exit from the loop
6465                 by forcing a failure after pushing on the stack the
6466                 on_failure_jump's jump in the pattern, and d.  */
6467              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6468                  && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6469		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6470		{
6471                  /* If this group ever matched anything, then restore
6472                     what its registers were before trying this last
6473                     failed match, e.g., with `(a*)*b' against `ab' for
6474                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
6475                     against `aba' for regend[3].
6476
6477                     Also restore the registers for inner groups for,
6478                     e.g., `((a*)(b*))*' against `aba' (register 3 would
6479                     otherwise get trashed).  */
6480
6481                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6482		    {
6483		      unsigned r;
6484
6485                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6486
6487		      /* Restore this and inner groups' (if any) registers.  */
6488                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6489			   r++)
6490                        {
6491                          regstart[r] = old_regstart[r];
6492
6493                          /* xx why this test?  */
6494                          if (old_regend[r] >= regstart[r])
6495                            regend[r] = old_regend[r];
6496                        }
6497                    }
6498		  p1++;
6499                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6500                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6501
6502                  goto fail;
6503                }
6504            }
6505
6506          /* Move past the register number and the inner group count.  */
6507          p += 2;
6508          break;
6509
6510
6511	/* \<digit> has been turned into a `duplicate' command which is
6512           followed by the numeric value of <digit> as the register number.  */
6513        case duplicate:
6514	  {
6515	    register const CHAR_TYPE *d2, *dend2;
6516	    int regno = *p++;   /* Get which register to match against.  */
6517	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6518
6519	    /* Can't back reference a group which we've never matched.  */
6520            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6521              goto fail;
6522
6523            /* Where in input to try to start matching.  */
6524            d2 = regstart[regno];
6525
6526            /* Where to stop matching; if both the place to start and
6527               the place to stop matching are in the same string, then
6528               set to the place to stop, otherwise, for now have to use
6529               the end of the first string.  */
6530
6531            dend2 = ((FIRST_STRING_P (regstart[regno])
6532		      == FIRST_STRING_P (regend[regno]))
6533		     ? regend[regno] : end_match_1);
6534	    for (;;)
6535	      {
6536		/* If necessary, advance to next segment in register
6537                   contents.  */
6538		while (d2 == dend2)
6539		  {
6540		    if (dend2 == end_match_2) break;
6541		    if (dend2 == regend[regno]) break;
6542
6543                    /* End of string1 => advance to string2. */
6544                    d2 = string2;
6545                    dend2 = regend[regno];
6546		  }
6547		/* At end of register contents => success */
6548		if (d2 == dend2) break;
6549
6550		/* If necessary, advance to next segment in data.  */
6551		PREFETCH ();
6552
6553		/* How many characters left in this segment to match.  */
6554		mcnt = dend - d;
6555
6556		/* Want how many consecutive characters we can match in
6557                   one shot, so, if necessary, adjust the count.  */
6558                if (mcnt > dend2 - d2)
6559		  mcnt = dend2 - d2;
6560
6561		/* Compare that many; failure if mismatch, else move
6562                   past them.  */
6563		if (translate
6564                    ? bcmp_translate (d, d2, mcnt, translate)
6565                    : memcmp (d, d2, mcnt*sizeof(US_CHAR_TYPE)))
6566		  goto fail;
6567		d += mcnt, d2 += mcnt;
6568
6569		/* Do this because we've match some characters.  */
6570		SET_REGS_MATCHED ();
6571	      }
6572	  }
6573	  break;
6574
6575
6576        /* begline matches the empty string at the beginning of the string
6577           (unless `not_bol' is set in `bufp'), and, if
6578           `newline_anchor' is set, after newlines.  */
6579	case begline:
6580          DEBUG_PRINT1 ("EXECUTING begline.\n");
6581
6582          if (AT_STRINGS_BEG (d))
6583            {
6584              if (!bufp->not_bol) break;
6585            }
6586          else if (d[-1] == '\n' && bufp->newline_anchor)
6587            {
6588              break;
6589            }
6590          /* In all other cases, we fail.  */
6591          goto fail;
6592
6593
6594        /* endline is the dual of begline.  */
6595	case endline:
6596          DEBUG_PRINT1 ("EXECUTING endline.\n");
6597
6598          if (AT_STRINGS_END (d))
6599            {
6600              if (!bufp->not_eol) break;
6601            }
6602
6603          /* We have to ``prefetch'' the next character.  */
6604          else if ((d == end1 ? *string2 : *d) == '\n'
6605                   && bufp->newline_anchor)
6606            {
6607              break;
6608            }
6609          goto fail;
6610
6611
6612	/* Match at the very beginning of the data.  */
6613        case begbuf:
6614          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6615          if (AT_STRINGS_BEG (d))
6616            break;
6617          goto fail;
6618
6619
6620	/* Match at the very end of the data.  */
6621        case endbuf:
6622          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6623	  if (AT_STRINGS_END (d))
6624	    break;
6625          goto fail;
6626
6627
6628        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6629           pushes NULL as the value for the string on the stack.  Then
6630           `pop_failure_point' will keep the current value for the
6631           string, instead of restoring it.  To see why, consider
6632           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6633           then the . fails against the \n.  But the next thing we want
6634           to do is match the \n against the \n; if we restored the
6635           string value, we would be back at the foo.
6636
6637           Because this is used only in specific cases, we don't need to
6638           check all the things that `on_failure_jump' does, to make
6639           sure the right things get saved on the stack.  Hence we don't
6640           share its code.  The only reason to push anything on the
6641           stack at all is that otherwise we would have to change
6642           `anychar's code to do something besides goto fail in this
6643           case; that seems worse than this.  */
6644        case on_failure_keep_string_jump:
6645          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6646
6647          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6648#ifdef _LIBC
6649          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6650#else
6651          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6652#endif
6653
6654          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6655          break;
6656
6657
6658	/* Uses of on_failure_jump:
6659
6660           Each alternative starts with an on_failure_jump that points
6661           to the beginning of the next alternative.  Each alternative
6662           except the last ends with a jump that in effect jumps past
6663           the rest of the alternatives.  (They really jump to the
6664           ending jump of the following alternative, because tensioning
6665           these jumps is a hassle.)
6666
6667           Repeats start with an on_failure_jump that points past both
6668           the repetition text and either the following jump or
6669           pop_failure_jump back to this on_failure_jump.  */
6670	case on_failure_jump:
6671        on_failure:
6672          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6673
6674          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6675#ifdef _LIBC
6676          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6677#else
6678          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6679#endif
6680
6681          /* If this on_failure_jump comes right before a group (i.e.,
6682             the original * applied to a group), save the information
6683             for that group and all inner ones, so that if we fail back
6684             to this point, the group's information will be correct.
6685             For example, in \(a*\)*\1, we need the preceding group,
6686             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
6687
6688          /* We can't use `p' to check ahead because we push
6689             a failure point to `p + mcnt' after we do this.  */
6690          p1 = p;
6691
6692          /* We need to skip no_op's before we look for the
6693             start_memory in case this on_failure_jump is happening as
6694             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6695             against aba.  */
6696          while (p1 < pend && (re_opcode_t) *p1 == no_op)
6697            p1++;
6698
6699          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6700            {
6701              /* We have a new highest active register now.  This will
6702                 get reset at the start_memory we are about to get to,
6703                 but we will have saved all the registers relevant to
6704                 this repetition op, as described above.  */
6705              highest_active_reg = *(p1 + 1) + *(p1 + 2);
6706              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6707                lowest_active_reg = *(p1 + 1);
6708            }
6709
6710          DEBUG_PRINT1 (":\n");
6711          PUSH_FAILURE_POINT (p + mcnt, d, -2);
6712          break;
6713
6714
6715        /* A smart repeat ends with `maybe_pop_jump'.
6716	   We change it to either `pop_failure_jump' or `jump'.  */
6717        case maybe_pop_jump:
6718          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6719          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6720          {
6721	    register US_CHAR_TYPE *p2 = p;
6722
6723            /* Compare the beginning of the repeat with what in the
6724               pattern follows its end. If we can establish that there
6725               is nothing that they would both match, i.e., that we
6726               would have to backtrack because of (as in, e.g., `a*a')
6727               then we can change to pop_failure_jump, because we'll
6728               never have to backtrack.
6729
6730               This is not true in the case of alternatives: in
6731               `(a|ab)*' we do need to backtrack to the `ab' alternative
6732               (e.g., if the string was `ab').  But instead of trying to
6733               detect that here, the alternative has put on a dummy
6734               failure point which is what we will end up popping.  */
6735
6736	    /* Skip over open/close-group commands.
6737	       If what follows this loop is a ...+ construct,
6738	       look at what begins its body, since we will have to
6739	       match at least one of that.  */
6740	    while (1)
6741	      {
6742		if (p2 + 2 < pend
6743		    && ((re_opcode_t) *p2 == stop_memory
6744			|| (re_opcode_t) *p2 == start_memory))
6745		  p2 += 3;
6746		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
6747			 && (re_opcode_t) *p2 == dummy_failure_jump)
6748		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
6749		else
6750		  break;
6751	      }
6752
6753	    p1 = p + mcnt;
6754	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
6755	       to the `maybe_finalize_jump' of this case.  Examine what
6756	       follows.  */
6757
6758            /* If we're at the end of the pattern, we can change.  */
6759            if (p2 == pend)
6760	      {
6761		/* Consider what happens when matching ":\(.*\)"
6762		   against ":/".  I don't really understand this code
6763		   yet.  */
6764  	        p[-(1+OFFSET_ADDRESS_SIZE)] = (US_CHAR_TYPE)
6765		  pop_failure_jump;
6766                DEBUG_PRINT1
6767                  ("  End of pattern: change to `pop_failure_jump'.\n");
6768              }
6769
6770            else if ((re_opcode_t) *p2 == exactn
6771#ifdef MBS_SUPPORT
6772		     || (re_opcode_t) *p2 == exactn_bin
6773#endif
6774		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
6775	      {
6776		register US_CHAR_TYPE c
6777                  = *p2 == (US_CHAR_TYPE) endline ? '\n' : p2[2];
6778
6779                if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
6780#ifdef MBS_SUPPORT
6781		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
6782#endif
6783		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
6784                  {
6785  		    p[-(1+OFFSET_ADDRESS_SIZE)] = (US_CHAR_TYPE)
6786		      pop_failure_jump;
6787#ifdef MBS_SUPPORT
6788		    if (MB_CUR_MAX != 1)
6789		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
6790				    (wint_t) c,
6791				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
6792		    else
6793#endif
6794		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
6795				    (char) c,
6796				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
6797                  }
6798
6799#ifndef MBS_SUPPORT
6800		else if ((re_opcode_t) p1[3] == charset
6801			 || (re_opcode_t) p1[3] == charset_not)
6802		  {
6803		    int not = (re_opcode_t) p1[3] == charset_not;
6804
6805		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
6806			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6807		      not = !not;
6808
6809                    /* `not' is equal to 1 if c would match, which means
6810                        that we can't change to pop_failure_jump.  */
6811		    if (!not)
6812                      {
6813  		        p[-3] = (unsigned char) pop_failure_jump;
6814                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
6815                      }
6816		  }
6817#endif /* not MBS_SUPPORT */
6818	      }
6819#ifndef MBS_SUPPORT
6820            else if ((re_opcode_t) *p2 == charset)
6821	      {
6822		/* We win if the first character of the loop is not part
6823                   of the charset.  */
6824                if ((re_opcode_t) p1[3] == exactn
6825 		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
6826 			  && (p2[2 + p1[5] / BYTEWIDTH]
6827 			      & (1 << (p1[5] % BYTEWIDTH)))))
6828		  {
6829		    p[-3] = (unsigned char) pop_failure_jump;
6830		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
6831                  }
6832
6833		else if ((re_opcode_t) p1[3] == charset_not)
6834		  {
6835		    int idx;
6836		    /* We win if the charset_not inside the loop
6837		       lists every character listed in the charset after.  */
6838		    for (idx = 0; idx < (int) p2[1]; idx++)
6839		      if (! (p2[2 + idx] == 0
6840			     || (idx < (int) p1[4]
6841				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
6842			break;
6843
6844		    if (idx == p2[1])
6845                      {
6846  		        p[-3] = (unsigned char) pop_failure_jump;
6847                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
6848                      }
6849		  }
6850		else if ((re_opcode_t) p1[3] == charset)
6851		  {
6852		    int idx;
6853		    /* We win if the charset inside the loop
6854		       has no overlap with the one after the loop.  */
6855		    for (idx = 0;
6856			 idx < (int) p2[1] && idx < (int) p1[4];
6857			 idx++)
6858		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
6859			break;
6860
6861		    if (idx == p2[1] || idx == p1[4])
6862                      {
6863  		        p[-3] = (unsigned char) pop_failure_jump;
6864                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
6865                      }
6866		  }
6867	      }
6868#endif /* not MBS_SUPPORT */
6869	  }
6870	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
6871	  if ((re_opcode_t) p[-1] != pop_failure_jump)
6872	    {
6873	      p[-1] = (US_CHAR_TYPE) jump;
6874              DEBUG_PRINT1 ("  Match => jump.\n");
6875	      goto unconditional_jump;
6876	    }
6877        /* Note fall through.  */
6878
6879
6880	/* The end of a simple repeat has a pop_failure_jump back to
6881           its matching on_failure_jump, where the latter will push a
6882           failure point.  The pop_failure_jump takes off failure
6883           points put on by this pop_failure_jump's matching
6884           on_failure_jump; we got through the pattern to here from the
6885           matching on_failure_jump, so didn't fail.  */
6886        case pop_failure_jump:
6887          {
6888            /* We need to pass separate storage for the lowest and
6889               highest registers, even though we don't care about the
6890               actual values.  Otherwise, we will restore only one
6891               register from the stack, since lowest will == highest in
6892               `pop_failure_point'.  */
6893            active_reg_t dummy_low_reg, dummy_high_reg;
6894            US_CHAR_TYPE *pdummy = NULL;
6895            const CHAR_TYPE *sdummy = NULL;
6896
6897            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
6898            POP_FAILURE_POINT (sdummy, pdummy,
6899                               dummy_low_reg, dummy_high_reg,
6900                               reg_dummy, reg_dummy, reg_info_dummy);
6901          }
6902	  /* Note fall through.  */
6903
6904	unconditional_jump:
6905#ifdef _LIBC
6906	  DEBUG_PRINT2 ("\n%p: ", p);
6907#else
6908	  DEBUG_PRINT2 ("\n0x%x: ", p);
6909#endif
6910          /* Note fall through.  */
6911
6912        /* Unconditionally jump (without popping any failure points).  */
6913        case jump:
6914	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
6915          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
6916	  p += mcnt;				/* Do the jump.  */
6917#ifdef _LIBC
6918          DEBUG_PRINT2 ("(to %p).\n", p);
6919#else
6920          DEBUG_PRINT2 ("(to 0x%x).\n", p);
6921#endif
6922	  break;
6923
6924
6925        /* We need this opcode so we can detect where alternatives end
6926           in `group_match_null_string_p' et al.  */
6927        case jump_past_alt:
6928          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
6929          goto unconditional_jump;
6930
6931
6932        /* Normally, the on_failure_jump pushes a failure point, which
6933           then gets popped at pop_failure_jump.  We will end up at
6934           pop_failure_jump, also, and with a pattern of, say, `a+', we
6935           are skipping over the on_failure_jump, so we have to push
6936           something meaningless for pop_failure_jump to pop.  */
6937        case dummy_failure_jump:
6938          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
6939          /* It doesn't matter what we push for the string here.  What
6940             the code at `fail' tests is the value for the pattern.  */
6941          PUSH_FAILURE_POINT (NULL, NULL, -2);
6942          goto unconditional_jump;
6943
6944
6945        /* At the end of an alternative, we need to push a dummy failure
6946           point in case we are followed by a `pop_failure_jump', because
6947           we don't want the failure point for the alternative to be
6948           popped.  For example, matching `(a|ab)*' against `aab'
6949           requires that we match the `ab' alternative.  */
6950        case push_dummy_failure:
6951          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
6952          /* See comments just above at `dummy_failure_jump' about the
6953             two zeroes.  */
6954          PUSH_FAILURE_POINT (NULL, NULL, -2);
6955          break;
6956
6957        /* Have to succeed matching what follows at least n times.
6958           After that, handle like `on_failure_jump'.  */
6959        case succeed_n:
6960          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
6961          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
6962
6963          assert (mcnt >= 0);
6964          /* Originally, this is how many times we HAVE to succeed.  */
6965          if (mcnt > 0)
6966            {
6967               mcnt--;
6968	       p += OFFSET_ADDRESS_SIZE;
6969               STORE_NUMBER_AND_INCR (p, mcnt);
6970#ifdef _LIBC
6971               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
6972			     , mcnt);
6973#else
6974               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
6975			     , mcnt);
6976#endif
6977            }
6978	  else if (mcnt == 0)
6979            {
6980#ifdef _LIBC
6981              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
6982			    p + OFFSET_ADDRESS_SIZE);
6983#else
6984              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
6985			    p + OFFSET_ADDRESS_SIZE);
6986#endif /* _LIBC */
6987
6988#ifdef MBS_SUPPORT
6989	      p[1] = (US_CHAR_TYPE) no_op;
6990#else
6991	      p[2] = (US_CHAR_TYPE) no_op;
6992              p[3] = (US_CHAR_TYPE) no_op;
6993#endif /* MBS_SUPPORT */
6994              goto on_failure;
6995            }
6996          break;
6997
6998        case jump_n:
6999          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7000          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7001
7002          /* Originally, this is how many times we CAN jump.  */
7003          if (mcnt)
7004            {
7005               mcnt--;
7006               STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7007
7008#ifdef _LIBC
7009               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7010			     mcnt);
7011#else
7012               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7013			     mcnt);
7014#endif /* _LIBC */
7015	       goto unconditional_jump;
7016            }
7017          /* If don't have to jump any more, skip over the rest of command.  */
7018	  else
7019	    p += 2 * OFFSET_ADDRESS_SIZE;
7020          break;
7021
7022	case set_number_at:
7023	  {
7024            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7025
7026            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7027            p1 = p + mcnt;
7028            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7029#ifdef _LIBC
7030            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7031#else
7032            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7033#endif
7034	    STORE_NUMBER (p1, mcnt);
7035            break;
7036          }
7037
7038#if 0
7039	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7040	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7041	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7042	   macro and introducing temporary variables works around the bug.  */
7043
7044	case wordbound:
7045	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7046	  if (AT_WORD_BOUNDARY (d))
7047	    break;
7048	  goto fail;
7049
7050	case notwordbound:
7051	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7052	  if (AT_WORD_BOUNDARY (d))
7053	    goto fail;
7054	  break;
7055#else
7056	case wordbound:
7057	{
7058	  boolean prevchar, thischar;
7059
7060	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7061	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7062	    break;
7063
7064	  prevchar = WORDCHAR_P (d - 1);
7065	  thischar = WORDCHAR_P (d);
7066	  if (prevchar != thischar)
7067	    break;
7068	  goto fail;
7069	}
7070
7071      case notwordbound:
7072	{
7073	  boolean prevchar, thischar;
7074
7075	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7076	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7077	    goto fail;
7078
7079	  prevchar = WORDCHAR_P (d - 1);
7080	  thischar = WORDCHAR_P (d);
7081	  if (prevchar != thischar)
7082	    goto fail;
7083	  break;
7084	}
7085#endif
7086
7087	case wordbeg:
7088          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7089	  if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7090	    break;
7091          goto fail;
7092
7093	case wordend:
7094          DEBUG_PRINT1 ("EXECUTING wordend.\n");
7095	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7096              && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
7097	    break;
7098          goto fail;
7099
7100#ifdef emacs
7101  	case before_dot:
7102          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7103 	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7104  	    goto fail;
7105  	  break;
7106
7107  	case at_dot:
7108          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7109 	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7110  	    goto fail;
7111  	  break;
7112
7113  	case after_dot:
7114          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7115          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7116  	    goto fail;
7117  	  break;
7118
7119	case syntaxspec:
7120          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7121	  mcnt = *p++;
7122	  goto matchsyntax;
7123
7124        case wordchar:
7125          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7126	  mcnt = (int) Sword;
7127        matchsyntax:
7128	  PREFETCH ();
7129	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7130	  d++;
7131	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7132	    goto fail;
7133          SET_REGS_MATCHED ();
7134	  break;
7135
7136	case notsyntaxspec:
7137          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7138	  mcnt = *p++;
7139	  goto matchnotsyntax;
7140
7141        case notwordchar:
7142          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7143	  mcnt = (int) Sword;
7144        matchnotsyntax:
7145	  PREFETCH ();
7146	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7147	  d++;
7148	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7149	    goto fail;
7150	  SET_REGS_MATCHED ();
7151          break;
7152
7153#else /* not emacs */
7154	case wordchar:
7155          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7156	  PREFETCH ();
7157          if (!WORDCHAR_P (d))
7158            goto fail;
7159	  SET_REGS_MATCHED ();
7160          d++;
7161	  break;
7162
7163	case notwordchar:
7164          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7165	  PREFETCH ();
7166	  if (WORDCHAR_P (d))
7167            goto fail;
7168          SET_REGS_MATCHED ();
7169          d++;
7170	  break;
7171#endif /* not emacs */
7172
7173        default:
7174          abort ();
7175	}
7176      continue;  /* Successfully executed one pattern command; keep going.  */
7177
7178
7179    /* We goto here if a matching operation fails. */
7180    fail:
7181      if (!FAIL_STACK_EMPTY ())
7182	{ /* A restart point is known.  Restore to that state.  */
7183          DEBUG_PRINT1 ("\nFAIL:\n");
7184          POP_FAILURE_POINT (d, p,
7185                             lowest_active_reg, highest_active_reg,
7186                             regstart, regend, reg_info);
7187
7188          /* If this failure point is a dummy, try the next one.  */
7189          if (!p)
7190	    goto fail;
7191
7192          /* If we failed to the end of the pattern, don't examine *p.  */
7193	  assert (p <= pend);
7194          if (p < pend)
7195            {
7196              boolean is_a_jump_n = false;
7197
7198              /* If failed to a backwards jump that's part of a repetition
7199                 loop, need to pop this failure point and use the next one.  */
7200              switch ((re_opcode_t) *p)
7201                {
7202                case jump_n:
7203                  is_a_jump_n = true;
7204                case maybe_pop_jump:
7205                case pop_failure_jump:
7206                case jump:
7207                  p1 = p + 1;
7208                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7209                  p1 += mcnt;
7210
7211                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7212                      || (!is_a_jump_n
7213                          && (re_opcode_t) *p1 == on_failure_jump))
7214                    goto fail;
7215                  break;
7216                default:
7217                  /* do nothing */ ;
7218                }
7219            }
7220
7221          if (d >= string1 && d <= end1)
7222	    dend = end_match_1;
7223        }
7224      else
7225        break;   /* Matching at this starting point really fails.  */
7226    } /* for (;;) */
7227
7228  if (best_regs_set)
7229    goto restore_best_regs;
7230
7231  FREE_VARIABLES ();
7232
7233  return -1;         			/* Failure to match.  */
7234} /* re_match_2 */
7235
7236/* Subroutine definitions for re_match_2.  */
7237
7238
7239/* We are passed P pointing to a register number after a start_memory.
7240
7241   Return true if the pattern up to the corresponding stop_memory can
7242   match the empty string, and false otherwise.
7243
7244   If we find the matching stop_memory, sets P to point to one past its number.
7245   Otherwise, sets P to an undefined byte less than or equal to END.
7246
7247   We don't handle duplicates properly (yet).  */
7248
7249static boolean
7250group_match_null_string_p (p, end, reg_info)
7251    US_CHAR_TYPE **p, *end;
7252    register_info_type *reg_info;
7253{
7254  int mcnt;
7255  /* Point to after the args to the start_memory.  */
7256  US_CHAR_TYPE *p1 = *p + 2;
7257
7258  while (p1 < end)
7259    {
7260      /* Skip over opcodes that can match nothing, and return true or
7261	 false, as appropriate, when we get to one that can't, or to the
7262         matching stop_memory.  */
7263
7264      switch ((re_opcode_t) *p1)
7265        {
7266        /* Could be either a loop or a series of alternatives.  */
7267        case on_failure_jump:
7268          p1++;
7269          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7270
7271          /* If the next operation is not a jump backwards in the
7272	     pattern.  */
7273
7274	  if (mcnt >= 0)
7275	    {
7276              /* Go through the on_failure_jumps of the alternatives,
7277                 seeing if any of the alternatives cannot match nothing.
7278                 The last alternative starts with only a jump,
7279                 whereas the rest start with on_failure_jump and end
7280                 with a jump, e.g., here is the pattern for `a|b|c':
7281
7282                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7283                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7284                 /exactn/1/c
7285
7286                 So, we have to first go through the first (n-1)
7287                 alternatives and then deal with the last one separately.  */
7288
7289
7290              /* Deal with the first (n-1) alternatives, which start
7291                 with an on_failure_jump (see above) that jumps to right
7292                 past a jump_past_alt.  */
7293
7294              while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7295		     jump_past_alt)
7296                {
7297                  /* `mcnt' holds how many bytes long the alternative
7298                     is, including the ending `jump_past_alt' and
7299                     its number.  */
7300
7301                  if (!alt_match_null_string_p (p1, p1 + mcnt -
7302						(1 + OFFSET_ADDRESS_SIZE),
7303						reg_info))
7304                    return false;
7305
7306                  /* Move to right after this alternative, including the
7307		     jump_past_alt.  */
7308                  p1 += mcnt;
7309
7310                  /* Break if it's the beginning of an n-th alternative
7311                     that doesn't begin with an on_failure_jump.  */
7312                  if ((re_opcode_t) *p1 != on_failure_jump)
7313                    break;
7314
7315		  /* Still have to check that it's not an n-th
7316		     alternative that starts with an on_failure_jump.  */
7317		  p1++;
7318                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7319                  if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7320		      jump_past_alt)
7321                    {
7322		      /* Get to the beginning of the n-th alternative.  */
7323                      p1 -= 1 + OFFSET_ADDRESS_SIZE;
7324                      break;
7325                    }
7326                }
7327
7328              /* Deal with the last alternative: go back and get number
7329                 of the `jump_past_alt' just before it.  `mcnt' contains
7330                 the length of the alternative.  */
7331              EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7332
7333              if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
7334                return false;
7335
7336              p1 += mcnt;	/* Get past the n-th alternative.  */
7337            } /* if mcnt > 0 */
7338          break;
7339
7340
7341        case stop_memory:
7342	  assert (p1[1] == **p);
7343          *p = p1 + 2;
7344          return true;
7345
7346
7347        default:
7348          if (!common_op_match_null_string_p (&p1, end, reg_info))
7349            return false;
7350        }
7351    } /* while p1 < end */
7352
7353  return false;
7354} /* group_match_null_string_p */
7355
7356
7357/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7358   It expects P to be the first byte of a single alternative and END one
7359   byte past the last. The alternative can contain groups.  */
7360
7361static boolean
7362alt_match_null_string_p (p, end, reg_info)
7363    US_CHAR_TYPE *p, *end;
7364    register_info_type *reg_info;
7365{
7366  int mcnt;
7367  US_CHAR_TYPE *p1 = p;
7368
7369  while (p1 < end)
7370    {
7371      /* Skip over opcodes that can match nothing, and break when we get
7372         to one that can't.  */
7373
7374      switch ((re_opcode_t) *p1)
7375        {
7376	/* It's a loop.  */
7377        case on_failure_jump:
7378          p1++;
7379          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7380          p1 += mcnt;
7381          break;
7382
7383	default:
7384          if (!common_op_match_null_string_p (&p1, end, reg_info))
7385            return false;
7386        }
7387    }  /* while p1 < end */
7388
7389  return true;
7390} /* alt_match_null_string_p */
7391
7392
7393/* Deals with the ops common to group_match_null_string_p and
7394   alt_match_null_string_p.
7395
7396   Sets P to one after the op and its arguments, if any.  */
7397
7398static boolean
7399common_op_match_null_string_p (p, end, reg_info)
7400    US_CHAR_TYPE **p, *end;
7401    register_info_type *reg_info;
7402{
7403  int mcnt;
7404  boolean ret;
7405  int reg_no;
7406  US_CHAR_TYPE *p1 = *p;
7407
7408  switch ((re_opcode_t) *p1++)
7409    {
7410    case no_op:
7411    case begline:
7412    case endline:
7413    case begbuf:
7414    case endbuf:
7415    case wordbeg:
7416    case wordend:
7417    case wordbound:
7418    case notwordbound:
7419#ifdef emacs
7420    case before_dot:
7421    case at_dot:
7422    case after_dot:
7423#endif
7424      break;
7425
7426    case start_memory:
7427      reg_no = *p1;
7428      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7429      ret = group_match_null_string_p (&p1, end, reg_info);
7430
7431      /* Have to set this here in case we're checking a group which
7432         contains a group and a back reference to it.  */
7433
7434      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7435        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7436
7437      if (!ret)
7438        return false;
7439      break;
7440
7441    /* If this is an optimized succeed_n for zero times, make the jump.  */
7442    case jump:
7443      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7444      if (mcnt >= 0)
7445        p1 += mcnt;
7446      else
7447        return false;
7448      break;
7449
7450    case succeed_n:
7451      /* Get to the number of times to succeed.  */
7452      p1 += OFFSET_ADDRESS_SIZE;
7453      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7454
7455      if (mcnt == 0)
7456        {
7457          p1 -= 2 * OFFSET_ADDRESS_SIZE;
7458          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7459          p1 += mcnt;
7460        }
7461      else
7462        return false;
7463      break;
7464
7465    case duplicate:
7466      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7467        return false;
7468      break;
7469
7470    case set_number_at:
7471      p1 += 2 * OFFSET_ADDRESS_SIZE;
7472
7473    default:
7474      /* All other opcodes mean we cannot match the empty string.  */
7475      return false;
7476  }
7477
7478  *p = p1;
7479  return true;
7480} /* common_op_match_null_string_p */
7481
7482
7483/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7484   bytes; nonzero otherwise.  */
7485
7486static int
7487bcmp_translate (s1, s2, len, translate)
7488     const CHAR_TYPE *s1, *s2;
7489     register int len;
7490     RE_TRANSLATE_TYPE translate;
7491{
7492  register const US_CHAR_TYPE *p1 = (const US_CHAR_TYPE *) s1;
7493  register const US_CHAR_TYPE *p2 = (const US_CHAR_TYPE *) s2;
7494  while (len)
7495    {
7496#ifdef MBS_SUPPORT
7497      if (((*p1<=0xff)?translate[*p1++]:*p1++)
7498	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7499	return 1;
7500#else
7501      if (translate[*p1++] != translate[*p2++]) return 1;
7502#endif /* MBS_SUPPORT */
7503      len--;
7504    }
7505  return 0;
7506}
7507
7508/* Entry points for GNU code.  */
7509
7510/* re_compile_pattern is the GNU regular expression compiler: it
7511   compiles PATTERN (of length SIZE) and puts the result in BUFP.
7512   Returns 0 if the pattern was valid, otherwise an error string.
7513
7514   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7515   are set in BUFP on entry.
7516
7517   We call regex_compile to do the actual compilation.  */
7518
7519const char *
7520re_compile_pattern (pattern, length, bufp)
7521     const char *pattern;
7522     size_t length;
7523     struct re_pattern_buffer *bufp;
7524{
7525  reg_errcode_t ret;
7526
7527  /* GNU code is written to assume at least RE_NREGS registers will be set
7528     (and at least one extra will be -1).  */
7529  bufp->regs_allocated = REGS_UNALLOCATED;
7530
7531  /* And GNU code determines whether or not to get register information
7532     by passing null for the REGS argument to re_match, etc., not by
7533     setting no_sub.  */
7534  bufp->no_sub = 0;
7535
7536  /* Match anchors at newline.  */
7537  bufp->newline_anchor = 1;
7538
7539  ret = regex_compile (pattern, length, re_syntax_options, bufp);
7540
7541  if (!ret)
7542    return NULL;
7543  return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7544}
7545#ifdef _LIBC
7546weak_alias (__re_compile_pattern, re_compile_pattern)
7547#endif
7548
7549/* Entry points compatible with 4.2 BSD regex library.  We don't define
7550   them unless specifically requested.  */
7551
7552#if defined _REGEX_RE_COMP || defined _LIBC
7553
7554/* BSD has one and only one pattern buffer.  */
7555static struct re_pattern_buffer re_comp_buf;
7556
7557char *
7558#ifdef _LIBC
7559/* Make these definitions weak in libc, so POSIX programs can redefine
7560   these names if they don't use our functions, and still use
7561   regcomp/regexec below without link errors.  */
7562weak_function
7563#endif
7564re_comp (s)
7565    const char *s;
7566{
7567  reg_errcode_t ret;
7568
7569  if (!s)
7570    {
7571      if (!re_comp_buf.buffer)
7572	return gettext ("No previous regular expression");
7573      return 0;
7574    }
7575
7576  if (!re_comp_buf.buffer)
7577    {
7578      re_comp_buf.buffer = (unsigned char *) malloc (200);
7579      if (re_comp_buf.buffer == NULL)
7580        return (char *) gettext (re_error_msgid
7581				 + re_error_msgid_idx[(int) REG_ESPACE]);
7582      re_comp_buf.allocated = 200;
7583
7584      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7585      if (re_comp_buf.fastmap == NULL)
7586	return (char *) gettext (re_error_msgid
7587				 + re_error_msgid_idx[(int) REG_ESPACE]);
7588    }
7589
7590  /* Since `re_exec' always passes NULL for the `regs' argument, we
7591     don't need to initialize the pattern buffer fields which affect it.  */
7592
7593  /* Match anchors at newlines.  */
7594  re_comp_buf.newline_anchor = 1;
7595
7596  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7597
7598  if (!ret)
7599    return NULL;
7600
7601  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7602  return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7603}
7604
7605
7606int
7607#ifdef _LIBC
7608weak_function
7609#endif
7610re_exec (s)
7611    const char *s;
7612{
7613  const int len = strlen (s);
7614  return
7615    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7616}
7617
7618#endif /* _REGEX_RE_COMP */
7619
7620/* POSIX.2 functions.  Don't define these for Emacs.  */
7621
7622#ifndef emacs
7623
7624/* regcomp takes a regular expression as a string and compiles it.
7625
7626   PREG is a regex_t *.  We do not expect any fields to be initialized,
7627   since POSIX says we shouldn't.  Thus, we set
7628
7629     `buffer' to the compiled pattern;
7630     `used' to the length of the compiled pattern;
7631     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7632       REG_EXTENDED bit in CFLAGS is set; otherwise, to
7633       RE_SYNTAX_POSIX_BASIC;
7634     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7635     `fastmap' to an allocated space for the fastmap;
7636     `fastmap_accurate' to zero;
7637     `re_nsub' to the number of subexpressions in PATTERN.
7638
7639   PATTERN is the address of the pattern string.
7640
7641   CFLAGS is a series of bits which affect compilation.
7642
7643     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7644     use POSIX basic syntax.
7645
7646     If REG_NEWLINE is set, then . and [^...] don't match newline.
7647     Also, regexec will try a match beginning after every newline.
7648
7649     If REG_ICASE is set, then we considers upper- and lowercase
7650     versions of letters to be equivalent when matching.
7651
7652     If REG_NOSUB is set, then when PREG is passed to regexec, that
7653     routine will report only success or failure, and nothing about the
7654     registers.
7655
7656   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
7657   the return codes and their meanings.)  */
7658
7659int
7660regcomp (preg, pattern, cflags)
7661    regex_t *preg;
7662    const char *pattern;
7663    int cflags;
7664{
7665  reg_errcode_t ret;
7666  reg_syntax_t syntax
7667    = (cflags & REG_EXTENDED) ?
7668      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7669
7670  /* regex_compile will allocate the space for the compiled pattern.  */
7671  preg->buffer = 0;
7672  preg->allocated = 0;
7673  preg->used = 0;
7674
7675  /* Try to allocate space for the fastmap.  */
7676  preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7677
7678  if (cflags & REG_ICASE)
7679    {
7680      unsigned i;
7681
7682      preg->translate
7683	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7684				      * sizeof (*(RE_TRANSLATE_TYPE)0));
7685      if (preg->translate == NULL)
7686        return (int) REG_ESPACE;
7687
7688      /* Map uppercase characters to corresponding lowercase ones.  */
7689      for (i = 0; i < CHAR_SET_SIZE; i++)
7690        preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7691    }
7692  else
7693    preg->translate = NULL;
7694
7695  /* If REG_NEWLINE is set, newlines are treated differently.  */
7696  if (cflags & REG_NEWLINE)
7697    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
7698      syntax &= ~RE_DOT_NEWLINE;
7699      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7700      /* It also changes the matching behavior.  */
7701      preg->newline_anchor = 1;
7702    }
7703  else
7704    preg->newline_anchor = 0;
7705
7706  preg->no_sub = !!(cflags & REG_NOSUB);
7707
7708  /* POSIX says a null character in the pattern terminates it, so we
7709     can use strlen here in compiling the pattern.  */
7710  ret = regex_compile (pattern, strlen (pattern), syntax, preg);
7711
7712  /* POSIX doesn't distinguish between an unmatched open-group and an
7713     unmatched close-group: both are REG_EPAREN.  */
7714  if (ret == REG_ERPAREN) ret = REG_EPAREN;
7715
7716  if (ret == REG_NOERROR && preg->fastmap)
7717    {
7718      /* Compute the fastmap now, since regexec cannot modify the pattern
7719	 buffer.  */
7720      if (re_compile_fastmap (preg) == -2)
7721	{
7722	  /* Some error occurred while computing the fastmap, just forget
7723	     about it.  */
7724	  free (preg->fastmap);
7725	  preg->fastmap = NULL;
7726	}
7727    }
7728
7729  return (int) ret;
7730}
7731#ifdef _LIBC
7732weak_alias (__regcomp, regcomp)
7733#endif
7734
7735
7736/* regexec searches for a given pattern, specified by PREG, in the
7737   string STRING.
7738
7739   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7740   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
7741   least NMATCH elements, and we set them to the offsets of the
7742   corresponding matched substrings.
7743
7744   EFLAGS specifies `execution flags' which affect matching: if
7745   REG_NOTBOL is set, then ^ does not match at the beginning of the
7746   string; if REG_NOTEOL is set, then $ does not match at the end.
7747
7748   We return 0 if we find a match and REG_NOMATCH if not.  */
7749
7750int
7751regexec (preg, string, nmatch, pmatch, eflags)
7752    const regex_t *preg;
7753    const char *string;
7754    size_t nmatch;
7755    regmatch_t pmatch[];
7756    int eflags;
7757{
7758  int ret;
7759  struct re_registers regs;
7760  regex_t private_preg;
7761  int len = strlen (string);
7762  boolean want_reg_info = !preg->no_sub && nmatch > 0;
7763
7764  private_preg = *preg;
7765
7766  private_preg.not_bol = !!(eflags & REG_NOTBOL);
7767  private_preg.not_eol = !!(eflags & REG_NOTEOL);
7768
7769  /* The user has told us exactly how many registers to return
7770     information about, via `nmatch'.  We have to pass that on to the
7771     matching routines.  */
7772  private_preg.regs_allocated = REGS_FIXED;
7773
7774  if (want_reg_info)
7775    {
7776      regs.num_regs = nmatch;
7777      regs.start = TALLOC (nmatch * 2, regoff_t);
7778      if (regs.start == NULL)
7779        return (int) REG_NOMATCH;
7780      regs.end = regs.start + nmatch;
7781    }
7782
7783  /* Perform the searching operation.  */
7784  ret = re_search (&private_preg, string, len,
7785                   /* start: */ 0, /* range: */ len,
7786                   want_reg_info ? &regs : (struct re_registers *) 0);
7787
7788  /* Copy the register information to the POSIX structure.  */
7789  if (want_reg_info)
7790    {
7791      if (ret >= 0)
7792        {
7793          unsigned r;
7794
7795          for (r = 0; r < nmatch; r++)
7796            {
7797              pmatch[r].rm_so = regs.start[r];
7798              pmatch[r].rm_eo = regs.end[r];
7799            }
7800        }
7801
7802      /* If we needed the temporary register info, free the space now.  */
7803      free (regs.start);
7804    }
7805
7806  /* We want zero return to mean success, unlike `re_search'.  */
7807  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
7808}
7809#ifdef _LIBC
7810weak_alias (__regexec, regexec)
7811#endif
7812
7813
7814/* Returns a message corresponding to an error code, ERRCODE, returned
7815   from either regcomp or regexec.   We don't use PREG here.  */
7816
7817size_t
7818regerror (errcode, preg, errbuf, errbuf_size)
7819    int errcode;
7820    const regex_t *preg;
7821    char *errbuf;
7822    size_t errbuf_size;
7823{
7824  const char *msg;
7825  size_t msg_size;
7826
7827  if (errcode < 0
7828      || errcode >= (int) (sizeof (re_error_msgid_idx)
7829			   / sizeof (re_error_msgid_idx[0])))
7830    /* Only error codes returned by the rest of the code should be passed
7831       to this routine.  If we are given anything else, or if other regex
7832       code generates an invalid error code, then the program has a bug.
7833       Dump core so we can fix it.  */
7834    abort ();
7835
7836  msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
7837
7838  msg_size = strlen (msg) + 1; /* Includes the null.  */
7839
7840  if (errbuf_size != 0)
7841    {
7842      if (msg_size > errbuf_size)
7843        {
7844#if defined HAVE_MEMPCPY || defined _LIBC
7845	  *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
7846#else
7847          memcpy (errbuf, msg, errbuf_size - 1);
7848          errbuf[errbuf_size - 1] = 0;
7849#endif
7850        }
7851      else
7852        memcpy (errbuf, msg, msg_size);
7853    }
7854
7855  return msg_size;
7856}
7857#ifdef _LIBC
7858weak_alias (__regerror, regerror)
7859#endif
7860
7861
7862/* Free dynamically allocated space used by PREG.  */
7863
7864void
7865regfree (preg)
7866    regex_t *preg;
7867{
7868  if (preg->buffer != NULL)
7869    free (preg->buffer);
7870  preg->buffer = NULL;
7871
7872  preg->allocated = 0;
7873  preg->used = 0;
7874
7875  if (preg->fastmap != NULL)
7876    free (preg->fastmap);
7877  preg->fastmap = NULL;
7878  preg->fastmap_accurate = 0;
7879
7880  if (preg->translate != NULL)
7881    free (preg->translate);
7882  preg->translate = NULL;
7883}
7884#ifdef _LIBC
7885weak_alias (__regfree, regfree)
7886#endif
7887
7888#endif /* not emacs  */
7889