camdd.c revision 302377
1/*-
2 * Copyright (c) 1997-2007 Kenneth D. Merry
3 * Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions, and the following disclaimer,
11 *    without modification.
12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13 *    substantially similar to the "NO WARRANTY" disclaimer below
14 *    ("Disclaimer") and any redistribution must be conditioned upon
15 *    including a substantially similar Disclaimer requirement for further
16 *    binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
28 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGES.
30 *
31 * Authors: Ken Merry           (Spectra Logic Corporation)
32 */
33
34/*
35 * This is eventually intended to be:
36 * - A basic data transfer/copy utility
37 * - A simple benchmark utility
38 * - An example of how to use the asynchronous pass(4) driver interface.
39 */
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: stable/10/usr.sbin/camdd/camdd.c 302377 2016-07-06 17:45:38Z truckman $");
42
43#include <sys/ioctl.h>
44#include <sys/stdint.h>
45#include <sys/types.h>
46#include <sys/endian.h>
47#include <sys/param.h>
48#include <sys/sbuf.h>
49#include <sys/stat.h>
50#include <sys/event.h>
51#include <sys/time.h>
52#include <sys/uio.h>
53#include <vm/vm.h>
54#include <machine/bus.h>
55#include <sys/bus.h>
56#include <sys/bus_dma.h>
57#include <sys/mtio.h>
58#include <sys/conf.h>
59#include <sys/disk.h>
60
61#include <stdio.h>
62#include <stdlib.h>
63#include <semaphore.h>
64#include <string.h>
65#include <unistd.h>
66#include <inttypes.h>
67#include <limits.h>
68#include <fcntl.h>
69#include <ctype.h>
70#include <err.h>
71#include <libutil.h>
72#include <pthread.h>
73#include <assert.h>
74#include <bsdxml.h>
75
76#include <cam/cam.h>
77#include <cam/cam_debug.h>
78#include <cam/cam_ccb.h>
79#include <cam/scsi/scsi_all.h>
80#include <cam/scsi/scsi_da.h>
81#include <cam/scsi/scsi_pass.h>
82#include <cam/scsi/scsi_message.h>
83#include <cam/scsi/smp_all.h>
84#include <camlib.h>
85#include <mtlib.h>
86#include <zlib.h>
87
88typedef enum {
89	CAMDD_CMD_NONE		= 0x00000000,
90	CAMDD_CMD_HELP		= 0x00000001,
91	CAMDD_CMD_WRITE		= 0x00000002,
92	CAMDD_CMD_READ		= 0x00000003
93} camdd_cmdmask;
94
95typedef enum {
96	CAMDD_ARG_NONE		= 0x00000000,
97	CAMDD_ARG_VERBOSE	= 0x00000001,
98	CAMDD_ARG_DEVICE	= 0x00000002,
99	CAMDD_ARG_BUS		= 0x00000004,
100	CAMDD_ARG_TARGET	= 0x00000008,
101	CAMDD_ARG_LUN		= 0x00000010,
102	CAMDD_ARG_UNIT		= 0x00000020,
103	CAMDD_ARG_TIMEOUT	= 0x00000040,
104	CAMDD_ARG_ERR_RECOVER	= 0x00000080,
105	CAMDD_ARG_RETRIES	= 0x00000100
106} camdd_argmask;
107
108typedef enum {
109	CAMDD_DEV_NONE		= 0x00,
110	CAMDD_DEV_PASS		= 0x01,
111	CAMDD_DEV_FILE		= 0x02
112} camdd_dev_type;
113
114struct camdd_io_opts {
115	camdd_dev_type	dev_type;
116	char		*dev_name;
117	uint64_t	blocksize;
118	uint64_t	queue_depth;
119	uint64_t	offset;
120	int		min_cmd_size;
121	int		write_dev;
122	uint64_t	debug;
123};
124
125typedef enum {
126	CAMDD_BUF_NONE,
127	CAMDD_BUF_DATA,
128	CAMDD_BUF_INDIRECT
129} camdd_buf_type;
130
131struct camdd_buf_indirect {
132	/*
133	 * Pointer to the source buffer.
134	 */
135	struct camdd_buf *src_buf;
136
137	/*
138	 * Offset into the source buffer, in bytes.
139	 */
140	uint64_t	  offset;
141	/*
142	 * Pointer to the starting point in the source buffer.
143	 */
144	uint8_t		 *start_ptr;
145
146	/*
147	 * Length of this chunk in bytes.
148	 */
149	size_t		  len;
150};
151
152struct camdd_buf_data {
153	/*
154	 * Buffer allocated when we allocate this camdd_buf.  This should
155	 * be the size of the blocksize for this device.
156	 */
157	uint8_t			*buf;
158
159	/*
160	 * The amount of backing store allocated in buf.  Generally this
161	 * will be the blocksize of the device.
162	 */
163	uint32_t		 alloc_len;
164
165	/*
166	 * The amount of data that was put into the buffer (on reads) or
167	 * the amount of data we have put onto the src_list so far (on
168	 * writes).
169	 */
170	uint32_t		 fill_len;
171
172	/*
173	 * The amount of data that was not transferred.
174	 */
175	uint32_t		 resid;
176
177	/*
178	 * Starting byte offset on the reader.
179	 */
180	uint64_t		 src_start_offset;
181
182	/*
183	 * CCB used for pass(4) device targets.
184	 */
185	union ccb		 ccb;
186
187	/*
188	 * Number of scatter/gather segments.
189	 */
190	int			 sg_count;
191
192	/*
193	 * Set if we had to tack on an extra buffer to round the transfer
194	 * up to a sector size.
195	 */
196	int			 extra_buf;
197
198	/*
199	 * Scatter/gather list used generally when we're the writer for a
200	 * pass(4) device.
201	 */
202	bus_dma_segment_t	*segs;
203
204	/*
205	 * Scatter/gather list used generally when we're the writer for a
206	 * file or block device;
207	 */
208	struct iovec		*iovec;
209};
210
211union camdd_buf_types {
212	struct camdd_buf_indirect	indirect;
213	struct camdd_buf_data		data;
214};
215
216typedef enum {
217	CAMDD_STATUS_NONE,
218	CAMDD_STATUS_OK,
219	CAMDD_STATUS_SHORT_IO,
220	CAMDD_STATUS_EOF,
221	CAMDD_STATUS_ERROR
222} camdd_buf_status;
223
224struct camdd_buf {
225	camdd_buf_type		 buf_type;
226	union camdd_buf_types	 buf_type_spec;
227
228	camdd_buf_status	 status;
229
230	uint64_t		 lba;
231	size_t			 len;
232
233	/*
234	 * A reference count of how many indirect buffers point to this
235	 * buffer.
236	 */
237	int			 refcount;
238
239	/*
240	 * A link back to our parent device.
241	 */
242	struct camdd_dev	*dev;
243	STAILQ_ENTRY(camdd_buf)  links;
244	STAILQ_ENTRY(camdd_buf)  work_links;
245
246	/*
247	 * A count of the buffers on the src_list.
248	 */
249	int			 src_count;
250
251	/*
252	 * List of buffers from our partner thread that are the components
253	 * of this buffer for the I/O.  Uses src_links.
254	 */
255	STAILQ_HEAD(,camdd_buf)	 src_list;
256	STAILQ_ENTRY(camdd_buf)  src_links;
257};
258
259#define	NUM_DEV_TYPES	2
260
261struct camdd_dev_pass {
262	int			 scsi_dev_type;
263	struct cam_device	*dev;
264	uint64_t		 max_sector;
265	uint32_t		 block_len;
266	uint32_t		 cpi_maxio;
267};
268
269typedef enum {
270	CAMDD_FILE_NONE,
271	CAMDD_FILE_REG,
272	CAMDD_FILE_STD,
273	CAMDD_FILE_PIPE,
274	CAMDD_FILE_DISK,
275	CAMDD_FILE_TAPE,
276	CAMDD_FILE_TTY,
277	CAMDD_FILE_MEM
278} camdd_file_type;
279
280typedef enum {
281	CAMDD_FF_NONE 		= 0x00,
282	CAMDD_FF_CAN_SEEK	= 0x01
283} camdd_file_flags;
284
285struct camdd_dev_file {
286	int			 fd;
287	struct stat		 sb;
288	char			 filename[MAXPATHLEN + 1];
289	camdd_file_type		 file_type;
290	camdd_file_flags	 file_flags;
291	uint8_t			*tmp_buf;
292};
293
294struct camdd_dev_block {
295	int			 fd;
296	uint64_t		 size_bytes;
297	uint32_t		 block_len;
298};
299
300union camdd_dev_spec {
301	struct camdd_dev_pass	pass;
302	struct camdd_dev_file	file;
303	struct camdd_dev_block	block;
304};
305
306typedef enum {
307	CAMDD_DEV_FLAG_NONE		= 0x00,
308	CAMDD_DEV_FLAG_EOF		= 0x01,
309	CAMDD_DEV_FLAG_PEER_EOF		= 0x02,
310	CAMDD_DEV_FLAG_ACTIVE		= 0x04,
311	CAMDD_DEV_FLAG_EOF_SENT		= 0x08,
312	CAMDD_DEV_FLAG_EOF_QUEUED	= 0x10
313} camdd_dev_flags;
314
315struct camdd_dev {
316	camdd_dev_type		 dev_type;
317	union camdd_dev_spec	 dev_spec;
318	camdd_dev_flags		 flags;
319	char			 device_name[MAXPATHLEN+1];
320	uint32_t		 blocksize;
321	uint32_t		 sector_size;
322	uint64_t		 max_sector;
323	uint64_t		 sector_io_limit;
324	int			 min_cmd_size;
325	int			 write_dev;
326	int			 retry_count;
327	int			 io_timeout;
328	int			 debug;
329	uint64_t		 start_offset_bytes;
330	uint64_t		 next_io_pos_bytes;
331	uint64_t		 next_peer_pos_bytes;
332	uint64_t		 next_completion_pos_bytes;
333	uint64_t		 peer_bytes_queued;
334	uint64_t		 bytes_transferred;
335	uint32_t		 target_queue_depth;
336	uint32_t		 cur_active_io;
337	uint8_t			*extra_buf;
338	uint32_t		 extra_buf_len;
339	struct camdd_dev	*peer_dev;
340	pthread_mutex_t		 mutex;
341	pthread_cond_t		 cond;
342	int			 kq;
343
344	int			 (*run)(struct camdd_dev *dev);
345	int			 (*fetch)(struct camdd_dev *dev);
346
347	/*
348	 * Buffers that are available for I/O.  Uses links.
349	 */
350	STAILQ_HEAD(,camdd_buf)	 free_queue;
351
352	/*
353	 * Free indirect buffers.  These are used for breaking a large
354	 * buffer into multiple pieces.
355	 */
356	STAILQ_HEAD(,camdd_buf)	 free_indirect_queue;
357
358	/*
359	 * Buffers that have been queued to the kernel.  Uses links.
360	 */
361	STAILQ_HEAD(,camdd_buf)	 active_queue;
362
363	/*
364	 * Will generally contain one of our buffers that is waiting for enough
365	 * I/O from our partner thread to be able to execute.  This will
366	 * generally happen when our per-I/O-size is larger than the
367	 * partner thread's per-I/O-size.  Uses links.
368	 */
369	STAILQ_HEAD(,camdd_buf)	 pending_queue;
370
371	/*
372	 * Number of buffers on the pending queue
373	 */
374	int			 num_pending_queue;
375
376	/*
377	 * Buffers that are filled and ready to execute.  This is used when
378	 * our partner (reader) thread sends us blocks that are larger than
379	 * our blocksize, and so we have to split them into multiple pieces.
380	 */
381	STAILQ_HEAD(,camdd_buf)	 run_queue;
382
383	/*
384	 * Number of buffers on the run queue.
385	 */
386	int			 num_run_queue;
387
388	STAILQ_HEAD(,camdd_buf)	 reorder_queue;
389
390	int			 num_reorder_queue;
391
392	/*
393	 * Buffers that have been queued to us by our partner thread
394	 * (generally the reader thread) to be written out.  Uses
395	 * work_links.
396	 */
397	STAILQ_HEAD(,camdd_buf)	 work_queue;
398
399	/*
400	 * Buffers that have been completed by our partner thread.  Uses
401	 * work_links.
402	 */
403	STAILQ_HEAD(,camdd_buf)	 peer_done_queue;
404
405	/*
406	 * Number of buffers on the peer done queue.
407	 */
408	uint32_t		 num_peer_done_queue;
409
410	/*
411	 * A list of buffers that we have queued to our peer thread.  Uses
412	 * links.
413	 */
414	STAILQ_HEAD(,camdd_buf)	 peer_work_queue;
415
416	/*
417	 * Number of buffers on the peer work queue.
418	 */
419	uint32_t		 num_peer_work_queue;
420};
421
422static sem_t camdd_sem;
423static int need_exit = 0;
424static int error_exit = 0;
425static int need_status = 0;
426
427#ifndef min
428#define	min(a, b) (a < b) ? a : b
429#endif
430
431/*
432 * XXX KDM private copy of timespecsub().  This is normally defined in
433 * sys/time.h, but is only enabled in the kernel.  If that definition is
434 * enabled in userland, it breaks the build of libnetbsd.
435 */
436#ifndef timespecsub
437#define	timespecsub(vvp, uvp)						\
438	do {								\
439		(vvp)->tv_sec -= (uvp)->tv_sec;				\
440		(vvp)->tv_nsec -= (uvp)->tv_nsec;			\
441		if ((vvp)->tv_nsec < 0) {				\
442			(vvp)->tv_sec--;				\
443			(vvp)->tv_nsec += 1000000000;			\
444		}							\
445	} while (0)
446#endif
447
448
449/* Generically usefull offsets into the peripheral private area */
450#define ppriv_ptr0 periph_priv.entries[0].ptr
451#define ppriv_ptr1 periph_priv.entries[1].ptr
452#define ppriv_field0 periph_priv.entries[0].field
453#define ppriv_field1 periph_priv.entries[1].field
454
455#define	ccb_buf	ppriv_ptr0
456
457#define	CAMDD_FILE_DEFAULT_BLOCK	524288
458#define	CAMDD_FILE_DEFAULT_DEPTH	1
459#define	CAMDD_PASS_MAX_BLOCK		1048576
460#define	CAMDD_PASS_DEFAULT_DEPTH	6
461#define	CAMDD_PASS_RW_TIMEOUT		60 * 1000
462
463static int parse_btl(char *tstr, int *bus, int *target, int *lun,
464		     camdd_argmask *arglst);
465void camdd_free_dev(struct camdd_dev *dev);
466struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type,
467				  struct kevent *new_ke, int num_ke,
468				  int retry_count, int timeout);
469static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev,
470					 camdd_buf_type buf_type);
471void camdd_release_buf(struct camdd_buf *buf);
472struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type);
473int camdd_buf_sg_create(struct camdd_buf *buf, int iovec,
474			uint32_t sector_size, uint32_t *num_sectors_used,
475			int *double_buf_needed);
476uint32_t camdd_buf_get_len(struct camdd_buf *buf);
477void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf);
478int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
479		     uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran);
480struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts,
481				   int retry_count, int timeout);
482struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev,
483				   struct camdd_io_opts *io_opts,
484				   camdd_argmask arglist, int probe_retry_count,
485				   int probe_timeout, int io_retry_count,
486				   int io_timeout);
487void *camdd_file_worker(void *arg);
488camdd_buf_status camdd_ccb_status(union ccb *ccb);
489int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf);
490int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf);
491void camdd_peer_done(struct camdd_buf *buf);
492void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
493			int *error_count);
494int camdd_pass_fetch(struct camdd_dev *dev);
495int camdd_file_run(struct camdd_dev *dev);
496int camdd_pass_run(struct camdd_dev *dev);
497int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len);
498int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf);
499void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
500		     uint32_t *peer_depth, uint32_t *our_bytes,
501		     uint32_t *peer_bytes);
502void *camdd_worker(void *arg);
503void camdd_sig_handler(int sig);
504void camdd_print_status(struct camdd_dev *camdd_dev,
505			struct camdd_dev *other_dev,
506			struct timespec *start_time);
507int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts,
508	     uint64_t max_io, int retry_count, int timeout);
509int camdd_parse_io_opts(char *args, int is_write,
510			struct camdd_io_opts *io_opts);
511void usage(void);
512
513/*
514 * Parse out a bus, or a bus, target and lun in the following
515 * format:
516 * bus
517 * bus:target
518 * bus:target:lun
519 *
520 * Returns the number of parsed components, or 0.
521 */
522static int
523parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst)
524{
525	char *tmpstr;
526	int convs = 0;
527
528	while (isspace(*tstr) && (*tstr != '\0'))
529		tstr++;
530
531	tmpstr = (char *)strtok(tstr, ":");
532	if ((tmpstr != NULL) && (*tmpstr != '\0')) {
533		*bus = strtol(tmpstr, NULL, 0);
534		*arglst |= CAMDD_ARG_BUS;
535		convs++;
536		tmpstr = (char *)strtok(NULL, ":");
537		if ((tmpstr != NULL) && (*tmpstr != '\0')) {
538			*target = strtol(tmpstr, NULL, 0);
539			*arglst |= CAMDD_ARG_TARGET;
540			convs++;
541			tmpstr = (char *)strtok(NULL, ":");
542			if ((tmpstr != NULL) && (*tmpstr != '\0')) {
543				*lun = strtol(tmpstr, NULL, 0);
544				*arglst |= CAMDD_ARG_LUN;
545				convs++;
546			}
547		}
548	}
549
550	return convs;
551}
552
553/*
554 * XXX KDM clean up and free all of the buffers on the queue!
555 */
556void
557camdd_free_dev(struct camdd_dev *dev)
558{
559	if (dev == NULL)
560		return;
561
562	switch (dev->dev_type) {
563	case CAMDD_DEV_FILE: {
564		struct camdd_dev_file *file_dev = &dev->dev_spec.file;
565
566		if (file_dev->fd != -1)
567			close(file_dev->fd);
568		free(file_dev->tmp_buf);
569		break;
570	}
571	case CAMDD_DEV_PASS: {
572		struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
573
574		if (pass_dev->dev != NULL)
575			cam_close_device(pass_dev->dev);
576		break;
577	}
578	default:
579		break;
580	}
581
582	free(dev);
583}
584
585struct camdd_dev *
586camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke,
587		int retry_count, int timeout)
588{
589	struct camdd_dev *dev = NULL;
590	struct kevent *ke;
591	size_t ke_size;
592	int retval = 0;
593
594	dev = malloc(sizeof(*dev));
595	if (dev == NULL) {
596		warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev));
597		goto bailout;
598	}
599
600	bzero(dev, sizeof(*dev));
601
602	dev->dev_type = dev_type;
603	dev->io_timeout = timeout;
604	dev->retry_count = retry_count;
605	STAILQ_INIT(&dev->free_queue);
606	STAILQ_INIT(&dev->free_indirect_queue);
607	STAILQ_INIT(&dev->active_queue);
608	STAILQ_INIT(&dev->pending_queue);
609	STAILQ_INIT(&dev->run_queue);
610	STAILQ_INIT(&dev->reorder_queue);
611	STAILQ_INIT(&dev->work_queue);
612	STAILQ_INIT(&dev->peer_done_queue);
613	STAILQ_INIT(&dev->peer_work_queue);
614	retval = pthread_mutex_init(&dev->mutex, NULL);
615	if (retval != 0) {
616		warnc(retval, "%s: failed to initialize mutex", __func__);
617		goto bailout;
618	}
619
620	retval = pthread_cond_init(&dev->cond, NULL);
621	if (retval != 0) {
622		warnc(retval, "%s: failed to initialize condition variable",
623		      __func__);
624		goto bailout;
625	}
626
627	dev->kq = kqueue();
628	if (dev->kq == -1) {
629		warn("%s: Unable to create kqueue", __func__);
630		goto bailout;
631	}
632
633	ke_size = sizeof(struct kevent) * (num_ke + 4);
634	ke = malloc(ke_size);
635	if (ke == NULL) {
636		warn("%s: unable to malloc %zu bytes", __func__, ke_size);
637		goto bailout;
638	}
639	bzero(ke, ke_size);
640	if (num_ke > 0)
641		bcopy(new_ke, ke, num_ke * sizeof(struct kevent));
642
643	EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER,
644	       EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
645	EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER,
646	       EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
647	EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
648	EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
649
650	retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL);
651	if (retval == -1) {
652		warn("%s: Unable to register kevents", __func__);
653		goto bailout;
654	}
655
656
657	return (dev);
658
659bailout:
660	free(dev);
661
662	return (NULL);
663}
664
665static struct camdd_buf *
666camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
667{
668	struct camdd_buf *buf = NULL;
669	uint8_t *data_ptr = NULL;
670
671	/*
672	 * We only need to allocate data space for data buffers.
673	 */
674	switch (buf_type) {
675	case CAMDD_BUF_DATA:
676		data_ptr = malloc(dev->blocksize);
677		if (data_ptr == NULL) {
678			warn("unable to allocate %u bytes", dev->blocksize);
679			goto bailout_error;
680		}
681		break;
682	default:
683		break;
684	}
685
686	buf = malloc(sizeof(*buf));
687	if (buf == NULL) {
688		warn("unable to allocate %zu bytes", sizeof(*buf));
689		goto bailout_error;
690	}
691
692	bzero(buf, sizeof(*buf));
693	buf->buf_type = buf_type;
694	buf->dev = dev;
695	switch (buf_type) {
696	case CAMDD_BUF_DATA: {
697		struct camdd_buf_data *data;
698
699		data = &buf->buf_type_spec.data;
700
701		data->alloc_len = dev->blocksize;
702		data->buf = data_ptr;
703		break;
704	}
705	case CAMDD_BUF_INDIRECT:
706		break;
707	default:
708		break;
709	}
710	STAILQ_INIT(&buf->src_list);
711
712	return (buf);
713
714bailout_error:
715	if (data_ptr != NULL)
716		free(data_ptr);
717
718	if (buf != NULL)
719		free(buf);
720
721	return (NULL);
722}
723
724void
725camdd_release_buf(struct camdd_buf *buf)
726{
727	struct camdd_dev *dev;
728
729	dev = buf->dev;
730
731	switch (buf->buf_type) {
732	case CAMDD_BUF_DATA: {
733		struct camdd_buf_data *data;
734
735		data = &buf->buf_type_spec.data;
736
737		if (data->segs != NULL) {
738			if (data->extra_buf != 0) {
739				void *extra_buf;
740
741				extra_buf = (void *)
742				    data->segs[data->sg_count - 1].ds_addr;
743				free(extra_buf);
744				data->extra_buf = 0;
745			}
746			free(data->segs);
747			data->segs = NULL;
748			data->sg_count = 0;
749		} else if (data->iovec != NULL) {
750			if (data->extra_buf != 0) {
751				free(data->iovec[data->sg_count - 1].iov_base);
752				data->extra_buf = 0;
753			}
754			free(data->iovec);
755			data->iovec = NULL;
756			data->sg_count = 0;
757		}
758		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
759		break;
760	}
761	case CAMDD_BUF_INDIRECT:
762		STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links);
763		break;
764	default:
765		err(1, "%s: Invalid buffer type %d for released buffer",
766		    __func__, buf->buf_type);
767		break;
768	}
769}
770
771struct camdd_buf *
772camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
773{
774	struct camdd_buf *buf = NULL;
775
776	switch (buf_type) {
777	case CAMDD_BUF_DATA:
778		buf = STAILQ_FIRST(&dev->free_queue);
779		if (buf != NULL) {
780			struct camdd_buf_data *data;
781			uint8_t *data_ptr;
782			uint32_t alloc_len;
783
784			STAILQ_REMOVE_HEAD(&dev->free_queue, links);
785			data = &buf->buf_type_spec.data;
786			data_ptr = data->buf;
787			alloc_len = data->alloc_len;
788			bzero(buf, sizeof(*buf));
789			data->buf = data_ptr;
790			data->alloc_len = alloc_len;
791		}
792		break;
793	case CAMDD_BUF_INDIRECT:
794		buf = STAILQ_FIRST(&dev->free_indirect_queue);
795		if (buf != NULL) {
796			STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links);
797
798			bzero(buf, sizeof(*buf));
799		}
800		break;
801	default:
802		warnx("Unknown buffer type %d requested", buf_type);
803		break;
804	}
805
806
807	if (buf == NULL)
808		return (camdd_alloc_buf(dev, buf_type));
809	else {
810		STAILQ_INIT(&buf->src_list);
811		buf->dev = dev;
812		buf->buf_type = buf_type;
813
814		return (buf);
815	}
816}
817
818int
819camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size,
820		    uint32_t *num_sectors_used, int *double_buf_needed)
821{
822	struct camdd_buf *tmp_buf;
823	struct camdd_buf_data *data;
824	uint8_t *extra_buf = NULL;
825	size_t extra_buf_len = 0;
826	int i, retval = 0;
827
828	data = &buf->buf_type_spec.data;
829
830	data->sg_count = buf->src_count;
831	/*
832	 * Compose a scatter/gather list from all of the buffers in the list.
833	 * If the length of the buffer isn't a multiple of the sector size,
834	 * we'll have to add an extra buffer.  This should only happen
835	 * at the end of a transfer.
836	 */
837	if ((data->fill_len % sector_size) != 0) {
838		extra_buf_len = sector_size - (data->fill_len % sector_size);
839		extra_buf = calloc(extra_buf_len, 1);
840		if (extra_buf == NULL) {
841			warn("%s: unable to allocate %zu bytes for extra "
842			    "buffer space", __func__, extra_buf_len);
843			retval = 1;
844			goto bailout;
845		}
846		data->extra_buf = 1;
847		data->sg_count++;
848	}
849	if (iovec == 0) {
850		data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t));
851		if (data->segs == NULL) {
852			warn("%s: unable to allocate %zu bytes for S/G list",
853			    __func__, sizeof(bus_dma_segment_t) *
854			    data->sg_count);
855			retval = 1;
856			goto bailout;
857		}
858
859	} else {
860		data->iovec = calloc(data->sg_count, sizeof(struct iovec));
861		if (data->iovec == NULL) {
862			warn("%s: unable to allocate %zu bytes for S/G list",
863			    __func__, sizeof(struct iovec) * data->sg_count);
864			retval = 1;
865			goto bailout;
866		}
867	}
868
869	for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list);
870	     i < buf->src_count && tmp_buf != NULL; i++,
871	     tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) {
872
873		if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
874			struct camdd_buf_data *tmp_data;
875
876			tmp_data = &tmp_buf->buf_type_spec.data;
877			if (iovec == 0) {
878				data->segs[i].ds_addr =
879				    (bus_addr_t) tmp_data->buf;
880				data->segs[i].ds_len = tmp_data->fill_len -
881				    tmp_data->resid;
882			} else {
883				data->iovec[i].iov_base = tmp_data->buf;
884				data->iovec[i].iov_len = tmp_data->fill_len -
885				    tmp_data->resid;
886			}
887			if (((tmp_data->fill_len - tmp_data->resid) %
888			     sector_size) != 0)
889				*double_buf_needed = 1;
890		} else {
891			struct camdd_buf_indirect *tmp_ind;
892
893			tmp_ind = &tmp_buf->buf_type_spec.indirect;
894			if (iovec == 0) {
895				data->segs[i].ds_addr =
896				    (bus_addr_t)tmp_ind->start_ptr;
897				data->segs[i].ds_len = tmp_ind->len;
898			} else {
899				data->iovec[i].iov_base = tmp_ind->start_ptr;
900				data->iovec[i].iov_len = tmp_ind->len;
901			}
902			if ((tmp_ind->len % sector_size) != 0)
903				*double_buf_needed = 1;
904		}
905	}
906
907	if (extra_buf != NULL) {
908		if (iovec == 0) {
909			data->segs[i].ds_addr = (bus_addr_t)extra_buf;
910			data->segs[i].ds_len = extra_buf_len;
911		} else {
912			data->iovec[i].iov_base = extra_buf;
913			data->iovec[i].iov_len = extra_buf_len;
914		}
915		i++;
916	}
917	if ((tmp_buf != NULL) || (i != data->sg_count)) {
918		warnx("buffer source count does not match "
919		      "number of buffers in list!");
920		retval = 1;
921		goto bailout;
922	}
923
924bailout:
925	if (retval == 0) {
926		*num_sectors_used = (data->fill_len + extra_buf_len) /
927		    sector_size;
928	}
929	return (retval);
930}
931
932uint32_t
933camdd_buf_get_len(struct camdd_buf *buf)
934{
935	uint32_t len = 0;
936
937	if (buf->buf_type != CAMDD_BUF_DATA) {
938		struct camdd_buf_indirect *indirect;
939
940		indirect = &buf->buf_type_spec.indirect;
941		len = indirect->len;
942	} else {
943		struct camdd_buf_data *data;
944
945		data = &buf->buf_type_spec.data;
946		len = data->fill_len;
947	}
948
949	return (len);
950}
951
952void
953camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf)
954{
955	struct camdd_buf_data *data;
956
957	assert(buf->buf_type == CAMDD_BUF_DATA);
958
959	data = &buf->buf_type_spec.data;
960
961	STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links);
962	buf->src_count++;
963
964	data->fill_len += camdd_buf_get_len(child_buf);
965}
966
967typedef enum {
968	CAMDD_TS_MAX_BLK,
969	CAMDD_TS_MIN_BLK,
970	CAMDD_TS_BLK_GRAN,
971	CAMDD_TS_EFF_IOSIZE
972} camdd_status_item_index;
973
974static struct camdd_status_items {
975	const char *name;
976	struct mt_status_entry *entry;
977} req_status_items[] = {
978	{ "max_blk", NULL },
979	{ "min_blk", NULL },
980	{ "blk_gran", NULL },
981	{ "max_effective_iosize", NULL }
982};
983
984int
985camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
986		 uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran)
987{
988	struct mt_status_data status_data;
989	char *xml_str = NULL;
990	unsigned int i;
991	int retval = 0;
992
993	retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str);
994	if (retval != 0)
995		err(1, "Couldn't get XML string from %s", filename);
996
997	retval = mt_get_status(xml_str, &status_data);
998	if (retval != XML_STATUS_OK) {
999		warn("couldn't get status for %s", filename);
1000		retval = 1;
1001		goto bailout;
1002	} else
1003		retval = 0;
1004
1005	if (status_data.error != 0) {
1006		warnx("%s", status_data.error_str);
1007		retval = 1;
1008		goto bailout;
1009	}
1010
1011	for (i = 0; i < sizeof(req_status_items) /
1012	     sizeof(req_status_items[0]); i++) {
1013                char *name;
1014
1015		name = __DECONST(char *, req_status_items[i].name);
1016		req_status_items[i].entry = mt_status_entry_find(&status_data,
1017		    name);
1018		if (req_status_items[i].entry == NULL) {
1019			errx(1, "Cannot find status entry %s",
1020			    req_status_items[i].name);
1021		}
1022	}
1023
1024	*max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned;
1025	*max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned;
1026	*min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned;
1027	*blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned;
1028bailout:
1029
1030	free(xml_str);
1031	mt_status_free(&status_data);
1032
1033	return (retval);
1034}
1035
1036struct camdd_dev *
1037camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count,
1038    int timeout)
1039{
1040	struct camdd_dev *dev = NULL;
1041	struct camdd_dev_file *file_dev;
1042	uint64_t blocksize = io_opts->blocksize;
1043
1044	dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout);
1045	if (dev == NULL)
1046		goto bailout;
1047
1048	file_dev = &dev->dev_spec.file;
1049	file_dev->fd = fd;
1050	strlcpy(file_dev->filename, io_opts->dev_name,
1051	    sizeof(file_dev->filename));
1052	strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name));
1053	if (blocksize == 0)
1054		dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK;
1055	else
1056		dev->blocksize = blocksize;
1057
1058	if ((io_opts->queue_depth != 0)
1059	 && (io_opts->queue_depth != 1)) {
1060		warnx("Queue depth %ju for %s ignored, only 1 outstanding "
1061		    "command supported", (uintmax_t)io_opts->queue_depth,
1062		    io_opts->dev_name);
1063	}
1064	dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH;
1065	dev->run = camdd_file_run;
1066	dev->fetch = NULL;
1067
1068	/*
1069	 * We can effectively access files on byte boundaries.  We'll reset
1070	 * this for devices like disks that can be accessed on sector
1071	 * boundaries.
1072	 */
1073	dev->sector_size = 1;
1074
1075	if ((fd != STDIN_FILENO)
1076	 && (fd != STDOUT_FILENO)) {
1077		int retval;
1078
1079		retval = fstat(fd, &file_dev->sb);
1080		if (retval != 0) {
1081			warn("Cannot stat %s", dev->device_name);
1082			goto bailout_error;
1083		}
1084		if (S_ISREG(file_dev->sb.st_mode)) {
1085			file_dev->file_type = CAMDD_FILE_REG;
1086		} else if (S_ISCHR(file_dev->sb.st_mode)) {
1087			int type;
1088
1089			if (ioctl(fd, FIODTYPE, &type) == -1)
1090				err(1, "FIODTYPE ioctl failed on %s",
1091				    dev->device_name);
1092			else {
1093				if (type & D_TAPE)
1094					file_dev->file_type = CAMDD_FILE_TAPE;
1095				else if (type & D_DISK)
1096					file_dev->file_type = CAMDD_FILE_DISK;
1097				else if (type & D_MEM)
1098					file_dev->file_type = CAMDD_FILE_MEM;
1099				else if (type & D_TTY)
1100					file_dev->file_type = CAMDD_FILE_TTY;
1101			}
1102		} else if (S_ISDIR(file_dev->sb.st_mode)) {
1103			errx(1, "cannot operate on directory %s",
1104			    dev->device_name);
1105		} else if (S_ISFIFO(file_dev->sb.st_mode)) {
1106			file_dev->file_type = CAMDD_FILE_PIPE;
1107		} else
1108			errx(1, "Cannot determine file type for %s",
1109			    dev->device_name);
1110
1111		switch (file_dev->file_type) {
1112		case CAMDD_FILE_REG:
1113			if (file_dev->sb.st_size != 0)
1114				dev->max_sector = file_dev->sb.st_size - 1;
1115			else
1116				dev->max_sector = 0;
1117			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1118			break;
1119		case CAMDD_FILE_TAPE: {
1120			uint64_t max_iosize, max_blk, min_blk, blk_gran;
1121			/*
1122			 * Check block limits and maximum effective iosize.
1123			 * Make sure the blocksize is within the block
1124			 * limits (and a multiple of the minimum blocksize)
1125			 * and that the blocksize is <= maximum effective
1126			 * iosize.
1127			 */
1128			retval = camdd_probe_tape(fd, dev->device_name,
1129			    &max_iosize, &max_blk, &min_blk, &blk_gran);
1130			if (retval != 0)
1131				errx(1, "Unable to probe tape %s",
1132				    dev->device_name);
1133
1134			/*
1135			 * The blocksize needs to be <= the maximum
1136			 * effective I/O size of the tape device.  Note
1137			 * that this also takes into account the maximum
1138			 * blocksize reported by READ BLOCK LIMITS.
1139			 */
1140			if (dev->blocksize > max_iosize) {
1141				warnx("Blocksize %u too big for %s, limiting "
1142				    "to %ju", dev->blocksize, dev->device_name,
1143				    max_iosize);
1144				dev->blocksize = max_iosize;
1145			}
1146
1147			/*
1148			 * The blocksize needs to be at least min_blk;
1149			 */
1150			if (dev->blocksize < min_blk) {
1151				warnx("Blocksize %u too small for %s, "
1152				    "increasing to %ju", dev->blocksize,
1153				    dev->device_name, min_blk);
1154				dev->blocksize = min_blk;
1155			}
1156
1157			/*
1158			 * And the blocksize needs to be a multiple of
1159			 * the block granularity.
1160			 */
1161			if ((blk_gran != 0)
1162			 && (dev->blocksize % (1 << blk_gran))) {
1163				warnx("Blocksize %u for %s not a multiple of "
1164				    "%d, adjusting to %d", dev->blocksize,
1165				    dev->device_name, (1 << blk_gran),
1166				    dev->blocksize & ~((1 << blk_gran) - 1));
1167				dev->blocksize &= ~((1 << blk_gran) - 1);
1168			}
1169
1170			if (dev->blocksize == 0) {
1171				errx(1, "Unable to derive valid blocksize for "
1172				    "%s", dev->device_name);
1173			}
1174
1175			/*
1176			 * For tape drives, set the sector size to the
1177			 * blocksize so that we make sure not to write
1178			 * less than the blocksize out to the drive.
1179			 */
1180			dev->sector_size = dev->blocksize;
1181			break;
1182		}
1183		case CAMDD_FILE_DISK: {
1184			off_t media_size;
1185			unsigned int sector_size;
1186
1187			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1188
1189			if (ioctl(fd, DIOCGSECTORSIZE, &sector_size) == -1) {
1190				err(1, "DIOCGSECTORSIZE ioctl failed on %s",
1191				    dev->device_name);
1192			}
1193
1194			if (sector_size == 0) {
1195				errx(1, "DIOCGSECTORSIZE ioctl returned "
1196				    "invalid sector size %u for %s",
1197				    sector_size, dev->device_name);
1198			}
1199
1200			if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) {
1201				err(1, "DIOCGMEDIASIZE ioctl failed on %s",
1202				    dev->device_name);
1203			}
1204
1205			if (media_size == 0) {
1206				errx(1, "DIOCGMEDIASIZE ioctl returned "
1207				    "invalid media size %ju for %s",
1208				    (uintmax_t)media_size, dev->device_name);
1209			}
1210
1211			if (dev->blocksize % sector_size) {
1212				errx(1, "%s blocksize %u not a multiple of "
1213				    "sector size %u", dev->device_name,
1214				    dev->blocksize, sector_size);
1215			}
1216
1217			dev->sector_size = sector_size;
1218			dev->max_sector = (media_size / sector_size) - 1;
1219			break;
1220		}
1221		case CAMDD_FILE_MEM:
1222			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1223			break;
1224		default:
1225			break;
1226		}
1227	}
1228
1229	if ((io_opts->offset != 0)
1230	 && ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) {
1231		warnx("Offset %ju specified for %s, but we cannot seek on %s",
1232		    io_opts->offset, io_opts->dev_name, io_opts->dev_name);
1233		goto bailout_error;
1234	}
1235#if 0
1236	else if ((io_opts->offset != 0)
1237		&& ((io_opts->offset % dev->sector_size) != 0)) {
1238		warnx("Offset %ju for %s is not a multiple of the "
1239		      "sector size %u", io_opts->offset,
1240		      io_opts->dev_name, dev->sector_size);
1241		goto bailout_error;
1242	} else {
1243		dev->start_offset_bytes = io_opts->offset;
1244	}
1245#endif
1246
1247bailout:
1248	return (dev);
1249
1250bailout_error:
1251	camdd_free_dev(dev);
1252	return (NULL);
1253}
1254
1255/*
1256 * Need to implement this.  Do a basic probe:
1257 * - Check the inquiry data, make sure we're talking to a device that we
1258 *   can reasonably expect to talk to -- direct, RBC, CD, WORM.
1259 * - Send a test unit ready, make sure the device is available.
1260 * - Get the capacity and block size.
1261 */
1262struct camdd_dev *
1263camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts,
1264		 camdd_argmask arglist, int probe_retry_count,
1265		 int probe_timeout, int io_retry_count, int io_timeout)
1266{
1267	union ccb *ccb;
1268	uint64_t maxsector;
1269	uint32_t cpi_maxio, max_iosize, pass_numblocks;
1270	uint32_t block_len;
1271	struct scsi_read_capacity_data rcap;
1272	struct scsi_read_capacity_data_long rcaplong;
1273	struct camdd_dev *dev;
1274	struct camdd_dev_pass *pass_dev;
1275	struct kevent ke;
1276	int scsi_dev_type;
1277
1278	dev = NULL;
1279
1280	scsi_dev_type = SID_TYPE(&cam_dev->inq_data);
1281	maxsector = 0;
1282	block_len = 0;
1283
1284	/*
1285	 * For devices that support READ CAPACITY, we'll attempt to get the
1286	 * capacity.  Otherwise, we really don't support tape or other
1287	 * devices via SCSI passthrough, so just return an error in that case.
1288	 */
1289	switch (scsi_dev_type) {
1290	case T_DIRECT:
1291	case T_WORM:
1292	case T_CDROM:
1293	case T_OPTICAL:
1294	case T_RBC:
1295		break;
1296	default:
1297		errx(1, "Unsupported SCSI device type %d", scsi_dev_type);
1298		break; /*NOTREACHED*/
1299	}
1300
1301	ccb = cam_getccb(cam_dev);
1302
1303	if (ccb == NULL) {
1304		warnx("%s: error allocating ccb", __func__);
1305		goto bailout;
1306	}
1307
1308	CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
1309
1310	scsi_read_capacity(&ccb->csio,
1311			   /*retries*/ probe_retry_count,
1312			   /*cbfcnp*/ NULL,
1313			   /*tag_action*/ MSG_SIMPLE_Q_TAG,
1314			   &rcap,
1315			   SSD_FULL_SIZE,
1316			   /*timeout*/ probe_timeout ? probe_timeout : 5000);
1317
1318	/* Disable freezing the device queue */
1319	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1320
1321	if (arglist & CAMDD_ARG_ERR_RECOVER)
1322		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1323
1324	if (cam_send_ccb(cam_dev, ccb) < 0) {
1325		warn("error sending READ CAPACITY command");
1326
1327		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1328				CAM_EPF_ALL, stderr);
1329
1330		goto bailout;
1331	}
1332
1333	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1334		cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1335		goto bailout;
1336	}
1337
1338	maxsector = scsi_4btoul(rcap.addr);
1339	block_len = scsi_4btoul(rcap.length);
1340
1341	/*
1342	 * A last block of 2^32-1 means that the true capacity is over 2TB,
1343	 * and we need to issue the long READ CAPACITY to get the real
1344	 * capacity.  Otherwise, we're all set.
1345	 */
1346	if (maxsector != 0xffffffff)
1347		goto rcap_done;
1348
1349	scsi_read_capacity_16(&ccb->csio,
1350			      /*retries*/ probe_retry_count,
1351			      /*cbfcnp*/ NULL,
1352			      /*tag_action*/ MSG_SIMPLE_Q_TAG,
1353			      /*lba*/ 0,
1354			      /*reladdr*/ 0,
1355			      /*pmi*/ 0,
1356			      (uint8_t *)&rcaplong,
1357			      sizeof(rcaplong),
1358			      /*sense_len*/ SSD_FULL_SIZE,
1359			      /*timeout*/ probe_timeout ? probe_timeout : 5000);
1360
1361	/* Disable freezing the device queue */
1362	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1363
1364	if (arglist & CAMDD_ARG_ERR_RECOVER)
1365		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1366
1367	if (cam_send_ccb(cam_dev, ccb) < 0) {
1368		warn("error sending READ CAPACITY (16) command");
1369		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1370				CAM_EPF_ALL, stderr);
1371		goto bailout;
1372	}
1373
1374	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1375		cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1376		goto bailout;
1377	}
1378
1379	maxsector = scsi_8btou64(rcaplong.addr);
1380	block_len = scsi_4btoul(rcaplong.length);
1381
1382rcap_done:
1383	if (block_len == 0) {
1384		warnx("Sector size for %s%u is 0, cannot continue",
1385		    cam_dev->device_name, cam_dev->dev_unit_num);
1386		goto bailout_error;
1387	}
1388
1389	CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cpi);
1390
1391	ccb->ccb_h.func_code = XPT_PATH_INQ;
1392	ccb->ccb_h.flags = CAM_DIR_NONE;
1393	ccb->ccb_h.retry_count = 1;
1394
1395	if (cam_send_ccb(cam_dev, ccb) < 0) {
1396		warn("error sending XPT_PATH_INQ CCB");
1397
1398		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1399				CAM_EPF_ALL, stderr);
1400		goto bailout;
1401	}
1402
1403	EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0);
1404
1405	dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count,
1406			      io_timeout);
1407	if (dev == NULL)
1408		goto bailout;
1409
1410	pass_dev = &dev->dev_spec.pass;
1411	pass_dev->scsi_dev_type = scsi_dev_type;
1412	pass_dev->dev = cam_dev;
1413	pass_dev->max_sector = maxsector;
1414	pass_dev->block_len = block_len;
1415	pass_dev->cpi_maxio = ccb->cpi.maxio;
1416	snprintf(dev->device_name, sizeof(dev->device_name), "%s%u",
1417		 pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
1418	dev->sector_size = block_len;
1419	dev->max_sector = maxsector;
1420
1421
1422	/*
1423	 * Determine the optimal blocksize to use for this device.
1424	 */
1425
1426	/*
1427	 * If the controller has not specified a maximum I/O size,
1428	 * just go with 128K as a somewhat conservative value.
1429	 */
1430	if (pass_dev->cpi_maxio == 0)
1431		cpi_maxio = 131072;
1432	else
1433		cpi_maxio = pass_dev->cpi_maxio;
1434
1435	/*
1436	 * If the controller has a large maximum I/O size, limit it
1437	 * to something smaller so that the kernel doesn't have trouble
1438	 * allocating buffers to copy data in and out for us.
1439	 * XXX KDM this is until we have unmapped I/O support in the kernel.
1440	 */
1441	max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK);
1442
1443	/*
1444	 * If we weren't able to get a block size for some reason,
1445	 * default to 512 bytes.
1446	 */
1447	block_len = pass_dev->block_len;
1448	if (block_len == 0)
1449		block_len = 512;
1450
1451	/*
1452	 * Figure out how many blocksize chunks will fit in the
1453	 * maximum I/O size.
1454	 */
1455	pass_numblocks = max_iosize / block_len;
1456
1457	/*
1458	 * And finally, multiple the number of blocks by the LBA
1459	 * length to get our maximum block size;
1460	 */
1461	dev->blocksize = pass_numblocks * block_len;
1462
1463	if (io_opts->blocksize != 0) {
1464		if ((io_opts->blocksize % dev->sector_size) != 0) {
1465			warnx("Blocksize %ju for %s is not a multiple of "
1466			      "sector size %u", (uintmax_t)io_opts->blocksize,
1467			      dev->device_name, dev->sector_size);
1468			goto bailout_error;
1469		}
1470		dev->blocksize = io_opts->blocksize;
1471	}
1472	dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH;
1473	if (io_opts->queue_depth != 0)
1474		dev->target_queue_depth = io_opts->queue_depth;
1475
1476	if (io_opts->offset != 0) {
1477		if (io_opts->offset > (dev->max_sector * dev->sector_size)) {
1478			warnx("Offset %ju is past the end of device %s",
1479			    io_opts->offset, dev->device_name);
1480			goto bailout_error;
1481		}
1482#if 0
1483		else if ((io_opts->offset % dev->sector_size) != 0) {
1484			warnx("Offset %ju for %s is not a multiple of the "
1485			      "sector size %u", io_opts->offset,
1486			      dev->device_name, dev->sector_size);
1487			goto bailout_error;
1488		}
1489		dev->start_offset_bytes = io_opts->offset;
1490#endif
1491	}
1492
1493	dev->min_cmd_size = io_opts->min_cmd_size;
1494
1495	dev->run = camdd_pass_run;
1496	dev->fetch = camdd_pass_fetch;
1497
1498bailout:
1499	cam_freeccb(ccb);
1500
1501	return (dev);
1502
1503bailout_error:
1504	cam_freeccb(ccb);
1505
1506	camdd_free_dev(dev);
1507
1508	return (NULL);
1509}
1510
1511void *
1512camdd_worker(void *arg)
1513{
1514	struct camdd_dev *dev = arg;
1515	struct camdd_buf *buf;
1516	struct timespec ts, *kq_ts;
1517
1518	ts.tv_sec = 0;
1519	ts.tv_nsec = 0;
1520
1521	pthread_mutex_lock(&dev->mutex);
1522
1523	dev->flags |= CAMDD_DEV_FLAG_ACTIVE;
1524
1525	for (;;) {
1526		struct kevent ke;
1527		int retval = 0;
1528
1529		/*
1530		 * XXX KDM check the reorder queue depth?
1531		 */
1532		if (dev->write_dev == 0) {
1533			uint32_t our_depth, peer_depth, peer_bytes, our_bytes;
1534			uint32_t target_depth = dev->target_queue_depth;
1535			uint32_t peer_target_depth =
1536			    dev->peer_dev->target_queue_depth;
1537			uint32_t peer_blocksize = dev->peer_dev->blocksize;
1538
1539			camdd_get_depth(dev, &our_depth, &peer_depth,
1540					&our_bytes, &peer_bytes);
1541
1542#if 0
1543			while (((our_depth < target_depth)
1544			     && (peer_depth < peer_target_depth))
1545			    || ((peer_bytes + our_bytes) <
1546				 (peer_blocksize * 2))) {
1547#endif
1548			while (((our_depth + peer_depth) <
1549			        (target_depth + peer_target_depth))
1550			    || ((peer_bytes + our_bytes) <
1551				(peer_blocksize * 3))) {
1552
1553				retval = camdd_queue(dev, NULL);
1554				if (retval == 1)
1555					break;
1556				else if (retval != 0) {
1557					error_exit = 1;
1558					goto bailout;
1559				}
1560
1561				camdd_get_depth(dev, &our_depth, &peer_depth,
1562						&our_bytes, &peer_bytes);
1563			}
1564		}
1565		/*
1566		 * See if we have any I/O that is ready to execute.
1567		 */
1568		buf = STAILQ_FIRST(&dev->run_queue);
1569		if (buf != NULL) {
1570			while (dev->target_queue_depth > dev->cur_active_io) {
1571				retval = dev->run(dev);
1572				if (retval == -1) {
1573					dev->flags |= CAMDD_DEV_FLAG_EOF;
1574					error_exit = 1;
1575					break;
1576				} else if (retval != 0) {
1577					break;
1578				}
1579			}
1580		}
1581
1582		/*
1583		 * We've reached EOF, or our partner has reached EOF.
1584		 */
1585		if ((dev->flags & CAMDD_DEV_FLAG_EOF)
1586		 || (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) {
1587			if (dev->write_dev != 0) {
1588			 	if ((STAILQ_EMPTY(&dev->work_queue))
1589				 && (dev->num_run_queue == 0)
1590				 && (dev->cur_active_io == 0)) {
1591					goto bailout;
1592				}
1593			} else {
1594				/*
1595				 * If we're the reader, and the writer
1596				 * got EOF, he is already done.  If we got
1597				 * the EOF, then we need to wait until
1598				 * everything is flushed out for the writer.
1599				 */
1600				if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) {
1601					goto bailout;
1602				} else if ((dev->num_peer_work_queue == 0)
1603					&& (dev->num_peer_done_queue == 0)
1604					&& (dev->cur_active_io == 0)
1605					&& (dev->num_run_queue == 0)) {
1606					goto bailout;
1607				}
1608			}
1609			/*
1610			 * XXX KDM need to do something about the pending
1611			 * queue and cleanup resources.
1612			 */
1613		}
1614
1615		if ((dev->write_dev == 0)
1616		 && (dev->cur_active_io == 0)
1617		 && (dev->peer_bytes_queued < dev->peer_dev->blocksize))
1618			kq_ts = &ts;
1619		else
1620			kq_ts = NULL;
1621
1622		/*
1623		 * Run kevent to see if there are events to process.
1624		 */
1625		pthread_mutex_unlock(&dev->mutex);
1626		retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts);
1627		pthread_mutex_lock(&dev->mutex);
1628		if (retval == -1) {
1629			warn("%s: error returned from kevent",__func__);
1630			goto bailout;
1631		} else if (retval != 0) {
1632			switch (ke.filter) {
1633			case EVFILT_READ:
1634				if (dev->fetch != NULL) {
1635					retval = dev->fetch(dev);
1636					if (retval == -1) {
1637						error_exit = 1;
1638						goto bailout;
1639					}
1640				}
1641				break;
1642			case EVFILT_SIGNAL:
1643				/*
1644				 * We register for this so we don't get
1645				 * an error as a result of a SIGINFO or a
1646				 * SIGINT.  It will actually get handled
1647				 * by the signal handler.  If we get a
1648				 * SIGINT, bail out without printing an
1649				 * error message.  Any other signals
1650				 * will result in the error message above.
1651				 */
1652				if (ke.ident == SIGINT)
1653					goto bailout;
1654				break;
1655			case EVFILT_USER:
1656				retval = 0;
1657				/*
1658				 * Check to see if the other thread has
1659				 * queued any I/O for us to do.  (In this
1660				 * case we're the writer.)
1661				 */
1662				for (buf = STAILQ_FIRST(&dev->work_queue);
1663				     buf != NULL;
1664				     buf = STAILQ_FIRST(&dev->work_queue)) {
1665					STAILQ_REMOVE_HEAD(&dev->work_queue,
1666							   work_links);
1667					retval = camdd_queue(dev, buf);
1668					/*
1669					 * We keep going unless we get an
1670					 * actual error.  If we get EOF, we
1671					 * still want to remove the buffers
1672					 * from the queue and send the back
1673					 * to the reader thread.
1674					 */
1675					if (retval == -1) {
1676						error_exit = 1;
1677						goto bailout;
1678					} else
1679						retval = 0;
1680				}
1681
1682				/*
1683				 * Next check to see if the other thread has
1684				 * queued any completed buffers back to us.
1685				 * (In this case we're the reader.)
1686				 */
1687				for (buf = STAILQ_FIRST(&dev->peer_done_queue);
1688				     buf != NULL;
1689				     buf = STAILQ_FIRST(&dev->peer_done_queue)){
1690					STAILQ_REMOVE_HEAD(
1691					    &dev->peer_done_queue, work_links);
1692					dev->num_peer_done_queue--;
1693					camdd_peer_done(buf);
1694				}
1695				break;
1696			default:
1697				warnx("%s: unknown kevent filter %d",
1698				      __func__, ke.filter);
1699				break;
1700			}
1701		}
1702	}
1703
1704bailout:
1705
1706	dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE;
1707
1708	/* XXX KDM cleanup resources here? */
1709
1710	pthread_mutex_unlock(&dev->mutex);
1711
1712	need_exit = 1;
1713	sem_post(&camdd_sem);
1714
1715	return (NULL);
1716}
1717
1718/*
1719 * Simplistic translation of CCB status to our local status.
1720 */
1721camdd_buf_status
1722camdd_ccb_status(union ccb *ccb)
1723{
1724	camdd_buf_status status = CAMDD_STATUS_NONE;
1725	cam_status ccb_status;
1726
1727	ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK;
1728
1729	switch (ccb_status) {
1730	case CAM_REQ_CMP: {
1731		if (ccb->csio.resid == 0) {
1732			status = CAMDD_STATUS_OK;
1733		} else if (ccb->csio.dxfer_len > ccb->csio.resid) {
1734			status = CAMDD_STATUS_SHORT_IO;
1735		} else {
1736			status = CAMDD_STATUS_EOF;
1737		}
1738		break;
1739	}
1740	case CAM_SCSI_STATUS_ERROR: {
1741		switch (ccb->csio.scsi_status) {
1742		case SCSI_STATUS_OK:
1743		case SCSI_STATUS_COND_MET:
1744		case SCSI_STATUS_INTERMED:
1745		case SCSI_STATUS_INTERMED_COND_MET:
1746			status = CAMDD_STATUS_OK;
1747			break;
1748		case SCSI_STATUS_CMD_TERMINATED:
1749		case SCSI_STATUS_CHECK_COND:
1750		case SCSI_STATUS_QUEUE_FULL:
1751		case SCSI_STATUS_BUSY:
1752		case SCSI_STATUS_RESERV_CONFLICT:
1753		default:
1754			status = CAMDD_STATUS_ERROR;
1755			break;
1756		}
1757		break;
1758	}
1759	default:
1760		status = CAMDD_STATUS_ERROR;
1761		break;
1762	}
1763
1764	return (status);
1765}
1766
1767/*
1768 * Queue a buffer to our peer's work thread for writing.
1769 *
1770 * Returns 0 for success, -1 for failure, 1 if the other thread exited.
1771 */
1772int
1773camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf)
1774{
1775	struct kevent ke;
1776	STAILQ_HEAD(, camdd_buf) local_queue;
1777	struct camdd_buf *buf1, *buf2;
1778	struct camdd_buf_data *data = NULL;
1779	uint64_t peer_bytes_queued = 0;
1780	int active = 1;
1781	int retval = 0;
1782
1783	STAILQ_INIT(&local_queue);
1784
1785	/*
1786	 * Since we're the reader, we need to queue our I/O to the writer
1787	 * in sequential order in order to make sure it gets written out
1788	 * in sequential order.
1789	 *
1790	 * Check the next expected I/O starting offset.  If this doesn't
1791	 * match, put it on the reorder queue.
1792	 */
1793	if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) {
1794
1795		/*
1796		 * If there is nothing on the queue, there is no sorting
1797		 * needed.
1798		 */
1799		if (STAILQ_EMPTY(&dev->reorder_queue)) {
1800			STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links);
1801			dev->num_reorder_queue++;
1802			goto bailout;
1803		}
1804
1805		/*
1806		 * Sort in ascending order by starting LBA.  There should
1807		 * be no identical LBAs.
1808		 */
1809		for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1810		     buf1 = buf2) {
1811			buf2 = STAILQ_NEXT(buf1, links);
1812			if (buf->lba < buf1->lba) {
1813				/*
1814				 * If we're less than the first one, then
1815				 * we insert at the head of the list
1816				 * because this has to be the first element
1817				 * on the list.
1818				 */
1819				STAILQ_INSERT_HEAD(&dev->reorder_queue,
1820						   buf, links);
1821				dev->num_reorder_queue++;
1822				break;
1823			} else if (buf->lba > buf1->lba) {
1824				if (buf2 == NULL) {
1825					STAILQ_INSERT_TAIL(&dev->reorder_queue,
1826					    buf, links);
1827					dev->num_reorder_queue++;
1828					break;
1829				} else if (buf->lba < buf2->lba) {
1830					STAILQ_INSERT_AFTER(&dev->reorder_queue,
1831					    buf1, buf, links);
1832					dev->num_reorder_queue++;
1833					break;
1834				}
1835			} else {
1836				errx(1, "Found buffers with duplicate LBA %ju!",
1837				     buf->lba);
1838			}
1839		}
1840		goto bailout;
1841	} else {
1842
1843		/*
1844		 * We're the next expected I/O completion, so put ourselves
1845		 * on the local queue to be sent to the writer.  We use
1846		 * work_links here so that we can queue this to the
1847		 * peer_work_queue before taking the buffer off of the
1848		 * local_queue.
1849		 */
1850		dev->next_completion_pos_bytes += buf->len;
1851		STAILQ_INSERT_TAIL(&local_queue, buf, work_links);
1852
1853		/*
1854		 * Go through the reorder queue looking for more sequential
1855		 * I/O and add it to the local queue.
1856		 */
1857		for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1858		     buf1 = STAILQ_FIRST(&dev->reorder_queue)) {
1859			/*
1860			 * As soon as we see an I/O that is out of sequence,
1861			 * we're done.
1862			 */
1863			if ((buf1->lba * dev->sector_size) !=
1864			     dev->next_completion_pos_bytes)
1865				break;
1866
1867			STAILQ_REMOVE_HEAD(&dev->reorder_queue, links);
1868			dev->num_reorder_queue--;
1869			STAILQ_INSERT_TAIL(&local_queue, buf1, work_links);
1870			dev->next_completion_pos_bytes += buf1->len;
1871		}
1872	}
1873
1874	/*
1875	 * Setup the event to let the other thread know that it has work
1876	 * pending.
1877	 */
1878	EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0,
1879	       NOTE_TRIGGER, 0, NULL);
1880
1881	/*
1882	 * Put this on our shadow queue so that we know what we've queued
1883	 * to the other thread.
1884	 */
1885	STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) {
1886		if (buf1->buf_type != CAMDD_BUF_DATA) {
1887			errx(1, "%s: should have a data buffer, not an "
1888			    "indirect buffer", __func__);
1889		}
1890		data = &buf1->buf_type_spec.data;
1891
1892		/*
1893		 * We only need to send one EOF to the writer, and don't
1894		 * need to continue sending EOFs after that.
1895		 */
1896		if (buf1->status == CAMDD_STATUS_EOF) {
1897			if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) {
1898				STAILQ_REMOVE(&local_queue, buf1, camdd_buf,
1899				    work_links);
1900				camdd_release_buf(buf1);
1901				retval = 1;
1902				continue;
1903			}
1904			dev->flags |= CAMDD_DEV_FLAG_EOF_SENT;
1905		}
1906
1907
1908		STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links);
1909		peer_bytes_queued += (data->fill_len - data->resid);
1910		dev->peer_bytes_queued += (data->fill_len - data->resid);
1911		dev->num_peer_work_queue++;
1912	}
1913
1914	if (STAILQ_FIRST(&local_queue) == NULL)
1915		goto bailout;
1916
1917	/*
1918	 * Drop our mutex and pick up the other thread's mutex.  We need to
1919	 * do this to avoid deadlocks.
1920	 */
1921	pthread_mutex_unlock(&dev->mutex);
1922	pthread_mutex_lock(&dev->peer_dev->mutex);
1923
1924	if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) {
1925		/*
1926		 * Put the buffers on the other thread's incoming work queue.
1927		 */
1928		for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1929		     buf1 = STAILQ_FIRST(&local_queue)) {
1930			STAILQ_REMOVE_HEAD(&local_queue, work_links);
1931			STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1,
1932					   work_links);
1933		}
1934		/*
1935		 * Send an event to the other thread's kqueue to let it know
1936		 * that there is something on the work queue.
1937		 */
1938		retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
1939		if (retval == -1)
1940			warn("%s: unable to add peer work_queue kevent",
1941			     __func__);
1942		else
1943			retval = 0;
1944	} else
1945		active = 0;
1946
1947	pthread_mutex_unlock(&dev->peer_dev->mutex);
1948	pthread_mutex_lock(&dev->mutex);
1949
1950	/*
1951	 * If the other side isn't active, run through the queue and
1952	 * release all of the buffers.
1953	 */
1954	if (active == 0) {
1955		for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1956		     buf1 = STAILQ_FIRST(&local_queue)) {
1957			STAILQ_REMOVE_HEAD(&local_queue, work_links);
1958			STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf,
1959				      links);
1960			dev->num_peer_work_queue--;
1961			camdd_release_buf(buf1);
1962		}
1963		dev->peer_bytes_queued -= peer_bytes_queued;
1964		retval = 1;
1965	}
1966
1967bailout:
1968	return (retval);
1969}
1970
1971/*
1972 * Return a buffer to the reader thread when we have completed writing it.
1973 */
1974int
1975camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf)
1976{
1977	struct kevent ke;
1978	int retval = 0;
1979
1980	/*
1981	 * Setup the event to let the other thread know that we have
1982	 * completed a buffer.
1983	 */
1984	EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0,
1985	       NOTE_TRIGGER, 0, NULL);
1986
1987	/*
1988	 * Drop our lock and acquire the other thread's lock before
1989	 * manipulating
1990	 */
1991	pthread_mutex_unlock(&dev->mutex);
1992	pthread_mutex_lock(&dev->peer_dev->mutex);
1993
1994	/*
1995	 * Put the buffer on the reader thread's peer done queue now that
1996	 * we have completed it.
1997	 */
1998	STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf,
1999			   work_links);
2000	dev->peer_dev->num_peer_done_queue++;
2001
2002	/*
2003	 * Send an event to the peer thread to let it know that we've added
2004	 * something to its peer done queue.
2005	 */
2006	retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
2007	if (retval == -1)
2008		warn("%s: unable to add peer_done_queue kevent", __func__);
2009	else
2010		retval = 0;
2011
2012	/*
2013	 * Drop the other thread's lock and reacquire ours.
2014	 */
2015	pthread_mutex_unlock(&dev->peer_dev->mutex);
2016	pthread_mutex_lock(&dev->mutex);
2017
2018	return (retval);
2019}
2020
2021/*
2022 * Free a buffer that was written out by the writer thread and returned to
2023 * the reader thread.
2024 */
2025void
2026camdd_peer_done(struct camdd_buf *buf)
2027{
2028	struct camdd_dev *dev;
2029	struct camdd_buf_data *data;
2030
2031	dev = buf->dev;
2032	if (buf->buf_type != CAMDD_BUF_DATA) {
2033		errx(1, "%s: should have a data buffer, not an "
2034		    "indirect buffer", __func__);
2035	}
2036
2037	data = &buf->buf_type_spec.data;
2038
2039	STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links);
2040	dev->num_peer_work_queue--;
2041	dev->peer_bytes_queued -= (data->fill_len - data->resid);
2042
2043	if (buf->status == CAMDD_STATUS_EOF)
2044		dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2045
2046	STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2047}
2048
2049/*
2050 * Assumes caller holds the lock for this device.
2051 */
2052void
2053camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
2054		   int *error_count)
2055{
2056	int retval = 0;
2057
2058	/*
2059	 * If we're the reader, we need to send the completed I/O
2060	 * to the writer.  If we're the writer, we need to just
2061	 * free up resources, or let the reader know if we've
2062	 * encountered an error.
2063	 */
2064	if (dev->write_dev == 0) {
2065		retval = camdd_queue_peer_buf(dev, buf);
2066		if (retval != 0)
2067			(*error_count)++;
2068	} else {
2069		struct camdd_buf *tmp_buf, *next_buf;
2070
2071		STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links,
2072				    next_buf) {
2073			struct camdd_buf *src_buf;
2074			struct camdd_buf_indirect *indirect;
2075
2076			STAILQ_REMOVE(&buf->src_list, tmp_buf,
2077				      camdd_buf, src_links);
2078
2079			tmp_buf->status = buf->status;
2080
2081			if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
2082				camdd_complete_peer_buf(dev, tmp_buf);
2083				continue;
2084			}
2085
2086			indirect = &tmp_buf->buf_type_spec.indirect;
2087			src_buf = indirect->src_buf;
2088			src_buf->refcount--;
2089			/*
2090			 * XXX KDM we probably need to account for
2091			 * exactly how many bytes we were able to
2092			 * write.  Allocate the residual to the
2093			 * first N buffers?  Or just track the
2094			 * number of bytes written?  Right now the reader
2095			 * doesn't do anything with a residual.
2096			 */
2097			src_buf->status = buf->status;
2098			if (src_buf->refcount <= 0)
2099				camdd_complete_peer_buf(dev, src_buf);
2100			STAILQ_INSERT_TAIL(&dev->free_indirect_queue,
2101					   tmp_buf, links);
2102		}
2103
2104		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2105	}
2106}
2107
2108/*
2109 * Fetch all completed commands from the pass(4) device.
2110 *
2111 * Returns the number of commands received, or -1 if any of the commands
2112 * completed with an error.  Returns 0 if no commands are available.
2113 */
2114int
2115camdd_pass_fetch(struct camdd_dev *dev)
2116{
2117	struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2118	union ccb ccb;
2119	int retval = 0, num_fetched = 0, error_count = 0;
2120
2121	pthread_mutex_unlock(&dev->mutex);
2122	/*
2123	 * XXX KDM we don't distinguish between EFAULT and ENOENT.
2124	 */
2125	while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) {
2126		struct camdd_buf *buf;
2127		struct camdd_buf_data *data;
2128		cam_status ccb_status;
2129		union ccb *buf_ccb;
2130
2131		buf = ccb.ccb_h.ccb_buf;
2132		data = &buf->buf_type_spec.data;
2133		buf_ccb = &data->ccb;
2134
2135		num_fetched++;
2136
2137		/*
2138		 * Copy the CCB back out so we get status, sense data, etc.
2139		 */
2140		bcopy(&ccb, buf_ccb, sizeof(ccb));
2141
2142		pthread_mutex_lock(&dev->mutex);
2143
2144		/*
2145		 * We're now done, so take this off the active queue.
2146		 */
2147		STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links);
2148		dev->cur_active_io--;
2149
2150		ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK;
2151		if (ccb_status != CAM_REQ_CMP) {
2152			cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL,
2153					CAM_EPF_ALL, stderr);
2154		}
2155
2156		data->resid = ccb.csio.resid;
2157		dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid);
2158
2159		if (buf->status == CAMDD_STATUS_NONE)
2160			buf->status = camdd_ccb_status(&ccb);
2161		if (buf->status == CAMDD_STATUS_ERROR)
2162			error_count++;
2163		else if (buf->status == CAMDD_STATUS_EOF) {
2164			/*
2165			 * Once we queue this buffer to our partner thread,
2166			 * he will know that we've hit EOF.
2167			 */
2168			dev->flags |= CAMDD_DEV_FLAG_EOF;
2169		}
2170
2171		camdd_complete_buf(dev, buf, &error_count);
2172
2173		/*
2174		 * Unlock in preparation for the ioctl call.
2175		 */
2176		pthread_mutex_unlock(&dev->mutex);
2177	}
2178
2179	pthread_mutex_lock(&dev->mutex);
2180
2181	if (error_count > 0)
2182		return (-1);
2183	else
2184		return (num_fetched);
2185}
2186
2187/*
2188 * Returns -1 for error, 0 for success/continue, and 1 for resource
2189 * shortage/stop processing.
2190 */
2191int
2192camdd_file_run(struct camdd_dev *dev)
2193{
2194	struct camdd_dev_file *file_dev = &dev->dev_spec.file;
2195	struct camdd_buf_data *data;
2196	struct camdd_buf *buf;
2197	off_t io_offset;
2198	int retval = 0, write_dev = dev->write_dev;
2199	int error_count = 0, no_resources = 0, double_buf_needed = 0;
2200	uint32_t num_sectors = 0, db_len = 0;
2201
2202	buf = STAILQ_FIRST(&dev->run_queue);
2203	if (buf == NULL) {
2204		no_resources = 1;
2205		goto bailout;
2206	} else if ((dev->write_dev == 0)
2207		&& (dev->flags & (CAMDD_DEV_FLAG_EOF |
2208				  CAMDD_DEV_FLAG_EOF_SENT))) {
2209		STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2210		dev->num_run_queue--;
2211		buf->status = CAMDD_STATUS_EOF;
2212		error_count++;
2213		goto bailout;
2214	}
2215
2216	/*
2217	 * If we're writing, we need to go through the source buffer list
2218	 * and create an S/G list.
2219	 */
2220	if (write_dev != 0) {
2221		retval = camdd_buf_sg_create(buf, /*iovec*/ 1,
2222		    dev->sector_size, &num_sectors, &double_buf_needed);
2223		if (retval != 0) {
2224			no_resources = 1;
2225			goto bailout;
2226		}
2227	}
2228
2229	STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2230	dev->num_run_queue--;
2231
2232	data = &buf->buf_type_spec.data;
2233
2234	/*
2235	 * pread(2) and pwrite(2) offsets are byte offsets.
2236	 */
2237	io_offset = buf->lba * dev->sector_size;
2238
2239	/*
2240	 * Unlock the mutex while we read or write.
2241	 */
2242	pthread_mutex_unlock(&dev->mutex);
2243
2244	/*
2245	 * Note that we don't need to double buffer if we're the reader
2246	 * because in that case, we have allocated a single buffer of
2247	 * sufficient size to do the read.  This copy is necessary on
2248	 * writes because if one of the components of the S/G list is not
2249	 * a sector size multiple, the kernel will reject the write.  This
2250	 * is unfortunate but not surprising.  So this will make sure that
2251	 * we're using a single buffer that is a multiple of the sector size.
2252	 */
2253	if ((double_buf_needed != 0)
2254	 && (data->sg_count > 1)
2255	 && (write_dev != 0)) {
2256		uint32_t cur_offset;
2257		int i;
2258
2259		if (file_dev->tmp_buf == NULL)
2260			file_dev->tmp_buf = calloc(dev->blocksize, 1);
2261		if (file_dev->tmp_buf == NULL) {
2262			buf->status = CAMDD_STATUS_ERROR;
2263			error_count++;
2264			goto bailout;
2265		}
2266		for (i = 0, cur_offset = 0; i < data->sg_count; i++) {
2267			bcopy(data->iovec[i].iov_base,
2268			    &file_dev->tmp_buf[cur_offset],
2269			    data->iovec[i].iov_len);
2270			cur_offset += data->iovec[i].iov_len;
2271		}
2272		db_len = cur_offset;
2273	}
2274
2275	if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) {
2276		if (write_dev == 0) {
2277			/*
2278			 * XXX KDM is there any way we would need a S/G
2279			 * list here?
2280			 */
2281			retval = pread(file_dev->fd, data->buf,
2282			    buf->len, io_offset);
2283		} else {
2284			if (double_buf_needed != 0) {
2285				retval = pwrite(file_dev->fd, file_dev->tmp_buf,
2286				    db_len, io_offset);
2287			} else if (data->sg_count == 0) {
2288				retval = pwrite(file_dev->fd, data->buf,
2289				    data->fill_len, io_offset);
2290			} else {
2291				retval = pwritev(file_dev->fd, data->iovec,
2292				    data->sg_count, io_offset);
2293			}
2294		}
2295	} else {
2296		if (write_dev == 0) {
2297			/*
2298			 * XXX KDM is there any way we would need a S/G
2299			 * list here?
2300			 */
2301			retval = read(file_dev->fd, data->buf, buf->len);
2302		} else {
2303			if (double_buf_needed != 0) {
2304				retval = write(file_dev->fd, file_dev->tmp_buf,
2305				    db_len);
2306			} else if (data->sg_count == 0) {
2307				retval = write(file_dev->fd, data->buf,
2308				    data->fill_len);
2309			} else {
2310				retval = writev(file_dev->fd, data->iovec,
2311				    data->sg_count);
2312			}
2313		}
2314	}
2315
2316	/* We're done, re-acquire the lock */
2317	pthread_mutex_lock(&dev->mutex);
2318
2319	if (retval >= (ssize_t)data->fill_len) {
2320		/*
2321		 * If the bytes transferred is more than the request size,
2322		 * that indicates an overrun, which should only happen at
2323		 * the end of a transfer if we have to round up to a sector
2324		 * boundary.
2325		 */
2326		if (buf->status == CAMDD_STATUS_NONE)
2327			buf->status = CAMDD_STATUS_OK;
2328		data->resid = 0;
2329		dev->bytes_transferred += retval;
2330	} else if (retval == -1) {
2331		warn("Error %s %s", (write_dev) ? "writing to" :
2332		    "reading from", file_dev->filename);
2333
2334		buf->status = CAMDD_STATUS_ERROR;
2335		data->resid = data->fill_len;
2336		error_count++;
2337
2338		if (dev->debug == 0)
2339			goto bailout;
2340
2341		if ((double_buf_needed != 0)
2342		 && (write_dev != 0)) {
2343			fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju "
2344			    "offset %ju\n", __func__, file_dev->fd,
2345			    file_dev->tmp_buf, db_len, (uintmax_t)buf->lba,
2346			    (uintmax_t)io_offset);
2347		} else if (data->sg_count == 0) {
2348			fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju "
2349			    "offset %ju\n", __func__, file_dev->fd, data->buf,
2350			    data->fill_len, (uintmax_t)buf->lba,
2351			    (uintmax_t)io_offset);
2352		} else {
2353			int i;
2354
2355			fprintf(stderr, "%s: fd %d, len %u, lba %ju "
2356			    "offset %ju\n", __func__, file_dev->fd,
2357			    data->fill_len, (uintmax_t)buf->lba,
2358			    (uintmax_t)io_offset);
2359
2360			for (i = 0; i < data->sg_count; i++) {
2361				fprintf(stderr, "index %d ptr %p len %zu\n",
2362				    i, data->iovec[i].iov_base,
2363				    data->iovec[i].iov_len);
2364			}
2365		}
2366	} else if (retval == 0) {
2367		buf->status = CAMDD_STATUS_EOF;
2368		if (dev->debug != 0)
2369			printf("%s: got EOF from %s!\n", __func__,
2370			    file_dev->filename);
2371		data->resid = data->fill_len;
2372		error_count++;
2373	} else if (retval < (ssize_t)data->fill_len) {
2374		if (buf->status == CAMDD_STATUS_NONE)
2375			buf->status = CAMDD_STATUS_SHORT_IO;
2376		data->resid = data->fill_len - retval;
2377		dev->bytes_transferred += retval;
2378	}
2379
2380bailout:
2381	if (buf != NULL) {
2382		if (buf->status == CAMDD_STATUS_EOF) {
2383			struct camdd_buf *buf2;
2384			dev->flags |= CAMDD_DEV_FLAG_EOF;
2385			STAILQ_FOREACH(buf2, &dev->run_queue, links)
2386				buf2->status = CAMDD_STATUS_EOF;
2387		}
2388
2389		camdd_complete_buf(dev, buf, &error_count);
2390	}
2391
2392	if (error_count != 0)
2393		return (-1);
2394	else if (no_resources != 0)
2395		return (1);
2396	else
2397		return (0);
2398}
2399
2400/*
2401 * Execute one command from the run queue.  Returns 0 for success, 1 for
2402 * stop processing, and -1 for error.
2403 */
2404int
2405camdd_pass_run(struct camdd_dev *dev)
2406{
2407	struct camdd_buf *buf = NULL;
2408	struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2409	struct camdd_buf_data *data;
2410	uint32_t num_blocks, sectors_used = 0;
2411	union ccb *ccb;
2412	int retval = 0, is_write = dev->write_dev;
2413	int double_buf_needed = 0;
2414
2415	buf = STAILQ_FIRST(&dev->run_queue);
2416	if (buf == NULL) {
2417		retval = 1;
2418		goto bailout;
2419	}
2420
2421	/*
2422	 * If we're writing, we need to go through the source buffer list
2423	 * and create an S/G list.
2424	 */
2425	if (is_write != 0) {
2426		retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size,
2427		    &sectors_used, &double_buf_needed);
2428		if (retval != 0) {
2429			retval = -1;
2430			goto bailout;
2431		}
2432	}
2433
2434	STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2435	dev->num_run_queue--;
2436
2437	data = &buf->buf_type_spec.data;
2438
2439	ccb = &data->ccb;
2440	CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
2441
2442	/*
2443	 * In almost every case the number of blocks should be the device
2444	 * block size.  The exception may be at the end of an I/O stream
2445	 * for a partial block or at the end of a device.
2446	 */
2447	if (is_write != 0)
2448		num_blocks = sectors_used;
2449	else
2450		num_blocks = data->fill_len / pass_dev->block_len;
2451
2452	scsi_read_write(&ccb->csio,
2453			/*retries*/ dev->retry_count,
2454			/*cbfcnp*/ NULL,
2455			/*tag_action*/ MSG_SIMPLE_Q_TAG,
2456			/*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ :
2457				   SCSI_RW_WRITE,
2458			/*byte2*/ 0,
2459			/*minimum_cmd_size*/ dev->min_cmd_size,
2460			/*lba*/ buf->lba,
2461			/*block_count*/ num_blocks,
2462			/*data_ptr*/ (data->sg_count != 0) ?
2463				     (uint8_t *)data->segs : data->buf,
2464			/*dxfer_len*/ (num_blocks * pass_dev->block_len),
2465			/*sense_len*/ SSD_FULL_SIZE,
2466			/*timeout*/ dev->io_timeout);
2467
2468	/* Disable freezing the device queue */
2469	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
2470
2471	if (dev->retry_count != 0)
2472		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
2473
2474	if (data->sg_count != 0) {
2475		ccb->csio.sglist_cnt = data->sg_count;
2476		ccb->ccb_h.flags |= CAM_DATA_SG;
2477	}
2478
2479	/*
2480	 * Store a pointer to the buffer in the CCB.  The kernel will
2481	 * restore this when we get it back, and we'll use it to identify
2482	 * the buffer this CCB came from.
2483	 */
2484	ccb->ccb_h.ccb_buf = buf;
2485
2486	/*
2487	 * Unlock our mutex in preparation for issuing the ioctl.
2488	 */
2489	pthread_mutex_unlock(&dev->mutex);
2490	/*
2491	 * Queue the CCB to the pass(4) driver.
2492	 */
2493	if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) {
2494		pthread_mutex_lock(&dev->mutex);
2495
2496		warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__,
2497		     pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
2498		warn("%s: CCB address is %p", __func__, ccb);
2499		retval = -1;
2500
2501		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2502	} else {
2503		pthread_mutex_lock(&dev->mutex);
2504
2505		dev->cur_active_io++;
2506		STAILQ_INSERT_TAIL(&dev->active_queue, buf, links);
2507	}
2508
2509bailout:
2510	return (retval);
2511}
2512
2513int
2514camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len)
2515{
2516	struct camdd_dev_pass *pass_dev;
2517	uint32_t num_blocks;
2518	int retval = 0;
2519
2520	pass_dev = &dev->dev_spec.pass;
2521
2522	*lba = dev->next_io_pos_bytes / dev->sector_size;
2523	*len = dev->blocksize;
2524	num_blocks = *len / dev->sector_size;
2525
2526	/*
2527	 * If max_sector is 0, then we have no set limit.  This can happen
2528	 * if we're writing to a file in a filesystem, or reading from
2529	 * something like /dev/zero.
2530	 */
2531	if ((dev->max_sector != 0)
2532	 || (dev->sector_io_limit != 0)) {
2533		uint64_t max_sector;
2534
2535		if ((dev->max_sector != 0)
2536		 && (dev->sector_io_limit != 0))
2537			max_sector = min(dev->sector_io_limit, dev->max_sector);
2538		else if (dev->max_sector != 0)
2539			max_sector = dev->max_sector;
2540		else
2541			max_sector = dev->sector_io_limit;
2542
2543
2544		/*
2545		 * Check to see whether we're starting off past the end of
2546		 * the device.  If so, we need to just send an EOF
2547		 * notification to the writer.
2548		 */
2549		if (*lba > max_sector) {
2550			*len = 0;
2551			retval = 1;
2552		} else if (((*lba + num_blocks) > max_sector + 1)
2553			|| ((*lba + num_blocks) < *lba)) {
2554			/*
2555			 * If we get here (but pass the first check), we
2556			 * can trim the request length down to go to the
2557			 * end of the device.
2558			 */
2559			num_blocks = (max_sector + 1) - *lba;
2560			*len = num_blocks * dev->sector_size;
2561			retval = 1;
2562		}
2563	}
2564
2565	dev->next_io_pos_bytes += *len;
2566
2567	return (retval);
2568}
2569
2570/*
2571 * Returns 0 for success, 1 for EOF detected, and -1 for failure.
2572 */
2573int
2574camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf)
2575{
2576	struct camdd_buf *buf = NULL;
2577	struct camdd_buf_data *data;
2578	struct camdd_dev_pass *pass_dev;
2579	size_t new_len;
2580	struct camdd_buf_data *rb_data;
2581	int is_write = dev->write_dev;
2582	int eof_flush_needed = 0;
2583	int retval = 0;
2584	int error;
2585
2586	pass_dev = &dev->dev_spec.pass;
2587
2588	/*
2589	 * If we've gotten EOF or our partner has, we should not continue
2590	 * queueing I/O.  If we're a writer, though, we should continue
2591	 * to write any buffers that don't have EOF status.
2592	 */
2593	if ((dev->flags & CAMDD_DEV_FLAG_EOF)
2594	 || ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF)
2595	  && (is_write == 0))) {
2596		/*
2597		 * Tell the worker thread that we have seen EOF.
2598		 */
2599		retval = 1;
2600
2601		/*
2602		 * If we're the writer, send the buffer back with EOF status.
2603		 */
2604		if (is_write) {
2605			read_buf->status = CAMDD_STATUS_EOF;
2606
2607			error = camdd_complete_peer_buf(dev, read_buf);
2608		}
2609		goto bailout;
2610	}
2611
2612	if (is_write == 0) {
2613		buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2614		if (buf == NULL) {
2615			retval = -1;
2616			goto bailout;
2617		}
2618		data = &buf->buf_type_spec.data;
2619
2620		retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len);
2621		if (retval != 0) {
2622			buf->status = CAMDD_STATUS_EOF;
2623
2624		 	if ((buf->len == 0)
2625			 && ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT |
2626			     CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) {
2627				camdd_release_buf(buf);
2628				goto bailout;
2629			}
2630			dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED;
2631		}
2632
2633		data->fill_len = buf->len;
2634		data->src_start_offset = buf->lba * dev->sector_size;
2635
2636		/*
2637		 * Put this on the run queue.
2638		 */
2639		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2640		dev->num_run_queue++;
2641
2642		/* We're done. */
2643		goto bailout;
2644	}
2645
2646	/*
2647	 * Check for new EOF status from the reader.
2648	 */
2649	if ((read_buf->status == CAMDD_STATUS_EOF)
2650	 || (read_buf->status == CAMDD_STATUS_ERROR)) {
2651		dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2652		if ((STAILQ_FIRST(&dev->pending_queue) == NULL)
2653		 && (read_buf->len == 0)) {
2654			camdd_complete_peer_buf(dev, read_buf);
2655			retval = 1;
2656			goto bailout;
2657		} else
2658			eof_flush_needed = 1;
2659	}
2660
2661	/*
2662	 * See if we have a buffer we're composing with pieces from our
2663	 * partner thread.
2664	 */
2665	buf = STAILQ_FIRST(&dev->pending_queue);
2666	if (buf == NULL) {
2667		uint64_t lba;
2668		ssize_t len;
2669
2670		retval = camdd_get_next_lba_len(dev, &lba, &len);
2671		if (retval != 0) {
2672			read_buf->status = CAMDD_STATUS_EOF;
2673
2674			if (len == 0) {
2675				dev->flags |= CAMDD_DEV_FLAG_EOF;
2676				error = camdd_complete_peer_buf(dev, read_buf);
2677				goto bailout;
2678			}
2679		}
2680
2681		/*
2682		 * If we don't have a pending buffer, we need to grab a new
2683		 * one from the free list or allocate another one.
2684		 */
2685		buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2686		if (buf == NULL) {
2687			retval = 1;
2688			goto bailout;
2689		}
2690
2691		buf->lba = lba;
2692		buf->len = len;
2693
2694		STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links);
2695		dev->num_pending_queue++;
2696	}
2697
2698	data = &buf->buf_type_spec.data;
2699
2700	rb_data = &read_buf->buf_type_spec.data;
2701
2702	if ((rb_data->src_start_offset != dev->next_peer_pos_bytes)
2703	 && (dev->debug != 0)) {
2704		printf("%s: WARNING: reader offset %#jx != expected offset "
2705		    "%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset,
2706		    (uintmax_t)dev->next_peer_pos_bytes);
2707	}
2708	dev->next_peer_pos_bytes = rb_data->src_start_offset +
2709	    (rb_data->fill_len - rb_data->resid);
2710
2711	new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len;
2712	if (new_len < buf->len) {
2713		/*
2714		 * There are three cases here:
2715		 * 1. We need more data to fill up a block, so we put
2716		 *    this I/O on the queue and wait for more I/O.
2717		 * 2. We have a pending buffer in the queue that is
2718		 *    smaller than our blocksize, but we got an EOF.  So we
2719		 *    need to go ahead and flush the write out.
2720		 * 3. We got an error.
2721		 */
2722
2723		/*
2724		 * Increment our fill length.
2725		 */
2726		data->fill_len += (rb_data->fill_len - rb_data->resid);
2727
2728		/*
2729		 * Add the new read buffer to the list for writing.
2730		 */
2731		STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2732
2733		/* Increment the count */
2734		buf->src_count++;
2735
2736		if (eof_flush_needed == 0) {
2737			/*
2738			 * We need to exit, because we don't have enough
2739			 * data yet.
2740			 */
2741			goto bailout;
2742		} else {
2743			/*
2744			 * Take the buffer off of the pending queue.
2745			 */
2746			STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2747				      links);
2748			dev->num_pending_queue--;
2749
2750			/*
2751			 * If we need an EOF flush, but there is no data
2752			 * to flush, go ahead and return this buffer.
2753			 */
2754			if (data->fill_len == 0) {
2755				camdd_complete_buf(dev, buf, /*error_count*/0);
2756				retval = 1;
2757				goto bailout;
2758			}
2759
2760			/*
2761			 * Put this on the next queue for execution.
2762			 */
2763			STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2764			dev->num_run_queue++;
2765		}
2766	} else if (new_len == buf->len) {
2767		/*
2768		 * We have enough data to completey fill one block,
2769		 * so we're ready to issue the I/O.
2770		 */
2771
2772		/*
2773		 * Take the buffer off of the pending queue.
2774		 */
2775		STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links);
2776		dev->num_pending_queue--;
2777
2778		/*
2779		 * Add the new read buffer to the list for writing.
2780		 */
2781		STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2782
2783		/* Increment the count */
2784		buf->src_count++;
2785
2786		/*
2787		 * Increment our fill length.
2788		 */
2789		data->fill_len += (rb_data->fill_len - rb_data->resid);
2790
2791		/*
2792		 * Put this on the next queue for execution.
2793		 */
2794		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2795		dev->num_run_queue++;
2796	} else {
2797		struct camdd_buf *idb;
2798		struct camdd_buf_indirect *indirect;
2799		uint32_t len_to_go, cur_offset;
2800
2801
2802		idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2803		if (idb == NULL) {
2804			retval = 1;
2805			goto bailout;
2806		}
2807		indirect = &idb->buf_type_spec.indirect;
2808		indirect->src_buf = read_buf;
2809		read_buf->refcount++;
2810		indirect->offset = 0;
2811		indirect->start_ptr = rb_data->buf;
2812		/*
2813		 * We've already established that there is more
2814		 * data in read_buf than we have room for in our
2815		 * current write request.  So this particular chunk
2816		 * of the request should just be the remainder
2817		 * needed to fill up a block.
2818		 */
2819		indirect->len = buf->len - (data->fill_len - data->resid);
2820
2821		camdd_buf_add_child(buf, idb);
2822
2823		/*
2824		 * This buffer is ready to execute, so we can take
2825		 * it off the pending queue and put it on the run
2826		 * queue.
2827		 */
2828		STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2829			      links);
2830		dev->num_pending_queue--;
2831		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2832		dev->num_run_queue++;
2833
2834		cur_offset = indirect->offset + indirect->len;
2835
2836		/*
2837		 * The resulting I/O would be too large to fit in
2838		 * one block.  We need to split this I/O into
2839		 * multiple pieces.  Allocate as many buffers as needed.
2840		 */
2841		for (len_to_go = rb_data->fill_len - rb_data->resid -
2842		     indirect->len; len_to_go > 0;) {
2843			struct camdd_buf *new_buf;
2844			struct camdd_buf_data *new_data;
2845			uint64_t lba;
2846			ssize_t len;
2847
2848			retval = camdd_get_next_lba_len(dev, &lba, &len);
2849			if ((retval != 0)
2850			 && (len == 0)) {
2851				/*
2852				 * The device has already been marked
2853				 * as EOF, and there is no space left.
2854				 */
2855				goto bailout;
2856			}
2857
2858			new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2859			if (new_buf == NULL) {
2860				retval = 1;
2861				goto bailout;
2862			}
2863
2864			new_buf->lba = lba;
2865			new_buf->len = len;
2866
2867			idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2868			if (idb == NULL) {
2869				retval = 1;
2870				goto bailout;
2871			}
2872
2873			indirect = &idb->buf_type_spec.indirect;
2874
2875			indirect->src_buf = read_buf;
2876			read_buf->refcount++;
2877			indirect->offset = cur_offset;
2878			indirect->start_ptr = rb_data->buf + cur_offset;
2879			indirect->len = min(len_to_go, new_buf->len);
2880#if 0
2881			if (((indirect->len % dev->sector_size) != 0)
2882			 || ((indirect->offset % dev->sector_size) != 0)) {
2883				warnx("offset %ju len %ju not aligned with "
2884				    "sector size %u", indirect->offset,
2885				    (uintmax_t)indirect->len, dev->sector_size);
2886			}
2887#endif
2888			cur_offset += indirect->len;
2889			len_to_go -= indirect->len;
2890
2891			camdd_buf_add_child(new_buf, idb);
2892
2893			new_data = &new_buf->buf_type_spec.data;
2894
2895			if ((new_data->fill_len == new_buf->len)
2896			 || (eof_flush_needed != 0)) {
2897				STAILQ_INSERT_TAIL(&dev->run_queue,
2898						   new_buf, links);
2899				dev->num_run_queue++;
2900			} else if (new_data->fill_len < buf->len) {
2901				STAILQ_INSERT_TAIL(&dev->pending_queue,
2902					   	new_buf, links);
2903				dev->num_pending_queue++;
2904			} else {
2905				warnx("%s: too much data in new "
2906				      "buffer!", __func__);
2907				retval = 1;
2908				goto bailout;
2909			}
2910		}
2911	}
2912
2913bailout:
2914	return (retval);
2915}
2916
2917void
2918camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
2919		uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes)
2920{
2921	*our_depth = dev->cur_active_io + dev->num_run_queue;
2922	if (dev->num_peer_work_queue >
2923	    dev->num_peer_done_queue)
2924		*peer_depth = dev->num_peer_work_queue -
2925			      dev->num_peer_done_queue;
2926	else
2927		*peer_depth = 0;
2928	*our_bytes = *our_depth * dev->blocksize;
2929	*peer_bytes = dev->peer_bytes_queued;
2930}
2931
2932void
2933camdd_sig_handler(int sig)
2934{
2935	if (sig == SIGINFO)
2936		need_status = 1;
2937	else {
2938		need_exit = 1;
2939		error_exit = 1;
2940	}
2941
2942	sem_post(&camdd_sem);
2943}
2944
2945void
2946camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev,
2947		   struct timespec *start_time)
2948{
2949	struct timespec done_time;
2950	uint64_t total_ns;
2951	long double mb_sec, total_sec;
2952	int error = 0;
2953
2954	error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time);
2955	if (error != 0) {
2956		warn("Unable to get done time");
2957		return;
2958	}
2959
2960	timespecsub(&done_time, start_time);
2961
2962	total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000);
2963	total_sec = total_ns;
2964	total_sec /= 1000000000;
2965
2966	fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n"
2967		"%.4Lf seconds elapsed\n",
2968		(uintmax_t)camdd_dev->bytes_transferred,
2969		(camdd_dev->write_dev == 0) ?  "read from" : "written to",
2970		camdd_dev->device_name,
2971		(uintmax_t)other_dev->bytes_transferred,
2972		(other_dev->write_dev == 0) ? "read from" : "written to",
2973		other_dev->device_name, total_sec);
2974
2975	mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred);
2976	mb_sec /= 1024 * 1024;
2977	mb_sec *= 1000000000;
2978	mb_sec /= total_ns;
2979	fprintf(stderr, "%.2Lf MB/sec\n", mb_sec);
2980}
2981
2982int
2983camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io,
2984	 int retry_count, int timeout)
2985{
2986	char *device = NULL;
2987	struct cam_device *new_cam_dev = NULL;
2988	struct camdd_dev *devs[2];
2989	struct timespec start_time;
2990	pthread_t threads[2];
2991	int unit = 0;
2992	int error = 0;
2993	int i;
2994
2995	if (num_io_opts != 2) {
2996		warnx("Must have one input and one output path");
2997		error = 1;
2998		goto bailout;
2999	}
3000
3001	bzero(devs, sizeof(devs));
3002
3003	for (i = 0; i < num_io_opts; i++) {
3004		switch (io_opts[i].dev_type) {
3005		case CAMDD_DEV_PASS: {
3006			camdd_argmask new_arglist = CAMDD_ARG_NONE;
3007			int bus = 0, target = 0, lun = 0;
3008			char name[30];
3009			int rv;
3010
3011			if (isdigit(io_opts[i].dev_name[0])) {
3012				/* device specified as bus:target[:lun] */
3013				rv = parse_btl(io_opts[i].dev_name, &bus,
3014				    &target, &lun, &new_arglist);
3015				if (rv < 2) {
3016					warnx("numeric device specification "
3017					     "must be either bus:target, or "
3018					     "bus:target:lun");
3019					error = 1;
3020					goto bailout;
3021				}
3022				/* default to 0 if lun was not specified */
3023				if ((new_arglist & CAMDD_ARG_LUN) == 0) {
3024					lun = 0;
3025					new_arglist |= CAMDD_ARG_LUN;
3026				}
3027			} else {
3028				if (cam_get_device(io_opts[i].dev_name, name,
3029						   sizeof name, &unit) == -1) {
3030					warnx("%s", cam_errbuf);
3031					error = 1;
3032					goto bailout;
3033				}
3034				device = strdup(name);
3035				new_arglist |= CAMDD_ARG_DEVICE |CAMDD_ARG_UNIT;
3036			}
3037
3038			if (new_arglist & (CAMDD_ARG_BUS | CAMDD_ARG_TARGET))
3039				new_cam_dev = cam_open_btl(bus, target, lun,
3040				    O_RDWR, NULL);
3041			else
3042				new_cam_dev = cam_open_spec_device(device, unit,
3043				    O_RDWR, NULL);
3044			if (new_cam_dev == NULL) {
3045				warnx("%s", cam_errbuf);
3046				error = 1;
3047				goto bailout;
3048			}
3049
3050			devs[i] = camdd_probe_pass(new_cam_dev,
3051			    /*io_opts*/ &io_opts[i],
3052			    CAMDD_ARG_ERR_RECOVER,
3053			    /*probe_retry_count*/ 3,
3054			    /*probe_timeout*/ 5000,
3055			    /*io_retry_count*/ retry_count,
3056			    /*io_timeout*/ timeout);
3057			if (devs[i] == NULL) {
3058				warn("Unable to probe device %s%u",
3059				     new_cam_dev->device_name,
3060				     new_cam_dev->dev_unit_num);
3061				error = 1;
3062				goto bailout;
3063			}
3064			break;
3065		}
3066		case CAMDD_DEV_FILE: {
3067			int fd = -1;
3068
3069			if (io_opts[i].dev_name[0] == '-') {
3070				if (io_opts[i].write_dev != 0)
3071					fd = STDOUT_FILENO;
3072				else
3073					fd = STDIN_FILENO;
3074			} else {
3075				if (io_opts[i].write_dev != 0) {
3076					fd = open(io_opts[i].dev_name,
3077					    O_RDWR | O_CREAT, S_IWUSR |S_IRUSR);
3078				} else {
3079					fd = open(io_opts[i].dev_name,
3080					    O_RDONLY);
3081				}
3082			}
3083			if (fd == -1) {
3084				warn("error opening file %s",
3085				    io_opts[i].dev_name);
3086				error = 1;
3087				goto bailout;
3088			}
3089
3090			devs[i] = camdd_probe_file(fd, &io_opts[i],
3091			    retry_count, timeout);
3092			if (devs[i] == NULL) {
3093				error = 1;
3094				goto bailout;
3095			}
3096
3097			break;
3098		}
3099		default:
3100			warnx("Unknown device type %d (%s)",
3101			    io_opts[i].dev_type, io_opts[i].dev_name);
3102			error = 1;
3103			goto bailout;
3104			break; /*NOTREACHED */
3105		}
3106
3107		devs[i]->write_dev = io_opts[i].write_dev;
3108
3109		devs[i]->start_offset_bytes = io_opts[i].offset;
3110
3111		if (max_io != 0) {
3112			devs[i]->sector_io_limit =
3113			    (devs[i]->start_offset_bytes /
3114			    devs[i]->sector_size) +
3115			    (max_io / devs[i]->sector_size) - 1;
3116			devs[i]->sector_io_limit =
3117			    (devs[i]->start_offset_bytes /
3118			    devs[i]->sector_size) +
3119			    (max_io / devs[i]->sector_size) - 1;
3120		}
3121
3122		devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes;
3123		devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes;
3124	}
3125
3126	devs[0]->peer_dev = devs[1];
3127	devs[1]->peer_dev = devs[0];
3128	devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes;
3129	devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes;
3130
3131	sem_init(&camdd_sem, /*pshared*/ 0, 0);
3132
3133	signal(SIGINFO, camdd_sig_handler);
3134	signal(SIGINT, camdd_sig_handler);
3135
3136	error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time);
3137	if (error != 0) {
3138		warn("Unable to get start time");
3139		goto bailout;
3140	}
3141
3142	for (i = 0; i < num_io_opts; i++) {
3143		error = pthread_create(&threads[i], NULL, camdd_worker,
3144				       (void *)devs[i]);
3145		if (error != 0) {
3146			warnc(error, "pthread_create() failed");
3147			goto bailout;
3148		}
3149	}
3150
3151	for (;;) {
3152		if ((sem_wait(&camdd_sem) == -1)
3153		 || (need_exit != 0)) {
3154			struct kevent ke;
3155
3156			for (i = 0; i < num_io_opts; i++) {
3157				EV_SET(&ke, (uintptr_t)&devs[i]->work_queue,
3158				    EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL);
3159
3160				devs[i]->flags |= CAMDD_DEV_FLAG_EOF;
3161
3162				error = kevent(devs[i]->kq, &ke, 1, NULL, 0,
3163						NULL);
3164				if (error == -1)
3165					warn("%s: unable to wake up thread",
3166					    __func__);
3167				error = 0;
3168			}
3169			break;
3170		} else if (need_status != 0) {
3171			camdd_print_status(devs[0], devs[1], &start_time);
3172			need_status = 0;
3173		}
3174	}
3175	for (i = 0; i < num_io_opts; i++) {
3176		pthread_join(threads[i], NULL);
3177	}
3178
3179	camdd_print_status(devs[0], devs[1], &start_time);
3180
3181bailout:
3182
3183	for (i = 0; i < num_io_opts; i++)
3184		camdd_free_dev(devs[i]);
3185
3186	return (error + error_exit);
3187}
3188
3189void
3190usage(void)
3191{
3192	fprintf(stderr,
3193"usage:  camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n"
3194"              <-i|-o file=/tmp/file,bs=512K,offset=1M>\n"
3195"              <-i|-o file=/dev/da0,bs=512K,offset=1M>\n"
3196"              <-i|-o file=/dev/nsa0,bs=512K>\n"
3197"              [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n"
3198"Option description\n"
3199"-i <arg=val>  Specify input device/file and parameters\n"
3200"-o <arg=val>  Specify output device/file and parameters\n"
3201"Input and Output parameters\n"
3202"pass=name     Specify a pass(4) device like pass0 or /dev/pass0\n"
3203"file=name     Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n"
3204"              or - for stdin/stdout\n"
3205"bs=blocksize  Specify blocksize in bytes, or using K, M, G, etc. suffix\n"
3206"offset=len    Specify starting offset in bytes or using K, M, G suffix\n"
3207"              NOTE: offset cannot be specified on tapes, pipes, stdin/out\n"
3208"depth=N       Specify a numeric queue depth.  This only applies to pass(4)\n"
3209"mcs=N         Specify a minimum cmd size for pass(4) read/write commands\n"
3210"Optional arguments\n"
3211"-C retry_cnt  Specify a retry count for pass(4) devices\n"
3212"-E            Enable CAM error recovery for pass(4) devices\n"
3213"-m max_io     Specify the maximum amount to be transferred in bytes or\n"
3214"              using K, G, M, etc. suffixes\n"
3215"-t timeout    Specify the I/O timeout to use with pass(4) devices\n"
3216"-v            Enable verbose error recovery\n"
3217"-h            Print this message\n");
3218}
3219
3220
3221int
3222camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts)
3223{
3224	char *tmpstr, *tmpstr2;
3225	char *orig_tmpstr = NULL;
3226	int retval = 0;
3227
3228	io_opts->write_dev = is_write;
3229
3230	tmpstr = strdup(args);
3231	if (tmpstr == NULL) {
3232		warn("strdup failed");
3233		retval = 1;
3234		goto bailout;
3235	}
3236	orig_tmpstr = tmpstr;
3237	while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) {
3238		char *name, *value;
3239
3240		/*
3241		 * If the user creates an empty parameter by putting in two
3242		 * commas, skip over it and look for the next field.
3243		 */
3244		if (*tmpstr2 == '\0')
3245			continue;
3246
3247		name = strsep(&tmpstr2, "=");
3248		if (*name == '\0') {
3249			warnx("Got empty I/O parameter name");
3250			retval = 1;
3251			goto bailout;
3252		}
3253		value = strsep(&tmpstr2, "=");
3254		if ((value == NULL)
3255		 || (*value == '\0')) {
3256			warnx("Empty I/O parameter value for %s", name);
3257			retval = 1;
3258			goto bailout;
3259		}
3260		if (strncasecmp(name, "file", 4) == 0) {
3261			io_opts->dev_type = CAMDD_DEV_FILE;
3262			io_opts->dev_name = strdup(value);
3263			if (io_opts->dev_name == NULL) {
3264				warn("Error allocating memory");
3265				retval = 1;
3266				goto bailout;
3267			}
3268		} else if (strncasecmp(name, "pass", 4) == 0) {
3269			io_opts->dev_type = CAMDD_DEV_PASS;
3270			io_opts->dev_name = strdup(value);
3271			if (io_opts->dev_name == NULL) {
3272				warn("Error allocating memory");
3273				retval = 1;
3274				goto bailout;
3275			}
3276		} else if ((strncasecmp(name, "bs", 2) == 0)
3277			|| (strncasecmp(name, "blocksize", 9) == 0)) {
3278			retval = expand_number(value, &io_opts->blocksize);
3279			if (retval == -1) {
3280				warn("expand_number(3) failed on %s=%s", name,
3281				    value);
3282				retval = 1;
3283				goto bailout;
3284			}
3285		} else if (strncasecmp(name, "depth", 5) == 0) {
3286			char *endptr;
3287
3288			io_opts->queue_depth = strtoull(value, &endptr, 0);
3289			if (*endptr != '\0') {
3290				warnx("invalid queue depth %s", value);
3291				retval = 1;
3292				goto bailout;
3293			}
3294		} else if (strncasecmp(name, "mcs", 3) == 0) {
3295			char *endptr;
3296
3297			io_opts->min_cmd_size = strtol(value, &endptr, 0);
3298			if ((*endptr != '\0')
3299			 || ((io_opts->min_cmd_size > 16)
3300			  || (io_opts->min_cmd_size < 0))) {
3301				warnx("invalid minimum cmd size %s", value);
3302				retval = 1;
3303				goto bailout;
3304			}
3305		} else if (strncasecmp(name, "offset", 6) == 0) {
3306			retval = expand_number(value, &io_opts->offset);
3307			if (retval == -1) {
3308				warn("expand_number(3) failed on %s=%s", name,
3309				    value);
3310				retval = 1;
3311				goto bailout;
3312			}
3313		} else if (strncasecmp(name, "debug", 5) == 0) {
3314			char *endptr;
3315
3316			io_opts->debug = strtoull(value, &endptr, 0);
3317			if (*endptr != '\0') {
3318				warnx("invalid debug level %s", value);
3319				retval = 1;
3320				goto bailout;
3321			}
3322		} else {
3323			warnx("Unrecognized parameter %s=%s", name, value);
3324		}
3325	}
3326bailout:
3327	free(orig_tmpstr);
3328
3329	return (retval);
3330}
3331
3332int
3333main(int argc, char **argv)
3334{
3335	int c;
3336	camdd_argmask arglist = CAMDD_ARG_NONE;
3337	int timeout = 0, retry_count = 1;
3338	int error = 0;
3339	uint64_t max_io = 0;
3340	struct camdd_io_opts *opt_list = NULL;
3341
3342	if (argc == 1) {
3343		usage();
3344		exit(1);
3345	}
3346
3347	opt_list = calloc(2, sizeof(struct camdd_io_opts));
3348	if (opt_list == NULL) {
3349		warn("Unable to allocate option list");
3350		error = 1;
3351		goto bailout;
3352	}
3353
3354	while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){
3355		switch (c) {
3356		case 'C':
3357			retry_count = strtol(optarg, NULL, 0);
3358			if (retry_count < 0)
3359				errx(1, "retry count %d is < 0",
3360				     retry_count);
3361			arglist |= CAMDD_ARG_RETRIES;
3362			break;
3363		case 'E':
3364			arglist |= CAMDD_ARG_ERR_RECOVER;
3365			break;
3366		case 'i':
3367		case 'o':
3368			if (((c == 'i')
3369			  && (opt_list[0].dev_type != CAMDD_DEV_NONE))
3370			 || ((c == 'o')
3371			  && (opt_list[1].dev_type != CAMDD_DEV_NONE))) {
3372				errx(1, "Only one input and output path "
3373				    "allowed");
3374			}
3375			error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0,
3376			    (c == 'o') ? &opt_list[1] : &opt_list[0]);
3377			if (error != 0)
3378				goto bailout;
3379			break;
3380		case 'm':
3381			error = expand_number(optarg, &max_io);
3382			if (error == -1) {
3383				warn("invalid maximum I/O amount %s", optarg);
3384				error = 1;
3385				goto bailout;
3386			}
3387			break;
3388		case 't':
3389			timeout = strtol(optarg, NULL, 0);
3390			if (timeout < 0)
3391				errx(1, "invalid timeout %d", timeout);
3392			/* Convert the timeout from seconds to ms */
3393			timeout *= 1000;
3394			arglist |= CAMDD_ARG_TIMEOUT;
3395			break;
3396		case 'v':
3397			arglist |= CAMDD_ARG_VERBOSE;
3398			break;
3399		case 'h':
3400		default:
3401			usage();
3402			exit(1);
3403			break; /*NOTREACHED*/
3404		}
3405	}
3406
3407	if ((opt_list[0].dev_type == CAMDD_DEV_NONE)
3408	 || (opt_list[1].dev_type == CAMDD_DEV_NONE))
3409		errx(1, "Must specify both -i and -o");
3410
3411	/*
3412	 * Set the timeout if the user hasn't specified one.
3413	 */
3414	if (timeout == 0)
3415		timeout = CAMDD_PASS_RW_TIMEOUT;
3416
3417	error = camdd_rw(opt_list, 2, max_io, retry_count, timeout);
3418
3419bailout:
3420	free(opt_list);
3421
3422	exit(error);
3423}
3424