dt_consume.c revision 210767
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <stdlib.h>
27#include <strings.h>
28#include <errno.h>
29#include <unistd.h>
30#include <limits.h>
31#include <assert.h>
32#include <ctype.h>
33#if defined(sun)
34#include <alloca.h>
35#endif
36#include <dt_impl.h>
37
38#define	DT_MASK_LO 0x00000000FFFFFFFFULL
39
40/*
41 * We declare this here because (1) we need it and (2) we want to avoid a
42 * dependency on libm in libdtrace.
43 */
44static long double
45dt_fabsl(long double x)
46{
47	if (x < 0)
48		return (-x);
49
50	return (x);
51}
52
53/*
54 * 128-bit arithmetic functions needed to support the stddev() aggregating
55 * action.
56 */
57static int
58dt_gt_128(uint64_t *a, uint64_t *b)
59{
60	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
61}
62
63static int
64dt_ge_128(uint64_t *a, uint64_t *b)
65{
66	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
67}
68
69static int
70dt_le_128(uint64_t *a, uint64_t *b)
71{
72	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
73}
74
75/*
76 * Shift the 128-bit value in a by b. If b is positive, shift left.
77 * If b is negative, shift right.
78 */
79static void
80dt_shift_128(uint64_t *a, int b)
81{
82	uint64_t mask;
83
84	if (b == 0)
85		return;
86
87	if (b < 0) {
88		b = -b;
89		if (b >= 64) {
90			a[0] = a[1] >> (b - 64);
91			a[1] = 0;
92		} else {
93			a[0] >>= b;
94			mask = 1LL << (64 - b);
95			mask -= 1;
96			a[0] |= ((a[1] & mask) << (64 - b));
97			a[1] >>= b;
98		}
99	} else {
100		if (b >= 64) {
101			a[1] = a[0] << (b - 64);
102			a[0] = 0;
103		} else {
104			a[1] <<= b;
105			mask = a[0] >> (64 - b);
106			a[1] |= mask;
107			a[0] <<= b;
108		}
109	}
110}
111
112static int
113dt_nbits_128(uint64_t *a)
114{
115	int nbits = 0;
116	uint64_t tmp[2];
117	uint64_t zero[2] = { 0, 0 };
118
119	tmp[0] = a[0];
120	tmp[1] = a[1];
121
122	dt_shift_128(tmp, -1);
123	while (dt_gt_128(tmp, zero)) {
124		dt_shift_128(tmp, -1);
125		nbits++;
126	}
127
128	return (nbits);
129}
130
131static void
132dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
133{
134	uint64_t result[2];
135
136	result[0] = minuend[0] - subtrahend[0];
137	result[1] = minuend[1] - subtrahend[1] -
138	    (minuend[0] < subtrahend[0] ? 1 : 0);
139
140	difference[0] = result[0];
141	difference[1] = result[1];
142}
143
144static void
145dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
146{
147	uint64_t result[2];
148
149	result[0] = addend1[0] + addend2[0];
150	result[1] = addend1[1] + addend2[1] +
151	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
152
153	sum[0] = result[0];
154	sum[1] = result[1];
155}
156
157/*
158 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
159 * use native multiplication on those, and then re-combine into the
160 * resulting 128-bit value.
161 *
162 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
163 *     hi1 * hi2 << 64 +
164 *     hi1 * lo2 << 32 +
165 *     hi2 * lo1 << 32 +
166 *     lo1 * lo2
167 */
168static void
169dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
170{
171	uint64_t hi1, hi2, lo1, lo2;
172	uint64_t tmp[2];
173
174	hi1 = factor1 >> 32;
175	hi2 = factor2 >> 32;
176
177	lo1 = factor1 & DT_MASK_LO;
178	lo2 = factor2 & DT_MASK_LO;
179
180	product[0] = lo1 * lo2;
181	product[1] = hi1 * hi2;
182
183	tmp[0] = hi1 * lo2;
184	tmp[1] = 0;
185	dt_shift_128(tmp, 32);
186	dt_add_128(product, tmp, product);
187
188	tmp[0] = hi2 * lo1;
189	tmp[1] = 0;
190	dt_shift_128(tmp, 32);
191	dt_add_128(product, tmp, product);
192}
193
194/*
195 * This is long-hand division.
196 *
197 * We initialize subtrahend by shifting divisor left as far as possible. We
198 * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
199 * subtract and set the appropriate bit in the result.  We then shift
200 * subtrahend right by one bit for the next comparison.
201 */
202static void
203dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
204{
205	uint64_t result[2] = { 0, 0 };
206	uint64_t remainder[2];
207	uint64_t subtrahend[2];
208	uint64_t divisor_128[2];
209	uint64_t mask[2] = { 1, 0 };
210	int log = 0;
211
212	assert(divisor != 0);
213
214	divisor_128[0] = divisor;
215	divisor_128[1] = 0;
216
217	remainder[0] = dividend[0];
218	remainder[1] = dividend[1];
219
220	subtrahend[0] = divisor;
221	subtrahend[1] = 0;
222
223	while (divisor > 0) {
224		log++;
225		divisor >>= 1;
226	}
227
228	dt_shift_128(subtrahend, 128 - log);
229	dt_shift_128(mask, 128 - log);
230
231	while (dt_ge_128(remainder, divisor_128)) {
232		if (dt_ge_128(remainder, subtrahend)) {
233			dt_subtract_128(remainder, subtrahend, remainder);
234			result[0] |= mask[0];
235			result[1] |= mask[1];
236		}
237
238		dt_shift_128(subtrahend, -1);
239		dt_shift_128(mask, -1);
240	}
241
242	quotient[0] = result[0];
243	quotient[1] = result[1];
244}
245
246/*
247 * This is the long-hand method of calculating a square root.
248 * The algorithm is as follows:
249 *
250 * 1. Group the digits by 2 from the right.
251 * 2. Over the leftmost group, find the largest single-digit number
252 *    whose square is less than that group.
253 * 3. Subtract the result of the previous step (2 or 4, depending) and
254 *    bring down the next two-digit group.
255 * 4. For the result R we have so far, find the largest single-digit number
256 *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
257 *    (Note that this is doubling R and performing a decimal left-shift by 1
258 *    and searching for the appropriate decimal to fill the one's place.)
259 *    The value x is the next digit in the square root.
260 * Repeat steps 3 and 4 until the desired precision is reached.  (We're
261 * dealing with integers, so the above is sufficient.)
262 *
263 * In decimal, the square root of 582,734 would be calculated as so:
264 *
265 *     __7__6__3
266 *    | 58 27 34
267 *     -49       (7^2 == 49 => 7 is the first digit in the square root)
268 *      --
269 *       9 27    (Subtract and bring down the next group.)
270 * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
271 *      -----     the square root)
272 *         51 34 (Subtract and bring down the next group.)
273 * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
274 *         -----  the square root)
275 *          5 65 (remainder)
276 *
277 * The above algorithm applies similarly in binary, but note that the
278 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
279 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
280 * preceding difference?
281 *
282 * In binary, the square root of 11011011 would be calculated as so:
283 *
284 *     __1__1__1__0
285 *    | 11 01 10 11
286 *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
287 *      --
288 *      10 01 10 11
289 * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
290 *      -----
291 *       1 00 10 11
292 * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
293 *       -------
294 *          1 01 11
295 * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
296 *
297 */
298static uint64_t
299dt_sqrt_128(uint64_t *square)
300{
301	uint64_t result[2] = { 0, 0 };
302	uint64_t diff[2] = { 0, 0 };
303	uint64_t one[2] = { 1, 0 };
304	uint64_t next_pair[2];
305	uint64_t next_try[2];
306	uint64_t bit_pairs, pair_shift;
307	int i;
308
309	bit_pairs = dt_nbits_128(square) / 2;
310	pair_shift = bit_pairs * 2;
311
312	for (i = 0; i <= bit_pairs; i++) {
313		/*
314		 * Bring down the next pair of bits.
315		 */
316		next_pair[0] = square[0];
317		next_pair[1] = square[1];
318		dt_shift_128(next_pair, -pair_shift);
319		next_pair[0] &= 0x3;
320		next_pair[1] = 0;
321
322		dt_shift_128(diff, 2);
323		dt_add_128(diff, next_pair, diff);
324
325		/*
326		 * next_try = R << 2 + 1
327		 */
328		next_try[0] = result[0];
329		next_try[1] = result[1];
330		dt_shift_128(next_try, 2);
331		dt_add_128(next_try, one, next_try);
332
333		if (dt_le_128(next_try, diff)) {
334			dt_subtract_128(diff, next_try, diff);
335			dt_shift_128(result, 1);
336			dt_add_128(result, one, result);
337		} else {
338			dt_shift_128(result, 1);
339		}
340
341		pair_shift -= 2;
342	}
343
344	assert(result[1] == 0);
345
346	return (result[0]);
347}
348
349uint64_t
350dt_stddev(uint64_t *data, uint64_t normal)
351{
352	uint64_t avg_of_squares[2];
353	uint64_t square_of_avg[2];
354	int64_t norm_avg;
355	uint64_t diff[2];
356
357	/*
358	 * The standard approximation for standard deviation is
359	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
360	 * of the average of the squares minus the square of the average.
361	 */
362	dt_divide_128(data + 2, normal, avg_of_squares);
363	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
364
365	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
366
367	if (norm_avg < 0)
368		norm_avg = -norm_avg;
369
370	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
371
372	dt_subtract_128(avg_of_squares, square_of_avg, diff);
373
374	return (dt_sqrt_128(diff));
375}
376
377static int
378dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
379    dtrace_bufdesc_t *buf, size_t offs)
380{
381	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
382	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
383	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
384	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
385	const char *str = NULL;
386	static const char *e_str[2] = { " -> ", " => " };
387	static const char *r_str[2] = { " <- ", " <= " };
388	static const char *ent = "entry", *ret = "return";
389	static int entlen = 0, retlen = 0;
390	dtrace_epid_t next, id = epd->dtepd_epid;
391	int rval;
392
393	if (entlen == 0) {
394		assert(retlen == 0);
395		entlen = strlen(ent);
396		retlen = strlen(ret);
397	}
398
399	/*
400	 * If the name of the probe is "entry" or ends with "-entry", we
401	 * treat it as an entry; if it is "return" or ends with "-return",
402	 * we treat it as a return.  (This allows application-provided probes
403	 * like "method-entry" or "function-entry" to participate in flow
404	 * indentation -- without accidentally misinterpreting popular probe
405	 * names like "carpentry", "gentry" or "Coventry".)
406	 */
407	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
408	    (sub == n || sub[-1] == '-')) {
409		flow = DTRACEFLOW_ENTRY;
410		str = e_str[strcmp(p, "syscall") == 0];
411	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
412	    (sub == n || sub[-1] == '-')) {
413		flow = DTRACEFLOW_RETURN;
414		str = r_str[strcmp(p, "syscall") == 0];
415	}
416
417	/*
418	 * If we're going to indent this, we need to check the ID of our last
419	 * call.  If we're looking at the same probe ID but a different EPID,
420	 * we _don't_ want to indent.  (Yes, there are some minor holes in
421	 * this scheme -- it's a heuristic.)
422	 */
423	if (flow == DTRACEFLOW_ENTRY) {
424		if ((last != DTRACE_EPIDNONE && id != last &&
425		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
426			flow = DTRACEFLOW_NONE;
427	}
428
429	/*
430	 * If we're going to unindent this, it's more difficult to see if
431	 * we don't actually want to unindent it -- we need to look at the
432	 * _next_ EPID.
433	 */
434	if (flow == DTRACEFLOW_RETURN) {
435		offs += epd->dtepd_size;
436
437		do {
438			if (offs >= buf->dtbd_size) {
439				/*
440				 * We're at the end -- maybe.  If the oldest
441				 * record is non-zero, we need to wrap.
442				 */
443				if (buf->dtbd_oldest != 0) {
444					offs = 0;
445				} else {
446					goto out;
447				}
448			}
449
450			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
451
452			if (next == DTRACE_EPIDNONE)
453				offs += sizeof (id);
454		} while (next == DTRACE_EPIDNONE);
455
456		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
457			return (rval);
458
459		if (next != id && npd->dtpd_id == pd->dtpd_id)
460			flow = DTRACEFLOW_NONE;
461	}
462
463out:
464	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
465		data->dtpda_prefix = str;
466	} else {
467		data->dtpda_prefix = "| ";
468	}
469
470	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
471		data->dtpda_indent -= 2;
472
473	data->dtpda_flow = flow;
474
475	return (0);
476}
477
478static int
479dt_nullprobe()
480{
481	return (DTRACE_CONSUME_THIS);
482}
483
484static int
485dt_nullrec()
486{
487	return (DTRACE_CONSUME_NEXT);
488}
489
490int
491dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
492    uint64_t normal, long double total, char positives, char negatives)
493{
494	long double f;
495	uint_t depth, len = 40;
496
497	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
498	const char *spaces = "                                        ";
499
500	assert(strlen(ats) == len && strlen(spaces) == len);
501	assert(!(total == 0 && (positives || negatives)));
502	assert(!(val < 0 && !negatives));
503	assert(!(val > 0 && !positives));
504	assert(!(val != 0 && total == 0));
505
506	if (!negatives) {
507		if (positives) {
508			f = (dt_fabsl((long double)val) * len) / total;
509			depth = (uint_t)(f + 0.5);
510		} else {
511			depth = 0;
512		}
513
514		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
515		    spaces + depth, (long long)val / normal));
516	}
517
518	if (!positives) {
519		f = (dt_fabsl((long double)val) * len) / total;
520		depth = (uint_t)(f + 0.5);
521
522		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
523		    ats + len - depth, (long long)val / normal));
524	}
525
526	/*
527	 * If we're here, we have both positive and negative bucket values.
528	 * To express this graphically, we're going to generate both positive
529	 * and negative bars separated by a centerline.  These bars are half
530	 * the size of normal quantize()/lquantize() bars, so we divide the
531	 * length in half before calculating the bar length.
532	 */
533	len /= 2;
534	ats = &ats[len];
535	spaces = &spaces[len];
536
537	f = (dt_fabsl((long double)val) * len) / total;
538	depth = (uint_t)(f + 0.5);
539
540	if (val <= 0) {
541		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
542		    ats + len - depth, len, "", (long long)val / normal));
543	} else {
544		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
545		    ats + len - depth, spaces + depth,
546		    (long long)val / normal));
547	}
548}
549
550int
551dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
552    size_t size, uint64_t normal)
553{
554	const int64_t *data = addr;
555	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
556	long double total = 0;
557	char positives = 0, negatives = 0;
558
559	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
560		return (dt_set_errno(dtp, EDT_DMISMATCH));
561
562	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
563		first_bin++;
564
565	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
566		/*
567		 * There isn't any data.  This is possible if (and only if)
568		 * negative increment values have been used.  In this case,
569		 * we'll print the buckets around 0.
570		 */
571		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
572		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
573	} else {
574		if (first_bin > 0)
575			first_bin--;
576
577		while (last_bin > 0 && data[last_bin] == 0)
578			last_bin--;
579
580		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
581			last_bin++;
582	}
583
584	for (i = first_bin; i <= last_bin; i++) {
585		positives |= (data[i] > 0);
586		negatives |= (data[i] < 0);
587		total += dt_fabsl((long double)data[i]);
588	}
589
590	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
591	    "------------- Distribution -------------", "count") < 0)
592		return (-1);
593
594	for (i = first_bin; i <= last_bin; i++) {
595		if (dt_printf(dtp, fp, "%16lld ",
596		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
597			return (-1);
598
599		if (dt_print_quantline(dtp, fp, data[i], normal, total,
600		    positives, negatives) < 0)
601			return (-1);
602	}
603
604	return (0);
605}
606
607int
608dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
609    size_t size, uint64_t normal)
610{
611	const int64_t *data = addr;
612	int i, first_bin, last_bin, base;
613	uint64_t arg;
614	long double total = 0;
615	uint16_t step, levels;
616	char positives = 0, negatives = 0;
617
618	if (size < sizeof (uint64_t))
619		return (dt_set_errno(dtp, EDT_DMISMATCH));
620
621	arg = *data++;
622	size -= sizeof (uint64_t);
623
624	base = DTRACE_LQUANTIZE_BASE(arg);
625	step = DTRACE_LQUANTIZE_STEP(arg);
626	levels = DTRACE_LQUANTIZE_LEVELS(arg);
627
628	first_bin = 0;
629	last_bin = levels + 1;
630
631	if (size != sizeof (uint64_t) * (levels + 2))
632		return (dt_set_errno(dtp, EDT_DMISMATCH));
633
634	while (first_bin <= levels + 1 && data[first_bin] == 0)
635		first_bin++;
636
637	if (first_bin > levels + 1) {
638		first_bin = 0;
639		last_bin = 2;
640	} else {
641		if (first_bin > 0)
642			first_bin--;
643
644		while (last_bin > 0 && data[last_bin] == 0)
645			last_bin--;
646
647		if (last_bin < levels + 1)
648			last_bin++;
649	}
650
651	for (i = first_bin; i <= last_bin; i++) {
652		positives |= (data[i] > 0);
653		negatives |= (data[i] < 0);
654		total += dt_fabsl((long double)data[i]);
655	}
656
657	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
658	    "------------- Distribution -------------", "count") < 0)
659		return (-1);
660
661	for (i = first_bin; i <= last_bin; i++) {
662		char c[32];
663		int err;
664
665		if (i == 0) {
666			(void) snprintf(c, sizeof (c), "< %d",
667			    base / (uint32_t)normal);
668			err = dt_printf(dtp, fp, "%16s ", c);
669		} else if (i == levels + 1) {
670			(void) snprintf(c, sizeof (c), ">= %d",
671			    base + (levels * step));
672			err = dt_printf(dtp, fp, "%16s ", c);
673		} else {
674			err = dt_printf(dtp, fp, "%16d ",
675			    base + (i - 1) * step);
676		}
677
678		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
679		    total, positives, negatives) < 0)
680			return (-1);
681	}
682
683	return (0);
684}
685
686/*ARGSUSED*/
687static int
688dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
689    size_t size, uint64_t normal)
690{
691	/* LINTED - alignment */
692	int64_t *data = (int64_t *)addr;
693
694	return (dt_printf(dtp, fp, " %16lld", data[0] ?
695	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
696}
697
698/*ARGSUSED*/
699static int
700dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
701    size_t size, uint64_t normal)
702{
703	/* LINTED - alignment */
704	uint64_t *data = (uint64_t *)addr;
705
706	return (dt_printf(dtp, fp, " %16llu", data[0] ?
707	    (unsigned long long) dt_stddev(data, normal) : 0));
708}
709
710/*ARGSUSED*/
711int
712dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
713    size_t nbytes, int width, int quiet, int raw)
714{
715	/*
716	 * If the byte stream is a series of printable characters, followed by
717	 * a terminating byte, we print it out as a string.  Otherwise, we
718	 * assume that it's something else and just print the bytes.
719	 */
720	int i, j, margin = 5;
721	char *c = (char *)addr;
722
723	if (nbytes == 0)
724		return (0);
725
726	if (raw || dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
727		goto raw;
728
729	for (i = 0; i < nbytes; i++) {
730		/*
731		 * We define a "printable character" to be one for which
732		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
733		 * or a character which is either backspace or the bell.
734		 * Backspace and the bell are regrettably special because
735		 * they fail the first two tests -- and yet they are entirely
736		 * printable.  These are the only two control characters that
737		 * have meaning for the terminal and for which isprint(3C) and
738		 * isspace(3C) return 0.
739		 */
740		if (isprint(c[i]) || isspace(c[i]) ||
741		    c[i] == '\b' || c[i] == '\a')
742			continue;
743
744		if (c[i] == '\0' && i > 0) {
745			/*
746			 * This looks like it might be a string.  Before we
747			 * assume that it is indeed a string, check the
748			 * remainder of the byte range; if it contains
749			 * additional non-nul characters, we'll assume that
750			 * it's a binary stream that just happens to look like
751			 * a string, and we'll print out the individual bytes.
752			 */
753			for (j = i + 1; j < nbytes; j++) {
754				if (c[j] != '\0')
755					break;
756			}
757
758			if (j != nbytes)
759				break;
760
761			if (quiet)
762				return (dt_printf(dtp, fp, "%s", c));
763			else
764				return (dt_printf(dtp, fp, "  %-*s", width, c));
765		}
766
767		break;
768	}
769
770	if (i == nbytes) {
771		/*
772		 * The byte range is all printable characters, but there is
773		 * no trailing nul byte.  We'll assume that it's a string and
774		 * print it as such.
775		 */
776		char *s = alloca(nbytes + 1);
777		bcopy(c, s, nbytes);
778		s[nbytes] = '\0';
779		return (dt_printf(dtp, fp, "  %-*s", width, s));
780	}
781
782raw:
783	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
784		return (-1);
785
786	for (i = 0; i < 16; i++)
787		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
788			return (-1);
789
790	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
791		return (-1);
792
793
794	for (i = 0; i < nbytes; i += 16) {
795		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
796			return (-1);
797
798		for (j = i; j < i + 16 && j < nbytes; j++) {
799			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
800				return (-1);
801		}
802
803		while (j++ % 16) {
804			if (dt_printf(dtp, fp, "   ") < 0)
805				return (-1);
806		}
807
808		if (dt_printf(dtp, fp, "  ") < 0)
809			return (-1);
810
811		for (j = i; j < i + 16 && j < nbytes; j++) {
812			if (dt_printf(dtp, fp, "%c",
813			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
814				return (-1);
815		}
816
817		if (dt_printf(dtp, fp, "\n") < 0)
818			return (-1);
819	}
820
821	return (0);
822}
823
824int
825dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
826    caddr_t addr, int depth, int size)
827{
828	dtrace_syminfo_t dts;
829	GElf_Sym sym;
830	int i, indent;
831	char c[PATH_MAX * 2];
832	uint64_t pc;
833
834	if (dt_printf(dtp, fp, "\n") < 0)
835		return (-1);
836
837	if (format == NULL)
838		format = "%s";
839
840	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
841		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
842	else
843		indent = _dtrace_stkindent;
844
845	for (i = 0; i < depth; i++) {
846		switch (size) {
847		case sizeof (uint32_t):
848			/* LINTED - alignment */
849			pc = *((uint32_t *)addr);
850			break;
851
852		case sizeof (uint64_t):
853			/* LINTED - alignment */
854			pc = *((uint64_t *)addr);
855			break;
856
857		default:
858			return (dt_set_errno(dtp, EDT_BADSTACKPC));
859		}
860
861		if (pc == 0)
862			break;
863
864		addr += size;
865
866		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
867			return (-1);
868
869		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
870			if (pc > sym.st_value) {
871				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
872				    dts.dts_object, dts.dts_name,
873				    pc - sym.st_value);
874			} else {
875				(void) snprintf(c, sizeof (c), "%s`%s",
876				    dts.dts_object, dts.dts_name);
877			}
878		} else {
879			/*
880			 * We'll repeat the lookup, but this time we'll specify
881			 * a NULL GElf_Sym -- indicating that we're only
882			 * interested in the containing module.
883			 */
884			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
885				(void) snprintf(c, sizeof (c), "%s`0x%llx",
886				    dts.dts_object, pc);
887			} else {
888				(void) snprintf(c, sizeof (c), "0x%llx", pc);
889			}
890		}
891
892		if (dt_printf(dtp, fp, format, c) < 0)
893			return (-1);
894
895		if (dt_printf(dtp, fp, "\n") < 0)
896			return (-1);
897	}
898
899	return (0);
900}
901
902int
903dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
904    caddr_t addr, uint64_t arg)
905{
906	/* LINTED - alignment */
907	uint64_t *pc = (uint64_t *)addr;
908	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
909	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
910	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
911	const char *str = strsize ? strbase : NULL;
912	int err = 0;
913
914	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
915	struct ps_prochandle *P;
916	GElf_Sym sym;
917	int i, indent;
918	pid_t pid;
919
920	if (depth == 0)
921		return (0);
922
923	pid = (pid_t)*pc++;
924
925	if (dt_printf(dtp, fp, "\n") < 0)
926		return (-1);
927
928	if (format == NULL)
929		format = "%s";
930
931	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
932		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
933	else
934		indent = _dtrace_stkindent;
935
936	/*
937	 * Ultimately, we need to add an entry point in the library vector for
938	 * determining <symbol, offset> from <pid, address>.  For now, if
939	 * this is a vector open, we just print the raw address or string.
940	 */
941	if (dtp->dt_vector == NULL)
942		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
943	else
944		P = NULL;
945
946	if (P != NULL)
947		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
948
949	for (i = 0; i < depth && pc[i] != 0; i++) {
950		const prmap_t *map;
951
952		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
953			break;
954
955#if defined(sun)
956		if (P != NULL && Plookup_by_addr(P, pc[i],
957#else
958		if (P != NULL && proc_addr2sym(P, pc[i],
959#endif
960		    name, sizeof (name), &sym) == 0) {
961#if defined(sun)
962			(void) Pobjname(P, pc[i], objname, sizeof (objname));
963#else
964			(void) proc_objname(P, pc[i], objname, sizeof (objname));
965#endif
966
967			if (pc[i] > sym.st_value) {
968				(void) snprintf(c, sizeof (c),
969				    "%s`%s+0x%llx", dt_basename(objname), name,
970				    (u_longlong_t)(pc[i] - sym.st_value));
971			} else {
972				(void) snprintf(c, sizeof (c),
973				    "%s`%s", dt_basename(objname), name);
974			}
975		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
976#if defined(sun)
977		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
978		    (map->pr_mflags & MA_WRITE)))) {
979#else
980		    (P != NULL && ((map = proc_addr2map(P, pc[i])) == NULL))) {
981#endif
982			/*
983			 * If the current string pointer in the string table
984			 * does not point to an empty string _and_ the program
985			 * counter falls in a writable region, we'll use the
986			 * string from the string table instead of the raw
987			 * address.  This last condition is necessary because
988			 * some (broken) ustack helpers will return a string
989			 * even for a program counter that they can't
990			 * identify.  If we have a string for a program
991			 * counter that falls in a segment that isn't
992			 * writable, we assume that we have fallen into this
993			 * case and we refuse to use the string.
994			 */
995			(void) snprintf(c, sizeof (c), "%s", str);
996		} else {
997#if defined(sun)
998			if (P != NULL && Pobjname(P, pc[i], objname,
999#else
1000			if (P != NULL && proc_objname(P, pc[i], objname,
1001#endif
1002			    sizeof (objname)) != 0) {
1003				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1004				    dt_basename(objname), (u_longlong_t)pc[i]);
1005			} else {
1006				(void) snprintf(c, sizeof (c), "0x%llx",
1007				    (u_longlong_t)pc[i]);
1008			}
1009		}
1010
1011		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1012			break;
1013
1014		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1015			break;
1016
1017		if (str != NULL && str[0] == '@') {
1018			/*
1019			 * If the first character of the string is an "at" sign,
1020			 * then the string is inferred to be an annotation --
1021			 * and it is printed out beneath the frame and offset
1022			 * with brackets.
1023			 */
1024			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1025				break;
1026
1027			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1028
1029			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1030				break;
1031
1032			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1033				break;
1034		}
1035
1036		if (str != NULL) {
1037			str += strlen(str) + 1;
1038			if (str - strbase >= strsize)
1039				str = NULL;
1040		}
1041	}
1042
1043	if (P != NULL) {
1044		dt_proc_unlock(dtp, P);
1045		dt_proc_release(dtp, P);
1046	}
1047
1048	return (err);
1049}
1050
1051static int
1052dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1053{
1054	/* LINTED - alignment */
1055	uint64_t pid = ((uint64_t *)addr)[0];
1056	/* LINTED - alignment */
1057	uint64_t pc = ((uint64_t *)addr)[1];
1058	const char *format = "  %-50s";
1059	char *s;
1060	int n, len = 256;
1061
1062	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1063		struct ps_prochandle *P;
1064
1065		if ((P = dt_proc_grab(dtp, pid,
1066		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1067			GElf_Sym sym;
1068
1069			dt_proc_lock(dtp, P);
1070
1071#if defined(sun)
1072			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1073#else
1074			if (proc_addr2sym(P, pc, NULL, 0, &sym) == 0)
1075#endif
1076				pc = sym.st_value;
1077
1078			dt_proc_unlock(dtp, P);
1079			dt_proc_release(dtp, P);
1080		}
1081	}
1082
1083	do {
1084		n = len;
1085		s = alloca(n);
1086	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1087
1088	return (dt_printf(dtp, fp, format, s));
1089}
1090
1091int
1092dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1093{
1094	/* LINTED - alignment */
1095	uint64_t pid = ((uint64_t *)addr)[0];
1096	/* LINTED - alignment */
1097	uint64_t pc = ((uint64_t *)addr)[1];
1098	int err = 0;
1099
1100	char objname[PATH_MAX], c[PATH_MAX * 2];
1101	struct ps_prochandle *P;
1102
1103	if (format == NULL)
1104		format = "  %-50s";
1105
1106	/*
1107	 * See the comment in dt_print_ustack() for the rationale for
1108	 * printing raw addresses in the vectored case.
1109	 */
1110	if (dtp->dt_vector == NULL)
1111		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1112	else
1113		P = NULL;
1114
1115	if (P != NULL)
1116		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1117
1118#if defined(sun)
1119	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1120#else
1121	if (P != NULL && proc_objname(P, pc, objname, sizeof (objname)) != 0) {
1122#endif
1123		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1124	} else {
1125		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1126	}
1127
1128	err = dt_printf(dtp, fp, format, c);
1129
1130	if (P != NULL) {
1131		dt_proc_unlock(dtp, P);
1132		dt_proc_release(dtp, P);
1133	}
1134
1135	return (err);
1136}
1137
1138int
1139dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1140{
1141	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1142	size_t nbytes = *((uintptr_t *) addr);
1143
1144	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1145	    nbytes, 50, quiet, 1));
1146}
1147
1148typedef struct dt_type_cbdata {
1149	dtrace_hdl_t		*dtp;
1150	dtrace_typeinfo_t	dtt;
1151	caddr_t			addr;
1152	caddr_t			addrend;
1153	const char		*name;
1154	int			f_type;
1155	int			indent;
1156	int			type_width;
1157	int			name_width;
1158	FILE			*fp;
1159} dt_type_cbdata_t;
1160
1161static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1162
1163static int
1164dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1165{
1166	dt_type_cbdata_t cbdata;
1167	dt_type_cbdata_t *cbdatap = arg;
1168	ssize_t ssz;
1169
1170	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1171		return (0);
1172
1173	off /= 8;
1174
1175	cbdata = *cbdatap;
1176	cbdata.name = name;
1177	cbdata.addr += off;
1178	cbdata.addrend = cbdata.addr + ssz;
1179
1180	return (dt_print_type_data(&cbdata, type));
1181}
1182
1183static int
1184dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1185{
1186	char buf[DT_TYPE_NAMELEN];
1187	char *p;
1188	dt_type_cbdata_t *cbdatap = arg;
1189	size_t sz = strlen(name);
1190
1191	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1192
1193	if ((p = strchr(buf, '[')) != NULL)
1194		p[-1] = '\0';
1195	else
1196		p = "";
1197
1198	sz += strlen(p);
1199
1200	if (sz > cbdatap->name_width)
1201		cbdatap->name_width = sz;
1202
1203	sz = strlen(buf);
1204
1205	if (sz > cbdatap->type_width)
1206		cbdatap->type_width = sz;
1207
1208	return (0);
1209}
1210
1211static int
1212dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1213{
1214	caddr_t addr = cbdatap->addr;
1215	caddr_t addrend = cbdatap->addrend;
1216	char buf[DT_TYPE_NAMELEN];
1217	char *p;
1218	int cnt = 0;
1219	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1220	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1221
1222	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1223
1224	if ((p = strchr(buf, '[')) != NULL)
1225		p[-1] = '\0';
1226	else
1227		p = "";
1228
1229	if (cbdatap->f_type) {
1230		int type_width = roundup(cbdatap->type_width + 1, 4);
1231		int name_width = roundup(cbdatap->name_width + 1, 4);
1232
1233		name_width -= strlen(cbdatap->name);
1234
1235		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1236	}
1237
1238	while (addr < addrend) {
1239		dt_type_cbdata_t cbdata;
1240		ctf_arinfo_t arinfo;
1241		ctf_encoding_t cte;
1242		uintptr_t *up;
1243		void *vp = addr;
1244		cbdata = *cbdatap;
1245		cbdata.name = "";
1246		cbdata.addr = addr;
1247		cbdata.addrend = addr + ssz;
1248		cbdata.f_type = 0;
1249		cbdata.indent++;
1250		cbdata.type_width = 0;
1251		cbdata.name_width = 0;
1252
1253		if (cnt > 0)
1254			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1255
1256		switch (kind) {
1257		case CTF_K_INTEGER:
1258			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1259				return (-1);
1260			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1261				switch (cte.cte_bits) {
1262				case 8:
1263					if (isprint(*((char *) vp)))
1264						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1265					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1266					break;
1267				case 16:
1268					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1269					break;
1270				case 32:
1271					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1272					break;
1273				case 64:
1274					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1275					break;
1276				default:
1277					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1278					break;
1279				}
1280			else
1281				switch (cte.cte_bits) {
1282				case 8:
1283					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1284					break;
1285				case 16:
1286					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1287					break;
1288				case 32:
1289					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1290					break;
1291				case 64:
1292					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1293					break;
1294				default:
1295					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1296					break;
1297				}
1298			break;
1299		case CTF_K_FLOAT:
1300			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1301			break;
1302		case CTF_K_POINTER:
1303			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1304			break;
1305		case CTF_K_ARRAY:
1306			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1307				return (-1);
1308			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1309			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1310			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1311			break;
1312		case CTF_K_FUNCTION:
1313			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1314			break;
1315		case CTF_K_STRUCT:
1316			cbdata.f_type = 1;
1317			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1318			    dt_print_type_width, &cbdata) != 0)
1319				return (-1);
1320			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1321			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1322			    dt_print_type_member, &cbdata) != 0)
1323				return (-1);
1324			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1325			break;
1326		case CTF_K_UNION:
1327			cbdata.f_type = 1;
1328			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1329			    dt_print_type_width, &cbdata) != 0)
1330				return (-1);
1331			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1332			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1333			    dt_print_type_member, &cbdata) != 0)
1334				return (-1);
1335			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1336			break;
1337		case CTF_K_ENUM:
1338			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1339			break;
1340		case CTF_K_TYPEDEF:
1341			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1342			break;
1343		case CTF_K_VOLATILE:
1344			if (cbdatap->f_type)
1345				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1346			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1347			break;
1348		case CTF_K_CONST:
1349			if (cbdatap->f_type)
1350				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1351			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1352			break;
1353		case CTF_K_RESTRICT:
1354			if (cbdatap->f_type)
1355				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1356			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1357			break;
1358		default:
1359			break;
1360		}
1361
1362		addr += ssz;
1363		cnt++;
1364	}
1365
1366	return (0);
1367}
1368
1369static int
1370dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1371{
1372	caddr_t addrend;
1373	char *p;
1374	dtrace_typeinfo_t dtt;
1375	dt_type_cbdata_t cbdata;
1376	int num = 0;
1377	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1378	ssize_t ssz;
1379
1380	if (!quiet)
1381		dt_printf(dtp, fp, "\n");
1382
1383	/* Get the total number of bytes of data buffered. */
1384	size_t nbytes = *((uintptr_t *) addr);
1385	addr += sizeof(uintptr_t);
1386
1387	/*
1388	 * Get the size of the type so that we can check that it matches
1389	 * the CTF data we look up and so that we can figure out how many
1390	 * type elements are buffered.
1391	 */
1392	size_t typs = *((uintptr_t *) addr);
1393	addr += sizeof(uintptr_t);
1394
1395	/*
1396	 * Point to the type string in the buffer. Get it's string
1397	 * length and round it up to become the offset to the start
1398	 * of the buffered type data which we would like to be aligned
1399	 * for easy access.
1400	 */
1401	char *strp = (char *) addr;
1402	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1403
1404	/*
1405	 * The type string might have a format such as 'int [20]'.
1406	 * Check if there is an array dimension present.
1407	 */
1408	if ((p = strchr(strp, '[')) != NULL) {
1409		/* Strip off the array dimension. */
1410		*p++ = '\0';
1411
1412		for (; *p != '\0' && *p != ']'; p++)
1413			num = num * 10 + *p - '0';
1414	} else
1415		/* No array dimension, so default. */
1416		num = 1;
1417
1418	/* Lookup the CTF type from the type string. */
1419	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1420		return (-1);
1421
1422	/* Offset the buffer address to the start of the data... */
1423	addr += offset;
1424
1425	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1426
1427	if (typs != ssz) {
1428		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1429		return (-1);
1430	}
1431
1432	cbdata.dtp = dtp;
1433	cbdata.dtt = dtt;
1434	cbdata.name = "";
1435	cbdata.addr = addr;
1436	cbdata.addrend = addr + nbytes;
1437	cbdata.indent = 1;
1438	cbdata.f_type = 1;
1439	cbdata.type_width = 0;
1440	cbdata.name_width = 0;
1441	cbdata.fp = fp;
1442
1443	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1444}
1445
1446static int
1447dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1448{
1449	/* LINTED - alignment */
1450	uint64_t pc = *((uint64_t *)addr);
1451	dtrace_syminfo_t dts;
1452	GElf_Sym sym;
1453	char c[PATH_MAX * 2];
1454
1455	if (format == NULL)
1456		format = "  %-50s";
1457
1458	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1459		(void) snprintf(c, sizeof (c), "%s`%s",
1460		    dts.dts_object, dts.dts_name);
1461	} else {
1462		/*
1463		 * We'll repeat the lookup, but this time we'll specify a
1464		 * NULL GElf_Sym -- indicating that we're only interested in
1465		 * the containing module.
1466		 */
1467		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1468			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1469			    dts.dts_object, (u_longlong_t)pc);
1470		} else {
1471			(void) snprintf(c, sizeof (c), "0x%llx",
1472			    (u_longlong_t)pc);
1473		}
1474	}
1475
1476	if (dt_printf(dtp, fp, format, c) < 0)
1477		return (-1);
1478
1479	return (0);
1480}
1481
1482int
1483dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1484{
1485	/* LINTED - alignment */
1486	uint64_t pc = *((uint64_t *)addr);
1487	dtrace_syminfo_t dts;
1488	char c[PATH_MAX * 2];
1489
1490	if (format == NULL)
1491		format = "  %-50s";
1492
1493	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1494		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1495	} else {
1496		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1497	}
1498
1499	if (dt_printf(dtp, fp, format, c) < 0)
1500		return (-1);
1501
1502	return (0);
1503}
1504
1505typedef struct dt_normal {
1506	dtrace_aggvarid_t dtnd_id;
1507	uint64_t dtnd_normal;
1508} dt_normal_t;
1509
1510static int
1511dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1512{
1513	dt_normal_t *normal = arg;
1514	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1515	dtrace_aggvarid_t id = normal->dtnd_id;
1516
1517	if (agg->dtagd_nrecs == 0)
1518		return (DTRACE_AGGWALK_NEXT);
1519
1520	if (agg->dtagd_varid != id)
1521		return (DTRACE_AGGWALK_NEXT);
1522
1523	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1524	return (DTRACE_AGGWALK_NORMALIZE);
1525}
1526
1527static int
1528dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1529{
1530	dt_normal_t normal;
1531	caddr_t addr;
1532
1533	/*
1534	 * We (should) have two records:  the aggregation ID followed by the
1535	 * normalization value.
1536	 */
1537	addr = base + rec->dtrd_offset;
1538
1539	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1540		return (dt_set_errno(dtp, EDT_BADNORMAL));
1541
1542	/* LINTED - alignment */
1543	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1544	rec++;
1545
1546	if (rec->dtrd_action != DTRACEACT_LIBACT)
1547		return (dt_set_errno(dtp, EDT_BADNORMAL));
1548
1549	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1550		return (dt_set_errno(dtp, EDT_BADNORMAL));
1551
1552	addr = base + rec->dtrd_offset;
1553
1554	switch (rec->dtrd_size) {
1555	case sizeof (uint64_t):
1556		/* LINTED - alignment */
1557		normal.dtnd_normal = *((uint64_t *)addr);
1558		break;
1559	case sizeof (uint32_t):
1560		/* LINTED - alignment */
1561		normal.dtnd_normal = *((uint32_t *)addr);
1562		break;
1563	case sizeof (uint16_t):
1564		/* LINTED - alignment */
1565		normal.dtnd_normal = *((uint16_t *)addr);
1566		break;
1567	case sizeof (uint8_t):
1568		normal.dtnd_normal = *((uint8_t *)addr);
1569		break;
1570	default:
1571		return (dt_set_errno(dtp, EDT_BADNORMAL));
1572	}
1573
1574	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1575
1576	return (0);
1577}
1578
1579static int
1580dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1581{
1582	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1583	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1584
1585	if (agg->dtagd_nrecs == 0)
1586		return (DTRACE_AGGWALK_NEXT);
1587
1588	if (agg->dtagd_varid != id)
1589		return (DTRACE_AGGWALK_NEXT);
1590
1591	return (DTRACE_AGGWALK_DENORMALIZE);
1592}
1593
1594static int
1595dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1596{
1597	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1598	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1599
1600	if (agg->dtagd_nrecs == 0)
1601		return (DTRACE_AGGWALK_NEXT);
1602
1603	if (agg->dtagd_varid != id)
1604		return (DTRACE_AGGWALK_NEXT);
1605
1606	return (DTRACE_AGGWALK_CLEAR);
1607}
1608
1609typedef struct dt_trunc {
1610	dtrace_aggvarid_t dttd_id;
1611	uint64_t dttd_remaining;
1612} dt_trunc_t;
1613
1614static int
1615dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1616{
1617	dt_trunc_t *trunc = arg;
1618	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1619	dtrace_aggvarid_t id = trunc->dttd_id;
1620
1621	if (agg->dtagd_nrecs == 0)
1622		return (DTRACE_AGGWALK_NEXT);
1623
1624	if (agg->dtagd_varid != id)
1625		return (DTRACE_AGGWALK_NEXT);
1626
1627	if (trunc->dttd_remaining == 0)
1628		return (DTRACE_AGGWALK_REMOVE);
1629
1630	trunc->dttd_remaining--;
1631	return (DTRACE_AGGWALK_NEXT);
1632}
1633
1634static int
1635dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1636{
1637	dt_trunc_t trunc;
1638	caddr_t addr;
1639	int64_t remaining;
1640	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1641
1642	/*
1643	 * We (should) have two records:  the aggregation ID followed by the
1644	 * number of aggregation entries after which the aggregation is to be
1645	 * truncated.
1646	 */
1647	addr = base + rec->dtrd_offset;
1648
1649	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1650		return (dt_set_errno(dtp, EDT_BADTRUNC));
1651
1652	/* LINTED - alignment */
1653	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1654	rec++;
1655
1656	if (rec->dtrd_action != DTRACEACT_LIBACT)
1657		return (dt_set_errno(dtp, EDT_BADTRUNC));
1658
1659	if (rec->dtrd_arg != DT_ACT_TRUNC)
1660		return (dt_set_errno(dtp, EDT_BADTRUNC));
1661
1662	addr = base + rec->dtrd_offset;
1663
1664	switch (rec->dtrd_size) {
1665	case sizeof (uint64_t):
1666		/* LINTED - alignment */
1667		remaining = *((int64_t *)addr);
1668		break;
1669	case sizeof (uint32_t):
1670		/* LINTED - alignment */
1671		remaining = *((int32_t *)addr);
1672		break;
1673	case sizeof (uint16_t):
1674		/* LINTED - alignment */
1675		remaining = *((int16_t *)addr);
1676		break;
1677	case sizeof (uint8_t):
1678		remaining = *((int8_t *)addr);
1679		break;
1680	default:
1681		return (dt_set_errno(dtp, EDT_BADNORMAL));
1682	}
1683
1684	if (remaining < 0) {
1685		func = dtrace_aggregate_walk_valsorted;
1686		remaining = -remaining;
1687	} else {
1688		func = dtrace_aggregate_walk_valrevsorted;
1689	}
1690
1691	assert(remaining >= 0);
1692	trunc.dttd_remaining = remaining;
1693
1694	(void) func(dtp, dt_trunc_agg, &trunc);
1695
1696	return (0);
1697}
1698
1699static int
1700dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1701    caddr_t addr, size_t size, uint64_t normal)
1702{
1703	int err;
1704	dtrace_actkind_t act = rec->dtrd_action;
1705
1706	switch (act) {
1707	case DTRACEACT_STACK:
1708		return (dt_print_stack(dtp, fp, NULL, addr,
1709		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1710
1711	case DTRACEACT_USTACK:
1712	case DTRACEACT_JSTACK:
1713		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1714
1715	case DTRACEACT_USYM:
1716	case DTRACEACT_UADDR:
1717		return (dt_print_usym(dtp, fp, addr, act));
1718
1719	case DTRACEACT_UMOD:
1720		return (dt_print_umod(dtp, fp, NULL, addr));
1721
1722	case DTRACEACT_SYM:
1723		return (dt_print_sym(dtp, fp, NULL, addr));
1724
1725	case DTRACEACT_MOD:
1726		return (dt_print_mod(dtp, fp, NULL, addr));
1727
1728	case DTRACEAGG_QUANTIZE:
1729		return (dt_print_quantize(dtp, fp, addr, size, normal));
1730
1731	case DTRACEAGG_LQUANTIZE:
1732		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1733
1734	case DTRACEAGG_AVG:
1735		return (dt_print_average(dtp, fp, addr, size, normal));
1736
1737	case DTRACEAGG_STDDEV:
1738		return (dt_print_stddev(dtp, fp, addr, size, normal));
1739
1740	default:
1741		break;
1742	}
1743
1744	switch (size) {
1745	case sizeof (uint64_t):
1746		err = dt_printf(dtp, fp, " %16lld",
1747		    /* LINTED - alignment */
1748		    (long long)*((uint64_t *)addr) / normal);
1749		break;
1750	case sizeof (uint32_t):
1751		/* LINTED - alignment */
1752		err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1753		    (uint32_t)normal);
1754		break;
1755	case sizeof (uint16_t):
1756		/* LINTED - alignment */
1757		err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1758		    (uint32_t)normal);
1759		break;
1760	case sizeof (uint8_t):
1761		err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1762		    (uint32_t)normal);
1763		break;
1764	default:
1765		err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1766		break;
1767	}
1768
1769	return (err);
1770}
1771
1772int
1773dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1774{
1775	int i, aggact = 0;
1776	dt_print_aggdata_t *pd = arg;
1777	const dtrace_aggdata_t *aggdata = aggsdata[0];
1778	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1779	FILE *fp = pd->dtpa_fp;
1780	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1781	dtrace_recdesc_t *rec;
1782	dtrace_actkind_t act;
1783	caddr_t addr;
1784	size_t size;
1785
1786	/*
1787	 * Iterate over each record description in the key, printing the traced
1788	 * data, skipping the first datum (the tuple member created by the
1789	 * compiler).
1790	 */
1791	for (i = 1; i < agg->dtagd_nrecs; i++) {
1792		rec = &agg->dtagd_rec[i];
1793		act = rec->dtrd_action;
1794		addr = aggdata->dtada_data + rec->dtrd_offset;
1795		size = rec->dtrd_size;
1796
1797		if (DTRACEACT_ISAGG(act)) {
1798			aggact = i;
1799			break;
1800		}
1801
1802		if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1803			return (-1);
1804
1805		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1806		    DTRACE_BUFDATA_AGGKEY) < 0)
1807			return (-1);
1808	}
1809
1810	assert(aggact != 0);
1811
1812	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1813		uint64_t normal;
1814
1815		aggdata = aggsdata[i];
1816		agg = aggdata->dtada_desc;
1817		rec = &agg->dtagd_rec[aggact];
1818		act = rec->dtrd_action;
1819		addr = aggdata->dtada_data + rec->dtrd_offset;
1820		size = rec->dtrd_size;
1821
1822		assert(DTRACEACT_ISAGG(act));
1823		normal = aggdata->dtada_normal;
1824
1825		if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1826			return (-1);
1827
1828		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1829		    DTRACE_BUFDATA_AGGVAL) < 0)
1830			return (-1);
1831
1832		if (!pd->dtpa_allunprint)
1833			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1834	}
1835
1836	if (dt_printf(dtp, fp, "\n") < 0)
1837		return (-1);
1838
1839	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1840	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1841		return (-1);
1842
1843	return (0);
1844}
1845
1846int
1847dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1848{
1849	dt_print_aggdata_t *pd = arg;
1850	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1851	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1852
1853	if (pd->dtpa_allunprint) {
1854		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1855			return (0);
1856	} else {
1857		/*
1858		 * If we're not printing all unprinted aggregations, then the
1859		 * aggregation variable ID denotes a specific aggregation
1860		 * variable that we should print -- skip any other aggregations
1861		 * that we encounter.
1862		 */
1863		if (agg->dtagd_nrecs == 0)
1864			return (0);
1865
1866		if (aggvarid != agg->dtagd_varid)
1867			return (0);
1868	}
1869
1870	return (dt_print_aggs(&aggdata, 1, arg));
1871}
1872
1873int
1874dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1875    const char *option, const char *value)
1876{
1877	int len, rval;
1878	char *msg;
1879	const char *errstr;
1880	dtrace_setoptdata_t optdata;
1881
1882	bzero(&optdata, sizeof (optdata));
1883	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1884
1885	if (dtrace_setopt(dtp, option, value) == 0) {
1886		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1887		optdata.dtsda_probe = data;
1888		optdata.dtsda_option = option;
1889		optdata.dtsda_handle = dtp;
1890
1891		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1892			return (rval);
1893
1894		return (0);
1895	}
1896
1897	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1898	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1899	msg = alloca(len);
1900
1901	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
1902	    option, value, errstr);
1903
1904	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
1905		return (0);
1906
1907	return (rval);
1908}
1909
1910static int
1911dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
1912    dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
1913{
1914	dtrace_epid_t id;
1915	size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
1916	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
1917	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1918	int rval, i, n;
1919	dtrace_epid_t last = DTRACE_EPIDNONE;
1920	dtrace_probedata_t data;
1921	uint64_t drops;
1922	caddr_t addr;
1923
1924	bzero(&data, sizeof (data));
1925	data.dtpda_handle = dtp;
1926	data.dtpda_cpu = cpu;
1927
1928again:
1929	for (offs = start; offs < end; ) {
1930		dtrace_eprobedesc_t *epd;
1931
1932		/*
1933		 * We're guaranteed to have an ID.
1934		 */
1935		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
1936
1937		if (id == DTRACE_EPIDNONE) {
1938			/*
1939			 * This is filler to assure proper alignment of the
1940			 * next record; we simply ignore it.
1941			 */
1942			offs += sizeof (id);
1943			continue;
1944		}
1945
1946		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
1947		    &data.dtpda_pdesc)) != 0)
1948			return (rval);
1949
1950		epd = data.dtpda_edesc;
1951		data.dtpda_data = buf->dtbd_data + offs;
1952
1953		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
1954			rval = dt_handle(dtp, &data);
1955
1956			if (rval == DTRACE_CONSUME_NEXT)
1957				goto nextepid;
1958
1959			if (rval == DTRACE_CONSUME_ERROR)
1960				return (-1);
1961		}
1962
1963		if (flow)
1964			(void) dt_flowindent(dtp, &data, last, buf, offs);
1965
1966		rval = (*efunc)(&data, arg);
1967
1968		if (flow) {
1969			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
1970				data.dtpda_indent += 2;
1971		}
1972
1973		if (rval == DTRACE_CONSUME_NEXT)
1974			goto nextepid;
1975
1976		if (rval == DTRACE_CONSUME_ABORT)
1977			return (dt_set_errno(dtp, EDT_DIRABORT));
1978
1979		if (rval != DTRACE_CONSUME_THIS)
1980			return (dt_set_errno(dtp, EDT_BADRVAL));
1981
1982		for (i = 0; i < epd->dtepd_nrecs; i++) {
1983			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
1984			dtrace_actkind_t act = rec->dtrd_action;
1985
1986			data.dtpda_data = buf->dtbd_data + offs +
1987			    rec->dtrd_offset;
1988			addr = data.dtpda_data;
1989
1990			if (act == DTRACEACT_LIBACT) {
1991				uint64_t arg = rec->dtrd_arg;
1992				dtrace_aggvarid_t id;
1993
1994				switch (arg) {
1995				case DT_ACT_CLEAR:
1996					/* LINTED - alignment */
1997					id = *((dtrace_aggvarid_t *)addr);
1998					(void) dtrace_aggregate_walk(dtp,
1999					    dt_clear_agg, &id);
2000					continue;
2001
2002				case DT_ACT_DENORMALIZE:
2003					/* LINTED - alignment */
2004					id = *((dtrace_aggvarid_t *)addr);
2005					(void) dtrace_aggregate_walk(dtp,
2006					    dt_denormalize_agg, &id);
2007					continue;
2008
2009				case DT_ACT_FTRUNCATE:
2010					if (fp == NULL)
2011						continue;
2012
2013					(void) fflush(fp);
2014					(void) ftruncate(fileno(fp), 0);
2015					(void) fseeko(fp, 0, SEEK_SET);
2016					continue;
2017
2018				case DT_ACT_NORMALIZE:
2019					if (i == epd->dtepd_nrecs - 1)
2020						return (dt_set_errno(dtp,
2021						    EDT_BADNORMAL));
2022
2023					if (dt_normalize(dtp,
2024					    buf->dtbd_data + offs, rec) != 0)
2025						return (-1);
2026
2027					i++;
2028					continue;
2029
2030				case DT_ACT_SETOPT: {
2031					uint64_t *opts = dtp->dt_options;
2032					dtrace_recdesc_t *valrec;
2033					uint32_t valsize;
2034					caddr_t val;
2035					int rv;
2036
2037					if (i == epd->dtepd_nrecs - 1) {
2038						return (dt_set_errno(dtp,
2039						    EDT_BADSETOPT));
2040					}
2041
2042					valrec = &epd->dtepd_rec[++i];
2043					valsize = valrec->dtrd_size;
2044
2045					if (valrec->dtrd_action != act ||
2046					    valrec->dtrd_arg != arg) {
2047						return (dt_set_errno(dtp,
2048						    EDT_BADSETOPT));
2049					}
2050
2051					if (valsize > sizeof (uint64_t)) {
2052						val = buf->dtbd_data + offs +
2053						    valrec->dtrd_offset;
2054					} else {
2055						val = "1";
2056					}
2057
2058					rv = dt_setopt(dtp, &data, addr, val);
2059
2060					if (rv != 0)
2061						return (-1);
2062
2063					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2064					    DTRACEOPT_UNSET);
2065					quiet = (opts[DTRACEOPT_QUIET] !=
2066					    DTRACEOPT_UNSET);
2067
2068					continue;
2069				}
2070
2071				case DT_ACT_TRUNC:
2072					if (i == epd->dtepd_nrecs - 1)
2073						return (dt_set_errno(dtp,
2074						    EDT_BADTRUNC));
2075
2076					if (dt_trunc(dtp,
2077					    buf->dtbd_data + offs, rec) != 0)
2078						return (-1);
2079
2080					i++;
2081					continue;
2082
2083				default:
2084					continue;
2085				}
2086			}
2087
2088			rval = (*rfunc)(&data, rec, arg);
2089
2090			if (rval == DTRACE_CONSUME_NEXT)
2091				continue;
2092
2093			if (rval == DTRACE_CONSUME_ABORT)
2094				return (dt_set_errno(dtp, EDT_DIRABORT));
2095
2096			if (rval != DTRACE_CONSUME_THIS)
2097				return (dt_set_errno(dtp, EDT_BADRVAL));
2098
2099			if (act == DTRACEACT_STACK) {
2100				int depth = rec->dtrd_arg;
2101
2102				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2103				    rec->dtrd_size / depth) < 0)
2104					return (-1);
2105				goto nextrec;
2106			}
2107
2108			if (act == DTRACEACT_USTACK ||
2109			    act == DTRACEACT_JSTACK) {
2110				if (dt_print_ustack(dtp, fp, NULL,
2111				    addr, rec->dtrd_arg) < 0)
2112					return (-1);
2113				goto nextrec;
2114			}
2115
2116			if (act == DTRACEACT_SYM) {
2117				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2118					return (-1);
2119				goto nextrec;
2120			}
2121
2122			if (act == DTRACEACT_MOD) {
2123				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2124					return (-1);
2125				goto nextrec;
2126			}
2127
2128			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2129				if (dt_print_usym(dtp, fp, addr, act) < 0)
2130					return (-1);
2131				goto nextrec;
2132			}
2133
2134			if (act == DTRACEACT_UMOD) {
2135				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2136					return (-1);
2137				goto nextrec;
2138			}
2139
2140			if (act == DTRACEACT_PRINTM) {
2141				if (dt_print_memory(dtp, fp, addr) < 0)
2142					return (-1);
2143				goto nextrec;
2144			}
2145
2146			if (act == DTRACEACT_PRINTT) {
2147				if (dt_print_type(dtp, fp, addr) < 0)
2148					return (-1);
2149				goto nextrec;
2150			}
2151
2152			if (DTRACEACT_ISPRINTFLIKE(act)) {
2153				void *fmtdata;
2154				int (*func)(dtrace_hdl_t *, FILE *, void *,
2155				    const dtrace_probedata_t *,
2156				    const dtrace_recdesc_t *, uint_t,
2157				    const void *buf, size_t);
2158
2159				if ((fmtdata = dt_format_lookup(dtp,
2160				    rec->dtrd_format)) == NULL)
2161					goto nofmt;
2162
2163				switch (act) {
2164				case DTRACEACT_PRINTF:
2165					func = dtrace_fprintf;
2166					break;
2167				case DTRACEACT_PRINTA:
2168					func = dtrace_fprinta;
2169					break;
2170				case DTRACEACT_SYSTEM:
2171					func = dtrace_system;
2172					break;
2173				case DTRACEACT_FREOPEN:
2174					func = dtrace_freopen;
2175					break;
2176				}
2177
2178				n = (*func)(dtp, fp, fmtdata, &data,
2179				    rec, epd->dtepd_nrecs - i,
2180				    (uchar_t *)buf->dtbd_data + offs,
2181				    buf->dtbd_size - offs);
2182
2183				if (n < 0)
2184					return (-1); /* errno is set for us */
2185
2186				if (n > 0)
2187					i += n - 1;
2188				goto nextrec;
2189			}
2190
2191nofmt:
2192			if (act == DTRACEACT_PRINTA) {
2193				dt_print_aggdata_t pd;
2194				dtrace_aggvarid_t *aggvars;
2195				int j, naggvars = 0;
2196				size_t size = ((epd->dtepd_nrecs - i) *
2197				    sizeof (dtrace_aggvarid_t));
2198
2199				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2200					return (-1);
2201
2202				/*
2203				 * This might be a printa() with multiple
2204				 * aggregation variables.  We need to scan
2205				 * forward through the records until we find
2206				 * a record from a different statement.
2207				 */
2208				for (j = i; j < epd->dtepd_nrecs; j++) {
2209					dtrace_recdesc_t *nrec;
2210					caddr_t naddr;
2211
2212					nrec = &epd->dtepd_rec[j];
2213
2214					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2215						break;
2216
2217					if (nrec->dtrd_action != act) {
2218						return (dt_set_errno(dtp,
2219						    EDT_BADAGG));
2220					}
2221
2222					naddr = buf->dtbd_data + offs +
2223					    nrec->dtrd_offset;
2224
2225					aggvars[naggvars++] =
2226					    /* LINTED - alignment */
2227					    *((dtrace_aggvarid_t *)naddr);
2228				}
2229
2230				i = j - 1;
2231				bzero(&pd, sizeof (pd));
2232				pd.dtpa_dtp = dtp;
2233				pd.dtpa_fp = fp;
2234
2235				assert(naggvars >= 1);
2236
2237				if (naggvars == 1) {
2238					pd.dtpa_id = aggvars[0];
2239					dt_free(dtp, aggvars);
2240
2241					if (dt_printf(dtp, fp, "\n") < 0 ||
2242					    dtrace_aggregate_walk_sorted(dtp,
2243					    dt_print_agg, &pd) < 0)
2244						return (-1);
2245					goto nextrec;
2246				}
2247
2248				if (dt_printf(dtp, fp, "\n") < 0 ||
2249				    dtrace_aggregate_walk_joined(dtp, aggvars,
2250				    naggvars, dt_print_aggs, &pd) < 0) {
2251					dt_free(dtp, aggvars);
2252					return (-1);
2253				}
2254
2255				dt_free(dtp, aggvars);
2256				goto nextrec;
2257			}
2258
2259			switch (rec->dtrd_size) {
2260			case sizeof (uint64_t):
2261				n = dt_printf(dtp, fp,
2262				    quiet ? "%lld" : " %16lld",
2263				    /* LINTED - alignment */
2264				    *((unsigned long long *)addr));
2265				break;
2266			case sizeof (uint32_t):
2267				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2268				    /* LINTED - alignment */
2269				    *((uint32_t *)addr));
2270				break;
2271			case sizeof (uint16_t):
2272				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2273				    /* LINTED - alignment */
2274				    *((uint16_t *)addr));
2275				break;
2276			case sizeof (uint8_t):
2277				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2278				    *((uint8_t *)addr));
2279				break;
2280			default:
2281				n = dt_print_bytes(dtp, fp, addr,
2282				    rec->dtrd_size, 33, quiet, 0);
2283				break;
2284			}
2285
2286			if (n < 0)
2287				return (-1); /* errno is set for us */
2288
2289nextrec:
2290			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2291				return (-1); /* errno is set for us */
2292		}
2293
2294		/*
2295		 * Call the record callback with a NULL record to indicate
2296		 * that we're done processing this EPID.
2297		 */
2298		rval = (*rfunc)(&data, NULL, arg);
2299nextepid:
2300		offs += epd->dtepd_size;
2301		last = id;
2302	}
2303
2304	if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
2305		end = buf->dtbd_oldest;
2306		start = 0;
2307		goto again;
2308	}
2309
2310	if ((drops = buf->dtbd_drops) == 0)
2311		return (0);
2312
2313	/*
2314	 * Explicitly zero the drops to prevent us from processing them again.
2315	 */
2316	buf->dtbd_drops = 0;
2317
2318	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2319}
2320
2321typedef struct dt_begin {
2322	dtrace_consume_probe_f *dtbgn_probefunc;
2323	dtrace_consume_rec_f *dtbgn_recfunc;
2324	void *dtbgn_arg;
2325	dtrace_handle_err_f *dtbgn_errhdlr;
2326	void *dtbgn_errarg;
2327	int dtbgn_beginonly;
2328} dt_begin_t;
2329
2330static int
2331dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2332{
2333	dt_begin_t *begin = (dt_begin_t *)arg;
2334	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2335
2336	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2337	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2338
2339	if (begin->dtbgn_beginonly) {
2340		if (!(r1 && r2))
2341			return (DTRACE_CONSUME_NEXT);
2342	} else {
2343		if (r1 && r2)
2344			return (DTRACE_CONSUME_NEXT);
2345	}
2346
2347	/*
2348	 * We have a record that we're interested in.  Now call the underlying
2349	 * probe function...
2350	 */
2351	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2352}
2353
2354static int
2355dt_consume_begin_record(const dtrace_probedata_t *data,
2356    const dtrace_recdesc_t *rec, void *arg)
2357{
2358	dt_begin_t *begin = (dt_begin_t *)arg;
2359
2360	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2361}
2362
2363static int
2364dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2365{
2366	dt_begin_t *begin = (dt_begin_t *)arg;
2367	dtrace_probedesc_t *pd = data->dteda_pdesc;
2368
2369	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2370	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2371
2372	if (begin->dtbgn_beginonly) {
2373		if (!(r1 && r2))
2374			return (DTRACE_HANDLE_OK);
2375	} else {
2376		if (r1 && r2)
2377			return (DTRACE_HANDLE_OK);
2378	}
2379
2380	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2381}
2382
2383static int
2384dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
2385    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2386{
2387	/*
2388	 * There's this idea that the BEGIN probe should be processed before
2389	 * everything else, and that the END probe should be processed after
2390	 * anything else.  In the common case, this is pretty easy to deal
2391	 * with.  However, a situation may arise where the BEGIN enabling and
2392	 * END enabling are on the same CPU, and some enabling in the middle
2393	 * occurred on a different CPU.  To deal with this (blech!) we need to
2394	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2395	 * then set it aside.  We will then process every other CPU, and then
2396	 * we'll return to the BEGIN CPU and process the rest of the data
2397	 * (which will inevitably include the END probe, if any).  Making this
2398	 * even more complicated (!) is the library's ERROR enabling.  Because
2399	 * this enabling is processed before we even get into the consume call
2400	 * back, any ERROR firing would result in the library's ERROR enabling
2401	 * being processed twice -- once in our first pass (for BEGIN probes),
2402	 * and again in our second pass (for everything but BEGIN probes).  To
2403	 * deal with this, we interpose on the ERROR handler to assure that we
2404	 * only process ERROR enablings induced by BEGIN enablings in the
2405	 * first pass, and that we only process ERROR enablings _not_ induced
2406	 * by BEGIN enablings in the second pass.
2407	 */
2408	dt_begin_t begin;
2409	processorid_t cpu = dtp->dt_beganon;
2410	dtrace_bufdesc_t nbuf;
2411#if !defined(sun)
2412	dtrace_bufdesc_t *pbuf;
2413#endif
2414	int rval, i;
2415	static int max_ncpus;
2416	dtrace_optval_t size;
2417
2418	dtp->dt_beganon = -1;
2419
2420#if defined(sun)
2421	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2422#else
2423	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2424#endif
2425		/*
2426		 * We really don't expect this to fail, but it is at least
2427		 * technically possible for this to fail with ENOENT.  In this
2428		 * case, we just drive on...
2429		 */
2430		if (errno == ENOENT)
2431			return (0);
2432
2433		return (dt_set_errno(dtp, errno));
2434	}
2435
2436	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2437		/*
2438		 * This is the simple case.  We're either not stopped, or if
2439		 * we are, we actually processed any END probes on another
2440		 * CPU.  We can simply consume this buffer and return.
2441		 */
2442		return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
2443	}
2444
2445	begin.dtbgn_probefunc = pf;
2446	begin.dtbgn_recfunc = rf;
2447	begin.dtbgn_arg = arg;
2448	begin.dtbgn_beginonly = 1;
2449
2450	/*
2451	 * We need to interpose on the ERROR handler to be sure that we
2452	 * only process ERRORs induced by BEGIN.
2453	 */
2454	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2455	begin.dtbgn_errarg = dtp->dt_errarg;
2456	dtp->dt_errhdlr = dt_consume_begin_error;
2457	dtp->dt_errarg = &begin;
2458
2459	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2460	    dt_consume_begin_record, &begin);
2461
2462	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2463	dtp->dt_errarg = begin.dtbgn_errarg;
2464
2465	if (rval != 0)
2466		return (rval);
2467
2468	/*
2469	 * Now allocate a new buffer.  We'll use this to deal with every other
2470	 * CPU.
2471	 */
2472	bzero(&nbuf, sizeof (dtrace_bufdesc_t));
2473	(void) dtrace_getopt(dtp, "bufsize", &size);
2474	if ((nbuf.dtbd_data = malloc(size)) == NULL)
2475		return (dt_set_errno(dtp, EDT_NOMEM));
2476
2477	if (max_ncpus == 0)
2478		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2479
2480	for (i = 0; i < max_ncpus; i++) {
2481		nbuf.dtbd_cpu = i;
2482
2483		if (i == cpu)
2484			continue;
2485
2486#if defined(sun)
2487		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
2488#else
2489		pbuf = &nbuf;
2490		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &pbuf) == -1) {
2491#endif
2492			/*
2493			 * If we failed with ENOENT, it may be because the
2494			 * CPU was unconfigured -- this is okay.  Any other
2495			 * error, however, is unexpected.
2496			 */
2497			if (errno == ENOENT)
2498				continue;
2499
2500			free(nbuf.dtbd_data);
2501
2502			return (dt_set_errno(dtp, errno));
2503		}
2504
2505		if ((rval = dt_consume_cpu(dtp, fp,
2506		    i, &nbuf, pf, rf, arg)) != 0) {
2507			free(nbuf.dtbd_data);
2508			return (rval);
2509		}
2510	}
2511
2512	free(nbuf.dtbd_data);
2513
2514	/*
2515	 * Okay -- we're done with the other buffers.  Now we want to
2516	 * reconsume the first buffer -- but this time we're looking for
2517	 * everything _but_ BEGIN.  And of course, in order to only consume
2518	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2519	 * ERROR interposition function...
2520	 */
2521	begin.dtbgn_beginonly = 0;
2522
2523	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2524	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2525	dtp->dt_errhdlr = dt_consume_begin_error;
2526	dtp->dt_errarg = &begin;
2527
2528	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2529	    dt_consume_begin_record, &begin);
2530
2531	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2532	dtp->dt_errarg = begin.dtbgn_errarg;
2533
2534	return (rval);
2535}
2536
2537int
2538dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2539    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2540{
2541	dtrace_bufdesc_t *buf = &dtp->dt_buf;
2542	dtrace_optval_t size;
2543	static int max_ncpus;
2544	int i, rval;
2545	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2546	hrtime_t now = gethrtime();
2547
2548	if (dtp->dt_lastswitch != 0) {
2549		if (now - dtp->dt_lastswitch < interval)
2550			return (0);
2551
2552		dtp->dt_lastswitch += interval;
2553	} else {
2554		dtp->dt_lastswitch = now;
2555	}
2556
2557	if (!dtp->dt_active)
2558		return (dt_set_errno(dtp, EINVAL));
2559
2560	if (max_ncpus == 0)
2561		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2562
2563	if (pf == NULL)
2564		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2565
2566	if (rf == NULL)
2567		rf = (dtrace_consume_rec_f *)dt_nullrec;
2568
2569	if (buf->dtbd_data == NULL) {
2570		(void) dtrace_getopt(dtp, "bufsize", &size);
2571		if ((buf->dtbd_data = malloc(size)) == NULL)
2572			return (dt_set_errno(dtp, EDT_NOMEM));
2573
2574		buf->dtbd_size = size;
2575	}
2576
2577	/*
2578	 * If we have just begun, we want to first process the CPU that
2579	 * executed the BEGIN probe (if any).
2580	 */
2581	if (dtp->dt_active && dtp->dt_beganon != -1) {
2582		buf->dtbd_cpu = dtp->dt_beganon;
2583		if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
2584			return (rval);
2585	}
2586
2587	for (i = 0; i < max_ncpus; i++) {
2588		buf->dtbd_cpu = i;
2589
2590		/*
2591		 * If we have stopped, we want to process the CPU on which the
2592		 * END probe was processed only _after_ we have processed
2593		 * everything else.
2594		 */
2595		if (dtp->dt_stopped && (i == dtp->dt_endedon))
2596			continue;
2597
2598#if defined(sun)
2599		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2600#else
2601		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2602#endif
2603			/*
2604			 * If we failed with ENOENT, it may be because the
2605			 * CPU was unconfigured -- this is okay.  Any other
2606			 * error, however, is unexpected.
2607			 */
2608			if (errno == ENOENT)
2609				continue;
2610
2611			return (dt_set_errno(dtp, errno));
2612		}
2613
2614		if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
2615			return (rval);
2616	}
2617
2618	if (!dtp->dt_stopped)
2619		return (0);
2620
2621	buf->dtbd_cpu = dtp->dt_endedon;
2622
2623#if defined(sun)
2624	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2625#else
2626	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2627#endif
2628		/*
2629		 * This _really_ shouldn't fail, but it is strictly speaking
2630		 * possible for this to return ENOENT if the CPU that called
2631		 * the END enabling somehow managed to become unconfigured.
2632		 * It's unclear how the user can possibly expect anything
2633		 * rational to happen in this case -- the state has been thrown
2634		 * out along with the unconfigured CPU -- so we'll just drive
2635		 * on...
2636		 */
2637		if (errno == ENOENT)
2638			return (0);
2639
2640		return (dt_set_errno(dtp, errno));
2641	}
2642
2643	return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
2644}
2645