dt_consume.c revision 178528
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <stdlib.h>
29#include <strings.h>
30#include <errno.h>
31#include <unistd.h>
32#include <limits.h>
33#include <assert.h>
34#include <ctype.h>
35#include <alloca.h>
36#include <dt_impl.h>
37
38#define	DT_MASK_LO 0x00000000FFFFFFFFULL
39
40/*
41 * We declare this here because (1) we need it and (2) we want to avoid a
42 * dependency on libm in libdtrace.
43 */
44static long double
45dt_fabsl(long double x)
46{
47	if (x < 0)
48		return (-x);
49
50	return (x);
51}
52
53/*
54 * 128-bit arithmetic functions needed to support the stddev() aggregating
55 * action.
56 */
57static int
58dt_gt_128(uint64_t *a, uint64_t *b)
59{
60	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
61}
62
63static int
64dt_ge_128(uint64_t *a, uint64_t *b)
65{
66	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
67}
68
69static int
70dt_le_128(uint64_t *a, uint64_t *b)
71{
72	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
73}
74
75/*
76 * Shift the 128-bit value in a by b. If b is positive, shift left.
77 * If b is negative, shift right.
78 */
79static void
80dt_shift_128(uint64_t *a, int b)
81{
82	uint64_t mask;
83
84	if (b == 0)
85		return;
86
87	if (b < 0) {
88		b = -b;
89		if (b >= 64) {
90			a[0] = a[1] >> (b - 64);
91			a[1] = 0;
92		} else {
93			a[0] >>= b;
94			mask = 1LL << (64 - b);
95			mask -= 1;
96			a[0] |= ((a[1] & mask) << (64 - b));
97			a[1] >>= b;
98		}
99	} else {
100		if (b >= 64) {
101			a[1] = a[0] << (b - 64);
102			a[0] = 0;
103		} else {
104			a[1] <<= b;
105			mask = a[0] >> (64 - b);
106			a[1] |= mask;
107			a[0] <<= b;
108		}
109	}
110}
111
112static int
113dt_nbits_128(uint64_t *a)
114{
115	int nbits = 0;
116	uint64_t tmp[2];
117	uint64_t zero[2] = { 0, 0 };
118
119	tmp[0] = a[0];
120	tmp[1] = a[1];
121
122	dt_shift_128(tmp, -1);
123	while (dt_gt_128(tmp, zero)) {
124		dt_shift_128(tmp, -1);
125		nbits++;
126	}
127
128	return (nbits);
129}
130
131static void
132dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
133{
134	uint64_t result[2];
135
136	result[0] = minuend[0] - subtrahend[0];
137	result[1] = minuend[1] - subtrahend[1] -
138	    (minuend[0] < subtrahend[0] ? 1 : 0);
139
140	difference[0] = result[0];
141	difference[1] = result[1];
142}
143
144static void
145dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
146{
147	uint64_t result[2];
148
149	result[0] = addend1[0] + addend2[0];
150	result[1] = addend1[1] + addend2[1] +
151	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
152
153	sum[0] = result[0];
154	sum[1] = result[1];
155}
156
157/*
158 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
159 * use native multiplication on those, and then re-combine into the
160 * resulting 128-bit value.
161 *
162 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
163 *     hi1 * hi2 << 64 +
164 *     hi1 * lo2 << 32 +
165 *     hi2 * lo1 << 32 +
166 *     lo1 * lo2
167 */
168static void
169dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
170{
171	uint64_t hi1, hi2, lo1, lo2;
172	uint64_t tmp[2];
173
174	hi1 = factor1 >> 32;
175	hi2 = factor2 >> 32;
176
177	lo1 = factor1 & DT_MASK_LO;
178	lo2 = factor2 & DT_MASK_LO;
179
180	product[0] = lo1 * lo2;
181	product[1] = hi1 * hi2;
182
183	tmp[0] = hi1 * lo2;
184	tmp[1] = 0;
185	dt_shift_128(tmp, 32);
186	dt_add_128(product, tmp, product);
187
188	tmp[0] = hi2 * lo1;
189	tmp[1] = 0;
190	dt_shift_128(tmp, 32);
191	dt_add_128(product, tmp, product);
192}
193
194/*
195 * This is long-hand division.
196 *
197 * We initialize subtrahend by shifting divisor left as far as possible. We
198 * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
199 * subtract and set the appropriate bit in the result.  We then shift
200 * subtrahend right by one bit for the next comparison.
201 */
202static void
203dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
204{
205	uint64_t result[2] = { 0, 0 };
206	uint64_t remainder[2];
207	uint64_t subtrahend[2];
208	uint64_t divisor_128[2];
209	uint64_t mask[2] = { 1, 0 };
210	int log = 0;
211
212	assert(divisor != 0);
213
214	divisor_128[0] = divisor;
215	divisor_128[1] = 0;
216
217	remainder[0] = dividend[0];
218	remainder[1] = dividend[1];
219
220	subtrahend[0] = divisor;
221	subtrahend[1] = 0;
222
223	while (divisor > 0) {
224		log++;
225		divisor >>= 1;
226	}
227
228	dt_shift_128(subtrahend, 128 - log);
229	dt_shift_128(mask, 128 - log);
230
231	while (dt_ge_128(remainder, divisor_128)) {
232		if (dt_ge_128(remainder, subtrahend)) {
233			dt_subtract_128(remainder, subtrahend, remainder);
234			result[0] |= mask[0];
235			result[1] |= mask[1];
236		}
237
238		dt_shift_128(subtrahend, -1);
239		dt_shift_128(mask, -1);
240	}
241
242	quotient[0] = result[0];
243	quotient[1] = result[1];
244}
245
246/*
247 * This is the long-hand method of calculating a square root.
248 * The algorithm is as follows:
249 *
250 * 1. Group the digits by 2 from the right.
251 * 2. Over the leftmost group, find the largest single-digit number
252 *    whose square is less than that group.
253 * 3. Subtract the result of the previous step (2 or 4, depending) and
254 *    bring down the next two-digit group.
255 * 4. For the result R we have so far, find the largest single-digit number
256 *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
257 *    (Note that this is doubling R and performing a decimal left-shift by 1
258 *    and searching for the appropriate decimal to fill the one's place.)
259 *    The value x is the next digit in the square root.
260 * Repeat steps 3 and 4 until the desired precision is reached.  (We're
261 * dealing with integers, so the above is sufficient.)
262 *
263 * In decimal, the square root of 582,734 would be calculated as so:
264 *
265 *     __7__6__3
266 *    | 58 27 34
267 *     -49       (7^2 == 49 => 7 is the first digit in the square root)
268 *      --
269 *       9 27    (Subtract and bring down the next group.)
270 * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
271 *      -----     the square root)
272 *         51 34 (Subtract and bring down the next group.)
273 * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
274 *         -----  the square root)
275 *          5 65 (remainder)
276 *
277 * The above algorithm applies similarly in binary, but note that the
278 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
279 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
280 * preceding difference?
281 *
282 * In binary, the square root of 11011011 would be calculated as so:
283 *
284 *     __1__1__1__0
285 *    | 11 01 10 11
286 *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
287 *      --
288 *      10 01 10 11
289 * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
290 *      -----
291 *       1 00 10 11
292 * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
293 *       -------
294 *          1 01 11
295 * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
296 *
297 */
298static uint64_t
299dt_sqrt_128(uint64_t *square)
300{
301	uint64_t result[2] = { 0, 0 };
302	uint64_t diff[2] = { 0, 0 };
303	uint64_t one[2] = { 1, 0 };
304	uint64_t next_pair[2];
305	uint64_t next_try[2];
306	uint64_t bit_pairs, pair_shift;
307	int i;
308
309	bit_pairs = dt_nbits_128(square) / 2;
310	pair_shift = bit_pairs * 2;
311
312	for (i = 0; i <= bit_pairs; i++) {
313		/*
314		 * Bring down the next pair of bits.
315		 */
316		next_pair[0] = square[0];
317		next_pair[1] = square[1];
318		dt_shift_128(next_pair, -pair_shift);
319		next_pair[0] &= 0x3;
320		next_pair[1] = 0;
321
322		dt_shift_128(diff, 2);
323		dt_add_128(diff, next_pair, diff);
324
325		/*
326		 * next_try = R << 2 + 1
327		 */
328		next_try[0] = result[0];
329		next_try[1] = result[1];
330		dt_shift_128(next_try, 2);
331		dt_add_128(next_try, one, next_try);
332
333		if (dt_le_128(next_try, diff)) {
334			dt_subtract_128(diff, next_try, diff);
335			dt_shift_128(result, 1);
336			dt_add_128(result, one, result);
337		} else {
338			dt_shift_128(result, 1);
339		}
340
341		pair_shift -= 2;
342	}
343
344	assert(result[1] == 0);
345
346	return (result[0]);
347}
348
349uint64_t
350dt_stddev(uint64_t *data, uint64_t normal)
351{
352	uint64_t avg_of_squares[2];
353	uint64_t square_of_avg[2];
354	int64_t norm_avg;
355	uint64_t diff[2];
356
357	/*
358	 * The standard approximation for standard deviation is
359	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
360	 * of the average of the squares minus the square of the average.
361	 */
362	dt_divide_128(data + 2, normal, avg_of_squares);
363	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
364
365	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
366
367	if (norm_avg < 0)
368		norm_avg = -norm_avg;
369
370	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
371
372	dt_subtract_128(avg_of_squares, square_of_avg, diff);
373
374	return (dt_sqrt_128(diff));
375}
376
377static int
378dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
379    dtrace_bufdesc_t *buf, size_t offs)
380{
381	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
382	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
383	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
384	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
385	const char *str = NULL;
386	static const char *e_str[2] = { " -> ", " => " };
387	static const char *r_str[2] = { " <- ", " <= " };
388	static const char *ent = "entry", *ret = "return";
389	static int entlen = 0, retlen = 0;
390	dtrace_epid_t next, id = epd->dtepd_epid;
391	int rval;
392
393	if (entlen == 0) {
394		assert(retlen == 0);
395		entlen = strlen(ent);
396		retlen = strlen(ret);
397	}
398
399	/*
400	 * If the name of the probe is "entry" or ends with "-entry", we
401	 * treat it as an entry; if it is "return" or ends with "-return",
402	 * we treat it as a return.  (This allows application-provided probes
403	 * like "method-entry" or "function-entry" to participate in flow
404	 * indentation -- without accidentally misinterpreting popular probe
405	 * names like "carpentry", "gentry" or "Coventry".)
406	 */
407	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
408	    (sub == n || sub[-1] == '-')) {
409		flow = DTRACEFLOW_ENTRY;
410		str = e_str[strcmp(p, "syscall") == 0];
411	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
412	    (sub == n || sub[-1] == '-')) {
413		flow = DTRACEFLOW_RETURN;
414		str = r_str[strcmp(p, "syscall") == 0];
415	}
416
417	/*
418	 * If we're going to indent this, we need to check the ID of our last
419	 * call.  If we're looking at the same probe ID but a different EPID,
420	 * we _don't_ want to indent.  (Yes, there are some minor holes in
421	 * this scheme -- it's a heuristic.)
422	 */
423	if (flow == DTRACEFLOW_ENTRY) {
424		if ((last != DTRACE_EPIDNONE && id != last &&
425		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
426			flow = DTRACEFLOW_NONE;
427	}
428
429	/*
430	 * If we're going to unindent this, it's more difficult to see if
431	 * we don't actually want to unindent it -- we need to look at the
432	 * _next_ EPID.
433	 */
434	if (flow == DTRACEFLOW_RETURN) {
435		offs += epd->dtepd_size;
436
437		do {
438			if (offs >= buf->dtbd_size) {
439				/*
440				 * We're at the end -- maybe.  If the oldest
441				 * record is non-zero, we need to wrap.
442				 */
443				if (buf->dtbd_oldest != 0) {
444					offs = 0;
445				} else {
446					goto out;
447				}
448			}
449
450			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
451
452			if (next == DTRACE_EPIDNONE)
453				offs += sizeof (id);
454		} while (next == DTRACE_EPIDNONE);
455
456		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
457			return (rval);
458
459		if (next != id && npd->dtpd_id == pd->dtpd_id)
460			flow = DTRACEFLOW_NONE;
461	}
462
463out:
464	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
465		data->dtpda_prefix = str;
466	} else {
467		data->dtpda_prefix = "| ";
468	}
469
470	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
471		data->dtpda_indent -= 2;
472
473	data->dtpda_flow = flow;
474
475	return (0);
476}
477
478static int
479dt_nullprobe()
480{
481	return (DTRACE_CONSUME_THIS);
482}
483
484static int
485dt_nullrec()
486{
487	return (DTRACE_CONSUME_NEXT);
488}
489
490int
491dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
492    uint64_t normal, long double total, char positives, char negatives)
493{
494	long double f;
495	uint_t depth, len = 40;
496
497	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
498	const char *spaces = "                                        ";
499
500	assert(strlen(ats) == len && strlen(spaces) == len);
501	assert(!(total == 0 && (positives || negatives)));
502	assert(!(val < 0 && !negatives));
503	assert(!(val > 0 && !positives));
504	assert(!(val != 0 && total == 0));
505
506	if (!negatives) {
507		if (positives) {
508			f = (dt_fabsl((long double)val) * len) / total;
509			depth = (uint_t)(f + 0.5);
510		} else {
511			depth = 0;
512		}
513
514		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
515		    spaces + depth, (long long)val / normal));
516	}
517
518	if (!positives) {
519		f = (dt_fabsl((long double)val) * len) / total;
520		depth = (uint_t)(f + 0.5);
521
522		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
523		    ats + len - depth, (long long)val / normal));
524	}
525
526	/*
527	 * If we're here, we have both positive and negative bucket values.
528	 * To express this graphically, we're going to generate both positive
529	 * and negative bars separated by a centerline.  These bars are half
530	 * the size of normal quantize()/lquantize() bars, so we divide the
531	 * length in half before calculating the bar length.
532	 */
533	len /= 2;
534	ats = &ats[len];
535	spaces = &spaces[len];
536
537	f = (dt_fabsl((long double)val) * len) / total;
538	depth = (uint_t)(f + 0.5);
539
540	if (val <= 0) {
541		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
542		    ats + len - depth, len, "", (long long)val / normal));
543	} else {
544		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
545		    ats + len - depth, spaces + depth,
546		    (long long)val / normal));
547	}
548}
549
550int
551dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
552    size_t size, uint64_t normal)
553{
554	const int64_t *data = addr;
555	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
556	long double total = 0;
557	char positives = 0, negatives = 0;
558
559	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
560		return (dt_set_errno(dtp, EDT_DMISMATCH));
561
562	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
563		first_bin++;
564
565	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
566		/*
567		 * There isn't any data.  This is possible if (and only if)
568		 * negative increment values have been used.  In this case,
569		 * we'll print the buckets around 0.
570		 */
571		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
572		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
573	} else {
574		if (first_bin > 0)
575			first_bin--;
576
577		while (last_bin > 0 && data[last_bin] == 0)
578			last_bin--;
579
580		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
581			last_bin++;
582	}
583
584	for (i = first_bin; i <= last_bin; i++) {
585		positives |= (data[i] > 0);
586		negatives |= (data[i] < 0);
587		total += dt_fabsl((long double)data[i]);
588	}
589
590	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
591	    "------------- Distribution -------------", "count") < 0)
592		return (-1);
593
594	for (i = first_bin; i <= last_bin; i++) {
595		if (dt_printf(dtp, fp, "%16lld ",
596		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
597			return (-1);
598
599		if (dt_print_quantline(dtp, fp, data[i], normal, total,
600		    positives, negatives) < 0)
601			return (-1);
602	}
603
604	return (0);
605}
606
607int
608dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
609    size_t size, uint64_t normal)
610{
611	const int64_t *data = addr;
612	int i, first_bin, last_bin, base;
613	uint64_t arg;
614	long double total = 0;
615	uint16_t step, levels;
616	char positives = 0, negatives = 0;
617
618	if (size < sizeof (uint64_t))
619		return (dt_set_errno(dtp, EDT_DMISMATCH));
620
621	arg = *data++;
622	size -= sizeof (uint64_t);
623
624	base = DTRACE_LQUANTIZE_BASE(arg);
625	step = DTRACE_LQUANTIZE_STEP(arg);
626	levels = DTRACE_LQUANTIZE_LEVELS(arg);
627
628	first_bin = 0;
629	last_bin = levels + 1;
630
631	if (size != sizeof (uint64_t) * (levels + 2))
632		return (dt_set_errno(dtp, EDT_DMISMATCH));
633
634	while (first_bin <= levels + 1 && data[first_bin] == 0)
635		first_bin++;
636
637	if (first_bin > levels + 1) {
638		first_bin = 0;
639		last_bin = 2;
640	} else {
641		if (first_bin > 0)
642			first_bin--;
643
644		while (last_bin > 0 && data[last_bin] == 0)
645			last_bin--;
646
647		if (last_bin < levels + 1)
648			last_bin++;
649	}
650
651	for (i = first_bin; i <= last_bin; i++) {
652		positives |= (data[i] > 0);
653		negatives |= (data[i] < 0);
654		total += dt_fabsl((long double)data[i]);
655	}
656
657	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
658	    "------------- Distribution -------------", "count") < 0)
659		return (-1);
660
661	for (i = first_bin; i <= last_bin; i++) {
662		char c[32];
663		int err;
664
665		if (i == 0) {
666			(void) snprintf(c, sizeof (c), "< %d",
667			    base / (uint32_t)normal);
668			err = dt_printf(dtp, fp, "%16s ", c);
669		} else if (i == levels + 1) {
670			(void) snprintf(c, sizeof (c), ">= %d",
671			    base + (levels * step));
672			err = dt_printf(dtp, fp, "%16s ", c);
673		} else {
674			err = dt_printf(dtp, fp, "%16d ",
675			    base + (i - 1) * step);
676		}
677
678		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
679		    total, positives, negatives) < 0)
680			return (-1);
681	}
682
683	return (0);
684}
685
686/*ARGSUSED*/
687static int
688dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
689    size_t size, uint64_t normal)
690{
691	/* LINTED - alignment */
692	int64_t *data = (int64_t *)addr;
693
694	return (dt_printf(dtp, fp, " %16lld", data[0] ?
695	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
696}
697
698/*ARGSUSED*/
699static int
700dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
701    size_t size, uint64_t normal)
702{
703	/* LINTED - alignment */
704	uint64_t *data = (uint64_t *)addr;
705
706	return (dt_printf(dtp, fp, " %16llu", data[0] ?
707	    (unsigned long long) dt_stddev(data, normal) : 0));
708}
709
710/*ARGSUSED*/
711int
712dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
713    size_t nbytes, int width, int quiet)
714{
715	/*
716	 * If the byte stream is a series of printable characters, followed by
717	 * a terminating byte, we print it out as a string.  Otherwise, we
718	 * assume that it's something else and just print the bytes.
719	 */
720	int i, j, margin = 5;
721	char *c = (char *)addr;
722
723	if (nbytes == 0)
724		return (0);
725
726	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
727		goto raw;
728
729	for (i = 0; i < nbytes; i++) {
730		/*
731		 * We define a "printable character" to be one for which
732		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
733		 * or a character which is either backspace or the bell.
734		 * Backspace and the bell are regrettably special because
735		 * they fail the first two tests -- and yet they are entirely
736		 * printable.  These are the only two control characters that
737		 * have meaning for the terminal and for which isprint(3C) and
738		 * isspace(3C) return 0.
739		 */
740		if (isprint(c[i]) || isspace(c[i]) ||
741		    c[i] == '\b' || c[i] == '\a')
742			continue;
743
744		if (c[i] == '\0' && i > 0) {
745			/*
746			 * This looks like it might be a string.  Before we
747			 * assume that it is indeed a string, check the
748			 * remainder of the byte range; if it contains
749			 * additional non-nul characters, we'll assume that
750			 * it's a binary stream that just happens to look like
751			 * a string, and we'll print out the individual bytes.
752			 */
753			for (j = i + 1; j < nbytes; j++) {
754				if (c[j] != '\0')
755					break;
756			}
757
758			if (j != nbytes)
759				break;
760
761			if (quiet)
762				return (dt_printf(dtp, fp, "%s", c));
763			else
764				return (dt_printf(dtp, fp, "  %-*s", width, c));
765		}
766
767		break;
768	}
769
770	if (i == nbytes) {
771		/*
772		 * The byte range is all printable characters, but there is
773		 * no trailing nul byte.  We'll assume that it's a string and
774		 * print it as such.
775		 */
776		char *s = alloca(nbytes + 1);
777		bcopy(c, s, nbytes);
778		s[nbytes] = '\0';
779		return (dt_printf(dtp, fp, "  %-*s", width, s));
780	}
781
782raw:
783	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
784		return (-1);
785
786	for (i = 0; i < 16; i++)
787		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
788			return (-1);
789
790	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
791		return (-1);
792
793
794	for (i = 0; i < nbytes; i += 16) {
795		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
796			return (-1);
797
798		for (j = i; j < i + 16 && j < nbytes; j++) {
799			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
800				return (-1);
801		}
802
803		while (j++ % 16) {
804			if (dt_printf(dtp, fp, "   ") < 0)
805				return (-1);
806		}
807
808		if (dt_printf(dtp, fp, "  ") < 0)
809			return (-1);
810
811		for (j = i; j < i + 16 && j < nbytes; j++) {
812			if (dt_printf(dtp, fp, "%c",
813			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
814				return (-1);
815		}
816
817		if (dt_printf(dtp, fp, "\n") < 0)
818			return (-1);
819	}
820
821	return (0);
822}
823
824int
825dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
826    caddr_t addr, int depth, int size)
827{
828	dtrace_syminfo_t dts;
829	GElf_Sym sym;
830	int i, indent;
831	char c[PATH_MAX * 2];
832	uint64_t pc;
833
834	if (dt_printf(dtp, fp, "\n") < 0)
835		return (-1);
836
837	if (format == NULL)
838		format = "%s";
839
840	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
841		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
842	else
843		indent = _dtrace_stkindent;
844
845	for (i = 0; i < depth; i++) {
846		switch (size) {
847		case sizeof (uint32_t):
848			/* LINTED - alignment */
849			pc = *((uint32_t *)addr);
850			break;
851
852		case sizeof (uint64_t):
853			/* LINTED - alignment */
854			pc = *((uint64_t *)addr);
855			break;
856
857		default:
858			return (dt_set_errno(dtp, EDT_BADSTACKPC));
859		}
860
861		if (pc == NULL)
862			break;
863
864		addr += size;
865
866		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
867			return (-1);
868
869		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
870			if (pc > sym.st_value) {
871				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
872				    dts.dts_object, dts.dts_name,
873				    pc - sym.st_value);
874			} else {
875				(void) snprintf(c, sizeof (c), "%s`%s",
876				    dts.dts_object, dts.dts_name);
877			}
878		} else {
879			/*
880			 * We'll repeat the lookup, but this time we'll specify
881			 * a NULL GElf_Sym -- indicating that we're only
882			 * interested in the containing module.
883			 */
884			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
885				(void) snprintf(c, sizeof (c), "%s`0x%llx",
886				    dts.dts_object, pc);
887			} else {
888				(void) snprintf(c, sizeof (c), "0x%llx", pc);
889			}
890		}
891
892		if (dt_printf(dtp, fp, format, c) < 0)
893			return (-1);
894
895		if (dt_printf(dtp, fp, "\n") < 0)
896			return (-1);
897	}
898
899	return (0);
900}
901
902int
903dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
904    caddr_t addr, uint64_t arg)
905{
906	/* LINTED - alignment */
907	uint64_t *pc = (uint64_t *)addr;
908	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
909	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
910	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
911	const char *str = strsize ? strbase : NULL;
912	int err = 0;
913
914	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
915	struct ps_prochandle *P;
916	GElf_Sym sym;
917	int i, indent;
918	pid_t pid;
919
920	if (depth == 0)
921		return (0);
922
923	pid = (pid_t)*pc++;
924
925	if (dt_printf(dtp, fp, "\n") < 0)
926		return (-1);
927
928	if (format == NULL)
929		format = "%s";
930
931	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
932		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
933	else
934		indent = _dtrace_stkindent;
935
936	/*
937	 * Ultimately, we need to add an entry point in the library vector for
938	 * determining <symbol, offset> from <pid, address>.  For now, if
939	 * this is a vector open, we just print the raw address or string.
940	 */
941	if (dtp->dt_vector == NULL)
942		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
943	else
944		P = NULL;
945
946	if (P != NULL)
947		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
948
949	for (i = 0; i < depth && pc[i] != NULL; i++) {
950		const prmap_t *map;
951
952		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
953			break;
954
955		if (P != NULL && Plookup_by_addr(P, pc[i],
956		    name, sizeof (name), &sym) == 0) {
957			(void) Pobjname(P, pc[i], objname, sizeof (objname));
958
959			if (pc[i] > sym.st_value) {
960				(void) snprintf(c, sizeof (c),
961				    "%s`%s+0x%llx", dt_basename(objname), name,
962				    (u_longlong_t)(pc[i] - sym.st_value));
963			} else {
964				(void) snprintf(c, sizeof (c),
965				    "%s`%s", dt_basename(objname), name);
966			}
967		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
968		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
969		    (map->pr_mflags & MA_WRITE)))) {
970			/*
971			 * If the current string pointer in the string table
972			 * does not point to an empty string _and_ the program
973			 * counter falls in a writable region, we'll use the
974			 * string from the string table instead of the raw
975			 * address.  This last condition is necessary because
976			 * some (broken) ustack helpers will return a string
977			 * even for a program counter that they can't
978			 * identify.  If we have a string for a program
979			 * counter that falls in a segment that isn't
980			 * writable, we assume that we have fallen into this
981			 * case and we refuse to use the string.
982			 */
983			(void) snprintf(c, sizeof (c), "%s", str);
984		} else {
985			if (P != NULL && Pobjname(P, pc[i], objname,
986			    sizeof (objname)) != NULL) {
987				(void) snprintf(c, sizeof (c), "%s`0x%llx",
988				    dt_basename(objname), (u_longlong_t)pc[i]);
989			} else {
990				(void) snprintf(c, sizeof (c), "0x%llx",
991				    (u_longlong_t)pc[i]);
992			}
993		}
994
995		if ((err = dt_printf(dtp, fp, format, c)) < 0)
996			break;
997
998		if ((err = dt_printf(dtp, fp, "\n")) < 0)
999			break;
1000
1001		if (str != NULL && str[0] == '@') {
1002			/*
1003			 * If the first character of the string is an "at" sign,
1004			 * then the string is inferred to be an annotation --
1005			 * and it is printed out beneath the frame and offset
1006			 * with brackets.
1007			 */
1008			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1009				break;
1010
1011			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1012
1013			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1014				break;
1015
1016			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1017				break;
1018		}
1019
1020		if (str != NULL) {
1021			str += strlen(str) + 1;
1022			if (str - strbase >= strsize)
1023				str = NULL;
1024		}
1025	}
1026
1027	if (P != NULL) {
1028		dt_proc_unlock(dtp, P);
1029		dt_proc_release(dtp, P);
1030	}
1031
1032	return (err);
1033}
1034
1035static int
1036dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1037{
1038	/* LINTED - alignment */
1039	uint64_t pid = ((uint64_t *)addr)[0];
1040	/* LINTED - alignment */
1041	uint64_t pc = ((uint64_t *)addr)[1];
1042	const char *format = "  %-50s";
1043	char *s;
1044	int n, len = 256;
1045
1046	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1047		struct ps_prochandle *P;
1048
1049		if ((P = dt_proc_grab(dtp, pid,
1050		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1051			GElf_Sym sym;
1052
1053			dt_proc_lock(dtp, P);
1054
1055			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1056				pc = sym.st_value;
1057
1058			dt_proc_unlock(dtp, P);
1059			dt_proc_release(dtp, P);
1060		}
1061	}
1062
1063	do {
1064		n = len;
1065		s = alloca(n);
1066	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) >= n);
1067
1068	return (dt_printf(dtp, fp, format, s));
1069}
1070
1071int
1072dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1073{
1074	/* LINTED - alignment */
1075	uint64_t pid = ((uint64_t *)addr)[0];
1076	/* LINTED - alignment */
1077	uint64_t pc = ((uint64_t *)addr)[1];
1078	int err = 0;
1079
1080	char objname[PATH_MAX], c[PATH_MAX * 2];
1081	struct ps_prochandle *P;
1082
1083	if (format == NULL)
1084		format = "  %-50s";
1085
1086	/*
1087	 * See the comment in dt_print_ustack() for the rationale for
1088	 * printing raw addresses in the vectored case.
1089	 */
1090	if (dtp->dt_vector == NULL)
1091		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1092	else
1093		P = NULL;
1094
1095	if (P != NULL)
1096		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1097
1098	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != NULL) {
1099		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1100	} else {
1101		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1102	}
1103
1104	err = dt_printf(dtp, fp, format, c);
1105
1106	if (P != NULL) {
1107		dt_proc_unlock(dtp, P);
1108		dt_proc_release(dtp, P);
1109	}
1110
1111	return (err);
1112}
1113
1114static int
1115dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1116{
1117	/* LINTED - alignment */
1118	uint64_t pc = *((uint64_t *)addr);
1119	dtrace_syminfo_t dts;
1120	GElf_Sym sym;
1121	char c[PATH_MAX * 2];
1122
1123	if (format == NULL)
1124		format = "  %-50s";
1125
1126	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1127		(void) snprintf(c, sizeof (c), "%s`%s",
1128		    dts.dts_object, dts.dts_name);
1129	} else {
1130		/*
1131		 * We'll repeat the lookup, but this time we'll specify a
1132		 * NULL GElf_Sym -- indicating that we're only interested in
1133		 * the containing module.
1134		 */
1135		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1136			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1137			    dts.dts_object, (u_longlong_t)pc);
1138		} else {
1139			(void) snprintf(c, sizeof (c), "0x%llx",
1140			    (u_longlong_t)pc);
1141		}
1142	}
1143
1144	if (dt_printf(dtp, fp, format, c) < 0)
1145		return (-1);
1146
1147	return (0);
1148}
1149
1150int
1151dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1152{
1153	/* LINTED - alignment */
1154	uint64_t pc = *((uint64_t *)addr);
1155	dtrace_syminfo_t dts;
1156	char c[PATH_MAX * 2];
1157
1158	if (format == NULL)
1159		format = "  %-50s";
1160
1161	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1162		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1163	} else {
1164		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1165	}
1166
1167	if (dt_printf(dtp, fp, format, c) < 0)
1168		return (-1);
1169
1170	return (0);
1171}
1172
1173typedef struct dt_normal {
1174	dtrace_aggvarid_t dtnd_id;
1175	uint64_t dtnd_normal;
1176} dt_normal_t;
1177
1178static int
1179dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1180{
1181	dt_normal_t *normal = arg;
1182	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1183	dtrace_aggvarid_t id = normal->dtnd_id;
1184
1185	if (agg->dtagd_nrecs == 0)
1186		return (DTRACE_AGGWALK_NEXT);
1187
1188	if (agg->dtagd_varid != id)
1189		return (DTRACE_AGGWALK_NEXT);
1190
1191	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1192	return (DTRACE_AGGWALK_NORMALIZE);
1193}
1194
1195static int
1196dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1197{
1198	dt_normal_t normal;
1199	caddr_t addr;
1200
1201	/*
1202	 * We (should) have two records:  the aggregation ID followed by the
1203	 * normalization value.
1204	 */
1205	addr = base + rec->dtrd_offset;
1206
1207	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1208		return (dt_set_errno(dtp, EDT_BADNORMAL));
1209
1210	/* LINTED - alignment */
1211	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1212	rec++;
1213
1214	if (rec->dtrd_action != DTRACEACT_LIBACT)
1215		return (dt_set_errno(dtp, EDT_BADNORMAL));
1216
1217	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1218		return (dt_set_errno(dtp, EDT_BADNORMAL));
1219
1220	addr = base + rec->dtrd_offset;
1221
1222	switch (rec->dtrd_size) {
1223	case sizeof (uint64_t):
1224		/* LINTED - alignment */
1225		normal.dtnd_normal = *((uint64_t *)addr);
1226		break;
1227	case sizeof (uint32_t):
1228		/* LINTED - alignment */
1229		normal.dtnd_normal = *((uint32_t *)addr);
1230		break;
1231	case sizeof (uint16_t):
1232		/* LINTED - alignment */
1233		normal.dtnd_normal = *((uint16_t *)addr);
1234		break;
1235	case sizeof (uint8_t):
1236		normal.dtnd_normal = *((uint8_t *)addr);
1237		break;
1238	default:
1239		return (dt_set_errno(dtp, EDT_BADNORMAL));
1240	}
1241
1242	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1243
1244	return (0);
1245}
1246
1247static int
1248dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1249{
1250	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1251	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1252
1253	if (agg->dtagd_nrecs == 0)
1254		return (DTRACE_AGGWALK_NEXT);
1255
1256	if (agg->dtagd_varid != id)
1257		return (DTRACE_AGGWALK_NEXT);
1258
1259	return (DTRACE_AGGWALK_DENORMALIZE);
1260}
1261
1262static int
1263dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1264{
1265	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1266	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1267
1268	if (agg->dtagd_nrecs == 0)
1269		return (DTRACE_AGGWALK_NEXT);
1270
1271	if (agg->dtagd_varid != id)
1272		return (DTRACE_AGGWALK_NEXT);
1273
1274	return (DTRACE_AGGWALK_CLEAR);
1275}
1276
1277typedef struct dt_trunc {
1278	dtrace_aggvarid_t dttd_id;
1279	uint64_t dttd_remaining;
1280} dt_trunc_t;
1281
1282static int
1283dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1284{
1285	dt_trunc_t *trunc = arg;
1286	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1287	dtrace_aggvarid_t id = trunc->dttd_id;
1288
1289	if (agg->dtagd_nrecs == 0)
1290		return (DTRACE_AGGWALK_NEXT);
1291
1292	if (agg->dtagd_varid != id)
1293		return (DTRACE_AGGWALK_NEXT);
1294
1295	if (trunc->dttd_remaining == 0)
1296		return (DTRACE_AGGWALK_REMOVE);
1297
1298	trunc->dttd_remaining--;
1299	return (DTRACE_AGGWALK_NEXT);
1300}
1301
1302static int
1303dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1304{
1305	dt_trunc_t trunc;
1306	caddr_t addr;
1307	int64_t remaining;
1308	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1309
1310	/*
1311	 * We (should) have two records:  the aggregation ID followed by the
1312	 * number of aggregation entries after which the aggregation is to be
1313	 * truncated.
1314	 */
1315	addr = base + rec->dtrd_offset;
1316
1317	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1318		return (dt_set_errno(dtp, EDT_BADTRUNC));
1319
1320	/* LINTED - alignment */
1321	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1322	rec++;
1323
1324	if (rec->dtrd_action != DTRACEACT_LIBACT)
1325		return (dt_set_errno(dtp, EDT_BADTRUNC));
1326
1327	if (rec->dtrd_arg != DT_ACT_TRUNC)
1328		return (dt_set_errno(dtp, EDT_BADTRUNC));
1329
1330	addr = base + rec->dtrd_offset;
1331
1332	switch (rec->dtrd_size) {
1333	case sizeof (uint64_t):
1334		/* LINTED - alignment */
1335		remaining = *((int64_t *)addr);
1336		break;
1337	case sizeof (uint32_t):
1338		/* LINTED - alignment */
1339		remaining = *((int32_t *)addr);
1340		break;
1341	case sizeof (uint16_t):
1342		/* LINTED - alignment */
1343		remaining = *((int16_t *)addr);
1344		break;
1345	case sizeof (uint8_t):
1346		remaining = *((int8_t *)addr);
1347		break;
1348	default:
1349		return (dt_set_errno(dtp, EDT_BADNORMAL));
1350	}
1351
1352	if (remaining < 0) {
1353		func = dtrace_aggregate_walk_valsorted;
1354		remaining = -remaining;
1355	} else {
1356		func = dtrace_aggregate_walk_valrevsorted;
1357	}
1358
1359	assert(remaining >= 0);
1360	trunc.dttd_remaining = remaining;
1361
1362	(void) func(dtp, dt_trunc_agg, &trunc);
1363
1364	return (0);
1365}
1366
1367static int
1368dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1369    caddr_t addr, size_t size, uint64_t normal)
1370{
1371	int err;
1372	dtrace_actkind_t act = rec->dtrd_action;
1373
1374	switch (act) {
1375	case DTRACEACT_STACK:
1376		return (dt_print_stack(dtp, fp, NULL, addr,
1377		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1378
1379	case DTRACEACT_USTACK:
1380	case DTRACEACT_JSTACK:
1381		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1382
1383	case DTRACEACT_USYM:
1384	case DTRACEACT_UADDR:
1385		return (dt_print_usym(dtp, fp, addr, act));
1386
1387	case DTRACEACT_UMOD:
1388		return (dt_print_umod(dtp, fp, NULL, addr));
1389
1390	case DTRACEACT_SYM:
1391		return (dt_print_sym(dtp, fp, NULL, addr));
1392
1393	case DTRACEACT_MOD:
1394		return (dt_print_mod(dtp, fp, NULL, addr));
1395
1396	case DTRACEAGG_QUANTIZE:
1397		return (dt_print_quantize(dtp, fp, addr, size, normal));
1398
1399	case DTRACEAGG_LQUANTIZE:
1400		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1401
1402	case DTRACEAGG_AVG:
1403		return (dt_print_average(dtp, fp, addr, size, normal));
1404
1405	case DTRACEAGG_STDDEV:
1406		return (dt_print_stddev(dtp, fp, addr, size, normal));
1407
1408	default:
1409		break;
1410	}
1411
1412	switch (size) {
1413	case sizeof (uint64_t):
1414		err = dt_printf(dtp, fp, " %16lld",
1415		    /* LINTED - alignment */
1416		    (long long)*((uint64_t *)addr) / normal);
1417		break;
1418	case sizeof (uint32_t):
1419		/* LINTED - alignment */
1420		err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1421		    (uint32_t)normal);
1422		break;
1423	case sizeof (uint16_t):
1424		/* LINTED - alignment */
1425		err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1426		    (uint32_t)normal);
1427		break;
1428	case sizeof (uint8_t):
1429		err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1430		    (uint32_t)normal);
1431		break;
1432	default:
1433		err = dt_print_bytes(dtp, fp, addr, size, 50, 0);
1434		break;
1435	}
1436
1437	return (err);
1438}
1439
1440int
1441dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1442{
1443	int i, aggact = 0;
1444	dt_print_aggdata_t *pd = arg;
1445	const dtrace_aggdata_t *aggdata = aggsdata[0];
1446	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1447	FILE *fp = pd->dtpa_fp;
1448	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1449	dtrace_recdesc_t *rec;
1450	dtrace_actkind_t act;
1451	caddr_t addr;
1452	size_t size;
1453
1454	/*
1455	 * Iterate over each record description in the key, printing the traced
1456	 * data, skipping the first datum (the tuple member created by the
1457	 * compiler).
1458	 */
1459	for (i = 1; i < agg->dtagd_nrecs; i++) {
1460		rec = &agg->dtagd_rec[i];
1461		act = rec->dtrd_action;
1462		addr = aggdata->dtada_data + rec->dtrd_offset;
1463		size = rec->dtrd_size;
1464
1465		if (DTRACEACT_ISAGG(act)) {
1466			aggact = i;
1467			break;
1468		}
1469
1470		if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1471			return (-1);
1472
1473		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1474		    DTRACE_BUFDATA_AGGKEY) < 0)
1475			return (-1);
1476	}
1477
1478	assert(aggact != 0);
1479
1480	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1481		uint64_t normal;
1482
1483		aggdata = aggsdata[i];
1484		agg = aggdata->dtada_desc;
1485		rec = &agg->dtagd_rec[aggact];
1486		act = rec->dtrd_action;
1487		addr = aggdata->dtada_data + rec->dtrd_offset;
1488		size = rec->dtrd_size;
1489
1490		assert(DTRACEACT_ISAGG(act));
1491		normal = aggdata->dtada_normal;
1492
1493		if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1494			return (-1);
1495
1496		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1497		    DTRACE_BUFDATA_AGGVAL) < 0)
1498			return (-1);
1499
1500		if (!pd->dtpa_allunprint)
1501			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1502	}
1503
1504	if (dt_printf(dtp, fp, "\n") < 0)
1505		return (-1);
1506
1507	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1508	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1509		return (-1);
1510
1511	return (0);
1512}
1513
1514int
1515dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1516{
1517	dt_print_aggdata_t *pd = arg;
1518	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1519	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1520
1521	if (pd->dtpa_allunprint) {
1522		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1523			return (0);
1524	} else {
1525		/*
1526		 * If we're not printing all unprinted aggregations, then the
1527		 * aggregation variable ID denotes a specific aggregation
1528		 * variable that we should print -- skip any other aggregations
1529		 * that we encounter.
1530		 */
1531		if (agg->dtagd_nrecs == 0)
1532			return (0);
1533
1534		if (aggvarid != agg->dtagd_varid)
1535			return (0);
1536	}
1537
1538	return (dt_print_aggs(&aggdata, 1, arg));
1539}
1540
1541int
1542dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1543    const char *option, const char *value)
1544{
1545	int len, rval;
1546	char *msg;
1547	const char *errstr;
1548	dtrace_setoptdata_t optdata;
1549
1550	bzero(&optdata, sizeof (optdata));
1551	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1552
1553	if (dtrace_setopt(dtp, option, value) == 0) {
1554		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1555		optdata.dtsda_probe = data;
1556		optdata.dtsda_option = option;
1557		optdata.dtsda_handle = dtp;
1558
1559		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1560			return (rval);
1561
1562		return (0);
1563	}
1564
1565	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1566	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1567	msg = alloca(len);
1568
1569	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
1570	    option, value, errstr);
1571
1572	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
1573		return (0);
1574
1575	return (rval);
1576}
1577
1578static int
1579dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
1580    dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
1581{
1582	dtrace_epid_t id;
1583	size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
1584	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
1585	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1586	int rval, i, n;
1587	dtrace_epid_t last = DTRACE_EPIDNONE;
1588	dtrace_probedata_t data;
1589	uint64_t drops;
1590	caddr_t addr;
1591
1592	bzero(&data, sizeof (data));
1593	data.dtpda_handle = dtp;
1594	data.dtpda_cpu = cpu;
1595
1596again:
1597	for (offs = start; offs < end; ) {
1598		dtrace_eprobedesc_t *epd;
1599
1600		/*
1601		 * We're guaranteed to have an ID.
1602		 */
1603		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
1604
1605		if (id == DTRACE_EPIDNONE) {
1606			/*
1607			 * This is filler to assure proper alignment of the
1608			 * next record; we simply ignore it.
1609			 */
1610			offs += sizeof (id);
1611			continue;
1612		}
1613
1614		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
1615		    &data.dtpda_pdesc)) != 0)
1616			return (rval);
1617
1618		epd = data.dtpda_edesc;
1619		data.dtpda_data = buf->dtbd_data + offs;
1620
1621		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
1622			rval = dt_handle(dtp, &data);
1623
1624			if (rval == DTRACE_CONSUME_NEXT)
1625				goto nextepid;
1626
1627			if (rval == DTRACE_CONSUME_ERROR)
1628				return (-1);
1629		}
1630
1631		if (flow)
1632			(void) dt_flowindent(dtp, &data, last, buf, offs);
1633
1634		rval = (*efunc)(&data, arg);
1635
1636		if (flow) {
1637			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
1638				data.dtpda_indent += 2;
1639		}
1640
1641		if (rval == DTRACE_CONSUME_NEXT)
1642			goto nextepid;
1643
1644		if (rval == DTRACE_CONSUME_ABORT)
1645			return (dt_set_errno(dtp, EDT_DIRABORT));
1646
1647		if (rval != DTRACE_CONSUME_THIS)
1648			return (dt_set_errno(dtp, EDT_BADRVAL));
1649
1650		for (i = 0; i < epd->dtepd_nrecs; i++) {
1651			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
1652			dtrace_actkind_t act = rec->dtrd_action;
1653
1654			data.dtpda_data = buf->dtbd_data + offs +
1655			    rec->dtrd_offset;
1656			addr = data.dtpda_data;
1657
1658			if (act == DTRACEACT_LIBACT) {
1659				uint64_t arg = rec->dtrd_arg;
1660				dtrace_aggvarid_t id;
1661
1662				switch (arg) {
1663				case DT_ACT_CLEAR:
1664					/* LINTED - alignment */
1665					id = *((dtrace_aggvarid_t *)addr);
1666					(void) dtrace_aggregate_walk(dtp,
1667					    dt_clear_agg, &id);
1668					continue;
1669
1670				case DT_ACT_DENORMALIZE:
1671					/* LINTED - alignment */
1672					id = *((dtrace_aggvarid_t *)addr);
1673					(void) dtrace_aggregate_walk(dtp,
1674					    dt_denormalize_agg, &id);
1675					continue;
1676
1677				case DT_ACT_FTRUNCATE:
1678					if (fp == NULL)
1679						continue;
1680
1681					(void) fflush(fp);
1682					(void) ftruncate(fileno(fp), 0);
1683					(void) fseeko(fp, 0, SEEK_SET);
1684					continue;
1685
1686				case DT_ACT_NORMALIZE:
1687					if (i == epd->dtepd_nrecs - 1)
1688						return (dt_set_errno(dtp,
1689						    EDT_BADNORMAL));
1690
1691					if (dt_normalize(dtp,
1692					    buf->dtbd_data + offs, rec) != 0)
1693						return (-1);
1694
1695					i++;
1696					continue;
1697
1698				case DT_ACT_SETOPT: {
1699					uint64_t *opts = dtp->dt_options;
1700					dtrace_recdesc_t *valrec;
1701					uint32_t valsize;
1702					caddr_t val;
1703					int rv;
1704
1705					if (i == epd->dtepd_nrecs - 1) {
1706						return (dt_set_errno(dtp,
1707						    EDT_BADSETOPT));
1708					}
1709
1710					valrec = &epd->dtepd_rec[++i];
1711					valsize = valrec->dtrd_size;
1712
1713					if (valrec->dtrd_action != act ||
1714					    valrec->dtrd_arg != arg) {
1715						return (dt_set_errno(dtp,
1716						    EDT_BADSETOPT));
1717					}
1718
1719					if (valsize > sizeof (uint64_t)) {
1720						val = buf->dtbd_data + offs +
1721						    valrec->dtrd_offset;
1722					} else {
1723						val = "1";
1724					}
1725
1726					rv = dt_setopt(dtp, &data, addr, val);
1727
1728					if (rv != 0)
1729						return (-1);
1730
1731					flow = (opts[DTRACEOPT_FLOWINDENT] !=
1732					    DTRACEOPT_UNSET);
1733					quiet = (opts[DTRACEOPT_QUIET] !=
1734					    DTRACEOPT_UNSET);
1735
1736					continue;
1737				}
1738
1739				case DT_ACT_TRUNC:
1740					if (i == epd->dtepd_nrecs - 1)
1741						return (dt_set_errno(dtp,
1742						    EDT_BADTRUNC));
1743
1744					if (dt_trunc(dtp,
1745					    buf->dtbd_data + offs, rec) != 0)
1746						return (-1);
1747
1748					i++;
1749					continue;
1750
1751				default:
1752					continue;
1753				}
1754			}
1755
1756			rval = (*rfunc)(&data, rec, arg);
1757
1758			if (rval == DTRACE_CONSUME_NEXT)
1759				continue;
1760
1761			if (rval == DTRACE_CONSUME_ABORT)
1762				return (dt_set_errno(dtp, EDT_DIRABORT));
1763
1764			if (rval != DTRACE_CONSUME_THIS)
1765				return (dt_set_errno(dtp, EDT_BADRVAL));
1766
1767			if (act == DTRACEACT_STACK) {
1768				int depth = rec->dtrd_arg;
1769
1770				if (dt_print_stack(dtp, fp, NULL, addr, depth,
1771				    rec->dtrd_size / depth) < 0)
1772					return (-1);
1773				goto nextrec;
1774			}
1775
1776			if (act == DTRACEACT_USTACK ||
1777			    act == DTRACEACT_JSTACK) {
1778				if (dt_print_ustack(dtp, fp, NULL,
1779				    addr, rec->dtrd_arg) < 0)
1780					return (-1);
1781				goto nextrec;
1782			}
1783
1784			if (act == DTRACEACT_SYM) {
1785				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
1786					return (-1);
1787				goto nextrec;
1788			}
1789
1790			if (act == DTRACEACT_MOD) {
1791				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
1792					return (-1);
1793				goto nextrec;
1794			}
1795
1796			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
1797				if (dt_print_usym(dtp, fp, addr, act) < 0)
1798					return (-1);
1799				goto nextrec;
1800			}
1801
1802			if (act == DTRACEACT_UMOD) {
1803				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
1804					return (-1);
1805				goto nextrec;
1806			}
1807
1808			if (DTRACEACT_ISPRINTFLIKE(act)) {
1809				void *fmtdata;
1810				int (*func)(dtrace_hdl_t *, FILE *, void *,
1811				    const dtrace_probedata_t *,
1812				    const dtrace_recdesc_t *, uint_t,
1813				    const void *buf, size_t);
1814
1815				if ((fmtdata = dt_format_lookup(dtp,
1816				    rec->dtrd_format)) == NULL)
1817					goto nofmt;
1818
1819				switch (act) {
1820				case DTRACEACT_PRINTF:
1821					func = dtrace_fprintf;
1822					break;
1823				case DTRACEACT_PRINTA:
1824					func = dtrace_fprinta;
1825					break;
1826				case DTRACEACT_SYSTEM:
1827					func = dtrace_system;
1828					break;
1829				case DTRACEACT_FREOPEN:
1830					func = dtrace_freopen;
1831					break;
1832				}
1833
1834				n = (*func)(dtp, fp, fmtdata, &data,
1835				    rec, epd->dtepd_nrecs - i,
1836				    (uchar_t *)buf->dtbd_data + offs,
1837				    buf->dtbd_size - offs);
1838
1839				if (n < 0)
1840					return (-1); /* errno is set for us */
1841
1842				if (n > 0)
1843					i += n - 1;
1844				goto nextrec;
1845			}
1846
1847nofmt:
1848			if (act == DTRACEACT_PRINTA) {
1849				dt_print_aggdata_t pd;
1850				dtrace_aggvarid_t *aggvars;
1851				int j, naggvars = 0;
1852				size_t size = ((epd->dtepd_nrecs - i) *
1853				    sizeof (dtrace_aggvarid_t));
1854
1855				if ((aggvars = dt_alloc(dtp, size)) == NULL)
1856					return (-1);
1857
1858				/*
1859				 * This might be a printa() with multiple
1860				 * aggregation variables.  We need to scan
1861				 * forward through the records until we find
1862				 * a record from a different statement.
1863				 */
1864				for (j = i; j < epd->dtepd_nrecs; j++) {
1865					dtrace_recdesc_t *nrec;
1866					caddr_t naddr;
1867
1868					nrec = &epd->dtepd_rec[j];
1869
1870					if (nrec->dtrd_uarg != rec->dtrd_uarg)
1871						break;
1872
1873					if (nrec->dtrd_action != act) {
1874						return (dt_set_errno(dtp,
1875						    EDT_BADAGG));
1876					}
1877
1878					naddr = buf->dtbd_data + offs +
1879					    nrec->dtrd_offset;
1880
1881					aggvars[naggvars++] =
1882					    /* LINTED - alignment */
1883					    *((dtrace_aggvarid_t *)naddr);
1884				}
1885
1886				i = j - 1;
1887				bzero(&pd, sizeof (pd));
1888				pd.dtpa_dtp = dtp;
1889				pd.dtpa_fp = fp;
1890
1891				assert(naggvars >= 1);
1892
1893				if (naggvars == 1) {
1894					pd.dtpa_id = aggvars[0];
1895					dt_free(dtp, aggvars);
1896
1897					if (dt_printf(dtp, fp, "\n") < 0 ||
1898					    dtrace_aggregate_walk_sorted(dtp,
1899					    dt_print_agg, &pd) < 0)
1900						return (-1);
1901					goto nextrec;
1902				}
1903
1904				if (dt_printf(dtp, fp, "\n") < 0 ||
1905				    dtrace_aggregate_walk_joined(dtp, aggvars,
1906				    naggvars, dt_print_aggs, &pd) < 0) {
1907					dt_free(dtp, aggvars);
1908					return (-1);
1909				}
1910
1911				dt_free(dtp, aggvars);
1912				goto nextrec;
1913			}
1914
1915			switch (rec->dtrd_size) {
1916			case sizeof (uint64_t):
1917				n = dt_printf(dtp, fp,
1918				    quiet ? "%lld" : " %16lld",
1919				    /* LINTED - alignment */
1920				    *((unsigned long long *)addr));
1921				break;
1922			case sizeof (uint32_t):
1923				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
1924				    /* LINTED - alignment */
1925				    *((uint32_t *)addr));
1926				break;
1927			case sizeof (uint16_t):
1928				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
1929				    /* LINTED - alignment */
1930				    *((uint16_t *)addr));
1931				break;
1932			case sizeof (uint8_t):
1933				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
1934				    *((uint8_t *)addr));
1935				break;
1936			default:
1937				n = dt_print_bytes(dtp, fp, addr,
1938				    rec->dtrd_size, 33, quiet);
1939				break;
1940			}
1941
1942			if (n < 0)
1943				return (-1); /* errno is set for us */
1944
1945nextrec:
1946			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
1947				return (-1); /* errno is set for us */
1948		}
1949
1950		/*
1951		 * Call the record callback with a NULL record to indicate
1952		 * that we're done processing this EPID.
1953		 */
1954		rval = (*rfunc)(&data, NULL, arg);
1955nextepid:
1956		offs += epd->dtepd_size;
1957		last = id;
1958	}
1959
1960	if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
1961		end = buf->dtbd_oldest;
1962		start = 0;
1963		goto again;
1964	}
1965
1966	if ((drops = buf->dtbd_drops) == 0)
1967		return (0);
1968
1969	/*
1970	 * Explicitly zero the drops to prevent us from processing them again.
1971	 */
1972	buf->dtbd_drops = 0;
1973
1974	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
1975}
1976
1977typedef struct dt_begin {
1978	dtrace_consume_probe_f *dtbgn_probefunc;
1979	dtrace_consume_rec_f *dtbgn_recfunc;
1980	void *dtbgn_arg;
1981	dtrace_handle_err_f *dtbgn_errhdlr;
1982	void *dtbgn_errarg;
1983	int dtbgn_beginonly;
1984} dt_begin_t;
1985
1986static int
1987dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
1988{
1989	dt_begin_t *begin = (dt_begin_t *)arg;
1990	dtrace_probedesc_t *pd = data->dtpda_pdesc;
1991
1992	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
1993	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
1994
1995	if (begin->dtbgn_beginonly) {
1996		if (!(r1 && r2))
1997			return (DTRACE_CONSUME_NEXT);
1998	} else {
1999		if (r1 && r2)
2000			return (DTRACE_CONSUME_NEXT);
2001	}
2002
2003	/*
2004	 * We have a record that we're interested in.  Now call the underlying
2005	 * probe function...
2006	 */
2007	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2008}
2009
2010static int
2011dt_consume_begin_record(const dtrace_probedata_t *data,
2012    const dtrace_recdesc_t *rec, void *arg)
2013{
2014	dt_begin_t *begin = (dt_begin_t *)arg;
2015
2016	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2017}
2018
2019static int
2020dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2021{
2022	dt_begin_t *begin = (dt_begin_t *)arg;
2023	dtrace_probedesc_t *pd = data->dteda_pdesc;
2024
2025	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2026	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2027
2028	if (begin->dtbgn_beginonly) {
2029		if (!(r1 && r2))
2030			return (DTRACE_HANDLE_OK);
2031	} else {
2032		if (r1 && r2)
2033			return (DTRACE_HANDLE_OK);
2034	}
2035
2036	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2037}
2038
2039static int
2040dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
2041    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2042{
2043	/*
2044	 * There's this idea that the BEGIN probe should be processed before
2045	 * everything else, and that the END probe should be processed after
2046	 * anything else.  In the common case, this is pretty easy to deal
2047	 * with.  However, a situation may arise where the BEGIN enabling and
2048	 * END enabling are on the same CPU, and some enabling in the middle
2049	 * occurred on a different CPU.  To deal with this (blech!) we need to
2050	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2051	 * then set it aside.  We will then process every other CPU, and then
2052	 * we'll return to the BEGIN CPU and process the rest of the data
2053	 * (which will inevitably include the END probe, if any).  Making this
2054	 * even more complicated (!) is the library's ERROR enabling.  Because
2055	 * this enabling is processed before we even get into the consume call
2056	 * back, any ERROR firing would result in the library's ERROR enabling
2057	 * being processed twice -- once in our first pass (for BEGIN probes),
2058	 * and again in our second pass (for everything but BEGIN probes).  To
2059	 * deal with this, we interpose on the ERROR handler to assure that we
2060	 * only process ERROR enablings induced by BEGIN enablings in the
2061	 * first pass, and that we only process ERROR enablings _not_ induced
2062	 * by BEGIN enablings in the second pass.
2063	 */
2064	dt_begin_t begin;
2065	processorid_t cpu = dtp->dt_beganon;
2066	dtrace_bufdesc_t nbuf;
2067	int rval, i;
2068	static int max_ncpus;
2069	dtrace_optval_t size;
2070
2071	dtp->dt_beganon = -1;
2072
2073	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2074		/*
2075		 * We really don't expect this to fail, but it is at least
2076		 * technically possible for this to fail with ENOENT.  In this
2077		 * case, we just drive on...
2078		 */
2079		if (errno == ENOENT)
2080			return (0);
2081
2082		return (dt_set_errno(dtp, errno));
2083	}
2084
2085	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2086		/*
2087		 * This is the simple case.  We're either not stopped, or if
2088		 * we are, we actually processed any END probes on another
2089		 * CPU.  We can simply consume this buffer and return.
2090		 */
2091		return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
2092	}
2093
2094	begin.dtbgn_probefunc = pf;
2095	begin.dtbgn_recfunc = rf;
2096	begin.dtbgn_arg = arg;
2097	begin.dtbgn_beginonly = 1;
2098
2099	/*
2100	 * We need to interpose on the ERROR handler to be sure that we
2101	 * only process ERRORs induced by BEGIN.
2102	 */
2103	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2104	begin.dtbgn_errarg = dtp->dt_errarg;
2105	dtp->dt_errhdlr = dt_consume_begin_error;
2106	dtp->dt_errarg = &begin;
2107
2108	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2109	    dt_consume_begin_record, &begin);
2110
2111	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2112	dtp->dt_errarg = begin.dtbgn_errarg;
2113
2114	if (rval != 0)
2115		return (rval);
2116
2117	/*
2118	 * Now allocate a new buffer.  We'll use this to deal with every other
2119	 * CPU.
2120	 */
2121	bzero(&nbuf, sizeof (dtrace_bufdesc_t));
2122	(void) dtrace_getopt(dtp, "bufsize", &size);
2123	if ((nbuf.dtbd_data = malloc(size)) == NULL)
2124		return (dt_set_errno(dtp, EDT_NOMEM));
2125
2126	if (max_ncpus == 0)
2127		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2128
2129	for (i = 0; i < max_ncpus; i++) {
2130		nbuf.dtbd_cpu = i;
2131
2132		if (i == cpu)
2133			continue;
2134
2135		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
2136			/*
2137			 * If we failed with ENOENT, it may be because the
2138			 * CPU was unconfigured -- this is okay.  Any other
2139			 * error, however, is unexpected.
2140			 */
2141			if (errno == ENOENT)
2142				continue;
2143
2144			free(nbuf.dtbd_data);
2145
2146			return (dt_set_errno(dtp, errno));
2147		}
2148
2149		if ((rval = dt_consume_cpu(dtp, fp,
2150		    i, &nbuf, pf, rf, arg)) != 0) {
2151			free(nbuf.dtbd_data);
2152			return (rval);
2153		}
2154	}
2155
2156	free(nbuf.dtbd_data);
2157
2158	/*
2159	 * Okay -- we're done with the other buffers.  Now we want to
2160	 * reconsume the first buffer -- but this time we're looking for
2161	 * everything _but_ BEGIN.  And of course, in order to only consume
2162	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2163	 * ERROR interposition function...
2164	 */
2165	begin.dtbgn_beginonly = 0;
2166
2167	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2168	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2169	dtp->dt_errhdlr = dt_consume_begin_error;
2170	dtp->dt_errarg = &begin;
2171
2172	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2173	    dt_consume_begin_record, &begin);
2174
2175	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2176	dtp->dt_errarg = begin.dtbgn_errarg;
2177
2178	return (rval);
2179}
2180
2181int
2182dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2183    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2184{
2185	dtrace_bufdesc_t *buf = &dtp->dt_buf;
2186	dtrace_optval_t size;
2187	static int max_ncpus;
2188	int i, rval;
2189	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2190	hrtime_t now = gethrtime();
2191
2192	if (dtp->dt_lastswitch != 0) {
2193		if (now - dtp->dt_lastswitch < interval)
2194			return (0);
2195
2196		dtp->dt_lastswitch += interval;
2197	} else {
2198		dtp->dt_lastswitch = now;
2199	}
2200
2201	if (!dtp->dt_active)
2202		return (dt_set_errno(dtp, EINVAL));
2203
2204	if (max_ncpus == 0)
2205		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2206
2207	if (pf == NULL)
2208		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2209
2210	if (rf == NULL)
2211		rf = (dtrace_consume_rec_f *)dt_nullrec;
2212
2213	if (buf->dtbd_data == NULL) {
2214		(void) dtrace_getopt(dtp, "bufsize", &size);
2215		if ((buf->dtbd_data = malloc(size)) == NULL)
2216			return (dt_set_errno(dtp, EDT_NOMEM));
2217
2218		buf->dtbd_size = size;
2219	}
2220
2221	/*
2222	 * If we have just begun, we want to first process the CPU that
2223	 * executed the BEGIN probe (if any).
2224	 */
2225	if (dtp->dt_active && dtp->dt_beganon != -1) {
2226		buf->dtbd_cpu = dtp->dt_beganon;
2227		if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
2228			return (rval);
2229	}
2230
2231	for (i = 0; i < max_ncpus; i++) {
2232		buf->dtbd_cpu = i;
2233
2234		/*
2235		 * If we have stopped, we want to process the CPU on which the
2236		 * END probe was processed only _after_ we have processed
2237		 * everything else.
2238		 */
2239		if (dtp->dt_stopped && (i == dtp->dt_endedon))
2240			continue;
2241
2242		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2243			/*
2244			 * If we failed with ENOENT, it may be because the
2245			 * CPU was unconfigured -- this is okay.  Any other
2246			 * error, however, is unexpected.
2247			 */
2248			if (errno == ENOENT)
2249				continue;
2250
2251			return (dt_set_errno(dtp, errno));
2252		}
2253
2254		if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
2255			return (rval);
2256	}
2257
2258	if (!dtp->dt_stopped)
2259		return (0);
2260
2261	buf->dtbd_cpu = dtp->dt_endedon;
2262
2263	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2264		/*
2265		 * This _really_ shouldn't fail, but it is strictly speaking
2266		 * possible for this to return ENOENT if the CPU that called
2267		 * the END enabling somehow managed to become unconfigured.
2268		 * It's unclear how the user can possibly expect anything
2269		 * rational to happen in this case -- the state has been thrown
2270		 * out along with the unconfigured CPU -- so we'll just drive
2271		 * on...
2272		 */
2273		if (errno == ENOENT)
2274			return (0);
2275
2276		return (dt_set_errno(dtp, errno));
2277	}
2278
2279	return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
2280}
2281