reg-stack.c revision 122180
1/* Register to Stack convert for GNU compiler.
2   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5   This file is part of GCC.
6
7   GCC is free software; you can redistribute it and/or modify it
8   under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2, or (at your option)
10   any later version.
11
12   GCC is distributed in the hope that it will be useful, but WITHOUT
13   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15   License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with GCC; see the file COPYING.  If not, write to the Free
19   Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20   02111-1307, USA.  */
21
22/* This pass converts stack-like registers from the "flat register
23   file" model that gcc uses, to a stack convention that the 387 uses.
24
25   * The form of the input:
26
27   On input, the function consists of insn that have had their
28   registers fully allocated to a set of "virtual" registers.  Note that
29   the word "virtual" is used differently here than elsewhere in gcc: for
30   each virtual stack reg, there is a hard reg, but the mapping between
31   them is not known until this pass is run.  On output, hard register
32   numbers have been substituted, and various pop and exchange insns have
33   been emitted.  The hard register numbers and the virtual register
34   numbers completely overlap - before this pass, all stack register
35   numbers are virtual, and afterward they are all hard.
36
37   The virtual registers can be manipulated normally by gcc, and their
38   semantics are the same as for normal registers.  After the hard
39   register numbers are substituted, the semantics of an insn containing
40   stack-like regs are not the same as for an insn with normal regs: for
41   instance, it is not safe to delete an insn that appears to be a no-op
42   move.  In general, no insn containing hard regs should be changed
43   after this pass is done.
44
45   * The form of the output:
46
47   After this pass, hard register numbers represent the distance from
48   the current top of stack to the desired register.  A reference to
49   FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50   represents the register just below that, and so forth.  Also, REG_DEAD
51   notes indicate whether or not a stack register should be popped.
52
53   A "swap" insn looks like a parallel of two patterns, where each
54   pattern is a SET: one sets A to B, the other B to A.
55
56   A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57   and whose SET_DEST is REG or MEM.  Any other SET_DEST, such as PLUS,
58   will replace the existing stack top, not push a new value.
59
60   A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61   SET_SRC is REG or MEM.
62
63   The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64   appears ambiguous.  As a special case, the presence of a REG_DEAD note
65   for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67   If a REG_DEAD is present, the insn represents a "pop" that discards
68   the top of the register stack.  If there is no REG_DEAD note, then the
69   insn represents a "dup" or a push of the current top of stack onto the
70   stack.
71
72   * Methodology:
73
74   Existing REG_DEAD and REG_UNUSED notes for stack registers are
75   deleted and recreated from scratch.  REG_DEAD is never created for a
76   SET_DEST, only REG_UNUSED.
77
78   * asm_operands:
79
80   There are several rules on the usage of stack-like regs in
81   asm_operands insns.  These rules apply only to the operands that are
82   stack-like regs:
83
84   1. Given a set of input regs that die in an asm_operands, it is
85      necessary to know which are implicitly popped by the asm, and
86      which must be explicitly popped by gcc.
87
88	An input reg that is implicitly popped by the asm must be
89	explicitly clobbered, unless it is constrained to match an
90	output operand.
91
92   2. For any input reg that is implicitly popped by an asm, it is
93      necessary to know how to adjust the stack to compensate for the pop.
94      If any non-popped input is closer to the top of the reg-stack than
95      the implicitly popped reg, it would not be possible to know what the
96      stack looked like - it's not clear how the rest of the stack "slides
97      up".
98
99	All implicitly popped input regs must be closer to the top of
100	the reg-stack than any input that is not implicitly popped.
101
102   3. It is possible that if an input dies in an insn, reload might
103      use the input reg for an output reload.  Consider this example:
104
105		asm ("foo" : "=t" (a) : "f" (b));
106
107      This asm says that input B is not popped by the asm, and that
108      the asm pushes a result onto the reg-stack, ie, the stack is one
109      deeper after the asm than it was before.  But, it is possible that
110      reload will think that it can use the same reg for both the input and
111      the output, if input B dies in this insn.
112
113	If any input operand uses the "f" constraint, all output reg
114	constraints must use the "&" earlyclobber.
115
116      The asm above would be written as
117
118		asm ("foo" : "=&t" (a) : "f" (b));
119
120   4. Some operands need to be in particular places on the stack.  All
121      output operands fall in this category - there is no other way to
122      know which regs the outputs appear in unless the user indicates
123      this in the constraints.
124
125	Output operands must specifically indicate which reg an output
126	appears in after an asm.  "=f" is not allowed: the operand
127	constraints must select a class with a single reg.
128
129   5. Output operands may not be "inserted" between existing stack regs.
130      Since no 387 opcode uses a read/write operand, all output operands
131      are dead before the asm_operands, and are pushed by the asm_operands.
132      It makes no sense to push anywhere but the top of the reg-stack.
133
134	Output operands must start at the top of the reg-stack: output
135	operands may not "skip" a reg.
136
137   6. Some asm statements may need extra stack space for internal
138      calculations.  This can be guaranteed by clobbering stack registers
139      unrelated to the inputs and outputs.
140
141   Here are a couple of reasonable asms to want to write.  This asm
142   takes one input, which is internally popped, and produces two outputs.
143
144	asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146   This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147   and replaces them with one output.  The user must code the "st(1)"
148   clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150	asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152*/
153
154#include "config.h"
155#include "system.h"
156#include "tree.h"
157#include "rtl.h"
158#include "tm_p.h"
159#include "function.h"
160#include "insn-config.h"
161#include "regs.h"
162#include "hard-reg-set.h"
163#include "flags.h"
164#include "toplev.h"
165#include "recog.h"
166#include "output.h"
167#include "basic-block.h"
168#include "varray.h"
169#include "reload.h"
170#include "ggc.h"
171
172/* We use this array to cache info about insns, because otherwise we
173   spend too much time in stack_regs_mentioned_p.
174
175   Indexed by insn UIDs.  A value of zero is uninitialized, one indicates
176   the insn uses stack registers, two indicates the insn does not use
177   stack registers.  */
178static GTY(()) varray_type stack_regs_mentioned_data;
179
180#ifdef STACK_REGS
181
182#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
183
184/* This is the basic stack record.  TOP is an index into REG[] such
185   that REG[TOP] is the top of stack.  If TOP is -1 the stack is empty.
186
187   If TOP is -2, REG[] is not yet initialized.  Stack initialization
188   consists of placing each live reg in array `reg' and setting `top'
189   appropriately.
190
191   REG_SET indicates which registers are live.  */
192
193typedef struct stack_def
194{
195  int top;			/* index to top stack element */
196  HARD_REG_SET reg_set;		/* set of live registers */
197  unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
198} *stack;
199
200/* This is used to carry information about basic blocks.  It is
201   attached to the AUX field of the standard CFG block.  */
202
203typedef struct block_info_def
204{
205  struct stack_def stack_in;	/* Input stack configuration.  */
206  struct stack_def stack_out;	/* Output stack configuration.  */
207  HARD_REG_SET out_reg_set;	/* Stack regs live on output.  */
208  int done;			/* True if block already converted.  */
209  int predecessors;		/* Number of predecessors that needs
210				   to be visited.  */
211} *block_info;
212
213#define BLOCK_INFO(B)	((block_info) (B)->aux)
214
215/* Passed to change_stack to indicate where to emit insns.  */
216enum emit_where
217{
218  EMIT_AFTER,
219  EMIT_BEFORE
220};
221
222/* The block we're currently working on.  */
223static basic_block current_block;
224
225/* This is the register file for all register after conversion.  */
226static rtx
227  FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
228
229#define FP_MODE_REG(regno,mode)	\
230  (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
231
232/* Used to initialize uninitialized registers.  */
233static rtx nan;
234
235/* Forward declarations */
236
237static int stack_regs_mentioned_p	PARAMS ((rtx pat));
238static void straighten_stack		PARAMS ((rtx, stack));
239static void pop_stack			PARAMS ((stack, int));
240static rtx *get_true_reg		PARAMS ((rtx *));
241
242static int check_asm_stack_operands	PARAMS ((rtx));
243static int get_asm_operand_n_inputs	PARAMS ((rtx));
244static rtx stack_result			PARAMS ((tree));
245static void replace_reg			PARAMS ((rtx *, int));
246static void remove_regno_note		PARAMS ((rtx, enum reg_note,
247						 unsigned int));
248static int get_hard_regnum		PARAMS ((stack, rtx));
249static rtx emit_pop_insn		PARAMS ((rtx, stack, rtx,
250					       enum emit_where));
251static void emit_swap_insn		PARAMS ((rtx, stack, rtx));
252static void move_for_stack_reg		PARAMS ((rtx, stack, rtx));
253static int swap_rtx_condition_1		PARAMS ((rtx));
254static int swap_rtx_condition		PARAMS ((rtx));
255static void compare_for_stack_reg	PARAMS ((rtx, stack, rtx));
256static void subst_stack_regs_pat	PARAMS ((rtx, stack, rtx));
257static void subst_asm_stack_regs	PARAMS ((rtx, stack));
258static void subst_stack_regs		PARAMS ((rtx, stack));
259static void change_stack		PARAMS ((rtx, stack, stack,
260					       enum emit_where));
261static int convert_regs_entry		PARAMS ((void));
262static void convert_regs_exit		PARAMS ((void));
263static int convert_regs_1		PARAMS ((FILE *, basic_block));
264static int convert_regs_2		PARAMS ((FILE *, basic_block));
265static int convert_regs			PARAMS ((FILE *));
266static void print_stack 		PARAMS ((FILE *, stack));
267static rtx next_flags_user 		PARAMS ((rtx));
268static void record_label_references	PARAMS ((rtx, rtx));
269static bool compensate_edge		PARAMS ((edge, FILE *));
270
271/* Return nonzero if any stack register is mentioned somewhere within PAT.  */
272
273static int
274stack_regs_mentioned_p (pat)
275     rtx pat;
276{
277  const char *fmt;
278  int i;
279
280  if (STACK_REG_P (pat))
281    return 1;
282
283  fmt = GET_RTX_FORMAT (GET_CODE (pat));
284  for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
285    {
286      if (fmt[i] == 'E')
287	{
288	  int j;
289
290	  for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
291	    if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
292	      return 1;
293	}
294      else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
295	return 1;
296    }
297
298  return 0;
299}
300
301/* Return nonzero if INSN mentions stacked registers, else return zero.  */
302
303int
304stack_regs_mentioned (insn)
305     rtx insn;
306{
307  unsigned int uid, max;
308  int test;
309
310  if (! INSN_P (insn) || !stack_regs_mentioned_data)
311    return 0;
312
313  uid = INSN_UID (insn);
314  max = VARRAY_SIZE (stack_regs_mentioned_data);
315  if (uid >= max)
316    {
317      /* Allocate some extra size to avoid too many reallocs, but
318	 do not grow too quickly.  */
319      max = uid + uid / 20;
320      VARRAY_GROW (stack_regs_mentioned_data, max);
321    }
322
323  test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
324  if (test == 0)
325    {
326      /* This insn has yet to be examined.  Do so now.  */
327      test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
328      VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
329    }
330
331  return test == 1;
332}
333
334static rtx ix86_flags_rtx;
335
336static rtx
337next_flags_user (insn)
338     rtx insn;
339{
340  /* Search forward looking for the first use of this value.
341     Stop at block boundaries.  */
342
343  while (insn != current_block->end)
344    {
345      insn = NEXT_INSN (insn);
346
347      if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
348	return insn;
349
350      if (GET_CODE (insn) == CALL_INSN)
351	return NULL_RTX;
352    }
353  return NULL_RTX;
354}
355
356/* Reorganize the stack into ascending numbers,
357   after this insn.  */
358
359static void
360straighten_stack (insn, regstack)
361     rtx insn;
362     stack regstack;
363{
364  struct stack_def temp_stack;
365  int top;
366
367  /* If there is only a single register on the stack, then the stack is
368     already in increasing order and no reorganization is needed.
369
370     Similarly if the stack is empty.  */
371  if (regstack->top <= 0)
372    return;
373
374  COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
375
376  for (top = temp_stack.top = regstack->top; top >= 0; top--)
377    temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
378
379  change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
380}
381
382/* Pop a register from the stack.  */
383
384static void
385pop_stack (regstack, regno)
386     stack regstack;
387     int   regno;
388{
389  int top = regstack->top;
390
391  CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
392  regstack->top--;
393  /* If regno was not at the top of stack then adjust stack.  */
394  if (regstack->reg [top] != regno)
395    {
396      int i;
397      for (i = regstack->top; i >= 0; i--)
398	if (regstack->reg [i] == regno)
399	  {
400	    int j;
401	    for (j = i; j < top; j++)
402	      regstack->reg [j] = regstack->reg [j + 1];
403	    break;
404	  }
405    }
406}
407
408/* Convert register usage from "flat" register file usage to a "stack
409   register file.  FIRST is the first insn in the function, FILE is the
410   dump file, if used.
411
412   Construct a CFG and run life analysis.  Then convert each insn one
413   by one.  Run a last cleanup_cfg pass, if optimizing, to eliminate
414   code duplication created when the converter inserts pop insns on
415   the edges.  */
416
417void
418reg_to_stack (first, file)
419     rtx first;
420     FILE *file;
421{
422  basic_block bb;
423  int i;
424  int max_uid;
425
426  /* Clean up previous run.  */
427  stack_regs_mentioned_data = 0;
428
429  /* See if there is something to do.  Flow analysis is quite
430     expensive so we might save some compilation time.  */
431  for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
432    if (regs_ever_live[i])
433      break;
434  if (i > LAST_STACK_REG)
435    return;
436
437  /* Ok, floating point instructions exist.  If not optimizing,
438     build the CFG and run life analysis.  */
439  if (!optimize)
440    {
441      count_or_remove_death_notes (NULL, 1);
442      life_analysis (first, file, PROP_DEATH_NOTES);
443    }
444  mark_dfs_back_edges ();
445
446  /* Set up block info for each basic block.  */
447  alloc_aux_for_blocks (sizeof (struct block_info_def));
448  FOR_EACH_BB_REVERSE (bb)
449    {
450      edge e;
451      for (e = bb->pred; e; e=e->pred_next)
452	if (!(e->flags & EDGE_DFS_BACK)
453	    && e->src != ENTRY_BLOCK_PTR)
454	  BLOCK_INFO (bb)->predecessors++;
455    }
456
457  /* Create the replacement registers up front.  */
458  for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
459    {
460      enum machine_mode mode;
461      for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
462	   mode != VOIDmode;
463	   mode = GET_MODE_WIDER_MODE (mode))
464	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
465      for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
466	   mode != VOIDmode;
467	   mode = GET_MODE_WIDER_MODE (mode))
468	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
469    }
470
471  ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
472
473  /* A QNaN for initializing uninitialized variables.
474
475     ??? We can't load from constant memory in PIC mode, because
476     we're insertting these instructions before the prologue and
477     the PIC register hasn't been set up.  In that case, fall back
478     on zero, which we can get from `ldz'.  */
479
480  if (flag_pic)
481    nan = CONST0_RTX (SFmode);
482  else
483    {
484      nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
485      nan = force_const_mem (SFmode, nan);
486    }
487
488  /* Allocate a cache for stack_regs_mentioned.  */
489  max_uid = get_max_uid ();
490  VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
491		    "stack_regs_mentioned cache");
492
493  convert_regs (file);
494
495  free_aux_for_blocks ();
496}
497
498/* Check PAT, which is in INSN, for LABEL_REFs.  Add INSN to the
499   label's chain of references, and note which insn contains each
500   reference.  */
501
502static void
503record_label_references (insn, pat)
504     rtx insn, pat;
505{
506  enum rtx_code code = GET_CODE (pat);
507  int i;
508  const char *fmt;
509
510  if (code == LABEL_REF)
511    {
512      rtx label = XEXP (pat, 0);
513      rtx ref;
514
515      if (GET_CODE (label) != CODE_LABEL)
516	abort ();
517
518      /* If this is an undefined label, LABEL_REFS (label) contains
519         garbage.  */
520      if (INSN_UID (label) == 0)
521	return;
522
523      /* Don't make a duplicate in the code_label's chain.  */
524
525      for (ref = LABEL_REFS (label);
526	   ref && ref != label;
527	   ref = LABEL_NEXTREF (ref))
528	if (CONTAINING_INSN (ref) == insn)
529	  return;
530
531      CONTAINING_INSN (pat) = insn;
532      LABEL_NEXTREF (pat) = LABEL_REFS (label);
533      LABEL_REFS (label) = pat;
534
535      return;
536    }
537
538  fmt = GET_RTX_FORMAT (code);
539  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
540    {
541      if (fmt[i] == 'e')
542	record_label_references (insn, XEXP (pat, i));
543      if (fmt[i] == 'E')
544	{
545	  int j;
546	  for (j = 0; j < XVECLEN (pat, i); j++)
547	    record_label_references (insn, XVECEXP (pat, i, j));
548	}
549    }
550}
551
552/* Return a pointer to the REG expression within PAT.  If PAT is not a
553   REG, possible enclosed by a conversion rtx, return the inner part of
554   PAT that stopped the search.  */
555
556static rtx *
557get_true_reg (pat)
558     rtx *pat;
559{
560  for (;;)
561    switch (GET_CODE (*pat))
562      {
563      case SUBREG:
564	/* Eliminate FP subregister accesses in favor of the
565	   actual FP register in use.  */
566	{
567	  rtx subreg;
568	  if (FP_REG_P (subreg = SUBREG_REG (*pat)))
569	    {
570	      int regno_off = subreg_regno_offset (REGNO (subreg),
571						   GET_MODE (subreg),
572						   SUBREG_BYTE (*pat),
573						   GET_MODE (*pat));
574	      *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
575				  GET_MODE (subreg));
576	    default:
577	      return pat;
578	    }
579	}
580      case FLOAT:
581      case FIX:
582      case FLOAT_EXTEND:
583	pat = & XEXP (*pat, 0);
584      }
585}
586
587/* Set if we find any malformed asms in a block.  */
588static bool any_malformed_asm;
589
590/* There are many rules that an asm statement for stack-like regs must
591   follow.  Those rules are explained at the top of this file: the rule
592   numbers below refer to that explanation.  */
593
594static int
595check_asm_stack_operands (insn)
596     rtx insn;
597{
598  int i;
599  int n_clobbers;
600  int malformed_asm = 0;
601  rtx body = PATTERN (insn);
602
603  char reg_used_as_output[FIRST_PSEUDO_REGISTER];
604  char implicitly_dies[FIRST_PSEUDO_REGISTER];
605  int alt;
606
607  rtx *clobber_reg = 0;
608  int n_inputs, n_outputs;
609
610  /* Find out what the constraints require.  If no constraint
611     alternative matches, this asm is malformed.  */
612  extract_insn (insn);
613  constrain_operands (1);
614  alt = which_alternative;
615
616  preprocess_constraints ();
617
618  n_inputs = get_asm_operand_n_inputs (body);
619  n_outputs = recog_data.n_operands - n_inputs;
620
621  if (alt < 0)
622    {
623      malformed_asm = 1;
624      /* Avoid further trouble with this insn.  */
625      PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
626      return 0;
627    }
628
629  /* Strip SUBREGs here to make the following code simpler.  */
630  for (i = 0; i < recog_data.n_operands; i++)
631    if (GET_CODE (recog_data.operand[i]) == SUBREG
632	&& GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
633      recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
634
635  /* Set up CLOBBER_REG.  */
636
637  n_clobbers = 0;
638
639  if (GET_CODE (body) == PARALLEL)
640    {
641      clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
642
643      for (i = 0; i < XVECLEN (body, 0); i++)
644	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
645	  {
646	    rtx clobber = XVECEXP (body, 0, i);
647	    rtx reg = XEXP (clobber, 0);
648
649	    if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
650	      reg = SUBREG_REG (reg);
651
652	    if (STACK_REG_P (reg))
653	      {
654		clobber_reg[n_clobbers] = reg;
655		n_clobbers++;
656	      }
657	  }
658    }
659
660  /* Enforce rule #4: Output operands must specifically indicate which
661     reg an output appears in after an asm.  "=f" is not allowed: the
662     operand constraints must select a class with a single reg.
663
664     Also enforce rule #5: Output operands must start at the top of
665     the reg-stack: output operands may not "skip" a reg.  */
666
667  memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
668  for (i = 0; i < n_outputs; i++)
669    if (STACK_REG_P (recog_data.operand[i]))
670      {
671	if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
672	  {
673	    error_for_asm (insn, "output constraint %d must specify a single register", i);
674	    malformed_asm = 1;
675	  }
676	else
677	  {
678	    int j;
679
680	    for (j = 0; j < n_clobbers; j++)
681	      if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
682		{
683		  error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
684				 i, reg_names [REGNO (clobber_reg[j])]);
685		  malformed_asm = 1;
686		  break;
687		}
688	    if (j == n_clobbers)
689	      reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
690	  }
691      }
692
693
694  /* Search for first non-popped reg.  */
695  for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
696    if (! reg_used_as_output[i])
697      break;
698
699  /* If there are any other popped regs, that's an error.  */
700  for (; i < LAST_STACK_REG + 1; i++)
701    if (reg_used_as_output[i])
702      break;
703
704  if (i != LAST_STACK_REG + 1)
705    {
706      error_for_asm (insn, "output regs must be grouped at top of stack");
707      malformed_asm = 1;
708    }
709
710  /* Enforce rule #2: All implicitly popped input regs must be closer
711     to the top of the reg-stack than any input that is not implicitly
712     popped.  */
713
714  memset (implicitly_dies, 0, sizeof (implicitly_dies));
715  for (i = n_outputs; i < n_outputs + n_inputs; i++)
716    if (STACK_REG_P (recog_data.operand[i]))
717      {
718	/* An input reg is implicitly popped if it is tied to an
719	   output, or if there is a CLOBBER for it.  */
720	int j;
721
722	for (j = 0; j < n_clobbers; j++)
723	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
724	    break;
725
726	if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
727	  implicitly_dies[REGNO (recog_data.operand[i])] = 1;
728      }
729
730  /* Search for first non-popped reg.  */
731  for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
732    if (! implicitly_dies[i])
733      break;
734
735  /* If there are any other popped regs, that's an error.  */
736  for (; i < LAST_STACK_REG + 1; i++)
737    if (implicitly_dies[i])
738      break;
739
740  if (i != LAST_STACK_REG + 1)
741    {
742      error_for_asm (insn,
743		     "implicitly popped regs must be grouped at top of stack");
744      malformed_asm = 1;
745    }
746
747  /* Enfore rule #3: If any input operand uses the "f" constraint, all
748     output constraints must use the "&" earlyclobber.
749
750     ??? Detect this more deterministically by having constrain_asm_operands
751     record any earlyclobber.  */
752
753  for (i = n_outputs; i < n_outputs + n_inputs; i++)
754    if (recog_op_alt[i][alt].matches == -1)
755      {
756	int j;
757
758	for (j = 0; j < n_outputs; j++)
759	  if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
760	    {
761	      error_for_asm (insn,
762			     "output operand %d must use `&' constraint", j);
763	      malformed_asm = 1;
764	    }
765      }
766
767  if (malformed_asm)
768    {
769      /* Avoid further trouble with this insn.  */
770      PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
771      any_malformed_asm = true;
772      return 0;
773    }
774
775  return 1;
776}
777
778/* Calculate the number of inputs and outputs in BODY, an
779   asm_operands.  N_OPERANDS is the total number of operands, and
780   N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
781   placed.  */
782
783static int
784get_asm_operand_n_inputs (body)
785     rtx body;
786{
787  if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
788    return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
789
790  else if (GET_CODE (body) == ASM_OPERANDS)
791    return ASM_OPERANDS_INPUT_LENGTH (body);
792
793  else if (GET_CODE (body) == PARALLEL
794	   && GET_CODE (XVECEXP (body, 0, 0)) == SET)
795    return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
796
797  else if (GET_CODE (body) == PARALLEL
798	   && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
799    return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
800
801  abort ();
802}
803
804/* If current function returns its result in an fp stack register,
805   return the REG.  Otherwise, return 0.  */
806
807static rtx
808stack_result (decl)
809     tree decl;
810{
811  rtx result;
812
813  /* If the value is supposed to be returned in memory, then clearly
814     it is not returned in a stack register.  */
815  if (aggregate_value_p (DECL_RESULT (decl)))
816    return 0;
817
818  result = DECL_RTL_IF_SET (DECL_RESULT (decl));
819  if (result != 0)
820    {
821#ifdef FUNCTION_OUTGOING_VALUE
822      result
823	= FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
824#else
825      result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
826#endif
827    }
828
829  return result != 0 && STACK_REG_P (result) ? result : 0;
830}
831
832
833/*
834 * This section deals with stack register substitution, and forms the second
835 * pass over the RTL.
836 */
837
838/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
839   the desired hard REGNO.  */
840
841static void
842replace_reg (reg, regno)
843     rtx *reg;
844     int regno;
845{
846  if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
847      || ! STACK_REG_P (*reg))
848    abort ();
849
850  switch (GET_MODE_CLASS (GET_MODE (*reg)))
851    {
852    default: abort ();
853    case MODE_FLOAT:
854    case MODE_COMPLEX_FLOAT:;
855    }
856
857  *reg = FP_MODE_REG (regno, GET_MODE (*reg));
858}
859
860/* Remove a note of type NOTE, which must be found, for register
861   number REGNO from INSN.  Remove only one such note.  */
862
863static void
864remove_regno_note (insn, note, regno)
865     rtx insn;
866     enum reg_note note;
867     unsigned int regno;
868{
869  rtx *note_link, this;
870
871  note_link = &REG_NOTES (insn);
872  for (this = *note_link; this; this = XEXP (this, 1))
873    if (REG_NOTE_KIND (this) == note
874	&& REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
875      {
876	*note_link = XEXP (this, 1);
877	return;
878      }
879    else
880      note_link = &XEXP (this, 1);
881
882  abort ();
883}
884
885/* Find the hard register number of virtual register REG in REGSTACK.
886   The hard register number is relative to the top of the stack.  -1 is
887   returned if the register is not found.  */
888
889static int
890get_hard_regnum (regstack, reg)
891     stack regstack;
892     rtx reg;
893{
894  int i;
895
896  if (! STACK_REG_P (reg))
897    abort ();
898
899  for (i = regstack->top; i >= 0; i--)
900    if (regstack->reg[i] == REGNO (reg))
901      break;
902
903  return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
904}
905
906/* Emit an insn to pop virtual register REG before or after INSN.
907   REGSTACK is the stack state after INSN and is updated to reflect this
908   pop.  WHEN is either emit_insn_before or emit_insn_after.  A pop insn
909   is represented as a SET whose destination is the register to be popped
910   and source is the top of stack.  A death note for the top of stack
911   cases the movdf pattern to pop.  */
912
913static rtx
914emit_pop_insn (insn, regstack, reg, where)
915     rtx insn;
916     stack regstack;
917     rtx reg;
918     enum emit_where where;
919{
920  rtx pop_insn, pop_rtx;
921  int hard_regno;
922
923  /* For complex types take care to pop both halves.  These may survive in
924     CLOBBER and USE expressions.  */
925  if (COMPLEX_MODE_P (GET_MODE (reg)))
926    {
927      rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
928      rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
929
930      pop_insn = NULL_RTX;
931      if (get_hard_regnum (regstack, reg1) >= 0)
932	pop_insn = emit_pop_insn (insn, regstack, reg1, where);
933      if (get_hard_regnum (regstack, reg2) >= 0)
934	pop_insn = emit_pop_insn (insn, regstack, reg2, where);
935      if (!pop_insn)
936	abort ();
937      return pop_insn;
938    }
939
940  hard_regno = get_hard_regnum (regstack, reg);
941
942  if (hard_regno < FIRST_STACK_REG)
943    abort ();
944
945  pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
946			 FP_MODE_REG (FIRST_STACK_REG, DFmode));
947
948  if (where == EMIT_AFTER)
949    pop_insn = emit_insn_after (pop_rtx, insn);
950  else
951    pop_insn = emit_insn_before (pop_rtx, insn);
952
953  REG_NOTES (pop_insn)
954    = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
955			 REG_NOTES (pop_insn));
956
957  regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
958    = regstack->reg[regstack->top];
959  regstack->top -= 1;
960  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
961
962  return pop_insn;
963}
964
965/* Emit an insn before or after INSN to swap virtual register REG with
966   the top of stack.  REGSTACK is the stack state before the swap, and
967   is updated to reflect the swap.  A swap insn is represented as a
968   PARALLEL of two patterns: each pattern moves one reg to the other.
969
970   If REG is already at the top of the stack, no insn is emitted.  */
971
972static void
973emit_swap_insn (insn, regstack, reg)
974     rtx insn;
975     stack regstack;
976     rtx reg;
977{
978  int hard_regno;
979  rtx swap_rtx;
980  int tmp, other_reg;		/* swap regno temps */
981  rtx i1;			/* the stack-reg insn prior to INSN */
982  rtx i1set = NULL_RTX;		/* the SET rtx within I1 */
983
984  hard_regno = get_hard_regnum (regstack, reg);
985
986  if (hard_regno < FIRST_STACK_REG)
987    abort ();
988  if (hard_regno == FIRST_STACK_REG)
989    return;
990
991  other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
992
993  tmp = regstack->reg[other_reg];
994  regstack->reg[other_reg] = regstack->reg[regstack->top];
995  regstack->reg[regstack->top] = tmp;
996
997  /* Find the previous insn involving stack regs, but don't pass a
998     block boundary.  */
999  i1 = NULL;
1000  if (current_block && insn != current_block->head)
1001    {
1002      rtx tmp = PREV_INSN (insn);
1003      rtx limit = PREV_INSN (current_block->head);
1004      while (tmp != limit)
1005	{
1006	  if (GET_CODE (tmp) == CODE_LABEL
1007	      || GET_CODE (tmp) == CALL_INSN
1008	      || NOTE_INSN_BASIC_BLOCK_P (tmp)
1009	      || (GET_CODE (tmp) == INSN
1010		  && stack_regs_mentioned (tmp)))
1011	    {
1012	      i1 = tmp;
1013	      break;
1014	    }
1015	  tmp = PREV_INSN (tmp);
1016	}
1017    }
1018
1019  if (i1 != NULL_RTX
1020      && (i1set = single_set (i1)) != NULL_RTX)
1021    {
1022      rtx i1src = *get_true_reg (&SET_SRC (i1set));
1023      rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1024
1025      /* If the previous register stack push was from the reg we are to
1026	 swap with, omit the swap.  */
1027
1028      if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1029	  && GET_CODE (i1src) == REG
1030	  && REGNO (i1src) == (unsigned) hard_regno - 1
1031	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1032	return;
1033
1034      /* If the previous insn wrote to the reg we are to swap with,
1035	 omit the swap.  */
1036
1037      if (GET_CODE (i1dest) == REG && REGNO (i1dest) == (unsigned) hard_regno
1038	  && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1039	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1040	return;
1041    }
1042
1043  swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1044			 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1045
1046  if (i1)
1047    emit_insn_after (swap_rtx, i1);
1048  else if (current_block)
1049    emit_insn_before (swap_rtx, current_block->head);
1050  else
1051    emit_insn_before (swap_rtx, insn);
1052}
1053
1054/* Handle a move to or from a stack register in PAT, which is in INSN.
1055   REGSTACK is the current stack.  */
1056
1057static void
1058move_for_stack_reg (insn, regstack, pat)
1059     rtx insn;
1060     stack regstack;
1061     rtx pat;
1062{
1063  rtx *psrc =  get_true_reg (&SET_SRC (pat));
1064  rtx *pdest = get_true_reg (&SET_DEST (pat));
1065  rtx src, dest;
1066  rtx note;
1067
1068  src = *psrc; dest = *pdest;
1069
1070  if (STACK_REG_P (src) && STACK_REG_P (dest))
1071    {
1072      /* Write from one stack reg to another.  If SRC dies here, then
1073	 just change the register mapping and delete the insn.  */
1074
1075      note = find_regno_note (insn, REG_DEAD, REGNO (src));
1076      if (note)
1077	{
1078	  int i;
1079
1080	  /* If this is a no-op move, there must not be a REG_DEAD note.  */
1081	  if (REGNO (src) == REGNO (dest))
1082	    abort ();
1083
1084	  for (i = regstack->top; i >= 0; i--)
1085	    if (regstack->reg[i] == REGNO (src))
1086	      break;
1087
1088	  /* The source must be live, and the dest must be dead.  */
1089	  if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1090	    abort ();
1091
1092	  /* It is possible that the dest is unused after this insn.
1093	     If so, just pop the src.  */
1094
1095	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1096	    {
1097	      emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1098
1099	      delete_insn (insn);
1100	      return;
1101	    }
1102
1103	  regstack->reg[i] = REGNO (dest);
1104
1105	  SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1106	  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1107
1108	  delete_insn (insn);
1109
1110	  return;
1111	}
1112
1113      /* The source reg does not die.  */
1114
1115      /* If this appears to be a no-op move, delete it, or else it
1116	 will confuse the machine description output patterns. But if
1117	 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1118	 for REG_UNUSED will not work for deleted insns.  */
1119
1120      if (REGNO (src) == REGNO (dest))
1121	{
1122	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1123	    emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1124
1125	  delete_insn (insn);
1126	  return;
1127	}
1128
1129      /* The destination ought to be dead.  */
1130      if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1131	abort ();
1132
1133      replace_reg (psrc, get_hard_regnum (regstack, src));
1134
1135      regstack->reg[++regstack->top] = REGNO (dest);
1136      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1137      replace_reg (pdest, FIRST_STACK_REG);
1138    }
1139  else if (STACK_REG_P (src))
1140    {
1141      /* Save from a stack reg to MEM, or possibly integer reg.  Since
1142	 only top of stack may be saved, emit an exchange first if
1143	 needs be.  */
1144
1145      emit_swap_insn (insn, regstack, src);
1146
1147      note = find_regno_note (insn, REG_DEAD, REGNO (src));
1148      if (note)
1149	{
1150	  replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1151	  regstack->top--;
1152	  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1153	}
1154      else if ((GET_MODE (src) == XFmode || GET_MODE (src) == TFmode)
1155	       && regstack->top < REG_STACK_SIZE - 1)
1156	{
1157	  /* A 387 cannot write an XFmode value to a MEM without
1158	     clobbering the source reg.  The output code can handle
1159	     this by reading back the value from the MEM.
1160	     But it is more efficient to use a temp register if one is
1161	     available.  Push the source value here if the register
1162	     stack is not full, and then write the value to memory via
1163	     a pop.  */
1164	  rtx push_rtx, push_insn;
1165	  rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1166
1167	  if (GET_MODE (src) == TFmode)
1168	    push_rtx = gen_movtf (top_stack_reg, top_stack_reg);
1169	  else
1170	    push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1171	  push_insn = emit_insn_before (push_rtx, insn);
1172	  REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1173						REG_NOTES (insn));
1174	}
1175
1176      replace_reg (psrc, FIRST_STACK_REG);
1177    }
1178  else if (STACK_REG_P (dest))
1179    {
1180      /* Load from MEM, or possibly integer REG or constant, into the
1181	 stack regs.  The actual target is always the top of the
1182	 stack. The stack mapping is changed to reflect that DEST is
1183	 now at top of stack.  */
1184
1185      /* The destination ought to be dead.  */
1186      if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1187	abort ();
1188
1189      if (regstack->top >= REG_STACK_SIZE)
1190	abort ();
1191
1192      regstack->reg[++regstack->top] = REGNO (dest);
1193      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1194      replace_reg (pdest, FIRST_STACK_REG);
1195    }
1196  else
1197    abort ();
1198}
1199
1200/* Swap the condition on a branch, if there is one.  Return true if we
1201   found a condition to swap.  False if the condition was not used as
1202   such.  */
1203
1204static int
1205swap_rtx_condition_1 (pat)
1206     rtx pat;
1207{
1208  const char *fmt;
1209  int i, r = 0;
1210
1211  if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1212    {
1213      PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1214      r = 1;
1215    }
1216  else
1217    {
1218      fmt = GET_RTX_FORMAT (GET_CODE (pat));
1219      for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1220	{
1221	  if (fmt[i] == 'E')
1222	    {
1223	      int j;
1224
1225	      for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1226		r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1227	    }
1228	  else if (fmt[i] == 'e')
1229	    r |= swap_rtx_condition_1 (XEXP (pat, i));
1230	}
1231    }
1232
1233  return r;
1234}
1235
1236static int
1237swap_rtx_condition (insn)
1238     rtx insn;
1239{
1240  rtx pat = PATTERN (insn);
1241
1242  /* We're looking for a single set to cc0 or an HImode temporary.  */
1243
1244  if (GET_CODE (pat) == SET
1245      && GET_CODE (SET_DEST (pat)) == REG
1246      && REGNO (SET_DEST (pat)) == FLAGS_REG)
1247    {
1248      insn = next_flags_user (insn);
1249      if (insn == NULL_RTX)
1250	return 0;
1251      pat = PATTERN (insn);
1252    }
1253
1254  /* See if this is, or ends in, a fnstsw, aka unspec 9.  If so, we're
1255     not doing anything with the cc value right now.  We may be able to
1256     search for one though.  */
1257
1258  if (GET_CODE (pat) == SET
1259      && GET_CODE (SET_SRC (pat)) == UNSPEC
1260      && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1261    {
1262      rtx dest = SET_DEST (pat);
1263
1264      /* Search forward looking for the first use of this value.
1265	 Stop at block boundaries.  */
1266      while (insn != current_block->end)
1267	{
1268	  insn = NEXT_INSN (insn);
1269	  if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1270	    break;
1271	  if (GET_CODE (insn) == CALL_INSN)
1272	    return 0;
1273	}
1274
1275      /* So we've found the insn using this value.  If it is anything
1276	 other than sahf, aka unspec 10, or the value does not die
1277	 (meaning we'd have to search further), then we must give up.  */
1278      pat = PATTERN (insn);
1279      if (GET_CODE (pat) != SET
1280	  || GET_CODE (SET_SRC (pat)) != UNSPEC
1281	  || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1282	  || ! dead_or_set_p (insn, dest))
1283	return 0;
1284
1285      /* Now we are prepared to handle this as a normal cc0 setter.  */
1286      insn = next_flags_user (insn);
1287      if (insn == NULL_RTX)
1288	return 0;
1289      pat = PATTERN (insn);
1290    }
1291
1292  if (swap_rtx_condition_1 (pat))
1293    {
1294      int fail = 0;
1295      INSN_CODE (insn) = -1;
1296      if (recog_memoized (insn) == -1)
1297	fail = 1;
1298      /* In case the flags don't die here, recurse to try fix
1299         following user too.  */
1300      else if (! dead_or_set_p (insn, ix86_flags_rtx))
1301	{
1302	  insn = next_flags_user (insn);
1303	  if (!insn || !swap_rtx_condition (insn))
1304	    fail = 1;
1305	}
1306      if (fail)
1307	{
1308	  swap_rtx_condition_1 (pat);
1309	  return 0;
1310	}
1311      return 1;
1312    }
1313  return 0;
1314}
1315
1316/* Handle a comparison.  Special care needs to be taken to avoid
1317   causing comparisons that a 387 cannot do correctly, such as EQ.
1318
1319   Also, a pop insn may need to be emitted.  The 387 does have an
1320   `fcompp' insn that can pop two regs, but it is sometimes too expensive
1321   to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1322   set up.  */
1323
1324static void
1325compare_for_stack_reg (insn, regstack, pat_src)
1326     rtx insn;
1327     stack regstack;
1328     rtx pat_src;
1329{
1330  rtx *src1, *src2;
1331  rtx src1_note, src2_note;
1332  rtx flags_user;
1333
1334  src1 = get_true_reg (&XEXP (pat_src, 0));
1335  src2 = get_true_reg (&XEXP (pat_src, 1));
1336  flags_user = next_flags_user (insn);
1337
1338  /* ??? If fxch turns out to be cheaper than fstp, give priority to
1339     registers that die in this insn - move those to stack top first.  */
1340  if ((! STACK_REG_P (*src1)
1341       || (STACK_REG_P (*src2)
1342	   && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1343      && swap_rtx_condition (insn))
1344    {
1345      rtx temp;
1346      temp = XEXP (pat_src, 0);
1347      XEXP (pat_src, 0) = XEXP (pat_src, 1);
1348      XEXP (pat_src, 1) = temp;
1349
1350      src1 = get_true_reg (&XEXP (pat_src, 0));
1351      src2 = get_true_reg (&XEXP (pat_src, 1));
1352
1353      INSN_CODE (insn) = -1;
1354    }
1355
1356  /* We will fix any death note later.  */
1357
1358  src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1359
1360  if (STACK_REG_P (*src2))
1361    src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1362  else
1363    src2_note = NULL_RTX;
1364
1365  emit_swap_insn (insn, regstack, *src1);
1366
1367  replace_reg (src1, FIRST_STACK_REG);
1368
1369  if (STACK_REG_P (*src2))
1370    replace_reg (src2, get_hard_regnum (regstack, *src2));
1371
1372  if (src1_note)
1373    {
1374      pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1375      replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1376    }
1377
1378  /* If the second operand dies, handle that.  But if the operands are
1379     the same stack register, don't bother, because only one death is
1380     needed, and it was just handled.  */
1381
1382  if (src2_note
1383      && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1384	    && REGNO (*src1) == REGNO (*src2)))
1385    {
1386      /* As a special case, two regs may die in this insn if src2 is
1387	 next to top of stack and the top of stack also dies.  Since
1388	 we have already popped src1, "next to top of stack" is really
1389	 at top (FIRST_STACK_REG) now.  */
1390
1391      if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1392	  && src1_note)
1393	{
1394	  pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1395	  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1396	}
1397      else
1398	{
1399	  /* The 386 can only represent death of the first operand in
1400	     the case handled above.  In all other cases, emit a separate
1401	     pop and remove the death note from here.  */
1402
1403	  /* link_cc0_insns (insn); */
1404
1405	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1406
1407	  emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1408			 EMIT_AFTER);
1409	}
1410    }
1411}
1412
1413/* Substitute new registers in PAT, which is part of INSN.  REGSTACK
1414   is the current register layout.  */
1415
1416static void
1417subst_stack_regs_pat (insn, regstack, pat)
1418     rtx insn;
1419     stack regstack;
1420     rtx pat;
1421{
1422  rtx *dest, *src;
1423
1424  switch (GET_CODE (pat))
1425    {
1426    case USE:
1427      /* Deaths in USE insns can happen in non optimizing compilation.
1428	 Handle them by popping the dying register.  */
1429      src = get_true_reg (&XEXP (pat, 0));
1430      if (STACK_REG_P (*src)
1431	  && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1432	{
1433	  emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1434	  return;
1435	}
1436      /* ??? Uninitialized USE should not happen.  */
1437      else if (get_hard_regnum (regstack, *src) == -1)
1438	abort ();
1439      break;
1440
1441    case CLOBBER:
1442      {
1443	rtx note;
1444
1445	dest = get_true_reg (&XEXP (pat, 0));
1446	if (STACK_REG_P (*dest))
1447	  {
1448	    note = find_reg_note (insn, REG_DEAD, *dest);
1449
1450	    if (pat != PATTERN (insn))
1451	      {
1452		/* The fix_truncdi_1 pattern wants to be able to allocate
1453		   it's own scratch register.  It does this by clobbering
1454		   an fp reg so that it is assured of an empty reg-stack
1455		   register.  If the register is live, kill it now.
1456		   Remove the DEAD/UNUSED note so we don't try to kill it
1457		   later too.  */
1458
1459		if (note)
1460		  emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1461		else
1462		  {
1463		    note = find_reg_note (insn, REG_UNUSED, *dest);
1464		    if (!note)
1465		      abort ();
1466		  }
1467		remove_note (insn, note);
1468		replace_reg (dest, LAST_STACK_REG);
1469	      }
1470	    else
1471	      {
1472		/* A top-level clobber with no REG_DEAD, and no hard-regnum
1473		   indicates an uninitialized value.  Because reload removed
1474		   all other clobbers, this must be due to a function
1475		   returning without a value.  Load up a NaN.  */
1476
1477		if (! note
1478		    && get_hard_regnum (regstack, *dest) == -1)
1479		  {
1480		    pat = gen_rtx_SET (VOIDmode,
1481				       FP_MODE_REG (REGNO (*dest), SFmode),
1482				       nan);
1483		    PATTERN (insn) = pat;
1484		    move_for_stack_reg (insn, regstack, pat);
1485		  }
1486		if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1487		    && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1488		  {
1489		    pat = gen_rtx_SET (VOIDmode,
1490				       FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1491				       nan);
1492		    PATTERN (insn) = pat;
1493		    move_for_stack_reg (insn, regstack, pat);
1494		  }
1495	      }
1496	  }
1497	break;
1498      }
1499
1500    case SET:
1501      {
1502	rtx *src1 = (rtx *) 0, *src2;
1503	rtx src1_note, src2_note;
1504	rtx pat_src;
1505
1506	dest = get_true_reg (&SET_DEST (pat));
1507	src  = get_true_reg (&SET_SRC (pat));
1508	pat_src = SET_SRC (pat);
1509
1510	/* See if this is a `movM' pattern, and handle elsewhere if so.  */
1511	if (STACK_REG_P (*src)
1512	    || (STACK_REG_P (*dest)
1513		&& (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1514		    || GET_CODE (*src) == CONST_DOUBLE)))
1515	  {
1516	    move_for_stack_reg (insn, regstack, pat);
1517	    break;
1518	  }
1519
1520	switch (GET_CODE (pat_src))
1521	  {
1522	  case COMPARE:
1523	    compare_for_stack_reg (insn, regstack, pat_src);
1524	    break;
1525
1526	  case CALL:
1527	    {
1528	      int count;
1529	      for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
1530		   --count >= 0;)
1531		{
1532		  regstack->reg[++regstack->top] = REGNO (*dest) + count;
1533		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1534		}
1535	    }
1536	    replace_reg (dest, FIRST_STACK_REG);
1537	    break;
1538
1539	  case REG:
1540	    /* This is a `tstM2' case.  */
1541	    if (*dest != cc0_rtx)
1542	      abort ();
1543	    src1 = src;
1544
1545	    /* Fall through.  */
1546
1547	  case FLOAT_TRUNCATE:
1548	  case SQRT:
1549	  case ABS:
1550	  case NEG:
1551	    /* These insns only operate on the top of the stack. DEST might
1552	       be cc0_rtx if we're processing a tstM pattern. Also, it's
1553	       possible that the tstM case results in a REG_DEAD note on the
1554	       source.  */
1555
1556	    if (src1 == 0)
1557	      src1 = get_true_reg (&XEXP (pat_src, 0));
1558
1559	    emit_swap_insn (insn, regstack, *src1);
1560
1561	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1562
1563	    if (STACK_REG_P (*dest))
1564	      replace_reg (dest, FIRST_STACK_REG);
1565
1566	    if (src1_note)
1567	      {
1568		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1569		regstack->top--;
1570		CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1571	      }
1572
1573	    replace_reg (src1, FIRST_STACK_REG);
1574	    break;
1575
1576	  case MINUS:
1577	  case DIV:
1578	    /* On i386, reversed forms of subM3 and divM3 exist for
1579	       MODE_FLOAT, so the same code that works for addM3 and mulM3
1580	       can be used.  */
1581	  case MULT:
1582	  case PLUS:
1583	    /* These insns can accept the top of stack as a destination
1584	       from a stack reg or mem, or can use the top of stack as a
1585	       source and some other stack register (possibly top of stack)
1586	       as a destination.  */
1587
1588	    src1 = get_true_reg (&XEXP (pat_src, 0));
1589	    src2 = get_true_reg (&XEXP (pat_src, 1));
1590
1591	    /* We will fix any death note later.  */
1592
1593	    if (STACK_REG_P (*src1))
1594	      src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1595	    else
1596	      src1_note = NULL_RTX;
1597	    if (STACK_REG_P (*src2))
1598	      src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1599	    else
1600	      src2_note = NULL_RTX;
1601
1602	    /* If either operand is not a stack register, then the dest
1603	       must be top of stack.  */
1604
1605	    if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1606	      emit_swap_insn (insn, regstack, *dest);
1607	    else
1608	      {
1609		/* Both operands are REG.  If neither operand is already
1610		   at the top of stack, choose to make the one that is the dest
1611		   the new top of stack.  */
1612
1613		int src1_hard_regnum, src2_hard_regnum;
1614
1615		src1_hard_regnum = get_hard_regnum (regstack, *src1);
1616		src2_hard_regnum = get_hard_regnum (regstack, *src2);
1617		if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1618		  abort ();
1619
1620		if (src1_hard_regnum != FIRST_STACK_REG
1621		    && src2_hard_regnum != FIRST_STACK_REG)
1622		  emit_swap_insn (insn, regstack, *dest);
1623	      }
1624
1625	    if (STACK_REG_P (*src1))
1626	      replace_reg (src1, get_hard_regnum (regstack, *src1));
1627	    if (STACK_REG_P (*src2))
1628	      replace_reg (src2, get_hard_regnum (regstack, *src2));
1629
1630	    if (src1_note)
1631	      {
1632		rtx src1_reg = XEXP (src1_note, 0);
1633
1634		/* If the register that dies is at the top of stack, then
1635		   the destination is somewhere else - merely substitute it.
1636		   But if the reg that dies is not at top of stack, then
1637		   move the top of stack to the dead reg, as though we had
1638		   done the insn and then a store-with-pop.  */
1639
1640		if (REGNO (src1_reg) == regstack->reg[regstack->top])
1641		  {
1642		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1643		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1644		  }
1645		else
1646		  {
1647		    int regno = get_hard_regnum (regstack, src1_reg);
1648
1649		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1650		    replace_reg (dest, regno);
1651
1652		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1653		      = regstack->reg[regstack->top];
1654		  }
1655
1656		CLEAR_HARD_REG_BIT (regstack->reg_set,
1657				    REGNO (XEXP (src1_note, 0)));
1658		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1659		regstack->top--;
1660	      }
1661	    else if (src2_note)
1662	      {
1663		rtx src2_reg = XEXP (src2_note, 0);
1664		if (REGNO (src2_reg) == regstack->reg[regstack->top])
1665		  {
1666		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1667		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1668		  }
1669		else
1670		  {
1671		    int regno = get_hard_regnum (regstack, src2_reg);
1672
1673		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1674		    replace_reg (dest, regno);
1675
1676		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1677		      = regstack->reg[regstack->top];
1678		  }
1679
1680		CLEAR_HARD_REG_BIT (regstack->reg_set,
1681				    REGNO (XEXP (src2_note, 0)));
1682		replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1683		regstack->top--;
1684	      }
1685	    else
1686	      {
1687		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1688		replace_reg (dest, get_hard_regnum (regstack, *dest));
1689	      }
1690
1691	    /* Keep operand 1 maching with destination.  */
1692	    if (GET_RTX_CLASS (GET_CODE (pat_src)) == 'c'
1693		&& REG_P (*src1) && REG_P (*src2)
1694		&& REGNO (*src1) != REGNO (*dest))
1695	     {
1696		int tmp = REGNO (*src1);
1697		replace_reg (src1, REGNO (*src2));
1698		replace_reg (src2, tmp);
1699	     }
1700	    break;
1701
1702	  case UNSPEC:
1703	    switch (XINT (pat_src, 1))
1704	      {
1705	      case UNSPEC_SIN:
1706	      case UNSPEC_COS:
1707		/* These insns only operate on the top of the stack.  */
1708
1709		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1710
1711		emit_swap_insn (insn, regstack, *src1);
1712
1713		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1714
1715		if (STACK_REG_P (*dest))
1716		  replace_reg (dest, FIRST_STACK_REG);
1717
1718		if (src1_note)
1719		  {
1720		    replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1721		    regstack->top--;
1722		    CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1723		  }
1724
1725		replace_reg (src1, FIRST_STACK_REG);
1726		break;
1727
1728	      case UNSPEC_SAHF:
1729		/* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1730		   The combination matches the PPRO fcomi instruction.  */
1731
1732		pat_src = XVECEXP (pat_src, 0, 0);
1733		if (GET_CODE (pat_src) != UNSPEC
1734		    || XINT (pat_src, 1) != UNSPEC_FNSTSW)
1735		  abort ();
1736		/* FALLTHRU */
1737
1738	      case UNSPEC_FNSTSW:
1739		/* Combined fcomp+fnstsw generated for doing well with
1740		   CSE.  When optimizing this would have been broken
1741		   up before now.  */
1742
1743		pat_src = XVECEXP (pat_src, 0, 0);
1744		if (GET_CODE (pat_src) != COMPARE)
1745		  abort ();
1746
1747		compare_for_stack_reg (insn, regstack, pat_src);
1748		break;
1749
1750	      default:
1751		abort ();
1752	      }
1753	    break;
1754
1755	  case IF_THEN_ELSE:
1756	    /* This insn requires the top of stack to be the destination.  */
1757
1758	    src1 = get_true_reg (&XEXP (pat_src, 1));
1759	    src2 = get_true_reg (&XEXP (pat_src, 2));
1760
1761	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1762	    src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1763
1764	    /* If the comparison operator is an FP comparison operator,
1765	       it is handled correctly by compare_for_stack_reg () who
1766	       will move the destination to the top of stack. But if the
1767	       comparison operator is not an FP comparison operator, we
1768	       have to handle it here.  */
1769	    if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1770		&& REGNO (*dest) != regstack->reg[regstack->top])
1771	      {
1772		/* In case one of operands is the top of stack and the operands
1773		   dies, it is safe to make it the destination operand by
1774		   reversing the direction of cmove and avoid fxch.  */
1775		if ((REGNO (*src1) == regstack->reg[regstack->top]
1776		     && src1_note)
1777		    || (REGNO (*src2) == regstack->reg[regstack->top]
1778			&& src2_note))
1779		  {
1780		    int idx1 = (get_hard_regnum (regstack, *src1)
1781				- FIRST_STACK_REG);
1782		    int idx2 = (get_hard_regnum (regstack, *src2)
1783				- FIRST_STACK_REG);
1784
1785		    /* Make reg-stack believe that the operands are already
1786		       swapped on the stack */
1787		    regstack->reg[regstack->top - idx1] = REGNO (*src2);
1788		    regstack->reg[regstack->top - idx2] = REGNO (*src1);
1789
1790		    /* Reverse condition to compensate the operand swap.
1791		       i386 do have comparison always reversible.  */
1792		    PUT_CODE (XEXP (pat_src, 0),
1793			      reversed_comparison_code (XEXP (pat_src, 0), insn));
1794		  }
1795		else
1796	          emit_swap_insn (insn, regstack, *dest);
1797	      }
1798
1799	    {
1800	      rtx src_note [3];
1801	      int i;
1802
1803	      src_note[0] = 0;
1804	      src_note[1] = src1_note;
1805	      src_note[2] = src2_note;
1806
1807	      if (STACK_REG_P (*src1))
1808		replace_reg (src1, get_hard_regnum (regstack, *src1));
1809	      if (STACK_REG_P (*src2))
1810		replace_reg (src2, get_hard_regnum (regstack, *src2));
1811
1812	      for (i = 1; i <= 2; i++)
1813		if (src_note [i])
1814		  {
1815		    int regno = REGNO (XEXP (src_note[i], 0));
1816
1817		    /* If the register that dies is not at the top of
1818		       stack, then move the top of stack to the dead reg */
1819		    if (regno != regstack->reg[regstack->top])
1820		      {
1821			remove_regno_note (insn, REG_DEAD, regno);
1822			emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1823				       EMIT_AFTER);
1824		      }
1825		    else
1826		      /* Top of stack never dies, as it is the
1827			 destination.  */
1828		      abort ();
1829		  }
1830	    }
1831
1832	    /* Make dest the top of stack.  Add dest to regstack if
1833	       not present.  */
1834	    if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1835	      regstack->reg[++regstack->top] = REGNO (*dest);
1836	    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1837	    replace_reg (dest, FIRST_STACK_REG);
1838	    break;
1839
1840	  default:
1841	    abort ();
1842	  }
1843	break;
1844      }
1845
1846    default:
1847      break;
1848    }
1849}
1850
1851/* Substitute hard regnums for any stack regs in INSN, which has
1852   N_INPUTS inputs and N_OUTPUTS outputs.  REGSTACK is the stack info
1853   before the insn, and is updated with changes made here.
1854
1855   There are several requirements and assumptions about the use of
1856   stack-like regs in asm statements.  These rules are enforced by
1857   record_asm_stack_regs; see comments there for details.  Any
1858   asm_operands left in the RTL at this point may be assume to meet the
1859   requirements, since record_asm_stack_regs removes any problem asm.  */
1860
1861static void
1862subst_asm_stack_regs (insn, regstack)
1863     rtx insn;
1864     stack regstack;
1865{
1866  rtx body = PATTERN (insn);
1867  int alt;
1868
1869  rtx *note_reg;		/* Array of note contents */
1870  rtx **note_loc;		/* Address of REG field of each note */
1871  enum reg_note *note_kind;	/* The type of each note */
1872
1873  rtx *clobber_reg = 0;
1874  rtx **clobber_loc = 0;
1875
1876  struct stack_def temp_stack;
1877  int n_notes;
1878  int n_clobbers;
1879  rtx note;
1880  int i;
1881  int n_inputs, n_outputs;
1882
1883  if (! check_asm_stack_operands (insn))
1884    return;
1885
1886  /* Find out what the constraints required.  If no constraint
1887     alternative matches, that is a compiler bug: we should have caught
1888     such an insn in check_asm_stack_operands.  */
1889  extract_insn (insn);
1890  constrain_operands (1);
1891  alt = which_alternative;
1892
1893  preprocess_constraints ();
1894
1895  n_inputs = get_asm_operand_n_inputs (body);
1896  n_outputs = recog_data.n_operands - n_inputs;
1897
1898  if (alt < 0)
1899    abort ();
1900
1901  /* Strip SUBREGs here to make the following code simpler.  */
1902  for (i = 0; i < recog_data.n_operands; i++)
1903    if (GET_CODE (recog_data.operand[i]) == SUBREG
1904	&& GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
1905      {
1906	recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1907	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1908      }
1909
1910  /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND.  */
1911
1912  for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1913    i++;
1914
1915  note_reg = (rtx *) alloca (i * sizeof (rtx));
1916  note_loc = (rtx **) alloca (i * sizeof (rtx *));
1917  note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
1918
1919  n_notes = 0;
1920  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1921    {
1922      rtx reg = XEXP (note, 0);
1923      rtx *loc = & XEXP (note, 0);
1924
1925      if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1926	{
1927	  loc = & SUBREG_REG (reg);
1928	  reg = SUBREG_REG (reg);
1929	}
1930
1931      if (STACK_REG_P (reg)
1932	  && (REG_NOTE_KIND (note) == REG_DEAD
1933	      || REG_NOTE_KIND (note) == REG_UNUSED))
1934	{
1935	  note_reg[n_notes] = reg;
1936	  note_loc[n_notes] = loc;
1937	  note_kind[n_notes] = REG_NOTE_KIND (note);
1938	  n_notes++;
1939	}
1940    }
1941
1942  /* Set up CLOBBER_REG and CLOBBER_LOC.  */
1943
1944  n_clobbers = 0;
1945
1946  if (GET_CODE (body) == PARALLEL)
1947    {
1948      clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
1949      clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx *));
1950
1951      for (i = 0; i < XVECLEN (body, 0); i++)
1952	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1953	  {
1954	    rtx clobber = XVECEXP (body, 0, i);
1955	    rtx reg = XEXP (clobber, 0);
1956	    rtx *loc = & XEXP (clobber, 0);
1957
1958	    if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1959	      {
1960		loc = & SUBREG_REG (reg);
1961		reg = SUBREG_REG (reg);
1962	      }
1963
1964	    if (STACK_REG_P (reg))
1965	      {
1966		clobber_reg[n_clobbers] = reg;
1967		clobber_loc[n_clobbers] = loc;
1968		n_clobbers++;
1969	      }
1970	  }
1971    }
1972
1973  temp_stack = *regstack;
1974
1975  /* Put the input regs into the desired place in TEMP_STACK.  */
1976
1977  for (i = n_outputs; i < n_outputs + n_inputs; i++)
1978    if (STACK_REG_P (recog_data.operand[i])
1979	&& reg_class_subset_p (recog_op_alt[i][alt].class,
1980			       FLOAT_REGS)
1981	&& recog_op_alt[i][alt].class != FLOAT_REGS)
1982      {
1983	/* If an operand needs to be in a particular reg in
1984	   FLOAT_REGS, the constraint was either 't' or 'u'.  Since
1985	   these constraints are for single register classes, and
1986	   reload guaranteed that operand[i] is already in that class,
1987	   we can just use REGNO (recog_data.operand[i]) to know which
1988	   actual reg this operand needs to be in.  */
1989
1990	int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
1991
1992	if (regno < 0)
1993	  abort ();
1994
1995	if ((unsigned int) regno != REGNO (recog_data.operand[i]))
1996	  {
1997	    /* recog_data.operand[i] is not in the right place.  Find
1998	       it and swap it with whatever is already in I's place.
1999	       K is where recog_data.operand[i] is now.  J is where it
2000	       should be.  */
2001	    int j, k, temp;
2002
2003	    k = temp_stack.top - (regno - FIRST_STACK_REG);
2004	    j = (temp_stack.top
2005		 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2006
2007	    temp = temp_stack.reg[k];
2008	    temp_stack.reg[k] = temp_stack.reg[j];
2009	    temp_stack.reg[j] = temp;
2010	  }
2011      }
2012
2013  /* Emit insns before INSN to make sure the reg-stack is in the right
2014     order.  */
2015
2016  change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2017
2018  /* Make the needed input register substitutions.  Do death notes and
2019     clobbers too, because these are for inputs, not outputs.  */
2020
2021  for (i = n_outputs; i < n_outputs + n_inputs; i++)
2022    if (STACK_REG_P (recog_data.operand[i]))
2023      {
2024	int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2025
2026	if (regnum < 0)
2027	  abort ();
2028
2029	replace_reg (recog_data.operand_loc[i], regnum);
2030      }
2031
2032  for (i = 0; i < n_notes; i++)
2033    if (note_kind[i] == REG_DEAD)
2034      {
2035	int regnum = get_hard_regnum (regstack, note_reg[i]);
2036
2037	if (regnum < 0)
2038	  abort ();
2039
2040	replace_reg (note_loc[i], regnum);
2041      }
2042
2043  for (i = 0; i < n_clobbers; i++)
2044    {
2045      /* It's OK for a CLOBBER to reference a reg that is not live.
2046         Don't try to replace it in that case.  */
2047      int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2048
2049      if (regnum >= 0)
2050	{
2051	  /* Sigh - clobbers always have QImode.  But replace_reg knows
2052	     that these regs can't be MODE_INT and will abort.  Just put
2053	     the right reg there without calling replace_reg.  */
2054
2055	  *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2056	}
2057    }
2058
2059  /* Now remove from REGSTACK any inputs that the asm implicitly popped.  */
2060
2061  for (i = n_outputs; i < n_outputs + n_inputs; i++)
2062    if (STACK_REG_P (recog_data.operand[i]))
2063      {
2064	/* An input reg is implicitly popped if it is tied to an
2065	   output, or if there is a CLOBBER for it.  */
2066	int j;
2067
2068	for (j = 0; j < n_clobbers; j++)
2069	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2070	    break;
2071
2072	if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2073	  {
2074	    /* recog_data.operand[i] might not be at the top of stack.
2075	       But that's OK, because all we need to do is pop the
2076	       right number of regs off of the top of the reg-stack.
2077	       record_asm_stack_regs guaranteed that all implicitly
2078	       popped regs were grouped at the top of the reg-stack.  */
2079
2080	    CLEAR_HARD_REG_BIT (regstack->reg_set,
2081				regstack->reg[regstack->top]);
2082	    regstack->top--;
2083	  }
2084      }
2085
2086  /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2087     Note that there isn't any need to substitute register numbers.
2088     ???  Explain why this is true.  */
2089
2090  for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2091    {
2092      /* See if there is an output for this hard reg.  */
2093      int j;
2094
2095      for (j = 0; j < n_outputs; j++)
2096	if (STACK_REG_P (recog_data.operand[j])
2097	    && REGNO (recog_data.operand[j]) == (unsigned) i)
2098	  {
2099	    regstack->reg[++regstack->top] = i;
2100	    SET_HARD_REG_BIT (regstack->reg_set, i);
2101	    break;
2102	  }
2103    }
2104
2105  /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2106     input that the asm didn't implicitly pop.  If the asm didn't
2107     implicitly pop an input reg, that reg will still be live.
2108
2109     Note that we can't use find_regno_note here: the register numbers
2110     in the death notes have already been substituted.  */
2111
2112  for (i = 0; i < n_outputs; i++)
2113    if (STACK_REG_P (recog_data.operand[i]))
2114      {
2115	int j;
2116
2117	for (j = 0; j < n_notes; j++)
2118	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2119	      && note_kind[j] == REG_UNUSED)
2120	    {
2121	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2122				    EMIT_AFTER);
2123	      break;
2124	    }
2125      }
2126
2127  for (i = n_outputs; i < n_outputs + n_inputs; i++)
2128    if (STACK_REG_P (recog_data.operand[i]))
2129      {
2130	int j;
2131
2132	for (j = 0; j < n_notes; j++)
2133	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2134	      && note_kind[j] == REG_DEAD
2135	      && TEST_HARD_REG_BIT (regstack->reg_set,
2136				    REGNO (recog_data.operand[i])))
2137	    {
2138	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2139				    EMIT_AFTER);
2140	      break;
2141	    }
2142      }
2143}
2144
2145/* Substitute stack hard reg numbers for stack virtual registers in
2146   INSN.  Non-stack register numbers are not changed.  REGSTACK is the
2147   current stack content.  Insns may be emitted as needed to arrange the
2148   stack for the 387 based on the contents of the insn.  */
2149
2150static void
2151subst_stack_regs (insn, regstack)
2152     rtx insn;
2153     stack regstack;
2154{
2155  rtx *note_link, note;
2156  int i;
2157
2158  if (GET_CODE (insn) == CALL_INSN)
2159    {
2160      int top = regstack->top;
2161
2162      /* If there are any floating point parameters to be passed in
2163	 registers for this call, make sure they are in the right
2164	 order.  */
2165
2166      if (top >= 0)
2167	{
2168	  straighten_stack (PREV_INSN (insn), regstack);
2169
2170	  /* Now mark the arguments as dead after the call.  */
2171
2172	  while (regstack->top >= 0)
2173	    {
2174	      CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2175	      regstack->top--;
2176	    }
2177	}
2178    }
2179
2180  /* Do the actual substitution if any stack regs are mentioned.
2181     Since we only record whether entire insn mentions stack regs, and
2182     subst_stack_regs_pat only works for patterns that contain stack regs,
2183     we must check each pattern in a parallel here.  A call_value_pop could
2184     fail otherwise.  */
2185
2186  if (stack_regs_mentioned (insn))
2187    {
2188      int n_operands = asm_noperands (PATTERN (insn));
2189      if (n_operands >= 0)
2190	{
2191	  /* This insn is an `asm' with operands.  Decode the operands,
2192	     decide how many are inputs, and do register substitution.
2193	     Any REG_UNUSED notes will be handled by subst_asm_stack_regs.  */
2194
2195	  subst_asm_stack_regs (insn, regstack);
2196	  return;
2197	}
2198
2199      if (GET_CODE (PATTERN (insn)) == PARALLEL)
2200	for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2201	  {
2202	    if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2203	      subst_stack_regs_pat (insn, regstack,
2204				    XVECEXP (PATTERN (insn), 0, i));
2205	  }
2206      else
2207	subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2208    }
2209
2210  /* subst_stack_regs_pat may have deleted a no-op insn.  If so, any
2211     REG_UNUSED will already have been dealt with, so just return.  */
2212
2213  if (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn))
2214    return;
2215
2216  /* If there is a REG_UNUSED note on a stack register on this insn,
2217     the indicated reg must be popped.  The REG_UNUSED note is removed,
2218     since the form of the newly emitted pop insn references the reg,
2219     making it no longer `unset'.  */
2220
2221  note_link = &REG_NOTES (insn);
2222  for (note = *note_link; note; note = XEXP (note, 1))
2223    if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2224      {
2225	*note_link = XEXP (note, 1);
2226	insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2227      }
2228    else
2229      note_link = &XEXP (note, 1);
2230}
2231
2232/* Change the organization of the stack so that it fits a new basic
2233   block.  Some registers might have to be popped, but there can never be
2234   a register live in the new block that is not now live.
2235
2236   Insert any needed insns before or after INSN, as indicated by
2237   WHERE.  OLD is the original stack layout, and NEW is the desired
2238   form.  OLD is updated to reflect the code emitted, ie, it will be
2239   the same as NEW upon return.
2240
2241   This function will not preserve block_end[].  But that information
2242   is no longer needed once this has executed.  */
2243
2244static void
2245change_stack (insn, old, new, where)
2246     rtx insn;
2247     stack old;
2248     stack new;
2249     enum emit_where where;
2250{
2251  int reg;
2252  int update_end = 0;
2253
2254  /* We will be inserting new insns "backwards".  If we are to insert
2255     after INSN, find the next insn, and insert before it.  */
2256
2257  if (where == EMIT_AFTER)
2258    {
2259      if (current_block && current_block->end == insn)
2260	update_end = 1;
2261      insn = NEXT_INSN (insn);
2262    }
2263
2264  /* Pop any registers that are not needed in the new block.  */
2265
2266  for (reg = old->top; reg >= 0; reg--)
2267    if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2268      emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2269		     EMIT_BEFORE);
2270
2271  if (new->top == -2)
2272    {
2273      /* If the new block has never been processed, then it can inherit
2274	 the old stack order.  */
2275
2276      new->top = old->top;
2277      memcpy (new->reg, old->reg, sizeof (new->reg));
2278    }
2279  else
2280    {
2281      /* This block has been entered before, and we must match the
2282	 previously selected stack order.  */
2283
2284      /* By now, the only difference should be the order of the stack,
2285	 not their depth or liveliness.  */
2286
2287      GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2288      abort ();
2289    win:
2290      if (old->top != new->top)
2291	abort ();
2292
2293      /* If the stack is not empty (new->top != -1), loop here emitting
2294	 swaps until the stack is correct.
2295
2296	 The worst case number of swaps emitted is N + 2, where N is the
2297	 depth of the stack.  In some cases, the reg at the top of
2298	 stack may be correct, but swapped anyway in order to fix
2299	 other regs.  But since we never swap any other reg away from
2300	 its correct slot, this algorithm will converge.  */
2301
2302      if (new->top != -1)
2303	do
2304	  {
2305	    /* Swap the reg at top of stack into the position it is
2306	       supposed to be in, until the correct top of stack appears.  */
2307
2308	    while (old->reg[old->top] != new->reg[new->top])
2309	      {
2310		for (reg = new->top; reg >= 0; reg--)
2311		  if (new->reg[reg] == old->reg[old->top])
2312		    break;
2313
2314		if (reg == -1)
2315		  abort ();
2316
2317		emit_swap_insn (insn, old,
2318				FP_MODE_REG (old->reg[reg], DFmode));
2319	      }
2320
2321	    /* See if any regs remain incorrect.  If so, bring an
2322	     incorrect reg to the top of stack, and let the while loop
2323	     above fix it.  */
2324
2325	    for (reg = new->top; reg >= 0; reg--)
2326	      if (new->reg[reg] != old->reg[reg])
2327		{
2328		  emit_swap_insn (insn, old,
2329				  FP_MODE_REG (old->reg[reg], DFmode));
2330		  break;
2331		}
2332	  } while (reg >= 0);
2333
2334      /* At this point there must be no differences.  */
2335
2336      for (reg = old->top; reg >= 0; reg--)
2337	if (old->reg[reg] != new->reg[reg])
2338	  abort ();
2339    }
2340
2341  if (update_end)
2342    current_block->end = PREV_INSN (insn);
2343}
2344
2345/* Print stack configuration.  */
2346
2347static void
2348print_stack (file, s)
2349     FILE *file;
2350     stack s;
2351{
2352  if (! file)
2353    return;
2354
2355  if (s->top == -2)
2356    fprintf (file, "uninitialized\n");
2357  else if (s->top == -1)
2358    fprintf (file, "empty\n");
2359  else
2360    {
2361      int i;
2362      fputs ("[ ", file);
2363      for (i = 0; i <= s->top; ++i)
2364	fprintf (file, "%d ", s->reg[i]);
2365      fputs ("]\n", file);
2366    }
2367}
2368
2369/* This function was doing life analysis.  We now let the regular live
2370   code do it's job, so we only need to check some extra invariants
2371   that reg-stack expects.  Primary among these being that all registers
2372   are initialized before use.
2373
2374   The function returns true when code was emitted to CFG edges and
2375   commit_edge_insertions needs to be called.  */
2376
2377static int
2378convert_regs_entry ()
2379{
2380  int inserted = 0;
2381  edge e;
2382  basic_block block;
2383
2384  FOR_EACH_BB_REVERSE (block)
2385    {
2386      block_info bi = BLOCK_INFO (block);
2387      int reg;
2388
2389      /* Set current register status at last instruction `uninitialized'.  */
2390      bi->stack_in.top = -2;
2391
2392      /* Copy live_at_end and live_at_start into temporaries.  */
2393      for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2394	{
2395	  if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2396	    SET_HARD_REG_BIT (bi->out_reg_set, reg);
2397	  if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2398	    SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2399	}
2400    }
2401
2402  /* Load something into each stack register live at function entry.
2403     Such live registers can be caused by uninitialized variables or
2404     functions not returning values on all paths.  In order to keep
2405     the push/pop code happy, and to not scrog the register stack, we
2406     must put something in these registers.  Use a QNaN.
2407
2408     Note that we are insertting converted code here.  This code is
2409     never seen by the convert_regs pass.  */
2410
2411  for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2412    {
2413      basic_block block = e->dest;
2414      block_info bi = BLOCK_INFO (block);
2415      int reg, top = -1;
2416
2417      for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2418	if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2419	  {
2420	    rtx init;
2421
2422	    bi->stack_in.reg[++top] = reg;
2423
2424	    init = gen_rtx_SET (VOIDmode,
2425				FP_MODE_REG (FIRST_STACK_REG, SFmode),
2426				nan);
2427	    insert_insn_on_edge (init, e);
2428	    inserted = 1;
2429	  }
2430
2431      bi->stack_in.top = top;
2432    }
2433
2434  return inserted;
2435}
2436
2437/* Construct the desired stack for function exit.  This will either
2438   be `empty', or the function return value at top-of-stack.  */
2439
2440static void
2441convert_regs_exit ()
2442{
2443  int value_reg_low, value_reg_high;
2444  stack output_stack;
2445  rtx retvalue;
2446
2447  retvalue = stack_result (current_function_decl);
2448  value_reg_low = value_reg_high = -1;
2449  if (retvalue)
2450    {
2451      value_reg_low = REGNO (retvalue);
2452      value_reg_high = value_reg_low
2453	+ HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
2454    }
2455
2456  output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2457  if (value_reg_low == -1)
2458    output_stack->top = -1;
2459  else
2460    {
2461      int reg;
2462
2463      output_stack->top = value_reg_high - value_reg_low;
2464      for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2465	{
2466	  output_stack->reg[value_reg_high - reg] = reg;
2467	  SET_HARD_REG_BIT (output_stack->reg_set, reg);
2468	}
2469    }
2470}
2471
2472/* Adjust the stack of this block on exit to match the stack of the
2473   target block, or copy stack info into the stack of the successor
2474   of the successor hasn't been processed yet.  */
2475static bool
2476compensate_edge (e, file)
2477    edge e;
2478    FILE *file;
2479{
2480  basic_block block = e->src, target = e->dest;
2481  block_info bi = BLOCK_INFO (block);
2482  struct stack_def regstack, tmpstack;
2483  stack target_stack = &BLOCK_INFO (target)->stack_in;
2484  int reg;
2485
2486  current_block = block;
2487  regstack = bi->stack_out;
2488  if (file)
2489    fprintf (file, "Edge %d->%d: ", block->index, target->index);
2490
2491  if (target_stack->top == -2)
2492    {
2493      /* The target block hasn't had a stack order selected.
2494         We need merely ensure that no pops are needed.  */
2495      for (reg = regstack.top; reg >= 0; --reg)
2496	if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2497	  break;
2498
2499      if (reg == -1)
2500	{
2501	  if (file)
2502	    fprintf (file, "new block; copying stack position\n");
2503
2504	  /* change_stack kills values in regstack.  */
2505	  tmpstack = regstack;
2506
2507	  change_stack (block->end, &tmpstack, target_stack, EMIT_AFTER);
2508	  return false;
2509	}
2510
2511      if (file)
2512	fprintf (file, "new block; pops needed\n");
2513    }
2514  else
2515    {
2516      if (target_stack->top == regstack.top)
2517	{
2518	  for (reg = target_stack->top; reg >= 0; --reg)
2519	    if (target_stack->reg[reg] != regstack.reg[reg])
2520	      break;
2521
2522	  if (reg == -1)
2523	    {
2524	      if (file)
2525		fprintf (file, "no changes needed\n");
2526	      return false;
2527	    }
2528	}
2529
2530      if (file)
2531	{
2532	  fprintf (file, "correcting stack to ");
2533	  print_stack (file, target_stack);
2534	}
2535    }
2536
2537  /* Care for non-call EH edges specially.  The normal return path have
2538     values in registers.  These will be popped en masse by the unwind
2539     library.  */
2540  if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2541    target_stack->top = -1;
2542
2543  /* Other calls may appear to have values live in st(0), but the
2544     abnormal return path will not have actually loaded the values.  */
2545  else if (e->flags & EDGE_ABNORMAL_CALL)
2546    {
2547      /* Assert that the lifetimes are as we expect -- one value
2548         live at st(0) on the end of the source block, and no
2549         values live at the beginning of the destination block.  */
2550      HARD_REG_SET tmp;
2551
2552      CLEAR_HARD_REG_SET (tmp);
2553      GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2554      abort ();
2555    eh1:
2556
2557      /* We are sure that there is st(0) live, otherwise we won't compensate.
2558	 For complex return values, we may have st(1) live as well.  */
2559      SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2560      if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
2561        SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
2562      GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2563      abort ();
2564    eh2:
2565
2566      target_stack->top = -1;
2567    }
2568
2569  /* It is better to output directly to the end of the block
2570     instead of to the edge, because emit_swap can do minimal
2571     insn scheduling.  We can do this when there is only one
2572     edge out, and it is not abnormal.  */
2573  else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
2574    {
2575      /* change_stack kills values in regstack.  */
2576      tmpstack = regstack;
2577
2578      change_stack (block->end, &tmpstack, target_stack,
2579		    (GET_CODE (block->end) == JUMP_INSN
2580		     ? EMIT_BEFORE : EMIT_AFTER));
2581    }
2582  else
2583    {
2584      rtx seq, after;
2585
2586      /* We don't support abnormal edges.  Global takes care to
2587         avoid any live register across them, so we should never
2588         have to insert instructions on such edges.  */
2589      if (e->flags & EDGE_ABNORMAL)
2590	abort ();
2591
2592      current_block = NULL;
2593      start_sequence ();
2594
2595      /* ??? change_stack needs some point to emit insns after.  */
2596      after = emit_note (NULL, NOTE_INSN_DELETED);
2597
2598      tmpstack = regstack;
2599      change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2600
2601      seq = get_insns ();
2602      end_sequence ();
2603
2604      insert_insn_on_edge (seq, e);
2605      return true;
2606    }
2607  return false;
2608}
2609
2610/* Convert stack register references in one block.  */
2611
2612static int
2613convert_regs_1 (file, block)
2614     FILE *file;
2615     basic_block block;
2616{
2617  struct stack_def regstack;
2618  block_info bi = BLOCK_INFO (block);
2619  int deleted, inserted, reg;
2620  rtx insn, next;
2621  edge e, beste = NULL;
2622
2623  inserted = 0;
2624  deleted = 0;
2625  any_malformed_asm = false;
2626
2627  /* Find the edge we will copy stack from.  It should be the most frequent
2628     one as it will get cheapest after compensation code is generated,
2629     if multiple such exists, take one with largest count, prefer critical
2630     one (as splitting critical edges is more expensive), or one with lowest
2631     index, to avoid random changes with different orders of the edges.  */
2632  for (e = block->pred; e ; e = e->pred_next)
2633    {
2634      if (e->flags & EDGE_DFS_BACK)
2635	;
2636      else if (! beste)
2637	beste = e;
2638      else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2639	beste = e;
2640      else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2641	;
2642      else if (beste->count < e->count)
2643	beste = e;
2644      else if (beste->count > e->count)
2645	;
2646      else if ((EDGE_CRITICAL_P (e) != 0)
2647	       != (EDGE_CRITICAL_P (beste) != 0))
2648	{
2649	  if (EDGE_CRITICAL_P (e))
2650	    beste = e;
2651	}
2652      else if (e->src->index < beste->src->index)
2653	beste = e;
2654    }
2655
2656  /* Initialize stack at block entry.  */
2657  if (bi->stack_in.top == -2)
2658    {
2659      if (beste)
2660	inserted |= compensate_edge (beste, file);
2661      else
2662	{
2663	  /* No predecessors.  Create an arbitrary input stack.  */
2664	  int reg;
2665
2666	  bi->stack_in.top = -1;
2667	  for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2668	    if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2669	      bi->stack_in.reg[++bi->stack_in.top] = reg;
2670	}
2671    }
2672  else
2673    /* Entry blocks do have stack already initialized.  */
2674    beste = NULL;
2675
2676  current_block = block;
2677
2678  if (file)
2679    {
2680      fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2681      print_stack (file, &bi->stack_in);
2682    }
2683
2684  /* Process all insns in this block.  Keep track of NEXT so that we
2685     don't process insns emitted while substituting in INSN.  */
2686  next = block->head;
2687  regstack = bi->stack_in;
2688  do
2689    {
2690      insn = next;
2691      next = NEXT_INSN (insn);
2692
2693      /* Ensure we have not missed a block boundary.  */
2694      if (next == NULL)
2695	abort ();
2696      if (insn == block->end)
2697	next = NULL;
2698
2699      /* Don't bother processing unless there is a stack reg
2700	 mentioned or if it's a CALL_INSN.  */
2701      if (stack_regs_mentioned (insn)
2702	  || GET_CODE (insn) == CALL_INSN)
2703	{
2704	  if (file)
2705	    {
2706	      fprintf (file, "  insn %d input stack: ",
2707		       INSN_UID (insn));
2708	      print_stack (file, &regstack);
2709	    }
2710	  subst_stack_regs (insn, &regstack);
2711	  deleted |= (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn));
2712	}
2713    }
2714  while (next);
2715
2716  if (file)
2717    {
2718      fprintf (file, "Expected live registers [");
2719      for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2720	if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2721	  fprintf (file, " %d", reg);
2722      fprintf (file, " ]\nOutput stack: ");
2723      print_stack (file, &regstack);
2724    }
2725
2726  insn = block->end;
2727  if (GET_CODE (insn) == JUMP_INSN)
2728    insn = PREV_INSN (insn);
2729
2730  /* If the function is declared to return a value, but it returns one
2731     in only some cases, some registers might come live here.  Emit
2732     necessary moves for them.  */
2733
2734  for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2735    {
2736      if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2737	  && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2738	{
2739	  rtx set;
2740
2741	  if (file)
2742	    {
2743	      fprintf (file, "Emitting insn initializing reg %d\n",
2744		       reg);
2745	    }
2746
2747	  set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2748			     nan);
2749	  insn = emit_insn_after (set, insn);
2750	  subst_stack_regs (insn, &regstack);
2751	  deleted |= (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn));
2752	}
2753    }
2754
2755  /* Amongst the insns possibly deleted during the substitution process above,
2756     might have been the only trapping insn in the block.  We purge the now
2757     possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2758     called at the end of convert_regs.  The order in which we process the
2759     blocks ensures that we never delete an already processed edge.
2760
2761     ??? We are normally supposed not to delete trapping insns, so we pretend
2762     that the insns deleted above don't actually trap.  It would have been
2763     better to detect this earlier and avoid creating the EH edge in the first
2764     place, still, but we don't have enough information at that time.  */
2765
2766  if (deleted)
2767    purge_dead_edges (block);
2768
2769  /* Something failed if the stack lives don't match.  If we had malformed
2770     asms, we zapped the instruction itself, but that didn't produce the
2771     same pattern of register kills as before.  */
2772  GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2773  if (!any_malformed_asm)
2774    abort ();
2775 win:
2776  bi->stack_out = regstack;
2777
2778  /* Compensate the back edges, as those wasn't visited yet.  */
2779  for (e = block->succ; e ; e = e->succ_next)
2780    {
2781      if (e->flags & EDGE_DFS_BACK
2782	  || (e->dest == EXIT_BLOCK_PTR))
2783	{
2784	  if (!BLOCK_INFO (e->dest)->done
2785	      && e->dest != block)
2786	    abort ();
2787	  inserted |= compensate_edge (e, file);
2788	}
2789    }
2790  for (e = block->pred; e ; e = e->pred_next)
2791    {
2792      if (e != beste && !(e->flags & EDGE_DFS_BACK)
2793	  && e->src != ENTRY_BLOCK_PTR)
2794	{
2795	  if (!BLOCK_INFO (e->src)->done)
2796	    abort ();
2797	  inserted |= compensate_edge (e, file);
2798	}
2799    }
2800
2801  return inserted;
2802}
2803
2804/* Convert registers in all blocks reachable from BLOCK.  */
2805
2806static int
2807convert_regs_2 (file, block)
2808     FILE *file;
2809     basic_block block;
2810{
2811  basic_block *stack, *sp;
2812  int inserted;
2813
2814  /* We process the blocks in a top-down manner, in a way such that one block
2815     is only processed after all its predecessors.  The number of predecessors
2816     of every block has already been computed.  */
2817
2818  stack = (basic_block *) xmalloc (sizeof (*stack) * n_basic_blocks);
2819  sp = stack;
2820
2821  *sp++ = block;
2822
2823  inserted = 0;
2824  do
2825    {
2826      edge e;
2827
2828      block = *--sp;
2829
2830      /* Processing BLOCK is achieved by convert_regs_1, which may purge
2831	 some dead EH outgoing edge after the deletion of the trapping
2832	 insn inside the block.  Since the number of predecessors of
2833	 BLOCK's successors was computed based on the initial edge set,
2834	 we check the necessity to process some of these successors
2835	 before such an edge deletion may happen.  However, there is
2836	 a pitfall: if BLOCK is the only predecessor of a successor and
2837	 the edge between them happens to be deleted, the successor
2838	 becomes unreachable and should not be processed.  The problem
2839	 is that there is no way to preventively detect this case so we
2840	 stack the successor in all cases and hand over the task of
2841	 fixing up the discrepancy to convert_regs_1.  */
2842
2843      for (e = block->succ; e ; e = e->succ_next)
2844	if (! (e->flags & EDGE_DFS_BACK))
2845	  {
2846	    BLOCK_INFO (e->dest)->predecessors--;
2847	    if (!BLOCK_INFO (e->dest)->predecessors)
2848	       *sp++ = e->dest;
2849	  }
2850
2851      inserted |= convert_regs_1 (file, block);
2852      BLOCK_INFO (block)->done = 1;
2853    }
2854  while (sp != stack);
2855
2856  return inserted;
2857}
2858
2859/* Traverse all basic blocks in a function, converting the register
2860   references in each insn from the "flat" register file that gcc uses,
2861   to the stack-like registers the 387 uses.  */
2862
2863static int
2864convert_regs (file)
2865     FILE *file;
2866{
2867  int inserted;
2868  basic_block b;
2869  edge e;
2870
2871  /* Initialize uninitialized registers on function entry.  */
2872  inserted = convert_regs_entry ();
2873
2874  /* Construct the desired stack for function exit.  */
2875  convert_regs_exit ();
2876  BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
2877
2878  /* ??? Future: process inner loops first, and give them arbitrary
2879     initial stacks which emit_swap_insn can modify.  This ought to
2880     prevent double fxch that aften appears at the head of a loop.  */
2881
2882  /* Process all blocks reachable from all entry points.  */
2883  for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2884    inserted |= convert_regs_2 (file, e->dest);
2885
2886  /* ??? Process all unreachable blocks.  Though there's no excuse
2887     for keeping these even when not optimizing.  */
2888  FOR_EACH_BB (b)
2889    {
2890      block_info bi = BLOCK_INFO (b);
2891
2892      if (! bi->done)
2893	inserted |= convert_regs_2 (file, b);
2894    }
2895  clear_aux_for_blocks ();
2896
2897  fixup_abnormal_edges ();
2898  if (inserted)
2899    commit_edge_insertions ();
2900
2901  if (file)
2902    fputc ('\n', file);
2903
2904  return inserted;
2905}
2906#endif /* STACK_REGS */
2907
2908#include "gt-reg-stack.h"
2909