vnode_pager.c revision 284100
1/*-
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41 */
42
43/*
44 * Page to/from files (vnodes).
45 */
46
47/*
48 * TODO:
49 *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50 *	greatly re-simplify the vnode_pager.
51 */
52
53#include <sys/cdefs.h>
54__FBSDID("$FreeBSD: stable/10/sys/vm/vnode_pager.c 284100 2015-06-06 20:37:40Z jhb $");
55
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/proc.h>
59#include <sys/vnode.h>
60#include <sys/mount.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/vmmeter.h>
64#include <sys/limits.h>
65#include <sys/conf.h>
66#include <sys/rwlock.h>
67#include <sys/sf_buf.h>
68
69#include <machine/atomic.h>
70
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <vm/vm_object.h>
74#include <vm/vm_page.h>
75#include <vm/vm_pager.h>
76#include <vm/vm_map.h>
77#include <vm/vnode_pager.h>
78#include <vm/vm_extern.h>
79
80static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
81    daddr_t *rtaddress, int *run);
82static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
83static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
84static void vnode_pager_dealloc(vm_object_t);
85static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
86static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
87static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
88static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
89    vm_ooffset_t, struct ucred *cred);
90
91struct pagerops vnodepagerops = {
92	.pgo_alloc =	vnode_pager_alloc,
93	.pgo_dealloc =	vnode_pager_dealloc,
94	.pgo_getpages =	vnode_pager_getpages,
95	.pgo_putpages =	vnode_pager_putpages,
96	.pgo_haspage =	vnode_pager_haspage,
97};
98
99int vnode_pbuf_freecnt;
100
101/* Create the VM system backing object for this vnode */
102int
103vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
104{
105	vm_object_t object;
106	vm_ooffset_t size = isize;
107	struct vattr va;
108
109	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
110		return (0);
111
112	while ((object = vp->v_object) != NULL) {
113		VM_OBJECT_WLOCK(object);
114		if (!(object->flags & OBJ_DEAD)) {
115			VM_OBJECT_WUNLOCK(object);
116			return (0);
117		}
118		VOP_UNLOCK(vp, 0);
119		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
120		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
121		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
122	}
123
124	if (size == 0) {
125		if (vn_isdisk(vp, NULL)) {
126			size = IDX_TO_OFF(INT_MAX);
127		} else {
128			if (VOP_GETATTR(vp, &va, td->td_ucred))
129				return (0);
130			size = va.va_size;
131		}
132	}
133
134	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
135	/*
136	 * Dereference the reference we just created.  This assumes
137	 * that the object is associated with the vp.
138	 */
139	VM_OBJECT_WLOCK(object);
140	object->ref_count--;
141	VM_OBJECT_WUNLOCK(object);
142	vrele(vp);
143
144	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
145
146	return (0);
147}
148
149void
150vnode_destroy_vobject(struct vnode *vp)
151{
152	struct vm_object *obj;
153
154	obj = vp->v_object;
155	if (obj == NULL)
156		return;
157	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
158	VM_OBJECT_WLOCK(obj);
159	if (obj->ref_count == 0) {
160		/*
161		 * don't double-terminate the object
162		 */
163		if ((obj->flags & OBJ_DEAD) == 0)
164			vm_object_terminate(obj);
165		else
166			VM_OBJECT_WUNLOCK(obj);
167	} else {
168		/*
169		 * Woe to the process that tries to page now :-).
170		 */
171		vm_pager_deallocate(obj);
172		VM_OBJECT_WUNLOCK(obj);
173	}
174	vp->v_object = NULL;
175}
176
177
178/*
179 * Allocate (or lookup) pager for a vnode.
180 * Handle is a vnode pointer.
181 *
182 * MPSAFE
183 */
184vm_object_t
185vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
186    vm_ooffset_t offset, struct ucred *cred)
187{
188	vm_object_t object;
189	struct vnode *vp;
190
191	/*
192	 * Pageout to vnode, no can do yet.
193	 */
194	if (handle == NULL)
195		return (NULL);
196
197	vp = (struct vnode *) handle;
198
199	/*
200	 * If the object is being terminated, wait for it to
201	 * go away.
202	 */
203retry:
204	while ((object = vp->v_object) != NULL) {
205		VM_OBJECT_WLOCK(object);
206		if ((object->flags & OBJ_DEAD) == 0)
207			break;
208		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
209		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
210	}
211
212	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
213
214	if (object == NULL) {
215		/*
216		 * Add an object of the appropriate size
217		 */
218		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
219
220		object->un_pager.vnp.vnp_size = size;
221		object->un_pager.vnp.writemappings = 0;
222
223		object->handle = handle;
224		VI_LOCK(vp);
225		if (vp->v_object != NULL) {
226			/*
227			 * Object has been created while we were sleeping
228			 */
229			VI_UNLOCK(vp);
230			VM_OBJECT_WLOCK(object);
231			KASSERT(object->ref_count == 1,
232			    ("leaked ref %p %d", object, object->ref_count));
233			object->type = OBJT_DEAD;
234			object->ref_count = 0;
235			VM_OBJECT_WUNLOCK(object);
236			vm_object_destroy(object);
237			goto retry;
238		}
239		vp->v_object = object;
240		VI_UNLOCK(vp);
241	} else {
242		object->ref_count++;
243		VM_OBJECT_WUNLOCK(object);
244	}
245	vref(vp);
246	return (object);
247}
248
249/*
250 *	The object must be locked.
251 */
252static void
253vnode_pager_dealloc(object)
254	vm_object_t object;
255{
256	struct vnode *vp;
257	int refs;
258
259	vp = object->handle;
260	if (vp == NULL)
261		panic("vnode_pager_dealloc: pager already dealloced");
262
263	VM_OBJECT_ASSERT_WLOCKED(object);
264	vm_object_pip_wait(object, "vnpdea");
265	refs = object->ref_count;
266
267	object->handle = NULL;
268	object->type = OBJT_DEAD;
269	if (object->flags & OBJ_DISCONNECTWNT) {
270		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
271		wakeup(object);
272	}
273	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
274	if (object->un_pager.vnp.writemappings > 0) {
275		object->un_pager.vnp.writemappings = 0;
276		VOP_ADD_WRITECOUNT(vp, -1);
277		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
278		    __func__, vp, vp->v_writecount);
279	}
280	vp->v_object = NULL;
281	VOP_UNSET_TEXT(vp);
282	VM_OBJECT_WUNLOCK(object);
283	while (refs-- > 0)
284		vunref(vp);
285	VM_OBJECT_WLOCK(object);
286}
287
288static boolean_t
289vnode_pager_haspage(object, pindex, before, after)
290	vm_object_t object;
291	vm_pindex_t pindex;
292	int *before;
293	int *after;
294{
295	struct vnode *vp = object->handle;
296	daddr_t bn;
297	int err;
298	daddr_t reqblock;
299	int poff;
300	int bsize;
301	int pagesperblock, blocksperpage;
302
303	VM_OBJECT_ASSERT_WLOCKED(object);
304	/*
305	 * If no vp or vp is doomed or marked transparent to VM, we do not
306	 * have the page.
307	 */
308	if (vp == NULL || vp->v_iflag & VI_DOOMED)
309		return FALSE;
310	/*
311	 * If the offset is beyond end of file we do
312	 * not have the page.
313	 */
314	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
315		return FALSE;
316
317	bsize = vp->v_mount->mnt_stat.f_iosize;
318	pagesperblock = bsize / PAGE_SIZE;
319	blocksperpage = 0;
320	if (pagesperblock > 0) {
321		reqblock = pindex / pagesperblock;
322	} else {
323		blocksperpage = (PAGE_SIZE / bsize);
324		reqblock = pindex * blocksperpage;
325	}
326	VM_OBJECT_WUNLOCK(object);
327	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
328	VM_OBJECT_WLOCK(object);
329	if (err)
330		return TRUE;
331	if (bn == -1)
332		return FALSE;
333	if (pagesperblock > 0) {
334		poff = pindex - (reqblock * pagesperblock);
335		if (before) {
336			*before *= pagesperblock;
337			*before += poff;
338		}
339		if (after) {
340			int numafter;
341			*after *= pagesperblock;
342			numafter = pagesperblock - (poff + 1);
343			if (IDX_TO_OFF(pindex + numafter) >
344			    object->un_pager.vnp.vnp_size) {
345				numafter =
346		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
347				    pindex;
348			}
349			*after += numafter;
350		}
351	} else {
352		if (before) {
353			*before /= blocksperpage;
354		}
355
356		if (after) {
357			*after /= blocksperpage;
358		}
359	}
360	return TRUE;
361}
362
363/*
364 * Lets the VM system know about a change in size for a file.
365 * We adjust our own internal size and flush any cached pages in
366 * the associated object that are affected by the size change.
367 *
368 * Note: this routine may be invoked as a result of a pager put
369 * operation (possibly at object termination time), so we must be careful.
370 */
371void
372vnode_pager_setsize(vp, nsize)
373	struct vnode *vp;
374	vm_ooffset_t nsize;
375{
376	vm_object_t object;
377	vm_page_t m;
378	vm_pindex_t nobjsize;
379
380	if ((object = vp->v_object) == NULL)
381		return;
382/* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
383	VM_OBJECT_WLOCK(object);
384	if (object->type == OBJT_DEAD) {
385		VM_OBJECT_WUNLOCK(object);
386		return;
387	}
388	KASSERT(object->type == OBJT_VNODE,
389	    ("not vnode-backed object %p", object));
390	if (nsize == object->un_pager.vnp.vnp_size) {
391		/*
392		 * Hasn't changed size
393		 */
394		VM_OBJECT_WUNLOCK(object);
395		return;
396	}
397	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
398	if (nsize < object->un_pager.vnp.vnp_size) {
399		/*
400		 * File has shrunk. Toss any cached pages beyond the new EOF.
401		 */
402		if (nobjsize < object->size)
403			vm_object_page_remove(object, nobjsize, object->size,
404			    0);
405		/*
406		 * this gets rid of garbage at the end of a page that is now
407		 * only partially backed by the vnode.
408		 *
409		 * XXX for some reason (I don't know yet), if we take a
410		 * completely invalid page and mark it partially valid
411		 * it can screw up NFS reads, so we don't allow the case.
412		 */
413		if ((nsize & PAGE_MASK) &&
414		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
415		    m->valid != 0) {
416			int base = (int)nsize & PAGE_MASK;
417			int size = PAGE_SIZE - base;
418
419			/*
420			 * Clear out partial-page garbage in case
421			 * the page has been mapped.
422			 */
423			pmap_zero_page_area(m, base, size);
424
425			/*
426			 * Update the valid bits to reflect the blocks that
427			 * have been zeroed.  Some of these valid bits may
428			 * have already been set.
429			 */
430			vm_page_set_valid_range(m, base, size);
431
432			/*
433			 * Round "base" to the next block boundary so that the
434			 * dirty bit for a partially zeroed block is not
435			 * cleared.
436			 */
437			base = roundup2(base, DEV_BSIZE);
438
439			/*
440			 * Clear out partial-page dirty bits.
441			 *
442			 * note that we do not clear out the valid
443			 * bits.  This would prevent bogus_page
444			 * replacement from working properly.
445			 */
446			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
447		} else if ((nsize & PAGE_MASK) &&
448		    vm_page_is_cached(object, OFF_TO_IDX(nsize))) {
449			vm_page_cache_free(object, OFF_TO_IDX(nsize),
450			    nobjsize);
451		}
452	}
453	object->un_pager.vnp.vnp_size = nsize;
454	object->size = nobjsize;
455	VM_OBJECT_WUNLOCK(object);
456}
457
458/*
459 * calculate the linear (byte) disk address of specified virtual
460 * file address
461 */
462static int
463vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
464    int *run)
465{
466	int bsize;
467	int err;
468	daddr_t vblock;
469	daddr_t voffset;
470
471	if (address < 0)
472		return -1;
473
474	if (vp->v_iflag & VI_DOOMED)
475		return -1;
476
477	bsize = vp->v_mount->mnt_stat.f_iosize;
478	vblock = address / bsize;
479	voffset = address % bsize;
480
481	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
482	if (err == 0) {
483		if (*rtaddress != -1)
484			*rtaddress += voffset / DEV_BSIZE;
485		if (run) {
486			*run += 1;
487			*run *= bsize/PAGE_SIZE;
488			*run -= voffset/PAGE_SIZE;
489		}
490	}
491
492	return (err);
493}
494
495/*
496 * small block filesystem vnode pager input
497 */
498static int
499vnode_pager_input_smlfs(object, m)
500	vm_object_t object;
501	vm_page_t m;
502{
503	struct vnode *vp;
504	struct bufobj *bo;
505	struct buf *bp;
506	struct sf_buf *sf;
507	daddr_t fileaddr;
508	vm_offset_t bsize;
509	vm_page_bits_t bits;
510	int error, i;
511
512	error = 0;
513	vp = object->handle;
514	if (vp->v_iflag & VI_DOOMED)
515		return VM_PAGER_BAD;
516
517	bsize = vp->v_mount->mnt_stat.f_iosize;
518
519	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
520
521	sf = sf_buf_alloc(m, 0);
522
523	for (i = 0; i < PAGE_SIZE / bsize; i++) {
524		vm_ooffset_t address;
525
526		bits = vm_page_bits(i * bsize, bsize);
527		if (m->valid & bits)
528			continue;
529
530		address = IDX_TO_OFF(m->pindex) + i * bsize;
531		if (address >= object->un_pager.vnp.vnp_size) {
532			fileaddr = -1;
533		} else {
534			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
535			if (error)
536				break;
537		}
538		if (fileaddr != -1) {
539			bp = getpbuf(&vnode_pbuf_freecnt);
540
541			/* build a minimal buffer header */
542			bp->b_iocmd = BIO_READ;
543			bp->b_iodone = bdone;
544			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
545			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
546			bp->b_rcred = crhold(curthread->td_ucred);
547			bp->b_wcred = crhold(curthread->td_ucred);
548			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
549			bp->b_blkno = fileaddr;
550			pbgetbo(bo, bp);
551			bp->b_vp = vp;
552			bp->b_bcount = bsize;
553			bp->b_bufsize = bsize;
554			bp->b_runningbufspace = bp->b_bufsize;
555			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
556
557			/* do the input */
558			bp->b_iooffset = dbtob(bp->b_blkno);
559			bstrategy(bp);
560
561			bwait(bp, PVM, "vnsrd");
562
563			if ((bp->b_ioflags & BIO_ERROR) != 0)
564				error = EIO;
565
566			/*
567			 * free the buffer header back to the swap buffer pool
568			 */
569			bp->b_vp = NULL;
570			pbrelbo(bp);
571			relpbuf(bp, &vnode_pbuf_freecnt);
572			if (error)
573				break;
574		} else
575			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
576		KASSERT((m->dirty & bits) == 0,
577		    ("vnode_pager_input_smlfs: page %p is dirty", m));
578		VM_OBJECT_WLOCK(object);
579		m->valid |= bits;
580		VM_OBJECT_WUNLOCK(object);
581	}
582	sf_buf_free(sf);
583	if (error) {
584		return VM_PAGER_ERROR;
585	}
586	return VM_PAGER_OK;
587}
588
589/*
590 * old style vnode pager input routine
591 */
592static int
593vnode_pager_input_old(object, m)
594	vm_object_t object;
595	vm_page_t m;
596{
597	struct uio auio;
598	struct iovec aiov;
599	int error;
600	int size;
601	struct sf_buf *sf;
602	struct vnode *vp;
603
604	VM_OBJECT_ASSERT_WLOCKED(object);
605	error = 0;
606
607	/*
608	 * Return failure if beyond current EOF
609	 */
610	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
611		return VM_PAGER_BAD;
612	} else {
613		size = PAGE_SIZE;
614		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
615			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
616		vp = object->handle;
617		VM_OBJECT_WUNLOCK(object);
618
619		/*
620		 * Allocate a kernel virtual address and initialize so that
621		 * we can use VOP_READ/WRITE routines.
622		 */
623		sf = sf_buf_alloc(m, 0);
624
625		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
626		aiov.iov_len = size;
627		auio.uio_iov = &aiov;
628		auio.uio_iovcnt = 1;
629		auio.uio_offset = IDX_TO_OFF(m->pindex);
630		auio.uio_segflg = UIO_SYSSPACE;
631		auio.uio_rw = UIO_READ;
632		auio.uio_resid = size;
633		auio.uio_td = curthread;
634
635		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
636		if (!error) {
637			int count = size - auio.uio_resid;
638
639			if (count == 0)
640				error = EINVAL;
641			else if (count != PAGE_SIZE)
642				bzero((caddr_t)sf_buf_kva(sf) + count,
643				    PAGE_SIZE - count);
644		}
645		sf_buf_free(sf);
646
647		VM_OBJECT_WLOCK(object);
648	}
649	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
650	if (!error)
651		m->valid = VM_PAGE_BITS_ALL;
652	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
653}
654
655/*
656 * generic vnode pager input routine
657 */
658
659/*
660 * Local media VFS's that do not implement their own VOP_GETPAGES
661 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
662 * to implement the previous behaviour.
663 *
664 * All other FS's should use the bypass to get to the local media
665 * backing vp's VOP_GETPAGES.
666 */
667static int
668vnode_pager_getpages(object, m, count, reqpage)
669	vm_object_t object;
670	vm_page_t *m;
671	int count;
672	int reqpage;
673{
674	int rtval;
675	struct vnode *vp;
676	int bytes = count * PAGE_SIZE;
677
678	vp = object->handle;
679	VM_OBJECT_WUNLOCK(object);
680	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
681	KASSERT(rtval != EOPNOTSUPP,
682	    ("vnode_pager: FS getpages not implemented\n"));
683	VM_OBJECT_WLOCK(object);
684	return rtval;
685}
686
687/*
688 * This is now called from local media FS's to operate against their
689 * own vnodes if they fail to implement VOP_GETPAGES.
690 */
691int
692vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
693	struct vnode *vp;
694	vm_page_t *m;
695	int bytecount;
696	int reqpage;
697{
698	vm_object_t object;
699	vm_offset_t kva;
700	off_t foff, tfoff, nextoff;
701	int i, j, size, bsize, first;
702	daddr_t firstaddr, reqblock;
703	struct bufobj *bo;
704	int runpg;
705	int runend;
706	struct buf *bp;
707	struct mount *mp;
708	int count;
709	int error;
710
711	object = vp->v_object;
712	count = bytecount / PAGE_SIZE;
713
714	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
715	    ("vnode_pager_generic_getpages does not support devices"));
716	if (vp->v_iflag & VI_DOOMED)
717		return VM_PAGER_BAD;
718
719	bsize = vp->v_mount->mnt_stat.f_iosize;
720
721	/* get the UNDERLYING device for the file with VOP_BMAP() */
722
723	/*
724	 * originally, we did not check for an error return value -- assuming
725	 * an fs always has a bmap entry point -- that assumption is wrong!!!
726	 */
727	foff = IDX_TO_OFF(m[reqpage]->pindex);
728
729	/*
730	 * if we can't bmap, use old VOP code
731	 */
732	error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL);
733	if (error == EOPNOTSUPP) {
734		VM_OBJECT_WLOCK(object);
735
736		for (i = 0; i < count; i++)
737			if (i != reqpage) {
738				vm_page_lock(m[i]);
739				vm_page_free(m[i]);
740				vm_page_unlock(m[i]);
741			}
742		PCPU_INC(cnt.v_vnodein);
743		PCPU_INC(cnt.v_vnodepgsin);
744		error = vnode_pager_input_old(object, m[reqpage]);
745		VM_OBJECT_WUNLOCK(object);
746		return (error);
747	} else if (error != 0) {
748		VM_OBJECT_WLOCK(object);
749		for (i = 0; i < count; i++)
750			if (i != reqpage) {
751				vm_page_lock(m[i]);
752				vm_page_free(m[i]);
753				vm_page_unlock(m[i]);
754			}
755		VM_OBJECT_WUNLOCK(object);
756		return (VM_PAGER_ERROR);
757
758		/*
759		 * if the blocksize is smaller than a page size, then use
760		 * special small filesystem code.  NFS sometimes has a small
761		 * blocksize, but it can handle large reads itself.
762		 */
763	} else if ((PAGE_SIZE / bsize) > 1 &&
764	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
765		VM_OBJECT_WLOCK(object);
766		for (i = 0; i < count; i++)
767			if (i != reqpage) {
768				vm_page_lock(m[i]);
769				vm_page_free(m[i]);
770				vm_page_unlock(m[i]);
771			}
772		VM_OBJECT_WUNLOCK(object);
773		PCPU_INC(cnt.v_vnodein);
774		PCPU_INC(cnt.v_vnodepgsin);
775		return vnode_pager_input_smlfs(object, m[reqpage]);
776	}
777
778	/*
779	 * If we have a completely valid page available to us, we can
780	 * clean up and return.  Otherwise we have to re-read the
781	 * media.
782	 */
783	VM_OBJECT_WLOCK(object);
784	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
785		for (i = 0; i < count; i++)
786			if (i != reqpage) {
787				vm_page_lock(m[i]);
788				vm_page_free(m[i]);
789				vm_page_unlock(m[i]);
790			}
791		VM_OBJECT_WUNLOCK(object);
792		return VM_PAGER_OK;
793	} else if (reqblock == -1) {
794		pmap_zero_page(m[reqpage]);
795		KASSERT(m[reqpage]->dirty == 0,
796		    ("vnode_pager_generic_getpages: page %p is dirty", m));
797		m[reqpage]->valid = VM_PAGE_BITS_ALL;
798		for (i = 0; i < count; i++)
799			if (i != reqpage) {
800				vm_page_lock(m[i]);
801				vm_page_free(m[i]);
802				vm_page_unlock(m[i]);
803			}
804		VM_OBJECT_WUNLOCK(object);
805		return (VM_PAGER_OK);
806	}
807	m[reqpage]->valid = 0;
808	VM_OBJECT_WUNLOCK(object);
809
810	/*
811	 * here on direct device I/O
812	 */
813	firstaddr = -1;
814
815	/*
816	 * calculate the run that includes the required page
817	 */
818	for (first = 0, i = 0; i < count; i = runend) {
819		if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr,
820		    &runpg) != 0) {
821			VM_OBJECT_WLOCK(object);
822			for (; i < count; i++)
823				if (i != reqpage) {
824					vm_page_lock(m[i]);
825					vm_page_free(m[i]);
826					vm_page_unlock(m[i]);
827				}
828			VM_OBJECT_WUNLOCK(object);
829			return (VM_PAGER_ERROR);
830		}
831		if (firstaddr == -1) {
832			VM_OBJECT_WLOCK(object);
833			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
834				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
835				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
836				    (uintmax_t)foff,
837				    (uintmax_t)
838				    (object->un_pager.vnp.vnp_size >> 32),
839				    (uintmax_t)object->un_pager.vnp.vnp_size);
840			}
841			vm_page_lock(m[i]);
842			vm_page_free(m[i]);
843			vm_page_unlock(m[i]);
844			VM_OBJECT_WUNLOCK(object);
845			runend = i + 1;
846			first = runend;
847			continue;
848		}
849		runend = i + runpg;
850		if (runend <= reqpage) {
851			VM_OBJECT_WLOCK(object);
852			for (j = i; j < runend; j++) {
853				vm_page_lock(m[j]);
854				vm_page_free(m[j]);
855				vm_page_unlock(m[j]);
856			}
857			VM_OBJECT_WUNLOCK(object);
858		} else {
859			if (runpg < (count - first)) {
860				VM_OBJECT_WLOCK(object);
861				for (i = first + runpg; i < count; i++) {
862					vm_page_lock(m[i]);
863					vm_page_free(m[i]);
864					vm_page_unlock(m[i]);
865				}
866				VM_OBJECT_WUNLOCK(object);
867				count = first + runpg;
868			}
869			break;
870		}
871		first = runend;
872	}
873
874	/*
875	 * the first and last page have been calculated now, move input pages
876	 * to be zero based...
877	 */
878	if (first != 0) {
879		m += first;
880		count -= first;
881		reqpage -= first;
882	}
883
884	/*
885	 * calculate the file virtual address for the transfer
886	 */
887	foff = IDX_TO_OFF(m[0]->pindex);
888
889	/*
890	 * calculate the size of the transfer
891	 */
892	size = count * PAGE_SIZE;
893	KASSERT(count > 0, ("zero count"));
894	if ((foff + size) > object->un_pager.vnp.vnp_size)
895		size = object->un_pager.vnp.vnp_size - foff;
896	KASSERT(size > 0, ("zero size"));
897
898	/*
899	 * round up physical size for real devices.
900	 */
901	if (1) {
902		int secmask = bo->bo_bsize - 1;
903		KASSERT(secmask < PAGE_SIZE && secmask > 0,
904		    ("vnode_pager_generic_getpages: sector size %d too large",
905		    secmask + 1));
906		size = (size + secmask) & ~secmask;
907	}
908
909	bp = getpbuf(&vnode_pbuf_freecnt);
910	kva = (vm_offset_t)bp->b_data;
911
912	/*
913	 * and map the pages to be read into the kva, if the filesystem
914	 * requires mapped buffers.
915	 */
916	mp = vp->v_mount;
917	if (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
918	    unmapped_buf_allowed) {
919		bp->b_data = unmapped_buf;
920		bp->b_kvabase = unmapped_buf;
921		bp->b_offset = 0;
922		bp->b_flags |= B_UNMAPPED;
923		bp->b_npages = count;
924		for (i = 0; i < count; i++)
925			bp->b_pages[i] = m[i];
926	} else
927		pmap_qenter(kva, m, count);
928
929	/* build a minimal buffer header */
930	bp->b_iocmd = BIO_READ;
931	bp->b_iodone = bdone;
932	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
933	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
934	bp->b_rcred = crhold(curthread->td_ucred);
935	bp->b_wcred = crhold(curthread->td_ucred);
936	bp->b_blkno = firstaddr;
937	pbgetbo(bo, bp);
938	bp->b_vp = vp;
939	bp->b_bcount = size;
940	bp->b_bufsize = size;
941	bp->b_runningbufspace = bp->b_bufsize;
942	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
943
944	PCPU_INC(cnt.v_vnodein);
945	PCPU_ADD(cnt.v_vnodepgsin, count);
946
947	/* do the input */
948	bp->b_iooffset = dbtob(bp->b_blkno);
949	bstrategy(bp);
950
951	bwait(bp, PVM, "vnread");
952
953	if ((bp->b_ioflags & BIO_ERROR) != 0)
954		error = EIO;
955
956	if (error == 0 && size != count * PAGE_SIZE) {
957		if ((bp->b_flags & B_UNMAPPED) != 0) {
958			bp->b_flags &= ~B_UNMAPPED;
959			pmap_qenter(kva, m, count);
960		}
961		bzero((caddr_t)kva + size, PAGE_SIZE * count - size);
962	}
963	if ((bp->b_flags & B_UNMAPPED) == 0)
964		pmap_qremove(kva, count);
965	if (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0) {
966		bp->b_data = (caddr_t)kva;
967		bp->b_kvabase = (caddr_t)kva;
968		bp->b_flags &= ~B_UNMAPPED;
969		for (i = 0; i < count; i++)
970			bp->b_pages[i] = NULL;
971	}
972
973	/*
974	 * free the buffer header back to the swap buffer pool
975	 */
976	bp->b_vp = NULL;
977	pbrelbo(bp);
978	relpbuf(bp, &vnode_pbuf_freecnt);
979
980	VM_OBJECT_WLOCK(object);
981	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
982		vm_page_t mt;
983
984		nextoff = tfoff + PAGE_SIZE;
985		mt = m[i];
986
987		if (nextoff <= object->un_pager.vnp.vnp_size) {
988			/*
989			 * Read filled up entire page.
990			 */
991			mt->valid = VM_PAGE_BITS_ALL;
992			KASSERT(mt->dirty == 0,
993			    ("vnode_pager_generic_getpages: page %p is dirty",
994			    mt));
995			KASSERT(!pmap_page_is_mapped(mt),
996			    ("vnode_pager_generic_getpages: page %p is mapped",
997			    mt));
998		} else {
999			/*
1000			 * Read did not fill up entire page.
1001			 *
1002			 * Currently we do not set the entire page valid,
1003			 * we just try to clear the piece that we couldn't
1004			 * read.
1005			 */
1006			vm_page_set_valid_range(mt, 0,
1007			    object->un_pager.vnp.vnp_size - tfoff);
1008			KASSERT((mt->dirty & vm_page_bits(0,
1009			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1010			    ("vnode_pager_generic_getpages: page %p is dirty",
1011			    mt));
1012		}
1013
1014		if (i != reqpage)
1015			vm_page_readahead_finish(mt);
1016	}
1017	VM_OBJECT_WUNLOCK(object);
1018	if (error) {
1019		printf("vnode_pager_getpages: I/O read error\n");
1020	}
1021	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
1022}
1023
1024/*
1025 * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1026 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1027 * vnode_pager_generic_putpages() to implement the previous behaviour.
1028 *
1029 * All other FS's should use the bypass to get to the local media
1030 * backing vp's VOP_PUTPAGES.
1031 */
1032static void
1033vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1034    int flags, int *rtvals)
1035{
1036	int rtval;
1037	struct vnode *vp;
1038	int bytes = count * PAGE_SIZE;
1039
1040	/*
1041	 * Force synchronous operation if we are extremely low on memory
1042	 * to prevent a low-memory deadlock.  VOP operations often need to
1043	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1044	 * operation ).  The swapper handles the case by limiting the amount
1045	 * of asynchronous I/O, but that sort of solution doesn't scale well
1046	 * for the vnode pager without a lot of work.
1047	 *
1048	 * Also, the backing vnode's iodone routine may not wake the pageout
1049	 * daemon up.  This should be probably be addressed XXX.
1050	 */
1051
1052	if (cnt.v_free_count + cnt.v_cache_count < cnt.v_pageout_free_min)
1053		flags |= VM_PAGER_PUT_SYNC;
1054
1055	/*
1056	 * Call device-specific putpages function
1057	 */
1058	vp = object->handle;
1059	VM_OBJECT_WUNLOCK(object);
1060	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals, 0);
1061	KASSERT(rtval != EOPNOTSUPP,
1062	    ("vnode_pager: stale FS putpages\n"));
1063	VM_OBJECT_WLOCK(object);
1064}
1065
1066
1067/*
1068 * This is now called from local media FS's to operate against their
1069 * own vnodes if they fail to implement VOP_PUTPAGES.
1070 *
1071 * This is typically called indirectly via the pageout daemon and
1072 * clustering has already typically occured, so in general we ask the
1073 * underlying filesystem to write the data out asynchronously rather
1074 * then delayed.
1075 */
1076int
1077vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1078    int flags, int *rtvals)
1079{
1080	int i;
1081	vm_object_t object;
1082	vm_page_t m;
1083	int count;
1084
1085	int maxsize, ncount;
1086	vm_ooffset_t poffset;
1087	struct uio auio;
1088	struct iovec aiov;
1089	int error;
1090	int ioflags;
1091	int ppscheck = 0;
1092	static struct timeval lastfail;
1093	static int curfail;
1094
1095	object = vp->v_object;
1096	count = bytecount / PAGE_SIZE;
1097
1098	for (i = 0; i < count; i++)
1099		rtvals[i] = VM_PAGER_ERROR;
1100
1101	if ((int64_t)ma[0]->pindex < 0) {
1102		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1103		    (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1104		rtvals[0] = VM_PAGER_BAD;
1105		return VM_PAGER_BAD;
1106	}
1107
1108	maxsize = count * PAGE_SIZE;
1109	ncount = count;
1110
1111	poffset = IDX_TO_OFF(ma[0]->pindex);
1112
1113	/*
1114	 * If the page-aligned write is larger then the actual file we
1115	 * have to invalidate pages occuring beyond the file EOF.  However,
1116	 * there is an edge case where a file may not be page-aligned where
1117	 * the last page is partially invalid.  In this case the filesystem
1118	 * may not properly clear the dirty bits for the entire page (which
1119	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1120	 * With the page locked we are free to fix-up the dirty bits here.
1121	 *
1122	 * We do not under any circumstances truncate the valid bits, as
1123	 * this will screw up bogus page replacement.
1124	 */
1125	VM_OBJECT_WLOCK(object);
1126	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1127		if (object->un_pager.vnp.vnp_size > poffset) {
1128			int pgoff;
1129
1130			maxsize = object->un_pager.vnp.vnp_size - poffset;
1131			ncount = btoc(maxsize);
1132			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1133				/*
1134				 * If the object is locked and the following
1135				 * conditions hold, then the page's dirty
1136				 * field cannot be concurrently changed by a
1137				 * pmap operation.
1138				 */
1139				m = ma[ncount - 1];
1140				vm_page_assert_sbusied(m);
1141				KASSERT(!pmap_page_is_write_mapped(m),
1142		("vnode_pager_generic_putpages: page %p is not read-only", m));
1143				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1144				    pgoff);
1145			}
1146		} else {
1147			maxsize = 0;
1148			ncount = 0;
1149		}
1150		if (ncount < count) {
1151			for (i = ncount; i < count; i++) {
1152				rtvals[i] = VM_PAGER_BAD;
1153			}
1154		}
1155	}
1156	VM_OBJECT_WUNLOCK(object);
1157
1158	/*
1159	 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
1160	 * rather then a bdwrite() to prevent paging I/O from saturating
1161	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1162	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1163	 * the system decides how to cluster.
1164	 */
1165	ioflags = IO_VMIO;
1166	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1167		ioflags |= IO_SYNC;
1168	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1169		ioflags |= IO_ASYNC;
1170	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1171	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1172
1173	aiov.iov_base = (caddr_t) 0;
1174	aiov.iov_len = maxsize;
1175	auio.uio_iov = &aiov;
1176	auio.uio_iovcnt = 1;
1177	auio.uio_offset = poffset;
1178	auio.uio_segflg = UIO_NOCOPY;
1179	auio.uio_rw = UIO_WRITE;
1180	auio.uio_resid = maxsize;
1181	auio.uio_td = (struct thread *) 0;
1182	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1183	PCPU_INC(cnt.v_vnodeout);
1184	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1185
1186	if (error) {
1187		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1188			printf("vnode_pager_putpages: I/O error %d\n", error);
1189	}
1190	if (auio.uio_resid) {
1191		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1192			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1193			    auio.uio_resid, (u_long)ma[0]->pindex);
1194	}
1195	for (i = 0; i < ncount; i++) {
1196		rtvals[i] = VM_PAGER_OK;
1197	}
1198	return rtvals[0];
1199}
1200
1201void
1202vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1203{
1204	vm_object_t obj;
1205	int i, pos;
1206
1207	if (written == 0)
1208		return;
1209	obj = ma[0]->object;
1210	VM_OBJECT_WLOCK(obj);
1211	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1212		if (pos < trunc_page(written)) {
1213			rtvals[i] = VM_PAGER_OK;
1214			vm_page_undirty(ma[i]);
1215		} else {
1216			/* Partially written page. */
1217			rtvals[i] = VM_PAGER_AGAIN;
1218			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1219		}
1220	}
1221	VM_OBJECT_WUNLOCK(obj);
1222}
1223
1224void
1225vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1226    vm_offset_t end)
1227{
1228	struct vnode *vp;
1229	vm_ooffset_t old_wm;
1230
1231	VM_OBJECT_WLOCK(object);
1232	if (object->type != OBJT_VNODE) {
1233		VM_OBJECT_WUNLOCK(object);
1234		return;
1235	}
1236	old_wm = object->un_pager.vnp.writemappings;
1237	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1238	vp = object->handle;
1239	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1240		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1241		VOP_ADD_WRITECOUNT(vp, 1);
1242		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1243		    __func__, vp, vp->v_writecount);
1244	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1245		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1246		VOP_ADD_WRITECOUNT(vp, -1);
1247		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1248		    __func__, vp, vp->v_writecount);
1249	}
1250	VM_OBJECT_WUNLOCK(object);
1251}
1252
1253void
1254vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1255    vm_offset_t end)
1256{
1257	struct vnode *vp;
1258	struct mount *mp;
1259	vm_offset_t inc;
1260
1261	VM_OBJECT_WLOCK(object);
1262
1263	/*
1264	 * First, recheck the object type to account for the race when
1265	 * the vnode is reclaimed.
1266	 */
1267	if (object->type != OBJT_VNODE) {
1268		VM_OBJECT_WUNLOCK(object);
1269		return;
1270	}
1271
1272	/*
1273	 * Optimize for the case when writemappings is not going to
1274	 * zero.
1275	 */
1276	inc = end - start;
1277	if (object->un_pager.vnp.writemappings != inc) {
1278		object->un_pager.vnp.writemappings -= inc;
1279		VM_OBJECT_WUNLOCK(object);
1280		return;
1281	}
1282
1283	vp = object->handle;
1284	vhold(vp);
1285	VM_OBJECT_WUNLOCK(object);
1286	mp = NULL;
1287	vn_start_write(vp, &mp, V_WAIT);
1288	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1289
1290	/*
1291	 * Decrement the object's writemappings, by swapping the start
1292	 * and end arguments for vnode_pager_update_writecount().  If
1293	 * there was not a race with vnode reclaimation, then the
1294	 * vnode's v_writecount is decremented.
1295	 */
1296	vnode_pager_update_writecount(object, end, start);
1297	VOP_UNLOCK(vp, 0);
1298	vdrop(vp);
1299	if (mp != NULL)
1300		vn_finished_write(mp);
1301}
1302