vm_pageout.c revision 292104
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: stable/10/sys/vm/vm_pageout.c 292104 2015-12-11 13:20:51Z kib $");
77
78#include "opt_vm.h"
79#include "opt_kdtrace.h"
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/eventhandler.h>
84#include <sys/lock.h>
85#include <sys/mutex.h>
86#include <sys/proc.h>
87#include <sys/kthread.h>
88#include <sys/ktr.h>
89#include <sys/mount.h>
90#include <sys/racct.h>
91#include <sys/resourcevar.h>
92#include <sys/sched.h>
93#include <sys/sdt.h>
94#include <sys/signalvar.h>
95#include <sys/smp.h>
96#include <sys/time.h>
97#include <sys/vnode.h>
98#include <sys/vmmeter.h>
99#include <sys/rwlock.h>
100#include <sys/sx.h>
101#include <sys/sysctl.h>
102
103#include <vm/vm.h>
104#include <vm/vm_param.h>
105#include <vm/vm_object.h>
106#include <vm/vm_page.h>
107#include <vm/vm_map.h>
108#include <vm/vm_pageout.h>
109#include <vm/vm_pager.h>
110#include <vm/vm_phys.h>
111#include <vm/swap_pager.h>
112#include <vm/vm_extern.h>
113#include <vm/uma.h>
114
115/*
116 * System initialization
117 */
118
119/* the kernel process "vm_pageout"*/
120static void vm_pageout(void);
121static void vm_pageout_init(void);
122static int vm_pageout_clean(vm_page_t);
123static void vm_pageout_scan(struct vm_domain *vmd, int pass);
124static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
125    int starting_page_shortage);
126
127SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
128    NULL);
129
130struct proc *pageproc;
131
132static struct kproc_desc page_kp = {
133	"pagedaemon",
134	vm_pageout,
135	&pageproc
136};
137SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
138    &page_kp);
139
140SDT_PROVIDER_DEFINE(vm);
141SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
142SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
143
144#if !defined(NO_SWAPPING)
145/* the kernel process "vm_daemon"*/
146static void vm_daemon(void);
147static struct	proc *vmproc;
148
149static struct kproc_desc vm_kp = {
150	"vmdaemon",
151	vm_daemon,
152	&vmproc
153};
154SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
155#endif
156
157
158int vm_pages_needed;		/* Event on which pageout daemon sleeps */
159int vm_pageout_deficit;		/* Estimated number of pages deficit */
160int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
161int vm_pageout_wakeup_thresh;
162static int vm_pageout_oom_seq = 12;
163
164#if !defined(NO_SWAPPING)
165static int vm_pageout_req_swapout;	/* XXX */
166static int vm_daemon_needed;
167static struct mtx vm_daemon_mtx;
168/* Allow for use by vm_pageout before vm_daemon is initialized. */
169MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
170#endif
171static int vm_max_launder = 32;
172static int vm_pageout_update_period;
173static int defer_swap_pageouts;
174static int disable_swap_pageouts;
175static int lowmem_period = 10;
176static time_t lowmem_uptime;
177
178#if defined(NO_SWAPPING)
179static int vm_swap_enabled = 0;
180static int vm_swap_idle_enabled = 0;
181#else
182static int vm_swap_enabled = 1;
183static int vm_swap_idle_enabled = 0;
184#endif
185
186SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
187	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
188	"free page threshold for waking up the pageout daemon");
189
190SYSCTL_INT(_vm, OID_AUTO, max_launder,
191	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
192
193SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
194	CTLFLAG_RW, &vm_pageout_update_period, 0,
195	"Maximum active LRU update period");
196
197SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
198	"Low memory callback period");
199
200#if defined(NO_SWAPPING)
201SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
202	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
203SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
204	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
205#else
206SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
207	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
208SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
209	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
210#endif
211
212SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
213	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
214
215SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
216	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
217
218static int pageout_lock_miss;
219SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
220	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
221
222SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
223	CTLFLAG_RW, &vm_pageout_oom_seq, 0,
224	"back-to-back calls to oom detector to start OOM");
225
226#define VM_PAGEOUT_PAGE_COUNT 16
227int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
228
229int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
230SYSCTL_INT(_vm, OID_AUTO, max_wired,
231	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
232
233static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
234static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
235    vm_paddr_t);
236#if !defined(NO_SWAPPING)
237static void vm_pageout_map_deactivate_pages(vm_map_t, long);
238static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
239static void vm_req_vmdaemon(int req);
240#endif
241static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
242
243/*
244 * Initialize a dummy page for marking the caller's place in the specified
245 * paging queue.  In principle, this function only needs to set the flag
246 * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
247 * to one as safety precautions.
248 */
249static void
250vm_pageout_init_marker(vm_page_t marker, u_short queue)
251{
252
253	bzero(marker, sizeof(*marker));
254	marker->flags = PG_MARKER;
255	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
256	marker->queue = queue;
257	marker->hold_count = 1;
258}
259
260/*
261 * vm_pageout_fallback_object_lock:
262 *
263 * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
264 * known to have failed and page queue must be either PQ_ACTIVE or
265 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
266 * while locking the vm object.  Use marker page to detect page queue
267 * changes and maintain notion of next page on page queue.  Return
268 * TRUE if no changes were detected, FALSE otherwise.  vm object is
269 * locked on return.
270 *
271 * This function depends on both the lock portion of struct vm_object
272 * and normal struct vm_page being type stable.
273 */
274static boolean_t
275vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
276{
277	struct vm_page marker;
278	struct vm_pagequeue *pq;
279	boolean_t unchanged;
280	u_short queue;
281	vm_object_t object;
282
283	queue = m->queue;
284	vm_pageout_init_marker(&marker, queue);
285	pq = vm_page_pagequeue(m);
286	object = m->object;
287
288	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
289	vm_pagequeue_unlock(pq);
290	vm_page_unlock(m);
291	VM_OBJECT_WLOCK(object);
292	vm_page_lock(m);
293	vm_pagequeue_lock(pq);
294
295	/*
296	 * The page's object might have changed, and/or the page might
297	 * have moved from its original position in the queue.  If the
298	 * page's object has changed, then the caller should abandon
299	 * processing the page because the wrong object lock was
300	 * acquired.  Use the marker's plinks.q, not the page's, to
301	 * determine if the page has been moved.  The state of the
302	 * page's plinks.q can be indeterminate; whereas, the marker's
303	 * plinks.q must be valid.
304	 */
305	*next = TAILQ_NEXT(&marker, plinks.q);
306	unchanged = m->object == object &&
307	    m == TAILQ_PREV(&marker, pglist, plinks.q);
308	KASSERT(!unchanged || m->queue == queue,
309	    ("page %p queue %d %d", m, queue, m->queue));
310	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
311	return (unchanged);
312}
313
314/*
315 * Lock the page while holding the page queue lock.  Use marker page
316 * to detect page queue changes and maintain notion of next page on
317 * page queue.  Return TRUE if no changes were detected, FALSE
318 * otherwise.  The page is locked on return. The page queue lock might
319 * be dropped and reacquired.
320 *
321 * This function depends on normal struct vm_page being type stable.
322 */
323static boolean_t
324vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
325{
326	struct vm_page marker;
327	struct vm_pagequeue *pq;
328	boolean_t unchanged;
329	u_short queue;
330
331	vm_page_lock_assert(m, MA_NOTOWNED);
332	if (vm_page_trylock(m))
333		return (TRUE);
334
335	queue = m->queue;
336	vm_pageout_init_marker(&marker, queue);
337	pq = vm_page_pagequeue(m);
338
339	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
340	vm_pagequeue_unlock(pq);
341	vm_page_lock(m);
342	vm_pagequeue_lock(pq);
343
344	/* Page queue might have changed. */
345	*next = TAILQ_NEXT(&marker, plinks.q);
346	unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
347	KASSERT(!unchanged || m->queue == queue,
348	    ("page %p queue %d %d", m, queue, m->queue));
349	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
350	return (unchanged);
351}
352
353/*
354 * vm_pageout_clean:
355 *
356 * Clean the page and remove it from the laundry.
357 *
358 * We set the busy bit to cause potential page faults on this page to
359 * block.  Note the careful timing, however, the busy bit isn't set till
360 * late and we cannot do anything that will mess with the page.
361 */
362static int
363vm_pageout_clean(vm_page_t m)
364{
365	vm_object_t object;
366	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
367	int pageout_count;
368	int ib, is, page_base;
369	vm_pindex_t pindex = m->pindex;
370
371	vm_page_lock_assert(m, MA_OWNED);
372	object = m->object;
373	VM_OBJECT_ASSERT_WLOCKED(object);
374
375	/*
376	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
377	 * with the new swapper, but we could have serious problems paging
378	 * out other object types if there is insufficient memory.
379	 *
380	 * Unfortunately, checking free memory here is far too late, so the
381	 * check has been moved up a procedural level.
382	 */
383
384	/*
385	 * Can't clean the page if it's busy or held.
386	 */
387	vm_page_assert_unbusied(m);
388	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
389	vm_page_unlock(m);
390
391	mc[vm_pageout_page_count] = pb = ps = m;
392	pageout_count = 1;
393	page_base = vm_pageout_page_count;
394	ib = 1;
395	is = 1;
396
397	/*
398	 * Scan object for clusterable pages.
399	 *
400	 * We can cluster ONLY if: ->> the page is NOT
401	 * clean, wired, busy, held, or mapped into a
402	 * buffer, and one of the following:
403	 * 1) The page is inactive, or a seldom used
404	 *    active page.
405	 * -or-
406	 * 2) we force the issue.
407	 *
408	 * During heavy mmap/modification loads the pageout
409	 * daemon can really fragment the underlying file
410	 * due to flushing pages out of order and not trying
411	 * align the clusters (which leave sporatic out-of-order
412	 * holes).  To solve this problem we do the reverse scan
413	 * first and attempt to align our cluster, then do a
414	 * forward scan if room remains.
415	 */
416more:
417	while (ib && pageout_count < vm_pageout_page_count) {
418		vm_page_t p;
419
420		if (ib > pindex) {
421			ib = 0;
422			break;
423		}
424
425		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
426			ib = 0;
427			break;
428		}
429		vm_page_test_dirty(p);
430		if (p->dirty == 0) {
431			ib = 0;
432			break;
433		}
434		vm_page_lock(p);
435		if (p->queue != PQ_INACTIVE ||
436		    p->hold_count != 0) {	/* may be undergoing I/O */
437			vm_page_unlock(p);
438			ib = 0;
439			break;
440		}
441		vm_page_unlock(p);
442		mc[--page_base] = pb = p;
443		++pageout_count;
444		++ib;
445		/*
446		 * alignment boundry, stop here and switch directions.  Do
447		 * not clear ib.
448		 */
449		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
450			break;
451	}
452
453	while (pageout_count < vm_pageout_page_count &&
454	    pindex + is < object->size) {
455		vm_page_t p;
456
457		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
458			break;
459		vm_page_test_dirty(p);
460		if (p->dirty == 0)
461			break;
462		vm_page_lock(p);
463		if (p->queue != PQ_INACTIVE ||
464		    p->hold_count != 0) {	/* may be undergoing I/O */
465			vm_page_unlock(p);
466			break;
467		}
468		vm_page_unlock(p);
469		mc[page_base + pageout_count] = ps = p;
470		++pageout_count;
471		++is;
472	}
473
474	/*
475	 * If we exhausted our forward scan, continue with the reverse scan
476	 * when possible, even past a page boundry.  This catches boundry
477	 * conditions.
478	 */
479	if (ib && pageout_count < vm_pageout_page_count)
480		goto more;
481
482	/*
483	 * we allow reads during pageouts...
484	 */
485	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
486	    NULL));
487}
488
489/*
490 * vm_pageout_flush() - launder the given pages
491 *
492 *	The given pages are laundered.  Note that we setup for the start of
493 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
494 *	reference count all in here rather then in the parent.  If we want
495 *	the parent to do more sophisticated things we may have to change
496 *	the ordering.
497 *
498 *	Returned runlen is the count of pages between mreq and first
499 *	page after mreq with status VM_PAGER_AGAIN.
500 *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
501 *	for any page in runlen set.
502 */
503int
504vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
505    boolean_t *eio)
506{
507	vm_object_t object = mc[0]->object;
508	int pageout_status[count];
509	int numpagedout = 0;
510	int i, runlen;
511
512	VM_OBJECT_ASSERT_WLOCKED(object);
513
514	/*
515	 * Initiate I/O.  Bump the vm_page_t->busy counter and
516	 * mark the pages read-only.
517	 *
518	 * We do not have to fixup the clean/dirty bits here... we can
519	 * allow the pager to do it after the I/O completes.
520	 *
521	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
522	 * edge case with file fragments.
523	 */
524	for (i = 0; i < count; i++) {
525		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
526		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
527			mc[i], i, count));
528		vm_page_sbusy(mc[i]);
529		pmap_remove_write(mc[i]);
530	}
531	vm_object_pip_add(object, count);
532
533	vm_pager_put_pages(object, mc, count, flags, pageout_status);
534
535	runlen = count - mreq;
536	if (eio != NULL)
537		*eio = FALSE;
538	for (i = 0; i < count; i++) {
539		vm_page_t mt = mc[i];
540
541		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
542		    !pmap_page_is_write_mapped(mt),
543		    ("vm_pageout_flush: page %p is not write protected", mt));
544		switch (pageout_status[i]) {
545		case VM_PAGER_OK:
546		case VM_PAGER_PEND:
547			numpagedout++;
548			break;
549		case VM_PAGER_BAD:
550			/*
551			 * Page outside of range of object. Right now we
552			 * essentially lose the changes by pretending it
553			 * worked.
554			 */
555			vm_page_undirty(mt);
556			break;
557		case VM_PAGER_ERROR:
558		case VM_PAGER_FAIL:
559			/*
560			 * If page couldn't be paged out, then reactivate the
561			 * page so it doesn't clog the inactive list.  (We
562			 * will try paging out it again later).
563			 */
564			vm_page_lock(mt);
565			vm_page_activate(mt);
566			vm_page_unlock(mt);
567			if (eio != NULL && i >= mreq && i - mreq < runlen)
568				*eio = TRUE;
569			break;
570		case VM_PAGER_AGAIN:
571			if (i >= mreq && i - mreq < runlen)
572				runlen = i - mreq;
573			break;
574		}
575
576		/*
577		 * If the operation is still going, leave the page busy to
578		 * block all other accesses. Also, leave the paging in
579		 * progress indicator set so that we don't attempt an object
580		 * collapse.
581		 */
582		if (pageout_status[i] != VM_PAGER_PEND) {
583			vm_object_pip_wakeup(object);
584			vm_page_sunbusy(mt);
585			if (vm_page_count_severe()) {
586				vm_page_lock(mt);
587				vm_page_try_to_cache(mt);
588				vm_page_unlock(mt);
589			}
590		}
591	}
592	if (prunlen != NULL)
593		*prunlen = runlen;
594	return (numpagedout);
595}
596
597static boolean_t
598vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
599    vm_paddr_t high)
600{
601	struct mount *mp;
602	struct vnode *vp;
603	vm_object_t object;
604	vm_paddr_t pa;
605	vm_page_t m, m_tmp, next;
606	int lockmode;
607
608	vm_pagequeue_lock(pq);
609	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
610		if ((m->flags & PG_MARKER) != 0)
611			continue;
612		pa = VM_PAGE_TO_PHYS(m);
613		if (pa < low || pa + PAGE_SIZE > high)
614			continue;
615		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
616			vm_page_unlock(m);
617			continue;
618		}
619		object = m->object;
620		if ((!VM_OBJECT_TRYWLOCK(object) &&
621		    (!vm_pageout_fallback_object_lock(m, &next) ||
622		    m->hold_count != 0)) || vm_page_busied(m)) {
623			vm_page_unlock(m);
624			VM_OBJECT_WUNLOCK(object);
625			continue;
626		}
627		vm_page_test_dirty(m);
628		if (m->dirty == 0 && object->ref_count != 0)
629			pmap_remove_all(m);
630		if (m->dirty != 0) {
631			vm_page_unlock(m);
632			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
633				VM_OBJECT_WUNLOCK(object);
634				continue;
635			}
636			if (object->type == OBJT_VNODE) {
637				vm_pagequeue_unlock(pq);
638				vp = object->handle;
639				vm_object_reference_locked(object);
640				VM_OBJECT_WUNLOCK(object);
641				(void)vn_start_write(vp, &mp, V_WAIT);
642				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
643				    LK_SHARED : LK_EXCLUSIVE;
644				vn_lock(vp, lockmode | LK_RETRY);
645				VM_OBJECT_WLOCK(object);
646				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
647				VM_OBJECT_WUNLOCK(object);
648				VOP_UNLOCK(vp, 0);
649				vm_object_deallocate(object);
650				vn_finished_write(mp);
651				return (TRUE);
652			} else if (object->type == OBJT_SWAP ||
653			    object->type == OBJT_DEFAULT) {
654				vm_pagequeue_unlock(pq);
655				m_tmp = m;
656				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
657				    0, NULL, NULL);
658				VM_OBJECT_WUNLOCK(object);
659				return (TRUE);
660			}
661		} else {
662			/*
663			 * Dequeue here to prevent lock recursion in
664			 * vm_page_cache().
665			 */
666			vm_page_dequeue_locked(m);
667			vm_page_cache(m);
668			vm_page_unlock(m);
669		}
670		VM_OBJECT_WUNLOCK(object);
671	}
672	vm_pagequeue_unlock(pq);
673	return (FALSE);
674}
675
676/*
677 * Increase the number of cached pages.  The specified value, "tries",
678 * determines which categories of pages are cached:
679 *
680 *  0: All clean, inactive pages within the specified physical address range
681 *     are cached.  Will not sleep.
682 *  1: The vm_lowmem handlers are called.  All inactive pages within
683 *     the specified physical address range are cached.  May sleep.
684 *  2: The vm_lowmem handlers are called.  All inactive and active pages
685 *     within the specified physical address range are cached.  May sleep.
686 */
687void
688vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
689{
690	int actl, actmax, inactl, inactmax, dom, initial_dom;
691	static int start_dom = 0;
692
693	if (tries > 0) {
694		/*
695		 * Decrease registered cache sizes.  The vm_lowmem handlers
696		 * may acquire locks and/or sleep, so they can only be invoked
697		 * when "tries" is greater than zero.
698		 */
699		SDT_PROBE0(vm, , , vm__lowmem_cache);
700		EVENTHANDLER_INVOKE(vm_lowmem, 0);
701
702		/*
703		 * We do this explicitly after the caches have been drained
704		 * above.
705		 */
706		uma_reclaim();
707	}
708
709	/*
710	 * Make the next scan start on the next domain.
711	 */
712	initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
713
714	inactl = 0;
715	inactmax = cnt.v_inactive_count;
716	actl = 0;
717	actmax = tries < 2 ? 0 : cnt.v_active_count;
718	dom = initial_dom;
719
720	/*
721	 * Scan domains in round-robin order, first inactive queues,
722	 * then active.  Since domain usually owns large physically
723	 * contiguous chunk of memory, it makes sense to completely
724	 * exhaust one domain before switching to next, while growing
725	 * the pool of contiguous physical pages.
726	 *
727	 * Do not even start launder a domain which cannot contain
728	 * the specified address range, as indicated by segments
729	 * constituting the domain.
730	 */
731again_inact:
732	if (inactl < inactmax) {
733		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
734		    low, high) &&
735		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
736		    tries, low, high)) {
737			inactl++;
738			goto again_inact;
739		}
740		if (++dom == vm_ndomains)
741			dom = 0;
742		if (dom != initial_dom)
743			goto again_inact;
744	}
745again_act:
746	if (actl < actmax) {
747		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
748		    low, high) &&
749		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
750		      tries, low, high)) {
751			actl++;
752			goto again_act;
753		}
754		if (++dom == vm_ndomains)
755			dom = 0;
756		if (dom != initial_dom)
757			goto again_act;
758	}
759}
760
761#if !defined(NO_SWAPPING)
762/*
763 *	vm_pageout_object_deactivate_pages
764 *
765 *	Deactivate enough pages to satisfy the inactive target
766 *	requirements.
767 *
768 *	The object and map must be locked.
769 */
770static void
771vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
772    long desired)
773{
774	vm_object_t backing_object, object;
775	vm_page_t p;
776	int act_delta, remove_mode;
777
778	VM_OBJECT_ASSERT_LOCKED(first_object);
779	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
780		return;
781	for (object = first_object;; object = backing_object) {
782		if (pmap_resident_count(pmap) <= desired)
783			goto unlock_return;
784		VM_OBJECT_ASSERT_LOCKED(object);
785		if ((object->flags & OBJ_UNMANAGED) != 0 ||
786		    object->paging_in_progress != 0)
787			goto unlock_return;
788
789		remove_mode = 0;
790		if (object->shadow_count > 1)
791			remove_mode = 1;
792		/*
793		 * Scan the object's entire memory queue.
794		 */
795		TAILQ_FOREACH(p, &object->memq, listq) {
796			if (pmap_resident_count(pmap) <= desired)
797				goto unlock_return;
798			if (vm_page_busied(p))
799				continue;
800			PCPU_INC(cnt.v_pdpages);
801			vm_page_lock(p);
802			if (p->wire_count != 0 || p->hold_count != 0 ||
803			    !pmap_page_exists_quick(pmap, p)) {
804				vm_page_unlock(p);
805				continue;
806			}
807			act_delta = pmap_ts_referenced(p);
808			if ((p->aflags & PGA_REFERENCED) != 0) {
809				if (act_delta == 0)
810					act_delta = 1;
811				vm_page_aflag_clear(p, PGA_REFERENCED);
812			}
813			if (p->queue != PQ_ACTIVE && act_delta != 0) {
814				vm_page_activate(p);
815				p->act_count += act_delta;
816			} else if (p->queue == PQ_ACTIVE) {
817				if (act_delta == 0) {
818					p->act_count -= min(p->act_count,
819					    ACT_DECLINE);
820					if (!remove_mode && p->act_count == 0) {
821						pmap_remove_all(p);
822						vm_page_deactivate(p);
823					} else
824						vm_page_requeue(p);
825				} else {
826					vm_page_activate(p);
827					if (p->act_count < ACT_MAX -
828					    ACT_ADVANCE)
829						p->act_count += ACT_ADVANCE;
830					vm_page_requeue(p);
831				}
832			} else if (p->queue == PQ_INACTIVE)
833				pmap_remove_all(p);
834			vm_page_unlock(p);
835		}
836		if ((backing_object = object->backing_object) == NULL)
837			goto unlock_return;
838		VM_OBJECT_RLOCK(backing_object);
839		if (object != first_object)
840			VM_OBJECT_RUNLOCK(object);
841	}
842unlock_return:
843	if (object != first_object)
844		VM_OBJECT_RUNLOCK(object);
845}
846
847/*
848 * deactivate some number of pages in a map, try to do it fairly, but
849 * that is really hard to do.
850 */
851static void
852vm_pageout_map_deactivate_pages(map, desired)
853	vm_map_t map;
854	long desired;
855{
856	vm_map_entry_t tmpe;
857	vm_object_t obj, bigobj;
858	int nothingwired;
859
860	if (!vm_map_trylock(map))
861		return;
862
863	bigobj = NULL;
864	nothingwired = TRUE;
865
866	/*
867	 * first, search out the biggest object, and try to free pages from
868	 * that.
869	 */
870	tmpe = map->header.next;
871	while (tmpe != &map->header) {
872		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
873			obj = tmpe->object.vm_object;
874			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
875				if (obj->shadow_count <= 1 &&
876				    (bigobj == NULL ||
877				     bigobj->resident_page_count < obj->resident_page_count)) {
878					if (bigobj != NULL)
879						VM_OBJECT_RUNLOCK(bigobj);
880					bigobj = obj;
881				} else
882					VM_OBJECT_RUNLOCK(obj);
883			}
884		}
885		if (tmpe->wired_count > 0)
886			nothingwired = FALSE;
887		tmpe = tmpe->next;
888	}
889
890	if (bigobj != NULL) {
891		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
892		VM_OBJECT_RUNLOCK(bigobj);
893	}
894	/*
895	 * Next, hunt around for other pages to deactivate.  We actually
896	 * do this search sort of wrong -- .text first is not the best idea.
897	 */
898	tmpe = map->header.next;
899	while (tmpe != &map->header) {
900		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
901			break;
902		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
903			obj = tmpe->object.vm_object;
904			if (obj != NULL) {
905				VM_OBJECT_RLOCK(obj);
906				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
907				VM_OBJECT_RUNLOCK(obj);
908			}
909		}
910		tmpe = tmpe->next;
911	}
912
913#ifdef __ia64__
914	/*
915	 * Remove all non-wired, managed mappings if a process is swapped out.
916	 * This will free page table pages.
917	 */
918	if (desired == 0)
919		pmap_remove_pages(map->pmap);
920#else
921	/*
922	 * Remove all mappings if a process is swapped out, this will free page
923	 * table pages.
924	 */
925	if (desired == 0 && nothingwired) {
926		pmap_remove(vm_map_pmap(map), vm_map_min(map),
927		    vm_map_max(map));
928	}
929#endif
930
931	vm_map_unlock(map);
932}
933#endif		/* !defined(NO_SWAPPING) */
934
935/*
936 *	vm_pageout_scan does the dirty work for the pageout daemon.
937 *
938 *	pass 0 - Update active LRU/deactivate pages
939 *	pass 1 - Move inactive to cache or free
940 *	pass 2 - Launder dirty pages
941 */
942static void
943vm_pageout_scan(struct vm_domain *vmd, int pass)
944{
945	vm_page_t m, next;
946	struct vm_pagequeue *pq;
947	vm_object_t object;
948	long min_scan;
949	int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
950	int vnodes_skipped = 0;
951	int maxlaunder, scan_tick, scanned, starting_page_shortage;
952	int lockmode;
953	boolean_t queues_locked;
954
955	/*
956	 * If we need to reclaim memory ask kernel caches to return
957	 * some.  We rate limit to avoid thrashing.
958	 */
959	if (vmd == &vm_dom[0] && pass > 0 &&
960	    (time_uptime - lowmem_uptime) >= lowmem_period) {
961		/*
962		 * Decrease registered cache sizes.
963		 */
964		SDT_PROBE0(vm, , , vm__lowmem_scan);
965		EVENTHANDLER_INVOKE(vm_lowmem, 0);
966		/*
967		 * We do this explicitly after the caches have been
968		 * drained above.
969		 */
970		uma_reclaim();
971		lowmem_uptime = time_uptime;
972	}
973
974	/*
975	 * The addl_page_shortage is the number of temporarily
976	 * stuck pages in the inactive queue.  In other words, the
977	 * number of pages from the inactive count that should be
978	 * discounted in setting the target for the active queue scan.
979	 */
980	addl_page_shortage = 0;
981
982	/*
983	 * Calculate the number of pages we want to either free or move
984	 * to the cache.
985	 */
986	if (pass > 0) {
987		deficit = atomic_readandclear_int(&vm_pageout_deficit);
988		page_shortage = vm_paging_target() + deficit;
989	} else
990		page_shortage = deficit = 0;
991	starting_page_shortage = page_shortage;
992
993	/*
994	 * maxlaunder limits the number of dirty pages we flush per scan.
995	 * For most systems a smaller value (16 or 32) is more robust under
996	 * extreme memory and disk pressure because any unnecessary writes
997	 * to disk can result in extreme performance degredation.  However,
998	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
999	 * used) will die horribly with limited laundering.  If the pageout
1000	 * daemon cannot clean enough pages in the first pass, we let it go
1001	 * all out in succeeding passes.
1002	 */
1003	if ((maxlaunder = vm_max_launder) <= 1)
1004		maxlaunder = 1;
1005	if (pass > 1)
1006		maxlaunder = 10000;
1007
1008	/*
1009	 * Start scanning the inactive queue for pages we can move to the
1010	 * cache or free.  The scan will stop when the target is reached or
1011	 * we have scanned the entire inactive queue.  Note that m->act_count
1012	 * is not used to form decisions for the inactive queue, only for the
1013	 * active queue.
1014	 */
1015	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1016	maxscan = pq->pq_cnt;
1017	vm_pagequeue_lock(pq);
1018	queues_locked = TRUE;
1019	for (m = TAILQ_FIRST(&pq->pq_pl);
1020	     m != NULL && maxscan-- > 0 && page_shortage > 0;
1021	     m = next) {
1022		vm_pagequeue_assert_locked(pq);
1023		KASSERT(queues_locked, ("unlocked queues"));
1024		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
1025
1026		PCPU_INC(cnt.v_pdpages);
1027		next = TAILQ_NEXT(m, plinks.q);
1028
1029		/*
1030		 * skip marker pages
1031		 */
1032		if (m->flags & PG_MARKER)
1033			continue;
1034
1035		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1036		    ("Fictitious page %p cannot be in inactive queue", m));
1037		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1038		    ("Unmanaged page %p cannot be in inactive queue", m));
1039
1040		/*
1041		 * The page or object lock acquisitions fail if the
1042		 * page was removed from the queue or moved to a
1043		 * different position within the queue.  In either
1044		 * case, addl_page_shortage should not be incremented.
1045		 */
1046		if (!vm_pageout_page_lock(m, &next)) {
1047			vm_page_unlock(m);
1048			continue;
1049		}
1050		object = m->object;
1051		if (!VM_OBJECT_TRYWLOCK(object) &&
1052		    !vm_pageout_fallback_object_lock(m, &next)) {
1053			vm_page_unlock(m);
1054			VM_OBJECT_WUNLOCK(object);
1055			continue;
1056		}
1057
1058		/*
1059		 * Don't mess with busy pages, keep them at at the
1060		 * front of the queue, most likely they are being
1061		 * paged out.  Increment addl_page_shortage for busy
1062		 * pages, because they may leave the inactive queue
1063		 * shortly after page scan is finished.
1064		 */
1065		if (vm_page_busied(m)) {
1066			vm_page_unlock(m);
1067			VM_OBJECT_WUNLOCK(object);
1068			addl_page_shortage++;
1069			continue;
1070		}
1071
1072		/*
1073		 * We unlock the inactive page queue, invalidating the
1074		 * 'next' pointer.  Use our marker to remember our
1075		 * place.
1076		 */
1077		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1078		vm_pagequeue_unlock(pq);
1079		queues_locked = FALSE;
1080
1081		/*
1082		 * We bump the activation count if the page has been
1083		 * referenced while in the inactive queue.  This makes
1084		 * it less likely that the page will be added back to the
1085		 * inactive queue prematurely again.  Here we check the
1086		 * page tables (or emulated bits, if any), given the upper
1087		 * level VM system not knowing anything about existing
1088		 * references.
1089		 */
1090		act_delta = 0;
1091		if ((m->aflags & PGA_REFERENCED) != 0) {
1092			vm_page_aflag_clear(m, PGA_REFERENCED);
1093			act_delta = 1;
1094		}
1095		if (object->ref_count != 0) {
1096			act_delta += pmap_ts_referenced(m);
1097		} else {
1098			KASSERT(!pmap_page_is_mapped(m),
1099			    ("vm_pageout_scan: page %p is mapped", m));
1100		}
1101
1102		/*
1103		 * If the upper level VM system knows about any page
1104		 * references, we reactivate the page or requeue it.
1105		 */
1106		if (act_delta != 0) {
1107			if (object->ref_count) {
1108				vm_page_activate(m);
1109				m->act_count += act_delta + ACT_ADVANCE;
1110			} else {
1111				vm_pagequeue_lock(pq);
1112				queues_locked = TRUE;
1113				vm_page_requeue_locked(m);
1114			}
1115			VM_OBJECT_WUNLOCK(object);
1116			vm_page_unlock(m);
1117			goto relock_queues;
1118		}
1119
1120		if (m->hold_count != 0) {
1121			vm_page_unlock(m);
1122			VM_OBJECT_WUNLOCK(object);
1123
1124			/*
1125			 * Held pages are essentially stuck in the
1126			 * queue.  So, they ought to be discounted
1127			 * from the inactive count.  See the
1128			 * calculation of the page_shortage for the
1129			 * loop over the active queue below.
1130			 */
1131			addl_page_shortage++;
1132			goto relock_queues;
1133		}
1134
1135		/*
1136		 * If the page appears to be clean at the machine-independent
1137		 * layer, then remove all of its mappings from the pmap in
1138		 * anticipation of placing it onto the cache queue.  If,
1139		 * however, any of the page's mappings allow write access,
1140		 * then the page may still be modified until the last of those
1141		 * mappings are removed.
1142		 */
1143		if (object->ref_count != 0) {
1144			vm_page_test_dirty(m);
1145			if (m->dirty == 0)
1146				pmap_remove_all(m);
1147		}
1148
1149		if (m->valid == 0) {
1150			/*
1151			 * Invalid pages can be easily freed
1152			 */
1153			vm_page_free(m);
1154			PCPU_INC(cnt.v_dfree);
1155			--page_shortage;
1156		} else if (m->dirty == 0) {
1157			/*
1158			 * Clean pages can be placed onto the cache queue.
1159			 * This effectively frees them.
1160			 */
1161			vm_page_cache(m);
1162			--page_shortage;
1163		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1164			/*
1165			 * Dirty pages need to be paged out, but flushing
1166			 * a page is extremely expensive verses freeing
1167			 * a clean page.  Rather then artificially limiting
1168			 * the number of pages we can flush, we instead give
1169			 * dirty pages extra priority on the inactive queue
1170			 * by forcing them to be cycled through the queue
1171			 * twice before being flushed, after which the
1172			 * (now clean) page will cycle through once more
1173			 * before being freed.  This significantly extends
1174			 * the thrash point for a heavily loaded machine.
1175			 */
1176			m->flags |= PG_WINATCFLS;
1177			vm_pagequeue_lock(pq);
1178			queues_locked = TRUE;
1179			vm_page_requeue_locked(m);
1180		} else if (maxlaunder > 0) {
1181			/*
1182			 * We always want to try to flush some dirty pages if
1183			 * we encounter them, to keep the system stable.
1184			 * Normally this number is small, but under extreme
1185			 * pressure where there are insufficient clean pages
1186			 * on the inactive queue, we may have to go all out.
1187			 */
1188			int swap_pageouts_ok;
1189			struct vnode *vp = NULL;
1190			struct mount *mp = NULL;
1191
1192			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1193				swap_pageouts_ok = 1;
1194			} else {
1195				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1196				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1197				vm_page_count_min());
1198
1199			}
1200
1201			/*
1202			 * We don't bother paging objects that are "dead".
1203			 * Those objects are in a "rundown" state.
1204			 */
1205			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1206				vm_pagequeue_lock(pq);
1207				vm_page_unlock(m);
1208				VM_OBJECT_WUNLOCK(object);
1209				queues_locked = TRUE;
1210				vm_page_requeue_locked(m);
1211				goto relock_queues;
1212			}
1213
1214			/*
1215			 * The object is already known NOT to be dead.   It
1216			 * is possible for the vget() to block the whole
1217			 * pageout daemon, but the new low-memory handling
1218			 * code should prevent it.
1219			 *
1220			 * The previous code skipped locked vnodes and, worse,
1221			 * reordered pages in the queue.  This results in
1222			 * completely non-deterministic operation and, on a
1223			 * busy system, can lead to extremely non-optimal
1224			 * pageouts.  For example, it can cause clean pages
1225			 * to be freed and dirty pages to be moved to the end
1226			 * of the queue.  Since dirty pages are also moved to
1227			 * the end of the queue once-cleaned, this gives
1228			 * way too large a weighting to defering the freeing
1229			 * of dirty pages.
1230			 *
1231			 * We can't wait forever for the vnode lock, we might
1232			 * deadlock due to a vn_read() getting stuck in
1233			 * vm_wait while holding this vnode.  We skip the
1234			 * vnode if we can't get it in a reasonable amount
1235			 * of time.
1236			 */
1237			if (object->type == OBJT_VNODE) {
1238				vm_page_unlock(m);
1239				vp = object->handle;
1240				if (vp->v_type == VREG &&
1241				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1242					mp = NULL;
1243					++pageout_lock_miss;
1244					if (object->flags & OBJ_MIGHTBEDIRTY)
1245						vnodes_skipped++;
1246					goto unlock_and_continue;
1247				}
1248				KASSERT(mp != NULL,
1249				    ("vp %p with NULL v_mount", vp));
1250				vm_object_reference_locked(object);
1251				VM_OBJECT_WUNLOCK(object);
1252				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1253				    LK_SHARED : LK_EXCLUSIVE;
1254				if (vget(vp, lockmode | LK_TIMELOCK,
1255				    curthread)) {
1256					VM_OBJECT_WLOCK(object);
1257					++pageout_lock_miss;
1258					if (object->flags & OBJ_MIGHTBEDIRTY)
1259						vnodes_skipped++;
1260					vp = NULL;
1261					goto unlock_and_continue;
1262				}
1263				VM_OBJECT_WLOCK(object);
1264				vm_page_lock(m);
1265				vm_pagequeue_lock(pq);
1266				queues_locked = TRUE;
1267				/*
1268				 * The page might have been moved to another
1269				 * queue during potential blocking in vget()
1270				 * above.  The page might have been freed and
1271				 * reused for another vnode.
1272				 */
1273				if (m->queue != PQ_INACTIVE ||
1274				    m->object != object ||
1275				    TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1276					vm_page_unlock(m);
1277					if (object->flags & OBJ_MIGHTBEDIRTY)
1278						vnodes_skipped++;
1279					goto unlock_and_continue;
1280				}
1281
1282				/*
1283				 * The page may have been busied during the
1284				 * blocking in vget().  We don't move the
1285				 * page back onto the end of the queue so that
1286				 * statistics are more correct if we don't.
1287				 */
1288				if (vm_page_busied(m)) {
1289					vm_page_unlock(m);
1290					addl_page_shortage++;
1291					goto unlock_and_continue;
1292				}
1293
1294				/*
1295				 * If the page has become held it might
1296				 * be undergoing I/O, so skip it
1297				 */
1298				if (m->hold_count != 0) {
1299					vm_page_unlock(m);
1300					addl_page_shortage++;
1301					if (object->flags & OBJ_MIGHTBEDIRTY)
1302						vnodes_skipped++;
1303					goto unlock_and_continue;
1304				}
1305				vm_pagequeue_unlock(pq);
1306				queues_locked = FALSE;
1307			}
1308
1309			/*
1310			 * If a page is dirty, then it is either being washed
1311			 * (but not yet cleaned) or it is still in the
1312			 * laundry.  If it is still in the laundry, then we
1313			 * start the cleaning operation.
1314			 *
1315			 * decrement page_shortage on success to account for
1316			 * the (future) cleaned page.  Otherwise we could wind
1317			 * up laundering or cleaning too many pages.
1318			 */
1319			if (vm_pageout_clean(m) != 0) {
1320				--page_shortage;
1321				--maxlaunder;
1322			}
1323unlock_and_continue:
1324			vm_page_lock_assert(m, MA_NOTOWNED);
1325			VM_OBJECT_WUNLOCK(object);
1326			if (mp != NULL) {
1327				if (queues_locked) {
1328					vm_pagequeue_unlock(pq);
1329					queues_locked = FALSE;
1330				}
1331				if (vp != NULL)
1332					vput(vp);
1333				vm_object_deallocate(object);
1334				vn_finished_write(mp);
1335			}
1336			vm_page_lock_assert(m, MA_NOTOWNED);
1337			goto relock_queues;
1338		}
1339		vm_page_unlock(m);
1340		VM_OBJECT_WUNLOCK(object);
1341relock_queues:
1342		if (!queues_locked) {
1343			vm_pagequeue_lock(pq);
1344			queues_locked = TRUE;
1345		}
1346		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1347		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1348	}
1349	vm_pagequeue_unlock(pq);
1350
1351#if !defined(NO_SWAPPING)
1352	/*
1353	 * Wakeup the swapout daemon if we didn't cache or free the targeted
1354	 * number of pages.
1355	 */
1356	if (vm_swap_enabled && page_shortage > 0)
1357		vm_req_vmdaemon(VM_SWAP_NORMAL);
1358#endif
1359
1360	/*
1361	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
1362	 * and we didn't cache or free enough pages.
1363	 */
1364	if (vnodes_skipped > 0 && page_shortage > cnt.v_free_target -
1365	    cnt.v_free_min)
1366		(void)speedup_syncer();
1367
1368	/*
1369	 * If the inactive queue scan fails repeatedly to meet its
1370	 * target, kill the largest process.
1371	 */
1372	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1373
1374	/*
1375	 * Compute the number of pages we want to try to move from the
1376	 * active queue to the inactive queue.
1377	 */
1378	page_shortage = cnt.v_inactive_target - cnt.v_inactive_count +
1379	    vm_paging_target() + deficit + addl_page_shortage;
1380
1381	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1382	vm_pagequeue_lock(pq);
1383	maxscan = pq->pq_cnt;
1384
1385	/*
1386	 * If we're just idle polling attempt to visit every
1387	 * active page within 'update_period' seconds.
1388	 */
1389	scan_tick = ticks;
1390	if (vm_pageout_update_period != 0) {
1391		min_scan = pq->pq_cnt;
1392		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1393		min_scan /= hz * vm_pageout_update_period;
1394	} else
1395		min_scan = 0;
1396	if (min_scan > 0 || (page_shortage > 0 && maxscan > 0))
1397		vmd->vmd_last_active_scan = scan_tick;
1398
1399	/*
1400	 * Scan the active queue for pages that can be deactivated.  Update
1401	 * the per-page activity counter and use it to identify deactivation
1402	 * candidates.
1403	 */
1404	for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
1405	    min_scan || (page_shortage > 0 && scanned < maxscan)); m = next,
1406	    scanned++) {
1407
1408		KASSERT(m->queue == PQ_ACTIVE,
1409		    ("vm_pageout_scan: page %p isn't active", m));
1410
1411		next = TAILQ_NEXT(m, plinks.q);
1412		if ((m->flags & PG_MARKER) != 0)
1413			continue;
1414		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1415		    ("Fictitious page %p cannot be in active queue", m));
1416		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1417		    ("Unmanaged page %p cannot be in active queue", m));
1418		if (!vm_pageout_page_lock(m, &next)) {
1419			vm_page_unlock(m);
1420			continue;
1421		}
1422
1423		/*
1424		 * The count for pagedaemon pages is done after checking the
1425		 * page for eligibility...
1426		 */
1427		PCPU_INC(cnt.v_pdpages);
1428
1429		/*
1430		 * Check to see "how much" the page has been used.
1431		 */
1432		act_delta = 0;
1433		if (m->aflags & PGA_REFERENCED) {
1434			vm_page_aflag_clear(m, PGA_REFERENCED);
1435			act_delta += 1;
1436		}
1437		/*
1438		 * Unlocked object ref count check.  Two races are possible.
1439		 * 1) The ref was transitioning to zero and we saw non-zero,
1440		 *    the pmap bits will be checked unnecessarily.
1441		 * 2) The ref was transitioning to one and we saw zero.
1442		 *    The page lock prevents a new reference to this page so
1443		 *    we need not check the reference bits.
1444		 */
1445		if (m->object->ref_count != 0)
1446			act_delta += pmap_ts_referenced(m);
1447
1448		/*
1449		 * Advance or decay the act_count based on recent usage.
1450		 */
1451		if (act_delta) {
1452			m->act_count += ACT_ADVANCE + act_delta;
1453			if (m->act_count > ACT_MAX)
1454				m->act_count = ACT_MAX;
1455		} else {
1456			m->act_count -= min(m->act_count, ACT_DECLINE);
1457			act_delta = m->act_count;
1458		}
1459
1460		/*
1461		 * Move this page to the tail of the active or inactive
1462		 * queue depending on usage.
1463		 */
1464		if (act_delta == 0) {
1465			/* Dequeue to avoid later lock recursion. */
1466			vm_page_dequeue_locked(m);
1467			vm_page_deactivate(m);
1468			page_shortage--;
1469		} else
1470			vm_page_requeue_locked(m);
1471		vm_page_unlock(m);
1472	}
1473	vm_pagequeue_unlock(pq);
1474#if !defined(NO_SWAPPING)
1475	/*
1476	 * Idle process swapout -- run once per second.
1477	 */
1478	if (vm_swap_idle_enabled) {
1479		static long lsec;
1480		if (time_second != lsec) {
1481			vm_req_vmdaemon(VM_SWAP_IDLE);
1482			lsec = time_second;
1483		}
1484	}
1485#endif
1486}
1487
1488static int vm_pageout_oom_vote;
1489
1490/*
1491 * The pagedaemon threads randlomly select one to perform the
1492 * OOM.  Trying to kill processes before all pagedaemons
1493 * failed to reach free target is premature.
1494 */
1495static void
1496vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1497    int starting_page_shortage)
1498{
1499	int old_vote;
1500
1501	if (starting_page_shortage <= 0 || starting_page_shortage !=
1502	    page_shortage)
1503		vmd->vmd_oom_seq = 0;
1504	else
1505		vmd->vmd_oom_seq++;
1506	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1507		if (vmd->vmd_oom) {
1508			vmd->vmd_oom = FALSE;
1509			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1510		}
1511		return;
1512	}
1513
1514	/*
1515	 * Do not follow the call sequence until OOM condition is
1516	 * cleared.
1517	 */
1518	vmd->vmd_oom_seq = 0;
1519
1520	if (vmd->vmd_oom)
1521		return;
1522
1523	vmd->vmd_oom = TRUE;
1524	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1525	if (old_vote != vm_ndomains - 1)
1526		return;
1527
1528	/*
1529	 * The current pagedaemon thread is the last in the quorum to
1530	 * start OOM.  Initiate the selection and signaling of the
1531	 * victim.
1532	 */
1533	vm_pageout_oom(VM_OOM_MEM);
1534
1535	/*
1536	 * After one round of OOM terror, recall our vote.  On the
1537	 * next pass, current pagedaemon would vote again if the low
1538	 * memory condition is still there, due to vmd_oom being
1539	 * false.
1540	 */
1541	vmd->vmd_oom = FALSE;
1542	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1543}
1544
1545/*
1546 * The OOM killer is the page daemon's action of last resort when
1547 * memory allocation requests have been stalled for a prolonged period
1548 * of time because it cannot reclaim memory.  This function computes
1549 * the approximate number of physical pages that could be reclaimed if
1550 * the specified address space is destroyed.
1551 *
1552 * Private, anonymous memory owned by the address space is the
1553 * principal resource that we expect to recover after an OOM kill.
1554 * Since the physical pages mapped by the address space's COW entries
1555 * are typically shared pages, they are unlikely to be released and so
1556 * they are not counted.
1557 *
1558 * To get to the point where the page daemon runs the OOM killer, its
1559 * efforts to write-back vnode-backed pages may have stalled.  This
1560 * could be caused by a memory allocation deadlock in the write path
1561 * that might be resolved by an OOM kill.  Therefore, physical pages
1562 * belonging to vnode-backed objects are counted, because they might
1563 * be freed without being written out first if the address space holds
1564 * the last reference to an unlinked vnode.
1565 *
1566 * Similarly, physical pages belonging to OBJT_PHYS objects are
1567 * counted because the address space might hold the last reference to
1568 * the object.
1569 */
1570static long
1571vm_pageout_oom_pagecount(struct vmspace *vmspace)
1572{
1573	vm_map_t map;
1574	vm_map_entry_t entry;
1575	vm_object_t obj;
1576	long res;
1577
1578	map = &vmspace->vm_map;
1579	KASSERT(!map->system_map, ("system map"));
1580	sx_assert(&map->lock, SA_LOCKED);
1581	res = 0;
1582	for (entry = map->header.next; entry != &map->header;
1583	    entry = entry->next) {
1584		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1585			continue;
1586		obj = entry->object.vm_object;
1587		if (obj == NULL)
1588			continue;
1589		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1590		    obj->ref_count != 1)
1591			continue;
1592		switch (obj->type) {
1593		case OBJT_DEFAULT:
1594		case OBJT_SWAP:
1595		case OBJT_PHYS:
1596		case OBJT_VNODE:
1597			res += obj->resident_page_count;
1598			break;
1599		}
1600	}
1601	return (res);
1602}
1603
1604void
1605vm_pageout_oom(int shortage)
1606{
1607	struct proc *p, *bigproc;
1608	vm_offset_t size, bigsize;
1609	struct thread *td;
1610	struct vmspace *vm;
1611
1612	/*
1613	 * We keep the process bigproc locked once we find it to keep anyone
1614	 * from messing with it; however, there is a possibility of
1615	 * deadlock if process B is bigproc and one of it's child processes
1616	 * attempts to propagate a signal to B while we are waiting for A's
1617	 * lock while walking this list.  To avoid this, we don't block on
1618	 * the process lock but just skip a process if it is already locked.
1619	 */
1620	bigproc = NULL;
1621	bigsize = 0;
1622	sx_slock(&allproc_lock);
1623	FOREACH_PROC_IN_SYSTEM(p) {
1624		int breakout;
1625
1626		PROC_LOCK(p);
1627
1628		/*
1629		 * If this is a system, protected or killed process, skip it.
1630		 */
1631		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1632		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1633		    p->p_pid == 1 || P_KILLED(p) ||
1634		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1635			PROC_UNLOCK(p);
1636			continue;
1637		}
1638		/*
1639		 * If the process is in a non-running type state,
1640		 * don't touch it.  Check all the threads individually.
1641		 */
1642		breakout = 0;
1643		FOREACH_THREAD_IN_PROC(p, td) {
1644			thread_lock(td);
1645			if (!TD_ON_RUNQ(td) &&
1646			    !TD_IS_RUNNING(td) &&
1647			    !TD_IS_SLEEPING(td) &&
1648			    !TD_IS_SUSPENDED(td) &&
1649			    !TD_IS_SWAPPED(td)) {
1650				thread_unlock(td);
1651				breakout = 1;
1652				break;
1653			}
1654			thread_unlock(td);
1655		}
1656		if (breakout) {
1657			PROC_UNLOCK(p);
1658			continue;
1659		}
1660		/*
1661		 * get the process size
1662		 */
1663		vm = vmspace_acquire_ref(p);
1664		if (vm == NULL) {
1665			PROC_UNLOCK(p);
1666			continue;
1667		}
1668		_PHOLD(p);
1669		if (!vm_map_trylock_read(&vm->vm_map)) {
1670			_PRELE(p);
1671			PROC_UNLOCK(p);
1672			vmspace_free(vm);
1673			continue;
1674		}
1675		PROC_UNLOCK(p);
1676		size = vmspace_swap_count(vm);
1677		if (shortage == VM_OOM_MEM)
1678			size += vm_pageout_oom_pagecount(vm);
1679		vm_map_unlock_read(&vm->vm_map);
1680		vmspace_free(vm);
1681
1682		/*
1683		 * If this process is bigger than the biggest one,
1684		 * remember it.
1685		 */
1686		if (size > bigsize) {
1687			if (bigproc != NULL)
1688				PRELE(bigproc);
1689			bigproc = p;
1690			bigsize = size;
1691		} else {
1692			PRELE(p);
1693		}
1694	}
1695	sx_sunlock(&allproc_lock);
1696	if (bigproc != NULL) {
1697		PROC_LOCK(bigproc);
1698		killproc(bigproc, "out of swap space");
1699		sched_nice(bigproc, PRIO_MIN);
1700		_PRELE(bigproc);
1701		PROC_UNLOCK(bigproc);
1702		wakeup(&cnt.v_free_count);
1703	}
1704}
1705
1706static void
1707vm_pageout_worker(void *arg)
1708{
1709	struct vm_domain *domain;
1710	int domidx;
1711
1712	domidx = (uintptr_t)arg;
1713	domain = &vm_dom[domidx];
1714
1715	/*
1716	 * XXXKIB It could be useful to bind pageout daemon threads to
1717	 * the cores belonging to the domain, from which vm_page_array
1718	 * is allocated.
1719	 */
1720
1721	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1722	domain->vmd_last_active_scan = ticks;
1723	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1724
1725	/*
1726	 * The pageout daemon worker is never done, so loop forever.
1727	 */
1728	while (TRUE) {
1729		/*
1730		 * If we have enough free memory, wakeup waiters.  Do
1731		 * not clear vm_pages_needed until we reach our target,
1732		 * otherwise we may be woken up over and over again and
1733		 * waste a lot of cpu.
1734		 */
1735		mtx_lock(&vm_page_queue_free_mtx);
1736		if (vm_pages_needed && !vm_page_count_min()) {
1737			if (!vm_paging_needed())
1738				vm_pages_needed = 0;
1739			wakeup(&cnt.v_free_count);
1740		}
1741		if (vm_pages_needed) {
1742			/*
1743			 * We're still not done.  Either vm_pages_needed was
1744			 * set by another thread during the previous scan
1745			 * (typically, this happens during a level 0 scan) or
1746			 * vm_pages_needed was already set and the scan failed
1747			 * to free enough pages.  If we haven't yet performed
1748			 * a level >= 2 scan (unlimited dirty cleaning), then
1749			 * upgrade the level and scan again now.  Otherwise,
1750			 * sleep a bit and try again later.  While sleeping,
1751			 * vm_pages_needed can be cleared.
1752			 */
1753			if (domain->vmd_pass > 1)
1754				msleep(&vm_pages_needed,
1755				    &vm_page_queue_free_mtx, PVM, "psleep",
1756				    hz / 2);
1757		} else {
1758			/*
1759			 * Good enough, sleep until required to refresh
1760			 * stats.
1761			 */
1762			msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1763			    PVM, "psleep", hz);
1764		}
1765		if (vm_pages_needed) {
1766			cnt.v_pdwakeups++;
1767			domain->vmd_pass++;
1768		} else
1769			domain->vmd_pass = 0;
1770		mtx_unlock(&vm_page_queue_free_mtx);
1771		vm_pageout_scan(domain, domain->vmd_pass);
1772	}
1773}
1774
1775/*
1776 *	vm_pageout_init initialises basic pageout daemon settings.
1777 */
1778static void
1779vm_pageout_init(void)
1780{
1781	/*
1782	 * Initialize some paging parameters.
1783	 */
1784	cnt.v_interrupt_free_min = 2;
1785	if (cnt.v_page_count < 2000)
1786		vm_pageout_page_count = 8;
1787
1788	/*
1789	 * v_free_reserved needs to include enough for the largest
1790	 * swap pager structures plus enough for any pv_entry structs
1791	 * when paging.
1792	 */
1793	if (cnt.v_page_count > 1024)
1794		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1795	else
1796		cnt.v_free_min = 4;
1797	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1798	    cnt.v_interrupt_free_min;
1799	cnt.v_free_reserved = vm_pageout_page_count +
1800	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1801	cnt.v_free_severe = cnt.v_free_min / 2;
1802	cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1803	cnt.v_free_min += cnt.v_free_reserved;
1804	cnt.v_free_severe += cnt.v_free_reserved;
1805	cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1806	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1807		cnt.v_inactive_target = cnt.v_free_count / 3;
1808
1809	/*
1810	 * Set the default wakeup threshold to be 10% above the minimum
1811	 * page limit.  This keeps the steady state out of shortfall.
1812	 */
1813	vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
1814
1815	/*
1816	 * Set interval in seconds for active scan.  We want to visit each
1817	 * page at least once every ten minutes.  This is to prevent worst
1818	 * case paging behaviors with stale active LRU.
1819	 */
1820	if (vm_pageout_update_period == 0)
1821		vm_pageout_update_period = 600;
1822
1823	/* XXX does not really belong here */
1824	if (vm_page_max_wired == 0)
1825		vm_page_max_wired = cnt.v_free_count / 3;
1826}
1827
1828/*
1829 *     vm_pageout is the high level pageout daemon.
1830 */
1831static void
1832vm_pageout(void)
1833{
1834	int error;
1835#if MAXMEMDOM > 1
1836	int i;
1837#endif
1838
1839	swap_pager_swap_init();
1840#if MAXMEMDOM > 1
1841	for (i = 1; i < vm_ndomains; i++) {
1842		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1843		    curproc, NULL, 0, 0, "dom%d", i);
1844		if (error != 0) {
1845			panic("starting pageout for domain %d, error %d\n",
1846			    i, error);
1847		}
1848	}
1849#endif
1850	error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
1851	    0, 0, "uma");
1852	if (error != 0)
1853		panic("starting uma_reclaim helper, error %d\n", error);
1854	vm_pageout_worker((void *)(uintptr_t)0);
1855}
1856
1857/*
1858 * Unless the free page queue lock is held by the caller, this function
1859 * should be regarded as advisory.  Specifically, the caller should
1860 * not msleep() on &cnt.v_free_count following this function unless
1861 * the free page queue lock is held until the msleep() is performed.
1862 */
1863void
1864pagedaemon_wakeup(void)
1865{
1866
1867	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1868		vm_pages_needed = 1;
1869		wakeup(&vm_pages_needed);
1870	}
1871}
1872
1873#if !defined(NO_SWAPPING)
1874static void
1875vm_req_vmdaemon(int req)
1876{
1877	static int lastrun = 0;
1878
1879	mtx_lock(&vm_daemon_mtx);
1880	vm_pageout_req_swapout |= req;
1881	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1882		wakeup(&vm_daemon_needed);
1883		lastrun = ticks;
1884	}
1885	mtx_unlock(&vm_daemon_mtx);
1886}
1887
1888static void
1889vm_daemon(void)
1890{
1891	struct rlimit rsslim;
1892	struct proc *p;
1893	struct thread *td;
1894	struct vmspace *vm;
1895	int breakout, swapout_flags, tryagain, attempts;
1896#ifdef RACCT
1897	uint64_t rsize, ravailable;
1898#endif
1899
1900	while (TRUE) {
1901		mtx_lock(&vm_daemon_mtx);
1902		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
1903#ifdef RACCT
1904		    racct_enable ? hz : 0
1905#else
1906		    0
1907#endif
1908		);
1909		swapout_flags = vm_pageout_req_swapout;
1910		vm_pageout_req_swapout = 0;
1911		mtx_unlock(&vm_daemon_mtx);
1912		if (swapout_flags)
1913			swapout_procs(swapout_flags);
1914
1915		/*
1916		 * scan the processes for exceeding their rlimits or if
1917		 * process is swapped out -- deactivate pages
1918		 */
1919		tryagain = 0;
1920		attempts = 0;
1921again:
1922		attempts++;
1923		sx_slock(&allproc_lock);
1924		FOREACH_PROC_IN_SYSTEM(p) {
1925			vm_pindex_t limit, size;
1926
1927			/*
1928			 * if this is a system process or if we have already
1929			 * looked at this process, skip it.
1930			 */
1931			PROC_LOCK(p);
1932			if (p->p_state != PRS_NORMAL ||
1933			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1934				PROC_UNLOCK(p);
1935				continue;
1936			}
1937			/*
1938			 * if the process is in a non-running type state,
1939			 * don't touch it.
1940			 */
1941			breakout = 0;
1942			FOREACH_THREAD_IN_PROC(p, td) {
1943				thread_lock(td);
1944				if (!TD_ON_RUNQ(td) &&
1945				    !TD_IS_RUNNING(td) &&
1946				    !TD_IS_SLEEPING(td) &&
1947				    !TD_IS_SUSPENDED(td)) {
1948					thread_unlock(td);
1949					breakout = 1;
1950					break;
1951				}
1952				thread_unlock(td);
1953			}
1954			if (breakout) {
1955				PROC_UNLOCK(p);
1956				continue;
1957			}
1958			/*
1959			 * get a limit
1960			 */
1961			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1962			limit = OFF_TO_IDX(
1963			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1964
1965			/*
1966			 * let processes that are swapped out really be
1967			 * swapped out set the limit to nothing (will force a
1968			 * swap-out.)
1969			 */
1970			if ((p->p_flag & P_INMEM) == 0)
1971				limit = 0;	/* XXX */
1972			vm = vmspace_acquire_ref(p);
1973			PROC_UNLOCK(p);
1974			if (vm == NULL)
1975				continue;
1976
1977			size = vmspace_resident_count(vm);
1978			if (size >= limit) {
1979				vm_pageout_map_deactivate_pages(
1980				    &vm->vm_map, limit);
1981			}
1982#ifdef RACCT
1983			if (racct_enable) {
1984				rsize = IDX_TO_OFF(size);
1985				PROC_LOCK(p);
1986				racct_set(p, RACCT_RSS, rsize);
1987				ravailable = racct_get_available(p, RACCT_RSS);
1988				PROC_UNLOCK(p);
1989				if (rsize > ravailable) {
1990					/*
1991					 * Don't be overly aggressive; this
1992					 * might be an innocent process,
1993					 * and the limit could've been exceeded
1994					 * by some memory hog.  Don't try
1995					 * to deactivate more than 1/4th
1996					 * of process' resident set size.
1997					 */
1998					if (attempts <= 8) {
1999						if (ravailable < rsize -
2000						    (rsize / 4)) {
2001							ravailable = rsize -
2002							    (rsize / 4);
2003						}
2004					}
2005					vm_pageout_map_deactivate_pages(
2006					    &vm->vm_map,
2007					    OFF_TO_IDX(ravailable));
2008					/* Update RSS usage after paging out. */
2009					size = vmspace_resident_count(vm);
2010					rsize = IDX_TO_OFF(size);
2011					PROC_LOCK(p);
2012					racct_set(p, RACCT_RSS, rsize);
2013					PROC_UNLOCK(p);
2014					if (rsize > ravailable)
2015						tryagain = 1;
2016				}
2017			}
2018#endif
2019			vmspace_free(vm);
2020		}
2021		sx_sunlock(&allproc_lock);
2022		if (tryagain != 0 && attempts <= 10)
2023			goto again;
2024	}
2025}
2026#endif			/* !defined(NO_SWAPPING) */
2027