vm_phys.c revision 276546
1/*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 *	Physical memory system implementation
34 *
35 * Any external functions defined by this module are only to be used by the
36 * virtual memory system.
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD: stable/10/sys/vm/vm_phys.c 276546 2015-01-02 17:45:52Z alc $");
41
42#include "opt_ddb.h"
43#include "opt_vm.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/lock.h>
48#include <sys/kernel.h>
49#include <sys/malloc.h>
50#include <sys/mutex.h>
51#if MAXMEMDOM > 1
52#include <sys/proc.h>
53#endif
54#include <sys/queue.h>
55#include <sys/sbuf.h>
56#include <sys/sysctl.h>
57#include <sys/vmmeter.h>
58
59#include <ddb/ddb.h>
60
61#include <vm/vm.h>
62#include <vm/vm_param.h>
63#include <vm/vm_kern.h>
64#include <vm/vm_object.h>
65#include <vm/vm_page.h>
66#include <vm/vm_phys.h>
67
68_Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
69    "Too many physsegs.");
70
71struct mem_affinity *mem_affinity;
72
73int vm_ndomains = 1;
74
75struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
76int vm_phys_nsegs;
77
78#define VM_PHYS_FICTITIOUS_NSEGS	8
79static struct vm_phys_fictitious_seg {
80	vm_paddr_t	start;
81	vm_paddr_t	end;
82	vm_page_t	first_page;
83} vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
84static struct mtx vm_phys_fictitious_reg_mtx;
85MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
86
87static struct vm_freelist
88    vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
89
90static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
91
92static int cnt_prezero;
93SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
94    &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
95
96static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
97SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
98    NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
99
100static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
101SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
102    NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
103
104SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
105    &vm_ndomains, 0, "Number of physical memory domains available.");
106
107static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
108    int order);
109static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
110    int domain);
111static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
112static int vm_phys_paddr_to_segind(vm_paddr_t pa);
113static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
114    int order);
115
116static __inline int
117vm_rr_selectdomain(void)
118{
119#if MAXMEMDOM > 1
120	struct thread *td;
121
122	td = curthread;
123
124	td->td_dom_rr_idx++;
125	td->td_dom_rr_idx %= vm_ndomains;
126	return (td->td_dom_rr_idx);
127#else
128	return (0);
129#endif
130}
131
132boolean_t
133vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
134{
135	struct vm_phys_seg *s;
136	int idx;
137
138	while ((idx = ffsl(mask)) != 0) {
139		idx--;	/* ffsl counts from 1 */
140		mask &= ~(1UL << idx);
141		s = &vm_phys_segs[idx];
142		if (low < s->end && high > s->start)
143			return (TRUE);
144	}
145	return (FALSE);
146}
147
148/*
149 * Outputs the state of the physical memory allocator, specifically,
150 * the amount of physical memory in each free list.
151 */
152static int
153sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
154{
155	struct sbuf sbuf;
156	struct vm_freelist *fl;
157	int dom, error, flind, oind, pind;
158
159	error = sysctl_wire_old_buffer(req, 0);
160	if (error != 0)
161		return (error);
162	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
163	for (dom = 0; dom < vm_ndomains; dom++) {
164		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
165		for (flind = 0; flind < vm_nfreelists; flind++) {
166			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
167			    "\n  ORDER (SIZE)  |  NUMBER"
168			    "\n              ", flind);
169			for (pind = 0; pind < VM_NFREEPOOL; pind++)
170				sbuf_printf(&sbuf, "  |  POOL %d", pind);
171			sbuf_printf(&sbuf, "\n--            ");
172			for (pind = 0; pind < VM_NFREEPOOL; pind++)
173				sbuf_printf(&sbuf, "-- --      ");
174			sbuf_printf(&sbuf, "--\n");
175			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
176				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
177				    1 << (PAGE_SHIFT - 10 + oind));
178				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
179				fl = vm_phys_free_queues[dom][flind][pind];
180					sbuf_printf(&sbuf, "  |  %6d",
181					    fl[oind].lcnt);
182				}
183				sbuf_printf(&sbuf, "\n");
184			}
185		}
186	}
187	error = sbuf_finish(&sbuf);
188	sbuf_delete(&sbuf);
189	return (error);
190}
191
192/*
193 * Outputs the set of physical memory segments.
194 */
195static int
196sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
197{
198	struct sbuf sbuf;
199	struct vm_phys_seg *seg;
200	int error, segind;
201
202	error = sysctl_wire_old_buffer(req, 0);
203	if (error != 0)
204		return (error);
205	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
206	for (segind = 0; segind < vm_phys_nsegs; segind++) {
207		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
208		seg = &vm_phys_segs[segind];
209		sbuf_printf(&sbuf, "start:     %#jx\n",
210		    (uintmax_t)seg->start);
211		sbuf_printf(&sbuf, "end:       %#jx\n",
212		    (uintmax_t)seg->end);
213		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
214		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
215	}
216	error = sbuf_finish(&sbuf);
217	sbuf_delete(&sbuf);
218	return (error);
219}
220
221static void
222vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
223{
224
225	m->order = order;
226	if (tail)
227		TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
228	else
229		TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
230	fl[order].lcnt++;
231}
232
233static void
234vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
235{
236
237	TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
238	fl[order].lcnt--;
239	m->order = VM_NFREEORDER;
240}
241
242/*
243 * Create a physical memory segment.
244 */
245static void
246_vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
247{
248	struct vm_phys_seg *seg;
249
250	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
251	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
252	KASSERT(domain < vm_ndomains,
253	    ("vm_phys_create_seg: invalid domain provided"));
254	seg = &vm_phys_segs[vm_phys_nsegs++];
255	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
256		*seg = *(seg - 1);
257		seg--;
258	}
259	seg->start = start;
260	seg->end = end;
261	seg->domain = domain;
262	seg->free_queues = &vm_phys_free_queues[domain][flind];
263}
264
265static void
266vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
267{
268	int i;
269
270	if (mem_affinity == NULL) {
271		_vm_phys_create_seg(start, end, flind, 0);
272		return;
273	}
274
275	for (i = 0;; i++) {
276		if (mem_affinity[i].end == 0)
277			panic("Reached end of affinity info");
278		if (mem_affinity[i].end <= start)
279			continue;
280		if (mem_affinity[i].start > start)
281			panic("No affinity info for start %jx",
282			    (uintmax_t)start);
283		if (mem_affinity[i].end >= end) {
284			_vm_phys_create_seg(start, end, flind,
285			    mem_affinity[i].domain);
286			break;
287		}
288		_vm_phys_create_seg(start, mem_affinity[i].end, flind,
289		    mem_affinity[i].domain);
290		start = mem_affinity[i].end;
291	}
292}
293
294/*
295 * Add a physical memory segment.
296 */
297void
298vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
299{
300
301	KASSERT((start & PAGE_MASK) == 0,
302	    ("vm_phys_define_seg: start is not page aligned"));
303	KASSERT((end & PAGE_MASK) == 0,
304	    ("vm_phys_define_seg: end is not page aligned"));
305#ifdef	VM_FREELIST_ISADMA
306	if (start < 16777216) {
307		if (end > 16777216) {
308			vm_phys_create_seg(start, 16777216,
309			    VM_FREELIST_ISADMA);
310			vm_phys_create_seg(16777216, end, VM_FREELIST_DEFAULT);
311		} else
312			vm_phys_create_seg(start, end, VM_FREELIST_ISADMA);
313		if (VM_FREELIST_ISADMA >= vm_nfreelists)
314			vm_nfreelists = VM_FREELIST_ISADMA + 1;
315	} else
316#endif
317#ifdef	VM_FREELIST_HIGHMEM
318	if (end > VM_HIGHMEM_ADDRESS) {
319		if (start < VM_HIGHMEM_ADDRESS) {
320			vm_phys_create_seg(start, VM_HIGHMEM_ADDRESS,
321			    VM_FREELIST_DEFAULT);
322			vm_phys_create_seg(VM_HIGHMEM_ADDRESS, end,
323			    VM_FREELIST_HIGHMEM);
324		} else
325			vm_phys_create_seg(start, end, VM_FREELIST_HIGHMEM);
326		if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
327			vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
328	} else
329#endif
330	vm_phys_create_seg(start, end, VM_FREELIST_DEFAULT);
331}
332
333/*
334 * Initialize the physical memory allocator.
335 */
336void
337vm_phys_init(void)
338{
339	struct vm_freelist *fl;
340	struct vm_phys_seg *seg;
341#ifdef VM_PHYSSEG_SPARSE
342	long pages;
343#endif
344	int dom, flind, oind, pind, segind;
345
346#ifdef VM_PHYSSEG_SPARSE
347	pages = 0;
348#endif
349	for (segind = 0; segind < vm_phys_nsegs; segind++) {
350		seg = &vm_phys_segs[segind];
351#ifdef VM_PHYSSEG_SPARSE
352		seg->first_page = &vm_page_array[pages];
353		pages += atop(seg->end - seg->start);
354#else
355		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
356#endif
357	}
358	for (dom = 0; dom < vm_ndomains; dom++) {
359		for (flind = 0; flind < vm_nfreelists; flind++) {
360			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
361				fl = vm_phys_free_queues[dom][flind][pind];
362				for (oind = 0; oind < VM_NFREEORDER; oind++)
363					TAILQ_INIT(&fl[oind].pl);
364			}
365		}
366	}
367	mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
368}
369
370/*
371 * Split a contiguous, power of two-sized set of physical pages.
372 */
373static __inline void
374vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
375{
376	vm_page_t m_buddy;
377
378	while (oind > order) {
379		oind--;
380		m_buddy = &m[1 << oind];
381		KASSERT(m_buddy->order == VM_NFREEORDER,
382		    ("vm_phys_split_pages: page %p has unexpected order %d",
383		    m_buddy, m_buddy->order));
384		vm_freelist_add(fl, m_buddy, oind, 0);
385        }
386}
387
388/*
389 * Initialize a physical page and add it to the free lists.
390 */
391void
392vm_phys_add_page(vm_paddr_t pa)
393{
394	vm_page_t m;
395	struct vm_domain *vmd;
396
397	cnt.v_page_count++;
398	m = vm_phys_paddr_to_vm_page(pa);
399	m->phys_addr = pa;
400	m->queue = PQ_NONE;
401	m->segind = vm_phys_paddr_to_segind(pa);
402	vmd = vm_phys_domain(m);
403	vmd->vmd_page_count++;
404	vmd->vmd_segs |= 1UL << m->segind;
405	m->flags = PG_FREE;
406	KASSERT(m->order == VM_NFREEORDER,
407	    ("vm_phys_add_page: page %p has unexpected order %d",
408	    m, m->order));
409	m->pool = VM_FREEPOOL_DEFAULT;
410	pmap_page_init(m);
411	mtx_lock(&vm_page_queue_free_mtx);
412	vm_phys_freecnt_adj(m, 1);
413	vm_phys_free_pages(m, 0);
414	mtx_unlock(&vm_page_queue_free_mtx);
415}
416
417/*
418 * Allocate a contiguous, power of two-sized set of physical pages
419 * from the free lists.
420 *
421 * The free page queues must be locked.
422 */
423vm_page_t
424vm_phys_alloc_pages(int pool, int order)
425{
426	vm_page_t m;
427	int dom, domain, flind;
428
429	KASSERT(pool < VM_NFREEPOOL,
430	    ("vm_phys_alloc_pages: pool %d is out of range", pool));
431	KASSERT(order < VM_NFREEORDER,
432	    ("vm_phys_alloc_pages: order %d is out of range", order));
433
434	for (dom = 0; dom < vm_ndomains; dom++) {
435		domain = vm_rr_selectdomain();
436		for (flind = 0; flind < vm_nfreelists; flind++) {
437			m = vm_phys_alloc_domain_pages(domain, flind, pool,
438			    order);
439			if (m != NULL)
440				return (m);
441		}
442	}
443	return (NULL);
444}
445
446/*
447 * Find and dequeue a free page on the given free list, with the
448 * specified pool and order
449 */
450vm_page_t
451vm_phys_alloc_freelist_pages(int flind, int pool, int order)
452{
453	vm_page_t m;
454	int dom, domain;
455
456	KASSERT(flind < VM_NFREELIST,
457	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
458	KASSERT(pool < VM_NFREEPOOL,
459	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
460	KASSERT(order < VM_NFREEORDER,
461	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
462
463	for (dom = 0; dom < vm_ndomains; dom++) {
464		domain = vm_rr_selectdomain();
465		m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
466		if (m != NULL)
467			return (m);
468	}
469	return (NULL);
470}
471
472static vm_page_t
473vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
474{
475	struct vm_freelist *fl;
476	struct vm_freelist *alt;
477	int oind, pind;
478	vm_page_t m;
479
480	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
481	fl = &vm_phys_free_queues[domain][flind][pool][0];
482	for (oind = order; oind < VM_NFREEORDER; oind++) {
483		m = TAILQ_FIRST(&fl[oind].pl);
484		if (m != NULL) {
485			vm_freelist_rem(fl, m, oind);
486			vm_phys_split_pages(m, oind, fl, order);
487			return (m);
488		}
489	}
490
491	/*
492	 * The given pool was empty.  Find the largest
493	 * contiguous, power-of-two-sized set of pages in any
494	 * pool.  Transfer these pages to the given pool, and
495	 * use them to satisfy the allocation.
496	 */
497	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
498		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
499			alt = &vm_phys_free_queues[domain][flind][pind][0];
500			m = TAILQ_FIRST(&alt[oind].pl);
501			if (m != NULL) {
502				vm_freelist_rem(alt, m, oind);
503				vm_phys_set_pool(pool, m, oind);
504				vm_phys_split_pages(m, oind, fl, order);
505				return (m);
506			}
507		}
508	}
509	return (NULL);
510}
511
512/*
513 * Find the vm_page corresponding to the given physical address.
514 */
515vm_page_t
516vm_phys_paddr_to_vm_page(vm_paddr_t pa)
517{
518	struct vm_phys_seg *seg;
519	int segind;
520
521	for (segind = 0; segind < vm_phys_nsegs; segind++) {
522		seg = &vm_phys_segs[segind];
523		if (pa >= seg->start && pa < seg->end)
524			return (&seg->first_page[atop(pa - seg->start)]);
525	}
526	return (NULL);
527}
528
529vm_page_t
530vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
531{
532	struct vm_phys_fictitious_seg *seg;
533	vm_page_t m;
534	int segind;
535
536	m = NULL;
537	for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
538		seg = &vm_phys_fictitious_segs[segind];
539		if (pa >= seg->start && pa < seg->end) {
540			m = &seg->first_page[atop(pa - seg->start)];
541			KASSERT((m->flags & PG_FICTITIOUS) != 0,
542			    ("%p not fictitious", m));
543			break;
544		}
545	}
546	return (m);
547}
548
549int
550vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
551    vm_memattr_t memattr)
552{
553	struct vm_phys_fictitious_seg *seg;
554	vm_page_t fp;
555	long i, page_count;
556	int segind;
557#ifdef VM_PHYSSEG_DENSE
558	long pi;
559	boolean_t malloced;
560#endif
561
562	page_count = (end - start) / PAGE_SIZE;
563
564#ifdef VM_PHYSSEG_DENSE
565	pi = atop(start);
566	if (pi >= first_page && pi < vm_page_array_size + first_page) {
567		if (atop(end) >= vm_page_array_size + first_page)
568			return (EINVAL);
569		fp = &vm_page_array[pi - first_page];
570		malloced = FALSE;
571	} else
572#endif
573	{
574		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
575		    M_WAITOK | M_ZERO);
576#ifdef VM_PHYSSEG_DENSE
577		malloced = TRUE;
578#endif
579	}
580	for (i = 0; i < page_count; i++) {
581		vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
582		fp[i].oflags &= ~VPO_UNMANAGED;
583		fp[i].busy_lock = VPB_UNBUSIED;
584	}
585	mtx_lock(&vm_phys_fictitious_reg_mtx);
586	for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
587		seg = &vm_phys_fictitious_segs[segind];
588		if (seg->start == 0 && seg->end == 0) {
589			seg->start = start;
590			seg->end = end;
591			seg->first_page = fp;
592			mtx_unlock(&vm_phys_fictitious_reg_mtx);
593			return (0);
594		}
595	}
596	mtx_unlock(&vm_phys_fictitious_reg_mtx);
597#ifdef VM_PHYSSEG_DENSE
598	if (malloced)
599#endif
600		free(fp, M_FICT_PAGES);
601	return (EBUSY);
602}
603
604void
605vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
606{
607	struct vm_phys_fictitious_seg *seg;
608	vm_page_t fp;
609	int segind;
610#ifdef VM_PHYSSEG_DENSE
611	long pi;
612#endif
613
614#ifdef VM_PHYSSEG_DENSE
615	pi = atop(start);
616#endif
617
618	mtx_lock(&vm_phys_fictitious_reg_mtx);
619	for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
620		seg = &vm_phys_fictitious_segs[segind];
621		if (seg->start == start && seg->end == end) {
622			seg->start = seg->end = 0;
623			fp = seg->first_page;
624			seg->first_page = NULL;
625			mtx_unlock(&vm_phys_fictitious_reg_mtx);
626#ifdef VM_PHYSSEG_DENSE
627			if (pi < first_page || atop(end) >= vm_page_array_size)
628#endif
629				free(fp, M_FICT_PAGES);
630			return;
631		}
632	}
633	mtx_unlock(&vm_phys_fictitious_reg_mtx);
634	KASSERT(0, ("Unregistering not registered fictitious range"));
635}
636
637/*
638 * Find the segment containing the given physical address.
639 */
640static int
641vm_phys_paddr_to_segind(vm_paddr_t pa)
642{
643	struct vm_phys_seg *seg;
644	int segind;
645
646	for (segind = 0; segind < vm_phys_nsegs; segind++) {
647		seg = &vm_phys_segs[segind];
648		if (pa >= seg->start && pa < seg->end)
649			return (segind);
650	}
651	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
652	    (uintmax_t)pa);
653}
654
655/*
656 * Free a contiguous, power of two-sized set of physical pages.
657 *
658 * The free page queues must be locked.
659 */
660void
661vm_phys_free_pages(vm_page_t m, int order)
662{
663	struct vm_freelist *fl;
664	struct vm_phys_seg *seg;
665	vm_paddr_t pa;
666	vm_page_t m_buddy;
667
668	KASSERT(m->order == VM_NFREEORDER,
669	    ("vm_phys_free_pages: page %p has unexpected order %d",
670	    m, m->order));
671	KASSERT(m->pool < VM_NFREEPOOL,
672	    ("vm_phys_free_pages: page %p has unexpected pool %d",
673	    m, m->pool));
674	KASSERT(order < VM_NFREEORDER,
675	    ("vm_phys_free_pages: order %d is out of range", order));
676	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
677	seg = &vm_phys_segs[m->segind];
678	if (order < VM_NFREEORDER - 1) {
679		pa = VM_PAGE_TO_PHYS(m);
680		do {
681			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
682			if (pa < seg->start || pa >= seg->end)
683				break;
684			m_buddy = &seg->first_page[atop(pa - seg->start)];
685			if (m_buddy->order != order)
686				break;
687			fl = (*seg->free_queues)[m_buddy->pool];
688			vm_freelist_rem(fl, m_buddy, order);
689			if (m_buddy->pool != m->pool)
690				vm_phys_set_pool(m->pool, m_buddy, order);
691			order++;
692			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
693			m = &seg->first_page[atop(pa - seg->start)];
694		} while (order < VM_NFREEORDER - 1);
695	}
696	fl = (*seg->free_queues)[m->pool];
697	vm_freelist_add(fl, m, order, 1);
698}
699
700/*
701 * Free a contiguous, arbitrarily sized set of physical pages.
702 *
703 * The free page queues must be locked.
704 */
705void
706vm_phys_free_contig(vm_page_t m, u_long npages)
707{
708	u_int n;
709	int order;
710
711	/*
712	 * Avoid unnecessary coalescing by freeing the pages in the largest
713	 * possible power-of-two-sized subsets.
714	 */
715	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
716	for (;; npages -= n) {
717		/*
718		 * Unsigned "min" is used here so that "order" is assigned
719		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
720		 * or the low-order bits of its physical address are zero
721		 * because the size of a physical address exceeds the size of
722		 * a long.
723		 */
724		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
725		    VM_NFREEORDER - 1);
726		n = 1 << order;
727		if (npages < n)
728			break;
729		vm_phys_free_pages(m, order);
730		m += n;
731	}
732	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
733	for (; npages > 0; npages -= n) {
734		order = flsl(npages) - 1;
735		n = 1 << order;
736		vm_phys_free_pages(m, order);
737		m += n;
738	}
739}
740
741/*
742 * Set the pool for a contiguous, power of two-sized set of physical pages.
743 */
744void
745vm_phys_set_pool(int pool, vm_page_t m, int order)
746{
747	vm_page_t m_tmp;
748
749	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
750		m_tmp->pool = pool;
751}
752
753/*
754 * Search for the given physical page "m" in the free lists.  If the search
755 * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
756 * FALSE, indicating that "m" is not in the free lists.
757 *
758 * The free page queues must be locked.
759 */
760boolean_t
761vm_phys_unfree_page(vm_page_t m)
762{
763	struct vm_freelist *fl;
764	struct vm_phys_seg *seg;
765	vm_paddr_t pa, pa_half;
766	vm_page_t m_set, m_tmp;
767	int order;
768
769	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
770
771	/*
772	 * First, find the contiguous, power of two-sized set of free
773	 * physical pages containing the given physical page "m" and
774	 * assign it to "m_set".
775	 */
776	seg = &vm_phys_segs[m->segind];
777	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
778	    order < VM_NFREEORDER - 1; ) {
779		order++;
780		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
781		if (pa >= seg->start)
782			m_set = &seg->first_page[atop(pa - seg->start)];
783		else
784			return (FALSE);
785	}
786	if (m_set->order < order)
787		return (FALSE);
788	if (m_set->order == VM_NFREEORDER)
789		return (FALSE);
790	KASSERT(m_set->order < VM_NFREEORDER,
791	    ("vm_phys_unfree_page: page %p has unexpected order %d",
792	    m_set, m_set->order));
793
794	/*
795	 * Next, remove "m_set" from the free lists.  Finally, extract
796	 * "m" from "m_set" using an iterative algorithm: While "m_set"
797	 * is larger than a page, shrink "m_set" by returning the half
798	 * of "m_set" that does not contain "m" to the free lists.
799	 */
800	fl = (*seg->free_queues)[m_set->pool];
801	order = m_set->order;
802	vm_freelist_rem(fl, m_set, order);
803	while (order > 0) {
804		order--;
805		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
806		if (m->phys_addr < pa_half)
807			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
808		else {
809			m_tmp = m_set;
810			m_set = &seg->first_page[atop(pa_half - seg->start)];
811		}
812		vm_freelist_add(fl, m_tmp, order, 0);
813	}
814	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
815	return (TRUE);
816}
817
818/*
819 * Try to zero one physical page.  Used by an idle priority thread.
820 */
821boolean_t
822vm_phys_zero_pages_idle(void)
823{
824	static struct vm_freelist *fl;
825	static int flind, oind, pind;
826	vm_page_t m, m_tmp;
827	int domain;
828
829	domain = vm_rr_selectdomain();
830	fl = vm_phys_free_queues[domain][0][0];
831	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
832	for (;;) {
833		TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
834			for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
835				if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
836					vm_phys_unfree_page(m_tmp);
837					vm_phys_freecnt_adj(m, -1);
838					mtx_unlock(&vm_page_queue_free_mtx);
839					pmap_zero_page_idle(m_tmp);
840					m_tmp->flags |= PG_ZERO;
841					mtx_lock(&vm_page_queue_free_mtx);
842					vm_phys_freecnt_adj(m, 1);
843					vm_phys_free_pages(m_tmp, 0);
844					vm_page_zero_count++;
845					cnt_prezero++;
846					return (TRUE);
847				}
848			}
849		}
850		oind++;
851		if (oind == VM_NFREEORDER) {
852			oind = 0;
853			pind++;
854			if (pind == VM_NFREEPOOL) {
855				pind = 0;
856				flind++;
857				if (flind == vm_nfreelists)
858					flind = 0;
859			}
860			fl = vm_phys_free_queues[domain][flind][pind];
861		}
862	}
863}
864
865/*
866 * Allocate a contiguous set of physical pages of the given size
867 * "npages" from the free lists.  All of the physical pages must be at
868 * or above the given physical address "low" and below the given
869 * physical address "high".  The given value "alignment" determines the
870 * alignment of the first physical page in the set.  If the given value
871 * "boundary" is non-zero, then the set of physical pages cannot cross
872 * any physical address boundary that is a multiple of that value.  Both
873 * "alignment" and "boundary" must be a power of two.
874 */
875vm_page_t
876vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
877    u_long alignment, vm_paddr_t boundary)
878{
879	struct vm_freelist *fl;
880	struct vm_phys_seg *seg;
881	vm_paddr_t pa, pa_last, size;
882	vm_page_t m, m_ret;
883	u_long npages_end;
884	int dom, domain, flind, oind, order, pind;
885
886	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
887	size = npages << PAGE_SHIFT;
888	KASSERT(size != 0,
889	    ("vm_phys_alloc_contig: size must not be 0"));
890	KASSERT((alignment & (alignment - 1)) == 0,
891	    ("vm_phys_alloc_contig: alignment must be a power of 2"));
892	KASSERT((boundary & (boundary - 1)) == 0,
893	    ("vm_phys_alloc_contig: boundary must be a power of 2"));
894	/* Compute the queue that is the best fit for npages. */
895	for (order = 0; (1 << order) < npages; order++);
896	dom = 0;
897restartdom:
898	domain = vm_rr_selectdomain();
899	for (flind = 0; flind < vm_nfreelists; flind++) {
900		for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
901			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
902				fl = &vm_phys_free_queues[domain][flind][pind][0];
903				TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
904					/*
905					 * A free list may contain physical pages
906					 * from one or more segments.
907					 */
908					seg = &vm_phys_segs[m_ret->segind];
909					if (seg->start > high ||
910					    low >= seg->end)
911						continue;
912
913					/*
914					 * Is the size of this allocation request
915					 * larger than the largest block size?
916					 */
917					if (order >= VM_NFREEORDER) {
918						/*
919						 * Determine if a sufficient number
920						 * of subsequent blocks to satisfy
921						 * the allocation request are free.
922						 */
923						pa = VM_PAGE_TO_PHYS(m_ret);
924						pa_last = pa + size;
925						for (;;) {
926							pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
927							if (pa >= pa_last)
928								break;
929							if (pa < seg->start ||
930							    pa >= seg->end)
931								break;
932							m = &seg->first_page[atop(pa - seg->start)];
933							if (m->order != VM_NFREEORDER - 1)
934								break;
935						}
936						/* If not, continue to the next block. */
937						if (pa < pa_last)
938							continue;
939					}
940
941					/*
942					 * Determine if the blocks are within the given range,
943					 * satisfy the given alignment, and do not cross the
944					 * given boundary.
945					 */
946					pa = VM_PAGE_TO_PHYS(m_ret);
947					if (pa >= low &&
948					    pa + size <= high &&
949					    (pa & (alignment - 1)) == 0 &&
950					    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
951						goto done;
952				}
953			}
954		}
955	}
956	if (++dom < vm_ndomains)
957		goto restartdom;
958	return (NULL);
959done:
960	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
961		fl = (*seg->free_queues)[m->pool];
962		vm_freelist_rem(fl, m, m->order);
963	}
964	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
965		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
966	fl = (*seg->free_queues)[m_ret->pool];
967	vm_phys_split_pages(m_ret, oind, fl, order);
968	/* Return excess pages to the free lists. */
969	npages_end = roundup2(npages, 1 << imin(oind, order));
970	if (npages < npages_end)
971		vm_phys_free_contig(&m_ret[npages], npages_end - npages);
972	return (m_ret);
973}
974
975#ifdef DDB
976/*
977 * Show the number of physical pages in each of the free lists.
978 */
979DB_SHOW_COMMAND(freepages, db_show_freepages)
980{
981	struct vm_freelist *fl;
982	int flind, oind, pind, dom;
983
984	for (dom = 0; dom < vm_ndomains; dom++) {
985		db_printf("DOMAIN: %d\n", dom);
986		for (flind = 0; flind < vm_nfreelists; flind++) {
987			db_printf("FREE LIST %d:\n"
988			    "\n  ORDER (SIZE)  |  NUMBER"
989			    "\n              ", flind);
990			for (pind = 0; pind < VM_NFREEPOOL; pind++)
991				db_printf("  |  POOL %d", pind);
992			db_printf("\n--            ");
993			for (pind = 0; pind < VM_NFREEPOOL; pind++)
994				db_printf("-- --      ");
995			db_printf("--\n");
996			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
997				db_printf("  %2.2d (%6.6dK)", oind,
998				    1 << (PAGE_SHIFT - 10 + oind));
999				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1000				fl = vm_phys_free_queues[dom][flind][pind];
1001					db_printf("  |  %6.6d", fl[oind].lcnt);
1002				}
1003				db_printf("\n");
1004			}
1005			db_printf("\n");
1006		}
1007		db_printf("\n");
1008	}
1009}
1010#endif
1011