dt_consume.c revision 178479
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <stdlib.h>
29#include <strings.h>
30#include <errno.h>
31#include <unistd.h>
32#include <limits.h>
33#include <assert.h>
34#include <ctype.h>
35#if defined(sun)
36#include <alloca.h>
37#endif
38#include <dt_impl.h>
39
40#define	DT_MASK_LO 0x00000000FFFFFFFFULL
41
42/*
43 * We declare this here because (1) we need it and (2) we want to avoid a
44 * dependency on libm in libdtrace.
45 */
46static long double
47dt_fabsl(long double x)
48{
49	if (x < 0)
50		return (-x);
51
52	return (x);
53}
54
55/*
56 * 128-bit arithmetic functions needed to support the stddev() aggregating
57 * action.
58 */
59static int
60dt_gt_128(uint64_t *a, uint64_t *b)
61{
62	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
63}
64
65static int
66dt_ge_128(uint64_t *a, uint64_t *b)
67{
68	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
69}
70
71static int
72dt_le_128(uint64_t *a, uint64_t *b)
73{
74	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
75}
76
77/*
78 * Shift the 128-bit value in a by b. If b is positive, shift left.
79 * If b is negative, shift right.
80 */
81static void
82dt_shift_128(uint64_t *a, int b)
83{
84	uint64_t mask;
85
86	if (b == 0)
87		return;
88
89	if (b < 0) {
90		b = -b;
91		if (b >= 64) {
92			a[0] = a[1] >> (b - 64);
93			a[1] = 0;
94		} else {
95			a[0] >>= b;
96			mask = 1LL << (64 - b);
97			mask -= 1;
98			a[0] |= ((a[1] & mask) << (64 - b));
99			a[1] >>= b;
100		}
101	} else {
102		if (b >= 64) {
103			a[1] = a[0] << (b - 64);
104			a[0] = 0;
105		} else {
106			a[1] <<= b;
107			mask = a[0] >> (64 - b);
108			a[1] |= mask;
109			a[0] <<= b;
110		}
111	}
112}
113
114static int
115dt_nbits_128(uint64_t *a)
116{
117	int nbits = 0;
118	uint64_t tmp[2];
119	uint64_t zero[2] = { 0, 0 };
120
121	tmp[0] = a[0];
122	tmp[1] = a[1];
123
124	dt_shift_128(tmp, -1);
125	while (dt_gt_128(tmp, zero)) {
126		dt_shift_128(tmp, -1);
127		nbits++;
128	}
129
130	return (nbits);
131}
132
133static void
134dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
135{
136	uint64_t result[2];
137
138	result[0] = minuend[0] - subtrahend[0];
139	result[1] = minuend[1] - subtrahend[1] -
140	    (minuend[0] < subtrahend[0] ? 1 : 0);
141
142	difference[0] = result[0];
143	difference[1] = result[1];
144}
145
146static void
147dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
148{
149	uint64_t result[2];
150
151	result[0] = addend1[0] + addend2[0];
152	result[1] = addend1[1] + addend2[1] +
153	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
154
155	sum[0] = result[0];
156	sum[1] = result[1];
157}
158
159/*
160 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
161 * use native multiplication on those, and then re-combine into the
162 * resulting 128-bit value.
163 *
164 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
165 *     hi1 * hi2 << 64 +
166 *     hi1 * lo2 << 32 +
167 *     hi2 * lo1 << 32 +
168 *     lo1 * lo2
169 */
170static void
171dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
172{
173	uint64_t hi1, hi2, lo1, lo2;
174	uint64_t tmp[2];
175
176	hi1 = factor1 >> 32;
177	hi2 = factor2 >> 32;
178
179	lo1 = factor1 & DT_MASK_LO;
180	lo2 = factor2 & DT_MASK_LO;
181
182	product[0] = lo1 * lo2;
183	product[1] = hi1 * hi2;
184
185	tmp[0] = hi1 * lo2;
186	tmp[1] = 0;
187	dt_shift_128(tmp, 32);
188	dt_add_128(product, tmp, product);
189
190	tmp[0] = hi2 * lo1;
191	tmp[1] = 0;
192	dt_shift_128(tmp, 32);
193	dt_add_128(product, tmp, product);
194}
195
196/*
197 * This is long-hand division.
198 *
199 * We initialize subtrahend by shifting divisor left as far as possible. We
200 * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
201 * subtract and set the appropriate bit in the result.  We then shift
202 * subtrahend right by one bit for the next comparison.
203 */
204static void
205dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
206{
207	uint64_t result[2] = { 0, 0 };
208	uint64_t remainder[2];
209	uint64_t subtrahend[2];
210	uint64_t divisor_128[2];
211	uint64_t mask[2] = { 1, 0 };
212	int log = 0;
213
214	assert(divisor != 0);
215
216	divisor_128[0] = divisor;
217	divisor_128[1] = 0;
218
219	remainder[0] = dividend[0];
220	remainder[1] = dividend[1];
221
222	subtrahend[0] = divisor;
223	subtrahend[1] = 0;
224
225	while (divisor > 0) {
226		log++;
227		divisor >>= 1;
228	}
229
230	dt_shift_128(subtrahend, 128 - log);
231	dt_shift_128(mask, 128 - log);
232
233	while (dt_ge_128(remainder, divisor_128)) {
234		if (dt_ge_128(remainder, subtrahend)) {
235			dt_subtract_128(remainder, subtrahend, remainder);
236			result[0] |= mask[0];
237			result[1] |= mask[1];
238		}
239
240		dt_shift_128(subtrahend, -1);
241		dt_shift_128(mask, -1);
242	}
243
244	quotient[0] = result[0];
245	quotient[1] = result[1];
246}
247
248/*
249 * This is the long-hand method of calculating a square root.
250 * The algorithm is as follows:
251 *
252 * 1. Group the digits by 2 from the right.
253 * 2. Over the leftmost group, find the largest single-digit number
254 *    whose square is less than that group.
255 * 3. Subtract the result of the previous step (2 or 4, depending) and
256 *    bring down the next two-digit group.
257 * 4. For the result R we have so far, find the largest single-digit number
258 *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
259 *    (Note that this is doubling R and performing a decimal left-shift by 1
260 *    and searching for the appropriate decimal to fill the one's place.)
261 *    The value x is the next digit in the square root.
262 * Repeat steps 3 and 4 until the desired precision is reached.  (We're
263 * dealing with integers, so the above is sufficient.)
264 *
265 * In decimal, the square root of 582,734 would be calculated as so:
266 *
267 *     __7__6__3
268 *    | 58 27 34
269 *     -49       (7^2 == 49 => 7 is the first digit in the square root)
270 *      --
271 *       9 27    (Subtract and bring down the next group.)
272 * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
273 *      -----     the square root)
274 *         51 34 (Subtract and bring down the next group.)
275 * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
276 *         -----  the square root)
277 *          5 65 (remainder)
278 *
279 * The above algorithm applies similarly in binary, but note that the
280 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
281 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
282 * preceding difference?
283 *
284 * In binary, the square root of 11011011 would be calculated as so:
285 *
286 *     __1__1__1__0
287 *    | 11 01 10 11
288 *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
289 *      --
290 *      10 01 10 11
291 * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
292 *      -----
293 *       1 00 10 11
294 * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
295 *       -------
296 *          1 01 11
297 * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
298 *
299 */
300static uint64_t
301dt_sqrt_128(uint64_t *square)
302{
303	uint64_t result[2] = { 0, 0 };
304	uint64_t diff[2] = { 0, 0 };
305	uint64_t one[2] = { 1, 0 };
306	uint64_t next_pair[2];
307	uint64_t next_try[2];
308	uint64_t bit_pairs, pair_shift;
309	int i;
310
311	bit_pairs = dt_nbits_128(square) / 2;
312	pair_shift = bit_pairs * 2;
313
314	for (i = 0; i <= bit_pairs; i++) {
315		/*
316		 * Bring down the next pair of bits.
317		 */
318		next_pair[0] = square[0];
319		next_pair[1] = square[1];
320		dt_shift_128(next_pair, -pair_shift);
321		next_pair[0] &= 0x3;
322		next_pair[1] = 0;
323
324		dt_shift_128(diff, 2);
325		dt_add_128(diff, next_pair, diff);
326
327		/*
328		 * next_try = R << 2 + 1
329		 */
330		next_try[0] = result[0];
331		next_try[1] = result[1];
332		dt_shift_128(next_try, 2);
333		dt_add_128(next_try, one, next_try);
334
335		if (dt_le_128(next_try, diff)) {
336			dt_subtract_128(diff, next_try, diff);
337			dt_shift_128(result, 1);
338			dt_add_128(result, one, result);
339		} else {
340			dt_shift_128(result, 1);
341		}
342
343		pair_shift -= 2;
344	}
345
346	assert(result[1] == 0);
347
348	return (result[0]);
349}
350
351uint64_t
352dt_stddev(uint64_t *data, uint64_t normal)
353{
354	uint64_t avg_of_squares[2];
355	uint64_t square_of_avg[2];
356	int64_t norm_avg;
357	uint64_t diff[2];
358
359	/*
360	 * The standard approximation for standard deviation is
361	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
362	 * of the average of the squares minus the square of the average.
363	 */
364	dt_divide_128(data + 2, normal, avg_of_squares);
365	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
366
367	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
368
369	if (norm_avg < 0)
370		norm_avg = -norm_avg;
371
372	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
373
374	dt_subtract_128(avg_of_squares, square_of_avg, diff);
375
376	return (dt_sqrt_128(diff));
377}
378
379static int
380dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
381    dtrace_bufdesc_t *buf, size_t offs)
382{
383	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
384	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
385	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
386	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
387	const char *str = NULL;
388	static const char *e_str[2] = { " -> ", " => " };
389	static const char *r_str[2] = { " <- ", " <= " };
390	static const char *ent = "entry", *ret = "return";
391	static int entlen = 0, retlen = 0;
392	dtrace_epid_t next, id = epd->dtepd_epid;
393	int rval;
394
395	if (entlen == 0) {
396		assert(retlen == 0);
397		entlen = strlen(ent);
398		retlen = strlen(ret);
399	}
400
401	/*
402	 * If the name of the probe is "entry" or ends with "-entry", we
403	 * treat it as an entry; if it is "return" or ends with "-return",
404	 * we treat it as a return.  (This allows application-provided probes
405	 * like "method-entry" or "function-entry" to participate in flow
406	 * indentation -- without accidentally misinterpreting popular probe
407	 * names like "carpentry", "gentry" or "Coventry".)
408	 */
409	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
410	    (sub == n || sub[-1] == '-')) {
411		flow = DTRACEFLOW_ENTRY;
412		str = e_str[strcmp(p, "syscall") == 0];
413	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
414	    (sub == n || sub[-1] == '-')) {
415		flow = DTRACEFLOW_RETURN;
416		str = r_str[strcmp(p, "syscall") == 0];
417	}
418
419	/*
420	 * If we're going to indent this, we need to check the ID of our last
421	 * call.  If we're looking at the same probe ID but a different EPID,
422	 * we _don't_ want to indent.  (Yes, there are some minor holes in
423	 * this scheme -- it's a heuristic.)
424	 */
425	if (flow == DTRACEFLOW_ENTRY) {
426		if ((last != DTRACE_EPIDNONE && id != last &&
427		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
428			flow = DTRACEFLOW_NONE;
429	}
430
431	/*
432	 * If we're going to unindent this, it's more difficult to see if
433	 * we don't actually want to unindent it -- we need to look at the
434	 * _next_ EPID.
435	 */
436	if (flow == DTRACEFLOW_RETURN) {
437		offs += epd->dtepd_size;
438
439		do {
440			if (offs >= buf->dtbd_size) {
441				/*
442				 * We're at the end -- maybe.  If the oldest
443				 * record is non-zero, we need to wrap.
444				 */
445				if (buf->dtbd_oldest != 0) {
446					offs = 0;
447				} else {
448					goto out;
449				}
450			}
451
452			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
453
454			if (next == DTRACE_EPIDNONE)
455				offs += sizeof (id);
456		} while (next == DTRACE_EPIDNONE);
457
458		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
459			return (rval);
460
461		if (next != id && npd->dtpd_id == pd->dtpd_id)
462			flow = DTRACEFLOW_NONE;
463	}
464
465out:
466	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
467		data->dtpda_prefix = str;
468	} else {
469		data->dtpda_prefix = "| ";
470	}
471
472	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
473		data->dtpda_indent -= 2;
474
475	data->dtpda_flow = flow;
476
477	return (0);
478}
479
480static int
481dt_nullprobe()
482{
483	return (DTRACE_CONSUME_THIS);
484}
485
486static int
487dt_nullrec()
488{
489	return (DTRACE_CONSUME_NEXT);
490}
491
492int
493dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
494    uint64_t normal, long double total, char positives, char negatives)
495{
496	long double f;
497	uint_t depth, len = 40;
498
499	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
500	const char *spaces = "                                        ";
501
502	assert(strlen(ats) == len && strlen(spaces) == len);
503	assert(!(total == 0 && (positives || negatives)));
504	assert(!(val < 0 && !negatives));
505	assert(!(val > 0 && !positives));
506	assert(!(val != 0 && total == 0));
507
508	if (!negatives) {
509		if (positives) {
510			f = (dt_fabsl((long double)val) * len) / total;
511			depth = (uint_t)(f + 0.5);
512		} else {
513			depth = 0;
514		}
515
516		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
517		    spaces + depth, (long long)val / normal));
518	}
519
520	if (!positives) {
521		f = (dt_fabsl((long double)val) * len) / total;
522		depth = (uint_t)(f + 0.5);
523
524		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
525		    ats + len - depth, (long long)val / normal));
526	}
527
528	/*
529	 * If we're here, we have both positive and negative bucket values.
530	 * To express this graphically, we're going to generate both positive
531	 * and negative bars separated by a centerline.  These bars are half
532	 * the size of normal quantize()/lquantize() bars, so we divide the
533	 * length in half before calculating the bar length.
534	 */
535	len /= 2;
536	ats = &ats[len];
537	spaces = &spaces[len];
538
539	f = (dt_fabsl((long double)val) * len) / total;
540	depth = (uint_t)(f + 0.5);
541
542	if (val <= 0) {
543		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
544		    ats + len - depth, len, "", (long long)val / normal));
545	} else {
546		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
547		    ats + len - depth, spaces + depth,
548		    (long long)val / normal));
549	}
550}
551
552int
553dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
554    size_t size, uint64_t normal)
555{
556	const int64_t *data = addr;
557	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
558	long double total = 0;
559	char positives = 0, negatives = 0;
560
561	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
562		return (dt_set_errno(dtp, EDT_DMISMATCH));
563
564	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
565		first_bin++;
566
567	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
568		/*
569		 * There isn't any data.  This is possible if (and only if)
570		 * negative increment values have been used.  In this case,
571		 * we'll print the buckets around 0.
572		 */
573		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
574		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
575	} else {
576		if (first_bin > 0)
577			first_bin--;
578
579		while (last_bin > 0 && data[last_bin] == 0)
580			last_bin--;
581
582		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
583			last_bin++;
584	}
585
586	for (i = first_bin; i <= last_bin; i++) {
587		positives |= (data[i] > 0);
588		negatives |= (data[i] < 0);
589		total += dt_fabsl((long double)data[i]);
590	}
591
592	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
593	    "------------- Distribution -------------", "count") < 0)
594		return (-1);
595
596	for (i = first_bin; i <= last_bin; i++) {
597		if (dt_printf(dtp, fp, "%16lld ",
598		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
599			return (-1);
600
601		if (dt_print_quantline(dtp, fp, data[i], normal, total,
602		    positives, negatives) < 0)
603			return (-1);
604	}
605
606	return (0);
607}
608
609int
610dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
611    size_t size, uint64_t normal)
612{
613	const int64_t *data = addr;
614	int i, first_bin, last_bin, base;
615	uint64_t arg;
616	long double total = 0;
617	uint16_t step, levels;
618	char positives = 0, negatives = 0;
619
620	if (size < sizeof (uint64_t))
621		return (dt_set_errno(dtp, EDT_DMISMATCH));
622
623	arg = *data++;
624	size -= sizeof (uint64_t);
625
626	base = DTRACE_LQUANTIZE_BASE(arg);
627	step = DTRACE_LQUANTIZE_STEP(arg);
628	levels = DTRACE_LQUANTIZE_LEVELS(arg);
629
630	first_bin = 0;
631	last_bin = levels + 1;
632
633	if (size != sizeof (uint64_t) * (levels + 2))
634		return (dt_set_errno(dtp, EDT_DMISMATCH));
635
636	while (first_bin <= levels + 1 && data[first_bin] == 0)
637		first_bin++;
638
639	if (first_bin > levels + 1) {
640		first_bin = 0;
641		last_bin = 2;
642	} else {
643		if (first_bin > 0)
644			first_bin--;
645
646		while (last_bin > 0 && data[last_bin] == 0)
647			last_bin--;
648
649		if (last_bin < levels + 1)
650			last_bin++;
651	}
652
653	for (i = first_bin; i <= last_bin; i++) {
654		positives |= (data[i] > 0);
655		negatives |= (data[i] < 0);
656		total += dt_fabsl((long double)data[i]);
657	}
658
659	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
660	    "------------- Distribution -------------", "count") < 0)
661		return (-1);
662
663	for (i = first_bin; i <= last_bin; i++) {
664		char c[32];
665		int err;
666
667		if (i == 0) {
668			(void) snprintf(c, sizeof (c), "< %d",
669			    base / (uint32_t)normal);
670			err = dt_printf(dtp, fp, "%16s ", c);
671		} else if (i == levels + 1) {
672			(void) snprintf(c, sizeof (c), ">= %d",
673			    base + (levels * step));
674			err = dt_printf(dtp, fp, "%16s ", c);
675		} else {
676			err = dt_printf(dtp, fp, "%16d ",
677			    base + (i - 1) * step);
678		}
679
680		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
681		    total, positives, negatives) < 0)
682			return (-1);
683	}
684
685	return (0);
686}
687
688/*ARGSUSED*/
689static int
690dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
691    size_t size, uint64_t normal)
692{
693	/* LINTED - alignment */
694	int64_t *data = (int64_t *)addr;
695
696	return (dt_printf(dtp, fp, " %16lld", data[0] ?
697	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
698}
699
700/*ARGSUSED*/
701static int
702dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
703    size_t size, uint64_t normal)
704{
705	/* LINTED - alignment */
706	uint64_t *data = (uint64_t *)addr;
707
708	return (dt_printf(dtp, fp, " %16llu", data[0] ?
709	    (unsigned long long) dt_stddev(data, normal) : 0));
710}
711
712/*ARGSUSED*/
713int
714dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
715    size_t nbytes, int width, int quiet, int raw)
716{
717	/*
718	 * If the byte stream is a series of printable characters, followed by
719	 * a terminating byte, we print it out as a string.  Otherwise, we
720	 * assume that it's something else and just print the bytes.
721	 */
722	int i, j, margin = 5;
723	char *c = (char *)addr;
724
725	if (nbytes == 0)
726		return (0);
727
728	if (raw || dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
729		goto raw;
730
731	for (i = 0; i < nbytes; i++) {
732		/*
733		 * We define a "printable character" to be one for which
734		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
735		 * or a character which is either backspace or the bell.
736		 * Backspace and the bell are regrettably special because
737		 * they fail the first two tests -- and yet they are entirely
738		 * printable.  These are the only two control characters that
739		 * have meaning for the terminal and for which isprint(3C) and
740		 * isspace(3C) return 0.
741		 */
742		if (isprint(c[i]) || isspace(c[i]) ||
743		    c[i] == '\b' || c[i] == '\a')
744			continue;
745
746		if (c[i] == '\0' && i > 0) {
747			/*
748			 * This looks like it might be a string.  Before we
749			 * assume that it is indeed a string, check the
750			 * remainder of the byte range; if it contains
751			 * additional non-nul characters, we'll assume that
752			 * it's a binary stream that just happens to look like
753			 * a string, and we'll print out the individual bytes.
754			 */
755			for (j = i + 1; j < nbytes; j++) {
756				if (c[j] != '\0')
757					break;
758			}
759
760			if (j != nbytes)
761				break;
762
763			if (quiet)
764				return (dt_printf(dtp, fp, "%s", c));
765			else
766				return (dt_printf(dtp, fp, "  %-*s", width, c));
767		}
768
769		break;
770	}
771
772	if (i == nbytes) {
773		/*
774		 * The byte range is all printable characters, but there is
775		 * no trailing nul byte.  We'll assume that it's a string and
776		 * print it as such.
777		 */
778		char *s = alloca(nbytes + 1);
779		bcopy(c, s, nbytes);
780		s[nbytes] = '\0';
781		return (dt_printf(dtp, fp, "  %-*s", width, s));
782	}
783
784raw:
785	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
786		return (-1);
787
788	for (i = 0; i < 16; i++)
789		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
790			return (-1);
791
792	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
793		return (-1);
794
795
796	for (i = 0; i < nbytes; i += 16) {
797		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
798			return (-1);
799
800		for (j = i; j < i + 16 && j < nbytes; j++) {
801			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
802				return (-1);
803		}
804
805		while (j++ % 16) {
806			if (dt_printf(dtp, fp, "   ") < 0)
807				return (-1);
808		}
809
810		if (dt_printf(dtp, fp, "  ") < 0)
811			return (-1);
812
813		for (j = i; j < i + 16 && j < nbytes; j++) {
814			if (dt_printf(dtp, fp, "%c",
815			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
816				return (-1);
817		}
818
819		if (dt_printf(dtp, fp, "\n") < 0)
820			return (-1);
821	}
822
823	return (0);
824}
825
826int
827dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
828    caddr_t addr, int depth, int size)
829{
830	dtrace_syminfo_t dts;
831	GElf_Sym sym;
832	int i, indent;
833	char c[PATH_MAX * 2];
834	uint64_t pc;
835
836	if (dt_printf(dtp, fp, "\n") < 0)
837		return (-1);
838
839	if (format == NULL)
840		format = "%s";
841
842	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
843		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
844	else
845		indent = _dtrace_stkindent;
846
847	for (i = 0; i < depth; i++) {
848		switch (size) {
849		case sizeof (uint32_t):
850			/* LINTED - alignment */
851			pc = *((uint32_t *)addr);
852			break;
853
854		case sizeof (uint64_t):
855			/* LINTED - alignment */
856			pc = *((uint64_t *)addr);
857			break;
858
859		default:
860			return (dt_set_errno(dtp, EDT_BADSTACKPC));
861		}
862
863		if (pc == 0)
864			break;
865
866		addr += size;
867
868		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
869			return (-1);
870
871		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
872			if (pc > sym.st_value) {
873				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
874				    dts.dts_object, dts.dts_name,
875				    pc - sym.st_value);
876			} else {
877				(void) snprintf(c, sizeof (c), "%s`%s",
878				    dts.dts_object, dts.dts_name);
879			}
880		} else {
881			/*
882			 * We'll repeat the lookup, but this time we'll specify
883			 * a NULL GElf_Sym -- indicating that we're only
884			 * interested in the containing module.
885			 */
886			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
887				(void) snprintf(c, sizeof (c), "%s`0x%llx",
888				    dts.dts_object, pc);
889			} else {
890				(void) snprintf(c, sizeof (c), "0x%llx", pc);
891			}
892		}
893
894		if (dt_printf(dtp, fp, format, c) < 0)
895			return (-1);
896
897		if (dt_printf(dtp, fp, "\n") < 0)
898			return (-1);
899	}
900
901	return (0);
902}
903
904int
905dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
906    caddr_t addr, uint64_t arg)
907{
908	/* LINTED - alignment */
909	uint64_t *pc = (uint64_t *)addr;
910	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
911	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
912	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
913	const char *str = strsize ? strbase : NULL;
914	int err = 0;
915
916	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
917	struct ps_prochandle *P;
918	GElf_Sym sym;
919	int i, indent;
920	pid_t pid;
921
922	if (depth == 0)
923		return (0);
924
925	pid = (pid_t)*pc++;
926
927	if (dt_printf(dtp, fp, "\n") < 0)
928		return (-1);
929
930	if (format == NULL)
931		format = "%s";
932
933	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
934		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
935	else
936		indent = _dtrace_stkindent;
937
938	/*
939	 * Ultimately, we need to add an entry point in the library vector for
940	 * determining <symbol, offset> from <pid, address>.  For now, if
941	 * this is a vector open, we just print the raw address or string.
942	 */
943	if (dtp->dt_vector == NULL)
944		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
945	else
946		P = NULL;
947
948	if (P != NULL)
949		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
950
951	for (i = 0; i < depth && pc[i] != 0; i++) {
952		const prmap_t *map;
953
954		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
955			break;
956
957#if defined(sun)
958		if (P != NULL && Plookup_by_addr(P, pc[i],
959#else
960		if (P != NULL && proc_addr2sym(P, pc[i],
961#endif
962		    name, sizeof (name), &sym) == 0) {
963#if defined(sun)
964			(void) Pobjname(P, pc[i], objname, sizeof (objname));
965#else
966			(void) proc_objname(P, pc[i], objname, sizeof (objname));
967#endif
968
969			if (pc[i] > sym.st_value) {
970				(void) snprintf(c, sizeof (c),
971				    "%s`%s+0x%llx", dt_basename(objname), name,
972				    (u_longlong_t)(pc[i] - sym.st_value));
973			} else {
974				(void) snprintf(c, sizeof (c),
975				    "%s`%s", dt_basename(objname), name);
976			}
977		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
978#if defined(sun)
979		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
980		    (map->pr_mflags & MA_WRITE)))) {
981#else
982		    (P != NULL && ((map = proc_addr2map(P, pc[i])) == NULL))) {
983#endif
984			/*
985			 * If the current string pointer in the string table
986			 * does not point to an empty string _and_ the program
987			 * counter falls in a writable region, we'll use the
988			 * string from the string table instead of the raw
989			 * address.  This last condition is necessary because
990			 * some (broken) ustack helpers will return a string
991			 * even for a program counter that they can't
992			 * identify.  If we have a string for a program
993			 * counter that falls in a segment that isn't
994			 * writable, we assume that we have fallen into this
995			 * case and we refuse to use the string.
996			 */
997			(void) snprintf(c, sizeof (c), "%s", str);
998		} else {
999#if defined(sun)
1000			if (P != NULL && Pobjname(P, pc[i], objname,
1001#else
1002			if (P != NULL && proc_objname(P, pc[i], objname,
1003#endif
1004			    sizeof (objname)) != 0) {
1005				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1006				    dt_basename(objname), (u_longlong_t)pc[i]);
1007			} else {
1008				(void) snprintf(c, sizeof (c), "0x%llx",
1009				    (u_longlong_t)pc[i]);
1010			}
1011		}
1012
1013		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1014			break;
1015
1016		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1017			break;
1018
1019		if (str != NULL && str[0] == '@') {
1020			/*
1021			 * If the first character of the string is an "at" sign,
1022			 * then the string is inferred to be an annotation --
1023			 * and it is printed out beneath the frame and offset
1024			 * with brackets.
1025			 */
1026			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1027				break;
1028
1029			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1030
1031			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1032				break;
1033
1034			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1035				break;
1036		}
1037
1038		if (str != NULL) {
1039			str += strlen(str) + 1;
1040			if (str - strbase >= strsize)
1041				str = NULL;
1042		}
1043	}
1044
1045	if (P != NULL) {
1046		dt_proc_unlock(dtp, P);
1047		dt_proc_release(dtp, P);
1048	}
1049
1050	return (err);
1051}
1052
1053static int
1054dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1055{
1056	/* LINTED - alignment */
1057	uint64_t pid = ((uint64_t *)addr)[0];
1058	/* LINTED - alignment */
1059	uint64_t pc = ((uint64_t *)addr)[1];
1060	const char *format = "  %-50s";
1061	char *s;
1062	int n, len = 256;
1063
1064	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1065		struct ps_prochandle *P;
1066
1067		if ((P = dt_proc_grab(dtp, pid,
1068		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1069			GElf_Sym sym;
1070
1071			dt_proc_lock(dtp, P);
1072
1073#if defined(sun)
1074			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1075#else
1076			if (proc_addr2sym(P, pc, NULL, 0, &sym) == 0)
1077#endif
1078				pc = sym.st_value;
1079
1080			dt_proc_unlock(dtp, P);
1081			dt_proc_release(dtp, P);
1082		}
1083	}
1084
1085	do {
1086		n = len;
1087		s = alloca(n);
1088	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) >= n);
1089
1090	return (dt_printf(dtp, fp, format, s));
1091}
1092
1093int
1094dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1095{
1096	/* LINTED - alignment */
1097	uint64_t pid = ((uint64_t *)addr)[0];
1098	/* LINTED - alignment */
1099	uint64_t pc = ((uint64_t *)addr)[1];
1100	int err = 0;
1101
1102	char objname[PATH_MAX], c[PATH_MAX * 2];
1103	struct ps_prochandle *P;
1104
1105	if (format == NULL)
1106		format = "  %-50s";
1107
1108	/*
1109	 * See the comment in dt_print_ustack() for the rationale for
1110	 * printing raw addresses in the vectored case.
1111	 */
1112	if (dtp->dt_vector == NULL)
1113		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1114	else
1115		P = NULL;
1116
1117	if (P != NULL)
1118		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1119
1120#if defined(sun)
1121	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1122#else
1123	if (P != NULL && proc_objname(P, pc, objname, sizeof (objname)) != 0) {
1124#endif
1125		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1126	} else {
1127		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1128	}
1129
1130	err = dt_printf(dtp, fp, format, c);
1131
1132	if (P != NULL) {
1133		dt_proc_unlock(dtp, P);
1134		dt_proc_release(dtp, P);
1135	}
1136
1137	return (err);
1138}
1139
1140int
1141dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1142{
1143	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1144	size_t nbytes = *((uintptr_t *) addr);
1145
1146	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1147	    nbytes, 50, quiet, 1));
1148}
1149
1150typedef struct dt_type_cbdata {
1151	dtrace_hdl_t		*dtp;
1152	dtrace_typeinfo_t	dtt;
1153	caddr_t			addr;
1154	caddr_t			addrend;
1155	const char		*name;
1156	int			f_type;
1157	int			indent;
1158	int			type_width;
1159	int			name_width;
1160	FILE			*fp;
1161} dt_type_cbdata_t;
1162
1163static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1164
1165static int
1166dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1167{
1168	dt_type_cbdata_t cbdata;
1169	dt_type_cbdata_t *cbdatap = arg;
1170	ssize_t ssz;
1171
1172	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1173		return (0);
1174
1175	off /= 8;
1176
1177	cbdata = *cbdatap;
1178	cbdata.name = name;
1179	cbdata.addr += off;
1180	cbdata.addrend = cbdata.addr + ssz;
1181
1182	return (dt_print_type_data(&cbdata, type));
1183}
1184
1185static int
1186dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1187{
1188	char buf[DT_TYPE_NAMELEN];
1189	char *p;
1190	dt_type_cbdata_t *cbdatap = arg;
1191	size_t sz = strlen(name);
1192
1193	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1194
1195	if ((p = strchr(buf, '[')) != NULL)
1196		p[-1] = '\0';
1197	else
1198		p = "";
1199
1200	sz += strlen(p);
1201
1202	if (sz > cbdatap->name_width)
1203		cbdatap->name_width = sz;
1204
1205	sz = strlen(buf);
1206
1207	if (sz > cbdatap->type_width)
1208		cbdatap->type_width = sz;
1209
1210	return (0);
1211}
1212
1213static int
1214dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1215{
1216	caddr_t addr = cbdatap->addr;
1217	caddr_t addrend = cbdatap->addrend;
1218	char buf[DT_TYPE_NAMELEN];
1219	char *p;
1220	int cnt = 0;
1221	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1222	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1223
1224	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1225
1226	if ((p = strchr(buf, '[')) != NULL)
1227		p[-1] = '\0';
1228	else
1229		p = "";
1230
1231	if (cbdatap->f_type) {
1232		int type_width = roundup(cbdatap->type_width + 1, 4);
1233		int name_width = roundup(cbdatap->name_width + 1, 4);
1234
1235		name_width -= strlen(cbdatap->name);
1236
1237		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1238	}
1239
1240	while (addr < addrend) {
1241		dt_type_cbdata_t cbdata;
1242		ctf_arinfo_t arinfo;
1243		ctf_encoding_t cte;
1244		uintptr_t *up;
1245		void *vp = addr;
1246		cbdata = *cbdatap;
1247		cbdata.name = "";
1248		cbdata.addr = addr;
1249		cbdata.addrend = addr + ssz;
1250		cbdata.f_type = 0;
1251		cbdata.indent++;
1252		cbdata.type_width = 0;
1253		cbdata.name_width = 0;
1254
1255		if (cnt > 0)
1256			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1257
1258		switch (kind) {
1259		case CTF_K_INTEGER:
1260			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1261				return (-1);
1262			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1263				switch (cte.cte_bits) {
1264				case 8:
1265					if (isprint(*((char *) vp)))
1266						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1267					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1268					break;
1269				case 16:
1270					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1271					break;
1272				case 32:
1273					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1274					break;
1275				case 64:
1276					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1277					break;
1278				default:
1279					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1280					break;
1281				}
1282			else
1283				switch (cte.cte_bits) {
1284				case 8:
1285					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1286					break;
1287				case 16:
1288					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1289					break;
1290				case 32:
1291					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1292					break;
1293				case 64:
1294					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1295					break;
1296				default:
1297					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1298					break;
1299				}
1300			break;
1301		case CTF_K_FLOAT:
1302			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1303			break;
1304		case CTF_K_POINTER:
1305			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1306			break;
1307		case CTF_K_ARRAY:
1308			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1309				return (-1);
1310			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1311			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1312			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1313			break;
1314		case CTF_K_FUNCTION:
1315			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1316			break;
1317		case CTF_K_STRUCT:
1318			cbdata.f_type = 1;
1319			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1320			    dt_print_type_width, &cbdata) != 0)
1321				return (-1);
1322			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1323			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1324			    dt_print_type_member, &cbdata) != 0)
1325				return (-1);
1326			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1327			break;
1328		case CTF_K_UNION:
1329			cbdata.f_type = 1;
1330			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1331			    dt_print_type_width, &cbdata) != 0)
1332				return (-1);
1333			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1334			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1335			    dt_print_type_member, &cbdata) != 0)
1336				return (-1);
1337			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1338			break;
1339		case CTF_K_ENUM:
1340			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1341			break;
1342		case CTF_K_TYPEDEF:
1343			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1344			break;
1345		case CTF_K_VOLATILE:
1346			if (cbdatap->f_type)
1347				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1348			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1349			break;
1350		case CTF_K_CONST:
1351			if (cbdatap->f_type)
1352				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1353			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1354			break;
1355		case CTF_K_RESTRICT:
1356			if (cbdatap->f_type)
1357				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1358			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1359			break;
1360		default:
1361			break;
1362		}
1363
1364		addr += ssz;
1365		cnt++;
1366	}
1367
1368	return (0);
1369}
1370
1371static int
1372dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1373{
1374	caddr_t addrend;
1375	char *p;
1376	dtrace_typeinfo_t dtt;
1377	dt_type_cbdata_t cbdata;
1378	int num = 0;
1379	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1380	ssize_t ssz;
1381
1382	if (!quiet)
1383		dt_printf(dtp, fp, "\n");
1384
1385	/* Get the total number of bytes of data buffered. */
1386	size_t nbytes = *((uintptr_t *) addr);
1387	addr += sizeof(uintptr_t);
1388
1389	/*
1390	 * Get the size of the type so that we can check that it matches
1391	 * the CTF data we look up and so that we can figure out how many
1392	 * type elements are buffered.
1393	 */
1394	size_t typs = *((uintptr_t *) addr);
1395	addr += sizeof(uintptr_t);
1396
1397	/*
1398	 * Point to the type string in the buffer. Get it's string
1399	 * length and round it up to become the offset to the start
1400	 * of the buffered type data which we would like to be aligned
1401	 * for easy access.
1402	 */
1403	char *strp = (char *) addr;
1404	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1405
1406	/*
1407	 * The type string might have a format such as 'int [20]'.
1408	 * Check if there is an array dimension present.
1409	 */
1410	if ((p = strchr(strp, '[')) != NULL) {
1411		/* Strip off the array dimension. */
1412		*p++ = '\0';
1413
1414		for (; *p != '\0' && *p != ']'; p++)
1415			num = num * 10 + *p - '0';
1416	} else
1417		/* No array dimension, so default. */
1418		num = 1;
1419
1420	/* Lookup the CTF type from the type string. */
1421	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1422		return (-1);
1423
1424	/* Offset the buffer address to the start of the data... */
1425	addr += offset;
1426
1427	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1428
1429	if (typs != ssz) {
1430		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1431		return (-1);
1432	}
1433
1434	cbdata.dtp = dtp;
1435	cbdata.dtt = dtt;
1436	cbdata.name = "";
1437	cbdata.addr = addr;
1438	cbdata.addrend = addr + nbytes;
1439	cbdata.indent = 1;
1440	cbdata.f_type = 1;
1441	cbdata.type_width = 0;
1442	cbdata.name_width = 0;
1443	cbdata.fp = fp;
1444
1445	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1446}
1447
1448static int
1449dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1450{
1451	/* LINTED - alignment */
1452	uint64_t pc = *((uint64_t *)addr);
1453	dtrace_syminfo_t dts;
1454	GElf_Sym sym;
1455	char c[PATH_MAX * 2];
1456
1457	if (format == NULL)
1458		format = "  %-50s";
1459
1460	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1461		(void) snprintf(c, sizeof (c), "%s`%s",
1462		    dts.dts_object, dts.dts_name);
1463	} else {
1464		/*
1465		 * We'll repeat the lookup, but this time we'll specify a
1466		 * NULL GElf_Sym -- indicating that we're only interested in
1467		 * the containing module.
1468		 */
1469		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1470			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1471			    dts.dts_object, (u_longlong_t)pc);
1472		} else {
1473			(void) snprintf(c, sizeof (c), "0x%llx",
1474			    (u_longlong_t)pc);
1475		}
1476	}
1477
1478	if (dt_printf(dtp, fp, format, c) < 0)
1479		return (-1);
1480
1481	return (0);
1482}
1483
1484int
1485dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1486{
1487	/* LINTED - alignment */
1488	uint64_t pc = *((uint64_t *)addr);
1489	dtrace_syminfo_t dts;
1490	char c[PATH_MAX * 2];
1491
1492	if (format == NULL)
1493		format = "  %-50s";
1494
1495	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1496		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1497	} else {
1498		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1499	}
1500
1501	if (dt_printf(dtp, fp, format, c) < 0)
1502		return (-1);
1503
1504	return (0);
1505}
1506
1507typedef struct dt_normal {
1508	dtrace_aggvarid_t dtnd_id;
1509	uint64_t dtnd_normal;
1510} dt_normal_t;
1511
1512static int
1513dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1514{
1515	dt_normal_t *normal = arg;
1516	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1517	dtrace_aggvarid_t id = normal->dtnd_id;
1518
1519	if (agg->dtagd_nrecs == 0)
1520		return (DTRACE_AGGWALK_NEXT);
1521
1522	if (agg->dtagd_varid != id)
1523		return (DTRACE_AGGWALK_NEXT);
1524
1525	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1526	return (DTRACE_AGGWALK_NORMALIZE);
1527}
1528
1529static int
1530dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1531{
1532	dt_normal_t normal;
1533	caddr_t addr;
1534
1535	/*
1536	 * We (should) have two records:  the aggregation ID followed by the
1537	 * normalization value.
1538	 */
1539	addr = base + rec->dtrd_offset;
1540
1541	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1542		return (dt_set_errno(dtp, EDT_BADNORMAL));
1543
1544	/* LINTED - alignment */
1545	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1546	rec++;
1547
1548	if (rec->dtrd_action != DTRACEACT_LIBACT)
1549		return (dt_set_errno(dtp, EDT_BADNORMAL));
1550
1551	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1552		return (dt_set_errno(dtp, EDT_BADNORMAL));
1553
1554	addr = base + rec->dtrd_offset;
1555
1556	switch (rec->dtrd_size) {
1557	case sizeof (uint64_t):
1558		/* LINTED - alignment */
1559		normal.dtnd_normal = *((uint64_t *)addr);
1560		break;
1561	case sizeof (uint32_t):
1562		/* LINTED - alignment */
1563		normal.dtnd_normal = *((uint32_t *)addr);
1564		break;
1565	case sizeof (uint16_t):
1566		/* LINTED - alignment */
1567		normal.dtnd_normal = *((uint16_t *)addr);
1568		break;
1569	case sizeof (uint8_t):
1570		normal.dtnd_normal = *((uint8_t *)addr);
1571		break;
1572	default:
1573		return (dt_set_errno(dtp, EDT_BADNORMAL));
1574	}
1575
1576	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1577
1578	return (0);
1579}
1580
1581static int
1582dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1583{
1584	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1585	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1586
1587	if (agg->dtagd_nrecs == 0)
1588		return (DTRACE_AGGWALK_NEXT);
1589
1590	if (agg->dtagd_varid != id)
1591		return (DTRACE_AGGWALK_NEXT);
1592
1593	return (DTRACE_AGGWALK_DENORMALIZE);
1594}
1595
1596static int
1597dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1598{
1599	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1600	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1601
1602	if (agg->dtagd_nrecs == 0)
1603		return (DTRACE_AGGWALK_NEXT);
1604
1605	if (agg->dtagd_varid != id)
1606		return (DTRACE_AGGWALK_NEXT);
1607
1608	return (DTRACE_AGGWALK_CLEAR);
1609}
1610
1611typedef struct dt_trunc {
1612	dtrace_aggvarid_t dttd_id;
1613	uint64_t dttd_remaining;
1614} dt_trunc_t;
1615
1616static int
1617dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1618{
1619	dt_trunc_t *trunc = arg;
1620	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1621	dtrace_aggvarid_t id = trunc->dttd_id;
1622
1623	if (agg->dtagd_nrecs == 0)
1624		return (DTRACE_AGGWALK_NEXT);
1625
1626	if (agg->dtagd_varid != id)
1627		return (DTRACE_AGGWALK_NEXT);
1628
1629	if (trunc->dttd_remaining == 0)
1630		return (DTRACE_AGGWALK_REMOVE);
1631
1632	trunc->dttd_remaining--;
1633	return (DTRACE_AGGWALK_NEXT);
1634}
1635
1636static int
1637dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1638{
1639	dt_trunc_t trunc;
1640	caddr_t addr;
1641	int64_t remaining;
1642	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1643
1644	/*
1645	 * We (should) have two records:  the aggregation ID followed by the
1646	 * number of aggregation entries after which the aggregation is to be
1647	 * truncated.
1648	 */
1649	addr = base + rec->dtrd_offset;
1650
1651	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1652		return (dt_set_errno(dtp, EDT_BADTRUNC));
1653
1654	/* LINTED - alignment */
1655	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1656	rec++;
1657
1658	if (rec->dtrd_action != DTRACEACT_LIBACT)
1659		return (dt_set_errno(dtp, EDT_BADTRUNC));
1660
1661	if (rec->dtrd_arg != DT_ACT_TRUNC)
1662		return (dt_set_errno(dtp, EDT_BADTRUNC));
1663
1664	addr = base + rec->dtrd_offset;
1665
1666	switch (rec->dtrd_size) {
1667	case sizeof (uint64_t):
1668		/* LINTED - alignment */
1669		remaining = *((int64_t *)addr);
1670		break;
1671	case sizeof (uint32_t):
1672		/* LINTED - alignment */
1673		remaining = *((int32_t *)addr);
1674		break;
1675	case sizeof (uint16_t):
1676		/* LINTED - alignment */
1677		remaining = *((int16_t *)addr);
1678		break;
1679	case sizeof (uint8_t):
1680		remaining = *((int8_t *)addr);
1681		break;
1682	default:
1683		return (dt_set_errno(dtp, EDT_BADNORMAL));
1684	}
1685
1686	if (remaining < 0) {
1687		func = dtrace_aggregate_walk_valsorted;
1688		remaining = -remaining;
1689	} else {
1690		func = dtrace_aggregate_walk_valrevsorted;
1691	}
1692
1693	assert(remaining >= 0);
1694	trunc.dttd_remaining = remaining;
1695
1696	(void) func(dtp, dt_trunc_agg, &trunc);
1697
1698	return (0);
1699}
1700
1701static int
1702dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1703    caddr_t addr, size_t size, uint64_t normal)
1704{
1705	int err;
1706	dtrace_actkind_t act = rec->dtrd_action;
1707
1708	switch (act) {
1709	case DTRACEACT_STACK:
1710		return (dt_print_stack(dtp, fp, NULL, addr,
1711		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1712
1713	case DTRACEACT_USTACK:
1714	case DTRACEACT_JSTACK:
1715		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1716
1717	case DTRACEACT_USYM:
1718	case DTRACEACT_UADDR:
1719		return (dt_print_usym(dtp, fp, addr, act));
1720
1721	case DTRACEACT_UMOD:
1722		return (dt_print_umod(dtp, fp, NULL, addr));
1723
1724	case DTRACEACT_SYM:
1725		return (dt_print_sym(dtp, fp, NULL, addr));
1726
1727	case DTRACEACT_MOD:
1728		return (dt_print_mod(dtp, fp, NULL, addr));
1729
1730	case DTRACEAGG_QUANTIZE:
1731		return (dt_print_quantize(dtp, fp, addr, size, normal));
1732
1733	case DTRACEAGG_LQUANTIZE:
1734		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1735
1736	case DTRACEAGG_AVG:
1737		return (dt_print_average(dtp, fp, addr, size, normal));
1738
1739	case DTRACEAGG_STDDEV:
1740		return (dt_print_stddev(dtp, fp, addr, size, normal));
1741
1742	default:
1743		break;
1744	}
1745
1746	switch (size) {
1747	case sizeof (uint64_t):
1748		err = dt_printf(dtp, fp, " %16lld",
1749		    /* LINTED - alignment */
1750		    (long long)*((uint64_t *)addr) / normal);
1751		break;
1752	case sizeof (uint32_t):
1753		/* LINTED - alignment */
1754		err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1755		    (uint32_t)normal);
1756		break;
1757	case sizeof (uint16_t):
1758		/* LINTED - alignment */
1759		err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1760		    (uint32_t)normal);
1761		break;
1762	case sizeof (uint8_t):
1763		err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1764		    (uint32_t)normal);
1765		break;
1766	default:
1767		err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1768		break;
1769	}
1770
1771	return (err);
1772}
1773
1774int
1775dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1776{
1777	int i, aggact = 0;
1778	dt_print_aggdata_t *pd = arg;
1779	const dtrace_aggdata_t *aggdata = aggsdata[0];
1780	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1781	FILE *fp = pd->dtpa_fp;
1782	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1783	dtrace_recdesc_t *rec;
1784	dtrace_actkind_t act;
1785	caddr_t addr;
1786	size_t size;
1787
1788	/*
1789	 * Iterate over each record description in the key, printing the traced
1790	 * data, skipping the first datum (the tuple member created by the
1791	 * compiler).
1792	 */
1793	for (i = 1; i < agg->dtagd_nrecs; i++) {
1794		rec = &agg->dtagd_rec[i];
1795		act = rec->dtrd_action;
1796		addr = aggdata->dtada_data + rec->dtrd_offset;
1797		size = rec->dtrd_size;
1798
1799		if (DTRACEACT_ISAGG(act)) {
1800			aggact = i;
1801			break;
1802		}
1803
1804		if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1805			return (-1);
1806
1807		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1808		    DTRACE_BUFDATA_AGGKEY) < 0)
1809			return (-1);
1810	}
1811
1812	assert(aggact != 0);
1813
1814	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1815		uint64_t normal;
1816
1817		aggdata = aggsdata[i];
1818		agg = aggdata->dtada_desc;
1819		rec = &agg->dtagd_rec[aggact];
1820		act = rec->dtrd_action;
1821		addr = aggdata->dtada_data + rec->dtrd_offset;
1822		size = rec->dtrd_size;
1823
1824		assert(DTRACEACT_ISAGG(act));
1825		normal = aggdata->dtada_normal;
1826
1827		if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1828			return (-1);
1829
1830		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1831		    DTRACE_BUFDATA_AGGVAL) < 0)
1832			return (-1);
1833
1834		if (!pd->dtpa_allunprint)
1835			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1836	}
1837
1838	if (dt_printf(dtp, fp, "\n") < 0)
1839		return (-1);
1840
1841	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1842	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1843		return (-1);
1844
1845	return (0);
1846}
1847
1848int
1849dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1850{
1851	dt_print_aggdata_t *pd = arg;
1852	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1853	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1854
1855	if (pd->dtpa_allunprint) {
1856		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1857			return (0);
1858	} else {
1859		/*
1860		 * If we're not printing all unprinted aggregations, then the
1861		 * aggregation variable ID denotes a specific aggregation
1862		 * variable that we should print -- skip any other aggregations
1863		 * that we encounter.
1864		 */
1865		if (agg->dtagd_nrecs == 0)
1866			return (0);
1867
1868		if (aggvarid != agg->dtagd_varid)
1869			return (0);
1870	}
1871
1872	return (dt_print_aggs(&aggdata, 1, arg));
1873}
1874
1875int
1876dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1877    const char *option, const char *value)
1878{
1879	int len, rval;
1880	char *msg;
1881	const char *errstr;
1882	dtrace_setoptdata_t optdata;
1883
1884	bzero(&optdata, sizeof (optdata));
1885	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1886
1887	if (dtrace_setopt(dtp, option, value) == 0) {
1888		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1889		optdata.dtsda_probe = data;
1890		optdata.dtsda_option = option;
1891		optdata.dtsda_handle = dtp;
1892
1893		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1894			return (rval);
1895
1896		return (0);
1897	}
1898
1899	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1900	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1901	msg = alloca(len);
1902
1903	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
1904	    option, value, errstr);
1905
1906	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
1907		return (0);
1908
1909	return (rval);
1910}
1911
1912static int
1913dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
1914    dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
1915{
1916	dtrace_epid_t id;
1917	size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
1918	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
1919	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1920	int rval, i, n;
1921	dtrace_epid_t last = DTRACE_EPIDNONE;
1922	dtrace_probedata_t data;
1923	uint64_t drops;
1924	caddr_t addr;
1925
1926	bzero(&data, sizeof (data));
1927	data.dtpda_handle = dtp;
1928	data.dtpda_cpu = cpu;
1929
1930again:
1931	for (offs = start; offs < end; ) {
1932		dtrace_eprobedesc_t *epd;
1933
1934		/*
1935		 * We're guaranteed to have an ID.
1936		 */
1937		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
1938
1939		if (id == DTRACE_EPIDNONE) {
1940			/*
1941			 * This is filler to assure proper alignment of the
1942			 * next record; we simply ignore it.
1943			 */
1944			offs += sizeof (id);
1945			continue;
1946		}
1947
1948		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
1949		    &data.dtpda_pdesc)) != 0)
1950			return (rval);
1951
1952		epd = data.dtpda_edesc;
1953		data.dtpda_data = buf->dtbd_data + offs;
1954
1955		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
1956			rval = dt_handle(dtp, &data);
1957
1958			if (rval == DTRACE_CONSUME_NEXT)
1959				goto nextepid;
1960
1961			if (rval == DTRACE_CONSUME_ERROR)
1962				return (-1);
1963		}
1964
1965		if (flow)
1966			(void) dt_flowindent(dtp, &data, last, buf, offs);
1967
1968		rval = (*efunc)(&data, arg);
1969
1970		if (flow) {
1971			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
1972				data.dtpda_indent += 2;
1973		}
1974
1975		if (rval == DTRACE_CONSUME_NEXT)
1976			goto nextepid;
1977
1978		if (rval == DTRACE_CONSUME_ABORT)
1979			return (dt_set_errno(dtp, EDT_DIRABORT));
1980
1981		if (rval != DTRACE_CONSUME_THIS)
1982			return (dt_set_errno(dtp, EDT_BADRVAL));
1983
1984		for (i = 0; i < epd->dtepd_nrecs; i++) {
1985			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
1986			dtrace_actkind_t act = rec->dtrd_action;
1987
1988			data.dtpda_data = buf->dtbd_data + offs +
1989			    rec->dtrd_offset;
1990			addr = data.dtpda_data;
1991
1992			if (act == DTRACEACT_LIBACT) {
1993				uint64_t arg = rec->dtrd_arg;
1994				dtrace_aggvarid_t id;
1995
1996				switch (arg) {
1997				case DT_ACT_CLEAR:
1998					/* LINTED - alignment */
1999					id = *((dtrace_aggvarid_t *)addr);
2000					(void) dtrace_aggregate_walk(dtp,
2001					    dt_clear_agg, &id);
2002					continue;
2003
2004				case DT_ACT_DENORMALIZE:
2005					/* LINTED - alignment */
2006					id = *((dtrace_aggvarid_t *)addr);
2007					(void) dtrace_aggregate_walk(dtp,
2008					    dt_denormalize_agg, &id);
2009					continue;
2010
2011				case DT_ACT_FTRUNCATE:
2012					if (fp == NULL)
2013						continue;
2014
2015					(void) fflush(fp);
2016					(void) ftruncate(fileno(fp), 0);
2017					(void) fseeko(fp, 0, SEEK_SET);
2018					continue;
2019
2020				case DT_ACT_NORMALIZE:
2021					if (i == epd->dtepd_nrecs - 1)
2022						return (dt_set_errno(dtp,
2023						    EDT_BADNORMAL));
2024
2025					if (dt_normalize(dtp,
2026					    buf->dtbd_data + offs, rec) != 0)
2027						return (-1);
2028
2029					i++;
2030					continue;
2031
2032				case DT_ACT_SETOPT: {
2033					uint64_t *opts = dtp->dt_options;
2034					dtrace_recdesc_t *valrec;
2035					uint32_t valsize;
2036					caddr_t val;
2037					int rv;
2038
2039					if (i == epd->dtepd_nrecs - 1) {
2040						return (dt_set_errno(dtp,
2041						    EDT_BADSETOPT));
2042					}
2043
2044					valrec = &epd->dtepd_rec[++i];
2045					valsize = valrec->dtrd_size;
2046
2047					if (valrec->dtrd_action != act ||
2048					    valrec->dtrd_arg != arg) {
2049						return (dt_set_errno(dtp,
2050						    EDT_BADSETOPT));
2051					}
2052
2053					if (valsize > sizeof (uint64_t)) {
2054						val = buf->dtbd_data + offs +
2055						    valrec->dtrd_offset;
2056					} else {
2057						val = "1";
2058					}
2059
2060					rv = dt_setopt(dtp, &data, addr, val);
2061
2062					if (rv != 0)
2063						return (-1);
2064
2065					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2066					    DTRACEOPT_UNSET);
2067					quiet = (opts[DTRACEOPT_QUIET] !=
2068					    DTRACEOPT_UNSET);
2069
2070					continue;
2071				}
2072
2073				case DT_ACT_TRUNC:
2074					if (i == epd->dtepd_nrecs - 1)
2075						return (dt_set_errno(dtp,
2076						    EDT_BADTRUNC));
2077
2078					if (dt_trunc(dtp,
2079					    buf->dtbd_data + offs, rec) != 0)
2080						return (-1);
2081
2082					i++;
2083					continue;
2084
2085				default:
2086					continue;
2087				}
2088			}
2089
2090			rval = (*rfunc)(&data, rec, arg);
2091
2092			if (rval == DTRACE_CONSUME_NEXT)
2093				continue;
2094
2095			if (rval == DTRACE_CONSUME_ABORT)
2096				return (dt_set_errno(dtp, EDT_DIRABORT));
2097
2098			if (rval != DTRACE_CONSUME_THIS)
2099				return (dt_set_errno(dtp, EDT_BADRVAL));
2100
2101			if (act == DTRACEACT_STACK) {
2102				int depth = rec->dtrd_arg;
2103
2104				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2105				    rec->dtrd_size / depth) < 0)
2106					return (-1);
2107				goto nextrec;
2108			}
2109
2110			if (act == DTRACEACT_USTACK ||
2111			    act == DTRACEACT_JSTACK) {
2112				if (dt_print_ustack(dtp, fp, NULL,
2113				    addr, rec->dtrd_arg) < 0)
2114					return (-1);
2115				goto nextrec;
2116			}
2117
2118			if (act == DTRACEACT_SYM) {
2119				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2120					return (-1);
2121				goto nextrec;
2122			}
2123
2124			if (act == DTRACEACT_MOD) {
2125				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2126					return (-1);
2127				goto nextrec;
2128			}
2129
2130			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2131				if (dt_print_usym(dtp, fp, addr, act) < 0)
2132					return (-1);
2133				goto nextrec;
2134			}
2135
2136			if (act == DTRACEACT_UMOD) {
2137				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2138					return (-1);
2139				goto nextrec;
2140			}
2141
2142			if (act == DTRACEACT_PRINTM) {
2143				if (dt_print_memory(dtp, fp, addr) < 0)
2144					return (-1);
2145				goto nextrec;
2146			}
2147
2148			if (act == DTRACEACT_PRINTT) {
2149				if (dt_print_type(dtp, fp, addr) < 0)
2150					return (-1);
2151				goto nextrec;
2152			}
2153
2154			if (DTRACEACT_ISPRINTFLIKE(act)) {
2155				void *fmtdata;
2156				int (*func)(dtrace_hdl_t *, FILE *, void *,
2157				    const dtrace_probedata_t *,
2158				    const dtrace_recdesc_t *, uint_t,
2159				    const void *buf, size_t);
2160
2161				if ((fmtdata = dt_format_lookup(dtp,
2162				    rec->dtrd_format)) == NULL)
2163					goto nofmt;
2164
2165				switch (act) {
2166				case DTRACEACT_PRINTF:
2167					func = dtrace_fprintf;
2168					break;
2169				case DTRACEACT_PRINTA:
2170					func = dtrace_fprinta;
2171					break;
2172				case DTRACEACT_SYSTEM:
2173					func = dtrace_system;
2174					break;
2175				case DTRACEACT_FREOPEN:
2176					func = dtrace_freopen;
2177					break;
2178				}
2179
2180				n = (*func)(dtp, fp, fmtdata, &data,
2181				    rec, epd->dtepd_nrecs - i,
2182				    (uchar_t *)buf->dtbd_data + offs,
2183				    buf->dtbd_size - offs);
2184
2185				if (n < 0)
2186					return (-1); /* errno is set for us */
2187
2188				if (n > 0)
2189					i += n - 1;
2190				goto nextrec;
2191			}
2192
2193nofmt:
2194			if (act == DTRACEACT_PRINTA) {
2195				dt_print_aggdata_t pd;
2196				dtrace_aggvarid_t *aggvars;
2197				int j, naggvars = 0;
2198				size_t size = ((epd->dtepd_nrecs - i) *
2199				    sizeof (dtrace_aggvarid_t));
2200
2201				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2202					return (-1);
2203
2204				/*
2205				 * This might be a printa() with multiple
2206				 * aggregation variables.  We need to scan
2207				 * forward through the records until we find
2208				 * a record from a different statement.
2209				 */
2210				for (j = i; j < epd->dtepd_nrecs; j++) {
2211					dtrace_recdesc_t *nrec;
2212					caddr_t naddr;
2213
2214					nrec = &epd->dtepd_rec[j];
2215
2216					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2217						break;
2218
2219					if (nrec->dtrd_action != act) {
2220						return (dt_set_errno(dtp,
2221						    EDT_BADAGG));
2222					}
2223
2224					naddr = buf->dtbd_data + offs +
2225					    nrec->dtrd_offset;
2226
2227					aggvars[naggvars++] =
2228					    /* LINTED - alignment */
2229					    *((dtrace_aggvarid_t *)naddr);
2230				}
2231
2232				i = j - 1;
2233				bzero(&pd, sizeof (pd));
2234				pd.dtpa_dtp = dtp;
2235				pd.dtpa_fp = fp;
2236
2237				assert(naggvars >= 1);
2238
2239				if (naggvars == 1) {
2240					pd.dtpa_id = aggvars[0];
2241					dt_free(dtp, aggvars);
2242
2243					if (dt_printf(dtp, fp, "\n") < 0 ||
2244					    dtrace_aggregate_walk_sorted(dtp,
2245					    dt_print_agg, &pd) < 0)
2246						return (-1);
2247					goto nextrec;
2248				}
2249
2250				if (dt_printf(dtp, fp, "\n") < 0 ||
2251				    dtrace_aggregate_walk_joined(dtp, aggvars,
2252				    naggvars, dt_print_aggs, &pd) < 0) {
2253					dt_free(dtp, aggvars);
2254					return (-1);
2255				}
2256
2257				dt_free(dtp, aggvars);
2258				goto nextrec;
2259			}
2260
2261			switch (rec->dtrd_size) {
2262			case sizeof (uint64_t):
2263				n = dt_printf(dtp, fp,
2264				    quiet ? "%lld" : " %16lld",
2265				    /* LINTED - alignment */
2266				    *((unsigned long long *)addr));
2267				break;
2268			case sizeof (uint32_t):
2269				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2270				    /* LINTED - alignment */
2271				    *((uint32_t *)addr));
2272				break;
2273			case sizeof (uint16_t):
2274				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2275				    /* LINTED - alignment */
2276				    *((uint16_t *)addr));
2277				break;
2278			case sizeof (uint8_t):
2279				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2280				    *((uint8_t *)addr));
2281				break;
2282			default:
2283				n = dt_print_bytes(dtp, fp, addr,
2284				    rec->dtrd_size, 33, quiet, 0);
2285				break;
2286			}
2287
2288			if (n < 0)
2289				return (-1); /* errno is set for us */
2290
2291nextrec:
2292			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2293				return (-1); /* errno is set for us */
2294		}
2295
2296		/*
2297		 * Call the record callback with a NULL record to indicate
2298		 * that we're done processing this EPID.
2299		 */
2300		rval = (*rfunc)(&data, NULL, arg);
2301nextepid:
2302		offs += epd->dtepd_size;
2303		last = id;
2304	}
2305
2306	if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
2307		end = buf->dtbd_oldest;
2308		start = 0;
2309		goto again;
2310	}
2311
2312	if ((drops = buf->dtbd_drops) == 0)
2313		return (0);
2314
2315	/*
2316	 * Explicitly zero the drops to prevent us from processing them again.
2317	 */
2318	buf->dtbd_drops = 0;
2319
2320	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2321}
2322
2323typedef struct dt_begin {
2324	dtrace_consume_probe_f *dtbgn_probefunc;
2325	dtrace_consume_rec_f *dtbgn_recfunc;
2326	void *dtbgn_arg;
2327	dtrace_handle_err_f *dtbgn_errhdlr;
2328	void *dtbgn_errarg;
2329	int dtbgn_beginonly;
2330} dt_begin_t;
2331
2332static int
2333dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2334{
2335	dt_begin_t *begin = (dt_begin_t *)arg;
2336	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2337
2338	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2339	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2340
2341	if (begin->dtbgn_beginonly) {
2342		if (!(r1 && r2))
2343			return (DTRACE_CONSUME_NEXT);
2344	} else {
2345		if (r1 && r2)
2346			return (DTRACE_CONSUME_NEXT);
2347	}
2348
2349	/*
2350	 * We have a record that we're interested in.  Now call the underlying
2351	 * probe function...
2352	 */
2353	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2354}
2355
2356static int
2357dt_consume_begin_record(const dtrace_probedata_t *data,
2358    const dtrace_recdesc_t *rec, void *arg)
2359{
2360	dt_begin_t *begin = (dt_begin_t *)arg;
2361
2362	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2363}
2364
2365static int
2366dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2367{
2368	dt_begin_t *begin = (dt_begin_t *)arg;
2369	dtrace_probedesc_t *pd = data->dteda_pdesc;
2370
2371	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2372	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2373
2374	if (begin->dtbgn_beginonly) {
2375		if (!(r1 && r2))
2376			return (DTRACE_HANDLE_OK);
2377	} else {
2378		if (r1 && r2)
2379			return (DTRACE_HANDLE_OK);
2380	}
2381
2382	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2383}
2384
2385static int
2386dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
2387    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2388{
2389	/*
2390	 * There's this idea that the BEGIN probe should be processed before
2391	 * everything else, and that the END probe should be processed after
2392	 * anything else.  In the common case, this is pretty easy to deal
2393	 * with.  However, a situation may arise where the BEGIN enabling and
2394	 * END enabling are on the same CPU, and some enabling in the middle
2395	 * occurred on a different CPU.  To deal with this (blech!) we need to
2396	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2397	 * then set it aside.  We will then process every other CPU, and then
2398	 * we'll return to the BEGIN CPU and process the rest of the data
2399	 * (which will inevitably include the END probe, if any).  Making this
2400	 * even more complicated (!) is the library's ERROR enabling.  Because
2401	 * this enabling is processed before we even get into the consume call
2402	 * back, any ERROR firing would result in the library's ERROR enabling
2403	 * being processed twice -- once in our first pass (for BEGIN probes),
2404	 * and again in our second pass (for everything but BEGIN probes).  To
2405	 * deal with this, we interpose on the ERROR handler to assure that we
2406	 * only process ERROR enablings induced by BEGIN enablings in the
2407	 * first pass, and that we only process ERROR enablings _not_ induced
2408	 * by BEGIN enablings in the second pass.
2409	 */
2410	dt_begin_t begin;
2411	processorid_t cpu = dtp->dt_beganon;
2412	dtrace_bufdesc_t nbuf;
2413#if !defined(sun)
2414	dtrace_bufdesc_t *pbuf;
2415#endif
2416	int rval, i;
2417	static int max_ncpus;
2418	dtrace_optval_t size;
2419
2420	dtp->dt_beganon = -1;
2421
2422#if defined(sun)
2423	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2424#else
2425	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2426#endif
2427		/*
2428		 * We really don't expect this to fail, but it is at least
2429		 * technically possible for this to fail with ENOENT.  In this
2430		 * case, we just drive on...
2431		 */
2432		if (errno == ENOENT)
2433			return (0);
2434
2435		return (dt_set_errno(dtp, errno));
2436	}
2437
2438	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2439		/*
2440		 * This is the simple case.  We're either not stopped, or if
2441		 * we are, we actually processed any END probes on another
2442		 * CPU.  We can simply consume this buffer and return.
2443		 */
2444		return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
2445	}
2446
2447	begin.dtbgn_probefunc = pf;
2448	begin.dtbgn_recfunc = rf;
2449	begin.dtbgn_arg = arg;
2450	begin.dtbgn_beginonly = 1;
2451
2452	/*
2453	 * We need to interpose on the ERROR handler to be sure that we
2454	 * only process ERRORs induced by BEGIN.
2455	 */
2456	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2457	begin.dtbgn_errarg = dtp->dt_errarg;
2458	dtp->dt_errhdlr = dt_consume_begin_error;
2459	dtp->dt_errarg = &begin;
2460
2461	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2462	    dt_consume_begin_record, &begin);
2463
2464	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2465	dtp->dt_errarg = begin.dtbgn_errarg;
2466
2467	if (rval != 0)
2468		return (rval);
2469
2470	/*
2471	 * Now allocate a new buffer.  We'll use this to deal with every other
2472	 * CPU.
2473	 */
2474	bzero(&nbuf, sizeof (dtrace_bufdesc_t));
2475	(void) dtrace_getopt(dtp, "bufsize", &size);
2476	if ((nbuf.dtbd_data = malloc(size)) == NULL)
2477		return (dt_set_errno(dtp, EDT_NOMEM));
2478
2479	if (max_ncpus == 0)
2480		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2481
2482	for (i = 0; i < max_ncpus; i++) {
2483		nbuf.dtbd_cpu = i;
2484
2485		if (i == cpu)
2486			continue;
2487
2488#if defined(sun)
2489		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
2490#else
2491		pbuf = &nbuf;
2492		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &pbuf) == -1) {
2493#endif
2494			/*
2495			 * If we failed with ENOENT, it may be because the
2496			 * CPU was unconfigured -- this is okay.  Any other
2497			 * error, however, is unexpected.
2498			 */
2499			if (errno == ENOENT)
2500				continue;
2501
2502			free(nbuf.dtbd_data);
2503
2504			return (dt_set_errno(dtp, errno));
2505		}
2506
2507		if ((rval = dt_consume_cpu(dtp, fp,
2508		    i, &nbuf, pf, rf, arg)) != 0) {
2509			free(nbuf.dtbd_data);
2510			return (rval);
2511		}
2512	}
2513
2514	free(nbuf.dtbd_data);
2515
2516	/*
2517	 * Okay -- we're done with the other buffers.  Now we want to
2518	 * reconsume the first buffer -- but this time we're looking for
2519	 * everything _but_ BEGIN.  And of course, in order to only consume
2520	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2521	 * ERROR interposition function...
2522	 */
2523	begin.dtbgn_beginonly = 0;
2524
2525	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2526	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2527	dtp->dt_errhdlr = dt_consume_begin_error;
2528	dtp->dt_errarg = &begin;
2529
2530	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2531	    dt_consume_begin_record, &begin);
2532
2533	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2534	dtp->dt_errarg = begin.dtbgn_errarg;
2535
2536	return (rval);
2537}
2538
2539int
2540dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2541    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2542{
2543	dtrace_bufdesc_t *buf = &dtp->dt_buf;
2544	dtrace_optval_t size;
2545	static int max_ncpus;
2546	int i, rval;
2547	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2548	hrtime_t now = gethrtime();
2549
2550	if (dtp->dt_lastswitch != 0) {
2551		if (now - dtp->dt_lastswitch < interval)
2552			return (0);
2553
2554		dtp->dt_lastswitch += interval;
2555	} else {
2556		dtp->dt_lastswitch = now;
2557	}
2558
2559	if (!dtp->dt_active)
2560		return (dt_set_errno(dtp, EINVAL));
2561
2562	if (max_ncpus == 0)
2563		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2564
2565	if (pf == NULL)
2566		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2567
2568	if (rf == NULL)
2569		rf = (dtrace_consume_rec_f *)dt_nullrec;
2570
2571	if (buf->dtbd_data == NULL) {
2572		(void) dtrace_getopt(dtp, "bufsize", &size);
2573		if ((buf->dtbd_data = malloc(size)) == NULL)
2574			return (dt_set_errno(dtp, EDT_NOMEM));
2575
2576		buf->dtbd_size = size;
2577	}
2578
2579	/*
2580	 * If we have just begun, we want to first process the CPU that
2581	 * executed the BEGIN probe (if any).
2582	 */
2583	if (dtp->dt_active && dtp->dt_beganon != -1) {
2584		buf->dtbd_cpu = dtp->dt_beganon;
2585		if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
2586			return (rval);
2587	}
2588
2589	for (i = 0; i < max_ncpus; i++) {
2590		buf->dtbd_cpu = i;
2591
2592		/*
2593		 * If we have stopped, we want to process the CPU on which the
2594		 * END probe was processed only _after_ we have processed
2595		 * everything else.
2596		 */
2597		if (dtp->dt_stopped && (i == dtp->dt_endedon))
2598			continue;
2599
2600#if defined(sun)
2601		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2602#else
2603		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2604#endif
2605			/*
2606			 * If we failed with ENOENT, it may be because the
2607			 * CPU was unconfigured -- this is okay.  Any other
2608			 * error, however, is unexpected.
2609			 */
2610			if (errno == ENOENT)
2611				continue;
2612
2613			return (dt_set_errno(dtp, errno));
2614		}
2615
2616		if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
2617			return (rval);
2618	}
2619
2620	if (!dtp->dt_stopped)
2621		return (0);
2622
2623	buf->dtbd_cpu = dtp->dt_endedon;
2624
2625#if defined(sun)
2626	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2627#else
2628	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2629#endif
2630		/*
2631		 * This _really_ shouldn't fail, but it is strictly speaking
2632		 * possible for this to return ENOENT if the CPU that called
2633		 * the END enabling somehow managed to become unconfigured.
2634		 * It's unclear how the user can possibly expect anything
2635		 * rational to happen in this case -- the state has been thrown
2636		 * out along with the unconfigured CPU -- so we'll just drive
2637		 * on...
2638		 */
2639		if (errno == ENOENT)
2640			return (0);
2641
2642		return (dt_set_errno(dtp, errno));
2643	}
2644
2645	return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
2646}
2647