pci_emul.c revision 261088
1/*-
2 * Copyright (c) 2011 NetApp, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: stable/10/usr.sbin/bhyve/pci_emul.c 261088 2014-01-23 20:21:39Z jhb $
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/10/usr.sbin/bhyve/pci_emul.c 261088 2014-01-23 20:21:39Z jhb $");
31
32#include <sys/param.h>
33#include <sys/linker_set.h>
34#include <sys/errno.h>
35
36#include <ctype.h>
37#include <stdio.h>
38#include <stdlib.h>
39#include <string.h>
40#include <strings.h>
41#include <assert.h>
42#include <stdbool.h>
43
44#include <machine/vmm.h>
45#include <vmmapi.h>
46
47#include "bhyverun.h"
48#include "inout.h"
49#include "legacy_irq.h"
50#include "mem.h"
51#include "pci_emul.h"
52
53#define CONF1_ADDR_PORT    0x0cf8
54#define CONF1_DATA_PORT    0x0cfc
55
56#define CONF1_ENABLE	   0x80000000ul
57
58#define	CFGWRITE(pi,off,val,b)						\
59do {									\
60	if ((b) == 1) {							\
61		pci_set_cfgdata8((pi),(off),(val));			\
62	} else if ((b) == 2) {						\
63		pci_set_cfgdata16((pi),(off),(val));			\
64	} else {							\
65		pci_set_cfgdata32((pi),(off),(val));			\
66	}								\
67} while (0)
68
69#define MAXSLOTS	(PCI_SLOTMAX + 1)
70#define	MAXFUNCS	(PCI_FUNCMAX + 1)
71
72static struct slotinfo {
73	char	*si_name;
74	char	*si_param;
75	struct pci_devinst *si_devi;
76	int	si_legacy;
77} pci_slotinfo[MAXSLOTS][MAXFUNCS];
78
79SET_DECLARE(pci_devemu_set, struct pci_devemu);
80
81static uint64_t pci_emul_iobase;
82static uint64_t pci_emul_membase32;
83static uint64_t pci_emul_membase64;
84
85#define	PCI_EMUL_IOBASE		0x2000
86#define	PCI_EMUL_IOLIMIT	0x10000
87
88#define	PCI_EMUL_MEMLIMIT32	0xE0000000		/* 3.5GB */
89
90#define	PCI_EMUL_MEMBASE64	0xD000000000UL
91#define	PCI_EMUL_MEMLIMIT64	0xFD00000000UL
92
93static struct pci_devemu *pci_emul_finddev(char *name);
94
95static int pci_emul_devices;
96
97/*
98 * I/O access
99 */
100
101/*
102 * Slot options are in the form:
103 *
104 *  <slot>[:<func>],<emul>[,<config>]
105 *
106 *  slot is 0..31
107 *  func is 0..7
108 *  emul is a string describing the type of PCI device e.g. virtio-net
109 *  config is an optional string, depending on the device, that can be
110 *  used for configuration.
111 *   Examples are:
112 *     1,virtio-net,tap0
113 *     3:0,dummy
114 */
115static void
116pci_parse_slot_usage(char *aopt)
117{
118
119	fprintf(stderr, "Invalid PCI slot info field \"%s\"\n", aopt);
120}
121
122int
123pci_parse_slot(char *opt, int legacy)
124{
125	char *slot, *func, *emul, *config;
126	char *str, *cpy;
127	int error, snum, fnum;
128
129	error = -1;
130	str = cpy = strdup(opt);
131
132        slot = strsep(&str, ",");
133        func = NULL;
134        if (strchr(slot, ':') != NULL) {
135		func = cpy;
136		(void) strsep(&func, ":");
137        }
138
139	emul = strsep(&str, ",");
140	config = str;
141
142	if (emul == NULL) {
143		pci_parse_slot_usage(opt);
144		goto done;
145	}
146
147	snum = atoi(slot);
148	fnum = func ? atoi(func) : 0;
149
150	if (snum < 0 || snum >= MAXSLOTS || fnum < 0 || fnum >= MAXFUNCS) {
151		pci_parse_slot_usage(opt);
152		goto done;
153	}
154
155	if (pci_slotinfo[snum][fnum].si_name != NULL) {
156		fprintf(stderr, "pci slot %d:%d already occupied!\n",
157			snum, fnum);
158		goto done;
159	}
160
161	if (pci_emul_finddev(emul) == NULL) {
162		fprintf(stderr, "pci slot %d:%d: unknown device \"%s\"\n",
163			snum, fnum, emul);
164		goto done;
165	}
166
167	error = 0;
168	pci_slotinfo[snum][fnum].si_name = emul;
169	pci_slotinfo[snum][fnum].si_param = config;
170	pci_slotinfo[snum][fnum].si_legacy = legacy;
171
172done:
173	if (error)
174		free(cpy);
175
176	return (error);
177}
178
179static int
180pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
181{
182
183	if (offset < pi->pi_msix.pba_offset)
184		return (0);
185
186	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
187		return (0);
188	}
189
190	return (1);
191}
192
193int
194pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
195		     uint64_t value)
196{
197	int msix_entry_offset;
198	int tab_index;
199	char *dest;
200
201	/* support only 4 or 8 byte writes */
202	if (size != 4 && size != 8)
203		return (-1);
204
205	/*
206	 * Return if table index is beyond what device supports
207	 */
208	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
209	if (tab_index >= pi->pi_msix.table_count)
210		return (-1);
211
212	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
213
214	/* support only aligned writes */
215	if ((msix_entry_offset % size) != 0)
216		return (-1);
217
218	dest = (char *)(pi->pi_msix.table + tab_index);
219	dest += msix_entry_offset;
220
221	if (size == 4)
222		*((uint32_t *)dest) = value;
223	else
224		*((uint64_t *)dest) = value;
225
226	return (0);
227}
228
229uint64_t
230pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
231{
232	char *dest;
233	int msix_entry_offset;
234	int tab_index;
235	uint64_t retval = ~0;
236
237	/*
238	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
239	 * table but we also allow 1 byte access to accomodate reads from
240	 * ddb.
241	 */
242	if (size != 1 && size != 4 && size != 8)
243		return (retval);
244
245	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
246
247	/* support only aligned reads */
248	if ((msix_entry_offset % size) != 0) {
249		return (retval);
250	}
251
252	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
253
254	if (tab_index < pi->pi_msix.table_count) {
255		/* valid MSI-X Table access */
256		dest = (char *)(pi->pi_msix.table + tab_index);
257		dest += msix_entry_offset;
258
259		if (size == 1)
260			retval = *((uint8_t *)dest);
261		else if (size == 4)
262			retval = *((uint32_t *)dest);
263		else
264			retval = *((uint64_t *)dest);
265	} else if (pci_valid_pba_offset(pi, offset)) {
266		/* return 0 for PBA access */
267		retval = 0;
268	}
269
270	return (retval);
271}
272
273int
274pci_msix_table_bar(struct pci_devinst *pi)
275{
276
277	if (pi->pi_msix.table != NULL)
278		return (pi->pi_msix.table_bar);
279	else
280		return (-1);
281}
282
283int
284pci_msix_pba_bar(struct pci_devinst *pi)
285{
286
287	if (pi->pi_msix.table != NULL)
288		return (pi->pi_msix.pba_bar);
289	else
290		return (-1);
291}
292
293static int
294pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
295		    uint32_t *eax, void *arg)
296{
297	struct pci_devinst *pdi = arg;
298	struct pci_devemu *pe = pdi->pi_d;
299	uint64_t offset;
300	int i;
301
302	for (i = 0; i <= PCI_BARMAX; i++) {
303		if (pdi->pi_bar[i].type == PCIBAR_IO &&
304		    port >= pdi->pi_bar[i].addr &&
305		    port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
306			offset = port - pdi->pi_bar[i].addr;
307			if (in)
308				*eax = (*pe->pe_barread)(ctx, vcpu, pdi, i,
309							 offset, bytes);
310			else
311				(*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset,
312						   bytes, *eax);
313			return (0);
314		}
315	}
316	return (-1);
317}
318
319static int
320pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
321		     int size, uint64_t *val, void *arg1, long arg2)
322{
323	struct pci_devinst *pdi = arg1;
324	struct pci_devemu *pe = pdi->pi_d;
325	uint64_t offset;
326	int bidx = (int) arg2;
327
328	assert(bidx <= PCI_BARMAX);
329	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
330	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
331	assert(addr >= pdi->pi_bar[bidx].addr &&
332	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
333
334	offset = addr - pdi->pi_bar[bidx].addr;
335
336	if (dir == MEM_F_WRITE)
337		(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset, size, *val);
338	else
339		*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx, offset, size);
340
341	return (0);
342}
343
344
345static int
346pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
347			uint64_t *addr)
348{
349	uint64_t base;
350
351	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
352
353	base = roundup2(*baseptr, size);
354
355	if (base + size <= limit) {
356		*addr = base;
357		*baseptr = base + size;
358		return (0);
359	} else
360		return (-1);
361}
362
363int
364pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
365		   uint64_t size)
366{
367
368	return (pci_emul_alloc_pbar(pdi, idx, 0, type, size));
369}
370
371/*
372 * Register (or unregister) the MMIO or I/O region associated with the BAR
373 * register 'idx' of an emulated pci device.
374 */
375static void
376modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
377{
378	int error;
379	struct inout_port iop;
380	struct mem_range mr;
381
382	switch (pi->pi_bar[idx].type) {
383	case PCIBAR_IO:
384		bzero(&iop, sizeof(struct inout_port));
385		iop.name = pi->pi_name;
386		iop.port = pi->pi_bar[idx].addr;
387		iop.size = pi->pi_bar[idx].size;
388		if (registration) {
389			iop.flags = IOPORT_F_INOUT;
390			iop.handler = pci_emul_io_handler;
391			iop.arg = pi;
392			error = register_inout(&iop);
393		} else
394			error = unregister_inout(&iop);
395		break;
396	case PCIBAR_MEM32:
397	case PCIBAR_MEM64:
398		bzero(&mr, sizeof(struct mem_range));
399		mr.name = pi->pi_name;
400		mr.base = pi->pi_bar[idx].addr;
401		mr.size = pi->pi_bar[idx].size;
402		if (registration) {
403			mr.flags = MEM_F_RW;
404			mr.handler = pci_emul_mem_handler;
405			mr.arg1 = pi;
406			mr.arg2 = idx;
407			error = register_mem(&mr);
408		} else
409			error = unregister_mem(&mr);
410		break;
411	default:
412		error = EINVAL;
413		break;
414	}
415	assert(error == 0);
416}
417
418static void
419unregister_bar(struct pci_devinst *pi, int idx)
420{
421
422	modify_bar_registration(pi, idx, 0);
423}
424
425static void
426register_bar(struct pci_devinst *pi, int idx)
427{
428
429	modify_bar_registration(pi, idx, 1);
430}
431
432/* Are we decoding i/o port accesses for the emulated pci device? */
433static int
434porten(struct pci_devinst *pi)
435{
436	uint16_t cmd;
437
438	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
439
440	return (cmd & PCIM_CMD_PORTEN);
441}
442
443/* Are we decoding memory accesses for the emulated pci device? */
444static int
445memen(struct pci_devinst *pi)
446{
447	uint16_t cmd;
448
449	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
450
451	return (cmd & PCIM_CMD_MEMEN);
452}
453
454/*
455 * Update the MMIO or I/O address that is decoded by the BAR register.
456 *
457 * If the pci device has enabled the address space decoding then intercept
458 * the address range decoded by the BAR register.
459 */
460static void
461update_bar_address(struct  pci_devinst *pi, uint64_t addr, int idx, int type)
462{
463	int decode;
464
465	if (pi->pi_bar[idx].type == PCIBAR_IO)
466		decode = porten(pi);
467	else
468		decode = memen(pi);
469
470	if (decode)
471		unregister_bar(pi, idx);
472
473	switch (type) {
474	case PCIBAR_IO:
475	case PCIBAR_MEM32:
476		pi->pi_bar[idx].addr = addr;
477		break;
478	case PCIBAR_MEM64:
479		pi->pi_bar[idx].addr &= ~0xffffffffUL;
480		pi->pi_bar[idx].addr |= addr;
481		break;
482	case PCIBAR_MEMHI64:
483		pi->pi_bar[idx].addr &= 0xffffffff;
484		pi->pi_bar[idx].addr |= addr;
485		break;
486	default:
487		assert(0);
488	}
489
490	if (decode)
491		register_bar(pi, idx);
492}
493
494int
495pci_emul_alloc_pbar(struct pci_devinst *pdi, int idx, uint64_t hostbase,
496		    enum pcibar_type type, uint64_t size)
497{
498	int error;
499	uint64_t *baseptr, limit, addr, mask, lobits, bar;
500
501	assert(idx >= 0 && idx <= PCI_BARMAX);
502
503	if ((size & (size - 1)) != 0)
504		size = 1UL << flsl(size);	/* round up to a power of 2 */
505
506	/* Enforce minimum BAR sizes required by the PCI standard */
507	if (type == PCIBAR_IO) {
508		if (size < 4)
509			size = 4;
510	} else {
511		if (size < 16)
512			size = 16;
513	}
514
515	switch (type) {
516	case PCIBAR_NONE:
517		baseptr = NULL;
518		addr = mask = lobits = 0;
519		break;
520	case PCIBAR_IO:
521		if (hostbase &&
522		    pci_slotinfo[pdi->pi_slot][pdi->pi_func].si_legacy) {
523			assert(hostbase < PCI_EMUL_IOBASE);
524			baseptr = &hostbase;
525		} else {
526			baseptr = &pci_emul_iobase;
527		}
528		limit = PCI_EMUL_IOLIMIT;
529		mask = PCIM_BAR_IO_BASE;
530		lobits = PCIM_BAR_IO_SPACE;
531		break;
532	case PCIBAR_MEM64:
533		/*
534		 * XXX
535		 * Some drivers do not work well if the 64-bit BAR is allocated
536		 * above 4GB. Allow for this by allocating small requests under
537		 * 4GB unless then allocation size is larger than some arbitrary
538		 * number (32MB currently).
539		 */
540		if (size > 32 * 1024 * 1024) {
541			/*
542			 * XXX special case for device requiring peer-peer DMA
543			 */
544			if (size == 0x100000000UL)
545				baseptr = &hostbase;
546			else
547				baseptr = &pci_emul_membase64;
548			limit = PCI_EMUL_MEMLIMIT64;
549			mask = PCIM_BAR_MEM_BASE;
550			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
551				 PCIM_BAR_MEM_PREFETCH;
552			break;
553		} else {
554			baseptr = &pci_emul_membase32;
555			limit = PCI_EMUL_MEMLIMIT32;
556			mask = PCIM_BAR_MEM_BASE;
557			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
558		}
559		break;
560	case PCIBAR_MEM32:
561		baseptr = &pci_emul_membase32;
562		limit = PCI_EMUL_MEMLIMIT32;
563		mask = PCIM_BAR_MEM_BASE;
564		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
565		break;
566	default:
567		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
568		assert(0);
569	}
570
571	if (baseptr != NULL) {
572		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
573		if (error != 0)
574			return (error);
575	}
576
577	pdi->pi_bar[idx].type = type;
578	pdi->pi_bar[idx].addr = addr;
579	pdi->pi_bar[idx].size = size;
580
581	/* Initialize the BAR register in config space */
582	bar = (addr & mask) | lobits;
583	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
584
585	if (type == PCIBAR_MEM64) {
586		assert(idx + 1 <= PCI_BARMAX);
587		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
588		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
589	}
590
591	register_bar(pdi, idx);
592
593	return (0);
594}
595
596#define	CAP_START_OFFSET	0x40
597static int
598pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
599{
600	int i, capoff, capid, reallen;
601	uint16_t sts;
602
603	static u_char endofcap[4] = {
604		PCIY_RESERVED, 0, 0, 0
605	};
606
607	assert(caplen > 0 && capdata[0] != PCIY_RESERVED);
608
609	reallen = roundup2(caplen, 4);		/* dword aligned */
610
611	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
612	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
613		capoff = CAP_START_OFFSET;
614		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
615		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
616	} else {
617		capoff = pci_get_cfgdata8(pi, PCIR_CAP_PTR);
618		while (1) {
619			assert((capoff & 0x3) == 0);
620			capid = pci_get_cfgdata8(pi, capoff);
621			if (capid == PCIY_RESERVED)
622				break;
623			capoff = pci_get_cfgdata8(pi, capoff + 1);
624		}
625	}
626
627	/* Check if we have enough space */
628	if (capoff + reallen + sizeof(endofcap) > PCI_REGMAX + 1)
629		return (-1);
630
631	/* Copy the capability */
632	for (i = 0; i < caplen; i++)
633		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
634
635	/* Set the next capability pointer */
636	pci_set_cfgdata8(pi, capoff + 1, capoff + reallen);
637
638	/* Copy of the reserved capability which serves as the end marker */
639	for (i = 0; i < sizeof(endofcap); i++)
640		pci_set_cfgdata8(pi, capoff + reallen + i, endofcap[i]);
641
642	return (0);
643}
644
645static struct pci_devemu *
646pci_emul_finddev(char *name)
647{
648	struct pci_devemu **pdpp, *pdp;
649
650	SET_FOREACH(pdpp, pci_devemu_set) {
651		pdp = *pdpp;
652		if (!strcmp(pdp->pe_emu, name)) {
653			return (pdp);
654		}
655	}
656
657	return (NULL);
658}
659
660static int
661pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int slot, int func,
662	      char *params)
663{
664	struct pci_devinst *pdi;
665	int err;
666
667	pdi = malloc(sizeof(struct pci_devinst));
668	bzero(pdi, sizeof(*pdi));
669
670	pdi->pi_vmctx = ctx;
671	pdi->pi_bus = 0;
672	pdi->pi_slot = slot;
673	pdi->pi_func = func;
674	pdi->pi_lintr_pin = -1;
675	pdi->pi_d = pde;
676	snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
677
678	/* Disable legacy interrupts */
679	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
680	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
681
682	pci_set_cfgdata8(pdi, PCIR_COMMAND,
683		    PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
684
685	err = (*pde->pe_init)(ctx, pdi, params);
686	if (err != 0) {
687		free(pdi);
688	} else {
689		pci_emul_devices++;
690		pci_slotinfo[slot][func].si_devi = pdi;
691	}
692
693	return (err);
694}
695
696void
697pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
698{
699	int mmc;
700
701	CTASSERT(sizeof(struct msicap) == 14);
702
703	/* Number of msi messages must be a power of 2 between 1 and 32 */
704	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
705	mmc = ffs(msgnum) - 1;
706
707	bzero(msicap, sizeof(struct msicap));
708	msicap->capid = PCIY_MSI;
709	msicap->nextptr = nextptr;
710	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
711}
712
713int
714pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
715{
716	struct msicap msicap;
717
718	pci_populate_msicap(&msicap, msgnum, 0);
719
720	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
721}
722
723static void
724pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
725		     uint32_t msix_tab_size, int nextptr)
726{
727	CTASSERT(sizeof(struct msixcap) == 12);
728
729	assert(msix_tab_size % 4096 == 0);
730
731	bzero(msixcap, sizeof(struct msixcap));
732	msixcap->capid = PCIY_MSIX;
733	msixcap->nextptr = nextptr;
734
735	/*
736	 * Message Control Register, all fields set to
737	 * zero except for the Table Size.
738	 * Note: Table size N is encoded as N-1
739	 */
740	msixcap->msgctrl = msgnum - 1;
741
742	/*
743	 * MSI-X BAR setup:
744	 * - MSI-X table start at offset 0
745	 * - PBA table starts at a 4K aligned offset after the MSI-X table
746	 */
747	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
748	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
749}
750
751static void
752pci_msix_table_init(struct pci_devinst *pi, int table_entries)
753{
754	int i, table_size;
755
756	assert(table_entries > 0);
757	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
758
759	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
760	pi->pi_msix.table = malloc(table_size);
761	bzero(pi->pi_msix.table, table_size);
762
763	/* set mask bit of vector control register */
764	for (i = 0; i < table_entries; i++)
765		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
766}
767
768int
769pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
770{
771	uint16_t pba_index;
772	uint32_t tab_size;
773	struct msixcap msixcap;
774
775	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
776	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
777
778	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
779
780	/* Align table size to nearest 4K */
781	tab_size = roundup2(tab_size, 4096);
782
783	pi->pi_msix.table_bar = barnum;
784	pi->pi_msix.pba_bar   = barnum;
785	pi->pi_msix.table_offset = 0;
786	pi->pi_msix.table_count = msgnum;
787	pi->pi_msix.pba_offset = tab_size;
788
789	/* calculate the MMIO size required for MSI-X PBA */
790	pba_index = (msgnum - 1) / (PBA_TABLE_ENTRY_SIZE * 8);
791	pi->pi_msix.pba_size = (pba_index + 1) * PBA_TABLE_ENTRY_SIZE;
792
793	pci_msix_table_init(pi, msgnum);
794
795	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size, 0);
796
797	/* allocate memory for MSI-X Table and PBA */
798	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
799				tab_size + pi->pi_msix.pba_size);
800
801	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
802					sizeof(msixcap)));
803}
804
805void
806msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
807		 int bytes, uint32_t val)
808{
809	uint16_t msgctrl, rwmask;
810	int off, table_bar;
811
812	off = offset - capoff;
813	table_bar = pi->pi_msix.table_bar;
814	/* Message Control Register */
815	if (off == 2 && bytes == 2) {
816		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
817		msgctrl = pci_get_cfgdata16(pi, offset);
818		msgctrl &= ~rwmask;
819		msgctrl |= val & rwmask;
820		val = msgctrl;
821
822		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
823		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
824	}
825
826	CFGWRITE(pi, offset, val, bytes);
827}
828
829void
830msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
831		int bytes, uint32_t val)
832{
833	uint16_t msgctrl, rwmask, msgdata, mme;
834	uint32_t addrlo;
835
836	/*
837	 * If guest is writing to the message control register make sure
838	 * we do not overwrite read-only fields.
839	 */
840	if ((offset - capoff) == 2 && bytes == 2) {
841		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
842		msgctrl = pci_get_cfgdata16(pi, offset);
843		msgctrl &= ~rwmask;
844		msgctrl |= val & rwmask;
845		val = msgctrl;
846
847		addrlo = pci_get_cfgdata32(pi, capoff + 4);
848		if (msgctrl & PCIM_MSICTRL_64BIT)
849			msgdata = pci_get_cfgdata16(pi, capoff + 12);
850		else
851			msgdata = pci_get_cfgdata16(pi, capoff + 8);
852
853		/*
854		 * XXX check delivery mode, destination mode etc
855		 */
856		mme = msgctrl & PCIM_MSICTRL_MME_MASK;
857		pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
858		if (pi->pi_msi.enabled) {
859			pi->pi_msi.cpu = (addrlo >> 12) & 0xff;
860			pi->pi_msi.vector = msgdata & 0xff;
861			pi->pi_msi.msgnum = 1 << (mme >> 4);
862		} else {
863			pi->pi_msi.cpu = 0;
864			pi->pi_msi.vector = 0;
865			pi->pi_msi.msgnum = 0;
866		}
867	}
868
869	CFGWRITE(pi, offset, val, bytes);
870}
871
872void
873pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
874		 int bytes, uint32_t val)
875{
876
877	/* XXX don't write to the readonly parts */
878	CFGWRITE(pi, offset, val, bytes);
879}
880
881#define	PCIECAP_VERSION	0x2
882int
883pci_emul_add_pciecap(struct pci_devinst *pi, int type)
884{
885	int err;
886	struct pciecap pciecap;
887
888	CTASSERT(sizeof(struct pciecap) == 60);
889
890	if (type != PCIEM_TYPE_ROOT_PORT)
891		return (-1);
892
893	bzero(&pciecap, sizeof(pciecap));
894
895	pciecap.capid = PCIY_EXPRESS;
896	pciecap.pcie_capabilities = PCIECAP_VERSION | PCIEM_TYPE_ROOT_PORT;
897	pciecap.link_capabilities = 0x411;	/* gen1, x1 */
898	pciecap.link_status = 0x11;		/* gen1, x1 */
899
900	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
901	return (err);
902}
903
904/*
905 * This function assumes that 'coff' is in the capabilities region of the
906 * config space.
907 */
908static void
909pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val)
910{
911	int capid;
912	uint8_t capoff, nextoff;
913
914	/* Do not allow un-aligned writes */
915	if ((offset & (bytes - 1)) != 0)
916		return;
917
918	/* Find the capability that we want to update */
919	capoff = CAP_START_OFFSET;
920	while (1) {
921		capid = pci_get_cfgdata8(pi, capoff);
922		if (capid == PCIY_RESERVED)
923			break;
924
925		nextoff = pci_get_cfgdata8(pi, capoff + 1);
926		if (offset >= capoff && offset < nextoff)
927			break;
928
929		capoff = nextoff;
930	}
931	assert(offset >= capoff);
932
933	/*
934	 * Capability ID and Next Capability Pointer are readonly.
935	 * However, some o/s's do 4-byte writes that include these.
936	 * For this case, trim the write back to 2 bytes and adjust
937	 * the data.
938	 */
939	if (offset == capoff || offset == capoff + 1) {
940		if (offset == capoff && bytes == 4) {
941			bytes = 2;
942			offset += 2;
943			val >>= 16;
944		} else
945			return;
946	}
947
948	switch (capid) {
949	case PCIY_MSI:
950		msicap_cfgwrite(pi, capoff, offset, bytes, val);
951		break;
952	case PCIY_MSIX:
953		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
954		break;
955	case PCIY_EXPRESS:
956		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
957		break;
958	default:
959		break;
960	}
961}
962
963static int
964pci_emul_iscap(struct pci_devinst *pi, int offset)
965{
966	int found;
967	uint16_t sts;
968	uint8_t capid, lastoff;
969
970	found = 0;
971	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
972	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
973		lastoff = pci_get_cfgdata8(pi, PCIR_CAP_PTR);
974		while (1) {
975			assert((lastoff & 0x3) == 0);
976			capid = pci_get_cfgdata8(pi, lastoff);
977			if (capid == PCIY_RESERVED)
978				break;
979			lastoff = pci_get_cfgdata8(pi, lastoff + 1);
980		}
981		if (offset >= CAP_START_OFFSET && offset <= lastoff)
982			found = 1;
983	}
984	return (found);
985}
986
987static int
988pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
989			  int size, uint64_t *val, void *arg1, long arg2)
990{
991	/*
992	 * Ignore writes; return 0xff's for reads. The mem read code
993	 * will take care of truncating to the correct size.
994	 */
995	if (dir == MEM_F_READ) {
996		*val = 0xffffffffffffffff;
997	}
998
999	return (0);
1000}
1001
1002int
1003init_pci(struct vmctx *ctx)
1004{
1005	struct mem_range memp;
1006	struct pci_devemu *pde;
1007	struct slotinfo *si;
1008	size_t lowmem;
1009	int slot, func;
1010	int error;
1011
1012	pci_emul_iobase = PCI_EMUL_IOBASE;
1013	pci_emul_membase32 = vm_get_lowmem_limit(ctx);
1014	pci_emul_membase64 = PCI_EMUL_MEMBASE64;
1015
1016	for (slot = 0; slot < MAXSLOTS; slot++) {
1017		for (func = 0; func < MAXFUNCS; func++) {
1018			si = &pci_slotinfo[slot][func];
1019			if (si->si_name != NULL) {
1020				pde = pci_emul_finddev(si->si_name);
1021				assert(pde != NULL);
1022				error = pci_emul_init(ctx, pde, slot, func,
1023					    si->si_param);
1024				if (error)
1025					return (error);
1026			}
1027		}
1028	}
1029
1030	/*
1031	 * The guest physical memory map looks like the following:
1032	 * [0,		    lowmem)		guest system memory
1033	 * [lowmem,	    lowmem_limit)	memory hole (may be absent)
1034	 * [lowmem_limit,   4GB)		PCI hole (32-bit BAR allocation)
1035	 * [4GB,	    4GB + highmem)
1036	 *
1037	 * Accesses to memory addresses that are not allocated to system
1038	 * memory or PCI devices return 0xff's.
1039	 */
1040	error = vm_get_memory_seg(ctx, 0, &lowmem, NULL);
1041	assert(error == 0);
1042
1043	memset(&memp, 0, sizeof(struct mem_range));
1044	memp.name = "PCI hole";
1045	memp.flags = MEM_F_RW;
1046	memp.base = lowmem;
1047	memp.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1048	memp.handler = pci_emul_fallback_handler;
1049
1050	error = register_mem_fallback(&memp);
1051	assert(error == 0);
1052
1053	return (0);
1054}
1055
1056int
1057pci_msi_enabled(struct pci_devinst *pi)
1058{
1059	return (pi->pi_msi.enabled);
1060}
1061
1062int
1063pci_msi_msgnum(struct pci_devinst *pi)
1064{
1065	if (pi->pi_msi.enabled)
1066		return (pi->pi_msi.msgnum);
1067	else
1068		return (0);
1069}
1070
1071int
1072pci_msix_enabled(struct pci_devinst *pi)
1073{
1074
1075	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1076}
1077
1078void
1079pci_generate_msix(struct pci_devinst *pi, int index)
1080{
1081	struct msix_table_entry *mte;
1082
1083	if (!pci_msix_enabled(pi))
1084		return;
1085
1086	if (pi->pi_msix.function_mask)
1087		return;
1088
1089	if (index >= pi->pi_msix.table_count)
1090		return;
1091
1092	mte = &pi->pi_msix.table[index];
1093	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1094		/* XXX Set PBA bit if interrupt is disabled */
1095		vm_lapic_irq(pi->pi_vmctx,
1096			     (mte->addr >> 12) & 0xff, mte->msg_data & 0xff);
1097	}
1098}
1099
1100void
1101pci_generate_msi(struct pci_devinst *pi, int msg)
1102{
1103
1104	if (pci_msi_enabled(pi) && msg < pci_msi_msgnum(pi)) {
1105		vm_lapic_irq(pi->pi_vmctx,
1106			     pi->pi_msi.cpu,
1107			     pi->pi_msi.vector + msg);
1108	}
1109}
1110
1111int
1112pci_is_legacy(struct pci_devinst *pi)
1113{
1114
1115	return (pci_slotinfo[pi->pi_slot][pi->pi_func].si_legacy);
1116}
1117
1118int
1119pci_lintr_request(struct pci_devinst *pi, int req)
1120{
1121	int irq;
1122
1123	irq = legacy_irq_alloc(req);
1124	if (irq < 0)
1125		return (-1);
1126
1127	pi->pi_lintr_pin = irq;
1128	pci_set_cfgdata8(pi, PCIR_INTLINE, irq);
1129	pci_set_cfgdata8(pi, PCIR_INTPIN, 1);
1130	return (0);
1131}
1132
1133void
1134pci_lintr_assert(struct pci_devinst *pi)
1135{
1136
1137	assert(pi->pi_lintr_pin >= 0);
1138
1139	if (pi->pi_lintr_state == 0) {
1140		pi->pi_lintr_state = 1;
1141		vm_ioapic_assert_irq(pi->pi_vmctx, pi->pi_lintr_pin);
1142	}
1143}
1144
1145void
1146pci_lintr_deassert(struct pci_devinst *pi)
1147{
1148
1149	assert(pi->pi_lintr_pin >= 0);
1150
1151	if (pi->pi_lintr_state == 1) {
1152		pi->pi_lintr_state = 0;
1153		vm_ioapic_deassert_irq(pi->pi_vmctx, pi->pi_lintr_pin);
1154	}
1155}
1156
1157/*
1158 * Return 1 if the emulated device in 'slot' is a multi-function device.
1159 * Return 0 otherwise.
1160 */
1161static int
1162pci_emul_is_mfdev(int slot)
1163{
1164	int f, numfuncs;
1165
1166	numfuncs = 0;
1167	for (f = 0; f < MAXFUNCS; f++) {
1168		if (pci_slotinfo[slot][f].si_devi != NULL) {
1169			numfuncs++;
1170		}
1171	}
1172	return (numfuncs > 1);
1173}
1174
1175/*
1176 * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
1177 * whether or not is a multi-function being emulated in the pci 'slot'.
1178 */
1179static void
1180pci_emul_hdrtype_fixup(int slot, int off, int bytes, uint32_t *rv)
1181{
1182	int mfdev;
1183
1184	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
1185		mfdev = pci_emul_is_mfdev(slot);
1186		switch (bytes) {
1187		case 1:
1188		case 2:
1189			*rv &= ~PCIM_MFDEV;
1190			if (mfdev) {
1191				*rv |= PCIM_MFDEV;
1192			}
1193			break;
1194		case 4:
1195			*rv &= ~(PCIM_MFDEV << 16);
1196			if (mfdev) {
1197				*rv |= (PCIM_MFDEV << 16);
1198			}
1199			break;
1200		}
1201	}
1202}
1203
1204static int cfgbus, cfgslot, cfgfunc, cfgoff;
1205
1206static int
1207pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1208		 uint32_t *eax, void *arg)
1209{
1210	uint32_t x;
1211
1212	if (bytes != 4) {
1213		if (in)
1214			*eax = (bytes == 2) ? 0xffff : 0xff;
1215		return (0);
1216	}
1217
1218	if (in) {
1219		x = (cfgbus << 16) |
1220		    (cfgslot << 11) |
1221		    (cfgfunc << 8) |
1222		    cfgoff;
1223		*eax = x | CONF1_ENABLE;
1224	} else {
1225		x = *eax;
1226		cfgoff = x & PCI_REGMAX;
1227		cfgfunc = (x >> 8) & PCI_FUNCMAX;
1228		cfgslot = (x >> 11) & PCI_SLOTMAX;
1229		cfgbus = (x >> 16) & PCI_BUSMAX;
1230	}
1231
1232	return (0);
1233}
1234INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
1235
1236static uint32_t
1237bits_changed(uint32_t old, uint32_t new, uint32_t mask)
1238{
1239
1240	return ((old ^ new) & mask);
1241}
1242
1243static void
1244pci_emul_cmdwrite(struct pci_devinst *pi, uint32_t new, int bytes)
1245{
1246	int i;
1247	uint16_t old;
1248
1249	/*
1250	 * The command register is at an offset of 4 bytes and thus the
1251	 * guest could write 1, 2 or 4 bytes starting at this offset.
1252	 */
1253
1254	old = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
1255	CFGWRITE(pi, PCIR_COMMAND, new, bytes);		/* update config */
1256	new = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* get updated value */
1257
1258	/*
1259	 * If the MMIO or I/O address space decoding has changed then
1260	 * register/unregister all BARs that decode that address space.
1261	 */
1262	for (i = 0; i <= PCI_BARMAX; i++) {
1263		switch (pi->pi_bar[i].type) {
1264			case PCIBAR_NONE:
1265			case PCIBAR_MEMHI64:
1266				break;
1267			case PCIBAR_IO:
1268				/* I/O address space decoding changed? */
1269				if (bits_changed(old, new, PCIM_CMD_PORTEN)) {
1270					if (porten(pi))
1271						register_bar(pi, i);
1272					else
1273						unregister_bar(pi, i);
1274				}
1275				break;
1276			case PCIBAR_MEM32:
1277			case PCIBAR_MEM64:
1278				/* MMIO address space decoding changed? */
1279				if (bits_changed(old, new, PCIM_CMD_MEMEN)) {
1280					if (memen(pi))
1281						register_bar(pi, i);
1282					else
1283						unregister_bar(pi, i);
1284				}
1285				break;
1286			default:
1287				assert(0);
1288		}
1289	}
1290}
1291
1292static int
1293pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1294		 uint32_t *eax, void *arg)
1295{
1296	struct pci_devinst *pi;
1297	struct pci_devemu *pe;
1298	int coff, idx, needcfg;
1299	uint64_t addr, bar, mask;
1300
1301	assert(bytes == 1 || bytes == 2 || bytes == 4);
1302
1303	if (cfgbus == 0)
1304		pi = pci_slotinfo[cfgslot][cfgfunc].si_devi;
1305	else
1306		pi = NULL;
1307
1308	coff = cfgoff + (port - CONF1_DATA_PORT);
1309
1310#if 0
1311	printf("pcicfg-%s from 0x%0x of %d bytes (%d/%d/%d)\n\r",
1312		in ? "read" : "write", coff, bytes, cfgbus, cfgslot, cfgfunc);
1313#endif
1314
1315	/*
1316	 * Just return if there is no device at this cfgslot:cfgfunc or
1317	 * if the guest is doing an un-aligned access
1318	 */
1319	if (pi == NULL || (coff & (bytes - 1)) != 0) {
1320		if (in)
1321			*eax = 0xffffffff;
1322		return (0);
1323	}
1324
1325	pe = pi->pi_d;
1326
1327	/*
1328	 * Config read
1329	 */
1330	if (in) {
1331		/* Let the device emulation override the default handler */
1332		if (pe->pe_cfgread != NULL) {
1333			needcfg = pe->pe_cfgread(ctx, vcpu, pi,
1334						    coff, bytes, eax);
1335		} else {
1336			needcfg = 1;
1337		}
1338
1339		if (needcfg) {
1340			if (bytes == 1)
1341				*eax = pci_get_cfgdata8(pi, coff);
1342			else if (bytes == 2)
1343				*eax = pci_get_cfgdata16(pi, coff);
1344			else
1345				*eax = pci_get_cfgdata32(pi, coff);
1346		}
1347
1348		pci_emul_hdrtype_fixup(cfgslot, coff, bytes, eax);
1349	} else {
1350		/* Let the device emulation override the default handler */
1351		if (pe->pe_cfgwrite != NULL &&
1352		    (*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
1353			return (0);
1354
1355		/*
1356		 * Special handling for write to BAR registers
1357		 */
1358		if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
1359			/*
1360			 * Ignore writes to BAR registers that are not
1361			 * 4-byte aligned.
1362			 */
1363			if (bytes != 4 || (coff & 0x3) != 0)
1364				return (0);
1365			idx = (coff - PCIR_BAR(0)) / 4;
1366			mask = ~(pi->pi_bar[idx].size - 1);
1367			switch (pi->pi_bar[idx].type) {
1368			case PCIBAR_NONE:
1369				pi->pi_bar[idx].addr = bar = 0;
1370				break;
1371			case PCIBAR_IO:
1372				addr = *eax & mask;
1373				addr &= 0xffff;
1374				bar = addr | PCIM_BAR_IO_SPACE;
1375				/*
1376				 * Register the new BAR value for interception
1377				 */
1378				if (addr != pi->pi_bar[idx].addr) {
1379					update_bar_address(pi, addr, idx,
1380							   PCIBAR_IO);
1381				}
1382				break;
1383			case PCIBAR_MEM32:
1384				addr = bar = *eax & mask;
1385				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
1386				if (addr != pi->pi_bar[idx].addr) {
1387					update_bar_address(pi, addr, idx,
1388							   PCIBAR_MEM32);
1389				}
1390				break;
1391			case PCIBAR_MEM64:
1392				addr = bar = *eax & mask;
1393				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
1394				       PCIM_BAR_MEM_PREFETCH;
1395				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
1396					update_bar_address(pi, addr, idx,
1397							   PCIBAR_MEM64);
1398				}
1399				break;
1400			case PCIBAR_MEMHI64:
1401				mask = ~(pi->pi_bar[idx - 1].size - 1);
1402				addr = ((uint64_t)*eax << 32) & mask;
1403				bar = addr >> 32;
1404				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
1405					update_bar_address(pi, addr, idx - 1,
1406							   PCIBAR_MEMHI64);
1407				}
1408				break;
1409			default:
1410				assert(0);
1411			}
1412			pci_set_cfgdata32(pi, coff, bar);
1413
1414		} else if (pci_emul_iscap(pi, coff)) {
1415			pci_emul_capwrite(pi, coff, bytes, *eax);
1416		} else if (coff == PCIR_COMMAND) {
1417			pci_emul_cmdwrite(pi, *eax, bytes);
1418		} else {
1419			CFGWRITE(pi, coff, *eax, bytes);
1420		}
1421	}
1422
1423	return (0);
1424}
1425
1426INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
1427INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
1428INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
1429INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
1430
1431/*
1432 * I/O ports to configure PCI IRQ routing. We ignore all writes to it.
1433 */
1434static int
1435pci_irq_port_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1436		     uint32_t *eax, void *arg)
1437{
1438	assert(in == 0);
1439	return (0);
1440}
1441INOUT_PORT(pci_irq, 0xC00, IOPORT_F_OUT, pci_irq_port_handler);
1442INOUT_PORT(pci_irq, 0xC01, IOPORT_F_OUT, pci_irq_port_handler);
1443
1444#define PCI_EMUL_TEST
1445#ifdef PCI_EMUL_TEST
1446/*
1447 * Define a dummy test device
1448 */
1449#define DIOSZ	20
1450#define DMEMSZ	4096
1451struct pci_emul_dsoftc {
1452	uint8_t   ioregs[DIOSZ];
1453	uint8_t	  memregs[DMEMSZ];
1454};
1455
1456#define	PCI_EMUL_MSI_MSGS	 4
1457#define	PCI_EMUL_MSIX_MSGS	16
1458
1459static int
1460pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
1461{
1462	int error;
1463	struct pci_emul_dsoftc *sc;
1464
1465	sc = malloc(sizeof(struct pci_emul_dsoftc));
1466	memset(sc, 0, sizeof(struct pci_emul_dsoftc));
1467
1468	pi->pi_arg = sc;
1469
1470	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
1471	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
1472	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
1473
1474	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
1475	assert(error == 0);
1476
1477	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
1478	assert(error == 0);
1479
1480	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
1481	assert(error == 0);
1482
1483	return (0);
1484}
1485
1486static void
1487pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
1488	      uint64_t offset, int size, uint64_t value)
1489{
1490	int i;
1491	struct pci_emul_dsoftc *sc = pi->pi_arg;
1492
1493	if (baridx == 0) {
1494		if (offset + size > DIOSZ) {
1495			printf("diow: iow too large, offset %ld size %d\n",
1496			       offset, size);
1497			return;
1498		}
1499
1500		if (size == 1) {
1501			sc->ioregs[offset] = value & 0xff;
1502		} else if (size == 2) {
1503			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
1504		} else if (size == 4) {
1505			*(uint32_t *)&sc->ioregs[offset] = value;
1506		} else {
1507			printf("diow: iow unknown size %d\n", size);
1508		}
1509
1510		/*
1511		 * Special magic value to generate an interrupt
1512		 */
1513		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
1514			pci_generate_msi(pi, value % pci_msi_msgnum(pi));
1515
1516		if (value == 0xabcdef) {
1517			for (i = 0; i < pci_msi_msgnum(pi); i++)
1518				pci_generate_msi(pi, i);
1519		}
1520	}
1521
1522	if (baridx == 1) {
1523		if (offset + size > DMEMSZ) {
1524			printf("diow: memw too large, offset %ld size %d\n",
1525			       offset, size);
1526			return;
1527		}
1528
1529		if (size == 1) {
1530			sc->memregs[offset] = value;
1531		} else if (size == 2) {
1532			*(uint16_t *)&sc->memregs[offset] = value;
1533		} else if (size == 4) {
1534			*(uint32_t *)&sc->memregs[offset] = value;
1535		} else if (size == 8) {
1536			*(uint64_t *)&sc->memregs[offset] = value;
1537		} else {
1538			printf("diow: memw unknown size %d\n", size);
1539		}
1540
1541		/*
1542		 * magic interrupt ??
1543		 */
1544	}
1545
1546	if (baridx > 1) {
1547		printf("diow: unknown bar idx %d\n", baridx);
1548	}
1549}
1550
1551static uint64_t
1552pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
1553	      uint64_t offset, int size)
1554{
1555	struct pci_emul_dsoftc *sc = pi->pi_arg;
1556	uint32_t value;
1557
1558	if (baridx == 0) {
1559		if (offset + size > DIOSZ) {
1560			printf("dior: ior too large, offset %ld size %d\n",
1561			       offset, size);
1562			return (0);
1563		}
1564
1565		if (size == 1) {
1566			value = sc->ioregs[offset];
1567		} else if (size == 2) {
1568			value = *(uint16_t *) &sc->ioregs[offset];
1569		} else if (size == 4) {
1570			value = *(uint32_t *) &sc->ioregs[offset];
1571		} else {
1572			printf("dior: ior unknown size %d\n", size);
1573		}
1574	}
1575
1576	if (baridx == 1) {
1577		if (offset + size > DMEMSZ) {
1578			printf("dior: memr too large, offset %ld size %d\n",
1579			       offset, size);
1580			return (0);
1581		}
1582
1583		if (size == 1) {
1584			value = sc->memregs[offset];
1585		} else if (size == 2) {
1586			value = *(uint16_t *) &sc->memregs[offset];
1587		} else if (size == 4) {
1588			value = *(uint32_t *) &sc->memregs[offset];
1589		} else if (size == 8) {
1590			value = *(uint64_t *) &sc->memregs[offset];
1591		} else {
1592			printf("dior: ior unknown size %d\n", size);
1593		}
1594	}
1595
1596
1597	if (baridx > 1) {
1598		printf("dior: unknown bar idx %d\n", baridx);
1599		return (0);
1600	}
1601
1602	return (value);
1603}
1604
1605struct pci_devemu pci_dummy = {
1606	.pe_emu = "dummy",
1607	.pe_init = pci_emul_dinit,
1608	.pe_barwrite = pci_emul_diow,
1609	.pe_barread = pci_emul_dior
1610};
1611PCI_EMUL_SET(pci_dummy);
1612
1613#endif /* PCI_EMUL_TEST */
1614