vm_pageout.c revision 291935
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: stable/10/sys/vm/vm_pageout.c 291935 2015-12-07 11:21:49Z kib $");
77
78#include "opt_vm.h"
79#include "opt_kdtrace.h"
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/eventhandler.h>
84#include <sys/lock.h>
85#include <sys/mutex.h>
86#include <sys/proc.h>
87#include <sys/kthread.h>
88#include <sys/ktr.h>
89#include <sys/mount.h>
90#include <sys/racct.h>
91#include <sys/resourcevar.h>
92#include <sys/sched.h>
93#include <sys/sdt.h>
94#include <sys/signalvar.h>
95#include <sys/smp.h>
96#include <sys/time.h>
97#include <sys/vnode.h>
98#include <sys/vmmeter.h>
99#include <sys/rwlock.h>
100#include <sys/sx.h>
101#include <sys/sysctl.h>
102
103#include <vm/vm.h>
104#include <vm/vm_param.h>
105#include <vm/vm_object.h>
106#include <vm/vm_page.h>
107#include <vm/vm_map.h>
108#include <vm/vm_pageout.h>
109#include <vm/vm_pager.h>
110#include <vm/vm_phys.h>
111#include <vm/swap_pager.h>
112#include <vm/vm_extern.h>
113#include <vm/uma.h>
114
115/*
116 * System initialization
117 */
118
119/* the kernel process "vm_pageout"*/
120static void vm_pageout(void);
121static void vm_pageout_init(void);
122static int vm_pageout_clean(vm_page_t);
123static void vm_pageout_scan(struct vm_domain *vmd, int pass);
124static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
125    int starting_page_shortage);
126
127SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
128    NULL);
129
130struct proc *pageproc;
131
132static struct kproc_desc page_kp = {
133	"pagedaemon",
134	vm_pageout,
135	&pageproc
136};
137SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
138    &page_kp);
139
140SDT_PROVIDER_DEFINE(vm);
141SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
142SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
143
144#if !defined(NO_SWAPPING)
145/* the kernel process "vm_daemon"*/
146static void vm_daemon(void);
147static struct	proc *vmproc;
148
149static struct kproc_desc vm_kp = {
150	"vmdaemon",
151	vm_daemon,
152	&vmproc
153};
154SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
155#endif
156
157
158int vm_pages_needed;		/* Event on which pageout daemon sleeps */
159int vm_pageout_deficit;		/* Estimated number of pages deficit */
160int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
161int vm_pageout_wakeup_thresh;
162static int vm_pageout_oom_seq = 12;
163
164#if !defined(NO_SWAPPING)
165static int vm_pageout_req_swapout;	/* XXX */
166static int vm_daemon_needed;
167static struct mtx vm_daemon_mtx;
168/* Allow for use by vm_pageout before vm_daemon is initialized. */
169MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
170#endif
171static int vm_max_launder = 32;
172static int vm_pageout_update_period;
173static int defer_swap_pageouts;
174static int disable_swap_pageouts;
175static int lowmem_period = 10;
176static time_t lowmem_uptime;
177
178#if defined(NO_SWAPPING)
179static int vm_swap_enabled = 0;
180static int vm_swap_idle_enabled = 0;
181#else
182static int vm_swap_enabled = 1;
183static int vm_swap_idle_enabled = 0;
184#endif
185
186SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
187	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
188	"free page threshold for waking up the pageout daemon");
189
190SYSCTL_INT(_vm, OID_AUTO, max_launder,
191	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
192
193SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
194	CTLFLAG_RW, &vm_pageout_update_period, 0,
195	"Maximum active LRU update period");
196
197SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
198	"Low memory callback period");
199
200#if defined(NO_SWAPPING)
201SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
202	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
203SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
204	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
205#else
206SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
207	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
208SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
209	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
210#endif
211
212SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
213	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
214
215SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
216	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
217
218static int pageout_lock_miss;
219SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
220	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
221
222SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
223	CTLFLAG_RW, &vm_pageout_oom_seq, 0,
224	"back-to-back calls to oom detector to start OOM");
225
226#define VM_PAGEOUT_PAGE_COUNT 16
227int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
228
229int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
230SYSCTL_INT(_vm, OID_AUTO, max_wired,
231	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
232
233static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
234static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
235    vm_paddr_t);
236#if !defined(NO_SWAPPING)
237static void vm_pageout_map_deactivate_pages(vm_map_t, long);
238static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
239static void vm_req_vmdaemon(int req);
240#endif
241static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
242
243/*
244 * Initialize a dummy page for marking the caller's place in the specified
245 * paging queue.  In principle, this function only needs to set the flag
246 * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
247 * to one as safety precautions.
248 */
249static void
250vm_pageout_init_marker(vm_page_t marker, u_short queue)
251{
252
253	bzero(marker, sizeof(*marker));
254	marker->flags = PG_MARKER;
255	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
256	marker->queue = queue;
257	marker->hold_count = 1;
258}
259
260/*
261 * vm_pageout_fallback_object_lock:
262 *
263 * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
264 * known to have failed and page queue must be either PQ_ACTIVE or
265 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
266 * while locking the vm object.  Use marker page to detect page queue
267 * changes and maintain notion of next page on page queue.  Return
268 * TRUE if no changes were detected, FALSE otherwise.  vm object is
269 * locked on return.
270 *
271 * This function depends on both the lock portion of struct vm_object
272 * and normal struct vm_page being type stable.
273 */
274static boolean_t
275vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
276{
277	struct vm_page marker;
278	struct vm_pagequeue *pq;
279	boolean_t unchanged;
280	u_short queue;
281	vm_object_t object;
282
283	queue = m->queue;
284	vm_pageout_init_marker(&marker, queue);
285	pq = vm_page_pagequeue(m);
286	object = m->object;
287
288	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
289	vm_pagequeue_unlock(pq);
290	vm_page_unlock(m);
291	VM_OBJECT_WLOCK(object);
292	vm_page_lock(m);
293	vm_pagequeue_lock(pq);
294
295	/*
296	 * The page's object might have changed, and/or the page might
297	 * have moved from its original position in the queue.  If the
298	 * page's object has changed, then the caller should abandon
299	 * processing the page because the wrong object lock was
300	 * acquired.  Use the marker's plinks.q, not the page's, to
301	 * determine if the page has been moved.  The state of the
302	 * page's plinks.q can be indeterminate; whereas, the marker's
303	 * plinks.q must be valid.
304	 */
305	*next = TAILQ_NEXT(&marker, plinks.q);
306	unchanged = m->object == object &&
307	    m == TAILQ_PREV(&marker, pglist, plinks.q);
308	KASSERT(!unchanged || m->queue == queue,
309	    ("page %p queue %d %d", m, queue, m->queue));
310	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
311	return (unchanged);
312}
313
314/*
315 * Lock the page while holding the page queue lock.  Use marker page
316 * to detect page queue changes and maintain notion of next page on
317 * page queue.  Return TRUE if no changes were detected, FALSE
318 * otherwise.  The page is locked on return. The page queue lock might
319 * be dropped and reacquired.
320 *
321 * This function depends on normal struct vm_page being type stable.
322 */
323static boolean_t
324vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
325{
326	struct vm_page marker;
327	struct vm_pagequeue *pq;
328	boolean_t unchanged;
329	u_short queue;
330
331	vm_page_lock_assert(m, MA_NOTOWNED);
332	if (vm_page_trylock(m))
333		return (TRUE);
334
335	queue = m->queue;
336	vm_pageout_init_marker(&marker, queue);
337	pq = vm_page_pagequeue(m);
338
339	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
340	vm_pagequeue_unlock(pq);
341	vm_page_lock(m);
342	vm_pagequeue_lock(pq);
343
344	/* Page queue might have changed. */
345	*next = TAILQ_NEXT(&marker, plinks.q);
346	unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
347	KASSERT(!unchanged || m->queue == queue,
348	    ("page %p queue %d %d", m, queue, m->queue));
349	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
350	return (unchanged);
351}
352
353/*
354 * vm_pageout_clean:
355 *
356 * Clean the page and remove it from the laundry.
357 *
358 * We set the busy bit to cause potential page faults on this page to
359 * block.  Note the careful timing, however, the busy bit isn't set till
360 * late and we cannot do anything that will mess with the page.
361 */
362static int
363vm_pageout_clean(vm_page_t m)
364{
365	vm_object_t object;
366	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
367	int pageout_count;
368	int ib, is, page_base;
369	vm_pindex_t pindex = m->pindex;
370
371	vm_page_lock_assert(m, MA_OWNED);
372	object = m->object;
373	VM_OBJECT_ASSERT_WLOCKED(object);
374
375	/*
376	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
377	 * with the new swapper, but we could have serious problems paging
378	 * out other object types if there is insufficient memory.
379	 *
380	 * Unfortunately, checking free memory here is far too late, so the
381	 * check has been moved up a procedural level.
382	 */
383
384	/*
385	 * Can't clean the page if it's busy or held.
386	 */
387	vm_page_assert_unbusied(m);
388	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
389	vm_page_unlock(m);
390
391	mc[vm_pageout_page_count] = pb = ps = m;
392	pageout_count = 1;
393	page_base = vm_pageout_page_count;
394	ib = 1;
395	is = 1;
396
397	/*
398	 * Scan object for clusterable pages.
399	 *
400	 * We can cluster ONLY if: ->> the page is NOT
401	 * clean, wired, busy, held, or mapped into a
402	 * buffer, and one of the following:
403	 * 1) The page is inactive, or a seldom used
404	 *    active page.
405	 * -or-
406	 * 2) we force the issue.
407	 *
408	 * During heavy mmap/modification loads the pageout
409	 * daemon can really fragment the underlying file
410	 * due to flushing pages out of order and not trying
411	 * align the clusters (which leave sporatic out-of-order
412	 * holes).  To solve this problem we do the reverse scan
413	 * first and attempt to align our cluster, then do a
414	 * forward scan if room remains.
415	 */
416more:
417	while (ib && pageout_count < vm_pageout_page_count) {
418		vm_page_t p;
419
420		if (ib > pindex) {
421			ib = 0;
422			break;
423		}
424
425		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
426			ib = 0;
427			break;
428		}
429		vm_page_test_dirty(p);
430		if (p->dirty == 0) {
431			ib = 0;
432			break;
433		}
434		vm_page_lock(p);
435		if (p->queue != PQ_INACTIVE ||
436		    p->hold_count != 0) {	/* may be undergoing I/O */
437			vm_page_unlock(p);
438			ib = 0;
439			break;
440		}
441		vm_page_unlock(p);
442		mc[--page_base] = pb = p;
443		++pageout_count;
444		++ib;
445		/*
446		 * alignment boundry, stop here and switch directions.  Do
447		 * not clear ib.
448		 */
449		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
450			break;
451	}
452
453	while (pageout_count < vm_pageout_page_count &&
454	    pindex + is < object->size) {
455		vm_page_t p;
456
457		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
458			break;
459		vm_page_test_dirty(p);
460		if (p->dirty == 0)
461			break;
462		vm_page_lock(p);
463		if (p->queue != PQ_INACTIVE ||
464		    p->hold_count != 0) {	/* may be undergoing I/O */
465			vm_page_unlock(p);
466			break;
467		}
468		vm_page_unlock(p);
469		mc[page_base + pageout_count] = ps = p;
470		++pageout_count;
471		++is;
472	}
473
474	/*
475	 * If we exhausted our forward scan, continue with the reverse scan
476	 * when possible, even past a page boundry.  This catches boundry
477	 * conditions.
478	 */
479	if (ib && pageout_count < vm_pageout_page_count)
480		goto more;
481
482	/*
483	 * we allow reads during pageouts...
484	 */
485	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
486	    NULL));
487}
488
489/*
490 * vm_pageout_flush() - launder the given pages
491 *
492 *	The given pages are laundered.  Note that we setup for the start of
493 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
494 *	reference count all in here rather then in the parent.  If we want
495 *	the parent to do more sophisticated things we may have to change
496 *	the ordering.
497 *
498 *	Returned runlen is the count of pages between mreq and first
499 *	page after mreq with status VM_PAGER_AGAIN.
500 *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
501 *	for any page in runlen set.
502 */
503int
504vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
505    boolean_t *eio)
506{
507	vm_object_t object = mc[0]->object;
508	int pageout_status[count];
509	int numpagedout = 0;
510	int i, runlen;
511
512	VM_OBJECT_ASSERT_WLOCKED(object);
513
514	/*
515	 * Initiate I/O.  Bump the vm_page_t->busy counter and
516	 * mark the pages read-only.
517	 *
518	 * We do not have to fixup the clean/dirty bits here... we can
519	 * allow the pager to do it after the I/O completes.
520	 *
521	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
522	 * edge case with file fragments.
523	 */
524	for (i = 0; i < count; i++) {
525		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
526		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
527			mc[i], i, count));
528		vm_page_sbusy(mc[i]);
529		pmap_remove_write(mc[i]);
530	}
531	vm_object_pip_add(object, count);
532
533	vm_pager_put_pages(object, mc, count, flags, pageout_status);
534
535	runlen = count - mreq;
536	if (eio != NULL)
537		*eio = FALSE;
538	for (i = 0; i < count; i++) {
539		vm_page_t mt = mc[i];
540
541		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
542		    !pmap_page_is_write_mapped(mt),
543		    ("vm_pageout_flush: page %p is not write protected", mt));
544		switch (pageout_status[i]) {
545		case VM_PAGER_OK:
546		case VM_PAGER_PEND:
547			numpagedout++;
548			break;
549		case VM_PAGER_BAD:
550			/*
551			 * Page outside of range of object. Right now we
552			 * essentially lose the changes by pretending it
553			 * worked.
554			 */
555			vm_page_undirty(mt);
556			break;
557		case VM_PAGER_ERROR:
558		case VM_PAGER_FAIL:
559			/*
560			 * If page couldn't be paged out, then reactivate the
561			 * page so it doesn't clog the inactive list.  (We
562			 * will try paging out it again later).
563			 */
564			vm_page_lock(mt);
565			vm_page_activate(mt);
566			vm_page_unlock(mt);
567			if (eio != NULL && i >= mreq && i - mreq < runlen)
568				*eio = TRUE;
569			break;
570		case VM_PAGER_AGAIN:
571			if (i >= mreq && i - mreq < runlen)
572				runlen = i - mreq;
573			break;
574		}
575
576		/*
577		 * If the operation is still going, leave the page busy to
578		 * block all other accesses. Also, leave the paging in
579		 * progress indicator set so that we don't attempt an object
580		 * collapse.
581		 */
582		if (pageout_status[i] != VM_PAGER_PEND) {
583			vm_object_pip_wakeup(object);
584			vm_page_sunbusy(mt);
585			if (vm_page_count_severe()) {
586				vm_page_lock(mt);
587				vm_page_try_to_cache(mt);
588				vm_page_unlock(mt);
589			}
590		}
591	}
592	if (prunlen != NULL)
593		*prunlen = runlen;
594	return (numpagedout);
595}
596
597static boolean_t
598vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
599    vm_paddr_t high)
600{
601	struct mount *mp;
602	struct vnode *vp;
603	vm_object_t object;
604	vm_paddr_t pa;
605	vm_page_t m, m_tmp, next;
606	int lockmode;
607
608	vm_pagequeue_lock(pq);
609	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
610		if ((m->flags & PG_MARKER) != 0)
611			continue;
612		pa = VM_PAGE_TO_PHYS(m);
613		if (pa < low || pa + PAGE_SIZE > high)
614			continue;
615		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
616			vm_page_unlock(m);
617			continue;
618		}
619		object = m->object;
620		if ((!VM_OBJECT_TRYWLOCK(object) &&
621		    (!vm_pageout_fallback_object_lock(m, &next) ||
622		    m->hold_count != 0)) || vm_page_busied(m)) {
623			vm_page_unlock(m);
624			VM_OBJECT_WUNLOCK(object);
625			continue;
626		}
627		vm_page_test_dirty(m);
628		if (m->dirty == 0 && object->ref_count != 0)
629			pmap_remove_all(m);
630		if (m->dirty != 0) {
631			vm_page_unlock(m);
632			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
633				VM_OBJECT_WUNLOCK(object);
634				continue;
635			}
636			if (object->type == OBJT_VNODE) {
637				vm_pagequeue_unlock(pq);
638				vp = object->handle;
639				vm_object_reference_locked(object);
640				VM_OBJECT_WUNLOCK(object);
641				(void)vn_start_write(vp, &mp, V_WAIT);
642				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
643				    LK_SHARED : LK_EXCLUSIVE;
644				vn_lock(vp, lockmode | LK_RETRY);
645				VM_OBJECT_WLOCK(object);
646				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
647				VM_OBJECT_WUNLOCK(object);
648				VOP_UNLOCK(vp, 0);
649				vm_object_deallocate(object);
650				vn_finished_write(mp);
651				return (TRUE);
652			} else if (object->type == OBJT_SWAP ||
653			    object->type == OBJT_DEFAULT) {
654				vm_pagequeue_unlock(pq);
655				m_tmp = m;
656				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
657				    0, NULL, NULL);
658				VM_OBJECT_WUNLOCK(object);
659				return (TRUE);
660			}
661		} else {
662			/*
663			 * Dequeue here to prevent lock recursion in
664			 * vm_page_cache().
665			 */
666			vm_page_dequeue_locked(m);
667			vm_page_cache(m);
668			vm_page_unlock(m);
669		}
670		VM_OBJECT_WUNLOCK(object);
671	}
672	vm_pagequeue_unlock(pq);
673	return (FALSE);
674}
675
676/*
677 * Increase the number of cached pages.  The specified value, "tries",
678 * determines which categories of pages are cached:
679 *
680 *  0: All clean, inactive pages within the specified physical address range
681 *     are cached.  Will not sleep.
682 *  1: The vm_lowmem handlers are called.  All inactive pages within
683 *     the specified physical address range are cached.  May sleep.
684 *  2: The vm_lowmem handlers are called.  All inactive and active pages
685 *     within the specified physical address range are cached.  May sleep.
686 */
687void
688vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
689{
690	int actl, actmax, inactl, inactmax, dom, initial_dom;
691	static int start_dom = 0;
692
693	if (tries > 0) {
694		/*
695		 * Decrease registered cache sizes.  The vm_lowmem handlers
696		 * may acquire locks and/or sleep, so they can only be invoked
697		 * when "tries" is greater than zero.
698		 */
699		SDT_PROBE0(vm, , , vm__lowmem_cache);
700		EVENTHANDLER_INVOKE(vm_lowmem, 0);
701
702		/*
703		 * We do this explicitly after the caches have been drained
704		 * above.
705		 */
706		uma_reclaim();
707	}
708
709	/*
710	 * Make the next scan start on the next domain.
711	 */
712	initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
713
714	inactl = 0;
715	inactmax = cnt.v_inactive_count;
716	actl = 0;
717	actmax = tries < 2 ? 0 : cnt.v_active_count;
718	dom = initial_dom;
719
720	/*
721	 * Scan domains in round-robin order, first inactive queues,
722	 * then active.  Since domain usually owns large physically
723	 * contiguous chunk of memory, it makes sense to completely
724	 * exhaust one domain before switching to next, while growing
725	 * the pool of contiguous physical pages.
726	 *
727	 * Do not even start launder a domain which cannot contain
728	 * the specified address range, as indicated by segments
729	 * constituting the domain.
730	 */
731again:
732	if (inactl < inactmax) {
733		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
734		    low, high) &&
735		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
736		    tries, low, high)) {
737			inactl++;
738			goto again;
739		}
740		if (++dom == vm_ndomains)
741			dom = 0;
742		if (dom != initial_dom)
743			goto again;
744	}
745	if (actl < actmax) {
746		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
747		    low, high) &&
748		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
749		      tries, low, high)) {
750			actl++;
751			goto again;
752		}
753		if (++dom == vm_ndomains)
754			dom = 0;
755		if (dom != initial_dom)
756			goto again;
757	}
758}
759
760#if !defined(NO_SWAPPING)
761/*
762 *	vm_pageout_object_deactivate_pages
763 *
764 *	Deactivate enough pages to satisfy the inactive target
765 *	requirements.
766 *
767 *	The object and map must be locked.
768 */
769static void
770vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
771    long desired)
772{
773	vm_object_t backing_object, object;
774	vm_page_t p;
775	int act_delta, remove_mode;
776
777	VM_OBJECT_ASSERT_LOCKED(first_object);
778	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
779		return;
780	for (object = first_object;; object = backing_object) {
781		if (pmap_resident_count(pmap) <= desired)
782			goto unlock_return;
783		VM_OBJECT_ASSERT_LOCKED(object);
784		if ((object->flags & OBJ_UNMANAGED) != 0 ||
785		    object->paging_in_progress != 0)
786			goto unlock_return;
787
788		remove_mode = 0;
789		if (object->shadow_count > 1)
790			remove_mode = 1;
791		/*
792		 * Scan the object's entire memory queue.
793		 */
794		TAILQ_FOREACH(p, &object->memq, listq) {
795			if (pmap_resident_count(pmap) <= desired)
796				goto unlock_return;
797			if (vm_page_busied(p))
798				continue;
799			PCPU_INC(cnt.v_pdpages);
800			vm_page_lock(p);
801			if (p->wire_count != 0 || p->hold_count != 0 ||
802			    !pmap_page_exists_quick(pmap, p)) {
803				vm_page_unlock(p);
804				continue;
805			}
806			act_delta = pmap_ts_referenced(p);
807			if ((p->aflags & PGA_REFERENCED) != 0) {
808				if (act_delta == 0)
809					act_delta = 1;
810				vm_page_aflag_clear(p, PGA_REFERENCED);
811			}
812			if (p->queue != PQ_ACTIVE && act_delta != 0) {
813				vm_page_activate(p);
814				p->act_count += act_delta;
815			} else if (p->queue == PQ_ACTIVE) {
816				if (act_delta == 0) {
817					p->act_count -= min(p->act_count,
818					    ACT_DECLINE);
819					if (!remove_mode && p->act_count == 0) {
820						pmap_remove_all(p);
821						vm_page_deactivate(p);
822					} else
823						vm_page_requeue(p);
824				} else {
825					vm_page_activate(p);
826					if (p->act_count < ACT_MAX -
827					    ACT_ADVANCE)
828						p->act_count += ACT_ADVANCE;
829					vm_page_requeue(p);
830				}
831			} else if (p->queue == PQ_INACTIVE)
832				pmap_remove_all(p);
833			vm_page_unlock(p);
834		}
835		if ((backing_object = object->backing_object) == NULL)
836			goto unlock_return;
837		VM_OBJECT_RLOCK(backing_object);
838		if (object != first_object)
839			VM_OBJECT_RUNLOCK(object);
840	}
841unlock_return:
842	if (object != first_object)
843		VM_OBJECT_RUNLOCK(object);
844}
845
846/*
847 * deactivate some number of pages in a map, try to do it fairly, but
848 * that is really hard to do.
849 */
850static void
851vm_pageout_map_deactivate_pages(map, desired)
852	vm_map_t map;
853	long desired;
854{
855	vm_map_entry_t tmpe;
856	vm_object_t obj, bigobj;
857	int nothingwired;
858
859	if (!vm_map_trylock(map))
860		return;
861
862	bigobj = NULL;
863	nothingwired = TRUE;
864
865	/*
866	 * first, search out the biggest object, and try to free pages from
867	 * that.
868	 */
869	tmpe = map->header.next;
870	while (tmpe != &map->header) {
871		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
872			obj = tmpe->object.vm_object;
873			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
874				if (obj->shadow_count <= 1 &&
875				    (bigobj == NULL ||
876				     bigobj->resident_page_count < obj->resident_page_count)) {
877					if (bigobj != NULL)
878						VM_OBJECT_RUNLOCK(bigobj);
879					bigobj = obj;
880				} else
881					VM_OBJECT_RUNLOCK(obj);
882			}
883		}
884		if (tmpe->wired_count > 0)
885			nothingwired = FALSE;
886		tmpe = tmpe->next;
887	}
888
889	if (bigobj != NULL) {
890		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
891		VM_OBJECT_RUNLOCK(bigobj);
892	}
893	/*
894	 * Next, hunt around for other pages to deactivate.  We actually
895	 * do this search sort of wrong -- .text first is not the best idea.
896	 */
897	tmpe = map->header.next;
898	while (tmpe != &map->header) {
899		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
900			break;
901		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
902			obj = tmpe->object.vm_object;
903			if (obj != NULL) {
904				VM_OBJECT_RLOCK(obj);
905				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
906				VM_OBJECT_RUNLOCK(obj);
907			}
908		}
909		tmpe = tmpe->next;
910	}
911
912#ifdef __ia64__
913	/*
914	 * Remove all non-wired, managed mappings if a process is swapped out.
915	 * This will free page table pages.
916	 */
917	if (desired == 0)
918		pmap_remove_pages(map->pmap);
919#else
920	/*
921	 * Remove all mappings if a process is swapped out, this will free page
922	 * table pages.
923	 */
924	if (desired == 0 && nothingwired) {
925		pmap_remove(vm_map_pmap(map), vm_map_min(map),
926		    vm_map_max(map));
927	}
928#endif
929
930	vm_map_unlock(map);
931}
932#endif		/* !defined(NO_SWAPPING) */
933
934/*
935 *	vm_pageout_scan does the dirty work for the pageout daemon.
936 *
937 *	pass 0 - Update active LRU/deactivate pages
938 *	pass 1 - Move inactive to cache or free
939 *	pass 2 - Launder dirty pages
940 */
941static void
942vm_pageout_scan(struct vm_domain *vmd, int pass)
943{
944	vm_page_t m, next;
945	struct vm_pagequeue *pq;
946	vm_object_t object;
947	long min_scan;
948	int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
949	int vnodes_skipped = 0;
950	int maxlaunder, scan_tick, scanned, starting_page_shortage;
951	int lockmode;
952	boolean_t queues_locked;
953
954	/*
955	 * If we need to reclaim memory ask kernel caches to return
956	 * some.  We rate limit to avoid thrashing.
957	 */
958	if (vmd == &vm_dom[0] && pass > 0 &&
959	    (time_uptime - lowmem_uptime) >= lowmem_period) {
960		/*
961		 * Decrease registered cache sizes.
962		 */
963		SDT_PROBE0(vm, , , vm__lowmem_scan);
964		EVENTHANDLER_INVOKE(vm_lowmem, 0);
965		/*
966		 * We do this explicitly after the caches have been
967		 * drained above.
968		 */
969		uma_reclaim();
970		lowmem_uptime = time_uptime;
971	}
972
973	/*
974	 * The addl_page_shortage is the number of temporarily
975	 * stuck pages in the inactive queue.  In other words, the
976	 * number of pages from the inactive count that should be
977	 * discounted in setting the target for the active queue scan.
978	 */
979	addl_page_shortage = 0;
980
981	/*
982	 * Calculate the number of pages we want to either free or move
983	 * to the cache.
984	 */
985	if (pass > 0) {
986		deficit = atomic_readandclear_int(&vm_pageout_deficit);
987		page_shortage = vm_paging_target() + deficit;
988	} else
989		page_shortage = deficit = 0;
990	starting_page_shortage = page_shortage;
991
992	/*
993	 * maxlaunder limits the number of dirty pages we flush per scan.
994	 * For most systems a smaller value (16 or 32) is more robust under
995	 * extreme memory and disk pressure because any unnecessary writes
996	 * to disk can result in extreme performance degredation.  However,
997	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
998	 * used) will die horribly with limited laundering.  If the pageout
999	 * daemon cannot clean enough pages in the first pass, we let it go
1000	 * all out in succeeding passes.
1001	 */
1002	if ((maxlaunder = vm_max_launder) <= 1)
1003		maxlaunder = 1;
1004	if (pass > 1)
1005		maxlaunder = 10000;
1006
1007	/*
1008	 * Start scanning the inactive queue for pages we can move to the
1009	 * cache or free.  The scan will stop when the target is reached or
1010	 * we have scanned the entire inactive queue.  Note that m->act_count
1011	 * is not used to form decisions for the inactive queue, only for the
1012	 * active queue.
1013	 */
1014	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1015	maxscan = pq->pq_cnt;
1016	vm_pagequeue_lock(pq);
1017	queues_locked = TRUE;
1018	for (m = TAILQ_FIRST(&pq->pq_pl);
1019	     m != NULL && maxscan-- > 0 && page_shortage > 0;
1020	     m = next) {
1021		vm_pagequeue_assert_locked(pq);
1022		KASSERT(queues_locked, ("unlocked queues"));
1023		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
1024
1025		PCPU_INC(cnt.v_pdpages);
1026		next = TAILQ_NEXT(m, plinks.q);
1027
1028		/*
1029		 * skip marker pages
1030		 */
1031		if (m->flags & PG_MARKER)
1032			continue;
1033
1034		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1035		    ("Fictitious page %p cannot be in inactive queue", m));
1036		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1037		    ("Unmanaged page %p cannot be in inactive queue", m));
1038
1039		/*
1040		 * The page or object lock acquisitions fail if the
1041		 * page was removed from the queue or moved to a
1042		 * different position within the queue.  In either
1043		 * case, addl_page_shortage should not be incremented.
1044		 */
1045		if (!vm_pageout_page_lock(m, &next)) {
1046			vm_page_unlock(m);
1047			continue;
1048		}
1049		object = m->object;
1050		if (!VM_OBJECT_TRYWLOCK(object) &&
1051		    !vm_pageout_fallback_object_lock(m, &next)) {
1052			vm_page_unlock(m);
1053			VM_OBJECT_WUNLOCK(object);
1054			continue;
1055		}
1056
1057		/*
1058		 * Don't mess with busy pages, keep them at at the
1059		 * front of the queue, most likely they are being
1060		 * paged out.  Increment addl_page_shortage for busy
1061		 * pages, because they may leave the inactive queue
1062		 * shortly after page scan is finished.
1063		 */
1064		if (vm_page_busied(m)) {
1065			vm_page_unlock(m);
1066			VM_OBJECT_WUNLOCK(object);
1067			addl_page_shortage++;
1068			continue;
1069		}
1070
1071		/*
1072		 * We unlock the inactive page queue, invalidating the
1073		 * 'next' pointer.  Use our marker to remember our
1074		 * place.
1075		 */
1076		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1077		vm_pagequeue_unlock(pq);
1078		queues_locked = FALSE;
1079
1080		/*
1081		 * We bump the activation count if the page has been
1082		 * referenced while in the inactive queue.  This makes
1083		 * it less likely that the page will be added back to the
1084		 * inactive queue prematurely again.  Here we check the
1085		 * page tables (or emulated bits, if any), given the upper
1086		 * level VM system not knowing anything about existing
1087		 * references.
1088		 */
1089		act_delta = 0;
1090		if ((m->aflags & PGA_REFERENCED) != 0) {
1091			vm_page_aflag_clear(m, PGA_REFERENCED);
1092			act_delta = 1;
1093		}
1094		if (object->ref_count != 0) {
1095			act_delta += pmap_ts_referenced(m);
1096		} else {
1097			KASSERT(!pmap_page_is_mapped(m),
1098			    ("vm_pageout_scan: page %p is mapped", m));
1099		}
1100
1101		/*
1102		 * If the upper level VM system knows about any page
1103		 * references, we reactivate the page or requeue it.
1104		 */
1105		if (act_delta != 0) {
1106			if (object->ref_count) {
1107				vm_page_activate(m);
1108				m->act_count += act_delta + ACT_ADVANCE;
1109			} else {
1110				vm_pagequeue_lock(pq);
1111				queues_locked = TRUE;
1112				vm_page_requeue_locked(m);
1113			}
1114			VM_OBJECT_WUNLOCK(object);
1115			vm_page_unlock(m);
1116			goto relock_queues;
1117		}
1118
1119		if (m->hold_count != 0) {
1120			vm_page_unlock(m);
1121			VM_OBJECT_WUNLOCK(object);
1122
1123			/*
1124			 * Held pages are essentially stuck in the
1125			 * queue.  So, they ought to be discounted
1126			 * from the inactive count.  See the
1127			 * calculation of the page_shortage for the
1128			 * loop over the active queue below.
1129			 */
1130			addl_page_shortage++;
1131			goto relock_queues;
1132		}
1133
1134		/*
1135		 * If the page appears to be clean at the machine-independent
1136		 * layer, then remove all of its mappings from the pmap in
1137		 * anticipation of placing it onto the cache queue.  If,
1138		 * however, any of the page's mappings allow write access,
1139		 * then the page may still be modified until the last of those
1140		 * mappings are removed.
1141		 */
1142		if (object->ref_count != 0) {
1143			vm_page_test_dirty(m);
1144			if (m->dirty == 0)
1145				pmap_remove_all(m);
1146		}
1147
1148		if (m->valid == 0) {
1149			/*
1150			 * Invalid pages can be easily freed
1151			 */
1152			vm_page_free(m);
1153			PCPU_INC(cnt.v_dfree);
1154			--page_shortage;
1155		} else if (m->dirty == 0) {
1156			/*
1157			 * Clean pages can be placed onto the cache queue.
1158			 * This effectively frees them.
1159			 */
1160			vm_page_cache(m);
1161			--page_shortage;
1162		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1163			/*
1164			 * Dirty pages need to be paged out, but flushing
1165			 * a page is extremely expensive verses freeing
1166			 * a clean page.  Rather then artificially limiting
1167			 * the number of pages we can flush, we instead give
1168			 * dirty pages extra priority on the inactive queue
1169			 * by forcing them to be cycled through the queue
1170			 * twice before being flushed, after which the
1171			 * (now clean) page will cycle through once more
1172			 * before being freed.  This significantly extends
1173			 * the thrash point for a heavily loaded machine.
1174			 */
1175			m->flags |= PG_WINATCFLS;
1176			vm_pagequeue_lock(pq);
1177			queues_locked = TRUE;
1178			vm_page_requeue_locked(m);
1179		} else if (maxlaunder > 0) {
1180			/*
1181			 * We always want to try to flush some dirty pages if
1182			 * we encounter them, to keep the system stable.
1183			 * Normally this number is small, but under extreme
1184			 * pressure where there are insufficient clean pages
1185			 * on the inactive queue, we may have to go all out.
1186			 */
1187			int swap_pageouts_ok;
1188			struct vnode *vp = NULL;
1189			struct mount *mp = NULL;
1190
1191			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1192				swap_pageouts_ok = 1;
1193			} else {
1194				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1195				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1196				vm_page_count_min());
1197
1198			}
1199
1200			/*
1201			 * We don't bother paging objects that are "dead".
1202			 * Those objects are in a "rundown" state.
1203			 */
1204			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1205				vm_pagequeue_lock(pq);
1206				vm_page_unlock(m);
1207				VM_OBJECT_WUNLOCK(object);
1208				queues_locked = TRUE;
1209				vm_page_requeue_locked(m);
1210				goto relock_queues;
1211			}
1212
1213			/*
1214			 * The object is already known NOT to be dead.   It
1215			 * is possible for the vget() to block the whole
1216			 * pageout daemon, but the new low-memory handling
1217			 * code should prevent it.
1218			 *
1219			 * The previous code skipped locked vnodes and, worse,
1220			 * reordered pages in the queue.  This results in
1221			 * completely non-deterministic operation and, on a
1222			 * busy system, can lead to extremely non-optimal
1223			 * pageouts.  For example, it can cause clean pages
1224			 * to be freed and dirty pages to be moved to the end
1225			 * of the queue.  Since dirty pages are also moved to
1226			 * the end of the queue once-cleaned, this gives
1227			 * way too large a weighting to defering the freeing
1228			 * of dirty pages.
1229			 *
1230			 * We can't wait forever for the vnode lock, we might
1231			 * deadlock due to a vn_read() getting stuck in
1232			 * vm_wait while holding this vnode.  We skip the
1233			 * vnode if we can't get it in a reasonable amount
1234			 * of time.
1235			 */
1236			if (object->type == OBJT_VNODE) {
1237				vm_page_unlock(m);
1238				vp = object->handle;
1239				if (vp->v_type == VREG &&
1240				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1241					mp = NULL;
1242					++pageout_lock_miss;
1243					if (object->flags & OBJ_MIGHTBEDIRTY)
1244						vnodes_skipped++;
1245					goto unlock_and_continue;
1246				}
1247				KASSERT(mp != NULL,
1248				    ("vp %p with NULL v_mount", vp));
1249				vm_object_reference_locked(object);
1250				VM_OBJECT_WUNLOCK(object);
1251				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1252				    LK_SHARED : LK_EXCLUSIVE;
1253				if (vget(vp, lockmode | LK_TIMELOCK,
1254				    curthread)) {
1255					VM_OBJECT_WLOCK(object);
1256					++pageout_lock_miss;
1257					if (object->flags & OBJ_MIGHTBEDIRTY)
1258						vnodes_skipped++;
1259					vp = NULL;
1260					goto unlock_and_continue;
1261				}
1262				VM_OBJECT_WLOCK(object);
1263				vm_page_lock(m);
1264				vm_pagequeue_lock(pq);
1265				queues_locked = TRUE;
1266				/*
1267				 * The page might have been moved to another
1268				 * queue during potential blocking in vget()
1269				 * above.  The page might have been freed and
1270				 * reused for another vnode.
1271				 */
1272				if (m->queue != PQ_INACTIVE ||
1273				    m->object != object ||
1274				    TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1275					vm_page_unlock(m);
1276					if (object->flags & OBJ_MIGHTBEDIRTY)
1277						vnodes_skipped++;
1278					goto unlock_and_continue;
1279				}
1280
1281				/*
1282				 * The page may have been busied during the
1283				 * blocking in vget().  We don't move the
1284				 * page back onto the end of the queue so that
1285				 * statistics are more correct if we don't.
1286				 */
1287				if (vm_page_busied(m)) {
1288					vm_page_unlock(m);
1289					addl_page_shortage++;
1290					goto unlock_and_continue;
1291				}
1292
1293				/*
1294				 * If the page has become held it might
1295				 * be undergoing I/O, so skip it
1296				 */
1297				if (m->hold_count != 0) {
1298					vm_page_unlock(m);
1299					addl_page_shortage++;
1300					if (object->flags & OBJ_MIGHTBEDIRTY)
1301						vnodes_skipped++;
1302					goto unlock_and_continue;
1303				}
1304				vm_pagequeue_unlock(pq);
1305				queues_locked = FALSE;
1306			}
1307
1308			/*
1309			 * If a page is dirty, then it is either being washed
1310			 * (but not yet cleaned) or it is still in the
1311			 * laundry.  If it is still in the laundry, then we
1312			 * start the cleaning operation.
1313			 *
1314			 * decrement page_shortage on success to account for
1315			 * the (future) cleaned page.  Otherwise we could wind
1316			 * up laundering or cleaning too many pages.
1317			 */
1318			if (vm_pageout_clean(m) != 0) {
1319				--page_shortage;
1320				--maxlaunder;
1321			}
1322unlock_and_continue:
1323			vm_page_lock_assert(m, MA_NOTOWNED);
1324			VM_OBJECT_WUNLOCK(object);
1325			if (mp != NULL) {
1326				if (queues_locked) {
1327					vm_pagequeue_unlock(pq);
1328					queues_locked = FALSE;
1329				}
1330				if (vp != NULL)
1331					vput(vp);
1332				vm_object_deallocate(object);
1333				vn_finished_write(mp);
1334			}
1335			vm_page_lock_assert(m, MA_NOTOWNED);
1336			goto relock_queues;
1337		}
1338		vm_page_unlock(m);
1339		VM_OBJECT_WUNLOCK(object);
1340relock_queues:
1341		if (!queues_locked) {
1342			vm_pagequeue_lock(pq);
1343			queues_locked = TRUE;
1344		}
1345		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1346		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1347	}
1348	vm_pagequeue_unlock(pq);
1349
1350#if !defined(NO_SWAPPING)
1351	/*
1352	 * Wakeup the swapout daemon if we didn't cache or free the targeted
1353	 * number of pages.
1354	 */
1355	if (vm_swap_enabled && page_shortage > 0)
1356		vm_req_vmdaemon(VM_SWAP_NORMAL);
1357#endif
1358
1359	/*
1360	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
1361	 * and we didn't cache or free enough pages.
1362	 */
1363	if (vnodes_skipped > 0 && page_shortage > cnt.v_free_target -
1364	    cnt.v_free_min)
1365		(void)speedup_syncer();
1366
1367	/*
1368	 * If the inactive queue scan fails repeatedly to meet its
1369	 * target, kill the largest process.
1370	 */
1371	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1372
1373	/*
1374	 * Compute the number of pages we want to try to move from the
1375	 * active queue to the inactive queue.
1376	 */
1377	page_shortage = cnt.v_inactive_target - cnt.v_inactive_count +
1378	    vm_paging_target() + deficit + addl_page_shortage;
1379
1380	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1381	vm_pagequeue_lock(pq);
1382	maxscan = pq->pq_cnt;
1383
1384	/*
1385	 * If we're just idle polling attempt to visit every
1386	 * active page within 'update_period' seconds.
1387	 */
1388	scan_tick = ticks;
1389	if (vm_pageout_update_period != 0) {
1390		min_scan = pq->pq_cnt;
1391		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1392		min_scan /= hz * vm_pageout_update_period;
1393	} else
1394		min_scan = 0;
1395	if (min_scan > 0 || (page_shortage > 0 && maxscan > 0))
1396		vmd->vmd_last_active_scan = scan_tick;
1397
1398	/*
1399	 * Scan the active queue for pages that can be deactivated.  Update
1400	 * the per-page activity counter and use it to identify deactivation
1401	 * candidates.
1402	 */
1403	for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
1404	    min_scan || (page_shortage > 0 && scanned < maxscan)); m = next,
1405	    scanned++) {
1406
1407		KASSERT(m->queue == PQ_ACTIVE,
1408		    ("vm_pageout_scan: page %p isn't active", m));
1409
1410		next = TAILQ_NEXT(m, plinks.q);
1411		if ((m->flags & PG_MARKER) != 0)
1412			continue;
1413		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1414		    ("Fictitious page %p cannot be in active queue", m));
1415		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1416		    ("Unmanaged page %p cannot be in active queue", m));
1417		if (!vm_pageout_page_lock(m, &next)) {
1418			vm_page_unlock(m);
1419			continue;
1420		}
1421
1422		/*
1423		 * The count for pagedaemon pages is done after checking the
1424		 * page for eligibility...
1425		 */
1426		PCPU_INC(cnt.v_pdpages);
1427
1428		/*
1429		 * Check to see "how much" the page has been used.
1430		 */
1431		act_delta = 0;
1432		if (m->aflags & PGA_REFERENCED) {
1433			vm_page_aflag_clear(m, PGA_REFERENCED);
1434			act_delta += 1;
1435		}
1436		/*
1437		 * Unlocked object ref count check.  Two races are possible.
1438		 * 1) The ref was transitioning to zero and we saw non-zero,
1439		 *    the pmap bits will be checked unnecessarily.
1440		 * 2) The ref was transitioning to one and we saw zero.
1441		 *    The page lock prevents a new reference to this page so
1442		 *    we need not check the reference bits.
1443		 */
1444		if (m->object->ref_count != 0)
1445			act_delta += pmap_ts_referenced(m);
1446
1447		/*
1448		 * Advance or decay the act_count based on recent usage.
1449		 */
1450		if (act_delta) {
1451			m->act_count += ACT_ADVANCE + act_delta;
1452			if (m->act_count > ACT_MAX)
1453				m->act_count = ACT_MAX;
1454		} else {
1455			m->act_count -= min(m->act_count, ACT_DECLINE);
1456			act_delta = m->act_count;
1457		}
1458
1459		/*
1460		 * Move this page to the tail of the active or inactive
1461		 * queue depending on usage.
1462		 */
1463		if (act_delta == 0) {
1464			/* Dequeue to avoid later lock recursion. */
1465			vm_page_dequeue_locked(m);
1466			vm_page_deactivate(m);
1467			page_shortage--;
1468		} else
1469			vm_page_requeue_locked(m);
1470		vm_page_unlock(m);
1471	}
1472	vm_pagequeue_unlock(pq);
1473#if !defined(NO_SWAPPING)
1474	/*
1475	 * Idle process swapout -- run once per second.
1476	 */
1477	if (vm_swap_idle_enabled) {
1478		static long lsec;
1479		if (time_second != lsec) {
1480			vm_req_vmdaemon(VM_SWAP_IDLE);
1481			lsec = time_second;
1482		}
1483	}
1484#endif
1485}
1486
1487static int vm_pageout_oom_vote;
1488
1489/*
1490 * The pagedaemon threads randlomly select one to perform the
1491 * OOM.  Trying to kill processes before all pagedaemons
1492 * failed to reach free target is premature.
1493 */
1494static void
1495vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1496    int starting_page_shortage)
1497{
1498	int old_vote;
1499
1500	if (starting_page_shortage <= 0 || starting_page_shortage !=
1501	    page_shortage)
1502		vmd->vmd_oom_seq = 0;
1503	else
1504		vmd->vmd_oom_seq++;
1505	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1506		if (vmd->vmd_oom) {
1507			vmd->vmd_oom = FALSE;
1508			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1509		}
1510		return;
1511	}
1512
1513	/*
1514	 * Do not follow the call sequence until OOM condition is
1515	 * cleared.
1516	 */
1517	vmd->vmd_oom_seq = 0;
1518
1519	if (vmd->vmd_oom)
1520		return;
1521
1522	vmd->vmd_oom = TRUE;
1523	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1524	if (old_vote != vm_ndomains - 1)
1525		return;
1526
1527	/*
1528	 * The current pagedaemon thread is the last in the quorum to
1529	 * start OOM.  Initiate the selection and signaling of the
1530	 * victim.
1531	 */
1532	vm_pageout_oom(VM_OOM_MEM);
1533
1534	/*
1535	 * After one round of OOM terror, recall our vote.  On the
1536	 * next pass, current pagedaemon would vote again if the low
1537	 * memory condition is still there, due to vmd_oom being
1538	 * false.
1539	 */
1540	vmd->vmd_oom = FALSE;
1541	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1542}
1543
1544/*
1545 * The OOM killer is the page daemon's action of last resort when
1546 * memory allocation requests have been stalled for a prolonged period
1547 * of time because it cannot reclaim memory.  This function computes
1548 * the approximate number of physical pages that could be reclaimed if
1549 * the specified address space is destroyed.
1550 *
1551 * Private, anonymous memory owned by the address space is the
1552 * principal resource that we expect to recover after an OOM kill.
1553 * Since the physical pages mapped by the address space's COW entries
1554 * are typically shared pages, they are unlikely to be released and so
1555 * they are not counted.
1556 *
1557 * To get to the point where the page daemon runs the OOM killer, its
1558 * efforts to write-back vnode-backed pages may have stalled.  This
1559 * could be caused by a memory allocation deadlock in the write path
1560 * that might be resolved by an OOM kill.  Therefore, physical pages
1561 * belonging to vnode-backed objects are counted, because they might
1562 * be freed without being written out first if the address space holds
1563 * the last reference to an unlinked vnode.
1564 *
1565 * Similarly, physical pages belonging to OBJT_PHYS objects are
1566 * counted because the address space might hold the last reference to
1567 * the object.
1568 */
1569static long
1570vm_pageout_oom_pagecount(struct vmspace *vmspace)
1571{
1572	vm_map_t map;
1573	vm_map_entry_t entry;
1574	vm_object_t obj;
1575	long res;
1576
1577	map = &vmspace->vm_map;
1578	KASSERT(!map->system_map, ("system map"));
1579	sx_assert(&map->lock, SA_LOCKED);
1580	res = 0;
1581	for (entry = map->header.next; entry != &map->header;
1582	    entry = entry->next) {
1583		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1584			continue;
1585		obj = entry->object.vm_object;
1586		if (obj == NULL)
1587			continue;
1588		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1589		    obj->ref_count != 1)
1590			continue;
1591		switch (obj->type) {
1592		case OBJT_DEFAULT:
1593		case OBJT_SWAP:
1594		case OBJT_PHYS:
1595		case OBJT_VNODE:
1596			res += obj->resident_page_count;
1597			break;
1598		}
1599	}
1600	return (res);
1601}
1602
1603void
1604vm_pageout_oom(int shortage)
1605{
1606	struct proc *p, *bigproc;
1607	vm_offset_t size, bigsize;
1608	struct thread *td;
1609	struct vmspace *vm;
1610
1611	/*
1612	 * We keep the process bigproc locked once we find it to keep anyone
1613	 * from messing with it; however, there is a possibility of
1614	 * deadlock if process B is bigproc and one of it's child processes
1615	 * attempts to propagate a signal to B while we are waiting for A's
1616	 * lock while walking this list.  To avoid this, we don't block on
1617	 * the process lock but just skip a process if it is already locked.
1618	 */
1619	bigproc = NULL;
1620	bigsize = 0;
1621	sx_slock(&allproc_lock);
1622	FOREACH_PROC_IN_SYSTEM(p) {
1623		int breakout;
1624
1625		PROC_LOCK(p);
1626
1627		/*
1628		 * If this is a system, protected or killed process, skip it.
1629		 */
1630		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1631		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1632		    p->p_pid == 1 || P_KILLED(p) ||
1633		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1634			PROC_UNLOCK(p);
1635			continue;
1636		}
1637		/*
1638		 * If the process is in a non-running type state,
1639		 * don't touch it.  Check all the threads individually.
1640		 */
1641		breakout = 0;
1642		FOREACH_THREAD_IN_PROC(p, td) {
1643			thread_lock(td);
1644			if (!TD_ON_RUNQ(td) &&
1645			    !TD_IS_RUNNING(td) &&
1646			    !TD_IS_SLEEPING(td) &&
1647			    !TD_IS_SUSPENDED(td) &&
1648			    !TD_IS_SWAPPED(td)) {
1649				thread_unlock(td);
1650				breakout = 1;
1651				break;
1652			}
1653			thread_unlock(td);
1654		}
1655		if (breakout) {
1656			PROC_UNLOCK(p);
1657			continue;
1658		}
1659		/*
1660		 * get the process size
1661		 */
1662		vm = vmspace_acquire_ref(p);
1663		if (vm == NULL) {
1664			PROC_UNLOCK(p);
1665			continue;
1666		}
1667		_PHOLD(p);
1668		if (!vm_map_trylock_read(&vm->vm_map)) {
1669			_PRELE(p);
1670			PROC_UNLOCK(p);
1671			vmspace_free(vm);
1672			continue;
1673		}
1674		PROC_UNLOCK(p);
1675		size = vmspace_swap_count(vm);
1676		if (shortage == VM_OOM_MEM)
1677			size += vm_pageout_oom_pagecount(vm);
1678		vm_map_unlock_read(&vm->vm_map);
1679		vmspace_free(vm);
1680
1681		/*
1682		 * If this process is bigger than the biggest one,
1683		 * remember it.
1684		 */
1685		if (size > bigsize) {
1686			if (bigproc != NULL)
1687				PRELE(bigproc);
1688			bigproc = p;
1689			bigsize = size;
1690		} else {
1691			PRELE(p);
1692		}
1693	}
1694	sx_sunlock(&allproc_lock);
1695	if (bigproc != NULL) {
1696		PROC_LOCK(bigproc);
1697		killproc(bigproc, "out of swap space");
1698		sched_nice(bigproc, PRIO_MIN);
1699		_PRELE(bigproc);
1700		PROC_UNLOCK(bigproc);
1701		wakeup(&cnt.v_free_count);
1702	}
1703}
1704
1705static void
1706vm_pageout_worker(void *arg)
1707{
1708	struct vm_domain *domain;
1709	int domidx;
1710
1711	domidx = (uintptr_t)arg;
1712	domain = &vm_dom[domidx];
1713
1714	/*
1715	 * XXXKIB It could be useful to bind pageout daemon threads to
1716	 * the cores belonging to the domain, from which vm_page_array
1717	 * is allocated.
1718	 */
1719
1720	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1721	domain->vmd_last_active_scan = ticks;
1722	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1723
1724	/*
1725	 * The pageout daemon worker is never done, so loop forever.
1726	 */
1727	while (TRUE) {
1728		/*
1729		 * If we have enough free memory, wakeup waiters.  Do
1730		 * not clear vm_pages_needed until we reach our target,
1731		 * otherwise we may be woken up over and over again and
1732		 * waste a lot of cpu.
1733		 */
1734		mtx_lock(&vm_page_queue_free_mtx);
1735		if (vm_pages_needed && !vm_page_count_min()) {
1736			if (!vm_paging_needed())
1737				vm_pages_needed = 0;
1738			wakeup(&cnt.v_free_count);
1739		}
1740		if (vm_pages_needed) {
1741			/*
1742			 * We're still not done.  Either vm_pages_needed was
1743			 * set by another thread during the previous scan
1744			 * (typically, this happens during a level 0 scan) or
1745			 * vm_pages_needed was already set and the scan failed
1746			 * to free enough pages.  If we haven't yet performed
1747			 * a level >= 2 scan (unlimited dirty cleaning), then
1748			 * upgrade the level and scan again now.  Otherwise,
1749			 * sleep a bit and try again later.  While sleeping,
1750			 * vm_pages_needed can be cleared.
1751			 */
1752			if (domain->vmd_pass > 1)
1753				msleep(&vm_pages_needed,
1754				    &vm_page_queue_free_mtx, PVM, "psleep",
1755				    hz / 2);
1756		} else {
1757			/*
1758			 * Good enough, sleep until required to refresh
1759			 * stats.
1760			 */
1761			msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1762			    PVM, "psleep", hz);
1763		}
1764		if (vm_pages_needed) {
1765			cnt.v_pdwakeups++;
1766			domain->vmd_pass++;
1767		} else
1768			domain->vmd_pass = 0;
1769		mtx_unlock(&vm_page_queue_free_mtx);
1770		vm_pageout_scan(domain, domain->vmd_pass);
1771	}
1772}
1773
1774/*
1775 *	vm_pageout_init initialises basic pageout daemon settings.
1776 */
1777static void
1778vm_pageout_init(void)
1779{
1780	/*
1781	 * Initialize some paging parameters.
1782	 */
1783	cnt.v_interrupt_free_min = 2;
1784	if (cnt.v_page_count < 2000)
1785		vm_pageout_page_count = 8;
1786
1787	/*
1788	 * v_free_reserved needs to include enough for the largest
1789	 * swap pager structures plus enough for any pv_entry structs
1790	 * when paging.
1791	 */
1792	if (cnt.v_page_count > 1024)
1793		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1794	else
1795		cnt.v_free_min = 4;
1796	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1797	    cnt.v_interrupt_free_min;
1798	cnt.v_free_reserved = vm_pageout_page_count +
1799	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1800	cnt.v_free_severe = cnt.v_free_min / 2;
1801	cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1802	cnt.v_free_min += cnt.v_free_reserved;
1803	cnt.v_free_severe += cnt.v_free_reserved;
1804	cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1805	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1806		cnt.v_inactive_target = cnt.v_free_count / 3;
1807
1808	/*
1809	 * Set the default wakeup threshold to be 10% above the minimum
1810	 * page limit.  This keeps the steady state out of shortfall.
1811	 */
1812	vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
1813
1814	/*
1815	 * Set interval in seconds for active scan.  We want to visit each
1816	 * page at least once every ten minutes.  This is to prevent worst
1817	 * case paging behaviors with stale active LRU.
1818	 */
1819	if (vm_pageout_update_period == 0)
1820		vm_pageout_update_period = 600;
1821
1822	/* XXX does not really belong here */
1823	if (vm_page_max_wired == 0)
1824		vm_page_max_wired = cnt.v_free_count / 3;
1825}
1826
1827/*
1828 *     vm_pageout is the high level pageout daemon.
1829 */
1830static void
1831vm_pageout(void)
1832{
1833	int error;
1834#if MAXMEMDOM > 1
1835	int i;
1836#endif
1837
1838	swap_pager_swap_init();
1839#if MAXMEMDOM > 1
1840	for (i = 1; i < vm_ndomains; i++) {
1841		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1842		    curproc, NULL, 0, 0, "dom%d", i);
1843		if (error != 0) {
1844			panic("starting pageout for domain %d, error %d\n",
1845			    i, error);
1846		}
1847	}
1848#endif
1849	error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
1850	    0, 0, "uma");
1851	if (error != 0)
1852		panic("starting uma_reclaim helper, error %d\n", error);
1853	vm_pageout_worker((void *)(uintptr_t)0);
1854}
1855
1856/*
1857 * Unless the free page queue lock is held by the caller, this function
1858 * should be regarded as advisory.  Specifically, the caller should
1859 * not msleep() on &cnt.v_free_count following this function unless
1860 * the free page queue lock is held until the msleep() is performed.
1861 */
1862void
1863pagedaemon_wakeup(void)
1864{
1865
1866	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1867		vm_pages_needed = 1;
1868		wakeup(&vm_pages_needed);
1869	}
1870}
1871
1872#if !defined(NO_SWAPPING)
1873static void
1874vm_req_vmdaemon(int req)
1875{
1876	static int lastrun = 0;
1877
1878	mtx_lock(&vm_daemon_mtx);
1879	vm_pageout_req_swapout |= req;
1880	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1881		wakeup(&vm_daemon_needed);
1882		lastrun = ticks;
1883	}
1884	mtx_unlock(&vm_daemon_mtx);
1885}
1886
1887static void
1888vm_daemon(void)
1889{
1890	struct rlimit rsslim;
1891	struct proc *p;
1892	struct thread *td;
1893	struct vmspace *vm;
1894	int breakout, swapout_flags, tryagain, attempts;
1895#ifdef RACCT
1896	uint64_t rsize, ravailable;
1897#endif
1898
1899	while (TRUE) {
1900		mtx_lock(&vm_daemon_mtx);
1901		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
1902#ifdef RACCT
1903		    racct_enable ? hz : 0
1904#else
1905		    0
1906#endif
1907		);
1908		swapout_flags = vm_pageout_req_swapout;
1909		vm_pageout_req_swapout = 0;
1910		mtx_unlock(&vm_daemon_mtx);
1911		if (swapout_flags)
1912			swapout_procs(swapout_flags);
1913
1914		/*
1915		 * scan the processes for exceeding their rlimits or if
1916		 * process is swapped out -- deactivate pages
1917		 */
1918		tryagain = 0;
1919		attempts = 0;
1920again:
1921		attempts++;
1922		sx_slock(&allproc_lock);
1923		FOREACH_PROC_IN_SYSTEM(p) {
1924			vm_pindex_t limit, size;
1925
1926			/*
1927			 * if this is a system process or if we have already
1928			 * looked at this process, skip it.
1929			 */
1930			PROC_LOCK(p);
1931			if (p->p_state != PRS_NORMAL ||
1932			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1933				PROC_UNLOCK(p);
1934				continue;
1935			}
1936			/*
1937			 * if the process is in a non-running type state,
1938			 * don't touch it.
1939			 */
1940			breakout = 0;
1941			FOREACH_THREAD_IN_PROC(p, td) {
1942				thread_lock(td);
1943				if (!TD_ON_RUNQ(td) &&
1944				    !TD_IS_RUNNING(td) &&
1945				    !TD_IS_SLEEPING(td) &&
1946				    !TD_IS_SUSPENDED(td)) {
1947					thread_unlock(td);
1948					breakout = 1;
1949					break;
1950				}
1951				thread_unlock(td);
1952			}
1953			if (breakout) {
1954				PROC_UNLOCK(p);
1955				continue;
1956			}
1957			/*
1958			 * get a limit
1959			 */
1960			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1961			limit = OFF_TO_IDX(
1962			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1963
1964			/*
1965			 * let processes that are swapped out really be
1966			 * swapped out set the limit to nothing (will force a
1967			 * swap-out.)
1968			 */
1969			if ((p->p_flag & P_INMEM) == 0)
1970				limit = 0;	/* XXX */
1971			vm = vmspace_acquire_ref(p);
1972			PROC_UNLOCK(p);
1973			if (vm == NULL)
1974				continue;
1975
1976			size = vmspace_resident_count(vm);
1977			if (size >= limit) {
1978				vm_pageout_map_deactivate_pages(
1979				    &vm->vm_map, limit);
1980			}
1981#ifdef RACCT
1982			if (racct_enable) {
1983				rsize = IDX_TO_OFF(size);
1984				PROC_LOCK(p);
1985				racct_set(p, RACCT_RSS, rsize);
1986				ravailable = racct_get_available(p, RACCT_RSS);
1987				PROC_UNLOCK(p);
1988				if (rsize > ravailable) {
1989					/*
1990					 * Don't be overly aggressive; this
1991					 * might be an innocent process,
1992					 * and the limit could've been exceeded
1993					 * by some memory hog.  Don't try
1994					 * to deactivate more than 1/4th
1995					 * of process' resident set size.
1996					 */
1997					if (attempts <= 8) {
1998						if (ravailable < rsize -
1999						    (rsize / 4)) {
2000							ravailable = rsize -
2001							    (rsize / 4);
2002						}
2003					}
2004					vm_pageout_map_deactivate_pages(
2005					    &vm->vm_map,
2006					    OFF_TO_IDX(ravailable));
2007					/* Update RSS usage after paging out. */
2008					size = vmspace_resident_count(vm);
2009					rsize = IDX_TO_OFF(size);
2010					PROC_LOCK(p);
2011					racct_set(p, RACCT_RSS, rsize);
2012					PROC_UNLOCK(p);
2013					if (rsize > ravailable)
2014						tryagain = 1;
2015				}
2016			}
2017#endif
2018			vmspace_free(vm);
2019		}
2020		sx_sunlock(&allproc_lock);
2021		if (tryagain != 0 && attempts <= 10)
2022			goto again;
2023	}
2024}
2025#endif			/* !defined(NO_SWAPPING) */
2026