dt_consume.c revision 238071
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
28 */
29
30#include <stdlib.h>
31#include <strings.h>
32#include <errno.h>
33#include <unistd.h>
34#include <limits.h>
35#include <assert.h>
36#include <ctype.h>
37#if defined(sun)
38#include <alloca.h>
39#endif
40#include <dt_impl.h>
41#if !defined(sun)
42#include <libproc_compat.h>
43#endif
44
45#define	DT_MASK_LO 0x00000000FFFFFFFFULL
46
47/*
48 * We declare this here because (1) we need it and (2) we want to avoid a
49 * dependency on libm in libdtrace.
50 */
51static long double
52dt_fabsl(long double x)
53{
54	if (x < 0)
55		return (-x);
56
57	return (x);
58}
59
60/*
61 * 128-bit arithmetic functions needed to support the stddev() aggregating
62 * action.
63 */
64static int
65dt_gt_128(uint64_t *a, uint64_t *b)
66{
67	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
68}
69
70static int
71dt_ge_128(uint64_t *a, uint64_t *b)
72{
73	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
74}
75
76static int
77dt_le_128(uint64_t *a, uint64_t *b)
78{
79	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
80}
81
82/*
83 * Shift the 128-bit value in a by b. If b is positive, shift left.
84 * If b is negative, shift right.
85 */
86static void
87dt_shift_128(uint64_t *a, int b)
88{
89	uint64_t mask;
90
91	if (b == 0)
92		return;
93
94	if (b < 0) {
95		b = -b;
96		if (b >= 64) {
97			a[0] = a[1] >> (b - 64);
98			a[1] = 0;
99		} else {
100			a[0] >>= b;
101			mask = 1LL << (64 - b);
102			mask -= 1;
103			a[0] |= ((a[1] & mask) << (64 - b));
104			a[1] >>= b;
105		}
106	} else {
107		if (b >= 64) {
108			a[1] = a[0] << (b - 64);
109			a[0] = 0;
110		} else {
111			a[1] <<= b;
112			mask = a[0] >> (64 - b);
113			a[1] |= mask;
114			a[0] <<= b;
115		}
116	}
117}
118
119static int
120dt_nbits_128(uint64_t *a)
121{
122	int nbits = 0;
123	uint64_t tmp[2];
124	uint64_t zero[2] = { 0, 0 };
125
126	tmp[0] = a[0];
127	tmp[1] = a[1];
128
129	dt_shift_128(tmp, -1);
130	while (dt_gt_128(tmp, zero)) {
131		dt_shift_128(tmp, -1);
132		nbits++;
133	}
134
135	return (nbits);
136}
137
138static void
139dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
140{
141	uint64_t result[2];
142
143	result[0] = minuend[0] - subtrahend[0];
144	result[1] = minuend[1] - subtrahend[1] -
145	    (minuend[0] < subtrahend[0] ? 1 : 0);
146
147	difference[0] = result[0];
148	difference[1] = result[1];
149}
150
151static void
152dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
153{
154	uint64_t result[2];
155
156	result[0] = addend1[0] + addend2[0];
157	result[1] = addend1[1] + addend2[1] +
158	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
159
160	sum[0] = result[0];
161	sum[1] = result[1];
162}
163
164/*
165 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
166 * use native multiplication on those, and then re-combine into the
167 * resulting 128-bit value.
168 *
169 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
170 *     hi1 * hi2 << 64 +
171 *     hi1 * lo2 << 32 +
172 *     hi2 * lo1 << 32 +
173 *     lo1 * lo2
174 */
175static void
176dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
177{
178	uint64_t hi1, hi2, lo1, lo2;
179	uint64_t tmp[2];
180
181	hi1 = factor1 >> 32;
182	hi2 = factor2 >> 32;
183
184	lo1 = factor1 & DT_MASK_LO;
185	lo2 = factor2 & DT_MASK_LO;
186
187	product[0] = lo1 * lo2;
188	product[1] = hi1 * hi2;
189
190	tmp[0] = hi1 * lo2;
191	tmp[1] = 0;
192	dt_shift_128(tmp, 32);
193	dt_add_128(product, tmp, product);
194
195	tmp[0] = hi2 * lo1;
196	tmp[1] = 0;
197	dt_shift_128(tmp, 32);
198	dt_add_128(product, tmp, product);
199}
200
201/*
202 * This is long-hand division.
203 *
204 * We initialize subtrahend by shifting divisor left as far as possible. We
205 * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
206 * subtract and set the appropriate bit in the result.  We then shift
207 * subtrahend right by one bit for the next comparison.
208 */
209static void
210dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
211{
212	uint64_t result[2] = { 0, 0 };
213	uint64_t remainder[2];
214	uint64_t subtrahend[2];
215	uint64_t divisor_128[2];
216	uint64_t mask[2] = { 1, 0 };
217	int log = 0;
218
219	assert(divisor != 0);
220
221	divisor_128[0] = divisor;
222	divisor_128[1] = 0;
223
224	remainder[0] = dividend[0];
225	remainder[1] = dividend[1];
226
227	subtrahend[0] = divisor;
228	subtrahend[1] = 0;
229
230	while (divisor > 0) {
231		log++;
232		divisor >>= 1;
233	}
234
235	dt_shift_128(subtrahend, 128 - log);
236	dt_shift_128(mask, 128 - log);
237
238	while (dt_ge_128(remainder, divisor_128)) {
239		if (dt_ge_128(remainder, subtrahend)) {
240			dt_subtract_128(remainder, subtrahend, remainder);
241			result[0] |= mask[0];
242			result[1] |= mask[1];
243		}
244
245		dt_shift_128(subtrahend, -1);
246		dt_shift_128(mask, -1);
247	}
248
249	quotient[0] = result[0];
250	quotient[1] = result[1];
251}
252
253/*
254 * This is the long-hand method of calculating a square root.
255 * The algorithm is as follows:
256 *
257 * 1. Group the digits by 2 from the right.
258 * 2. Over the leftmost group, find the largest single-digit number
259 *    whose square is less than that group.
260 * 3. Subtract the result of the previous step (2 or 4, depending) and
261 *    bring down the next two-digit group.
262 * 4. For the result R we have so far, find the largest single-digit number
263 *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
264 *    (Note that this is doubling R and performing a decimal left-shift by 1
265 *    and searching for the appropriate decimal to fill the one's place.)
266 *    The value x is the next digit in the square root.
267 * Repeat steps 3 and 4 until the desired precision is reached.  (We're
268 * dealing with integers, so the above is sufficient.)
269 *
270 * In decimal, the square root of 582,734 would be calculated as so:
271 *
272 *     __7__6__3
273 *    | 58 27 34
274 *     -49       (7^2 == 49 => 7 is the first digit in the square root)
275 *      --
276 *       9 27    (Subtract and bring down the next group.)
277 * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
278 *      -----     the square root)
279 *         51 34 (Subtract and bring down the next group.)
280 * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
281 *         -----  the square root)
282 *          5 65 (remainder)
283 *
284 * The above algorithm applies similarly in binary, but note that the
285 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
286 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
287 * preceding difference?
288 *
289 * In binary, the square root of 11011011 would be calculated as so:
290 *
291 *     __1__1__1__0
292 *    | 11 01 10 11
293 *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
294 *      --
295 *      10 01 10 11
296 * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
297 *      -----
298 *       1 00 10 11
299 * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
300 *       -------
301 *          1 01 11
302 * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
303 *
304 */
305static uint64_t
306dt_sqrt_128(uint64_t *square)
307{
308	uint64_t result[2] = { 0, 0 };
309	uint64_t diff[2] = { 0, 0 };
310	uint64_t one[2] = { 1, 0 };
311	uint64_t next_pair[2];
312	uint64_t next_try[2];
313	uint64_t bit_pairs, pair_shift;
314	int i;
315
316	bit_pairs = dt_nbits_128(square) / 2;
317	pair_shift = bit_pairs * 2;
318
319	for (i = 0; i <= bit_pairs; i++) {
320		/*
321		 * Bring down the next pair of bits.
322		 */
323		next_pair[0] = square[0];
324		next_pair[1] = square[1];
325		dt_shift_128(next_pair, -pair_shift);
326		next_pair[0] &= 0x3;
327		next_pair[1] = 0;
328
329		dt_shift_128(diff, 2);
330		dt_add_128(diff, next_pair, diff);
331
332		/*
333		 * next_try = R << 2 + 1
334		 */
335		next_try[0] = result[0];
336		next_try[1] = result[1];
337		dt_shift_128(next_try, 2);
338		dt_add_128(next_try, one, next_try);
339
340		if (dt_le_128(next_try, diff)) {
341			dt_subtract_128(diff, next_try, diff);
342			dt_shift_128(result, 1);
343			dt_add_128(result, one, result);
344		} else {
345			dt_shift_128(result, 1);
346		}
347
348		pair_shift -= 2;
349	}
350
351	assert(result[1] == 0);
352
353	return (result[0]);
354}
355
356uint64_t
357dt_stddev(uint64_t *data, uint64_t normal)
358{
359	uint64_t avg_of_squares[2];
360	uint64_t square_of_avg[2];
361	int64_t norm_avg;
362	uint64_t diff[2];
363
364	/*
365	 * The standard approximation for standard deviation is
366	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
367	 * of the average of the squares minus the square of the average.
368	 */
369	dt_divide_128(data + 2, normal, avg_of_squares);
370	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
371
372	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
373
374	if (norm_avg < 0)
375		norm_avg = -norm_avg;
376
377	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
378
379	dt_subtract_128(avg_of_squares, square_of_avg, diff);
380
381	return (dt_sqrt_128(diff));
382}
383
384static int
385dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
386    dtrace_bufdesc_t *buf, size_t offs)
387{
388	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
389	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
390	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
391	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
392	const char *str = NULL;
393	static const char *e_str[2] = { " -> ", " => " };
394	static const char *r_str[2] = { " <- ", " <= " };
395	static const char *ent = "entry", *ret = "return";
396	static int entlen = 0, retlen = 0;
397	dtrace_epid_t next, id = epd->dtepd_epid;
398	int rval;
399
400	if (entlen == 0) {
401		assert(retlen == 0);
402		entlen = strlen(ent);
403		retlen = strlen(ret);
404	}
405
406	/*
407	 * If the name of the probe is "entry" or ends with "-entry", we
408	 * treat it as an entry; if it is "return" or ends with "-return",
409	 * we treat it as a return.  (This allows application-provided probes
410	 * like "method-entry" or "function-entry" to participate in flow
411	 * indentation -- without accidentally misinterpreting popular probe
412	 * names like "carpentry", "gentry" or "Coventry".)
413	 */
414	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
415	    (sub == n || sub[-1] == '-')) {
416		flow = DTRACEFLOW_ENTRY;
417		str = e_str[strcmp(p, "syscall") == 0];
418	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
419	    (sub == n || sub[-1] == '-')) {
420		flow = DTRACEFLOW_RETURN;
421		str = r_str[strcmp(p, "syscall") == 0];
422	}
423
424	/*
425	 * If we're going to indent this, we need to check the ID of our last
426	 * call.  If we're looking at the same probe ID but a different EPID,
427	 * we _don't_ want to indent.  (Yes, there are some minor holes in
428	 * this scheme -- it's a heuristic.)
429	 */
430	if (flow == DTRACEFLOW_ENTRY) {
431		if ((last != DTRACE_EPIDNONE && id != last &&
432		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
433			flow = DTRACEFLOW_NONE;
434	}
435
436	/*
437	 * If we're going to unindent this, it's more difficult to see if
438	 * we don't actually want to unindent it -- we need to look at the
439	 * _next_ EPID.
440	 */
441	if (flow == DTRACEFLOW_RETURN) {
442		offs += epd->dtepd_size;
443
444		do {
445			if (offs >= buf->dtbd_size) {
446				/*
447				 * We're at the end -- maybe.  If the oldest
448				 * record is non-zero, we need to wrap.
449				 */
450				if (buf->dtbd_oldest != 0) {
451					offs = 0;
452				} else {
453					goto out;
454				}
455			}
456
457			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
458
459			if (next == DTRACE_EPIDNONE)
460				offs += sizeof (id);
461		} while (next == DTRACE_EPIDNONE);
462
463		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
464			return (rval);
465
466		if (next != id && npd->dtpd_id == pd->dtpd_id)
467			flow = DTRACEFLOW_NONE;
468	}
469
470out:
471	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
472		data->dtpda_prefix = str;
473	} else {
474		data->dtpda_prefix = "| ";
475	}
476
477	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
478		data->dtpda_indent -= 2;
479
480	data->dtpda_flow = flow;
481
482	return (0);
483}
484
485static int
486dt_nullprobe()
487{
488	return (DTRACE_CONSUME_THIS);
489}
490
491static int
492dt_nullrec()
493{
494	return (DTRACE_CONSUME_NEXT);
495}
496
497int
498dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
499    uint64_t normal, long double total, char positives, char negatives)
500{
501	long double f;
502	uint_t depth, len = 40;
503
504	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
505	const char *spaces = "                                        ";
506
507	assert(strlen(ats) == len && strlen(spaces) == len);
508	assert(!(total == 0 && (positives || negatives)));
509	assert(!(val < 0 && !negatives));
510	assert(!(val > 0 && !positives));
511	assert(!(val != 0 && total == 0));
512
513	if (!negatives) {
514		if (positives) {
515			f = (dt_fabsl((long double)val) * len) / total;
516			depth = (uint_t)(f + 0.5);
517		} else {
518			depth = 0;
519		}
520
521		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
522		    spaces + depth, (long long)val / normal));
523	}
524
525	if (!positives) {
526		f = (dt_fabsl((long double)val) * len) / total;
527		depth = (uint_t)(f + 0.5);
528
529		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
530		    ats + len - depth, (long long)val / normal));
531	}
532
533	/*
534	 * If we're here, we have both positive and negative bucket values.
535	 * To express this graphically, we're going to generate both positive
536	 * and negative bars separated by a centerline.  These bars are half
537	 * the size of normal quantize()/lquantize() bars, so we divide the
538	 * length in half before calculating the bar length.
539	 */
540	len /= 2;
541	ats = &ats[len];
542	spaces = &spaces[len];
543
544	f = (dt_fabsl((long double)val) * len) / total;
545	depth = (uint_t)(f + 0.5);
546
547	if (val <= 0) {
548		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
549		    ats + len - depth, len, "", (long long)val / normal));
550	} else {
551		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
552		    ats + len - depth, spaces + depth,
553		    (long long)val / normal));
554	}
555}
556
557int
558dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
559    size_t size, uint64_t normal)
560{
561	const int64_t *data = addr;
562	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
563	long double total = 0;
564	char positives = 0, negatives = 0;
565
566	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
567		return (dt_set_errno(dtp, EDT_DMISMATCH));
568
569	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
570		first_bin++;
571
572	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
573		/*
574		 * There isn't any data.  This is possible if (and only if)
575		 * negative increment values have been used.  In this case,
576		 * we'll print the buckets around 0.
577		 */
578		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
579		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
580	} else {
581		if (first_bin > 0)
582			first_bin--;
583
584		while (last_bin > 0 && data[last_bin] == 0)
585			last_bin--;
586
587		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
588			last_bin++;
589	}
590
591	for (i = first_bin; i <= last_bin; i++) {
592		positives |= (data[i] > 0);
593		negatives |= (data[i] < 0);
594		total += dt_fabsl((long double)data[i]);
595	}
596
597	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
598	    "------------- Distribution -------------", "count") < 0)
599		return (-1);
600
601	for (i = first_bin; i <= last_bin; i++) {
602		if (dt_printf(dtp, fp, "%16lld ",
603		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
604			return (-1);
605
606		if (dt_print_quantline(dtp, fp, data[i], normal, total,
607		    positives, negatives) < 0)
608			return (-1);
609	}
610
611	return (0);
612}
613
614int
615dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
616    size_t size, uint64_t normal)
617{
618	const int64_t *data = addr;
619	int i, first_bin, last_bin, base;
620	uint64_t arg;
621	long double total = 0;
622	uint16_t step, levels;
623	char positives = 0, negatives = 0;
624
625	if (size < sizeof (uint64_t))
626		return (dt_set_errno(dtp, EDT_DMISMATCH));
627
628	arg = *data++;
629	size -= sizeof (uint64_t);
630
631	base = DTRACE_LQUANTIZE_BASE(arg);
632	step = DTRACE_LQUANTIZE_STEP(arg);
633	levels = DTRACE_LQUANTIZE_LEVELS(arg);
634
635	first_bin = 0;
636	last_bin = levels + 1;
637
638	if (size != sizeof (uint64_t) * (levels + 2))
639		return (dt_set_errno(dtp, EDT_DMISMATCH));
640
641	while (first_bin <= levels + 1 && data[first_bin] == 0)
642		first_bin++;
643
644	if (first_bin > levels + 1) {
645		first_bin = 0;
646		last_bin = 2;
647	} else {
648		if (first_bin > 0)
649			first_bin--;
650
651		while (last_bin > 0 && data[last_bin] == 0)
652			last_bin--;
653
654		if (last_bin < levels + 1)
655			last_bin++;
656	}
657
658	for (i = first_bin; i <= last_bin; i++) {
659		positives |= (data[i] > 0);
660		negatives |= (data[i] < 0);
661		total += dt_fabsl((long double)data[i]);
662	}
663
664	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
665	    "------------- Distribution -------------", "count") < 0)
666		return (-1);
667
668	for (i = first_bin; i <= last_bin; i++) {
669		char c[32];
670		int err;
671
672		if (i == 0) {
673			(void) snprintf(c, sizeof (c), "< %d",
674			    base / (uint32_t)normal);
675			err = dt_printf(dtp, fp, "%16s ", c);
676		} else if (i == levels + 1) {
677			(void) snprintf(c, sizeof (c), ">= %d",
678			    base + (levels * step));
679			err = dt_printf(dtp, fp, "%16s ", c);
680		} else {
681			err = dt_printf(dtp, fp, "%16d ",
682			    base + (i - 1) * step);
683		}
684
685		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
686		    total, positives, negatives) < 0)
687			return (-1);
688	}
689
690	return (0);
691}
692
693int
694dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
695    size_t size, uint64_t normal)
696{
697	int i, first_bin, last_bin, bin = 1, order, levels;
698	uint16_t factor, low, high, nsteps;
699	const int64_t *data = addr;
700	int64_t value = 1, next, step;
701	char positives = 0, negatives = 0;
702	long double total = 0;
703	uint64_t arg;
704	char c[32];
705
706	if (size < sizeof (uint64_t))
707		return (dt_set_errno(dtp, EDT_DMISMATCH));
708
709	arg = *data++;
710	size -= sizeof (uint64_t);
711
712	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
713	low = DTRACE_LLQUANTIZE_LOW(arg);
714	high = DTRACE_LLQUANTIZE_HIGH(arg);
715	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
716
717	/*
718	 * We don't expect to be handed invalid llquantize() parameters here,
719	 * but sanity check them (to a degree) nonetheless.
720	 */
721	if (size > INT32_MAX || factor < 2 || low >= high ||
722	    nsteps == 0 || factor > nsteps)
723		return (dt_set_errno(dtp, EDT_DMISMATCH));
724
725	levels = (int)size / sizeof (uint64_t);
726
727	first_bin = 0;
728	last_bin = levels - 1;
729
730	while (first_bin < levels && data[first_bin] == 0)
731		first_bin++;
732
733	if (first_bin == levels) {
734		first_bin = 0;
735		last_bin = 1;
736	} else {
737		if (first_bin > 0)
738			first_bin--;
739
740		while (last_bin > 0 && data[last_bin] == 0)
741			last_bin--;
742
743		if (last_bin < levels - 1)
744			last_bin++;
745	}
746
747	for (i = first_bin; i <= last_bin; i++) {
748		positives |= (data[i] > 0);
749		negatives |= (data[i] < 0);
750		total += dt_fabsl((long double)data[i]);
751	}
752
753	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
754	    "------------- Distribution -------------", "count") < 0)
755		return (-1);
756
757	for (order = 0; order < low; order++)
758		value *= factor;
759
760	next = value * factor;
761	step = next > nsteps ? next / nsteps : 1;
762
763	if (first_bin == 0) {
764		(void) snprintf(c, sizeof (c), "< %lld", (long long)value);
765
766		if (dt_printf(dtp, fp, "%16s ", c) < 0)
767			return (-1);
768
769		if (dt_print_quantline(dtp, fp, data[0], normal,
770		    total, positives, negatives) < 0)
771			return (-1);
772	}
773
774	while (order <= high) {
775		if (bin >= first_bin && bin <= last_bin) {
776			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
777				return (-1);
778
779			if (dt_print_quantline(dtp, fp, data[bin],
780			    normal, total, positives, negatives) < 0)
781				return (-1);
782		}
783
784		assert(value < next);
785		bin++;
786
787		if ((value += step) != next)
788			continue;
789
790		next = value * factor;
791		step = next > nsteps ? next / nsteps : 1;
792		order++;
793	}
794
795	if (last_bin < bin)
796		return (0);
797
798	assert(last_bin == bin);
799	(void) snprintf(c, sizeof (c), ">= %lld", (long long)value);
800
801	if (dt_printf(dtp, fp, "%16s ", c) < 0)
802		return (-1);
803
804	return (dt_print_quantline(dtp, fp, data[bin], normal,
805	    total, positives, negatives));
806}
807
808/*ARGSUSED*/
809static int
810dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
811    size_t size, uint64_t normal)
812{
813	/* LINTED - alignment */
814	int64_t *data = (int64_t *)addr;
815
816	return (dt_printf(dtp, fp, " %16lld", data[0] ?
817	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
818}
819
820/*ARGSUSED*/
821static int
822dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
823    size_t size, uint64_t normal)
824{
825	/* LINTED - alignment */
826	uint64_t *data = (uint64_t *)addr;
827
828	return (dt_printf(dtp, fp, " %16llu", data[0] ?
829	    (unsigned long long) dt_stddev(data, normal) : 0));
830}
831
832/*ARGSUSED*/
833int
834dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
835    size_t nbytes, int width, int quiet, int raw)
836{
837	/*
838	 * If the byte stream is a series of printable characters, followed by
839	 * a terminating byte, we print it out as a string.  Otherwise, we
840	 * assume that it's something else and just print the bytes.
841	 */
842	int i, j, margin = 5;
843	char *c = (char *)addr;
844
845	if (nbytes == 0)
846		return (0);
847
848	if (raw || dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
849		goto raw;
850
851	for (i = 0; i < nbytes; i++) {
852		/*
853		 * We define a "printable character" to be one for which
854		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
855		 * or a character which is either backspace or the bell.
856		 * Backspace and the bell are regrettably special because
857		 * they fail the first two tests -- and yet they are entirely
858		 * printable.  These are the only two control characters that
859		 * have meaning for the terminal and for which isprint(3C) and
860		 * isspace(3C) return 0.
861		 */
862		if (isprint(c[i]) || isspace(c[i]) ||
863		    c[i] == '\b' || c[i] == '\a')
864			continue;
865
866		if (c[i] == '\0' && i > 0) {
867			/*
868			 * This looks like it might be a string.  Before we
869			 * assume that it is indeed a string, check the
870			 * remainder of the byte range; if it contains
871			 * additional non-nul characters, we'll assume that
872			 * it's a binary stream that just happens to look like
873			 * a string, and we'll print out the individual bytes.
874			 */
875			for (j = i + 1; j < nbytes; j++) {
876				if (c[j] != '\0')
877					break;
878			}
879
880			if (j != nbytes)
881				break;
882
883			if (quiet)
884				return (dt_printf(dtp, fp, "%s", c));
885			else
886				return (dt_printf(dtp, fp, "  %-*s", width, c));
887		}
888
889		break;
890	}
891
892	if (i == nbytes) {
893		/*
894		 * The byte range is all printable characters, but there is
895		 * no trailing nul byte.  We'll assume that it's a string and
896		 * print it as such.
897		 */
898		char *s = alloca(nbytes + 1);
899		bcopy(c, s, nbytes);
900		s[nbytes] = '\0';
901		return (dt_printf(dtp, fp, "  %-*s", width, s));
902	}
903
904raw:
905	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
906		return (-1);
907
908	for (i = 0; i < 16; i++)
909		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
910			return (-1);
911
912	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
913		return (-1);
914
915
916	for (i = 0; i < nbytes; i += 16) {
917		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
918			return (-1);
919
920		for (j = i; j < i + 16 && j < nbytes; j++) {
921			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
922				return (-1);
923		}
924
925		while (j++ % 16) {
926			if (dt_printf(dtp, fp, "   ") < 0)
927				return (-1);
928		}
929
930		if (dt_printf(dtp, fp, "  ") < 0)
931			return (-1);
932
933		for (j = i; j < i + 16 && j < nbytes; j++) {
934			if (dt_printf(dtp, fp, "%c",
935			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
936				return (-1);
937		}
938
939		if (dt_printf(dtp, fp, "\n") < 0)
940			return (-1);
941	}
942
943	return (0);
944}
945
946int
947dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
948    caddr_t addr, int depth, int size)
949{
950	dtrace_syminfo_t dts;
951	GElf_Sym sym;
952	int i, indent;
953	char c[PATH_MAX * 2];
954	uint64_t pc;
955
956	if (dt_printf(dtp, fp, "\n") < 0)
957		return (-1);
958
959	if (format == NULL)
960		format = "%s";
961
962	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
963		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
964	else
965		indent = _dtrace_stkindent;
966
967	for (i = 0; i < depth; i++) {
968		switch (size) {
969		case sizeof (uint32_t):
970			/* LINTED - alignment */
971			pc = *((uint32_t *)addr);
972			break;
973
974		case sizeof (uint64_t):
975			/* LINTED - alignment */
976			pc = *((uint64_t *)addr);
977			break;
978
979		default:
980			return (dt_set_errno(dtp, EDT_BADSTACKPC));
981		}
982
983		if (pc == 0)
984			break;
985
986		addr += size;
987
988		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
989			return (-1);
990
991		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
992			if (pc > sym.st_value) {
993				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
994				    dts.dts_object, dts.dts_name,
995				    (u_longlong_t)(pc - sym.st_value));
996			} else {
997				(void) snprintf(c, sizeof (c), "%s`%s",
998				    dts.dts_object, dts.dts_name);
999			}
1000		} else {
1001			/*
1002			 * We'll repeat the lookup, but this time we'll specify
1003			 * a NULL GElf_Sym -- indicating that we're only
1004			 * interested in the containing module.
1005			 */
1006			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1007				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1008				    dts.dts_object, (u_longlong_t)pc);
1009			} else {
1010				(void) snprintf(c, sizeof (c), "0x%llx",
1011				    (u_longlong_t)pc);
1012			}
1013		}
1014
1015		if (dt_printf(dtp, fp, format, c) < 0)
1016			return (-1);
1017
1018		if (dt_printf(dtp, fp, "\n") < 0)
1019			return (-1);
1020	}
1021
1022	return (0);
1023}
1024
1025int
1026dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1027    caddr_t addr, uint64_t arg)
1028{
1029	/* LINTED - alignment */
1030	uint64_t *pc = (uint64_t *)addr;
1031	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1032	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1033	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1034	const char *str = strsize ? strbase : NULL;
1035	int err = 0;
1036
1037	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1038	struct ps_prochandle *P;
1039	GElf_Sym sym;
1040	int i, indent;
1041	pid_t pid;
1042
1043	if (depth == 0)
1044		return (0);
1045
1046	pid = (pid_t)*pc++;
1047
1048	if (dt_printf(dtp, fp, "\n") < 0)
1049		return (-1);
1050
1051	if (format == NULL)
1052		format = "%s";
1053
1054	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1055		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1056	else
1057		indent = _dtrace_stkindent;
1058
1059	/*
1060	 * Ultimately, we need to add an entry point in the library vector for
1061	 * determining <symbol, offset> from <pid, address>.  For now, if
1062	 * this is a vector open, we just print the raw address or string.
1063	 */
1064	if (dtp->dt_vector == NULL)
1065		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1066	else
1067		P = NULL;
1068
1069	if (P != NULL)
1070		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1071
1072	for (i = 0; i < depth && pc[i] != 0; i++) {
1073		const prmap_t *map;
1074
1075		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1076			break;
1077
1078		if (P != NULL && Plookup_by_addr(P, pc[i],
1079		    name, sizeof (name), &sym) == 0) {
1080			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1081
1082			if (pc[i] > sym.st_value) {
1083				(void) snprintf(c, sizeof (c),
1084				    "%s`%s+0x%llx", dt_basename(objname), name,
1085				    (u_longlong_t)(pc[i] - sym.st_value));
1086			} else {
1087				(void) snprintf(c, sizeof (c),
1088				    "%s`%s", dt_basename(objname), name);
1089			}
1090		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1091		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1092		    (map->pr_mflags & MA_WRITE)))) {
1093			/*
1094			 * If the current string pointer in the string table
1095			 * does not point to an empty string _and_ the program
1096			 * counter falls in a writable region, we'll use the
1097			 * string from the string table instead of the raw
1098			 * address.  This last condition is necessary because
1099			 * some (broken) ustack helpers will return a string
1100			 * even for a program counter that they can't
1101			 * identify.  If we have a string for a program
1102			 * counter that falls in a segment that isn't
1103			 * writable, we assume that we have fallen into this
1104			 * case and we refuse to use the string.
1105			 */
1106			(void) snprintf(c, sizeof (c), "%s", str);
1107		} else {
1108			if (P != NULL && Pobjname(P, pc[i], objname,
1109			    sizeof (objname)) != 0) {
1110				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1111				    dt_basename(objname), (u_longlong_t)pc[i]);
1112			} else {
1113				(void) snprintf(c, sizeof (c), "0x%llx",
1114				    (u_longlong_t)pc[i]);
1115			}
1116		}
1117
1118		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1119			break;
1120
1121		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1122			break;
1123
1124		if (str != NULL && str[0] == '@') {
1125			/*
1126			 * If the first character of the string is an "at" sign,
1127			 * then the string is inferred to be an annotation --
1128			 * and it is printed out beneath the frame and offset
1129			 * with brackets.
1130			 */
1131			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1132				break;
1133
1134			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1135
1136			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1137				break;
1138
1139			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1140				break;
1141		}
1142
1143		if (str != NULL) {
1144			str += strlen(str) + 1;
1145			if (str - strbase >= strsize)
1146				str = NULL;
1147		}
1148	}
1149
1150	if (P != NULL) {
1151		dt_proc_unlock(dtp, P);
1152		dt_proc_release(dtp, P);
1153	}
1154
1155	return (err);
1156}
1157
1158static int
1159dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1160{
1161	/* LINTED - alignment */
1162	uint64_t pid = ((uint64_t *)addr)[0];
1163	/* LINTED - alignment */
1164	uint64_t pc = ((uint64_t *)addr)[1];
1165	const char *format = "  %-50s";
1166	char *s;
1167	int n, len = 256;
1168
1169	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1170		struct ps_prochandle *P;
1171
1172		if ((P = dt_proc_grab(dtp, pid,
1173		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1174			GElf_Sym sym;
1175
1176			dt_proc_lock(dtp, P);
1177
1178			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1179				pc = sym.st_value;
1180
1181			dt_proc_unlock(dtp, P);
1182			dt_proc_release(dtp, P);
1183		}
1184	}
1185
1186	do {
1187		n = len;
1188		s = alloca(n);
1189	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1190
1191	return (dt_printf(dtp, fp, format, s));
1192}
1193
1194int
1195dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1196{
1197	/* LINTED - alignment */
1198	uint64_t pid = ((uint64_t *)addr)[0];
1199	/* LINTED - alignment */
1200	uint64_t pc = ((uint64_t *)addr)[1];
1201	int err = 0;
1202
1203	char objname[PATH_MAX], c[PATH_MAX * 2];
1204	struct ps_prochandle *P;
1205
1206	if (format == NULL)
1207		format = "  %-50s";
1208
1209	/*
1210	 * See the comment in dt_print_ustack() for the rationale for
1211	 * printing raw addresses in the vectored case.
1212	 */
1213	if (dtp->dt_vector == NULL)
1214		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1215	else
1216		P = NULL;
1217
1218	if (P != NULL)
1219		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1220
1221	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1222		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1223	} else {
1224		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1225	}
1226
1227	err = dt_printf(dtp, fp, format, c);
1228
1229	if (P != NULL) {
1230		dt_proc_unlock(dtp, P);
1231		dt_proc_release(dtp, P);
1232	}
1233
1234	return (err);
1235}
1236
1237int
1238dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1239{
1240	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1241	size_t nbytes = *((uintptr_t *) addr);
1242
1243	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1244	    nbytes, 50, quiet, 1));
1245}
1246
1247typedef struct dt_type_cbdata {
1248	dtrace_hdl_t		*dtp;
1249	dtrace_typeinfo_t	dtt;
1250	caddr_t			addr;
1251	caddr_t			addrend;
1252	const char		*name;
1253	int			f_type;
1254	int			indent;
1255	int			type_width;
1256	int			name_width;
1257	FILE			*fp;
1258} dt_type_cbdata_t;
1259
1260static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1261
1262static int
1263dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1264{
1265	dt_type_cbdata_t cbdata;
1266	dt_type_cbdata_t *cbdatap = arg;
1267	ssize_t ssz;
1268
1269	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1270		return (0);
1271
1272	off /= 8;
1273
1274	cbdata = *cbdatap;
1275	cbdata.name = name;
1276	cbdata.addr += off;
1277	cbdata.addrend = cbdata.addr + ssz;
1278
1279	return (dt_print_type_data(&cbdata, type));
1280}
1281
1282static int
1283dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1284{
1285	char buf[DT_TYPE_NAMELEN];
1286	char *p;
1287	dt_type_cbdata_t *cbdatap = arg;
1288	size_t sz = strlen(name);
1289
1290	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1291
1292	if ((p = strchr(buf, '[')) != NULL)
1293		p[-1] = '\0';
1294	else
1295		p = "";
1296
1297	sz += strlen(p);
1298
1299	if (sz > cbdatap->name_width)
1300		cbdatap->name_width = sz;
1301
1302	sz = strlen(buf);
1303
1304	if (sz > cbdatap->type_width)
1305		cbdatap->type_width = sz;
1306
1307	return (0);
1308}
1309
1310static int
1311dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1312{
1313	caddr_t addr = cbdatap->addr;
1314	caddr_t addrend = cbdatap->addrend;
1315	char buf[DT_TYPE_NAMELEN];
1316	char *p;
1317	int cnt = 0;
1318	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1319	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1320
1321	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1322
1323	if ((p = strchr(buf, '[')) != NULL)
1324		p[-1] = '\0';
1325	else
1326		p = "";
1327
1328	if (cbdatap->f_type) {
1329		int type_width = roundup(cbdatap->type_width + 1, 4);
1330		int name_width = roundup(cbdatap->name_width + 1, 4);
1331
1332		name_width -= strlen(cbdatap->name);
1333
1334		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1335	}
1336
1337	while (addr < addrend) {
1338		dt_type_cbdata_t cbdata;
1339		ctf_arinfo_t arinfo;
1340		ctf_encoding_t cte;
1341		uintptr_t *up;
1342		void *vp = addr;
1343		cbdata = *cbdatap;
1344		cbdata.name = "";
1345		cbdata.addr = addr;
1346		cbdata.addrend = addr + ssz;
1347		cbdata.f_type = 0;
1348		cbdata.indent++;
1349		cbdata.type_width = 0;
1350		cbdata.name_width = 0;
1351
1352		if (cnt > 0)
1353			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1354
1355		switch (kind) {
1356		case CTF_K_INTEGER:
1357			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1358				return (-1);
1359			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1360				switch (cte.cte_bits) {
1361				case 8:
1362					if (isprint(*((char *) vp)))
1363						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1364					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1365					break;
1366				case 16:
1367					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1368					break;
1369				case 32:
1370					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1371					break;
1372				case 64:
1373					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1374					break;
1375				default:
1376					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1377					break;
1378				}
1379			else
1380				switch (cte.cte_bits) {
1381				case 8:
1382					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1383					break;
1384				case 16:
1385					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1386					break;
1387				case 32:
1388					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1389					break;
1390				case 64:
1391					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1392					break;
1393				default:
1394					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1395					break;
1396				}
1397			break;
1398		case CTF_K_FLOAT:
1399			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1400			break;
1401		case CTF_K_POINTER:
1402			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1403			break;
1404		case CTF_K_ARRAY:
1405			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1406				return (-1);
1407			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1408			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1409			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1410			break;
1411		case CTF_K_FUNCTION:
1412			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1413			break;
1414		case CTF_K_STRUCT:
1415			cbdata.f_type = 1;
1416			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1417			    dt_print_type_width, &cbdata) != 0)
1418				return (-1);
1419			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1420			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1421			    dt_print_type_member, &cbdata) != 0)
1422				return (-1);
1423			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1424			break;
1425		case CTF_K_UNION:
1426			cbdata.f_type = 1;
1427			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1428			    dt_print_type_width, &cbdata) != 0)
1429				return (-1);
1430			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1431			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1432			    dt_print_type_member, &cbdata) != 0)
1433				return (-1);
1434			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1435			break;
1436		case CTF_K_ENUM:
1437			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1438			break;
1439		case CTF_K_TYPEDEF:
1440			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1441			break;
1442		case CTF_K_VOLATILE:
1443			if (cbdatap->f_type)
1444				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1445			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1446			break;
1447		case CTF_K_CONST:
1448			if (cbdatap->f_type)
1449				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1450			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1451			break;
1452		case CTF_K_RESTRICT:
1453			if (cbdatap->f_type)
1454				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1455			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1456			break;
1457		default:
1458			break;
1459		}
1460
1461		addr += ssz;
1462		cnt++;
1463	}
1464
1465	return (0);
1466}
1467
1468static int
1469dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1470{
1471	caddr_t addrend;
1472	char *p;
1473	dtrace_typeinfo_t dtt;
1474	dt_type_cbdata_t cbdata;
1475	int num = 0;
1476	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1477	ssize_t ssz;
1478
1479	if (!quiet)
1480		dt_printf(dtp, fp, "\n");
1481
1482	/* Get the total number of bytes of data buffered. */
1483	size_t nbytes = *((uintptr_t *) addr);
1484	addr += sizeof(uintptr_t);
1485
1486	/*
1487	 * Get the size of the type so that we can check that it matches
1488	 * the CTF data we look up and so that we can figure out how many
1489	 * type elements are buffered.
1490	 */
1491	size_t typs = *((uintptr_t *) addr);
1492	addr += sizeof(uintptr_t);
1493
1494	/*
1495	 * Point to the type string in the buffer. Get it's string
1496	 * length and round it up to become the offset to the start
1497	 * of the buffered type data which we would like to be aligned
1498	 * for easy access.
1499	 */
1500	char *strp = (char *) addr;
1501	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1502
1503	/*
1504	 * The type string might have a format such as 'int [20]'.
1505	 * Check if there is an array dimension present.
1506	 */
1507	if ((p = strchr(strp, '[')) != NULL) {
1508		/* Strip off the array dimension. */
1509		*p++ = '\0';
1510
1511		for (; *p != '\0' && *p != ']'; p++)
1512			num = num * 10 + *p - '0';
1513	} else
1514		/* No array dimension, so default. */
1515		num = 1;
1516
1517	/* Lookup the CTF type from the type string. */
1518	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1519		return (-1);
1520
1521	/* Offset the buffer address to the start of the data... */
1522	addr += offset;
1523
1524	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1525
1526	if (typs != ssz) {
1527		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1528		return (-1);
1529	}
1530
1531	cbdata.dtp = dtp;
1532	cbdata.dtt = dtt;
1533	cbdata.name = "";
1534	cbdata.addr = addr;
1535	cbdata.addrend = addr + nbytes;
1536	cbdata.indent = 1;
1537	cbdata.f_type = 1;
1538	cbdata.type_width = 0;
1539	cbdata.name_width = 0;
1540	cbdata.fp = fp;
1541
1542	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1543}
1544
1545static int
1546dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1547{
1548	/* LINTED - alignment */
1549	uint64_t pc = *((uint64_t *)addr);
1550	dtrace_syminfo_t dts;
1551	GElf_Sym sym;
1552	char c[PATH_MAX * 2];
1553
1554	if (format == NULL)
1555		format = "  %-50s";
1556
1557	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1558		(void) snprintf(c, sizeof (c), "%s`%s",
1559		    dts.dts_object, dts.dts_name);
1560	} else {
1561		/*
1562		 * We'll repeat the lookup, but this time we'll specify a
1563		 * NULL GElf_Sym -- indicating that we're only interested in
1564		 * the containing module.
1565		 */
1566		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1567			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1568			    dts.dts_object, (u_longlong_t)pc);
1569		} else {
1570			(void) snprintf(c, sizeof (c), "0x%llx",
1571			    (u_longlong_t)pc);
1572		}
1573	}
1574
1575	if (dt_printf(dtp, fp, format, c) < 0)
1576		return (-1);
1577
1578	return (0);
1579}
1580
1581int
1582dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1583{
1584	/* LINTED - alignment */
1585	uint64_t pc = *((uint64_t *)addr);
1586	dtrace_syminfo_t dts;
1587	char c[PATH_MAX * 2];
1588
1589	if (format == NULL)
1590		format = "  %-50s";
1591
1592	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1593		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1594	} else {
1595		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1596	}
1597
1598	if (dt_printf(dtp, fp, format, c) < 0)
1599		return (-1);
1600
1601	return (0);
1602}
1603
1604typedef struct dt_normal {
1605	dtrace_aggvarid_t dtnd_id;
1606	uint64_t dtnd_normal;
1607} dt_normal_t;
1608
1609static int
1610dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1611{
1612	dt_normal_t *normal = arg;
1613	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1614	dtrace_aggvarid_t id = normal->dtnd_id;
1615
1616	if (agg->dtagd_nrecs == 0)
1617		return (DTRACE_AGGWALK_NEXT);
1618
1619	if (agg->dtagd_varid != id)
1620		return (DTRACE_AGGWALK_NEXT);
1621
1622	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1623	return (DTRACE_AGGWALK_NORMALIZE);
1624}
1625
1626static int
1627dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1628{
1629	dt_normal_t normal;
1630	caddr_t addr;
1631
1632	/*
1633	 * We (should) have two records:  the aggregation ID followed by the
1634	 * normalization value.
1635	 */
1636	addr = base + rec->dtrd_offset;
1637
1638	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1639		return (dt_set_errno(dtp, EDT_BADNORMAL));
1640
1641	/* LINTED - alignment */
1642	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1643	rec++;
1644
1645	if (rec->dtrd_action != DTRACEACT_LIBACT)
1646		return (dt_set_errno(dtp, EDT_BADNORMAL));
1647
1648	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1649		return (dt_set_errno(dtp, EDT_BADNORMAL));
1650
1651	addr = base + rec->dtrd_offset;
1652
1653	switch (rec->dtrd_size) {
1654	case sizeof (uint64_t):
1655		/* LINTED - alignment */
1656		normal.dtnd_normal = *((uint64_t *)addr);
1657		break;
1658	case sizeof (uint32_t):
1659		/* LINTED - alignment */
1660		normal.dtnd_normal = *((uint32_t *)addr);
1661		break;
1662	case sizeof (uint16_t):
1663		/* LINTED - alignment */
1664		normal.dtnd_normal = *((uint16_t *)addr);
1665		break;
1666	case sizeof (uint8_t):
1667		normal.dtnd_normal = *((uint8_t *)addr);
1668		break;
1669	default:
1670		return (dt_set_errno(dtp, EDT_BADNORMAL));
1671	}
1672
1673	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1674
1675	return (0);
1676}
1677
1678static int
1679dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1680{
1681	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1682	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1683
1684	if (agg->dtagd_nrecs == 0)
1685		return (DTRACE_AGGWALK_NEXT);
1686
1687	if (agg->dtagd_varid != id)
1688		return (DTRACE_AGGWALK_NEXT);
1689
1690	return (DTRACE_AGGWALK_DENORMALIZE);
1691}
1692
1693static int
1694dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1695{
1696	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1697	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1698
1699	if (agg->dtagd_nrecs == 0)
1700		return (DTRACE_AGGWALK_NEXT);
1701
1702	if (agg->dtagd_varid != id)
1703		return (DTRACE_AGGWALK_NEXT);
1704
1705	return (DTRACE_AGGWALK_CLEAR);
1706}
1707
1708typedef struct dt_trunc {
1709	dtrace_aggvarid_t dttd_id;
1710	uint64_t dttd_remaining;
1711} dt_trunc_t;
1712
1713static int
1714dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1715{
1716	dt_trunc_t *trunc = arg;
1717	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1718	dtrace_aggvarid_t id = trunc->dttd_id;
1719
1720	if (agg->dtagd_nrecs == 0)
1721		return (DTRACE_AGGWALK_NEXT);
1722
1723	if (agg->dtagd_varid != id)
1724		return (DTRACE_AGGWALK_NEXT);
1725
1726	if (trunc->dttd_remaining == 0)
1727		return (DTRACE_AGGWALK_REMOVE);
1728
1729	trunc->dttd_remaining--;
1730	return (DTRACE_AGGWALK_NEXT);
1731}
1732
1733static int
1734dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1735{
1736	dt_trunc_t trunc;
1737	caddr_t addr;
1738	int64_t remaining;
1739	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1740
1741	/*
1742	 * We (should) have two records:  the aggregation ID followed by the
1743	 * number of aggregation entries after which the aggregation is to be
1744	 * truncated.
1745	 */
1746	addr = base + rec->dtrd_offset;
1747
1748	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1749		return (dt_set_errno(dtp, EDT_BADTRUNC));
1750
1751	/* LINTED - alignment */
1752	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1753	rec++;
1754
1755	if (rec->dtrd_action != DTRACEACT_LIBACT)
1756		return (dt_set_errno(dtp, EDT_BADTRUNC));
1757
1758	if (rec->dtrd_arg != DT_ACT_TRUNC)
1759		return (dt_set_errno(dtp, EDT_BADTRUNC));
1760
1761	addr = base + rec->dtrd_offset;
1762
1763	switch (rec->dtrd_size) {
1764	case sizeof (uint64_t):
1765		/* LINTED - alignment */
1766		remaining = *((int64_t *)addr);
1767		break;
1768	case sizeof (uint32_t):
1769		/* LINTED - alignment */
1770		remaining = *((int32_t *)addr);
1771		break;
1772	case sizeof (uint16_t):
1773		/* LINTED - alignment */
1774		remaining = *((int16_t *)addr);
1775		break;
1776	case sizeof (uint8_t):
1777		remaining = *((int8_t *)addr);
1778		break;
1779	default:
1780		return (dt_set_errno(dtp, EDT_BADNORMAL));
1781	}
1782
1783	if (remaining < 0) {
1784		func = dtrace_aggregate_walk_valsorted;
1785		remaining = -remaining;
1786	} else {
1787		func = dtrace_aggregate_walk_valrevsorted;
1788	}
1789
1790	assert(remaining >= 0);
1791	trunc.dttd_remaining = remaining;
1792
1793	(void) func(dtp, dt_trunc_agg, &trunc);
1794
1795	return (0);
1796}
1797
1798static int
1799dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1800    caddr_t addr, size_t size, uint64_t normal)
1801{
1802	int err;
1803	dtrace_actkind_t act = rec->dtrd_action;
1804
1805	switch (act) {
1806	case DTRACEACT_STACK:
1807		return (dt_print_stack(dtp, fp, NULL, addr,
1808		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1809
1810	case DTRACEACT_USTACK:
1811	case DTRACEACT_JSTACK:
1812		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1813
1814	case DTRACEACT_USYM:
1815	case DTRACEACT_UADDR:
1816		return (dt_print_usym(dtp, fp, addr, act));
1817
1818	case DTRACEACT_UMOD:
1819		return (dt_print_umod(dtp, fp, NULL, addr));
1820
1821	case DTRACEACT_SYM:
1822		return (dt_print_sym(dtp, fp, NULL, addr));
1823
1824	case DTRACEACT_MOD:
1825		return (dt_print_mod(dtp, fp, NULL, addr));
1826
1827	case DTRACEAGG_QUANTIZE:
1828		return (dt_print_quantize(dtp, fp, addr, size, normal));
1829
1830	case DTRACEAGG_LQUANTIZE:
1831		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1832
1833	case DTRACEAGG_LLQUANTIZE:
1834		return (dt_print_llquantize(dtp, fp, addr, size, normal));
1835
1836	case DTRACEAGG_AVG:
1837		return (dt_print_average(dtp, fp, addr, size, normal));
1838
1839	case DTRACEAGG_STDDEV:
1840		return (dt_print_stddev(dtp, fp, addr, size, normal));
1841
1842	default:
1843		break;
1844	}
1845
1846	switch (size) {
1847	case sizeof (uint64_t):
1848		err = dt_printf(dtp, fp, " %16lld",
1849		    /* LINTED - alignment */
1850		    (long long)*((uint64_t *)addr) / normal);
1851		break;
1852	case sizeof (uint32_t):
1853		/* LINTED - alignment */
1854		err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1855		    (uint32_t)normal);
1856		break;
1857	case sizeof (uint16_t):
1858		/* LINTED - alignment */
1859		err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1860		    (uint32_t)normal);
1861		break;
1862	case sizeof (uint8_t):
1863		err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1864		    (uint32_t)normal);
1865		break;
1866	default:
1867		err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1868		break;
1869	}
1870
1871	return (err);
1872}
1873
1874int
1875dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1876{
1877	int i, aggact = 0;
1878	dt_print_aggdata_t *pd = arg;
1879	const dtrace_aggdata_t *aggdata = aggsdata[0];
1880	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1881	FILE *fp = pd->dtpa_fp;
1882	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1883	dtrace_recdesc_t *rec;
1884	dtrace_actkind_t act;
1885	caddr_t addr;
1886	size_t size;
1887
1888	/*
1889	 * Iterate over each record description in the key, printing the traced
1890	 * data, skipping the first datum (the tuple member created by the
1891	 * compiler).
1892	 */
1893	for (i = 1; i < agg->dtagd_nrecs; i++) {
1894		rec = &agg->dtagd_rec[i];
1895		act = rec->dtrd_action;
1896		addr = aggdata->dtada_data + rec->dtrd_offset;
1897		size = rec->dtrd_size;
1898
1899		if (DTRACEACT_ISAGG(act)) {
1900			aggact = i;
1901			break;
1902		}
1903
1904		if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1905			return (-1);
1906
1907		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1908		    DTRACE_BUFDATA_AGGKEY) < 0)
1909			return (-1);
1910	}
1911
1912	assert(aggact != 0);
1913
1914	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1915		uint64_t normal;
1916
1917		aggdata = aggsdata[i];
1918		agg = aggdata->dtada_desc;
1919		rec = &agg->dtagd_rec[aggact];
1920		act = rec->dtrd_action;
1921		addr = aggdata->dtada_data + rec->dtrd_offset;
1922		size = rec->dtrd_size;
1923
1924		assert(DTRACEACT_ISAGG(act));
1925		normal = aggdata->dtada_normal;
1926
1927		if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1928			return (-1);
1929
1930		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1931		    DTRACE_BUFDATA_AGGVAL) < 0)
1932			return (-1);
1933
1934		if (!pd->dtpa_allunprint)
1935			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1936	}
1937
1938	if (dt_printf(dtp, fp, "\n") < 0)
1939		return (-1);
1940
1941	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1942	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1943		return (-1);
1944
1945	return (0);
1946}
1947
1948int
1949dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1950{
1951	dt_print_aggdata_t *pd = arg;
1952	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1953	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1954
1955	if (pd->dtpa_allunprint) {
1956		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1957			return (0);
1958	} else {
1959		/*
1960		 * If we're not printing all unprinted aggregations, then the
1961		 * aggregation variable ID denotes a specific aggregation
1962		 * variable that we should print -- skip any other aggregations
1963		 * that we encounter.
1964		 */
1965		if (agg->dtagd_nrecs == 0)
1966			return (0);
1967
1968		if (aggvarid != agg->dtagd_varid)
1969			return (0);
1970	}
1971
1972	return (dt_print_aggs(&aggdata, 1, arg));
1973}
1974
1975int
1976dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1977    const char *option, const char *value)
1978{
1979	int len, rval;
1980	char *msg;
1981	const char *errstr;
1982	dtrace_setoptdata_t optdata;
1983
1984	bzero(&optdata, sizeof (optdata));
1985	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1986
1987	if (dtrace_setopt(dtp, option, value) == 0) {
1988		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1989		optdata.dtsda_probe = data;
1990		optdata.dtsda_option = option;
1991		optdata.dtsda_handle = dtp;
1992
1993		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1994			return (rval);
1995
1996		return (0);
1997	}
1998
1999	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2000	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2001	msg = alloca(len);
2002
2003	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2004	    option, value, errstr);
2005
2006	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2007		return (0);
2008
2009	return (rval);
2010}
2011
2012static int
2013dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
2014    dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2015{
2016	dtrace_epid_t id;
2017	size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
2018	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2019	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2020	int rval, i, n;
2021	dtrace_epid_t last = DTRACE_EPIDNONE;
2022	dtrace_probedata_t data;
2023	uint64_t drops;
2024	caddr_t addr;
2025
2026	bzero(&data, sizeof (data));
2027	data.dtpda_handle = dtp;
2028	data.dtpda_cpu = cpu;
2029
2030again:
2031	for (offs = start; offs < end; ) {
2032		dtrace_eprobedesc_t *epd;
2033
2034		/*
2035		 * We're guaranteed to have an ID.
2036		 */
2037		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2038
2039		if (id == DTRACE_EPIDNONE) {
2040			/*
2041			 * This is filler to assure proper alignment of the
2042			 * next record; we simply ignore it.
2043			 */
2044			offs += sizeof (id);
2045			continue;
2046		}
2047
2048		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2049		    &data.dtpda_pdesc)) != 0)
2050			return (rval);
2051
2052		epd = data.dtpda_edesc;
2053		data.dtpda_data = buf->dtbd_data + offs;
2054
2055		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2056			rval = dt_handle(dtp, &data);
2057
2058			if (rval == DTRACE_CONSUME_NEXT)
2059				goto nextepid;
2060
2061			if (rval == DTRACE_CONSUME_ERROR)
2062				return (-1);
2063		}
2064
2065		if (flow)
2066			(void) dt_flowindent(dtp, &data, last, buf, offs);
2067
2068		rval = (*efunc)(&data, arg);
2069
2070		if (flow) {
2071			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2072				data.dtpda_indent += 2;
2073		}
2074
2075		if (rval == DTRACE_CONSUME_NEXT)
2076			goto nextepid;
2077
2078		if (rval == DTRACE_CONSUME_ABORT)
2079			return (dt_set_errno(dtp, EDT_DIRABORT));
2080
2081		if (rval != DTRACE_CONSUME_THIS)
2082			return (dt_set_errno(dtp, EDT_BADRVAL));
2083
2084		for (i = 0; i < epd->dtepd_nrecs; i++) {
2085			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2086			dtrace_actkind_t act = rec->dtrd_action;
2087
2088			data.dtpda_data = buf->dtbd_data + offs +
2089			    rec->dtrd_offset;
2090			addr = data.dtpda_data;
2091
2092			if (act == DTRACEACT_LIBACT) {
2093				uint64_t arg = rec->dtrd_arg;
2094				dtrace_aggvarid_t id;
2095
2096				switch (arg) {
2097				case DT_ACT_CLEAR:
2098					/* LINTED - alignment */
2099					id = *((dtrace_aggvarid_t *)addr);
2100					(void) dtrace_aggregate_walk(dtp,
2101					    dt_clear_agg, &id);
2102					continue;
2103
2104				case DT_ACT_DENORMALIZE:
2105					/* LINTED - alignment */
2106					id = *((dtrace_aggvarid_t *)addr);
2107					(void) dtrace_aggregate_walk(dtp,
2108					    dt_denormalize_agg, &id);
2109					continue;
2110
2111				case DT_ACT_FTRUNCATE:
2112					if (fp == NULL)
2113						continue;
2114
2115					(void) fflush(fp);
2116					(void) ftruncate(fileno(fp), 0);
2117					(void) fseeko(fp, 0, SEEK_SET);
2118					continue;
2119
2120				case DT_ACT_NORMALIZE:
2121					if (i == epd->dtepd_nrecs - 1)
2122						return (dt_set_errno(dtp,
2123						    EDT_BADNORMAL));
2124
2125					if (dt_normalize(dtp,
2126					    buf->dtbd_data + offs, rec) != 0)
2127						return (-1);
2128
2129					i++;
2130					continue;
2131
2132				case DT_ACT_SETOPT: {
2133					uint64_t *opts = dtp->dt_options;
2134					dtrace_recdesc_t *valrec;
2135					uint32_t valsize;
2136					caddr_t val;
2137					int rv;
2138
2139					if (i == epd->dtepd_nrecs - 1) {
2140						return (dt_set_errno(dtp,
2141						    EDT_BADSETOPT));
2142					}
2143
2144					valrec = &epd->dtepd_rec[++i];
2145					valsize = valrec->dtrd_size;
2146
2147					if (valrec->dtrd_action != act ||
2148					    valrec->dtrd_arg != arg) {
2149						return (dt_set_errno(dtp,
2150						    EDT_BADSETOPT));
2151					}
2152
2153					if (valsize > sizeof (uint64_t)) {
2154						val = buf->dtbd_data + offs +
2155						    valrec->dtrd_offset;
2156					} else {
2157						val = "1";
2158					}
2159
2160					rv = dt_setopt(dtp, &data, addr, val);
2161
2162					if (rv != 0)
2163						return (-1);
2164
2165					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2166					    DTRACEOPT_UNSET);
2167					quiet = (opts[DTRACEOPT_QUIET] !=
2168					    DTRACEOPT_UNSET);
2169
2170					continue;
2171				}
2172
2173				case DT_ACT_TRUNC:
2174					if (i == epd->dtepd_nrecs - 1)
2175						return (dt_set_errno(dtp,
2176						    EDT_BADTRUNC));
2177
2178					if (dt_trunc(dtp,
2179					    buf->dtbd_data + offs, rec) != 0)
2180						return (-1);
2181
2182					i++;
2183					continue;
2184
2185				default:
2186					continue;
2187				}
2188			}
2189
2190			rval = (*rfunc)(&data, rec, arg);
2191
2192			if (rval == DTRACE_CONSUME_NEXT)
2193				continue;
2194
2195			if (rval == DTRACE_CONSUME_ABORT)
2196				return (dt_set_errno(dtp, EDT_DIRABORT));
2197
2198			if (rval != DTRACE_CONSUME_THIS)
2199				return (dt_set_errno(dtp, EDT_BADRVAL));
2200
2201			if (act == DTRACEACT_STACK) {
2202				int depth = rec->dtrd_arg;
2203
2204				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2205				    rec->dtrd_size / depth) < 0)
2206					return (-1);
2207				goto nextrec;
2208			}
2209
2210			if (act == DTRACEACT_USTACK ||
2211			    act == DTRACEACT_JSTACK) {
2212				if (dt_print_ustack(dtp, fp, NULL,
2213				    addr, rec->dtrd_arg) < 0)
2214					return (-1);
2215				goto nextrec;
2216			}
2217
2218			if (act == DTRACEACT_SYM) {
2219				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2220					return (-1);
2221				goto nextrec;
2222			}
2223
2224			if (act == DTRACEACT_MOD) {
2225				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2226					return (-1);
2227				goto nextrec;
2228			}
2229
2230			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2231				if (dt_print_usym(dtp, fp, addr, act) < 0)
2232					return (-1);
2233				goto nextrec;
2234			}
2235
2236			if (act == DTRACEACT_UMOD) {
2237				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2238					return (-1);
2239				goto nextrec;
2240			}
2241
2242			if (act == DTRACEACT_PRINTM) {
2243				if (dt_print_memory(dtp, fp, addr) < 0)
2244					return (-1);
2245				goto nextrec;
2246			}
2247
2248			if (act == DTRACEACT_PRINTT) {
2249				if (dt_print_type(dtp, fp, addr) < 0)
2250					return (-1);
2251				goto nextrec;
2252			}
2253
2254			if (DTRACEACT_ISPRINTFLIKE(act)) {
2255				void *fmtdata;
2256				int (*func)(dtrace_hdl_t *, FILE *, void *,
2257				    const dtrace_probedata_t *,
2258				    const dtrace_recdesc_t *, uint_t,
2259				    const void *buf, size_t);
2260
2261				if ((fmtdata = dt_format_lookup(dtp,
2262				    rec->dtrd_format)) == NULL)
2263					goto nofmt;
2264
2265				switch (act) {
2266				case DTRACEACT_PRINTF:
2267					func = dtrace_fprintf;
2268					break;
2269				case DTRACEACT_PRINTA:
2270					func = dtrace_fprinta;
2271					break;
2272				case DTRACEACT_SYSTEM:
2273					func = dtrace_system;
2274					break;
2275				case DTRACEACT_FREOPEN:
2276					func = dtrace_freopen;
2277					break;
2278				}
2279
2280				n = (*func)(dtp, fp, fmtdata, &data,
2281				    rec, epd->dtepd_nrecs - i,
2282				    (uchar_t *)buf->dtbd_data + offs,
2283				    buf->dtbd_size - offs);
2284
2285				if (n < 0)
2286					return (-1); /* errno is set for us */
2287
2288				if (n > 0)
2289					i += n - 1;
2290				goto nextrec;
2291			}
2292
2293nofmt:
2294			if (act == DTRACEACT_PRINTA) {
2295				dt_print_aggdata_t pd;
2296				dtrace_aggvarid_t *aggvars;
2297				int j, naggvars = 0;
2298				size_t size = ((epd->dtepd_nrecs - i) *
2299				    sizeof (dtrace_aggvarid_t));
2300
2301				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2302					return (-1);
2303
2304				/*
2305				 * This might be a printa() with multiple
2306				 * aggregation variables.  We need to scan
2307				 * forward through the records until we find
2308				 * a record from a different statement.
2309				 */
2310				for (j = i; j < epd->dtepd_nrecs; j++) {
2311					dtrace_recdesc_t *nrec;
2312					caddr_t naddr;
2313
2314					nrec = &epd->dtepd_rec[j];
2315
2316					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2317						break;
2318
2319					if (nrec->dtrd_action != act) {
2320						return (dt_set_errno(dtp,
2321						    EDT_BADAGG));
2322					}
2323
2324					naddr = buf->dtbd_data + offs +
2325					    nrec->dtrd_offset;
2326
2327					aggvars[naggvars++] =
2328					    /* LINTED - alignment */
2329					    *((dtrace_aggvarid_t *)naddr);
2330				}
2331
2332				i = j - 1;
2333				bzero(&pd, sizeof (pd));
2334				pd.dtpa_dtp = dtp;
2335				pd.dtpa_fp = fp;
2336
2337				assert(naggvars >= 1);
2338
2339				if (naggvars == 1) {
2340					pd.dtpa_id = aggvars[0];
2341					dt_free(dtp, aggvars);
2342
2343					if (dt_printf(dtp, fp, "\n") < 0 ||
2344					    dtrace_aggregate_walk_sorted(dtp,
2345					    dt_print_agg, &pd) < 0)
2346						return (-1);
2347					goto nextrec;
2348				}
2349
2350				if (dt_printf(dtp, fp, "\n") < 0 ||
2351				    dtrace_aggregate_walk_joined(dtp, aggvars,
2352				    naggvars, dt_print_aggs, &pd) < 0) {
2353					dt_free(dtp, aggvars);
2354					return (-1);
2355				}
2356
2357				dt_free(dtp, aggvars);
2358				goto nextrec;
2359			}
2360
2361			switch (rec->dtrd_size) {
2362			case sizeof (uint64_t):
2363				n = dt_printf(dtp, fp,
2364				    quiet ? "%lld" : " %16lld",
2365				    /* LINTED - alignment */
2366				    *((unsigned long long *)addr));
2367				break;
2368			case sizeof (uint32_t):
2369				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2370				    /* LINTED - alignment */
2371				    *((uint32_t *)addr));
2372				break;
2373			case sizeof (uint16_t):
2374				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2375				    /* LINTED - alignment */
2376				    *((uint16_t *)addr));
2377				break;
2378			case sizeof (uint8_t):
2379				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2380				    *((uint8_t *)addr));
2381				break;
2382			default:
2383				n = dt_print_bytes(dtp, fp, addr,
2384				    rec->dtrd_size, 33, quiet, 0);
2385				break;
2386			}
2387
2388			if (n < 0)
2389				return (-1); /* errno is set for us */
2390
2391nextrec:
2392			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2393				return (-1); /* errno is set for us */
2394		}
2395
2396		/*
2397		 * Call the record callback with a NULL record to indicate
2398		 * that we're done processing this EPID.
2399		 */
2400		rval = (*rfunc)(&data, NULL, arg);
2401nextepid:
2402		offs += epd->dtepd_size;
2403		last = id;
2404	}
2405
2406	if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
2407		end = buf->dtbd_oldest;
2408		start = 0;
2409		goto again;
2410	}
2411
2412	if ((drops = buf->dtbd_drops) == 0)
2413		return (0);
2414
2415	/*
2416	 * Explicitly zero the drops to prevent us from processing them again.
2417	 */
2418	buf->dtbd_drops = 0;
2419
2420	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2421}
2422
2423typedef struct dt_begin {
2424	dtrace_consume_probe_f *dtbgn_probefunc;
2425	dtrace_consume_rec_f *dtbgn_recfunc;
2426	void *dtbgn_arg;
2427	dtrace_handle_err_f *dtbgn_errhdlr;
2428	void *dtbgn_errarg;
2429	int dtbgn_beginonly;
2430} dt_begin_t;
2431
2432static int
2433dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2434{
2435	dt_begin_t *begin = (dt_begin_t *)arg;
2436	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2437
2438	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2439	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2440
2441	if (begin->dtbgn_beginonly) {
2442		if (!(r1 && r2))
2443			return (DTRACE_CONSUME_NEXT);
2444	} else {
2445		if (r1 && r2)
2446			return (DTRACE_CONSUME_NEXT);
2447	}
2448
2449	/*
2450	 * We have a record that we're interested in.  Now call the underlying
2451	 * probe function...
2452	 */
2453	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2454}
2455
2456static int
2457dt_consume_begin_record(const dtrace_probedata_t *data,
2458    const dtrace_recdesc_t *rec, void *arg)
2459{
2460	dt_begin_t *begin = (dt_begin_t *)arg;
2461
2462	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2463}
2464
2465static int
2466dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2467{
2468	dt_begin_t *begin = (dt_begin_t *)arg;
2469	dtrace_probedesc_t *pd = data->dteda_pdesc;
2470
2471	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2472	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2473
2474	if (begin->dtbgn_beginonly) {
2475		if (!(r1 && r2))
2476			return (DTRACE_HANDLE_OK);
2477	} else {
2478		if (r1 && r2)
2479			return (DTRACE_HANDLE_OK);
2480	}
2481
2482	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2483}
2484
2485static int
2486dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
2487    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2488{
2489	/*
2490	 * There's this idea that the BEGIN probe should be processed before
2491	 * everything else, and that the END probe should be processed after
2492	 * anything else.  In the common case, this is pretty easy to deal
2493	 * with.  However, a situation may arise where the BEGIN enabling and
2494	 * END enabling are on the same CPU, and some enabling in the middle
2495	 * occurred on a different CPU.  To deal with this (blech!) we need to
2496	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2497	 * then set it aside.  We will then process every other CPU, and then
2498	 * we'll return to the BEGIN CPU and process the rest of the data
2499	 * (which will inevitably include the END probe, if any).  Making this
2500	 * even more complicated (!) is the library's ERROR enabling.  Because
2501	 * this enabling is processed before we even get into the consume call
2502	 * back, any ERROR firing would result in the library's ERROR enabling
2503	 * being processed twice -- once in our first pass (for BEGIN probes),
2504	 * and again in our second pass (for everything but BEGIN probes).  To
2505	 * deal with this, we interpose on the ERROR handler to assure that we
2506	 * only process ERROR enablings induced by BEGIN enablings in the
2507	 * first pass, and that we only process ERROR enablings _not_ induced
2508	 * by BEGIN enablings in the second pass.
2509	 */
2510	dt_begin_t begin;
2511	processorid_t cpu = dtp->dt_beganon;
2512	dtrace_bufdesc_t nbuf;
2513#if !defined(sun)
2514	dtrace_bufdesc_t *pbuf;
2515#endif
2516	int rval, i;
2517	static int max_ncpus;
2518	dtrace_optval_t size;
2519
2520	dtp->dt_beganon = -1;
2521
2522#if defined(sun)
2523	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2524#else
2525	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2526#endif
2527		/*
2528		 * We really don't expect this to fail, but it is at least
2529		 * technically possible for this to fail with ENOENT.  In this
2530		 * case, we just drive on...
2531		 */
2532		if (errno == ENOENT)
2533			return (0);
2534
2535		return (dt_set_errno(dtp, errno));
2536	}
2537
2538	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2539		/*
2540		 * This is the simple case.  We're either not stopped, or if
2541		 * we are, we actually processed any END probes on another
2542		 * CPU.  We can simply consume this buffer and return.
2543		 */
2544		return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
2545	}
2546
2547	begin.dtbgn_probefunc = pf;
2548	begin.dtbgn_recfunc = rf;
2549	begin.dtbgn_arg = arg;
2550	begin.dtbgn_beginonly = 1;
2551
2552	/*
2553	 * We need to interpose on the ERROR handler to be sure that we
2554	 * only process ERRORs induced by BEGIN.
2555	 */
2556	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2557	begin.dtbgn_errarg = dtp->dt_errarg;
2558	dtp->dt_errhdlr = dt_consume_begin_error;
2559	dtp->dt_errarg = &begin;
2560
2561	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2562	    dt_consume_begin_record, &begin);
2563
2564	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2565	dtp->dt_errarg = begin.dtbgn_errarg;
2566
2567	if (rval != 0)
2568		return (rval);
2569
2570	/*
2571	 * Now allocate a new buffer.  We'll use this to deal with every other
2572	 * CPU.
2573	 */
2574	bzero(&nbuf, sizeof (dtrace_bufdesc_t));
2575	(void) dtrace_getopt(dtp, "bufsize", &size);
2576	if ((nbuf.dtbd_data = malloc(size)) == NULL)
2577		return (dt_set_errno(dtp, EDT_NOMEM));
2578
2579	if (max_ncpus == 0)
2580		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2581
2582	for (i = 0; i < max_ncpus; i++) {
2583		nbuf.dtbd_cpu = i;
2584
2585		if (i == cpu)
2586			continue;
2587
2588#if defined(sun)
2589		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
2590#else
2591		pbuf = &nbuf;
2592		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &pbuf) == -1) {
2593#endif
2594			/*
2595			 * If we failed with ENOENT, it may be because the
2596			 * CPU was unconfigured -- this is okay.  Any other
2597			 * error, however, is unexpected.
2598			 */
2599			if (errno == ENOENT)
2600				continue;
2601
2602			free(nbuf.dtbd_data);
2603
2604			return (dt_set_errno(dtp, errno));
2605		}
2606
2607		if ((rval = dt_consume_cpu(dtp, fp,
2608		    i, &nbuf, pf, rf, arg)) != 0) {
2609			free(nbuf.dtbd_data);
2610			return (rval);
2611		}
2612	}
2613
2614	free(nbuf.dtbd_data);
2615
2616	/*
2617	 * Okay -- we're done with the other buffers.  Now we want to
2618	 * reconsume the first buffer -- but this time we're looking for
2619	 * everything _but_ BEGIN.  And of course, in order to only consume
2620	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2621	 * ERROR interposition function...
2622	 */
2623	begin.dtbgn_beginonly = 0;
2624
2625	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2626	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2627	dtp->dt_errhdlr = dt_consume_begin_error;
2628	dtp->dt_errarg = &begin;
2629
2630	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2631	    dt_consume_begin_record, &begin);
2632
2633	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2634	dtp->dt_errarg = begin.dtbgn_errarg;
2635
2636	return (rval);
2637}
2638
2639int
2640dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2641    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2642{
2643	dtrace_bufdesc_t *buf = &dtp->dt_buf;
2644	dtrace_optval_t size;
2645	static int max_ncpus;
2646	int i, rval;
2647	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2648	hrtime_t now = gethrtime();
2649
2650	if (dtp->dt_lastswitch != 0) {
2651		if (now - dtp->dt_lastswitch < interval)
2652			return (0);
2653
2654		dtp->dt_lastswitch += interval;
2655	} else {
2656		dtp->dt_lastswitch = now;
2657	}
2658
2659	if (!dtp->dt_active)
2660		return (dt_set_errno(dtp, EINVAL));
2661
2662	if (max_ncpus == 0)
2663		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2664
2665	if (pf == NULL)
2666		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2667
2668	if (rf == NULL)
2669		rf = (dtrace_consume_rec_f *)dt_nullrec;
2670
2671	if (buf->dtbd_data == NULL) {
2672		(void) dtrace_getopt(dtp, "bufsize", &size);
2673		if ((buf->dtbd_data = malloc(size)) == NULL)
2674			return (dt_set_errno(dtp, EDT_NOMEM));
2675
2676		buf->dtbd_size = size;
2677	}
2678
2679	/*
2680	 * If we have just begun, we want to first process the CPU that
2681	 * executed the BEGIN probe (if any).
2682	 */
2683	if (dtp->dt_active && dtp->dt_beganon != -1) {
2684		buf->dtbd_cpu = dtp->dt_beganon;
2685		if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
2686			return (rval);
2687	}
2688
2689	for (i = 0; i < max_ncpus; i++) {
2690		buf->dtbd_cpu = i;
2691
2692		/*
2693		 * If we have stopped, we want to process the CPU on which the
2694		 * END probe was processed only _after_ we have processed
2695		 * everything else.
2696		 */
2697		if (dtp->dt_stopped && (i == dtp->dt_endedon))
2698			continue;
2699
2700#if defined(sun)
2701		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2702#else
2703		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2704#endif
2705			/*
2706			 * If we failed with ENOENT, it may be because the
2707			 * CPU was unconfigured -- this is okay.  Any other
2708			 * error, however, is unexpected.
2709			 */
2710			if (errno == ENOENT)
2711				continue;
2712
2713			return (dt_set_errno(dtp, errno));
2714		}
2715
2716		if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
2717			return (rval);
2718	}
2719
2720	if (!dtp->dt_stopped)
2721		return (0);
2722
2723	buf->dtbd_cpu = dtp->dt_endedon;
2724
2725#if defined(sun)
2726	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2727#else
2728	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2729#endif
2730		/*
2731		 * This _really_ shouldn't fail, but it is strictly speaking
2732		 * possible for this to return ENOENT if the CPU that called
2733		 * the END enabling somehow managed to become unconfigured.
2734		 * It's unclear how the user can possibly expect anything
2735		 * rational to happen in this case -- the state has been thrown
2736		 * out along with the unconfigured CPU -- so we'll just drive
2737		 * on...
2738		 */
2739		if (errno == ENOENT)
2740			return (0);
2741
2742		return (dt_set_errno(dtp, errno));
2743	}
2744
2745	return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
2746}
2747