camdd.c revision 293409
1/*-
2 * Copyright (c) 1997-2007 Kenneth D. Merry
3 * Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions, and the following disclaimer,
11 *    without modification.
12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13 *    substantially similar to the "NO WARRANTY" disclaimer below
14 *    ("Disclaimer") and any redistribution must be conditioned upon
15 *    including a substantially similar Disclaimer requirement for further
16 *    binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
28 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGES.
30 *
31 * Authors: Ken Merry           (Spectra Logic Corporation)
32 */
33
34/*
35 * This is eventually intended to be:
36 * - A basic data transfer/copy utility
37 * - A simple benchmark utility
38 * - An example of how to use the asynchronous pass(4) driver interface.
39 */
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: stable/10/usr.sbin/camdd/camdd.c 293409 2016-01-08 02:56:21Z araujo $");
42
43#include <sys/ioctl.h>
44#include <sys/stdint.h>
45#include <sys/types.h>
46#include <sys/endian.h>
47#include <sys/param.h>
48#include <sys/sbuf.h>
49#include <sys/stat.h>
50#include <sys/event.h>
51#include <sys/time.h>
52#include <sys/uio.h>
53#include <vm/vm.h>
54#include <machine/bus.h>
55#include <sys/bus.h>
56#include <sys/bus_dma.h>
57#include <sys/mtio.h>
58#include <sys/conf.h>
59#include <sys/disk.h>
60
61#include <stdio.h>
62#include <stdlib.h>
63#include <semaphore.h>
64#include <string.h>
65#include <unistd.h>
66#include <inttypes.h>
67#include <limits.h>
68#include <fcntl.h>
69#include <ctype.h>
70#include <err.h>
71#include <libutil.h>
72#include <pthread.h>
73#include <assert.h>
74#include <bsdxml.h>
75
76#include <cam/cam.h>
77#include <cam/cam_debug.h>
78#include <cam/cam_ccb.h>
79#include <cam/scsi/scsi_all.h>
80#include <cam/scsi/scsi_da.h>
81#include <cam/scsi/scsi_pass.h>
82#include <cam/scsi/scsi_message.h>
83#include <cam/scsi/smp_all.h>
84#include <camlib.h>
85#include <mtlib.h>
86#include <zlib.h>
87
88typedef enum {
89	CAMDD_CMD_NONE		= 0x00000000,
90	CAMDD_CMD_HELP		= 0x00000001,
91	CAMDD_CMD_WRITE		= 0x00000002,
92	CAMDD_CMD_READ		= 0x00000003
93} camdd_cmdmask;
94
95typedef enum {
96	CAMDD_ARG_NONE		= 0x00000000,
97	CAMDD_ARG_VERBOSE	= 0x00000001,
98	CAMDD_ARG_DEVICE	= 0x00000002,
99	CAMDD_ARG_BUS		= 0x00000004,
100	CAMDD_ARG_TARGET	= 0x00000008,
101	CAMDD_ARG_LUN		= 0x00000010,
102	CAMDD_ARG_UNIT		= 0x00000020,
103	CAMDD_ARG_TIMEOUT	= 0x00000040,
104	CAMDD_ARG_ERR_RECOVER	= 0x00000080,
105	CAMDD_ARG_RETRIES	= 0x00000100
106} camdd_argmask;
107
108typedef enum {
109	CAMDD_DEV_NONE		= 0x00,
110	CAMDD_DEV_PASS		= 0x01,
111	CAMDD_DEV_FILE		= 0x02
112} camdd_dev_type;
113
114struct camdd_io_opts {
115	camdd_dev_type	dev_type;
116	char		*dev_name;
117	uint64_t	blocksize;
118	uint64_t	queue_depth;
119	uint64_t	offset;
120	int		min_cmd_size;
121	int		write_dev;
122	uint64_t	debug;
123};
124
125typedef enum {
126	CAMDD_BUF_NONE,
127	CAMDD_BUF_DATA,
128	CAMDD_BUF_INDIRECT
129} camdd_buf_type;
130
131struct camdd_buf_indirect {
132	/*
133	 * Pointer to the source buffer.
134	 */
135	struct camdd_buf *src_buf;
136
137	/*
138	 * Offset into the source buffer, in bytes.
139	 */
140	uint64_t	  offset;
141	/*
142	 * Pointer to the starting point in the source buffer.
143	 */
144	uint8_t		 *start_ptr;
145
146	/*
147	 * Length of this chunk in bytes.
148	 */
149	size_t		  len;
150};
151
152struct camdd_buf_data {
153	/*
154	 * Buffer allocated when we allocate this camdd_buf.  This should
155	 * be the size of the blocksize for this device.
156	 */
157	uint8_t			*buf;
158
159	/*
160	 * The amount of backing store allocated in buf.  Generally this
161	 * will be the blocksize of the device.
162	 */
163	uint32_t		 alloc_len;
164
165	/*
166	 * The amount of data that was put into the buffer (on reads) or
167	 * the amount of data we have put onto the src_list so far (on
168	 * writes).
169	 */
170	uint32_t		 fill_len;
171
172	/*
173	 * The amount of data that was not transferred.
174	 */
175	uint32_t		 resid;
176
177	/*
178	 * Starting byte offset on the reader.
179	 */
180	uint64_t		 src_start_offset;
181
182	/*
183	 * CCB used for pass(4) device targets.
184	 */
185	union ccb		 ccb;
186
187	/*
188	 * Number of scatter/gather segments.
189	 */
190	int			 sg_count;
191
192	/*
193	 * Set if we had to tack on an extra buffer to round the transfer
194	 * up to a sector size.
195	 */
196	int			 extra_buf;
197
198	/*
199	 * Scatter/gather list used generally when we're the writer for a
200	 * pass(4) device.
201	 */
202	bus_dma_segment_t	*segs;
203
204	/*
205	 * Scatter/gather list used generally when we're the writer for a
206	 * file or block device;
207	 */
208	struct iovec		*iovec;
209};
210
211union camdd_buf_types {
212	struct camdd_buf_indirect	indirect;
213	struct camdd_buf_data		data;
214};
215
216typedef enum {
217	CAMDD_STATUS_NONE,
218	CAMDD_STATUS_OK,
219	CAMDD_STATUS_SHORT_IO,
220	CAMDD_STATUS_EOF,
221	CAMDD_STATUS_ERROR
222} camdd_buf_status;
223
224struct camdd_buf {
225	camdd_buf_type		 buf_type;
226	union camdd_buf_types	 buf_type_spec;
227
228	camdd_buf_status	 status;
229
230	uint64_t		 lba;
231	size_t			 len;
232
233	/*
234	 * A reference count of how many indirect buffers point to this
235	 * buffer.
236	 */
237	int			 refcount;
238
239	/*
240	 * A link back to our parent device.
241	 */
242	struct camdd_dev	*dev;
243	STAILQ_ENTRY(camdd_buf)  links;
244	STAILQ_ENTRY(camdd_buf)  work_links;
245
246	/*
247	 * A count of the buffers on the src_list.
248	 */
249	int			 src_count;
250
251	/*
252	 * List of buffers from our partner thread that are the components
253	 * of this buffer for the I/O.  Uses src_links.
254	 */
255	STAILQ_HEAD(,camdd_buf)	 src_list;
256	STAILQ_ENTRY(camdd_buf)  src_links;
257};
258
259#define	NUM_DEV_TYPES	2
260
261struct camdd_dev_pass {
262	int			 scsi_dev_type;
263	struct cam_device	*dev;
264	uint64_t		 max_sector;
265	uint32_t		 block_len;
266	uint32_t		 cpi_maxio;
267};
268
269typedef enum {
270	CAMDD_FILE_NONE,
271	CAMDD_FILE_REG,
272	CAMDD_FILE_STD,
273	CAMDD_FILE_PIPE,
274	CAMDD_FILE_DISK,
275	CAMDD_FILE_TAPE,
276	CAMDD_FILE_TTY,
277	CAMDD_FILE_MEM
278} camdd_file_type;
279
280typedef enum {
281	CAMDD_FF_NONE 		= 0x00,
282	CAMDD_FF_CAN_SEEK	= 0x01
283} camdd_file_flags;
284
285struct camdd_dev_file {
286	int			 fd;
287	struct stat		 sb;
288	char			 filename[MAXPATHLEN + 1];
289	camdd_file_type		 file_type;
290	camdd_file_flags	 file_flags;
291	uint8_t			*tmp_buf;
292};
293
294struct camdd_dev_block {
295	int			 fd;
296	uint64_t		 size_bytes;
297	uint32_t		 block_len;
298};
299
300union camdd_dev_spec {
301	struct camdd_dev_pass	pass;
302	struct camdd_dev_file	file;
303	struct camdd_dev_block	block;
304};
305
306typedef enum {
307	CAMDD_DEV_FLAG_NONE		= 0x00,
308	CAMDD_DEV_FLAG_EOF		= 0x01,
309	CAMDD_DEV_FLAG_PEER_EOF		= 0x02,
310	CAMDD_DEV_FLAG_ACTIVE		= 0x04,
311	CAMDD_DEV_FLAG_EOF_SENT		= 0x08,
312	CAMDD_DEV_FLAG_EOF_QUEUED	= 0x10
313} camdd_dev_flags;
314
315struct camdd_dev {
316	camdd_dev_type		 dev_type;
317	union camdd_dev_spec	 dev_spec;
318	camdd_dev_flags		 flags;
319	char			 device_name[MAXPATHLEN+1];
320	uint32_t		 blocksize;
321	uint32_t		 sector_size;
322	uint64_t		 max_sector;
323	uint64_t		 sector_io_limit;
324	int			 min_cmd_size;
325	int			 write_dev;
326	int			 retry_count;
327	int			 io_timeout;
328	int			 debug;
329	uint64_t		 start_offset_bytes;
330	uint64_t		 next_io_pos_bytes;
331	uint64_t		 next_peer_pos_bytes;
332	uint64_t		 next_completion_pos_bytes;
333	uint64_t		 peer_bytes_queued;
334	uint64_t		 bytes_transferred;
335	uint32_t		 target_queue_depth;
336	uint32_t		 cur_active_io;
337	uint8_t			*extra_buf;
338	uint32_t		 extra_buf_len;
339	struct camdd_dev	*peer_dev;
340	pthread_mutex_t		 mutex;
341	pthread_cond_t		 cond;
342	int			 kq;
343
344	int			 (*run)(struct camdd_dev *dev);
345	int			 (*fetch)(struct camdd_dev *dev);
346
347	/*
348	 * Buffers that are available for I/O.  Uses links.
349	 */
350	STAILQ_HEAD(,camdd_buf)	 free_queue;
351
352	/*
353	 * Free indirect buffers.  These are used for breaking a large
354	 * buffer into multiple pieces.
355	 */
356	STAILQ_HEAD(,camdd_buf)	 free_indirect_queue;
357
358	/*
359	 * Buffers that have been queued to the kernel.  Uses links.
360	 */
361	STAILQ_HEAD(,camdd_buf)	 active_queue;
362
363	/*
364	 * Will generally contain one of our buffers that is waiting for enough
365	 * I/O from our partner thread to be able to execute.  This will
366	 * generally happen when our per-I/O-size is larger than the
367	 * partner thread's per-I/O-size.  Uses links.
368	 */
369	STAILQ_HEAD(,camdd_buf)	 pending_queue;
370
371	/*
372	 * Number of buffers on the pending queue
373	 */
374	int			 num_pending_queue;
375
376	/*
377	 * Buffers that are filled and ready to execute.  This is used when
378	 * our partner (reader) thread sends us blocks that are larger than
379	 * our blocksize, and so we have to split them into multiple pieces.
380	 */
381	STAILQ_HEAD(,camdd_buf)	 run_queue;
382
383	/*
384	 * Number of buffers on the run queue.
385	 */
386	int			 num_run_queue;
387
388	STAILQ_HEAD(,camdd_buf)	 reorder_queue;
389
390	int			 num_reorder_queue;
391
392	/*
393	 * Buffers that have been queued to us by our partner thread
394	 * (generally the reader thread) to be written out.  Uses
395	 * work_links.
396	 */
397	STAILQ_HEAD(,camdd_buf)	 work_queue;
398
399	/*
400	 * Buffers that have been completed by our partner thread.  Uses
401	 * work_links.
402	 */
403	STAILQ_HEAD(,camdd_buf)	 peer_done_queue;
404
405	/*
406	 * Number of buffers on the peer done queue.
407	 */
408	uint32_t		 num_peer_done_queue;
409
410	/*
411	 * A list of buffers that we have queued to our peer thread.  Uses
412	 * links.
413	 */
414	STAILQ_HEAD(,camdd_buf)	 peer_work_queue;
415
416	/*
417	 * Number of buffers on the peer work queue.
418	 */
419	uint32_t		 num_peer_work_queue;
420};
421
422static sem_t camdd_sem;
423static int need_exit = 0;
424static int error_exit = 0;
425static int need_status = 0;
426
427#ifndef min
428#define	min(a, b) (a < b) ? a : b
429#endif
430
431/*
432 * XXX KDM private copy of timespecsub().  This is normally defined in
433 * sys/time.h, but is only enabled in the kernel.  If that definition is
434 * enabled in userland, it breaks the build of libnetbsd.
435 */
436#ifndef timespecsub
437#define	timespecsub(vvp, uvp)						\
438	do {								\
439		(vvp)->tv_sec -= (uvp)->tv_sec;				\
440		(vvp)->tv_nsec -= (uvp)->tv_nsec;			\
441		if ((vvp)->tv_nsec < 0) {				\
442			(vvp)->tv_sec--;				\
443			(vvp)->tv_nsec += 1000000000;			\
444		}							\
445	} while (0)
446#endif
447
448
449/* Generically usefull offsets into the peripheral private area */
450#define ppriv_ptr0 periph_priv.entries[0].ptr
451#define ppriv_ptr1 periph_priv.entries[1].ptr
452#define ppriv_field0 periph_priv.entries[0].field
453#define ppriv_field1 periph_priv.entries[1].field
454
455#define	ccb_buf	ppriv_ptr0
456
457#define	CAMDD_FILE_DEFAULT_BLOCK	524288
458#define	CAMDD_FILE_DEFAULT_DEPTH	1
459#define	CAMDD_PASS_MAX_BLOCK		1048576
460#define	CAMDD_PASS_DEFAULT_DEPTH	6
461#define	CAMDD_PASS_RW_TIMEOUT		60 * 1000
462
463static int parse_btl(char *tstr, int *bus, int *target, int *lun,
464		     camdd_argmask *arglst);
465void camdd_free_dev(struct camdd_dev *dev);
466struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type,
467				  struct kevent *new_ke, int num_ke,
468				  int retry_count, int timeout);
469static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev,
470					 camdd_buf_type buf_type);
471void camdd_release_buf(struct camdd_buf *buf);
472struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type);
473int camdd_buf_sg_create(struct camdd_buf *buf, int iovec,
474			uint32_t sector_size, uint32_t *num_sectors_used,
475			int *double_buf_needed);
476uint32_t camdd_buf_get_len(struct camdd_buf *buf);
477void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf);
478int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
479		     uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran);
480struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts,
481				   int retry_count, int timeout);
482struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev,
483				   struct camdd_io_opts *io_opts,
484				   camdd_argmask arglist, int probe_retry_count,
485				   int probe_timeout, int io_retry_count,
486				   int io_timeout);
487void *camdd_file_worker(void *arg);
488camdd_buf_status camdd_ccb_status(union ccb *ccb);
489int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf);
490int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf);
491void camdd_peer_done(struct camdd_buf *buf);
492void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
493			int *error_count);
494int camdd_pass_fetch(struct camdd_dev *dev);
495int camdd_file_run(struct camdd_dev *dev);
496int camdd_pass_run(struct camdd_dev *dev);
497int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len);
498int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf);
499void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
500		     uint32_t *peer_depth, uint32_t *our_bytes,
501		     uint32_t *peer_bytes);
502void *camdd_worker(void *arg);
503void camdd_sig_handler(int sig);
504void camdd_print_status(struct camdd_dev *camdd_dev,
505			struct camdd_dev *other_dev,
506			struct timespec *start_time);
507int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts,
508	     uint64_t max_io, int retry_count, int timeout);
509int camdd_parse_io_opts(char *args, int is_write,
510			struct camdd_io_opts *io_opts);
511void usage(void);
512
513/*
514 * Parse out a bus, or a bus, target and lun in the following
515 * format:
516 * bus
517 * bus:target
518 * bus:target:lun
519 *
520 * Returns the number of parsed components, or 0.
521 */
522static int
523parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst)
524{
525	char *tmpstr;
526	int convs = 0;
527
528	while (isspace(*tstr) && (*tstr != '\0'))
529		tstr++;
530
531	tmpstr = (char *)strtok(tstr, ":");
532	if ((tmpstr != NULL) && (*tmpstr != '\0')) {
533		*bus = strtol(tmpstr, NULL, 0);
534		*arglst |= CAMDD_ARG_BUS;
535		convs++;
536		tmpstr = (char *)strtok(NULL, ":");
537		if ((tmpstr != NULL) && (*tmpstr != '\0')) {
538			*target = strtol(tmpstr, NULL, 0);
539			*arglst |= CAMDD_ARG_TARGET;
540			convs++;
541			tmpstr = (char *)strtok(NULL, ":");
542			if ((tmpstr != NULL) && (*tmpstr != '\0')) {
543				*lun = strtol(tmpstr, NULL, 0);
544				*arglst |= CAMDD_ARG_LUN;
545				convs++;
546			}
547		}
548	}
549
550	return convs;
551}
552
553/*
554 * XXX KDM clean up and free all of the buffers on the queue!
555 */
556void
557camdd_free_dev(struct camdd_dev *dev)
558{
559	if (dev == NULL)
560		return;
561
562	switch (dev->dev_type) {
563	case CAMDD_DEV_FILE: {
564		struct camdd_dev_file *file_dev = &dev->dev_spec.file;
565
566		if (file_dev->fd != -1)
567			close(file_dev->fd);
568		free(file_dev->tmp_buf);
569		break;
570	}
571	case CAMDD_DEV_PASS: {
572		struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
573
574		if (pass_dev->dev != NULL)
575			cam_close_device(pass_dev->dev);
576		break;
577	}
578	default:
579		break;
580	}
581
582	free(dev);
583}
584
585struct camdd_dev *
586camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke,
587		int retry_count, int timeout)
588{
589	struct camdd_dev *dev = NULL;
590	struct kevent *ke;
591	size_t ke_size;
592	int retval = 0;
593
594	dev = malloc(sizeof(*dev));
595	if (dev == NULL) {
596		warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev));
597		goto bailout;
598	}
599
600	bzero(dev, sizeof(*dev));
601
602	dev->dev_type = dev_type;
603	dev->io_timeout = timeout;
604	dev->retry_count = retry_count;
605	STAILQ_INIT(&dev->free_queue);
606	STAILQ_INIT(&dev->free_indirect_queue);
607	STAILQ_INIT(&dev->active_queue);
608	STAILQ_INIT(&dev->pending_queue);
609	STAILQ_INIT(&dev->run_queue);
610	STAILQ_INIT(&dev->reorder_queue);
611	STAILQ_INIT(&dev->work_queue);
612	STAILQ_INIT(&dev->peer_done_queue);
613	STAILQ_INIT(&dev->peer_work_queue);
614	retval = pthread_mutex_init(&dev->mutex, NULL);
615	if (retval != 0) {
616		warnc(retval, "%s: failed to initialize mutex", __func__);
617		goto bailout;
618	}
619
620	retval = pthread_cond_init(&dev->cond, NULL);
621	if (retval != 0) {
622		warnc(retval, "%s: failed to initialize condition variable",
623		      __func__);
624		goto bailout;
625	}
626
627	dev->kq = kqueue();
628	if (dev->kq == -1) {
629		warn("%s: Unable to create kqueue", __func__);
630		goto bailout;
631	}
632
633	ke_size = sizeof(struct kevent) * (num_ke + 4);
634	ke = malloc(ke_size);
635	if (ke == NULL) {
636		warn("%s: unable to malloc %zu bytes", __func__, ke_size);
637		goto bailout;
638	}
639	bzero(ke, ke_size);
640	if (num_ke > 0)
641		bcopy(new_ke, ke, num_ke * sizeof(struct kevent));
642
643	EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER,
644	       EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
645	EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER,
646	       EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
647	EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
648	EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
649
650	retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL);
651	if (retval == -1) {
652		warn("%s: Unable to register kevents", __func__);
653		goto bailout;
654	}
655
656
657	return (dev);
658
659bailout:
660	free(dev);
661
662	return (NULL);
663}
664
665static struct camdd_buf *
666camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
667{
668	struct camdd_buf *buf = NULL;
669	uint8_t *data_ptr = NULL;
670
671	/*
672	 * We only need to allocate data space for data buffers.
673	 */
674	switch (buf_type) {
675	case CAMDD_BUF_DATA:
676		data_ptr = malloc(dev->blocksize);
677		if (data_ptr == NULL) {
678			warn("unable to allocate %u bytes", dev->blocksize);
679			goto bailout_error;
680		}
681		break;
682	default:
683		break;
684	}
685
686	buf = malloc(sizeof(*buf));
687	if (buf == NULL) {
688		warn("unable to allocate %zu bytes", sizeof(*buf));
689		goto bailout_error;
690	}
691
692	bzero(buf, sizeof(*buf));
693	buf->buf_type = buf_type;
694	buf->dev = dev;
695	switch (buf_type) {
696	case CAMDD_BUF_DATA: {
697		struct camdd_buf_data *data;
698
699		data = &buf->buf_type_spec.data;
700
701		data->alloc_len = dev->blocksize;
702		data->buf = data_ptr;
703		break;
704	}
705	case CAMDD_BUF_INDIRECT:
706		break;
707	default:
708		break;
709	}
710	STAILQ_INIT(&buf->src_list);
711
712	return (buf);
713
714bailout_error:
715	if (data_ptr != NULL)
716		free(data_ptr);
717
718	if (buf != NULL)
719		free(buf);
720
721	return (NULL);
722}
723
724void
725camdd_release_buf(struct camdd_buf *buf)
726{
727	struct camdd_dev *dev;
728
729	dev = buf->dev;
730
731	switch (buf->buf_type) {
732	case CAMDD_BUF_DATA: {
733		struct camdd_buf_data *data;
734
735		data = &buf->buf_type_spec.data;
736
737		if (data->segs != NULL) {
738			if (data->extra_buf != 0) {
739				void *extra_buf;
740
741				extra_buf = (void *)
742				    data->segs[data->sg_count - 1].ds_addr;
743				free(extra_buf);
744				data->extra_buf = 0;
745			}
746			free(data->segs);
747			data->segs = NULL;
748			data->sg_count = 0;
749		} else if (data->iovec != NULL) {
750			if (data->extra_buf != 0) {
751				free(data->iovec[data->sg_count - 1].iov_base);
752				data->extra_buf = 0;
753			}
754			free(data->iovec);
755			data->iovec = NULL;
756			data->sg_count = 0;
757		}
758		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
759		break;
760	}
761	case CAMDD_BUF_INDIRECT:
762		STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links);
763		break;
764	default:
765		err(1, "%s: Invalid buffer type %d for released buffer",
766		    __func__, buf->buf_type);
767		break;
768	}
769}
770
771struct camdd_buf *
772camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
773{
774	struct camdd_buf *buf = NULL;
775
776	switch (buf_type) {
777	case CAMDD_BUF_DATA:
778		buf = STAILQ_FIRST(&dev->free_queue);
779		if (buf != NULL) {
780			struct camdd_buf_data *data;
781			uint8_t *data_ptr;
782			uint32_t alloc_len;
783
784			STAILQ_REMOVE_HEAD(&dev->free_queue, links);
785			data = &buf->buf_type_spec.data;
786			data_ptr = data->buf;
787			alloc_len = data->alloc_len;
788			bzero(buf, sizeof(*buf));
789			data->buf = data_ptr;
790			data->alloc_len = alloc_len;
791		}
792		break;
793	case CAMDD_BUF_INDIRECT:
794		buf = STAILQ_FIRST(&dev->free_indirect_queue);
795		if (buf != NULL) {
796			STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links);
797
798			bzero(buf, sizeof(*buf));
799		}
800		break;
801	default:
802		warnx("Unknown buffer type %d requested", buf_type);
803		break;
804	}
805
806
807	if (buf == NULL)
808		return (camdd_alloc_buf(dev, buf_type));
809	else {
810		STAILQ_INIT(&buf->src_list);
811		buf->dev = dev;
812		buf->buf_type = buf_type;
813
814		return (buf);
815	}
816}
817
818int
819camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size,
820		    uint32_t *num_sectors_used, int *double_buf_needed)
821{
822	struct camdd_buf *tmp_buf;
823	struct camdd_buf_data *data;
824	uint8_t *extra_buf = NULL;
825	size_t extra_buf_len = 0;
826	int i, retval = 0;
827
828	data = &buf->buf_type_spec.data;
829
830	data->sg_count = buf->src_count;
831	/*
832	 * Compose a scatter/gather list from all of the buffers in the list.
833	 * If the length of the buffer isn't a multiple of the sector size,
834	 * we'll have to add an extra buffer.  This should only happen
835	 * at the end of a transfer.
836	 */
837	if ((data->fill_len % sector_size) != 0) {
838		extra_buf_len = sector_size - (data->fill_len % sector_size);
839		extra_buf = calloc(extra_buf_len, 1);
840		if (extra_buf == NULL) {
841			warn("%s: unable to allocate %zu bytes for extra "
842			    "buffer space", __func__, extra_buf_len);
843			retval = 1;
844			goto bailout;
845		}
846		data->extra_buf = 1;
847		data->sg_count++;
848	}
849	if (iovec == 0) {
850		data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t));
851		if (data->segs == NULL) {
852			warn("%s: unable to allocate %zu bytes for S/G list",
853			    __func__, sizeof(bus_dma_segment_t) *
854			    data->sg_count);
855			retval = 1;
856			goto bailout;
857		}
858
859	} else {
860		data->iovec = calloc(data->sg_count, sizeof(struct iovec));
861		if (data->iovec == NULL) {
862			warn("%s: unable to allocate %zu bytes for S/G list",
863			    __func__, sizeof(struct iovec) * data->sg_count);
864			retval = 1;
865			goto bailout;
866		}
867	}
868
869	for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list);
870	     i < buf->src_count && tmp_buf != NULL; i++,
871	     tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) {
872
873		if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
874			struct camdd_buf_data *tmp_data;
875
876			tmp_data = &tmp_buf->buf_type_spec.data;
877			if (iovec == 0) {
878				data->segs[i].ds_addr =
879				    (bus_addr_t) tmp_data->buf;
880				data->segs[i].ds_len = tmp_data->fill_len -
881				    tmp_data->resid;
882			} else {
883				data->iovec[i].iov_base = tmp_data->buf;
884				data->iovec[i].iov_len = tmp_data->fill_len -
885				    tmp_data->resid;
886			}
887			if (((tmp_data->fill_len - tmp_data->resid) %
888			     sector_size) != 0)
889				*double_buf_needed = 1;
890		} else {
891			struct camdd_buf_indirect *tmp_ind;
892
893			tmp_ind = &tmp_buf->buf_type_spec.indirect;
894			if (iovec == 0) {
895				data->segs[i].ds_addr =
896				    (bus_addr_t)tmp_ind->start_ptr;
897				data->segs[i].ds_len = tmp_ind->len;
898			} else {
899				data->iovec[i].iov_base = tmp_ind->start_ptr;
900				data->iovec[i].iov_len = tmp_ind->len;
901			}
902			if ((tmp_ind->len % sector_size) != 0)
903				*double_buf_needed = 1;
904		}
905	}
906
907	if (extra_buf != NULL) {
908		if (iovec == 0) {
909			data->segs[i].ds_addr = (bus_addr_t)extra_buf;
910			data->segs[i].ds_len = extra_buf_len;
911		} else {
912			data->iovec[i].iov_base = extra_buf;
913			data->iovec[i].iov_len = extra_buf_len;
914		}
915		i++;
916	}
917	if ((tmp_buf != NULL) || (i != data->sg_count)) {
918		warnx("buffer source count does not match "
919		      "number of buffers in list!");
920		retval = 1;
921		goto bailout;
922	}
923
924bailout:
925	if (retval == 0) {
926		*num_sectors_used = (data->fill_len + extra_buf_len) /
927		    sector_size;
928	}
929	return (retval);
930}
931
932uint32_t
933camdd_buf_get_len(struct camdd_buf *buf)
934{
935	uint32_t len = 0;
936
937	if (buf->buf_type != CAMDD_BUF_DATA) {
938		struct camdd_buf_indirect *indirect;
939
940		indirect = &buf->buf_type_spec.indirect;
941		len = indirect->len;
942	} else {
943		struct camdd_buf_data *data;
944
945		data = &buf->buf_type_spec.data;
946		len = data->fill_len;
947	}
948
949	return (len);
950}
951
952void
953camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf)
954{
955	struct camdd_buf_data *data;
956
957	assert(buf->buf_type == CAMDD_BUF_DATA);
958
959	data = &buf->buf_type_spec.data;
960
961	STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links);
962	buf->src_count++;
963
964	data->fill_len += camdd_buf_get_len(child_buf);
965}
966
967typedef enum {
968	CAMDD_TS_MAX_BLK,
969	CAMDD_TS_MIN_BLK,
970	CAMDD_TS_BLK_GRAN,
971	CAMDD_TS_EFF_IOSIZE
972} camdd_status_item_index;
973
974static struct camdd_status_items {
975	const char *name;
976	struct mt_status_entry *entry;
977} req_status_items[] = {
978	{ "max_blk", NULL },
979	{ "min_blk", NULL },
980	{ "blk_gran", NULL },
981	{ "max_effective_iosize", NULL }
982};
983
984int
985camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
986		 uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran)
987{
988	struct mt_status_data status_data;
989	char *xml_str = NULL;
990	unsigned int i;
991	int retval = 0;
992
993	retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str);
994	if (retval != 0)
995		err(1, "Couldn't get XML string from %s", filename);
996
997	retval = mt_get_status(xml_str, &status_data);
998	if (retval != XML_STATUS_OK) {
999		warn("couldn't get status for %s", filename);
1000		retval = 1;
1001		goto bailout;
1002	} else
1003		retval = 0;
1004
1005	if (status_data.error != 0) {
1006		warnx("%s", status_data.error_str);
1007		retval = 1;
1008		goto bailout;
1009	}
1010
1011	for (i = 0; i < sizeof(req_status_items) /
1012	     sizeof(req_status_items[0]); i++) {
1013                char *name;
1014
1015		name = __DECONST(char *, req_status_items[i].name);
1016		req_status_items[i].entry = mt_status_entry_find(&status_data,
1017		    name);
1018		if (req_status_items[i].entry == NULL) {
1019			errx(1, "Cannot find status entry %s",
1020			    req_status_items[i].name);
1021		}
1022	}
1023
1024	*max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned;
1025	*max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned;
1026	*min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned;
1027	*blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned;
1028bailout:
1029
1030	free(xml_str);
1031	mt_status_free(&status_data);
1032
1033	return (retval);
1034}
1035
1036struct camdd_dev *
1037camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count,
1038    int timeout)
1039{
1040	struct camdd_dev *dev = NULL;
1041	struct camdd_dev_file *file_dev;
1042	uint64_t blocksize = io_opts->blocksize;
1043
1044	dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout);
1045	if (dev == NULL)
1046		goto bailout;
1047
1048	file_dev = &dev->dev_spec.file;
1049	file_dev->fd = fd;
1050	strlcpy(file_dev->filename, io_opts->dev_name,
1051	    sizeof(file_dev->filename));
1052	strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name));
1053	if (blocksize == 0)
1054		dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK;
1055	else
1056		dev->blocksize = blocksize;
1057
1058	if ((io_opts->queue_depth != 0)
1059	 && (io_opts->queue_depth != 1)) {
1060		warnx("Queue depth %ju for %s ignored, only 1 outstanding "
1061		    "command supported", (uintmax_t)io_opts->queue_depth,
1062		    io_opts->dev_name);
1063	}
1064	dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH;
1065	dev->run = camdd_file_run;
1066	dev->fetch = NULL;
1067
1068	/*
1069	 * We can effectively access files on byte boundaries.  We'll reset
1070	 * this for devices like disks that can be accessed on sector
1071	 * boundaries.
1072	 */
1073	dev->sector_size = 1;
1074
1075	if ((fd != STDIN_FILENO)
1076	 && (fd != STDOUT_FILENO)) {
1077		int retval;
1078
1079		retval = fstat(fd, &file_dev->sb);
1080		if (retval != 0) {
1081			warn("Cannot stat %s", dev->device_name);
1082			goto bailout;
1083			camdd_free_dev(dev);
1084			dev = NULL;
1085		}
1086		if (S_ISREG(file_dev->sb.st_mode)) {
1087			file_dev->file_type = CAMDD_FILE_REG;
1088		} else if (S_ISCHR(file_dev->sb.st_mode)) {
1089			int type;
1090
1091			if (ioctl(fd, FIODTYPE, &type) == -1)
1092				err(1, "FIODTYPE ioctl failed on %s",
1093				    dev->device_name);
1094			else {
1095				if (type & D_TAPE)
1096					file_dev->file_type = CAMDD_FILE_TAPE;
1097				else if (type & D_DISK)
1098					file_dev->file_type = CAMDD_FILE_DISK;
1099				else if (type & D_MEM)
1100					file_dev->file_type = CAMDD_FILE_MEM;
1101				else if (type & D_TTY)
1102					file_dev->file_type = CAMDD_FILE_TTY;
1103			}
1104		} else if (S_ISDIR(file_dev->sb.st_mode)) {
1105			errx(1, "cannot operate on directory %s",
1106			    dev->device_name);
1107		} else if (S_ISFIFO(file_dev->sb.st_mode)) {
1108			file_dev->file_type = CAMDD_FILE_PIPE;
1109		} else
1110			errx(1, "Cannot determine file type for %s",
1111			    dev->device_name);
1112
1113		switch (file_dev->file_type) {
1114		case CAMDD_FILE_REG:
1115			if (file_dev->sb.st_size != 0)
1116				dev->max_sector = file_dev->sb.st_size - 1;
1117			else
1118				dev->max_sector = 0;
1119			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1120			break;
1121		case CAMDD_FILE_TAPE: {
1122			uint64_t max_iosize, max_blk, min_blk, blk_gran;
1123			/*
1124			 * Check block limits and maximum effective iosize.
1125			 * Make sure the blocksize is within the block
1126			 * limits (and a multiple of the minimum blocksize)
1127			 * and that the blocksize is <= maximum effective
1128			 * iosize.
1129			 */
1130			retval = camdd_probe_tape(fd, dev->device_name,
1131			    &max_iosize, &max_blk, &min_blk, &blk_gran);
1132			if (retval != 0)
1133				errx(1, "Unable to probe tape %s",
1134				    dev->device_name);
1135
1136			/*
1137			 * The blocksize needs to be <= the maximum
1138			 * effective I/O size of the tape device.  Note
1139			 * that this also takes into account the maximum
1140			 * blocksize reported by READ BLOCK LIMITS.
1141			 */
1142			if (dev->blocksize > max_iosize) {
1143				warnx("Blocksize %u too big for %s, limiting "
1144				    "to %ju", dev->blocksize, dev->device_name,
1145				    max_iosize);
1146				dev->blocksize = max_iosize;
1147			}
1148
1149			/*
1150			 * The blocksize needs to be at least min_blk;
1151			 */
1152			if (dev->blocksize < min_blk) {
1153				warnx("Blocksize %u too small for %s, "
1154				    "increasing to %ju", dev->blocksize,
1155				    dev->device_name, min_blk);
1156				dev->blocksize = min_blk;
1157			}
1158
1159			/*
1160			 * And the blocksize needs to be a multiple of
1161			 * the block granularity.
1162			 */
1163			if ((blk_gran != 0)
1164			 && (dev->blocksize % (1 << blk_gran))) {
1165				warnx("Blocksize %u for %s not a multiple of "
1166				    "%d, adjusting to %d", dev->blocksize,
1167				    dev->device_name, (1 << blk_gran),
1168				    dev->blocksize & ~((1 << blk_gran) - 1));
1169				dev->blocksize &= ~((1 << blk_gran) - 1);
1170			}
1171
1172			if (dev->blocksize == 0) {
1173				errx(1, "Unable to derive valid blocksize for "
1174				    "%s", dev->device_name);
1175			}
1176
1177			/*
1178			 * For tape drives, set the sector size to the
1179			 * blocksize so that we make sure not to write
1180			 * less than the blocksize out to the drive.
1181			 */
1182			dev->sector_size = dev->blocksize;
1183			break;
1184		}
1185		case CAMDD_FILE_DISK: {
1186			off_t media_size;
1187			unsigned int sector_size;
1188
1189			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1190
1191			if (ioctl(fd, DIOCGSECTORSIZE, &sector_size) == -1) {
1192				err(1, "DIOCGSECTORSIZE ioctl failed on %s",
1193				    dev->device_name);
1194			}
1195
1196			if (sector_size == 0) {
1197				errx(1, "DIOCGSECTORSIZE ioctl returned "
1198				    "invalid sector size %u for %s",
1199				    sector_size, dev->device_name);
1200			}
1201
1202			if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) {
1203				err(1, "DIOCGMEDIASIZE ioctl failed on %s",
1204				    dev->device_name);
1205			}
1206
1207			if (media_size == 0) {
1208				errx(1, "DIOCGMEDIASIZE ioctl returned "
1209				    "invalid media size %ju for %s",
1210				    (uintmax_t)media_size, dev->device_name);
1211			}
1212
1213			if (dev->blocksize % sector_size) {
1214				errx(1, "%s blocksize %u not a multiple of "
1215				    "sector size %u", dev->device_name,
1216				    dev->blocksize, sector_size);
1217			}
1218
1219			dev->sector_size = sector_size;
1220			dev->max_sector = (media_size / sector_size) - 1;
1221			break;
1222		}
1223		case CAMDD_FILE_MEM:
1224			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1225			break;
1226		default:
1227			break;
1228		}
1229	}
1230
1231	if ((io_opts->offset != 0)
1232	 && ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) {
1233		warnx("Offset %ju specified for %s, but we cannot seek on %s",
1234		    io_opts->offset, io_opts->dev_name, io_opts->dev_name);
1235		goto bailout_error;
1236	}
1237#if 0
1238	else if ((io_opts->offset != 0)
1239		&& ((io_opts->offset % dev->sector_size) != 0)) {
1240		warnx("Offset %ju for %s is not a multiple of the "
1241		      "sector size %u", io_opts->offset,
1242		      io_opts->dev_name, dev->sector_size);
1243		goto bailout_error;
1244	} else {
1245		dev->start_offset_bytes = io_opts->offset;
1246	}
1247#endif
1248
1249bailout:
1250	return (dev);
1251
1252bailout_error:
1253	camdd_free_dev(dev);
1254	return (NULL);
1255}
1256
1257/*
1258 * Need to implement this.  Do a basic probe:
1259 * - Check the inquiry data, make sure we're talking to a device that we
1260 *   can reasonably expect to talk to -- direct, RBC, CD, WORM.
1261 * - Send a test unit ready, make sure the device is available.
1262 * - Get the capacity and block size.
1263 */
1264struct camdd_dev *
1265camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts,
1266		 camdd_argmask arglist, int probe_retry_count,
1267		 int probe_timeout, int io_retry_count, int io_timeout)
1268{
1269	union ccb *ccb;
1270	uint64_t maxsector;
1271	uint32_t cpi_maxio, max_iosize, pass_numblocks;
1272	uint32_t block_len;
1273	struct scsi_read_capacity_data rcap;
1274	struct scsi_read_capacity_data_long rcaplong;
1275	struct camdd_dev *dev;
1276	struct camdd_dev_pass *pass_dev;
1277	struct kevent ke;
1278	int scsi_dev_type;
1279
1280	dev = NULL;
1281
1282	scsi_dev_type = SID_TYPE(&cam_dev->inq_data);
1283	maxsector = 0;
1284	block_len = 0;
1285
1286	/*
1287	 * For devices that support READ CAPACITY, we'll attempt to get the
1288	 * capacity.  Otherwise, we really don't support tape or other
1289	 * devices via SCSI passthrough, so just return an error in that case.
1290	 */
1291	switch (scsi_dev_type) {
1292	case T_DIRECT:
1293	case T_WORM:
1294	case T_CDROM:
1295	case T_OPTICAL:
1296	case T_RBC:
1297		break;
1298	default:
1299		errx(1, "Unsupported SCSI device type %d", scsi_dev_type);
1300		break; /*NOTREACHED*/
1301	}
1302
1303	ccb = cam_getccb(cam_dev);
1304
1305	if (ccb == NULL) {
1306		warnx("%s: error allocating ccb", __func__);
1307		goto bailout;
1308	}
1309
1310	bzero(&(&ccb->ccb_h)[1],
1311	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
1312
1313	scsi_read_capacity(&ccb->csio,
1314			   /*retries*/ probe_retry_count,
1315			   /*cbfcnp*/ NULL,
1316			   /*tag_action*/ MSG_SIMPLE_Q_TAG,
1317			   &rcap,
1318			   SSD_FULL_SIZE,
1319			   /*timeout*/ probe_timeout ? probe_timeout : 5000);
1320
1321	/* Disable freezing the device queue */
1322	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1323
1324	if (arglist & CAMDD_ARG_ERR_RECOVER)
1325		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1326
1327	if (cam_send_ccb(cam_dev, ccb) < 0) {
1328		warn("error sending READ CAPACITY command");
1329
1330		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1331				CAM_EPF_ALL, stderr);
1332
1333		goto bailout;
1334	}
1335
1336	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1337		cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1338		goto bailout;
1339	}
1340
1341	maxsector = scsi_4btoul(rcap.addr);
1342	block_len = scsi_4btoul(rcap.length);
1343
1344	/*
1345	 * A last block of 2^32-1 means that the true capacity is over 2TB,
1346	 * and we need to issue the long READ CAPACITY to get the real
1347	 * capacity.  Otherwise, we're all set.
1348	 */
1349	if (maxsector != 0xffffffff)
1350		goto rcap_done;
1351
1352	scsi_read_capacity_16(&ccb->csio,
1353			      /*retries*/ probe_retry_count,
1354			      /*cbfcnp*/ NULL,
1355			      /*tag_action*/ MSG_SIMPLE_Q_TAG,
1356			      /*lba*/ 0,
1357			      /*reladdr*/ 0,
1358			      /*pmi*/ 0,
1359			      (uint8_t *)&rcaplong,
1360			      sizeof(rcaplong),
1361			      /*sense_len*/ SSD_FULL_SIZE,
1362			      /*timeout*/ probe_timeout ? probe_timeout : 5000);
1363
1364	/* Disable freezing the device queue */
1365	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1366
1367	if (arglist & CAMDD_ARG_ERR_RECOVER)
1368		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1369
1370	if (cam_send_ccb(cam_dev, ccb) < 0) {
1371		warn("error sending READ CAPACITY (16) command");
1372		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1373				CAM_EPF_ALL, stderr);
1374		goto bailout;
1375	}
1376
1377	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1378		cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1379		goto bailout;
1380	}
1381
1382	maxsector = scsi_8btou64(rcaplong.addr);
1383	block_len = scsi_4btoul(rcaplong.length);
1384
1385rcap_done:
1386
1387	bzero(&(&ccb->ccb_h)[1],
1388	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
1389
1390	ccb->ccb_h.func_code = XPT_PATH_INQ;
1391	ccb->ccb_h.flags = CAM_DIR_NONE;
1392	ccb->ccb_h.retry_count = 1;
1393
1394	if (cam_send_ccb(cam_dev, ccb) < 0) {
1395		warn("error sending XPT_PATH_INQ CCB");
1396
1397		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1398				CAM_EPF_ALL, stderr);
1399		goto bailout;
1400	}
1401
1402	EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0);
1403
1404	dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count,
1405			      io_timeout);
1406	if (dev == NULL)
1407		goto bailout;
1408
1409	pass_dev = &dev->dev_spec.pass;
1410	pass_dev->scsi_dev_type = scsi_dev_type;
1411	pass_dev->dev = cam_dev;
1412	pass_dev->max_sector = maxsector;
1413	pass_dev->block_len = block_len;
1414	pass_dev->cpi_maxio = ccb->cpi.maxio;
1415	snprintf(dev->device_name, sizeof(dev->device_name), "%s%u",
1416		 pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
1417	dev->sector_size = block_len;
1418	dev->max_sector = maxsector;
1419
1420
1421	/*
1422	 * Determine the optimal blocksize to use for this device.
1423	 */
1424
1425	/*
1426	 * If the controller has not specified a maximum I/O size,
1427	 * just go with 128K as a somewhat conservative value.
1428	 */
1429	if (pass_dev->cpi_maxio == 0)
1430		cpi_maxio = 131072;
1431	else
1432		cpi_maxio = pass_dev->cpi_maxio;
1433
1434	/*
1435	 * If the controller has a large maximum I/O size, limit it
1436	 * to something smaller so that the kernel doesn't have trouble
1437	 * allocating buffers to copy data in and out for us.
1438	 * XXX KDM this is until we have unmapped I/O support in the kernel.
1439	 */
1440	max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK);
1441
1442	/*
1443	 * If we weren't able to get a block size for some reason,
1444	 * default to 512 bytes.
1445	 */
1446	block_len = pass_dev->block_len;
1447	if (block_len == 0)
1448		block_len = 512;
1449
1450	/*
1451	 * Figure out how many blocksize chunks will fit in the
1452	 * maximum I/O size.
1453	 */
1454	pass_numblocks = max_iosize / block_len;
1455
1456	/*
1457	 * And finally, multiple the number of blocks by the LBA
1458	 * length to get our maximum block size;
1459	 */
1460	dev->blocksize = pass_numblocks * block_len;
1461
1462	if (io_opts->blocksize != 0) {
1463		if ((io_opts->blocksize % dev->sector_size) != 0) {
1464			warnx("Blocksize %ju for %s is not a multiple of "
1465			      "sector size %u", (uintmax_t)io_opts->blocksize,
1466			      dev->device_name, dev->sector_size);
1467			goto bailout_error;
1468		}
1469		dev->blocksize = io_opts->blocksize;
1470	}
1471	dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH;
1472	if (io_opts->queue_depth != 0)
1473		dev->target_queue_depth = io_opts->queue_depth;
1474
1475	if (io_opts->offset != 0) {
1476		if (io_opts->offset > (dev->max_sector * dev->sector_size)) {
1477			warnx("Offset %ju is past the end of device %s",
1478			    io_opts->offset, dev->device_name);
1479			goto bailout_error;
1480		}
1481#if 0
1482		else if ((io_opts->offset % dev->sector_size) != 0) {
1483			warnx("Offset %ju for %s is not a multiple of the "
1484			      "sector size %u", io_opts->offset,
1485			      dev->device_name, dev->sector_size);
1486			goto bailout_error;
1487		}
1488		dev->start_offset_bytes = io_opts->offset;
1489#endif
1490	}
1491
1492	dev->min_cmd_size = io_opts->min_cmd_size;
1493
1494	dev->run = camdd_pass_run;
1495	dev->fetch = camdd_pass_fetch;
1496
1497bailout:
1498	cam_freeccb(ccb);
1499
1500	return (dev);
1501
1502bailout_error:
1503	cam_freeccb(ccb);
1504
1505	camdd_free_dev(dev);
1506
1507	return (NULL);
1508}
1509
1510void *
1511camdd_worker(void *arg)
1512{
1513	struct camdd_dev *dev = arg;
1514	struct camdd_buf *buf;
1515	struct timespec ts, *kq_ts;
1516
1517	ts.tv_sec = 0;
1518	ts.tv_nsec = 0;
1519
1520	pthread_mutex_lock(&dev->mutex);
1521
1522	dev->flags |= CAMDD_DEV_FLAG_ACTIVE;
1523
1524	for (;;) {
1525		struct kevent ke;
1526		int retval = 0;
1527
1528		/*
1529		 * XXX KDM check the reorder queue depth?
1530		 */
1531		if (dev->write_dev == 0) {
1532			uint32_t our_depth, peer_depth, peer_bytes, our_bytes;
1533			uint32_t target_depth = dev->target_queue_depth;
1534			uint32_t peer_target_depth =
1535			    dev->peer_dev->target_queue_depth;
1536			uint32_t peer_blocksize = dev->peer_dev->blocksize;
1537
1538			camdd_get_depth(dev, &our_depth, &peer_depth,
1539					&our_bytes, &peer_bytes);
1540
1541#if 0
1542			while (((our_depth < target_depth)
1543			     && (peer_depth < peer_target_depth))
1544			    || ((peer_bytes + our_bytes) <
1545				 (peer_blocksize * 2))) {
1546#endif
1547			while (((our_depth + peer_depth) <
1548			        (target_depth + peer_target_depth))
1549			    || ((peer_bytes + our_bytes) <
1550				(peer_blocksize * 3))) {
1551
1552				retval = camdd_queue(dev, NULL);
1553				if (retval == 1)
1554					break;
1555				else if (retval != 0) {
1556					error_exit = 1;
1557					goto bailout;
1558				}
1559
1560				camdd_get_depth(dev, &our_depth, &peer_depth,
1561						&our_bytes, &peer_bytes);
1562			}
1563		}
1564		/*
1565		 * See if we have any I/O that is ready to execute.
1566		 */
1567		buf = STAILQ_FIRST(&dev->run_queue);
1568		if (buf != NULL) {
1569			while (dev->target_queue_depth > dev->cur_active_io) {
1570				retval = dev->run(dev);
1571				if (retval == -1) {
1572					dev->flags |= CAMDD_DEV_FLAG_EOF;
1573					error_exit = 1;
1574					break;
1575				} else if (retval != 0) {
1576					break;
1577				}
1578			}
1579		}
1580
1581		/*
1582		 * We've reached EOF, or our partner has reached EOF.
1583		 */
1584		if ((dev->flags & CAMDD_DEV_FLAG_EOF)
1585		 || (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) {
1586			if (dev->write_dev != 0) {
1587			 	if ((STAILQ_EMPTY(&dev->work_queue))
1588				 && (dev->num_run_queue == 0)
1589				 && (dev->cur_active_io == 0)) {
1590					goto bailout;
1591				}
1592			} else {
1593				/*
1594				 * If we're the reader, and the writer
1595				 * got EOF, he is already done.  If we got
1596				 * the EOF, then we need to wait until
1597				 * everything is flushed out for the writer.
1598				 */
1599				if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) {
1600					goto bailout;
1601				} else if ((dev->num_peer_work_queue == 0)
1602					&& (dev->num_peer_done_queue == 0)
1603					&& (dev->cur_active_io == 0)
1604					&& (dev->num_run_queue == 0)) {
1605					goto bailout;
1606				}
1607			}
1608			/*
1609			 * XXX KDM need to do something about the pending
1610			 * queue and cleanup resources.
1611			 */
1612		}
1613
1614		if ((dev->write_dev == 0)
1615		 && (dev->cur_active_io == 0)
1616		 && (dev->peer_bytes_queued < dev->peer_dev->blocksize))
1617			kq_ts = &ts;
1618		else
1619			kq_ts = NULL;
1620
1621		/*
1622		 * Run kevent to see if there are events to process.
1623		 */
1624		pthread_mutex_unlock(&dev->mutex);
1625		retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts);
1626		pthread_mutex_lock(&dev->mutex);
1627		if (retval == -1) {
1628			warn("%s: error returned from kevent",__func__);
1629			goto bailout;
1630		} else if (retval != 0) {
1631			switch (ke.filter) {
1632			case EVFILT_READ:
1633				if (dev->fetch != NULL) {
1634					retval = dev->fetch(dev);
1635					if (retval == -1) {
1636						error_exit = 1;
1637						goto bailout;
1638					}
1639				}
1640				break;
1641			case EVFILT_SIGNAL:
1642				/*
1643				 * We register for this so we don't get
1644				 * an error as a result of a SIGINFO or a
1645				 * SIGINT.  It will actually get handled
1646				 * by the signal handler.  If we get a
1647				 * SIGINT, bail out without printing an
1648				 * error message.  Any other signals
1649				 * will result in the error message above.
1650				 */
1651				if (ke.ident == SIGINT)
1652					goto bailout;
1653				break;
1654			case EVFILT_USER:
1655				retval = 0;
1656				/*
1657				 * Check to see if the other thread has
1658				 * queued any I/O for us to do.  (In this
1659				 * case we're the writer.)
1660				 */
1661				for (buf = STAILQ_FIRST(&dev->work_queue);
1662				     buf != NULL;
1663				     buf = STAILQ_FIRST(&dev->work_queue)) {
1664					STAILQ_REMOVE_HEAD(&dev->work_queue,
1665							   work_links);
1666					retval = camdd_queue(dev, buf);
1667					/*
1668					 * We keep going unless we get an
1669					 * actual error.  If we get EOF, we
1670					 * still want to remove the buffers
1671					 * from the queue and send the back
1672					 * to the reader thread.
1673					 */
1674					if (retval == -1) {
1675						error_exit = 1;
1676						goto bailout;
1677					} else
1678						retval = 0;
1679				}
1680
1681				/*
1682				 * Next check to see if the other thread has
1683				 * queued any completed buffers back to us.
1684				 * (In this case we're the reader.)
1685				 */
1686				for (buf = STAILQ_FIRST(&dev->peer_done_queue);
1687				     buf != NULL;
1688				     buf = STAILQ_FIRST(&dev->peer_done_queue)){
1689					STAILQ_REMOVE_HEAD(
1690					    &dev->peer_done_queue, work_links);
1691					dev->num_peer_done_queue--;
1692					camdd_peer_done(buf);
1693				}
1694				break;
1695			default:
1696				warnx("%s: unknown kevent filter %d",
1697				      __func__, ke.filter);
1698				break;
1699			}
1700		}
1701	}
1702
1703bailout:
1704
1705	dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE;
1706
1707	/* XXX KDM cleanup resources here? */
1708
1709	pthread_mutex_unlock(&dev->mutex);
1710
1711	need_exit = 1;
1712	sem_post(&camdd_sem);
1713
1714	return (NULL);
1715}
1716
1717/*
1718 * Simplistic translation of CCB status to our local status.
1719 */
1720camdd_buf_status
1721camdd_ccb_status(union ccb *ccb)
1722{
1723	camdd_buf_status status = CAMDD_STATUS_NONE;
1724	cam_status ccb_status;
1725
1726	ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK;
1727
1728	switch (ccb_status) {
1729	case CAM_REQ_CMP: {
1730		if (ccb->csio.resid == 0) {
1731			status = CAMDD_STATUS_OK;
1732		} else if (ccb->csio.dxfer_len > ccb->csio.resid) {
1733			status = CAMDD_STATUS_SHORT_IO;
1734		} else {
1735			status = CAMDD_STATUS_EOF;
1736		}
1737		break;
1738	}
1739	case CAM_SCSI_STATUS_ERROR: {
1740		switch (ccb->csio.scsi_status) {
1741		case SCSI_STATUS_OK:
1742		case SCSI_STATUS_COND_MET:
1743		case SCSI_STATUS_INTERMED:
1744		case SCSI_STATUS_INTERMED_COND_MET:
1745			status = CAMDD_STATUS_OK;
1746			break;
1747		case SCSI_STATUS_CMD_TERMINATED:
1748		case SCSI_STATUS_CHECK_COND:
1749		case SCSI_STATUS_QUEUE_FULL:
1750		case SCSI_STATUS_BUSY:
1751		case SCSI_STATUS_RESERV_CONFLICT:
1752		default:
1753			status = CAMDD_STATUS_ERROR;
1754			break;
1755		}
1756		break;
1757	}
1758	default:
1759		status = CAMDD_STATUS_ERROR;
1760		break;
1761	}
1762
1763	return (status);
1764}
1765
1766/*
1767 * Queue a buffer to our peer's work thread for writing.
1768 *
1769 * Returns 0 for success, -1 for failure, 1 if the other thread exited.
1770 */
1771int
1772camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf)
1773{
1774	struct kevent ke;
1775	STAILQ_HEAD(, camdd_buf) local_queue;
1776	struct camdd_buf *buf1, *buf2;
1777	struct camdd_buf_data *data = NULL;
1778	uint64_t peer_bytes_queued = 0;
1779	int active = 1;
1780	int retval = 0;
1781
1782	STAILQ_INIT(&local_queue);
1783
1784	/*
1785	 * Since we're the reader, we need to queue our I/O to the writer
1786	 * in sequential order in order to make sure it gets written out
1787	 * in sequential order.
1788	 *
1789	 * Check the next expected I/O starting offset.  If this doesn't
1790	 * match, put it on the reorder queue.
1791	 */
1792	if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) {
1793
1794		/*
1795		 * If there is nothing on the queue, there is no sorting
1796		 * needed.
1797		 */
1798		if (STAILQ_EMPTY(&dev->reorder_queue)) {
1799			STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links);
1800			dev->num_reorder_queue++;
1801			goto bailout;
1802		}
1803
1804		/*
1805		 * Sort in ascending order by starting LBA.  There should
1806		 * be no identical LBAs.
1807		 */
1808		for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1809		     buf1 = buf2) {
1810			buf2 = STAILQ_NEXT(buf1, links);
1811			if (buf->lba < buf1->lba) {
1812				/*
1813				 * If we're less than the first one, then
1814				 * we insert at the head of the list
1815				 * because this has to be the first element
1816				 * on the list.
1817				 */
1818				STAILQ_INSERT_HEAD(&dev->reorder_queue,
1819						   buf, links);
1820				dev->num_reorder_queue++;
1821				break;
1822			} else if (buf->lba > buf1->lba) {
1823				if (buf2 == NULL) {
1824					STAILQ_INSERT_TAIL(&dev->reorder_queue,
1825					    buf, links);
1826					dev->num_reorder_queue++;
1827					break;
1828				} else if (buf->lba < buf2->lba) {
1829					STAILQ_INSERT_AFTER(&dev->reorder_queue,
1830					    buf1, buf, links);
1831					dev->num_reorder_queue++;
1832					break;
1833				}
1834			} else {
1835				errx(1, "Found buffers with duplicate LBA %ju!",
1836				     buf->lba);
1837			}
1838		}
1839		goto bailout;
1840	} else {
1841
1842		/*
1843		 * We're the next expected I/O completion, so put ourselves
1844		 * on the local queue to be sent to the writer.  We use
1845		 * work_links here so that we can queue this to the
1846		 * peer_work_queue before taking the buffer off of the
1847		 * local_queue.
1848		 */
1849		dev->next_completion_pos_bytes += buf->len;
1850		STAILQ_INSERT_TAIL(&local_queue, buf, work_links);
1851
1852		/*
1853		 * Go through the reorder queue looking for more sequential
1854		 * I/O and add it to the local queue.
1855		 */
1856		for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1857		     buf1 = STAILQ_FIRST(&dev->reorder_queue)) {
1858			/*
1859			 * As soon as we see an I/O that is out of sequence,
1860			 * we're done.
1861			 */
1862			if ((buf1->lba * dev->sector_size) !=
1863			     dev->next_completion_pos_bytes)
1864				break;
1865
1866			STAILQ_REMOVE_HEAD(&dev->reorder_queue, links);
1867			dev->num_reorder_queue--;
1868			STAILQ_INSERT_TAIL(&local_queue, buf1, work_links);
1869			dev->next_completion_pos_bytes += buf1->len;
1870		}
1871	}
1872
1873	/*
1874	 * Setup the event to let the other thread know that it has work
1875	 * pending.
1876	 */
1877	EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0,
1878	       NOTE_TRIGGER, 0, NULL);
1879
1880	/*
1881	 * Put this on our shadow queue so that we know what we've queued
1882	 * to the other thread.
1883	 */
1884	STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) {
1885		if (buf1->buf_type != CAMDD_BUF_DATA) {
1886			errx(1, "%s: should have a data buffer, not an "
1887			    "indirect buffer", __func__);
1888		}
1889		data = &buf1->buf_type_spec.data;
1890
1891		/*
1892		 * We only need to send one EOF to the writer, and don't
1893		 * need to continue sending EOFs after that.
1894		 */
1895		if (buf1->status == CAMDD_STATUS_EOF) {
1896			if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) {
1897				STAILQ_REMOVE(&local_queue, buf1, camdd_buf,
1898				    work_links);
1899				camdd_release_buf(buf1);
1900				retval = 1;
1901				continue;
1902			}
1903			dev->flags |= CAMDD_DEV_FLAG_EOF_SENT;
1904		}
1905
1906
1907		STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links);
1908		peer_bytes_queued += (data->fill_len - data->resid);
1909		dev->peer_bytes_queued += (data->fill_len - data->resid);
1910		dev->num_peer_work_queue++;
1911	}
1912
1913	if (STAILQ_FIRST(&local_queue) == NULL)
1914		goto bailout;
1915
1916	/*
1917	 * Drop our mutex and pick up the other thread's mutex.  We need to
1918	 * do this to avoid deadlocks.
1919	 */
1920	pthread_mutex_unlock(&dev->mutex);
1921	pthread_mutex_lock(&dev->peer_dev->mutex);
1922
1923	if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) {
1924		/*
1925		 * Put the buffers on the other thread's incoming work queue.
1926		 */
1927		for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1928		     buf1 = STAILQ_FIRST(&local_queue)) {
1929			STAILQ_REMOVE_HEAD(&local_queue, work_links);
1930			STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1,
1931					   work_links);
1932		}
1933		/*
1934		 * Send an event to the other thread's kqueue to let it know
1935		 * that there is something on the work queue.
1936		 */
1937		retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
1938		if (retval == -1)
1939			warn("%s: unable to add peer work_queue kevent",
1940			     __func__);
1941		else
1942			retval = 0;
1943	} else
1944		active = 0;
1945
1946	pthread_mutex_unlock(&dev->peer_dev->mutex);
1947	pthread_mutex_lock(&dev->mutex);
1948
1949	/*
1950	 * If the other side isn't active, run through the queue and
1951	 * release all of the buffers.
1952	 */
1953	if (active == 0) {
1954		for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1955		     buf1 = STAILQ_FIRST(&local_queue)) {
1956			STAILQ_REMOVE_HEAD(&local_queue, work_links);
1957			STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf,
1958				      links);
1959			dev->num_peer_work_queue--;
1960			camdd_release_buf(buf1);
1961		}
1962		dev->peer_bytes_queued -= peer_bytes_queued;
1963		retval = 1;
1964	}
1965
1966bailout:
1967	return (retval);
1968}
1969
1970/*
1971 * Return a buffer to the reader thread when we have completed writing it.
1972 */
1973int
1974camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf)
1975{
1976	struct kevent ke;
1977	int retval = 0;
1978
1979	/*
1980	 * Setup the event to let the other thread know that we have
1981	 * completed a buffer.
1982	 */
1983	EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0,
1984	       NOTE_TRIGGER, 0, NULL);
1985
1986	/*
1987	 * Drop our lock and acquire the other thread's lock before
1988	 * manipulating
1989	 */
1990	pthread_mutex_unlock(&dev->mutex);
1991	pthread_mutex_lock(&dev->peer_dev->mutex);
1992
1993	/*
1994	 * Put the buffer on the reader thread's peer done queue now that
1995	 * we have completed it.
1996	 */
1997	STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf,
1998			   work_links);
1999	dev->peer_dev->num_peer_done_queue++;
2000
2001	/*
2002	 * Send an event to the peer thread to let it know that we've added
2003	 * something to its peer done queue.
2004	 */
2005	retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
2006	if (retval == -1)
2007		warn("%s: unable to add peer_done_queue kevent", __func__);
2008	else
2009		retval = 0;
2010
2011	/*
2012	 * Drop the other thread's lock and reacquire ours.
2013	 */
2014	pthread_mutex_unlock(&dev->peer_dev->mutex);
2015	pthread_mutex_lock(&dev->mutex);
2016
2017	return (retval);
2018}
2019
2020/*
2021 * Free a buffer that was written out by the writer thread and returned to
2022 * the reader thread.
2023 */
2024void
2025camdd_peer_done(struct camdd_buf *buf)
2026{
2027	struct camdd_dev *dev;
2028	struct camdd_buf_data *data;
2029
2030	dev = buf->dev;
2031	if (buf->buf_type != CAMDD_BUF_DATA) {
2032		errx(1, "%s: should have a data buffer, not an "
2033		    "indirect buffer", __func__);
2034	}
2035
2036	data = &buf->buf_type_spec.data;
2037
2038	STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links);
2039	dev->num_peer_work_queue--;
2040	dev->peer_bytes_queued -= (data->fill_len - data->resid);
2041
2042	if (buf->status == CAMDD_STATUS_EOF)
2043		dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2044
2045	STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2046}
2047
2048/*
2049 * Assumes caller holds the lock for this device.
2050 */
2051void
2052camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
2053		   int *error_count)
2054{
2055	int retval = 0;
2056
2057	/*
2058	 * If we're the reader, we need to send the completed I/O
2059	 * to the writer.  If we're the writer, we need to just
2060	 * free up resources, or let the reader know if we've
2061	 * encountered an error.
2062	 */
2063	if (dev->write_dev == 0) {
2064		retval = camdd_queue_peer_buf(dev, buf);
2065		if (retval != 0)
2066			(*error_count)++;
2067	} else {
2068		struct camdd_buf *tmp_buf, *next_buf;
2069
2070		STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links,
2071				    next_buf) {
2072			struct camdd_buf *src_buf;
2073			struct camdd_buf_indirect *indirect;
2074
2075			STAILQ_REMOVE(&buf->src_list, tmp_buf,
2076				      camdd_buf, src_links);
2077
2078			tmp_buf->status = buf->status;
2079
2080			if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
2081				camdd_complete_peer_buf(dev, tmp_buf);
2082				continue;
2083			}
2084
2085			indirect = &tmp_buf->buf_type_spec.indirect;
2086			src_buf = indirect->src_buf;
2087			src_buf->refcount--;
2088			/*
2089			 * XXX KDM we probably need to account for
2090			 * exactly how many bytes we were able to
2091			 * write.  Allocate the residual to the
2092			 * first N buffers?  Or just track the
2093			 * number of bytes written?  Right now the reader
2094			 * doesn't do anything with a residual.
2095			 */
2096			src_buf->status = buf->status;
2097			if (src_buf->refcount <= 0)
2098				camdd_complete_peer_buf(dev, src_buf);
2099			STAILQ_INSERT_TAIL(&dev->free_indirect_queue,
2100					   tmp_buf, links);
2101		}
2102
2103		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2104	}
2105}
2106
2107/*
2108 * Fetch all completed commands from the pass(4) device.
2109 *
2110 * Returns the number of commands received, or -1 if any of the commands
2111 * completed with an error.  Returns 0 if no commands are available.
2112 */
2113int
2114camdd_pass_fetch(struct camdd_dev *dev)
2115{
2116	struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2117	union ccb ccb;
2118	int retval = 0, num_fetched = 0, error_count = 0;
2119
2120	pthread_mutex_unlock(&dev->mutex);
2121	/*
2122	 * XXX KDM we don't distinguish between EFAULT and ENOENT.
2123	 */
2124	while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) {
2125		struct camdd_buf *buf;
2126		struct camdd_buf_data *data;
2127		cam_status ccb_status;
2128		union ccb *buf_ccb;
2129
2130		buf = ccb.ccb_h.ccb_buf;
2131		data = &buf->buf_type_spec.data;
2132		buf_ccb = &data->ccb;
2133
2134		num_fetched++;
2135
2136		/*
2137		 * Copy the CCB back out so we get status, sense data, etc.
2138		 */
2139		bcopy(&ccb, buf_ccb, sizeof(ccb));
2140
2141		pthread_mutex_lock(&dev->mutex);
2142
2143		/*
2144		 * We're now done, so take this off the active queue.
2145		 */
2146		STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links);
2147		dev->cur_active_io--;
2148
2149		ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK;
2150		if (ccb_status != CAM_REQ_CMP) {
2151			cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL,
2152					CAM_EPF_ALL, stderr);
2153		}
2154
2155		data->resid = ccb.csio.resid;
2156		dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid);
2157
2158		if (buf->status == CAMDD_STATUS_NONE)
2159			buf->status = camdd_ccb_status(&ccb);
2160		if (buf->status == CAMDD_STATUS_ERROR)
2161			error_count++;
2162		else if (buf->status == CAMDD_STATUS_EOF) {
2163			/*
2164			 * Once we queue this buffer to our partner thread,
2165			 * he will know that we've hit EOF.
2166			 */
2167			dev->flags |= CAMDD_DEV_FLAG_EOF;
2168		}
2169
2170		camdd_complete_buf(dev, buf, &error_count);
2171
2172		/*
2173		 * Unlock in preparation for the ioctl call.
2174		 */
2175		pthread_mutex_unlock(&dev->mutex);
2176	}
2177
2178	pthread_mutex_lock(&dev->mutex);
2179
2180	if (error_count > 0)
2181		return (-1);
2182	else
2183		return (num_fetched);
2184}
2185
2186/*
2187 * Returns -1 for error, 0 for success/continue, and 1 for resource
2188 * shortage/stop processing.
2189 */
2190int
2191camdd_file_run(struct camdd_dev *dev)
2192{
2193	struct camdd_dev_file *file_dev = &dev->dev_spec.file;
2194	struct camdd_buf_data *data;
2195	struct camdd_buf *buf;
2196	off_t io_offset;
2197	int retval = 0, write_dev = dev->write_dev;
2198	int error_count = 0, no_resources = 0, double_buf_needed = 0;
2199	uint32_t num_sectors = 0, db_len = 0;
2200
2201	buf = STAILQ_FIRST(&dev->run_queue);
2202	if (buf == NULL) {
2203		no_resources = 1;
2204		goto bailout;
2205	} else if ((dev->write_dev == 0)
2206		&& (dev->flags & (CAMDD_DEV_FLAG_EOF |
2207				  CAMDD_DEV_FLAG_EOF_SENT))) {
2208		STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2209		dev->num_run_queue--;
2210		buf->status = CAMDD_STATUS_EOF;
2211		error_count++;
2212		goto bailout;
2213	}
2214
2215	/*
2216	 * If we're writing, we need to go through the source buffer list
2217	 * and create an S/G list.
2218	 */
2219	if (write_dev != 0) {
2220		retval = camdd_buf_sg_create(buf, /*iovec*/ 1,
2221		    dev->sector_size, &num_sectors, &double_buf_needed);
2222		if (retval != 0) {
2223			no_resources = 1;
2224			goto bailout;
2225		}
2226	}
2227
2228	STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2229	dev->num_run_queue--;
2230
2231	data = &buf->buf_type_spec.data;
2232
2233	/*
2234	 * pread(2) and pwrite(2) offsets are byte offsets.
2235	 */
2236	io_offset = buf->lba * dev->sector_size;
2237
2238	/*
2239	 * Unlock the mutex while we read or write.
2240	 */
2241	pthread_mutex_unlock(&dev->mutex);
2242
2243	/*
2244	 * Note that we don't need to double buffer if we're the reader
2245	 * because in that case, we have allocated a single buffer of
2246	 * sufficient size to do the read.  This copy is necessary on
2247	 * writes because if one of the components of the S/G list is not
2248	 * a sector size multiple, the kernel will reject the write.  This
2249	 * is unfortunate but not surprising.  So this will make sure that
2250	 * we're using a single buffer that is a multiple of the sector size.
2251	 */
2252	if ((double_buf_needed != 0)
2253	 && (data->sg_count > 1)
2254	 && (write_dev != 0)) {
2255		uint32_t cur_offset;
2256		int i;
2257
2258		if (file_dev->tmp_buf == NULL)
2259			file_dev->tmp_buf = calloc(dev->blocksize, 1);
2260		if (file_dev->tmp_buf == NULL) {
2261			buf->status = CAMDD_STATUS_ERROR;
2262			error_count++;
2263			goto bailout;
2264		}
2265		for (i = 0, cur_offset = 0; i < data->sg_count; i++) {
2266			bcopy(data->iovec[i].iov_base,
2267			    &file_dev->tmp_buf[cur_offset],
2268			    data->iovec[i].iov_len);
2269			cur_offset += data->iovec[i].iov_len;
2270		}
2271		db_len = cur_offset;
2272	}
2273
2274	if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) {
2275		if (write_dev == 0) {
2276			/*
2277			 * XXX KDM is there any way we would need a S/G
2278			 * list here?
2279			 */
2280			retval = pread(file_dev->fd, data->buf,
2281			    buf->len, io_offset);
2282		} else {
2283			if (double_buf_needed != 0) {
2284				retval = pwrite(file_dev->fd, file_dev->tmp_buf,
2285				    db_len, io_offset);
2286			} else if (data->sg_count == 0) {
2287				retval = pwrite(file_dev->fd, data->buf,
2288				    data->fill_len, io_offset);
2289			} else {
2290				retval = pwritev(file_dev->fd, data->iovec,
2291				    data->sg_count, io_offset);
2292			}
2293		}
2294	} else {
2295		if (write_dev == 0) {
2296			/*
2297			 * XXX KDM is there any way we would need a S/G
2298			 * list here?
2299			 */
2300			retval = read(file_dev->fd, data->buf, buf->len);
2301		} else {
2302			if (double_buf_needed != 0) {
2303				retval = write(file_dev->fd, file_dev->tmp_buf,
2304				    db_len);
2305			} else if (data->sg_count == 0) {
2306				retval = write(file_dev->fd, data->buf,
2307				    data->fill_len);
2308			} else {
2309				retval = writev(file_dev->fd, data->iovec,
2310				    data->sg_count);
2311			}
2312		}
2313	}
2314
2315	/* We're done, re-acquire the lock */
2316	pthread_mutex_lock(&dev->mutex);
2317
2318	if (retval >= (ssize_t)data->fill_len) {
2319		/*
2320		 * If the bytes transferred is more than the request size,
2321		 * that indicates an overrun, which should only happen at
2322		 * the end of a transfer if we have to round up to a sector
2323		 * boundary.
2324		 */
2325		if (buf->status == CAMDD_STATUS_NONE)
2326			buf->status = CAMDD_STATUS_OK;
2327		data->resid = 0;
2328		dev->bytes_transferred += retval;
2329	} else if (retval == -1) {
2330		warn("Error %s %s", (write_dev) ? "writing to" :
2331		    "reading from", file_dev->filename);
2332
2333		buf->status = CAMDD_STATUS_ERROR;
2334		data->resid = data->fill_len;
2335		error_count++;
2336
2337		if (dev->debug == 0)
2338			goto bailout;
2339
2340		if ((double_buf_needed != 0)
2341		 && (write_dev != 0)) {
2342			fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju "
2343			    "offset %ju\n", __func__, file_dev->fd,
2344			    file_dev->tmp_buf, db_len, (uintmax_t)buf->lba,
2345			    (uintmax_t)io_offset);
2346		} else if (data->sg_count == 0) {
2347			fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju "
2348			    "offset %ju\n", __func__, file_dev->fd, data->buf,
2349			    data->fill_len, (uintmax_t)buf->lba,
2350			    (uintmax_t)io_offset);
2351		} else {
2352			int i;
2353
2354			fprintf(stderr, "%s: fd %d, len %u, lba %ju "
2355			    "offset %ju\n", __func__, file_dev->fd,
2356			    data->fill_len, (uintmax_t)buf->lba,
2357			    (uintmax_t)io_offset);
2358
2359			for (i = 0; i < data->sg_count; i++) {
2360				fprintf(stderr, "index %d ptr %p len %zu\n",
2361				    i, data->iovec[i].iov_base,
2362				    data->iovec[i].iov_len);
2363			}
2364		}
2365	} else if (retval == 0) {
2366		buf->status = CAMDD_STATUS_EOF;
2367		if (dev->debug != 0)
2368			printf("%s: got EOF from %s!\n", __func__,
2369			    file_dev->filename);
2370		data->resid = data->fill_len;
2371		error_count++;
2372	} else if (retval < (ssize_t)data->fill_len) {
2373		if (buf->status == CAMDD_STATUS_NONE)
2374			buf->status = CAMDD_STATUS_SHORT_IO;
2375		data->resid = data->fill_len - retval;
2376		dev->bytes_transferred += retval;
2377	}
2378
2379bailout:
2380	if (buf != NULL) {
2381		if (buf->status == CAMDD_STATUS_EOF) {
2382			struct camdd_buf *buf2;
2383			dev->flags |= CAMDD_DEV_FLAG_EOF;
2384			STAILQ_FOREACH(buf2, &dev->run_queue, links)
2385				buf2->status = CAMDD_STATUS_EOF;
2386		}
2387
2388		camdd_complete_buf(dev, buf, &error_count);
2389	}
2390
2391	if (error_count != 0)
2392		return (-1);
2393	else if (no_resources != 0)
2394		return (1);
2395	else
2396		return (0);
2397}
2398
2399/*
2400 * Execute one command from the run queue.  Returns 0 for success, 1 for
2401 * stop processing, and -1 for error.
2402 */
2403int
2404camdd_pass_run(struct camdd_dev *dev)
2405{
2406	struct camdd_buf *buf = NULL;
2407	struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2408	struct camdd_buf_data *data;
2409	uint32_t num_blocks, sectors_used = 0;
2410	union ccb *ccb;
2411	int retval = 0, is_write = dev->write_dev;
2412	int double_buf_needed = 0;
2413
2414	buf = STAILQ_FIRST(&dev->run_queue);
2415	if (buf == NULL) {
2416		retval = 1;
2417		goto bailout;
2418	}
2419
2420	/*
2421	 * If we're writing, we need to go through the source buffer list
2422	 * and create an S/G list.
2423	 */
2424	if (is_write != 0) {
2425		retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size,
2426		    &sectors_used, &double_buf_needed);
2427		if (retval != 0) {
2428			retval = -1;
2429			goto bailout;
2430		}
2431	}
2432
2433	STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2434	dev->num_run_queue--;
2435
2436	data = &buf->buf_type_spec.data;
2437
2438	ccb = &data->ccb;
2439	bzero(&(&ccb->ccb_h)[1],
2440	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
2441
2442	/*
2443	 * In almost every case the number of blocks should be the device
2444	 * block size.  The exception may be at the end of an I/O stream
2445	 * for a partial block or at the end of a device.
2446	 */
2447	if (is_write != 0)
2448		num_blocks = sectors_used;
2449	else
2450		num_blocks = data->fill_len / pass_dev->block_len;
2451
2452	scsi_read_write(&ccb->csio,
2453			/*retries*/ dev->retry_count,
2454			/*cbfcnp*/ NULL,
2455			/*tag_action*/ MSG_SIMPLE_Q_TAG,
2456			/*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ :
2457				   SCSI_RW_WRITE,
2458			/*byte2*/ 0,
2459			/*minimum_cmd_size*/ dev->min_cmd_size,
2460			/*lba*/ buf->lba,
2461			/*block_count*/ num_blocks,
2462			/*data_ptr*/ (data->sg_count != 0) ?
2463				     (uint8_t *)data->segs : data->buf,
2464			/*dxfer_len*/ (num_blocks * pass_dev->block_len),
2465			/*sense_len*/ SSD_FULL_SIZE,
2466			/*timeout*/ dev->io_timeout);
2467
2468	/* Disable freezing the device queue */
2469	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
2470
2471	if (dev->retry_count != 0)
2472		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
2473
2474	if (data->sg_count != 0) {
2475		ccb->csio.sglist_cnt = data->sg_count;
2476		ccb->ccb_h.flags |= CAM_DATA_SG;
2477	}
2478
2479	/*
2480	 * Store a pointer to the buffer in the CCB.  The kernel will
2481	 * restore this when we get it back, and we'll use it to identify
2482	 * the buffer this CCB came from.
2483	 */
2484	ccb->ccb_h.ccb_buf = buf;
2485
2486	/*
2487	 * Unlock our mutex in preparation for issuing the ioctl.
2488	 */
2489	pthread_mutex_unlock(&dev->mutex);
2490	/*
2491	 * Queue the CCB to the pass(4) driver.
2492	 */
2493	if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) {
2494		pthread_mutex_lock(&dev->mutex);
2495
2496		warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__,
2497		     pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
2498		warn("%s: CCB address is %p", __func__, ccb);
2499		retval = -1;
2500
2501		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2502	} else {
2503		pthread_mutex_lock(&dev->mutex);
2504
2505		dev->cur_active_io++;
2506		STAILQ_INSERT_TAIL(&dev->active_queue, buf, links);
2507	}
2508
2509bailout:
2510	return (retval);
2511}
2512
2513int
2514camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len)
2515{
2516	struct camdd_dev_pass *pass_dev;
2517	uint32_t num_blocks;
2518	int retval = 0;
2519
2520	pass_dev = &dev->dev_spec.pass;
2521
2522	*lba = dev->next_io_pos_bytes / dev->sector_size;
2523	*len = dev->blocksize;
2524	num_blocks = *len / dev->sector_size;
2525
2526	/*
2527	 * If max_sector is 0, then we have no set limit.  This can happen
2528	 * if we're writing to a file in a filesystem, or reading from
2529	 * something like /dev/zero.
2530	 */
2531	if ((dev->max_sector != 0)
2532	 || (dev->sector_io_limit != 0)) {
2533		uint64_t max_sector;
2534
2535		if ((dev->max_sector != 0)
2536		 && (dev->sector_io_limit != 0))
2537			max_sector = min(dev->sector_io_limit, dev->max_sector);
2538		else if (dev->max_sector != 0)
2539			max_sector = dev->max_sector;
2540		else
2541			max_sector = dev->sector_io_limit;
2542
2543
2544		/*
2545		 * Check to see whether we're starting off past the end of
2546		 * the device.  If so, we need to just send an EOF
2547		 * notification to the writer.
2548		 */
2549		if (*lba > max_sector) {
2550			*len = 0;
2551			retval = 1;
2552		} else if (((*lba + num_blocks) > max_sector + 1)
2553			|| ((*lba + num_blocks) < *lba)) {
2554			/*
2555			 * If we get here (but pass the first check), we
2556			 * can trim the request length down to go to the
2557			 * end of the device.
2558			 */
2559			num_blocks = (max_sector + 1) - *lba;
2560			*len = num_blocks * dev->sector_size;
2561			retval = 1;
2562		}
2563	}
2564
2565	dev->next_io_pos_bytes += *len;
2566
2567	return (retval);
2568}
2569
2570/*
2571 * Returns 0 for success, 1 for EOF detected, and -1 for failure.
2572 */
2573int
2574camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf)
2575{
2576	struct camdd_buf *buf = NULL;
2577	struct camdd_buf_data *data;
2578	struct camdd_dev_pass *pass_dev;
2579	size_t new_len;
2580	struct camdd_buf_data *rb_data;
2581	int is_write = dev->write_dev;
2582	int eof_flush_needed = 0;
2583	int retval = 0;
2584	int error;
2585
2586	pass_dev = &dev->dev_spec.pass;
2587
2588	/*
2589	 * If we've gotten EOF or our partner has, we should not continue
2590	 * queueing I/O.  If we're a writer, though, we should continue
2591	 * to write any buffers that don't have EOF status.
2592	 */
2593	if ((dev->flags & CAMDD_DEV_FLAG_EOF)
2594	 || ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF)
2595	  && (is_write == 0))) {
2596		/*
2597		 * Tell the worker thread that we have seen EOF.
2598		 */
2599		retval = 1;
2600
2601		/*
2602		 * If we're the writer, send the buffer back with EOF status.
2603		 */
2604		if (is_write) {
2605			read_buf->status = CAMDD_STATUS_EOF;
2606
2607			error = camdd_complete_peer_buf(dev, read_buf);
2608		}
2609		goto bailout;
2610	}
2611
2612	if (is_write == 0) {
2613		buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2614		if (buf == NULL) {
2615			retval = -1;
2616			goto bailout;
2617		}
2618		data = &buf->buf_type_spec.data;
2619
2620		retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len);
2621		if (retval != 0) {
2622			buf->status = CAMDD_STATUS_EOF;
2623
2624		 	if ((buf->len == 0)
2625			 && ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT |
2626			     CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) {
2627				camdd_release_buf(buf);
2628				goto bailout;
2629			}
2630			dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED;
2631		}
2632
2633		data->fill_len = buf->len;
2634		data->src_start_offset = buf->lba * dev->sector_size;
2635
2636		/*
2637		 * Put this on the run queue.
2638		 */
2639		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2640		dev->num_run_queue++;
2641
2642		/* We're done. */
2643		goto bailout;
2644	}
2645
2646	/*
2647	 * Check for new EOF status from the reader.
2648	 */
2649	if ((read_buf->status == CAMDD_STATUS_EOF)
2650	 || (read_buf->status == CAMDD_STATUS_ERROR)) {
2651		dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2652		if ((STAILQ_FIRST(&dev->pending_queue) == NULL)
2653		 && (read_buf->len == 0)) {
2654			camdd_complete_peer_buf(dev, read_buf);
2655			retval = 1;
2656			goto bailout;
2657		} else
2658			eof_flush_needed = 1;
2659	}
2660
2661	/*
2662	 * See if we have a buffer we're composing with pieces from our
2663	 * partner thread.
2664	 */
2665	buf = STAILQ_FIRST(&dev->pending_queue);
2666	if (buf == NULL) {
2667		uint64_t lba;
2668		ssize_t len;
2669
2670		retval = camdd_get_next_lba_len(dev, &lba, &len);
2671		if (retval != 0) {
2672			read_buf->status = CAMDD_STATUS_EOF;
2673
2674			if (len == 0) {
2675				dev->flags |= CAMDD_DEV_FLAG_EOF;
2676				error = camdd_complete_peer_buf(dev, read_buf);
2677				goto bailout;
2678			}
2679		}
2680
2681		/*
2682		 * If we don't have a pending buffer, we need to grab a new
2683		 * one from the free list or allocate another one.
2684		 */
2685		buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2686		if (buf == NULL) {
2687			retval = 1;
2688			goto bailout;
2689		}
2690
2691		buf->lba = lba;
2692		buf->len = len;
2693
2694		STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links);
2695		dev->num_pending_queue++;
2696	}
2697
2698	data = &buf->buf_type_spec.data;
2699
2700	rb_data = &read_buf->buf_type_spec.data;
2701
2702	if ((rb_data->src_start_offset != dev->next_peer_pos_bytes)
2703	 && (dev->debug != 0)) {
2704		printf("%s: WARNING: reader offset %#jx != expected offset "
2705		    "%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset,
2706		    (uintmax_t)dev->next_peer_pos_bytes);
2707	}
2708	dev->next_peer_pos_bytes = rb_data->src_start_offset +
2709	    (rb_data->fill_len - rb_data->resid);
2710
2711	new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len;
2712	if (new_len < buf->len) {
2713		/*
2714		 * There are three cases here:
2715		 * 1. We need more data to fill up a block, so we put
2716		 *    this I/O on the queue and wait for more I/O.
2717		 * 2. We have a pending buffer in the queue that is
2718		 *    smaller than our blocksize, but we got an EOF.  So we
2719		 *    need to go ahead and flush the write out.
2720		 * 3. We got an error.
2721		 */
2722
2723		/*
2724		 * Increment our fill length.
2725		 */
2726		data->fill_len += (rb_data->fill_len - rb_data->resid);
2727
2728		/*
2729		 * Add the new read buffer to the list for writing.
2730		 */
2731		STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2732
2733		/* Increment the count */
2734		buf->src_count++;
2735
2736		if (eof_flush_needed == 0) {
2737			/*
2738			 * We need to exit, because we don't have enough
2739			 * data yet.
2740			 */
2741			goto bailout;
2742		} else {
2743			/*
2744			 * Take the buffer off of the pending queue.
2745			 */
2746			STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2747				      links);
2748			dev->num_pending_queue--;
2749
2750			/*
2751			 * If we need an EOF flush, but there is no data
2752			 * to flush, go ahead and return this buffer.
2753			 */
2754			if (data->fill_len == 0) {
2755				camdd_complete_buf(dev, buf, /*error_count*/0);
2756				retval = 1;
2757				goto bailout;
2758			}
2759
2760			/*
2761			 * Put this on the next queue for execution.
2762			 */
2763			STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2764			dev->num_run_queue++;
2765		}
2766	} else if (new_len == buf->len) {
2767		/*
2768		 * We have enough data to completey fill one block,
2769		 * so we're ready to issue the I/O.
2770		 */
2771
2772		/*
2773		 * Take the buffer off of the pending queue.
2774		 */
2775		STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links);
2776		dev->num_pending_queue--;
2777
2778		/*
2779		 * Add the new read buffer to the list for writing.
2780		 */
2781		STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2782
2783		/* Increment the count */
2784		buf->src_count++;
2785
2786		/*
2787		 * Increment our fill length.
2788		 */
2789		data->fill_len += (rb_data->fill_len - rb_data->resid);
2790
2791		/*
2792		 * Put this on the next queue for execution.
2793		 */
2794		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2795		dev->num_run_queue++;
2796	} else {
2797		struct camdd_buf *idb;
2798		struct camdd_buf_indirect *indirect;
2799		uint32_t len_to_go, cur_offset;
2800
2801
2802		idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2803		if (idb == NULL) {
2804			retval = 1;
2805			goto bailout;
2806		}
2807		indirect = &idb->buf_type_spec.indirect;
2808		indirect->src_buf = read_buf;
2809		read_buf->refcount++;
2810		indirect->offset = 0;
2811		indirect->start_ptr = rb_data->buf;
2812		/*
2813		 * We've already established that there is more
2814		 * data in read_buf than we have room for in our
2815		 * current write request.  So this particular chunk
2816		 * of the request should just be the remainder
2817		 * needed to fill up a block.
2818		 */
2819		indirect->len = buf->len - (data->fill_len - data->resid);
2820
2821		camdd_buf_add_child(buf, idb);
2822
2823		/*
2824		 * This buffer is ready to execute, so we can take
2825		 * it off the pending queue and put it on the run
2826		 * queue.
2827		 */
2828		STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2829			      links);
2830		dev->num_pending_queue--;
2831		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2832		dev->num_run_queue++;
2833
2834		cur_offset = indirect->offset + indirect->len;
2835
2836		/*
2837		 * The resulting I/O would be too large to fit in
2838		 * one block.  We need to split this I/O into
2839		 * multiple pieces.  Allocate as many buffers as needed.
2840		 */
2841		for (len_to_go = rb_data->fill_len - rb_data->resid -
2842		     indirect->len; len_to_go > 0;) {
2843			struct camdd_buf *new_buf;
2844			struct camdd_buf_data *new_data;
2845			uint64_t lba;
2846			ssize_t len;
2847
2848			retval = camdd_get_next_lba_len(dev, &lba, &len);
2849			if ((retval != 0)
2850			 && (len == 0)) {
2851				/*
2852				 * The device has already been marked
2853				 * as EOF, and there is no space left.
2854				 */
2855				goto bailout;
2856			}
2857
2858			new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2859			if (new_buf == NULL) {
2860				retval = 1;
2861				goto bailout;
2862			}
2863
2864			new_buf->lba = lba;
2865			new_buf->len = len;
2866
2867			idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2868			if (idb == NULL) {
2869				retval = 1;
2870				goto bailout;
2871			}
2872
2873			indirect = &idb->buf_type_spec.indirect;
2874
2875			indirect->src_buf = read_buf;
2876			read_buf->refcount++;
2877			indirect->offset = cur_offset;
2878			indirect->start_ptr = rb_data->buf + cur_offset;
2879			indirect->len = min(len_to_go, new_buf->len);
2880#if 0
2881			if (((indirect->len % dev->sector_size) != 0)
2882			 || ((indirect->offset % dev->sector_size) != 0)) {
2883				warnx("offset %ju len %ju not aligned with "
2884				    "sector size %u", indirect->offset,
2885				    (uintmax_t)indirect->len, dev->sector_size);
2886			}
2887#endif
2888			cur_offset += indirect->len;
2889			len_to_go -= indirect->len;
2890
2891			camdd_buf_add_child(new_buf, idb);
2892
2893			new_data = &new_buf->buf_type_spec.data;
2894
2895			if ((new_data->fill_len == new_buf->len)
2896			 || (eof_flush_needed != 0)) {
2897				STAILQ_INSERT_TAIL(&dev->run_queue,
2898						   new_buf, links);
2899				dev->num_run_queue++;
2900			} else if (new_data->fill_len < buf->len) {
2901				STAILQ_INSERT_TAIL(&dev->pending_queue,
2902					   	new_buf, links);
2903				dev->num_pending_queue++;
2904			} else {
2905				warnx("%s: too much data in new "
2906				      "buffer!", __func__);
2907				retval = 1;
2908				goto bailout;
2909			}
2910		}
2911	}
2912
2913bailout:
2914	return (retval);
2915}
2916
2917void
2918camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
2919		uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes)
2920{
2921	*our_depth = dev->cur_active_io + dev->num_run_queue;
2922	if (dev->num_peer_work_queue >
2923	    dev->num_peer_done_queue)
2924		*peer_depth = dev->num_peer_work_queue -
2925			      dev->num_peer_done_queue;
2926	else
2927		*peer_depth = 0;
2928	*our_bytes = *our_depth * dev->blocksize;
2929	*peer_bytes = dev->peer_bytes_queued;
2930}
2931
2932void
2933camdd_sig_handler(int sig)
2934{
2935	if (sig == SIGINFO)
2936		need_status = 1;
2937	else {
2938		need_exit = 1;
2939		error_exit = 1;
2940	}
2941
2942	sem_post(&camdd_sem);
2943}
2944
2945void
2946camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev,
2947		   struct timespec *start_time)
2948{
2949	struct timespec done_time;
2950	uint64_t total_ns;
2951	long double mb_sec, total_sec;
2952	int error = 0;
2953
2954	error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time);
2955	if (error != 0) {
2956		warn("Unable to get done time");
2957		return;
2958	}
2959
2960	timespecsub(&done_time, start_time);
2961
2962	total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000);
2963	total_sec = total_ns;
2964	total_sec /= 1000000000;
2965
2966	fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n"
2967		"%.4Lf seconds elapsed\n",
2968		(uintmax_t)camdd_dev->bytes_transferred,
2969		(camdd_dev->write_dev == 0) ?  "read from" : "written to",
2970		camdd_dev->device_name,
2971		(uintmax_t)other_dev->bytes_transferred,
2972		(other_dev->write_dev == 0) ? "read from" : "written to",
2973		other_dev->device_name, total_sec);
2974
2975	mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred);
2976	mb_sec /= 1024 * 1024;
2977	mb_sec *= 1000000000;
2978	mb_sec /= total_ns;
2979	fprintf(stderr, "%.2Lf MB/sec\n", mb_sec);
2980}
2981
2982int
2983camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io,
2984	 int retry_count, int timeout)
2985{
2986	char *device = NULL;
2987	struct cam_device *new_cam_dev = NULL;
2988	struct camdd_dev *devs[2];
2989	struct timespec start_time;
2990	pthread_t threads[2];
2991	int unit = 0;
2992	int error = 0;
2993	int i;
2994
2995	if (num_io_opts != 2) {
2996		warnx("Must have one input and one output path");
2997		error = 1;
2998		goto bailout;
2999	}
3000
3001	bzero(devs, sizeof(devs));
3002
3003	for (i = 0; i < num_io_opts; i++) {
3004		switch (io_opts[i].dev_type) {
3005		case CAMDD_DEV_PASS: {
3006			camdd_argmask new_arglist = CAMDD_ARG_NONE;
3007			int bus = 0, target = 0, lun = 0;
3008			char name[30];
3009			int rv;
3010
3011			if (isdigit(io_opts[i].dev_name[0])) {
3012				/* device specified as bus:target[:lun] */
3013				rv = parse_btl(io_opts[i].dev_name, &bus,
3014				    &target, &lun, &new_arglist);
3015				if (rv < 2) {
3016					warnx("numeric device specification "
3017					     "must be either bus:target, or "
3018					     "bus:target:lun");
3019					error = 1;
3020					goto bailout;
3021				}
3022				/* default to 0 if lun was not specified */
3023				if ((new_arglist & CAMDD_ARG_LUN) == 0) {
3024					lun = 0;
3025					new_arglist |= CAMDD_ARG_LUN;
3026				}
3027			} else {
3028				if (cam_get_device(io_opts[i].dev_name, name,
3029						   sizeof name, &unit) == -1) {
3030					warnx("%s", cam_errbuf);
3031					error = 1;
3032					goto bailout;
3033				}
3034				device = strdup(name);
3035				new_arglist |= CAMDD_ARG_DEVICE |CAMDD_ARG_UNIT;
3036			}
3037
3038			if (new_arglist & (CAMDD_ARG_BUS | CAMDD_ARG_TARGET))
3039				new_cam_dev = cam_open_btl(bus, target, lun,
3040				    O_RDWR, NULL);
3041			else
3042				new_cam_dev = cam_open_spec_device(device, unit,
3043				    O_RDWR, NULL);
3044			if (new_cam_dev == NULL) {
3045				warnx("%s", cam_errbuf);
3046				error = 1;
3047				goto bailout;
3048			}
3049
3050			devs[i] = camdd_probe_pass(new_cam_dev,
3051			    /*io_opts*/ &io_opts[i],
3052			    CAMDD_ARG_ERR_RECOVER,
3053			    /*probe_retry_count*/ 3,
3054			    /*probe_timeout*/ 5000,
3055			    /*io_retry_count*/ retry_count,
3056			    /*io_timeout*/ timeout);
3057			if (devs[i] == NULL) {
3058				warn("Unable to probe device %s%u",
3059				     new_cam_dev->device_name,
3060				     new_cam_dev->dev_unit_num);
3061				error = 1;
3062				goto bailout;
3063			}
3064			break;
3065		}
3066		case CAMDD_DEV_FILE: {
3067			int fd = -1;
3068
3069			if (io_opts[i].dev_name[0] == '-') {
3070				if (io_opts[i].write_dev != 0)
3071					fd = STDOUT_FILENO;
3072				else
3073					fd = STDIN_FILENO;
3074			} else {
3075				if (io_opts[i].write_dev != 0) {
3076					fd = open(io_opts[i].dev_name,
3077					    O_RDWR | O_CREAT, S_IWUSR |S_IRUSR);
3078				} else {
3079					fd = open(io_opts[i].dev_name,
3080					    O_RDONLY);
3081				}
3082			}
3083			if (fd == -1) {
3084				warn("error opening file %s",
3085				    io_opts[i].dev_name);
3086				error = 1;
3087				goto bailout;
3088			}
3089
3090			devs[i] = camdd_probe_file(fd, &io_opts[i],
3091			    retry_count, timeout);
3092			if (devs[i] == NULL) {
3093				error = 1;
3094				goto bailout;
3095			}
3096
3097			break;
3098		}
3099		default:
3100			warnx("Unknown device type %d (%s)",
3101			    io_opts[i].dev_type, io_opts[i].dev_name);
3102			error = 1;
3103			goto bailout;
3104			break; /*NOTREACHED */
3105		}
3106
3107		devs[i]->write_dev = io_opts[i].write_dev;
3108
3109		devs[i]->start_offset_bytes = io_opts[i].offset;
3110
3111		if (max_io != 0) {
3112			devs[i]->sector_io_limit =
3113			    (devs[i]->start_offset_bytes /
3114			    devs[i]->sector_size) +
3115			    (max_io / devs[i]->sector_size) - 1;
3116			devs[i]->sector_io_limit =
3117			    (devs[i]->start_offset_bytes /
3118			    devs[i]->sector_size) +
3119			    (max_io / devs[i]->sector_size) - 1;
3120		}
3121
3122		devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes;
3123		devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes;
3124	}
3125
3126	devs[0]->peer_dev = devs[1];
3127	devs[1]->peer_dev = devs[0];
3128	devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes;
3129	devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes;
3130
3131	sem_init(&camdd_sem, /*pshared*/ 0, 0);
3132
3133	signal(SIGINFO, camdd_sig_handler);
3134	signal(SIGINT, camdd_sig_handler);
3135
3136	error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time);
3137	if (error != 0) {
3138		warn("Unable to get start time");
3139		goto bailout;
3140	}
3141
3142	for (i = 0; i < num_io_opts; i++) {
3143		error = pthread_create(&threads[i], NULL, camdd_worker,
3144				       (void *)devs[i]);
3145		if (error != 0) {
3146			warnc(error, "pthread_create() failed");
3147			goto bailout;
3148		}
3149	}
3150
3151	for (;;) {
3152		if ((sem_wait(&camdd_sem) == -1)
3153		 || (need_exit != 0)) {
3154			struct kevent ke;
3155
3156			for (i = 0; i < num_io_opts; i++) {
3157				EV_SET(&ke, (uintptr_t)&devs[i]->work_queue,
3158				    EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL);
3159
3160				devs[i]->flags |= CAMDD_DEV_FLAG_EOF;
3161
3162				error = kevent(devs[i]->kq, &ke, 1, NULL, 0,
3163						NULL);
3164				if (error == -1)
3165					warn("%s: unable to wake up thread",
3166					    __func__);
3167				error = 0;
3168			}
3169			break;
3170		} else if (need_status != 0) {
3171			camdd_print_status(devs[0], devs[1], &start_time);
3172			need_status = 0;
3173		}
3174	}
3175	for (i = 0; i < num_io_opts; i++) {
3176		pthread_join(threads[i], NULL);
3177	}
3178
3179	camdd_print_status(devs[0], devs[1], &start_time);
3180
3181bailout:
3182
3183	for (i = 0; i < num_io_opts; i++)
3184		camdd_free_dev(devs[i]);
3185
3186	return (error + error_exit);
3187}
3188
3189void
3190usage(void)
3191{
3192	fprintf(stderr,
3193"usage:  camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n"
3194"              <-i|-o file=/tmp/file,bs=512K,offset=1M>\n"
3195"              <-i|-o file=/dev/da0,bs=512K,offset=1M>\n"
3196"              <-i|-o file=/dev/nsa0,bs=512K>\n"
3197"              [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n"
3198"Option description\n"
3199"-i <arg=val>  Specify input device/file and parameters\n"
3200"-o <arg=val>  Specify output device/file and parameters\n"
3201"Input and Output parameters\n"
3202"pass=name     Specify a pass(4) device like pass0 or /dev/pass0\n"
3203"file=name     Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n"
3204"              or - for stdin/stdout\n"
3205"bs=blocksize  Specify blocksize in bytes, or using K, M, G, etc. suffix\n"
3206"offset=len    Specify starting offset in bytes or using K, M, G suffix\n"
3207"              NOTE: offset cannot be specified on tapes, pipes, stdin/out\n"
3208"depth=N       Specify a numeric queue depth.  This only applies to pass(4)\n"
3209"mcs=N         Specify a minimum cmd size for pass(4) read/write commands\n"
3210"Optional arguments\n"
3211"-C retry_cnt  Specify a retry count for pass(4) devices\n"
3212"-E            Enable CAM error recovery for pass(4) devices\n"
3213"-m max_io     Specify the maximum amount to be transferred in bytes or\n"
3214"              using K, G, M, etc. suffixes\n"
3215"-t timeout    Specify the I/O timeout to use with pass(4) devices\n"
3216"-v            Enable verbose error recovery\n"
3217"-h            Print this message\n");
3218}
3219
3220
3221int
3222camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts)
3223{
3224	char *tmpstr, *tmpstr2;
3225	char *orig_tmpstr = NULL;
3226	int retval = 0;
3227
3228	io_opts->write_dev = is_write;
3229
3230	tmpstr = strdup(args);
3231	if (tmpstr == NULL) {
3232		warn("strdup failed");
3233		retval = 1;
3234		goto bailout;
3235	}
3236	orig_tmpstr = tmpstr;
3237	while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) {
3238		char *name, *value;
3239
3240		/*
3241		 * If the user creates an empty parameter by putting in two
3242		 * commas, skip over it and look for the next field.
3243		 */
3244		if (*tmpstr2 == '\0')
3245			continue;
3246
3247		name = strsep(&tmpstr2, "=");
3248		if (*name == '\0') {
3249			warnx("Got empty I/O parameter name");
3250			retval = 1;
3251			goto bailout;
3252		}
3253		value = strsep(&tmpstr2, "=");
3254		if ((value == NULL)
3255		 || (*value == '\0')) {
3256			warnx("Empty I/O parameter value for %s", name);
3257			retval = 1;
3258			goto bailout;
3259		}
3260		if (strncasecmp(name, "file", 4) == 0) {
3261			io_opts->dev_type = CAMDD_DEV_FILE;
3262			io_opts->dev_name = strdup(value);
3263			if (io_opts->dev_name == NULL) {
3264				warn("Error allocating memory");
3265				retval = 1;
3266				goto bailout;
3267			}
3268		} else if (strncasecmp(name, "pass", 4) == 0) {
3269			io_opts->dev_type = CAMDD_DEV_PASS;
3270			io_opts->dev_name = strdup(value);
3271			if (io_opts->dev_name == NULL) {
3272				warn("Error allocating memory");
3273				retval = 1;
3274				goto bailout;
3275			}
3276		} else if ((strncasecmp(name, "bs", 2) == 0)
3277			|| (strncasecmp(name, "blocksize", 9) == 0)) {
3278			retval = expand_number(value, &io_opts->blocksize);
3279			if (retval == -1) {
3280				warn("expand_number(3) failed on %s=%s", name,
3281				    value);
3282				retval = 1;
3283				goto bailout;
3284			}
3285		} else if (strncasecmp(name, "depth", 5) == 0) {
3286			char *endptr;
3287
3288			io_opts->queue_depth = strtoull(value, &endptr, 0);
3289			if (*endptr != '\0') {
3290				warnx("invalid queue depth %s", value);
3291				retval = 1;
3292				goto bailout;
3293			}
3294		} else if (strncasecmp(name, "mcs", 3) == 0) {
3295			char *endptr;
3296
3297			io_opts->min_cmd_size = strtol(value, &endptr, 0);
3298			if ((*endptr != '\0')
3299			 || ((io_opts->min_cmd_size > 16)
3300			  || (io_opts->min_cmd_size < 0))) {
3301				warnx("invalid minimum cmd size %s", value);
3302				retval = 1;
3303				goto bailout;
3304			}
3305		} else if (strncasecmp(name, "offset", 6) == 0) {
3306			retval = expand_number(value, &io_opts->offset);
3307			if (retval == -1) {
3308				warn("expand_number(3) failed on %s=%s", name,
3309				    value);
3310				retval = 1;
3311				goto bailout;
3312			}
3313		} else if (strncasecmp(name, "debug", 5) == 0) {
3314			char *endptr;
3315
3316			io_opts->debug = strtoull(value, &endptr, 0);
3317			if (*endptr != '\0') {
3318				warnx("invalid debug level %s", value);
3319				retval = 1;
3320				goto bailout;
3321			}
3322		} else {
3323			warnx("Unrecognized parameter %s=%s", name, value);
3324		}
3325	}
3326bailout:
3327	free(orig_tmpstr);
3328
3329	return (retval);
3330}
3331
3332int
3333main(int argc, char **argv)
3334{
3335	int c;
3336	camdd_argmask arglist = CAMDD_ARG_NONE;
3337	int timeout = 0, retry_count = 1;
3338	int error = 0;
3339	uint64_t max_io = 0;
3340	struct camdd_io_opts *opt_list = NULL;
3341
3342	if (argc == 1) {
3343		usage();
3344		exit(1);
3345	}
3346
3347	opt_list = calloc(2, sizeof(struct camdd_io_opts));
3348	if (opt_list == NULL) {
3349		warn("Unable to allocate option list");
3350		error = 1;
3351		goto bailout;
3352	}
3353
3354	while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){
3355		switch (c) {
3356		case 'C':
3357			retry_count = strtol(optarg, NULL, 0);
3358			if (retry_count < 0)
3359				errx(1, "retry count %d is < 0",
3360				     retry_count);
3361			arglist |= CAMDD_ARG_RETRIES;
3362			break;
3363		case 'E':
3364			arglist |= CAMDD_ARG_ERR_RECOVER;
3365			break;
3366		case 'i':
3367		case 'o':
3368			if (((c == 'i')
3369			  && (opt_list[0].dev_type != CAMDD_DEV_NONE))
3370			 || ((c == 'o')
3371			  && (opt_list[1].dev_type != CAMDD_DEV_NONE))) {
3372				errx(1, "Only one input and output path "
3373				    "allowed");
3374			}
3375			error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0,
3376			    (c == 'o') ? &opt_list[1] : &opt_list[0]);
3377			if (error != 0)
3378				goto bailout;
3379			break;
3380		case 'm':
3381			error = expand_number(optarg, &max_io);
3382			if (error == -1) {
3383				warn("invalid maximum I/O amount %s", optarg);
3384				error = 1;
3385				goto bailout;
3386			}
3387			break;
3388		case 't':
3389			timeout = strtol(optarg, NULL, 0);
3390			if (timeout < 0)
3391				errx(1, "invalid timeout %d", timeout);
3392			/* Convert the timeout from seconds to ms */
3393			timeout *= 1000;
3394			arglist |= CAMDD_ARG_TIMEOUT;
3395			break;
3396		case 'v':
3397			arglist |= CAMDD_ARG_VERBOSE;
3398			break;
3399		case 'h':
3400		default:
3401			usage();
3402			exit(1);
3403			break; /*NOTREACHED*/
3404		}
3405	}
3406
3407	if ((opt_list[0].dev_type == CAMDD_DEV_NONE)
3408	 || (opt_list[1].dev_type == CAMDD_DEV_NONE))
3409		errx(1, "Must specify both -i and -o");
3410
3411	/*
3412	 * Set the timeout if the user hasn't specified one.
3413	 */
3414	if (timeout == 0)
3415		timeout = CAMDD_PASS_RW_TIMEOUT;
3416
3417	error = camdd_rw(opt_list, 2, max_io, retry_count, timeout);
3418
3419bailout:
3420	free(opt_list);
3421
3422	exit(error);
3423}
3424